提交 f3eb9cb3 编写于 作者: Y yangyaming

Override getValueImpl and revise document

上级 a74060d4
...@@ -75,6 +75,7 @@ class ChunkEvaluator : public Evaluator { ...@@ -75,6 +75,7 @@ class ChunkEvaluator : public Evaluator {
std::vector<Segment> labelSegments_; std::vector<Segment> labelSegments_;
std::vector<Segment> outputSegments_; std::vector<Segment> outputSegments_;
std::set<int> excludedChunkTypes_; std::set<int> excludedChunkTypes_;
mutable std::unordered_map<std::string, real> values_;
public: public:
virtual void init(const EvaluatorConfig& config) { virtual void init(const EvaluatorConfig& config) {
...@@ -243,23 +244,22 @@ public: ...@@ -243,23 +244,22 @@ public:
return false; return false;
} }
public:
// three metrics: precision, recall and F1-score // three metrics: precision, recall and F1-score
void getNames(std::vector<std::string>* names) { void getNames(std::vector<std::string>* names) {
this->storeLocalValues(); storeLocalValues();
names->reserve(this->values_.size()); names->reserve(names->size() + values_.size());
for (auto it = this->values_.begin(); it != this->values_.end(); ++it) { for (auto it = values_.begin(); it != values_.end(); ++it) {
names->push_back(this->config_.name() + "." + it->first); names->push_back(config_.name() + "." + it->first);
} }
} }
// get value by field name // get value by field name
real getValue(const std::string& name, Error* err) const { real getValue(const std::string& name, Error* err) const {
this->storeLocalValues(); storeLocalValues();
std::vector<std::string> buffers; std::vector<std::string> buffers;
paddle::str::split(name, '.', &buffers); paddle::str::split(name, '.', &buffers);
auto it = this->values_.find(buffers[buffers.size() - 1]); auto it = values_.find(buffers.back());
if (it == this->values_.end()) { // not found if (it == values_.end()) { // not found
*err = Error("No such key %s", name.c_str()); *err = Error("No such key %s", name.c_str());
return 0.0f; return 0.0f;
} }
...@@ -268,27 +268,21 @@ public: ...@@ -268,27 +268,21 @@ public:
} }
// get type of evaluator // get type of evaluator
std::string getType(const std::string& name, Error* err) const { std::string getTypeImpl() const { return "chunk"; }
this->getValue(name, err);
if (!err->isOK()) {
return std::string();
}
return "chunk";
}
private: private:
void storeLocalValues() const { void storeLocalValues() const {
CHECK_GT(numOutputSegments_, 0); CHECK_GE(numOutputSegments_, 0);
CHECK_GT(numLabelSegments_, 0); CHECK_GE(numLabelSegments_, 0);
double precision = (double)numCorrect_ / numOutputSegments_; double precision =
double recall = (double)numCorrect_ / numLabelSegments_; !numOutputSegments_ ? 0 : (double)numCorrect_ / numOutputSegments_;
double recall =
!numLabelSegments_ ? 0 : (double)numCorrect_ / numLabelSegments_;
values_["precision"] = precision; values_["precision"] = precision;
values_["recall"] = recall; values_["recall"] = recall;
values_["F1-score"] = values_["F1-score"] =
!numCorrect_ ? 0 : 2 * precision * recall / (precision + recall); !numCorrect_ ? 0 : 2 * precision * recall / (precision + recall);
} }
mutable std::unordered_map<std::string, real> values_;
}; };
REGISTER_EVALUATOR(chunk, ChunkEvaluator); REGISTER_EVALUATOR(chunk, ChunkEvaluator);
......
...@@ -347,27 +347,34 @@ def chunk_evaluator( ...@@ -347,27 +347,34 @@ def chunk_evaluator(
excluded_chunk_types=None, ): excluded_chunk_types=None, ):
""" """
Chunk evaluator is used to evaluate segment labelling accuracy for a Chunk evaluator is used to evaluate segment labelling accuracy for a
sequence. It calculates precision, recall and F1 score of the chunk detection. sequence. It calculates precision, recall and F1 scores for the chunk detection.
To use chunk evaluator, the construction of label dict should obey the following rules: To use chunk evaluator, several concepts need to be clarified firstly.
Chunk type is the type of the whole chunk and a chunk consists of one or several words. (For example in NER, ORG for organization name, PER for person name etc.)
Tag indicates the position of a word in a chunk. (B for begin, I for inside, E for end, S for single)
We can name a label by combining tag type and chunk type. (ie. B-ORG for begining of an organization name)
The construction of label dict should obey the following rules:
(1) Use one of the listed labelling schemes. These schemes differ in ways indicating chunk boundry. (1) Use one of the listed labelling schemes. These schemes differ in ways indicating chunk boundry.
.. code-block:: python .. code-block:: python
Scheme Begin Inside End Single Scheme Description
plain 0 - - - plain Use the same label for the whole chunk.
IOB 0 1 - - IOB Two labels for chunk type X, B-X for chunk begining and I-X for chunk inside.
IOE - 0 1 - IOE Two labels for chunk type X, E-X for chunk ending and I-X for chunk inside.
IOBES 0 1 2 3 IOBES Four labels for chunk type X, B-X for chunk begining, I-X for chunk inside, E-X for chunk end and S-X for single word chunk.
.. code-block:: python .. code-block:: python
To make it clear, let's illustrate by a NER example. To make it clear, let's illustrate by an NER example.
Assuming that there are two named entity types including ORG and PER which are called 'chunk type' here, Assuming that there are three named entity types including ORG, PER and LOC which are called 'chunk type' here,
if 'IOB' scheme were used, the label set will be extended to a set including B-ORG, I-ORG, B-PER, I-PER and O, if 'IOB' scheme were used, the label set will be extended to a set including B-ORG, I-ORG, B-PER, I-PER, B-LOC, I-LOC and O,
in which B-ORG for begining of ORG and I-ORG for end of ORG. in which B-ORG for begining of ORG and I-ORG for inside of ORG.
Prefixes which are called 'tag type' here are added to chunk types and there are two tag types including B and I. Prefixes which are called 'tag type' here are added to chunk types and there are two tag types including B and I.
Of course, the training data should be labeled accordingly. Of course, the training data should be labeled accordingly.
(2) Map can be done correctly by the listed equations. (2) Mapping is done correctly by the listed equations and assigning protocol.
The following table are equations to extract tag type and chunk type from a label.
.. code-block:: python .. code-block:: python
tagType = label % numTagType tagType = label % numTagType
...@@ -375,17 +382,33 @@ def chunk_evaluator( ...@@ -375,17 +382,33 @@ def chunk_evaluator(
otherChunkType = numChunkTypes otherChunkType = numChunkTypes
.. code-block:: python .. code-block:: python
Continue the NER example, and the label dict should like this to satify above equations: The following table shows the mapping rule between tagType and tag type in each scheme.
.. code-block:: python
Scheme Begin Inside End Single
plain 0 - - -
IOB 0 1 - -
IOE - 0 1 -
IOBES 0 1 2 3
.. code-block:: python
Continue the NER example, and the label dict should look like this to satify above equations:
.. code-block:: python .. code-block:: python
B-ORG 0 B-ORG 0
I-ORG 1 I-ORG 1
B-PER 2 B-PER 2
I-PER 3 I-PER 3
O 4 B-LOC 4
I-LOC 5
O 6
.. code-block:: python .. code-block:: python
Realizing that the number of is chunk type is 2 and number of tag type is 2, it is easy to validate this. In this example, chunkType has three values: 0 for ORG, 1 for PER, 2 for LOC, because the scheme is
"IOB" so tagType has two values: 0 for B and 1 for I.
Here we will use I-LOC to explain the above mapping rules in detail.
For I-LOC, the label id is 5, so we can get tagType=1 and ChunkType=2, which means I-LOC is a part of NER chunk LOC
and the tag is I.
The simple usage is: The simple usage is:
...@@ -393,6 +416,8 @@ def chunk_evaluator( ...@@ -393,6 +416,8 @@ def chunk_evaluator(
eval = chunk_evaluator(input, label, chunk_scheme, num_chunk_types) eval = chunk_evaluator(input, label, chunk_scheme, num_chunk_types)
.. code-block:: python
:param input: The input layers. :param input: The input layers.
:type input: LayerOutput :type input: LayerOutput
:param label: An input layer containing the ground truth label. :param label: An input layer containing the ground truth label.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册