From f3a23b68401e3206ebb18d5696cf339ec17ae1f7 Mon Sep 17 00:00:00 2001 From: tensor-tang Date: Tue, 12 Sep 2017 13:15:31 +0800 Subject: [PATCH] add MKLDNNConvLayer --- paddle/gserver/layers/MKLDNNConvLayer.cpp | 402 ++++++++++++++++++++++ paddle/gserver/layers/MKLDNNConvLayer.h | 157 +++++++++ 2 files changed, 559 insertions(+) create mode 100644 paddle/gserver/layers/MKLDNNConvLayer.cpp create mode 100644 paddle/gserver/layers/MKLDNNConvLayer.h diff --git a/paddle/gserver/layers/MKLDNNConvLayer.cpp b/paddle/gserver/layers/MKLDNNConvLayer.cpp new file mode 100644 index 0000000000..617874defe --- /dev/null +++ b/paddle/gserver/layers/MKLDNNConvLayer.cpp @@ -0,0 +1,402 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "MKLDNNConvLayer.h" +#include "paddle/math/MathUtils.h" +#include "paddle/utils/Logging.h" + +using namespace mkldnn; // NOLINT +typedef memory::format format; +typedef convolution_forward conv_fwd; +typedef convolution_backward_weights conv_bwdWgt; +typedef convolution_backward_data conv_bwdData; + +namespace paddle { + +REGISTER_LAYER(mkldnn_conv, MKLDNNConvLayer); + +bool MKLDNNConvLayer::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + if (!MKLDNNLayer::init(layerMap, parameterMap)) { + return false; + } + CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet"; + CHECK_EQ(inputLayers_.size(), parameters_.size()); + CHECK(config_.shared_biases()) << "Only support shared biases yet"; + + oc_ = config_.num_filters(); + const ConvConfig& conf = config_.inputs(0).conv_conf(); + ic_ = conf.channels(); + fw_ = conf.filter_size(); + fh_ = conf.filter_size_y(); + pw_ = conf.padding(); + ph_ = conf.padding_y(); + dw_ = conf.dilation(); + dh_ = conf.dilation_y(); + sw_ = conf.stride(); + sh_ = conf.stride_y(); + gp_ = conf.groups(); + oh_ = conf.has_output_y() ? conf.output_y() : conf.output_x(); + ow_ = conf.output_x(); + ih_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size(); + iw_ = conf.img_size(); + caffeMode_ = conf.caffe_mode(); + CHECK(caffeMode_) << "Only support caffe mode yet"; + CHECK(dh_ == 1 && dw_ == 1) << "Only support dilation 1 yet"; + // check group setting + CHECK_EQ((oc_ / gp_) * gp_, oc_) << "group is indivisible for oc"; + CHECK_EQ((ic_ / gp_) * gp_, ic_) << "group is indivisible for ic"; + + // create weight + size_t height = oc_ / gp_; + size_t width = ic_ * fh_ * fw_; + CHECK_EQ(parameters_[0]->getSize(), height * width); + weight_ = + std::unique_ptr(new Weight(height, width, parameters_[0], 0)); + + // create biases + if (biasParameter_.get() != NULL) { + biases_ = std::unique_ptr(new Weight(1, oc_, biasParameter_)); + } + return true; +} + +void MKLDNNConvLayer::convertWeightsFromPaddle() { + if (hasInitedWgt_) { + return; + } + + CHECK(wgtVal_) << "should have been initialized"; + // the paddle weight format is oihw or goihw + auto targetDim = wgtVal_->getDims(); + auto srcFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw; + wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim); + hasInitedWgt_ = true; +} + +void MKLDNNConvLayer::convertWeightsToPaddle() { + CHECK(wgtVal_) << "should have been initialized"; + auto targetDim = wgtVal_->getDims(); + auto dstFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw; + wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim); +} + +void MKLDNNConvLayer::reshape( + int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) { + reshapeInput(bs, ih, iw); + + // cal output sizes + // oc can not be changed + int fh = (fh_ - 1) * dh_ + 1; + int fw = (fw_ - 1) * dw_ + 1; + oh = outputSize(ih, fh, ph_, sh_, caffeMode_); + ow = outputSize(iw, fw, pw_, sw_, caffeMode_); + + reshapeOutput(oh, ow); + resizeOutput(bs, oc * oh * ow); + + printSizeInfo(); +} + +void MKLDNNConvLayer::resetFwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + pipeline.clear(); + bool hasBias = biases_ && biases_->getW(); + biasVal_ = nullptr; + + // dims for conv + memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_}; + memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_}; + memory::dims wgtDims = + (gp_ == 1) ? memory::dims{oc_, ic_, fh_, fw_} + : memory::dims{gp_, oc_ / gp_, ic_ / gp_, fh_, fw_}; + memory::dims biasDims = memory::dims{oc_}; + memory::dims strides = {sh_, sw_}; + // note: mkldnn dilation start from 0 + memory::dims dilations = {dh_ - 1, dw_ - 1}; + memory::dims padding = {ph_, pw_}; + memory::dims padR = getPaddingR(); + + // create forward handle + prop_kind pk = + passType_ == PASS_TEST ? prop_kind::forward : prop_kind::forward_training; + algorithm algo = algorithm::convolution_direct; + padding_kind padKind = padding_kind::zero; + conv_fwd::desc fwdDesc = + hasBias ? conv_fwd::desc(pk, + algo, + MKLDNNMatrix::createMemoryDesc(inDims), + MKLDNNMatrix::createMemoryDesc(wgtDims), + MKLDNNMatrix::createMemoryDesc(biasDims), + MKLDNNMatrix::createMemoryDesc(outDims), + strides, + dilations, + padding, + padR, + padKind) + : conv_fwd::desc(pk, + algo, + MKLDNNMatrix::createMemoryDesc(inDims), + MKLDNNMatrix::createMemoryDesc(wgtDims), + MKLDNNMatrix::createMemoryDesc(outDims), + strides, + dilations, + padding, + padR, + padKind); + fwdPD_.reset(new conv_fwd::primitive_desc(fwdDesc, engine_)); + + // create mkldnn matrix + const MatrixPtr& wgtVal = weight_->getW(); + const MatrixPtr& inVal = inputLayers_[0]->getOutput().value; + const MatrixPtr& outVal = output_.value; + wgt = MKLDNNMatrix::create(wgtVal, fwdPD_->weights_primitive_desc()); + in = MKLDNNMatrix::create(inVal, fwdPD_->src_primitive_desc()); + out = MKLDNNMatrix::create(outVal, fwdPD_->dst_primitive_desc()); + VLOG(MKLDNN_FMTS) << "Weight value format: " << wgtVal_->getFormat(); + if (hasBias) { + const MatrixPtr& biasVal = biases_->getW(); + bias = MKLDNNMatrix::create(biasVal, biasDims, format::x, engine_); + CHECK(bias->getPrimitiveDesc() == fwdPD_->bias_primitive_desc()) + << "bias primitive desc should always be equal"; + } + + // add reorder if input value do not match + if (inputIsOnlyMKLDNN()) { + MKLDNNMatrixPtr dnnIn = std::dynamic_pointer_cast(inVal); + CHECK(dnnIn) << "Input should be MKLDNNMatrix"; + if (dnnIn->getPrimitiveDesc() != in->getPrimitiveDesc()) { + CHECK_EQ(dnnIn->getFormat(), format::nc); + CHECK(ih_ == 1 && iw_ == 1); + dnnIn = MKLDNNMatrix::create(inVal, inDims, format::nchw, engine_); + CHECK(dnnIn->getPrimitiveDesc() == in->getPrimitiveDesc()); + } + in = dnnIn; + } else { + const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE); + cpuInVal_ = MKLDNNMatrix::create(cpuIn, inDims, format::nchw, engine_); + if (cpuInVal_->getPrimitiveDesc() != in->getPrimitiveDesc()) { + // create new mkldnn matrix + in = MKLDNNMatrix::create(nullptr, fwdPD_->src_primitive_desc()); + cvtInVal_ = MKLDNNMatrix::createReorder(cpuInVal_, in); + CHECK(cvtInVal_); + pipeline.push_back(*cvtInVal_); + } else { + in = cpuInVal_; + } + } + + // add fwd handle + if (hasBias) { + fwd_.reset(new conv_fwd(*fwdPD_, *in, *wgt, *bias, *out)); + } else { + fwd_.reset(new conv_fwd(*fwdPD_, *in, *wgt, *out)); + } + pipeline.push_back(*fwd_); + + // change original output value from cpu matrix to mkldnn matrix + output_.value = std::dynamic_pointer_cast(out); + // add reorder if output value has cpu device and pd do not match + if (!outputIsOnlyMKLDNN()) { + const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value; + cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_); + if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) { + cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_); + CHECK(cvtOutVal_); + pipeline.push_back(*cvtOutVal_); + } else { + // share data + cpuOut->setData(out->getData()); + cpuOutVal_ = out; + } + } + + printValueFormatFlow(); +} + +void MKLDNNConvLayer::resetBwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + pipeline.clear(); + bool hasBias = biases_ && biases_->getWGrad(); + + /// backward weight + CHECK(inVal_) << "Should have input value"; + CHECK(outVal_) << "Should have output value"; + CHECK(wgtVal_) << "Should have weight value"; + memory::dims wgtDims = + (gp_ == 1) ? memory::dims{oc_, ic_, fh_, fw_} + : memory::dims{gp_, oc_ / gp_, ic_ / gp_, fh_, fw_}; + memory::dims strides = {sh_, sw_}; + memory::dims dilations = {dh_ - 1, dw_ - 1}; + memory::dims padding = {ph_, pw_}; + memory::dims padR = getPaddingR(); + + // create backward handle + algorithm algo = algorithm::convolution_direct; + padding_kind padKind = padding_kind::zero; + auto bwdWgtDesc = + hasBias ? conv_bwdWgt::desc(algo, + inVal_->getMemoryDesc(), + MKLDNNMatrix::createMemoryDesc(wgtDims), + biasVal_->getMemoryDesc(), + outVal_->getMemoryDesc(), + strides, + padding, + padR, + padKind) + : conv_bwdWgt::desc(algo, + inVal_->getMemoryDesc(), + MKLDNNMatrix::createMemoryDesc(wgtDims), + outVal_->getMemoryDesc(), + strides, + padding, + padR, + padKind); + + auto bwdWgtPD = conv_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_); + CHECK(bwdWgtPD.src_primitive_desc() == inVal_->getPrimitiveDesc()) + << "primitive desc of in value should equal"; + CHECK(bwdWgtPD.diff_dst_primitive_desc() == outVal_->getPrimitiveDesc()) + << "primitive desc of out grad should equal the out value"; + CHECK(bwdWgtPD.diff_weights_primitive_desc() == wgtVal_->getPrimitiveDesc()) + << "primitive desc of weight grad should equal the weight value"; + + // create mkldnn matrix + const MatrixPtr& wgtGrad = weight_->getWGrad(); + const MatrixPtr& outGrad = output_.grad; + wgt = MKLDNNMatrix::create(wgtGrad, bwdWgtPD.diff_weights_primitive_desc()); + out = MKLDNNMatrix::create(outGrad, bwdWgtPD.diff_dst_primitive_desc()); + CHECK(wgt->getPrimitiveDesc() == wgtVal_->getPrimitiveDesc()) + << "primitive desc of weight grad and value should be equal"; + CHECK(out->getPrimitiveDesc() == outVal_->getPrimitiveDesc()) + << "primitive desc of out grad and value should be equal"; + VLOG(MKLDNN_FMTS) << "Backward weight, weight grad format: " + << wgt->getFormat(); + if (hasBias) { + const MatrixPtr& biasGrad = biases_->getWGrad(); + bias = MKLDNNMatrix::create(biasGrad, bwdWgtPD.diff_bias_primitive_desc()); + CHECK(bias->getPrimitiveDesc() == biasVal_->getPrimitiveDesc()) + << "primitive desc of bias grad should equal the bias value"; + } + + // TODO(TJ): merge outgrad + // add reorder if has user output grad + if (!outputIsOnlyMKLDNN()) { + const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad; + memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_}; + // same PrimitiveDesc with cpuInVal_ + CHECK(cpuOutVal_); + cpuOutGrad_ = MKLDNNMatrix::create(cpuOut, cpuOutVal_->getPrimitiveDesc()); + if (cpuOutGrad_->getPrimitiveDesc() == out->getPrimitiveDesc()) { + outGrad->setData(cpuOut->getData()); + out = cpuOutGrad_; + } else { + cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out); + CHECK(cvtOutGrad_); + pipeline.push_back(*cvtOutGrad_); + } + } + + // add bwdWgt handle + if (hasBias) { + bwdWgt_.reset(new conv_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt, *bias)); + } else { + bwdWgt_.reset(new conv_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt)); + } + pipeline.push_back(*bwdWgt_); + + /// backward data + const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad; + if (inGrad == nullptr) { + return; + } + + auto bwdDataDesc = conv_bwdData::desc(algo, + inVal_->getMemoryDesc(), + MKLDNNMatrix::createMemoryDesc(wgtDims), + out->getMemoryDesc(), + strides, + padding, + padR, + padKind); + auto bwdDataPD = conv_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_); + CHECK(bwdDataPD.diff_src_primitive_desc() == inVal_->getPrimitiveDesc()) + << "primitive desc of in grad should equal the in value"; + CHECK(bwdDataPD.diff_dst_primitive_desc() == out->getPrimitiveDesc()) + << "primitive desc of out grad should equal"; + + // create mkldnn matrix inGrad_ and reorder if necessary + // TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done + in = MKLDNNMatrix::create(inGrad, bwdDataPD.diff_src_primitive_desc()); + cvtInGrad_ = nullptr; + if (!inputIsOnlyMKLDNN()) { + const MatrixPtr& cpuIn = getInputGrad(0, CPU_DEVICE); + // same PrimitiveDesc with cpuInVal_ + CHECK(cpuInVal_); + cpuInGrad_ = MKLDNNMatrix::create(cpuIn, cpuInVal_->getPrimitiveDesc()); + if (cpuInGrad_->getPrimitiveDesc() != in->getPrimitiveDesc()) { + const MatrixPtr& dnnIn = getInputGrad(0, MKLDNN_DEVICE); + in = MKLDNNMatrix::create(dnnIn, in->getPrimitiveDesc()); + cvtInGrad_ = MKLDNNMatrix::createReorder(in, cpuInGrad_); + CHECK(cvtInGrad_); + } else { + in = cpuInGrad_; + } + } + + // create new weight value for backward data, and reorder if necessary + // since the primitive_desc would be different with wgtVal_ + if (bwdDataPD.weights_primitive_desc() != wgtVal_->getPrimitiveDesc()) { + wgtValBwdData_ = + MKLDNNMatrix::create(nullptr, bwdDataPD.weights_primitive_desc()); + cvtWgtVal_ = MKLDNNMatrix::createReorder(wgtVal_, wgtValBwdData_); + CHECK(cvtWgtVal_); + pipeline.push_back(*cvtWgtVal_); + } else { + wgtValBwdData_ = wgtVal_; + } + VLOG(MKLDNN_FMTS) << "Backward data, weight value format: " + << wgtValBwdData_->getFormat(); + + // add bwdData handle + CHECK(wgtValBwdData_) << "Should have weight memory"; + bwdData_.reset(new conv_bwdData(bwdDataPD, *out, *wgtValBwdData_, *in)); + pipeline.push_back(*bwdData_); + + // add ingrad reorder after bwdData + if (cvtInGrad_) { + pipeline.push_back(*cvtInGrad_); + } + + printGradFormatFlow(); +} + +void MKLDNNConvLayer::updateInputData() { + cpuInVal_->setData(getInputValue(0, CPU_DEVICE)->getData()); +} + +void MKLDNNConvLayer::updateWeights(const UpdateCallback& callback) { + weight_->getParameterPtr()->incUpdate(callback); + if (biases_ && biases_->getWGrad()) { + biases_->getParameterPtr()->incUpdate(callback); + } +} + +} // namespace paddle diff --git a/paddle/gserver/layers/MKLDNNConvLayer.h b/paddle/gserver/layers/MKLDNNConvLayer.h new file mode 100644 index 0000000000..58891ff5e1 --- /dev/null +++ b/paddle/gserver/layers/MKLDNNConvLayer.h @@ -0,0 +1,157 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "MKLDNNLayer.h" +#include "mkldnn.hpp" + +namespace paddle { + +/** + * @brief A subclass of MKLDNNLayer conv layer. + * + * The config file api is mkldnn_conv + */ +class MKLDNNConvLayer : public MKLDNNLayer { +protected: + // padding height and width + int ph_, pw_; + // stride height and width + int sh_, sw_; + // dilation height and width + int dh_, dw_; + // filter(kenerl) height and width + int fh_, fw_; + // group number + int gp_; + + // in backward data the format is different with wgtVal_ + MKLDNNMatrixPtr wgtValBwdData_; + std::shared_ptr cvtWgtVal_; + + // save forward primitive_desc use for backward + std::shared_ptr fwdPD_; + + // MKLDNNMatrixPtr with cpu device for conversion between MKLDNN device + MKLDNNMatrixPtr cpuInVal_; + MKLDNNMatrixPtr cpuInGrad_; + MKLDNNMatrixPtr cpuOutVal_; + MKLDNNMatrixPtr cpuOutGrad_; + std::shared_ptr cvtInVal_; + std::shared_ptr cvtInGrad_; + std::shared_ptr cvtOutVal_; + std::shared_ptr cvtOutGrad_; + + // if has already init the weight + bool hasInitedWgt_; + + // True by default. This impact the calculation of output size. + // For example: + // - input(+padding): 0123456789 + // - imageSize(+padding) = 10; + // - filterSize = 3; + // - stride = 2; + // - caffeMode_ is true: + // - output: (012), (234), (456), (678) + // - outputSize = 4; + // - caffeMode_ is false: + // - output: (012), (234), (456), (678), (9) + // - outputSize = 5; + bool caffeMode_; + + // weight and bias + std::unique_ptr weight_; + std::unique_ptr biases_; + +public: + explicit MKLDNNConvLayer(const LayerConfig& config) + : MKLDNNLayer(config), hasInitedWgt_(false), caffeMode_(true) {} + + ~MKLDNNConvLayer() {} + + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + + void reshape( + int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override; + + void resetFwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) override; + + void resetBwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) override; + + void updateInputData() override; + + void updateWeights(const UpdateCallback& callback) override; + + void convertWeightsFromPaddle() override; + + void convertWeightsToPaddle() override; + +protected: + void printSizeInfo() override { + MKLDNNLayer::printSizeInfo(); + VLOG(MKLDNN_SIZES) << getName() << ": fh: " << fh_ << ", fw: " << fw_ + << ": ph: " << ph_ << ", pw: " << pw_ << ", sh: " << sh_ + << ", sw: " << sw_ << ", dh: " << dh_ << ", dw: " << dw_; + } + + void printValueFormatFlow() override { + if (cpuInVal_) { + VLOG(MKLDNN_FMTS) << cpuInVal_->getFormat() << " >>>"; + } + MKLDNNLayer::printValueFormatFlow(); + if (cpuOutVal_) { + VLOG(MKLDNN_FMTS) << " >>> " << cpuOutVal_->getFormat(); + } + } + void printGradFormatFlow() override { + if (cpuInGrad_) { + VLOG(MKLDNN_FMTS) << cpuInGrad_->getFormat() << " <<<"; + } + MKLDNNLayer::printGradFormatFlow(); + if (cpuOutGrad_) { + VLOG(MKLDNN_FMTS) << " <<< " << cpuOutGrad_->getFormat(); + } + } + + /** + * get padding_r according to + * https://github.com/01org/mkl-dnn/blob/master/tests/gtests/ + * test_convolution_forward_common.hpp + * @note: mkldnn dilation start from 0 while paddle start from 1 + */ + mkldnn::memory::dims getPaddingR() const { + mkldnn::memory::dims padR = {ph_, pw_}; + for (int i = 0; i < 2; ++i) { + if ((ih_ - ((fh_ - 1) * dh_ + 1) + ph_ + padR[0]) / sh_ + 1 != oh_) { + ++padR[0]; + } + if ((iw_ - ((fw_ - 1) * dw_ + 1) + pw_ + padR[1]) / sw_ + 1 != ow_) { + ++padR[1]; + } + } + return padR; + } +}; + +} // namespace paddle -- GitLab