Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
f66d08c2
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f66d08c2
编写于
9月 20, 2018
作者:
X
Xin Pan
提交者:
GitHub
9月 20, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #13493 from panyx0718/doc
convert **kwargs to explicit arguments
上级
943c46c7
88ae3f16
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
116 addition
and
72 deletion
+116
-72
benchmark/fluid/args.py
benchmark/fluid/args.py
+0
-4
benchmark/fluid/models/resnet.py
benchmark/fluid/models/resnet.py
+0
-5
benchmark/fluid/models/resnet_with_preprocess.py
benchmark/fluid/models/resnet_with_preprocess.py
+0
-5
benchmark/fluid/models/se_resnext.py
benchmark/fluid/models/se_resnext.py
+1
-7
paddle/fluid/API.spec
paddle/fluid/API.spec
+10
-10
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+99
-32
python/paddle/fluid/regularizer.py
python/paddle/fluid/regularizer.py
+5
-8
python/paddle/fluid/tests/book/test_recognize_digits.py
python/paddle/fluid/tests/book/test_recognize_digits.py
+1
-1
未找到文件。
benchmark/fluid/args.py
浏览文件 @
f66d08c2
...
@@ -136,10 +136,6 @@ def parse_args():
...
@@ -136,10 +136,6 @@ def parse_args():
'--no_random'
,
'--no_random'
,
action
=
'store_true'
,
action
=
'store_true'
,
help
=
'If set, keep the random seed and do not shuffle the data.'
)
help
=
'If set, keep the random seed and do not shuffle the data.'
)
parser
.
add_argument
(
'--use_lars'
,
action
=
'store_true'
,
help
=
'If set, use lars for optimizers, ONLY support resnet module.'
)
parser
.
add_argument
(
parser
.
add_argument
(
'--reduce_strategy'
,
'--reduce_strategy'
,
type
=
str
,
type
=
str
,
...
...
benchmark/fluid/models/resnet.py
浏览文件 @
f66d08c2
...
@@ -200,11 +200,6 @@ def get_model(args, is_train, main_prog, startup_prog):
...
@@ -200,11 +200,6 @@ def get_model(args, is_train, main_prog, startup_prog):
# configure optimize
# configure optimize
optimizer
=
None
optimizer
=
None
if
is_train
:
if
is_train
:
if
args
.
use_lars
:
lars_decay
=
1.0
else
:
lars_decay
=
0.0
total_images
=
1281167
/
trainer_count
total_images
=
1281167
/
trainer_count
step
=
int
(
total_images
/
(
args
.
batch_size
*
args
.
gpus
)
+
1
)
step
=
int
(
total_images
/
(
args
.
batch_size
*
args
.
gpus
)
+
1
)
...
...
benchmark/fluid/models/resnet_with_preprocess.py
浏览文件 @
f66d08c2
...
@@ -224,11 +224,6 @@ def get_model(args, is_train, main_prog, startup_prog):
...
@@ -224,11 +224,6 @@ def get_model(args, is_train, main_prog, startup_prog):
# configure optimize
# configure optimize
optimizer
=
None
optimizer
=
None
if
is_train
:
if
is_train
:
if
args
.
use_lars
:
lars_decay
=
1.0
else
:
lars_decay
=
0.0
total_images
=
1281167
/
trainer_count
total_images
=
1281167
/
trainer_count
step
=
int
(
total_images
/
args
.
batch_size
+
1
)
step
=
int
(
total_images
/
args
.
batch_size
+
1
)
...
...
benchmark/fluid/models/se_resnext.py
浏览文件 @
f66d08c2
...
@@ -244,11 +244,6 @@ def get_model(args, is_train, main_prog, startup_prog):
...
@@ -244,11 +244,6 @@ def get_model(args, is_train, main_prog, startup_prog):
optimizer
=
None
optimizer
=
None
if
is_train
:
if
is_train
:
if
args
.
use_lars
:
lars_decay
=
1.0
else
:
lars_decay
=
0.0
total_images
=
1281167
/
trainer_count
total_images
=
1281167
/
trainer_count
step
=
int
(
total_images
/
args
.
batch_size
+
1
)
step
=
int
(
total_images
/
args
.
batch_size
+
1
)
...
@@ -262,8 +257,7 @@ def get_model(args, is_train, main_prog, startup_prog):
...
@@ -262,8 +257,7 @@ def get_model(args, is_train, main_prog, startup_prog):
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
),
boundaries
=
bd
,
values
=
lr
),
momentum
=
0.9
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
),
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
LARS_weight_decay
=
lars_decay
)
optimizer
.
minimize
(
avg_cost
)
optimizer
.
minimize
(
avg_cost
)
if
args
.
memory_optimize
:
if
args
.
memory_optimize
:
...
...
paddle/fluid/API.spec
浏览文件 @
f66d08c2
...
@@ -350,25 +350,25 @@ paddle.fluid.nets.simple_img_conv_pool ArgSpec(args=['input', 'num_filters', 'fi
...
@@ -350,25 +350,25 @@ paddle.fluid.nets.simple_img_conv_pool ArgSpec(args=['input', 'num_filters', 'fi
paddle.fluid.nets.sequence_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'param_attr', 'act', 'pool_type'], varargs=None, keywords=None, defaults=(None, 'sigmoid', 'max'))
paddle.fluid.nets.sequence_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'param_attr', 'act', 'pool_type'], varargs=None, keywords=None, defaults=(None, 'sigmoid', 'max'))
paddle.fluid.nets.glu ArgSpec(args=['input', 'dim'], varargs=None, keywords=None, defaults=(-1,))
paddle.fluid.nets.glu ArgSpec(args=['input', 'dim'], varargs=None, keywords=None, defaults=(-1,))
paddle.fluid.nets.scaled_dot_product_attention ArgSpec(args=['queries', 'keys', 'values', 'num_heads', 'dropout_rate'], varargs=None, keywords=None, defaults=(1, 0.0))
paddle.fluid.nets.scaled_dot_product_attention ArgSpec(args=['queries', 'keys', 'values', 'num_heads', 'dropout_rate'], varargs=None, keywords=None, defaults=(1, 0.0))
paddle.fluid.optimizer.SGDOptimizer.__init__ ArgSpec(args=['self', 'learning_rate'
], varargs=None, keywords='kwargs', defaults=None
)
paddle.fluid.optimizer.SGDOptimizer.__init__ ArgSpec(args=['self', 'learning_rate'
, 'regularization', 'name'], varargs=None, keywords=None, defaults=(None, None)
)
paddle.fluid.optimizer.SGDOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.SGDOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.MomentumOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'momentum', 'use_nesterov'
], varargs=None, keywords='kwargs', defaults=(False,
))
paddle.fluid.optimizer.MomentumOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'momentum', 'use_nesterov'
, 'regularization', 'name'], varargs=None, keywords=None, defaults=(False, None, None
))
paddle.fluid.optimizer.MomentumOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.MomentumOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdagradOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'epsilon'
], varargs=None, keywords='kwargs', defaults=(1e-06,
))
paddle.fluid.optimizer.AdagradOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'epsilon'
, 'regularization', 'name'], varargs=None, keywords=None, defaults=(1e-06, None, None
))
paddle.fluid.optimizer.AdagradOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdagradOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdamOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'beta1', 'beta2', 'epsilon'
], varargs=None, keywords='kwargs', defaults=(0.001, 0.9, 0.999, 1e-08
))
paddle.fluid.optimizer.AdamOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'beta1', 'beta2', 'epsilon'
, 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.001, 0.9, 0.999, 1e-08, None, None
))
paddle.fluid.optimizer.AdamOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdamOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdamaxOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'beta1', 'beta2', 'epsilon'
], varargs=None, keywords='kwargs', defaults=(0.001, 0.9, 0.999, 1e-08
))
paddle.fluid.optimizer.AdamaxOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'beta1', 'beta2', 'epsilon'
, 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.001, 0.9, 0.999, 1e-08, None, None
))
paddle.fluid.optimizer.AdamaxOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdamaxOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.DecayedAdagradOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'decay', 'epsilon'
], varargs=None, keywords='kwargs', defaults=(0.95, 1e-06
))
paddle.fluid.optimizer.DecayedAdagradOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'decay', 'epsilon'
, 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.95, 1e-06, None, None
))
paddle.fluid.optimizer.DecayedAdagradOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.DecayedAdagradOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.FtrlOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'l1', 'l2', 'lr_power'
], varargs=None, keywords='kwargs', defaults=(0.0, 0.0, -0.5
))
paddle.fluid.optimizer.FtrlOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'l1', 'l2', 'lr_power'
, 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.0, 0.0, -0.5, None, None
))
paddle.fluid.optimizer.FtrlOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.FtrlOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.RMSPropOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'rho', 'epsilon', 'momentum', 'centered'
], varargs=None, keywords='kwargs', defaults=(0.95, 1e-06, 0.0, Fals
e))
paddle.fluid.optimizer.RMSPropOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'rho', 'epsilon', 'momentum', 'centered'
, 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.95, 1e-06, 0.0, False, None, Non
e))
paddle.fluid.optimizer.RMSPropOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.RMSPropOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdadeltaOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'epsilon', 'rho'
], varargs=None, keywords='kwargs', defaults=(1e-06, 0.95
))
paddle.fluid.optimizer.AdadeltaOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'epsilon', 'rho'
, 'regularization', 'name'], varargs=None, keywords=None, defaults=(1e-06, 0.95, None, None
))
paddle.fluid.optimizer.AdadeltaOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdadeltaOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.ModelAverage.__init__ ArgSpec(args=['self', 'average_window_rate', 'min_average_window', 'max_average_window'
], varargs=None, keywords='kwargs', defaults=(10000, 10000
))
paddle.fluid.optimizer.ModelAverage.__init__ ArgSpec(args=['self', 'average_window_rate', 'min_average_window', 'max_average_window'
, 'regularization', 'name'], varargs=None, keywords=None, defaults=(10000, 10000, None, None
))
paddle.fluid.optimizer.ModelAverage.apply ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.optimizer.ModelAverage.apply ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.optimizer.ModelAverage.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.ModelAverage.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.ModelAverage.restore ArgSpec(args=['self', 'executor'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.ModelAverage.restore ArgSpec(args=['self', 'executor'], varargs=None, keywords=None, defaults=None)
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
f66d08c2
...
@@ -43,11 +43,7 @@ class Optimizer(object):
...
@@ -43,11 +43,7 @@ class Optimizer(object):
but need to use one of it's implementation.
but need to use one of it's implementation.
"""
"""
def
__init__
(
self
,
def
__init__
(
self
,
learning_rate
,
regularization
=
None
,
name
=
None
):
learning_rate
,
regularization
=
None
,
LARS_weight_decay
=
0.0
,
name
=
None
):
if
not
isinstance
(
learning_rate
,
float
)
and
\
if
not
isinstance
(
learning_rate
,
float
)
and
\
not
isinstance
(
learning_rate
,
framework
.
Variable
):
not
isinstance
(
learning_rate
,
framework
.
Variable
):
raise
TypeError
(
"learning rate should be float or Variable"
)
raise
TypeError
(
"learning rate should be float or Variable"
)
...
@@ -68,7 +64,6 @@ class Optimizer(object):
...
@@ -68,7 +64,6 @@ class Optimizer(object):
# {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
# {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
self
.
_accumulators
=
defaultdict
(
lambda
:
dict
())
self
.
_accumulators
=
defaultdict
(
lambda
:
dict
())
self
.
helper
=
None
self
.
helper
=
None
self
.
_LARS_weight_decay
=
LARS_weight_decay
def
_create_global_learning_rate
(
self
):
def
_create_global_learning_rate
(
self
):
lr
=
self
.
_global_learning_rate
()
lr
=
self
.
_global_learning_rate
()
...
@@ -109,7 +104,6 @@ class Optimizer(object):
...
@@ -109,7 +104,6 @@ class Optimizer(object):
param
=
param_and_grad
[
0
]
param
=
param_and_grad
[
0
]
param_lr
=
param
.
optimize_attr
[
'learning_rate'
]
param_lr
=
param
.
optimize_attr
[
'learning_rate'
]
if
type
(
param_lr
)
==
Variable
:
if
type
(
param_lr
)
==
Variable
:
# param learning rate has been updated (LARS)
print
(
"returns updated param lr "
,
param_lr
)
print
(
"returns updated param lr "
,
param_lr
)
return
param_lr
return
param_lr
else
:
else
:
...
@@ -227,10 +221,6 @@ class Optimizer(object):
...
@@ -227,10 +221,6 @@ class Optimizer(object):
self
.
_create_accumulators
(
loss
.
block
,
self
.
_create_accumulators
(
loss
.
block
,
[
p
[
0
]
for
p
in
parameters_and_grads
])
[
p
[
0
]
for
p
in
parameters_and_grads
])
self
.
_create_global_learning_rate
()
self
.
_create_global_learning_rate
()
if
self
.
_LARS_weight_decay
>
0.0
:
layers
.
append_LARS
(
parameters_and_grads
,
self
.
_global_learning_rate
(),
self
.
_LARS_weight_decay
)
optimize_ops
=
[]
optimize_ops
=
[]
for
param_and_grad
in
parameters_and_grads
:
for
param_and_grad
in
parameters_and_grads
:
...
@@ -287,6 +277,9 @@ class SGDOptimizer(Optimizer):
...
@@ -287,6 +277,9 @@ class SGDOptimizer(Optimizer):
Args:
Args:
learning_rate (float|Variable): the learning rate used to update parameters.
\
learning_rate (float|Variable): the learning rate used to update parameters.
\
Can be a float value or a Variable with one float value as data element.
Can be a float value or a Variable with one float value as data element.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -295,10 +288,12 @@ class SGDOptimizer(Optimizer):
...
@@ -295,10 +288,12 @@ class SGDOptimizer(Optimizer):
sgd_optimizer.minimize(cost)
sgd_optimizer.minimize(cost)
"""
"""
def
__init__
(
self
,
learning_rate
,
**
kwargs
):
def
__init__
(
self
,
learning_rate
,
regularization
=
None
,
name
=
None
):
assert
learning_rate
is
not
None
assert
learning_rate
is
not
None
super
(
SGDOptimizer
,
self
).
__init__
(
super
(
SGDOptimizer
,
self
).
__init__
(
learning_rate
=
learning_rate
,
**
kwargs
)
learning_rate
=
learning_rate
,
regularization
=
regularization
,
name
=
name
)
self
.
type
=
"sgd"
self
.
type
=
"sgd"
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
...
@@ -343,6 +338,9 @@ class MomentumOptimizer(Optimizer):
...
@@ -343,6 +338,9 @@ class MomentumOptimizer(Optimizer):
Can be a float value or a Variable with one float value as data element.
Can be a float value or a Variable with one float value as data element.
momentum (float): momentum factor
momentum (float): momentum factor
use_nesterov (bool): enables Nesterov momentum
use_nesterov (bool): enables Nesterov momentum
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -352,11 +350,18 @@ class MomentumOptimizer(Optimizer):
...
@@ -352,11 +350,18 @@ class MomentumOptimizer(Optimizer):
"""
"""
_velocity_acc_str
=
"velocity"
_velocity_acc_str
=
"velocity"
def
__init__
(
self
,
learning_rate
,
momentum
,
use_nesterov
=
False
,
**
kwargs
):
def
__init__
(
self
,
learning_rate
,
momentum
,
use_nesterov
=
False
,
regularization
=
None
,
name
=
None
):
assert
learning_rate
is
not
None
assert
learning_rate
is
not
None
assert
momentum
is
not
None
assert
momentum
is
not
None
super
(
MomentumOptimizer
,
self
).
__init__
(
super
(
MomentumOptimizer
,
self
).
__init__
(
learning_rate
=
learning_rate
,
**
kwargs
)
learning_rate
=
learning_rate
,
regularization
=
regularization
,
name
=
name
)
self
.
type
=
"momentum"
self
.
type
=
"momentum"
self
.
_momentum
=
momentum
self
.
_momentum
=
momentum
self
.
_use_nesterov
=
bool
(
use_nesterov
)
self
.
_use_nesterov
=
bool
(
use_nesterov
)
...
@@ -412,6 +417,9 @@ class AdagradOptimizer(Optimizer):
...
@@ -412,6 +417,9 @@ class AdagradOptimizer(Optimizer):
learning_rate (float|Variable): the learning rate used to update parameters.
\
learning_rate (float|Variable): the learning rate used to update parameters.
\
Can be a float value or a Variable with one float value as data element.
Can be a float value or a Variable with one float value as data element.
epsilon (float): a small float value for numerical stability.
epsilon (float): a small float value for numerical stability.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -421,11 +429,17 @@ class AdagradOptimizer(Optimizer):
...
@@ -421,11 +429,17 @@ class AdagradOptimizer(Optimizer):
"""
"""
_moment_acc_str
=
"moment"
_moment_acc_str
=
"moment"
def
__init__
(
self
,
learning_rate
,
epsilon
=
1.0e-6
,
**
kwargs
):
def
__init__
(
self
,
learning_rate
,
epsilon
=
1.0e-6
,
regularization
=
None
,
name
=
None
):
assert
learning_rate
is
not
None
assert
learning_rate
is
not
None
assert
epsilon
is
not
None
assert
epsilon
is
not
None
super
(
AdagradOptimizer
,
self
).
__init__
(
super
(
AdagradOptimizer
,
self
).
__init__
(
learning_rate
=
learning_rate
,
**
kwargs
)
learning_rate
=
learning_rate
,
regularization
=
regularization
,
name
=
name
)
self
.
type
=
"adagrad"
self
.
type
=
"adagrad"
self
.
_epsilon
=
epsilon
self
.
_epsilon
=
epsilon
...
@@ -485,6 +499,9 @@ class AdamOptimizer(Optimizer):
...
@@ -485,6 +499,9 @@ class AdamOptimizer(Optimizer):
beta1 (float): The exponential decay rate for the 1st moment estimates.
beta1 (float): The exponential decay rate for the 1st moment estimates.
beta2 (float): The exponential decay rate for the 2nd moment estimates.
beta2 (float): The exponential decay rate for the 2nd moment estimates.
epsilon (float): a small float value for numerical stability.
epsilon (float): a small float value for numerical stability.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -503,13 +520,16 @@ class AdamOptimizer(Optimizer):
...
@@ -503,13 +520,16 @@ class AdamOptimizer(Optimizer):
beta1
=
0.9
,
beta1
=
0.9
,
beta2
=
0.999
,
beta2
=
0.999
,
epsilon
=
1e-8
,
epsilon
=
1e-8
,
**
kwargs
):
regularization
=
None
,
name
=
None
):
assert
learning_rate
is
not
None
assert
learning_rate
is
not
None
assert
beta1
is
not
None
assert
beta1
is
not
None
assert
beta2
is
not
None
assert
beta2
is
not
None
assert
epsilon
is
not
None
assert
epsilon
is
not
None
super
(
AdamOptimizer
,
self
).
__init__
(
super
(
AdamOptimizer
,
self
).
__init__
(
learning_rate
=
learning_rate
,
**
kwargs
)
learning_rate
=
learning_rate
,
regularization
=
regularization
,
name
=
name
)
self
.
type
=
"adam"
self
.
type
=
"adam"
self
.
_beta1
=
beta1
self
.
_beta1
=
beta1
self
.
_beta2
=
beta2
self
.
_beta2
=
beta2
...
@@ -629,6 +649,9 @@ class AdamaxOptimizer(Optimizer):
...
@@ -629,6 +649,9 @@ class AdamaxOptimizer(Optimizer):
beta1 (float): The exponential decay rate for the 1st moment estimates.
beta1 (float): The exponential decay rate for the 1st moment estimates.
beta2 (float): The exponential decay rate for the 2nd moment estimates.
beta2 (float): The exponential decay rate for the 2nd moment estimates.
epsilon (float): a small float value for numerical stability.
epsilon (float): a small float value for numerical stability.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -645,13 +668,16 @@ class AdamaxOptimizer(Optimizer):
...
@@ -645,13 +668,16 @@ class AdamaxOptimizer(Optimizer):
beta1
=
0.9
,
beta1
=
0.9
,
beta2
=
0.999
,
beta2
=
0.999
,
epsilon
=
1e-8
,
epsilon
=
1e-8
,
**
kwargs
):
regularization
=
None
,
name
=
None
):
assert
learning_rate
is
not
None
assert
learning_rate
is
not
None
assert
beta1
is
not
None
assert
beta1
is
not
None
assert
beta2
is
not
None
assert
beta2
is
not
None
assert
epsilon
is
not
None
assert
epsilon
is
not
None
super
(
AdamaxOptimizer
,
self
).
__init__
(
super
(
AdamaxOptimizer
,
self
).
__init__
(
learning_rate
=
learning_rate
,
**
kwargs
)
learning_rate
=
learning_rate
,
regularization
=
regularization
,
name
=
name
)
self
.
type
=
"adamax"
self
.
type
=
"adamax"
self
.
_beta1
=
beta1
self
.
_beta1
=
beta1
self
.
_beta2
=
beta2
self
.
_beta2
=
beta2
...
@@ -742,6 +768,9 @@ class DecayedAdagradOptimizer(Optimizer):
...
@@ -742,6 +768,9 @@ class DecayedAdagradOptimizer(Optimizer):
Can be a float value or a Variable with one float value as data element.
Can be a float value or a Variable with one float value as data element.
decay (float): decay rate.
decay (float): decay rate.
epsilon (float): a small float value for numerical stability.
epsilon (float): a small float value for numerical stability.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -751,13 +780,20 @@ class DecayedAdagradOptimizer(Optimizer):
...
@@ -751,13 +780,20 @@ class DecayedAdagradOptimizer(Optimizer):
"""
"""
_moment_acc_str
=
"moment"
_moment_acc_str
=
"moment"
def
__init__
(
self
,
learning_rate
,
decay
=
0.95
,
epsilon
=
1.0e-6
,
**
kwargs
):
def
__init__
(
self
,
learning_rate
,
decay
=
0.95
,
epsilon
=
1.0e-6
,
regularization
=
None
,
name
=
None
):
assert
learning_rate
is
not
None
assert
learning_rate
is
not
None
assert
decay
is
not
None
assert
decay
is
not
None
assert
epsilon
is
not
None
assert
epsilon
is
not
None
super
(
DecayedAdagradOptimizer
,
self
).
__init__
(
super
(
DecayedAdagradOptimizer
,
self
).
__init__
(
learning_rate
=
learning_rate
,
**
kwargs
)
learning_rate
=
learning_rate
,
regularization
=
regularization
,
name
=
name
)
self
.
type
=
"decayed_adagrad"
self
.
type
=
"decayed_adagrad"
self
.
_decay
=
decay
self
.
_decay
=
decay
self
.
_epsilon
=
epsilon
self
.
_epsilon
=
epsilon
...
@@ -811,6 +847,9 @@ class AdadeltaOptimizer(Optimizer):
...
@@ -811,6 +847,9 @@ class AdadeltaOptimizer(Optimizer):
learning_rate(float): global learning rate
learning_rate(float): global learning rate
rho(float): rho in equation
rho(float): rho in equation
epsilon(float): epsilon in equation
epsilon(float): epsilon in equation
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -823,7 +862,12 @@ class AdadeltaOptimizer(Optimizer):
...
@@ -823,7 +862,12 @@ class AdadeltaOptimizer(Optimizer):
_avg_squared_grad_acc_str
=
"_avg_squared_grad"
_avg_squared_grad_acc_str
=
"_avg_squared_grad"
_avg_squared_update_acc_str
=
"_avg_squared_update"
_avg_squared_update_acc_str
=
"_avg_squared_update"
def
__init__
(
self
,
learning_rate
,
epsilon
=
1.0e-6
,
rho
=
0.95
,
**
kwargs
):
def
__init__
(
self
,
learning_rate
,
epsilon
=
1.0e-6
,
rho
=
0.95
,
regularization
=
None
,
name
=
None
):
if
learning_rate
is
None
:
if
learning_rate
is
None
:
raise
ValueError
(
"learning_rate is not set."
)
raise
ValueError
(
"learning_rate is not set."
)
if
epsilon
is
None
:
if
epsilon
is
None
:
...
@@ -831,7 +875,9 @@ class AdadeltaOptimizer(Optimizer):
...
@@ -831,7 +875,9 @@ class AdadeltaOptimizer(Optimizer):
if
rho
is
None
:
if
rho
is
None
:
raise
ValueError
(
"rho is not set."
)
raise
ValueError
(
"rho is not set."
)
super
(
AdadeltaOptimizer
,
self
).
__init__
(
super
(
AdadeltaOptimizer
,
self
).
__init__
(
learning_rate
=
learning_rate
,
**
kwargs
)
learning_rate
=
learning_rate
,
regularization
=
regularization
,
name
=
name
)
self
.
type
=
"adadelta"
self
.
type
=
"adadelta"
self
.
_epsilon
=
epsilon
self
.
_epsilon
=
epsilon
self
.
_rho
=
rho
self
.
_rho
=
rho
...
@@ -932,6 +978,9 @@ class RMSPropOptimizer(Optimizer):
...
@@ -932,6 +978,9 @@ class RMSPropOptimizer(Optimizer):
the gradient; if False, by the uncentered second moment. Setting this to
the gradient; if False, by the uncentered second moment. Setting this to
True may help with training, but is slightly more expensive in terms of
True may help with training, but is slightly more expensive in terms of
computation and memory. Defaults to False.
computation and memory. Defaults to False.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Raises:
Raises:
ValueError: If learning_rate, rho, epsilon, momentum are None.
ValueError: If learning_rate, rho, epsilon, momentum are None.
...
@@ -953,9 +1002,12 @@ class RMSPropOptimizer(Optimizer):
...
@@ -953,9 +1002,12 @@ class RMSPropOptimizer(Optimizer):
epsilon
=
1.0e-6
,
epsilon
=
1.0e-6
,
momentum
=
0.0
,
momentum
=
0.0
,
centered
=
False
,
centered
=
False
,
**
kwargs
):
regularization
=
None
,
name
=
None
):
super
(
RMSPropOptimizer
,
self
).
__init__
(
super
(
RMSPropOptimizer
,
self
).
__init__
(
learning_rate
=
learning_rate
,
**
kwargs
)
learning_rate
=
learning_rate
,
regularization
=
regularization
,
name
=
name
)
if
learning_rate
is
None
:
if
learning_rate
is
None
:
raise
ValueError
(
"learning_rate is not set."
)
raise
ValueError
(
"learning_rate is not set."
)
if
rho
is
None
:
if
rho
is
None
:
...
@@ -1061,6 +1113,9 @@ class FtrlOptimizer(Optimizer):
...
@@ -1061,6 +1113,9 @@ class FtrlOptimizer(Optimizer):
l1 (float):
l1 (float):
l2 (float):
l2 (float):
lr_power (float):
lr_power (float):
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Raises:
Raises:
ValueError: If learning_rate, rho, epsilon, momentum are None.
ValueError: If learning_rate, rho, epsilon, momentum are None.
...
@@ -1075,9 +1130,17 @@ class FtrlOptimizer(Optimizer):
...
@@ -1075,9 +1130,17 @@ class FtrlOptimizer(Optimizer):
_squared_acc_str
=
"squared"
_squared_acc_str
=
"squared"
_linear_acc_str
=
"linear"
_linear_acc_str
=
"linear"
def
__init__
(
self
,
learning_rate
,
l1
=
0.0
,
l2
=
0.0
,
lr_power
=-
0.5
,
**
kwargs
):
def
__init__
(
self
,
learning_rate
,
l1
=
0.0
,
l2
=
0.0
,
lr_power
=-
0.5
,
regularization
=
None
,
name
=
None
):
super
(
FtrlOptimizer
,
self
).
__init__
(
super
(
FtrlOptimizer
,
self
).
__init__
(
learning_rate
=
learning_rate
,
**
kwargs
)
learning_rate
=
learning_rate
,
regularization
=
regularization
,
name
=
name
)
if
learning_rate
is
None
:
if
learning_rate
is
None
:
raise
ValueError
(
"learning_rate is not set."
)
raise
ValueError
(
"learning_rate is not set."
)
...
@@ -1155,7 +1218,9 @@ class ModelAverage(Optimizer):
...
@@ -1155,7 +1218,9 @@ class ModelAverage(Optimizer):
average_window_rate: The rate of average window.
average_window_rate: The rate of average window.
min_average_window: The minimum size of average window.
min_average_window: The minimum size of average window.
max_average_window: The maximum size of average window.
max_average_window: The maximum size of average window.
regularization: A Regularizer, such as
fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -1178,8 +1243,10 @@ class ModelAverage(Optimizer):
...
@@ -1178,8 +1243,10 @@ class ModelAverage(Optimizer):
average_window_rate
,
average_window_rate
,
min_average_window
=
10000
,
min_average_window
=
10000
,
max_average_window
=
10000
,
max_average_window
=
10000
,
**
kwargs
):
regularization
=
None
,
super
(
ModelAverage
,
self
).
__init__
(
0.0
,
**
kwargs
)
name
=
None
):
super
(
ModelAverage
,
self
).
__init__
(
0.0
,
regularization
=
regularization
,
name
=
name
)
self
.
average_window
=
average_window_rate
self
.
average_window
=
average_window_rate
self
.
min_average_window
=
min_average_window
self
.
min_average_window
=
min_average_window
self
.
max_average_window
=
max_average_window
self
.
max_average_window
=
max_average_window
...
...
python/paddle/fluid/regularizer.py
浏览文件 @
f66d08c2
...
@@ -190,14 +190,11 @@ class L1DecayRegularizer(WeightDecayRegularizer):
...
@@ -190,14 +190,11 @@ class L1DecayRegularizer(WeightDecayRegularizer):
Examples:
Examples:
.. code-block:: python
.. code-block:: python
program = fluid.framework.Program()
optimizer = fluid.optimizer.Adagrad(
block = program.global_block()
learning_rate=1e-4,
mul_x = block.create_parameter(
regularization=fluid.regularizer.L1DecayRegularizer(
dtype="float32",
regularization_coeff=0.1))
shape=[5, 10],
optimizer.minimize(avg_cost)
lod_level=0,
name="mul.x",
regularizer=fluid.regularizer.L1DecayRegularizer(0.5))
"""
"""
def
__init__
(
self
,
regularization_coeff
=
0.0
):
def
__init__
(
self
,
regularization_coeff
=
0.0
):
...
...
python/paddle/fluid/tests/book/test_recognize_digits.py
浏览文件 @
f66d08c2
...
@@ -99,7 +99,7 @@ def train(nn_type,
...
@@ -99,7 +99,7 @@ def train(nn_type,
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
,
LARS_weight_decay
=
0.3
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
optimizer
.
minimize
(
avg_loss
)
optimizer
.
minimize
(
avg_loss
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录