From f46f15a024756527690f705a3ab97bfae41f24ba Mon Sep 17 00:00:00 2001 From: "joanna.wozna.intel" Date: Thu, 29 Apr 2021 04:29:44 +0200 Subject: [PATCH] Add BF16 uniform random initializer (#32468) * Add bf16 uniform random initializer * Remove duplicated section * Change UT to CPU place only * Put detail functions into anonymous namespace --- paddle/fluid/operators/fill_constant_op.h | 3 + paddle/fluid/operators/uniform_random_op.cc | 58 +++- paddle/fluid/operators/uniform_random_op.h | 9 +- python/paddle/fluid/initializer.py | 16 +- python/paddle/fluid/layers/nn.py | 7 +- .../fluid/tests/unittests/test_initializer.py | 45 +-- .../tests/unittests/test_initializer_nn.py | 11 +- .../unittests/test_uniform_random_bf16_op.py | 276 ++++++++++++++++++ tools/static_mode_white_list.py | 1 + 9 files changed, 371 insertions(+), 55 deletions(-) create mode 100644 python/paddle/fluid/tests/unittests/test_uniform_random_bf16_op.py diff --git a/paddle/fluid/operators/fill_constant_op.h b/paddle/fluid/operators/fill_constant_op.h index 46c4ae1203..17c7321122 100644 --- a/paddle/fluid/operators/fill_constant_op.h +++ b/paddle/fluid/operators/fill_constant_op.h @@ -117,6 +117,9 @@ class FillConstantKernel : public framework::OpKernel { } if (actual_place == 0) { + VLOG(4) << "[CPU] FillConstantKernel" + << ((data_type == framework::proto::VarType::BF16) ? "" + : ""); tensor->mutable_data(platform::CPUPlace(), data_type); math::SetConstant functor; functor(reinterpret_cast(dev_ctx), diff --git a/paddle/fluid/operators/uniform_random_op.cc b/paddle/fluid/operators/uniform_random_op.cc index 6efada4343..007276b16d 100644 --- a/paddle/fluid/operators/uniform_random_op.cc +++ b/paddle/fluid/operators/uniform_random_op.cc @@ -18,10 +18,41 @@ limitations under the License. */ #include "paddle/fluid/framework/generator.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" +#include "paddle/fluid/platform/bfloat16.h" namespace paddle { namespace operators { +namespace { +template +inline void UniformRealDistribution(T *data, const int64_t &size, + const float &min, const float &max, + const unsigned int &seed) { + VLOG(4) << "[CPU] UniformRandomKernel"; + std::uniform_real_distribution dist(static_cast(min), + static_cast(max)); + auto engine = paddle::framework::GetCPURandomEngine(seed); + + for (int64_t i = 0; i < size; ++i) { + data[i] = dist(*engine); + } +} + +template <> +inline void UniformRealDistribution(paddle::platform::bfloat16 *data, + const int64_t &size, const float &min, + const float &max, + const unsigned int &seed) { + VLOG(4) << "[CPU] UniformRandomKernel"; + std::uniform_real_distribution dist(min, max); + auto engine = paddle::framework::GetCPURandomEngine(seed); + + for (int64_t i = 0; i < size; ++i) { + data[i] = static_cast(dist(*engine)); + } +} +} // namespace + // It seems that Eigen::Tensor::random in GPU will SEGFAULT. // Use std::random and thrust::random(thrust is a std library in CUDA) to // implement uniform random. @@ -61,17 +92,11 @@ class CPUUniformRandomKernel : public framework::OpKernel { framework::ToTypeName(out_var->Type()))); } T *data = tensor->mutable_data(ctx.GetPlace()); - int64_t size = tensor->numel(); - std::uniform_real_distribution dist( - static_cast(ctx.Attr("min")), - static_cast(ctx.Attr("max"))); - unsigned int seed = static_cast(ctx.Attr("seed")); - auto engine = framework::GetCPURandomEngine(seed); - for (int64_t i = 0; i < size; ++i) { - data[i] = dist(*engine); - } + UniformRealDistribution( + data, size, ctx.Attr("min"), ctx.Attr("max"), + static_cast(ctx.Attr("seed"))); unsigned int diag_num = static_cast(ctx.Attr("diag_num")); @@ -257,9 +282,12 @@ REGISTER_OPERATOR( paddle::framework::EmptyGradOpMaker, paddle::operators::UniformRandomOpVarTypeInference); -REGISTER_OP_CPU_KERNEL(uniform_random, - paddle::operators::CPUUniformRandomKernel, - paddle::operators::CPUUniformRandomKernel); -REGISTER_OP_CPU_KERNEL(uniform_random_batch_size_like, - paddle::operators::CPUUniformRandomKernel, - paddle::operators::CPUUniformRandomKernel); +REGISTER_OP_CPU_KERNEL( + uniform_random, paddle::operators::CPUUniformRandomKernel, + paddle::operators::CPUUniformRandomKernel, + paddle::operators::CPUUniformRandomKernel); +REGISTER_OP_CPU_KERNEL( + uniform_random_batch_size_like, + paddle::operators::CPUUniformRandomKernel, + paddle::operators::CPUUniformRandomKernel, + paddle::operators::CPUUniformRandomKernel); diff --git a/paddle/fluid/operators/uniform_random_op.h b/paddle/fluid/operators/uniform_random_op.h index 6052e53364..18a4154be3 100644 --- a/paddle/fluid/operators/uniform_random_op.h +++ b/paddle/fluid/operators/uniform_random_op.h @@ -24,9 +24,9 @@ namespace operators { using Tensor = framework::Tensor; inline std::vector GetNewDataFromShapeTensor( - const Tensor *new_data_tensor) { + const Tensor* new_data_tensor) { if (new_data_tensor->type() == framework::proto::VarType::INT64) { - auto *new_data = new_data_tensor->data(); + auto* new_data = new_data_tensor->data(); framework::Tensor cpu_starts_tensor; if (platform::is_gpu_place(new_data_tensor->place())) { TensorCopySync(*new_data_tensor, platform::CPUPlace(), @@ -37,7 +37,7 @@ inline std::vector GetNewDataFromShapeTensor( new_data + new_data_tensor->numel()); return vec_new_data; } else if (new_data_tensor->type() == framework::proto::VarType::INT32) { - auto *new_data = new_data_tensor->data(); + auto* new_data = new_data_tensor->data(); std::vector vec_new_data; framework::Tensor cpu_starts_tensor; if (platform::is_gpu_place(new_data_tensor->place())) { @@ -58,7 +58,7 @@ inline std::vector GetNewDataFromShapeTensor( } inline std::vector GetNewDataFromShapeTensorList( - const std::vector &list_new_shape_tensor) { + const std::vector& list_new_shape_tensor) { std::vector vec_new_shape; vec_new_shape.reserve(list_new_shape_tensor.size()); for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) { @@ -97,6 +97,5 @@ inline std::vector GetNewDataFromShapeTensorList( return vec_new_shape; } - } // namespace operators } // namespace paddle diff --git a/python/paddle/fluid/initializer.py b/python/paddle/fluid/initializer.py index dc153614fc..5b2010f340 100644 --- a/python/paddle/fluid/initializer.py +++ b/python/paddle/fluid/initializer.py @@ -245,7 +245,7 @@ class UniformInitializer(Initializer): self._seed = block.program.random_seed # to be compatible of fp16 initializers - if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]: + if var.dtype == VarDesc.VarType.FP16: out_dtype = VarDesc.VarType.FP32 out_var = block.create_var( name=unique_name.generate(".".join( @@ -274,7 +274,7 @@ class UniformInitializer(Initializer): }, stop_gradient=True) - if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]: + if var.dtype == VarDesc.VarType.FP16: block.append_op( type="cast", inputs={"X": out_var}, @@ -540,7 +540,8 @@ class XavierInitializer(Initializer): self._seed = block.program.random_seed # to be compatible of fp16 initalizers - if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]: + if var.dtype == VarDesc.VarType.FP16 or ( + var.dtype == VarDesc.VarType.BF16 and not self._uniform): out_dtype = VarDesc.VarType.FP32 out_var = block.create_var( name=unique_name.generate(".".join( @@ -582,7 +583,8 @@ class XavierInitializer(Initializer): }, stop_gradient=True) - if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]: + if var.dtype == VarDesc.VarType.FP16 or ( + var.dtype == VarDesc.VarType.BF16 and not self._uniform): block.append_op( type="cast", inputs={"X": out_var}, @@ -671,7 +673,8 @@ class MSRAInitializer(Initializer): self._seed = block.program.random_seed # to be compatible of fp16 initalizers - if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]: + if var.dtype == VarDesc.VarType.FP16 or ( + var.dtype == VarDesc.VarType.BF16 and not self._uniform): out_dtype = VarDesc.VarType.FP32 out_var = block.create_var( name=unique_name.generate(".".join( @@ -713,7 +716,8 @@ class MSRAInitializer(Initializer): }, stop_gradient=True) - if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]: + if var.dtype == VarDesc.VarType.FP16 or ( + var.dtype == VarDesc.VarType.BF16 and not self._uniform): block.append_op( type="cast", inputs={"X": out_var}, diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 751b625156..9ac314528d 100755 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -10524,10 +10524,10 @@ def uniform_random_batch_size_like(input, """ - check_variable_and_dtype(input, 'Input', ("float32", 'float64'), + check_variable_and_dtype(input, 'Input', ("float32", 'float64', "uint16"), 'uniform_random_batch_size_like') check_type(shape, 'shape', (list, tuple), 'uniform_random_batch_size_like') - check_dtype(dtype, 'dtype', ('float32', 'float64'), + check_dtype(dtype, 'dtype', ('float32', 'float64', "uint16"), 'uniform_random_batch_size_like') helper = LayerHelper('uniform_random_batch_size_like', **locals()) @@ -15121,7 +15121,8 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0, float(max), 'seed', seed, 'dtype', dtype) check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random/rand') - check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform_random/rand') + check_dtype(dtype, 'dtype', ('float32', 'float64', 'uint16'), + 'uniform_random/rand') inputs = dict() attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype} diff --git a/python/paddle/fluid/tests/unittests/test_initializer.py b/python/paddle/fluid/tests/unittests/test_initializer.py index 237ff0c958..8ddb749897 100644 --- a/python/paddle/fluid/tests/unittests/test_initializer.py +++ b/python/paddle/fluid/tests/unittests/test_initializer.py @@ -53,7 +53,7 @@ class TestConstantInitializer(unittest.TestCase): lod_level=0, name="param", initializer=initializer.ConstantInitializer()) - num_ops = 2 if dtype in ["float16"] else 1 + num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'fill_constant') @@ -72,7 +72,7 @@ class TestConstantInitializer(unittest.TestCase): lod_level=0, name="param", initializer=initializer.ConstantInitializer(2.3)) - num_ops = 2 if dtype in ["float16"] else 1 + num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'fill_constant') @@ -108,7 +108,7 @@ class TestUniformInitializer(unittest.TestCase): lod_level=0, name="param", initializer=initializer.UniformInitializer()) - num_ops = 2 if dtype in ["float16", "uint16"] else 1 + num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') @@ -153,7 +153,7 @@ class TestUniformInitializer(unittest.TestCase): lod_level=0, name="param", initializer=initializer.UniformInitializer(-4.2, 3.1, 123)) - num_ops = 2 if dtype in ["float16", "uint16"] else 1 + num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') @@ -174,7 +174,7 @@ class TestUniformInitializer(unittest.TestCase): lod_level=0, name="param", initializer=initializer.UniformInitializer(-4.2, float(i), 123)) - num_ops = 2 if dtype in ["float16", "uint16"] else 1 + num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op0 = block.ops[0] self.assertEqual(init_op0.type, 'uniform_random') @@ -195,13 +195,11 @@ class TestUniformInitializer(unittest.TestCase): def test_uniform_initializer_bf16(self): """Test uniform initializer with bfloat16 + No cast operator has been added here """ block = self.test_uniform_initializer_default_value("uint16") - self.assertTrue(check_cast_op(block.ops[1])) block = self.test_uniform_initializer(dtype="uint16") - self.assertTrue(check_cast_op(block.ops[1])) block = self.test_uniform_initializer_two_op("uint16") - self.assertTrue(check_cast_op(block.ops[1])) class TestNormalInitializer(unittest.TestCase): @@ -347,7 +345,9 @@ class TestXavierInitializer(unittest.TestCase): self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) - def test_xavier_initializer_supplied_arguments(self, dtype="float32"): + def test_xavier_initializer_supplied_arguments(self, + dtype="float32", + uniform=True): """Test the Xavier initializer with supplied arguments """ program = framework.Program() @@ -359,14 +359,18 @@ class TestXavierInitializer(unittest.TestCase): lod_level=0, name="param", initializer=initializer.XavierInitializer( - fan_in=12, fan_out=23, seed=134)) - num_ops = 2 if dtype in ["float16", "uint16"] else 1 + uniform=uniform, fan_in=12, fan_out=23, seed=134)) + num_ops = 2 if (dtype == "float16" or (dtype == "uint16" and + not uniform)) else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] - self.assertEqual(init_op.type, 'uniform_random') - limit = np.sqrt(6.0 / (12 + 23)) - self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA) - self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA) + if uniform: + self.assertEqual(init_op.type, 'uniform_random') + limit = np.sqrt(6.0 / (12 + 23)) + self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA) + self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA) + else: + self.assertEqual(init_op.type, 'gaussian_random') self.assertEqual(init_op.attr('seed'), 134) return block @@ -379,8 +383,12 @@ class TestXavierInitializer(unittest.TestCase): def test_xavier_initializer_bf16(self): """Test the Xavier initializer with bfloat16 """ - block = self.test_xavier_initializer_supplied_arguments("uint16") - self.assertTrue(check_cast_op(block.ops[1])) + block_uniform = self.test_xavier_initializer_supplied_arguments( + "uint16") + self.assertEqual(len(block_uniform.ops), 1) + block_gaussian = self.test_xavier_initializer_supplied_arguments( + "uint16", False) + self.assertTrue(check_cast_op(block_gaussian.ops[1])) class TestMSRAInitializer(unittest.TestCase): @@ -483,7 +491,7 @@ class TestMSRAInitializer(unittest.TestCase): name="param", initializer=initializer.MSRAInitializer( fan_in=12, seed=134)) - num_ops = 2 if dtype in ["float16", "uint16"] else 1 + num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') @@ -503,7 +511,6 @@ class TestMSRAInitializer(unittest.TestCase): """Test the MSRA initializer with bfloat16 """ block = self.test_msra_initializer_supplied_arguments("uint16") - self.assertTrue(check_cast_op(block.ops[1])) class TestBilinearInitializer(unittest.TestCase): diff --git a/python/paddle/fluid/tests/unittests/test_initializer_nn.py b/python/paddle/fluid/tests/unittests/test_initializer_nn.py index 9ec7836622..85815c5eee 100644 --- a/python/paddle/fluid/tests/unittests/test_initializer_nn.py +++ b/python/paddle/fluid/tests/unittests/test_initializer_nn.py @@ -225,7 +225,7 @@ class TestUniform(unittest.TestCase): lod_level=0, name="param", initializer=initializer.Uniform()) - num_ops = 2 if dtype in ["float16", "uint16"] else 1 + num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') @@ -256,7 +256,7 @@ class TestUniform(unittest.TestCase): lod_level=0, name="param", initializer=initializer.Uniform()) - num_ops = 2 if dtype in ["float16", "uint16"] else 1 + num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') @@ -287,7 +287,7 @@ class TestUniform(unittest.TestCase): lod_level=0, name="param", initializer=initializer.Uniform(min_value, max_vlaue)) - num_ops = 2 if dtype in ["float16", "uint16"] else 1 + num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') @@ -317,7 +317,7 @@ class TestUniform(unittest.TestCase): lod_level=0, name="param", initializer=initializer.Uniform(min_value, float(i))) - num_ops = 2 if dtype in ["float16", "uint16"] else 1 + num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op0 = block.ops[0] self.assertEqual(init_op0.type, 'uniform_random') @@ -343,11 +343,8 @@ class TestUniform(unittest.TestCase): """Test uniform initializer with bfloat16 """ block = self.test_uniform_initializer_default_value("uint16") #bfloat16 - self.assertTrue(check_cast_op(block.ops[1])) block = self.test_uniform_initializer(dtype="uint16") #bfloat16 - self.assertTrue(check_cast_op(block.ops[1])) block = self.test_uniform_initializer_two_op("uint16") #bfloat16 - self.assertTrue(check_cast_op(block.ops[1])) def test_uniform_initializer_dygraph(self): """Test uniform initializer in dygraph model. diff --git a/python/paddle/fluid/tests/unittests/test_uniform_random_bf16_op.py b/python/paddle/fluid/tests/unittests/test_uniform_random_bf16_op.py new file mode 100644 index 0000000000..2ba808a341 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_uniform_random_bf16_op.py @@ -0,0 +1,276 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest +import numpy as np +from op_test import OpTest, convert_uint16_to_float, convert_float_to_uint16 +import paddle +import paddle.fluid.core as core +from paddle.fluid.op import Operator +import paddle.fluid as fluid +from paddle.fluid import Program, program_guard +from paddle.fluid.tests.unittests.test_uniform_random_op import output_hist, output_hist_diag + + +class TestUniformRandomOpBF16(OpTest): + def setUp(self): + self.op_type = "uniform_random" + self.dtype = "uint16" + self.inputs = {} + self.init_attrs() + self.outputs = {"Out": np.zeros((1000, 784)).astype("uint16")} + + def init_attrs(self): + self.attrs = { + "shape": [1000, 784], + "min": -5.0, + "max": 10.0, + "seed": 10, + 'dtype': int(core.VarDesc.VarType.BF16) + } + self.output_hist = output_hist + + def verify_output(self, outs): + if np.array(outs[0]).dtype == np.uint16: + result = convert_uint16_to_float(np.array(outs[0])) + else: + result = np.array(outs[0]) + + hist, prob = self.output_hist(result) + self.assertTrue( + np.allclose( + hist, prob, rtol=0, atol=0.01), "hist: " + str(hist)) + + def test_check_output(self): + outs = self.calc_output(core.CPUPlace()) + outs = [np.array(out) for out in outs] + outs.sort(key=len) + self.verify_output(outs) + + +class TestUniformRandomOpBF16AttrTensorList(TestUniformRandomOpBF16): + def setUp(self): + self.op_type = "uniform_random" + self.new_shape = (1000, 784) + self.dtype = "uint16" + shape_tensor = [] + for index, ele in enumerate(self.new_shape): + shape_tensor.append(("x" + str(index), np.ones( + (1)).astype("int64") * ele)) + self.inputs = {'ShapeTensorList': shape_tensor} + self.init_attrs() + self.outputs = {"Out": np.zeros((1000, 784)).astype("uint16")} + + def init_attrs(self): + self.attrs = { + "min": -5.0, + "max": 10.0, + "seed": 10, + 'dtype': int(core.VarDesc.VarType.BF16) + } + self.output_hist = output_hist + + +class TestUniformRandomOpBF16AttrTensorInt32( + TestUniformRandomOpBF16AttrTensorList): + def setUp(self): + self.op_type = "uniform_random" + self.dtype = "uint16" + self.inputs = {"ShapeTensor": np.array([1000, 784]).astype("int32")} + self.init_attrs() + self.outputs = {"Out": np.zeros((1000, 784)).astype("uint16")} + + +class TestUniformRandomOpBF16WithDiagInit(TestUniformRandomOpBF16): + def init_attrs(self): + self.attrs = { + "shape": [1000, 784], + "min": -5.0, + "max": 10.0, + "seed": 10, + "diag_num": 784, + "diag_step": 784, + "diag_val": 1.0, + 'dtype': int(core.VarDesc.VarType.BF16) + } + self.output_hist = output_hist_diag + + +class TestUniformRandomOpBF16SelectedRows(unittest.TestCase): + def test_check_output(self): + self.check_with_place(core.CPUPlace()) + + def check_with_place(self, place): + scope = core.Scope() + out = scope.var("X").get_selected_rows() + paddle.seed(10) + op = Operator( + "uniform_random", + Out="X", + shape=[1000, 784], + min=-5.0, + max=10.0, + seed=10, + dtype=int(core.VarDesc.VarType.BF16)) + op.run(scope, place) + self.assertEqual(out.get_tensor().shape(), [1000, 784]) + result = convert_uint16_to_float(np.array(out.get_tensor())) + hist, prob = output_hist(result) + self.assertTrue( + np.allclose( + hist, prob, rtol=0, atol=0.01), "hist: " + str(hist)) + + +class TestUniformRandomOpBF16SelectedRowsWithDiagInit( + TestUniformRandomOpBF16SelectedRows): + def check_with_place(self, place): + scope = core.Scope() + out = scope.var("X").get_selected_rows() + paddle.seed(10) + op = Operator( + "uniform_random", + Out="X", + shape=[500, 784], + min=-5.0, + max=10.0, + seed=10, + diag_num=500, + diag_step=784, + diag_val=1.0, + dtype=int(core.VarDesc.VarType.BF16)) + op.run(scope, place) + self.assertEqual(out.get_tensor().shape(), [500, 784]) + result = convert_uint16_to_float(np.array(out.get_tensor())) + hist, prob = output_hist(result) + self.assertTrue( + np.allclose( + hist, prob, rtol=0, atol=0.01), "hist: " + str(hist)) + + +class TestUniformRandomOpBF16AttrTensorAPI(unittest.TestCase): + def test_attr_tensor_API(self): + startup_program = fluid.Program() + train_program = fluid.Program() + with fluid.program_guard(train_program, startup_program): + dim_tensor = fluid.layers.fill_constant([1], "int64", 3) + ret = fluid.layers.nn.uniform_random( + [1, dim_tensor, 2], dtype=np.uint16) + + place = fluid.CPUPlace() + exe = fluid.Executor(place) + + exe.run(startup_program) + outs = exe.run(train_program, fetch_list=[ret]) + + +class TestUniformRandomOpAPISeed(unittest.TestCase): + def test_attr_tensor_API(self): + _seed = 10 + gen = paddle.seed(_seed) + gen._is_init_py = False + startup_program = fluid.Program() + train_program = fluid.Program() + with fluid.program_guard(train_program, startup_program): + _min = 5 + _max = 10 + + ret = fluid.layers.nn.uniform_random( + [2, 3, 2], min=_min, max=_max, seed=_seed) + ret_2 = fluid.layers.nn.uniform_random( + [2, 3, 2], min=_min, max=_max, seed=_seed) + res = fluid.layers.equal(ret, ret_2) + place = fluid.CPUPlace() + exe = fluid.Executor(place) + + exe.run(startup_program) + ret_value, cmp_value = exe.run(train_program, fetch_list=[ret, res]) + self.assertTrue(np.array(cmp_value).all()) + for i in ret_value.flatten(): + self.assertGreaterEqual(i, _min) + self.assertLess(i, _max) + + +class TestUniformRandomOpBF16SelectedRowsShapeTensor(unittest.TestCase): + def test_check_output(self): + place = core.CPUPlace() + scope = core.Scope() + out = scope.var("X").get_selected_rows() + shape_tensor = scope.var("Shape").get_tensor() + shape_tensor.set(np.array([1000, 784]).astype("int64"), place) + paddle.seed(10) + op = Operator( + "uniform_random", + ShapeTensor="Shape", + Out="X", + min=-5.0, + max=10.0, + seed=10, + dtype=int(core.VarDesc.VarType.BF16)) + op.run(scope, place) + self.assertEqual(out.get_tensor().shape(), [1000, 784]) + result = convert_uint16_to_float(np.array(out.get_tensor())) + hist, prob = output_hist(result) + self.assertTrue( + np.allclose( + hist, prob, rtol=0, atol=0.01), "hist: " + str(hist)) + + +class TestUniformRandomOpBF16SelectedRowsShapeTensorList( + TestUniformRandomOpBF16SelectedRowsShapeTensor): + def test_check_output(self): + place = core.CPUPlace() + scope = core.Scope() + out = scope.var("X").get_selected_rows() + shape_1 = scope.var("shape1").get_tensor() + shape_1.set(np.array([1000]).astype("int64"), place) + shape_2 = scope.var("shape2").get_tensor() + shape_2.set(np.array([784]).astype("int64"), place) + paddle.seed(10) + op = Operator( + "uniform_random", + ShapeTensorList=["shape1", "shape2"], + Out="X", + min=-5.0, + max=10.0, + seed=10, + dtype=int(core.VarDesc.VarType.BF16)) + op.run(scope, place) + self.assertEqual(out.get_tensor().shape(), [1000, 784]) + result = convert_uint16_to_float(np.array(out.get_tensor())) + hist, prob = output_hist(result) + self.assertTrue( + np.allclose( + hist, prob, rtol=0, atol=0.01), "hist: " + str(hist)) + + +class TestUniformRandomBatchSizeLikeOpBF16API(unittest.TestCase): + def test_attr_tensorlist_int32_API(self): + startup_program = fluid.Program() + train_program = fluid.Program() + with fluid.program_guard(train_program, startup_program): + input = fluid.data(name="input", shape=[1, 3], dtype='uint16') + out_1 = fluid.layers.uniform_random_batch_size_like( + input, [2, 4], dtype=np.uint16) # out_1.shape=[1, 4] + + place = fluid.CPUPlace() + exe = fluid.Executor(place) + + exe.run(startup_program) + outs = exe.run(train_program, fetch_list=[out_1]) + + +if __name__ == "__main__": + from paddle import enable_static + enable_static() + unittest.main() diff --git a/tools/static_mode_white_list.py b/tools/static_mode_white_list.py index 7c1f54adfb..15bcae8260 100644 --- a/tools/static_mode_white_list.py +++ b/tools/static_mode_white_list.py @@ -498,6 +498,7 @@ STATIC_MODE_TESTING_LIST = [ 'test_truncated_gaussian_random_op', 'test_unbind_op', 'test_unfold_op', + 'test_uniform_random_bf16_op', 'test_uniform_random_op', 'test_unique', 'test_unique_with_counts', -- GitLab