Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
f2317b67
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f2317b67
编写于
9月 13, 2017
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
separate resetFwd and resetBwd to some sub functions
上级
66fdbd0c
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
433 addition
and
188 deletion
+433
-188
paddle/gserver/layers/MKLDNNConvLayer.cpp
paddle/gserver/layers/MKLDNNConvLayer.cpp
+327
-186
paddle/gserver/layers/MKLDNNConvLayer.h
paddle/gserver/layers/MKLDNNConvLayer.h
+106
-2
未找到文件。
paddle/gserver/layers/MKLDNNConvLayer.cpp
浏览文件 @
f2317b67
...
@@ -18,9 +18,6 @@ limitations under the License. */
...
@@ -18,9 +18,6 @@ limitations under the License. */
using
namespace
mkldnn
;
// NOLINT
using
namespace
mkldnn
;
// NOLINT
typedef
memory
::
format
format
;
typedef
memory
::
format
format
;
typedef
convolution_forward
conv_fwd
;
typedef
convolution_backward_weights
conv_bwdWgt
;
typedef
convolution_backward_data
conv_bwdData
;
namespace
paddle
{
namespace
paddle
{
...
@@ -114,237 +111,396 @@ void MKLDNNConvLayer::resetFwd(std::vector<primitive>& pipeline,
...
@@ -114,237 +111,396 @@ void MKLDNNConvLayer::resetFwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
MKLDNNMatrixPtr
&
out
)
{
pipeline
.
clear
();
resetFwdPD
(
fwdPD_
);
bool
hasBias
=
biases_
&&
biases_
->
getW
();
biasVal_
=
nullptr
;
resetFwdBuffers
(
fwdPD_
,
in
,
wgt
,
bias
,
out
);
resetFwdPipeline
(
pipeline
,
fwdPD_
,
in
,
wgt
,
bias
,
out
);
printValueFormatFlow
();
}
void
MKLDNNConvLayer
::
resetBwd
(
std
::
vector
<
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>
bwdWgtPD
;
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>
bwdDataPD
;
resetBwdWgtPD
(
bwdWgtPD
);
resetBwdDataPD
(
bwdDataPD
);
resetBwdBuffers
(
bwdWgtPD
,
bwdDataPD
,
in
,
wgt
,
bias
,
out
);
resetBwdPipeline
(
pipeline
,
bwdWgtPD
,
bwdDataPD
,
in
,
wgt
,
bias
,
out
);
printGradFormatFlow
();
}
void
MKLDNNConvLayer
::
updateInputData
()
{
cpuInVal_
->
setData
(
getInputValue
(
0
,
CPU_DEVICE
)
->
getData
());
}
void
MKLDNNConvLayer
::
updateWeights
(
const
UpdateCallback
&
callback
)
{
weight_
->
getParameterPtr
()
->
incUpdate
(
callback
);
if
(
biases_
&&
biases_
->
getWGrad
())
{
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
void
MKLDNNConvLayer
::
loadConvSettings
(
memory
::
dims
&
wgt
,
memory
::
dims
&
bias
,
memory
::
dims
&
stride
,
memory
::
dims
&
dilation
,
memory
::
dims
&
padL
,
memory
::
dims
&
padR
)
{
wgt
=
(
gp_
==
1
)
?
memory
::
dims
{
oc_
,
ic_
,
fh_
,
fw_
}
:
memory
::
dims
{
gp_
,
oc_
/
gp_
,
ic_
/
gp_
,
fh_
,
fw_
};
bias
=
memory
::
dims
{
oc_
};
stride
=
memory
::
dims
{
sh_
,
sw_
};
padL
=
memory
::
dims
{
ph_
,
pw_
};
padR
=
getPaddingR
();
// note: mkldnn dilation start from 0
dilation
=
memory
::
dims
{
dh_
-
1
,
dw_
-
1
};
}
void
MKLDNNConvLayer
::
resetFwdPD
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
)
{
// dims for conv
// dims for conv
memory
::
dims
inDims
=
memory
::
dims
{
bs_
,
ic_
,
ih_
,
iw_
};
memory
::
dims
inDims
=
memory
::
dims
{
bs_
,
ic_
,
ih_
,
iw_
};
memory
::
dims
outDims
=
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
};
memory
::
dims
outDims
=
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
};
memory
::
dims
wgtDims
=
memory
::
dims
wgtDims
,
biasDims
,
strides
,
dilations
,
padL
,
padR
;
(
gp_
==
1
)
?
memory
::
dims
{
oc_
,
ic_
,
fh_
,
fw_
}
loadConvSettings
(
wgtDims
,
biasDims
,
strides
,
dilations
,
padL
,
padR
);
:
memory
::
dims
{
gp_
,
oc_
/
gp_
,
ic_
/
gp_
,
fh_
,
fw_
};
memory
::
dims
biasDims
=
memory
::
dims
{
oc_
};
memory
::
dims
strides
=
{
sh_
,
sw_
};
// note: mkldnn dilation start from 0
memory
::
dims
dilations
=
{
dh_
-
1
,
dw_
-
1
};
memory
::
dims
padding
=
{
ph_
,
pw_
};
memory
::
dims
padR
=
getPaddingR
();
// create forward handle
prop_kind
pk
=
passType_
==
PASS_TEST
?
prop_kind
::
forward_scoring
prop_kind
pk
=
:
prop_kind
::
forward_training
;
passType_
==
PASS_TEST
?
prop_kind
::
forward
:
prop_kind
::
forward_training
;
algorithm
algo
=
algorithm
::
convolution_direct
;
algorithm
algo
=
algorithm
::
convolution_direct
;
padding_kind
padKind
=
padding_kind
::
zero
;
padding_kind
padKind
=
padding_kind
::
zero
;
conv_fwd
::
desc
fwdDesc
=
conv_fwd
::
desc
fwdDesc
=
hasBias
?
conv_fwd
::
desc
(
pk
,
biases_
&&
biases_
->
getW
()
algo
,
?
conv_fwd
::
desc
(
pk
,
MKLDNNMatrix
::
createMemoryDesc
(
inDims
),
algo
,
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
MKLDNNMatrix
::
createMemoryDesc
(
inDims
),
MKLDNNMatrix
::
createMemoryDesc
(
biasDims
),
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
MKLDNNMatrix
::
createMemoryDesc
(
outDims
),
MKLDNNMatrix
::
createMemoryDesc
(
biasDims
),
strides
,
MKLDNNMatrix
::
createMemoryDesc
(
outDims
),
dilations
,
strides
,
padding
,
dilations
,
padR
,
padL
,
padKind
)
padR
,
:
conv_fwd
::
desc
(
pk
,
padKind
)
algo
,
:
conv_fwd
::
desc
(
pk
,
MKLDNNMatrix
::
createMemoryDesc
(
inDims
),
algo
,
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
MKLDNNMatrix
::
createMemoryDesc
(
inDims
),
MKLDNNMatrix
::
createMemoryDesc
(
outDims
),
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
strides
,
MKLDNNMatrix
::
createMemoryDesc
(
outDims
),
dilations
,
strides
,
padding
,
dilations
,
padR
,
padL
,
padKind
);
padR
,
fwdPD_
.
reset
(
new
conv_fwd
::
primitive_desc
(
fwdDesc
,
engine_
));
padKind
);
pd
.
reset
(
new
conv_fwd
::
primitive_desc
(
fwdDesc
,
engine_
));
// create mkldnn matrix
}
const
MatrixPtr
&
wgtVal
=
weight_
->
getW
();
const
MatrixPtr
&
inVal
=
inputLayers_
[
0
]
->
getOutput
().
value
;
void
MKLDNNConvLayer
::
resetFwdBuffers
(
const
MatrixPtr
&
outVal
=
output_
.
value
;
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
wgt
=
MKLDNNMatrix
::
create
(
wgtVal
,
fwdPD_
->
weights_primitive_desc
());
MKLDNNMatrixPtr
&
in
,
in
=
MKLDNNMatrix
::
create
(
inVal
,
fwdPD_
->
src_primitive_desc
());
MKLDNNMatrixPtr
&
wgt
,
out
=
MKLDNNMatrix
::
create
(
outVal
,
fwdPD_
->
dst_primitive_desc
());
MKLDNNMatrixPtr
&
bias
,
VLOG
(
MKLDNN_FMTS
)
<<
"Weight value format: "
<<
wgtVal_
->
getFormat
();
MKLDNNMatrixPtr
&
out
)
{
if
(
hasBias
)
{
CHECK
(
pd
);
const
MatrixPtr
&
biasVal
=
biases_
->
getW
();
resetInValue
(
pd
,
in
);
bias
=
MKLDNNMatrix
::
create
(
biasVal
,
biasDims
,
format
::
x
,
engine_
);
CHECK
(
bias
->
getPrimitiveDesc
()
==
fwdPD_
->
bias_primitive_desc
())
resetWgtBiasValue
(
pd
,
wgt
,
bias
);
<<
"bias primitive desc should always be equal"
;
resetOutValue
(
pd
,
out
);
}
void
MKLDNNConvLayer
::
resetFwdPipeline
(
std
::
vector
<
primitive
>&
pipeline
,
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
pipeline
.
clear
();
if
(
cvtInVal_
)
{
pipeline
.
push_back
(
*
cvtInVal_
);
}
if
(
bias
)
{
fwd_
.
reset
(
new
conv_fwd
(
*
pd
,
*
in
,
*
wgt
,
*
bias
,
*
out
));
}
else
{
fwd_
.
reset
(
new
conv_fwd
(
*
pd
,
*
in
,
*
wgt
,
*
out
));
}
}
pipeline
.
push_back
(
*
fwd_
);
if
(
cvtOutVal_
)
{
pipeline
.
push_back
(
*
cvtOutVal_
);
}
}
// add reorder if input value do not match
void
MKLDNNConvLayer
::
resetInValue
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
)
{
const
MatrixPtr
&
inMat
=
inputLayers_
[
0
]
->
getOutput
().
value
;
in
=
MKLDNNMatrix
::
create
(
inMat
,
pd
->
src_primitive_desc
());
// create buffer and reorder if input value do not match
cpuInVal_
=
nullptr
;
cvtInVal_
=
nullptr
;
if
(
inputIsOnlyMKLDNN
())
{
if
(
inputIsOnlyMKLDNN
())
{
MKLDNNMatrixPtr
dnnIn
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
in
Val
);
MKLDNNMatrixPtr
dnnIn
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
in
Mat
);
CHECK
(
dnnIn
)
<<
"Input should be MKLDNNMatrix"
;
CHECK
(
dnnIn
)
<<
"Input should be MKLDNNMatrix"
;
if
(
dnnIn
->
getPrimitiveDesc
()
!=
in
->
getPrimitiveDesc
())
{
if
(
dnnIn
->
getPrimitiveDesc
()
!=
in
->
getPrimitiveDesc
())
{
CHECK_EQ
(
dnnIn
->
getFormat
(),
format
::
nc
);
CHECK_EQ
(
dnnIn
->
getFormat
(),
format
::
nc
);
CHECK
(
ih_
==
1
&&
iw_
==
1
);
CHECK
(
ih_
==
1
&&
iw_
==
1
)
<<
"when input is nc format"
;
dnnIn
=
MKLDNNMatrix
::
create
(
inVal
,
inDims
,
format
::
nchw
,
engine_
);
// create a new one with nchw format and same data
memory
::
dims
inDims
=
memory
::
dims
{
bs_
,
ic_
,
1
,
1
};
dnnIn
=
MKLDNNMatrix
::
create
(
inMat
,
inDims
,
format
::
nchw
,
engine_
);
CHECK
(
dnnIn
->
getPrimitiveDesc
()
==
in
->
getPrimitiveDesc
());
CHECK
(
dnnIn
->
getPrimitiveDesc
()
==
in
->
getPrimitiveDesc
());
}
}
in
=
dnnIn
;
in
=
dnnIn
;
}
else
{
}
else
{
const
MatrixPtr
&
cpuIn
=
getInputValue
(
0
,
CPU_DEVICE
);
const
MatrixPtr
&
cpuIn
=
getInputValue
(
0
,
CPU_DEVICE
);
memory
::
dims
inDims
=
memory
::
dims
{
bs_
,
ic_
,
ih_
,
iw_
};
cpuInVal_
=
MKLDNNMatrix
::
create
(
cpuIn
,
inDims
,
format
::
nchw
,
engine_
);
cpuInVal_
=
MKLDNNMatrix
::
create
(
cpuIn
,
inDims
,
format
::
nchw
,
engine_
);
if
(
cpuInVal_
->
getPrimitiveDesc
()
!=
in
->
getPrimitiveDesc
())
{
if
(
cpuInVal_
->
getPrimitiveDesc
()
!=
in
->
getPrimitiveDesc
())
{
// create new mkldnn matrix
// create new mkldnn matrix
in
=
MKLDNNMatrix
::
create
(
nullptr
,
fwdPD_
->
src_primitive_desc
());
in
=
MKLDNNMatrix
::
create
(
nullptr
,
pd
->
src_primitive_desc
());
cvtInVal_
=
MKLDNNMatrix
::
createReorder
(
cpuInVal_
,
in
);
cvtInVal_
=
MKLDNNMatrix
::
createReorder
(
cpuInVal_
,
in
);
CHECK
(
cvtInVal_
);
CHECK
(
cvtInVal_
)
<<
"should not be emptry"
;
pipeline
.
push_back
(
*
cvtInVal_
);
}
else
{
}
else
{
in
=
cpuInVal_
;
in
=
cpuInVal_
;
}
}
}
}
}
// add fwd handle
void
MKLDNNConvLayer
::
resetWgtBiasValue
(
if
(
hasBias
)
{
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
fwd_
.
reset
(
new
conv_fwd
(
*
fwdPD_
,
*
in
,
*
wgt
,
*
bias
,
*
out
));
MKLDNNMatrixPtr
&
wgt
,
}
else
{
MKLDNNMatrixPtr
&
bias
)
{
fwd_
.
reset
(
new
conv_fwd
(
*
fwdPD_
,
*
in
,
*
wgt
,
*
out
));
wgt
=
MKLDNNMatrix
::
create
(
weight_
->
getW
(),
pd
->
weights_primitive_desc
());
VLOG
(
MKLDNN_FMTS
)
<<
"Weight value format: "
<<
wgt
->
getFormat
();
bias
=
nullptr
;
if
(
biases_
&&
biases_
->
getW
())
{
bias
=
MKLDNNMatrix
::
create
(
biases_
->
getW
(),
pd
->
bias_primitive_desc
());
}
}
pipeline
.
push_back
(
*
fwd_
);
}
void
MKLDNNConvLayer
::
resetOutValue
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
out
)
{
out
=
MKLDNNMatrix
::
create
(
output_
.
value
,
pd
->
dst_primitive_desc
());
// change original output value from cpu matrix to mkldnn matrix
// change original output value from cpu matrix to mkldnn matrix
output_
.
value
=
std
::
dynamic_pointer_cast
<
Matrix
>
(
out
);
output_
.
value
=
std
::
dynamic_pointer_cast
<
Matrix
>
(
out
);
// add reorder if output value has cpu device and pd do not match
// create reorder if output value has cpu device and pd do not match
cpuOutVal_
=
nullptr
;
cpuOutVal_
=
nullptr
;
if
(
!
outputIsOnlyMKLDNN
())
{
if
(
!
outputIsOnlyMKLDNN
())
{
const
MatrixPtr
&
cpuOut
=
getOutput
(
CPU_DEVICE
).
value
;
const
MatrixPtr
&
cpuOut
=
getOutput
(
CPU_DEVICE
).
value
;
memory
::
dims
outDims
=
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
};
cpuOutVal_
=
MKLDNNMatrix
::
create
(
cpuOut
,
outDims
,
format
::
nchw
,
engine_
);
cpuOutVal_
=
MKLDNNMatrix
::
create
(
cpuOut
,
outDims
,
format
::
nchw
,
engine_
);
if
(
cpuOutVal_
->
getPrimitiveDesc
()
!=
out
->
getPrimitiveDesc
())
{
if
(
cpuOutVal_
->
getPrimitiveDesc
()
!=
out
->
getPrimitiveDesc
())
{
cvtOutVal_
=
MKLDNNMatrix
::
createReorder
(
out
,
cpuOutVal_
);
cvtOutVal_
=
MKLDNNMatrix
::
createReorder
(
out
,
cpuOutVal_
);
CHECK
(
cvtOutVal_
);
CHECK
(
cvtOutVal_
)
<<
"should not be emptry"
;
pipeline
.
push_back
(
*
cvtOutVal_
);
}
else
{
}
else
{
//
share data
//
CPU output share the same data of MKLDNN output
cpuOut
->
setData
(
out
->
getData
());
cpuOut
->
setData
(
out
->
getData
());
cpuOutVal_
=
out
;
cpuOutVal_
=
out
;
}
}
}
}
printValueFormatFlow
();
}
}
void
MKLDNNConvLayer
::
resetBwd
(
std
::
vector
<
primitive
>&
pipeline
,
void
MKLDNNConvLayer
::
resetBwdWgtPD
(
MKLDNNMatrixPtr
&
in
,
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
pd
)
{
MKLDNNMatrixPtr
&
wgt
,
memory
::
dims
wgtDims
,
biasDims
,
strides
,
dilations
,
padL
,
padR
;
MKLDNNMatrixPtr
&
bias
,
loadConvSettings
(
wgtDims
,
biasDims
,
strides
,
dilations
,
padL
,
padR
);
MKLDNNMatrixPtr
&
out
)
{
pipeline
.
clear
();
bool
hasBias
=
biases_
&&
biases_
->
getWGrad
();
//
/ backward weight
//
create backward weight using input, output and weight value memory desc
CHECK
(
inVal_
)
<<
"Should have input value"
;
CHECK
(
inVal_
)
<<
"Should have input value"
;
CHECK
(
outVal_
)
<<
"Should have output value"
;
CHECK
(
outVal_
)
<<
"Should have output value"
;
CHECK
(
wgtVal_
)
<<
"Should have weight value"
;
CHECK
(
wgtVal_
)
<<
"Should have weight value"
;
memory
::
dims
wgtDims
=
(
gp_
==
1
)
?
memory
::
dims
{
oc_
,
ic_
,
fh_
,
fw_
}
:
memory
::
dims
{
gp_
,
oc_
/
gp_
,
ic_
/
gp_
,
fh_
,
fw_
};
memory
::
dims
strides
=
{
sh_
,
sw_
};
memory
::
dims
dilations
=
{
dh_
-
1
,
dw_
-
1
};
memory
::
dims
padding
=
{
ph_
,
pw_
};
memory
::
dims
padR
=
getPaddingR
();
// create backward handle
algorithm
algo
=
algorithm
::
convolution_direct
;
algorithm
algo
=
algorithm
::
convolution_direct
;
padding_kind
padKind
=
padding_kind
::
zero
;
padding_kind
padKind
=
padding_kind
::
zero
;
auto
bwdWgtDesc
=
auto
bwdWgtDesc
=
biasVal_
!=
nullptr
hasBias
?
conv_bwdWgt
::
desc
(
algo
,
?
conv_bwdWgt
::
desc
(
algo
,
inVal_
->
getMemoryDesc
(),
inVal_
->
getMemoryDesc
(),
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
wgtVal_
->
getMemoryDesc
(),
biasVal_
->
getMemoryDesc
(),
biasVal_
->
getMemoryDesc
(),
outVal_
->
getMemoryDesc
(),
outVal_
->
getMemoryDesc
(),
strides
,
strides
,
padding
,
padL
,
padR
,
padR
,
padKind
)
padKind
)
:
conv_bwdWgt
::
desc
(
algo
,
:
conv_bwdWgt
::
desc
(
algo
,
inVal_
->
getMemoryDesc
(),
inVal_
->
getMemoryDesc
(),
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
wgtVal_
->
getMemoryDesc
(),
outVal_
->
getMemoryDesc
(),
outVal_
->
getMemoryDesc
(),
strides
,
strides
,
padding
,
padL
,
padR
,
padR
,
padKind
);
padKind
);
pd
.
reset
(
new
conv_bwdWgt
::
primitive_desc
(
bwdWgtDesc
,
engine_
,
*
fwdPD_
));
auto
bwdWgtPD
=
conv_bwdWgt
::
primitive_desc
(
bwdWgtDesc
,
engine_
,
*
fwdPD_
);
CHECK
(
pd
->
src_primitive_desc
()
==
inVal_
->
getPrimitiveDesc
())
CHECK
(
bwdWgtPD
.
src_primitive_desc
()
==
inVal_
->
getPrimitiveDesc
())
<<
"primitive desc of in value should equal"
;
<<
"primitive desc of in value should equal"
;
CHECK
(
bwdWgtPD
.
diff_dst_primitive_desc
()
==
outVal_
->
getPrimitiveDesc
())
CHECK
(
pd
->
diff_dst_primitive_desc
()
==
outVal_
->
getPrimitiveDesc
())
<<
"primitive desc of out grad should equal the out value"
;
<<
"primitive desc of out grad should equal the out value"
;
CHECK
(
bwdWgtPD
.
diff_weights_primitive_desc
()
==
wgtVal_
->
getPrimitiveDesc
())
CHECK
(
pd
->
diff_weights_primitive_desc
()
==
wgtVal_
->
getPrimitiveDesc
())
<<
"primitive desc of weight grad should equal the weight value"
;
<<
"primitive desc of weight grad should equal the weight value"
;
}
// create mkldnn matrix
void
MKLDNNConvLayer
::
resetBwdDataPD
(
const
MatrixPtr
&
wgtGrad
=
weight_
->
getWGrad
();
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
pd
)
{
const
MatrixPtr
&
outGrad
=
output_
.
grad
;
if
(
inputLayers_
[
0
]
->
getOutput
().
grad
==
nullptr
)
{
wgt
=
MKLDNNMatrix
::
create
(
wgtGrad
,
bwdWgtPD
.
diff_weights_primitive_desc
());
return
;
out
=
MKLDNNMatrix
::
create
(
outGrad
,
bwdWgtPD
.
diff_dst_primitive_desc
());
CHECK
(
wgt
->
getPrimitiveDesc
()
==
wgtVal_
->
getPrimitiveDesc
())
<<
"primitive desc of weight grad and value should be equal"
;
CHECK
(
out
->
getPrimitiveDesc
()
==
outVal_
->
getPrimitiveDesc
())
<<
"primitive desc of out grad and value should be equal"
;
VLOG
(
MKLDNN_FMTS
)
<<
"Backward weight, weight grad format: "
<<
wgt
->
getFormat
();
if
(
hasBias
)
{
const
MatrixPtr
&
biasGrad
=
biases_
->
getWGrad
();
bias
=
MKLDNNMatrix
::
create
(
biasGrad
,
bwdWgtPD
.
diff_bias_primitive_desc
());
CHECK
(
bias
->
getPrimitiveDesc
()
==
biasVal_
->
getPrimitiveDesc
())
<<
"primitive desc of bias grad should equal the bias value"
;
}
}
memory
::
dims
wgtDims
,
biasDims
,
strides
,
dilations
,
padL
,
padR
;
loadConvSettings
(
wgtDims
,
biasDims
,
strides
,
dilations
,
padL
,
padR
);
CHECK
(
inVal_
)
<<
"Should have input value"
;
CHECK
(
outVal_
)
<<
"Should have output value"
;
// create backward data using input and output value memory desc
// but using weight memory desc with any format
auto
bwdDataDesc
=
conv_bwdData
::
desc
(
algorithm
::
convolution_direct
,
inVal_
->
getMemoryDesc
(),
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
outVal_
->
getMemoryDesc
(),
strides
,
padL
,
padR
,
padding_kind
::
zero
);
pd
.
reset
(
new
conv_bwdData
::
primitive_desc
(
bwdDataDesc
,
engine_
,
*
fwdPD_
));
CHECK
(
pd
->
diff_src_primitive_desc
()
==
inVal_
->
getPrimitiveDesc
())
<<
"primitive desc of in grad should equal the in value"
;
CHECK
(
pd
->
diff_dst_primitive_desc
()
==
outVal_
->
getPrimitiveDesc
())
<<
"primitive desc of out grad should equal"
;
}
void
MKLDNNConvLayer
::
resetBwdBuffers
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
CHECK
(
wgtPD
);
resetOutGrad
(
wgtPD
,
out
);
resetWgtBiasGrad
(
wgtPD
,
wgt
,
bias
);
resetInGrad
(
dataPD
,
in
);
resetWgtValBwdData
(
dataPD
,
wgtValBwdData_
);
}
void
MKLDNNConvLayer
::
resetBwdPipeline
(
std
::
vector
<
primitive
>&
pipeline
,
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
pipeline
.
clear
();
if
(
cvtOutGrad_
)
{
pipeline
.
push_back
(
*
cvtOutGrad_
);
}
// add bwdWgt handle
if
(
bias
)
{
bwdWgt_
.
reset
(
new
conv_bwdWgt
(
*
wgtPD
,
*
inVal_
,
*
out
,
*
wgt
,
*
bias
));
}
else
{
bwdWgt_
.
reset
(
new
conv_bwdWgt
(
*
wgtPD
,
*
inVal_
,
*
out
,
*
wgt
));
}
pipeline
.
push_back
(
*
bwdWgt_
);
if
(
dataPD
==
nullptr
)
{
return
;
}
if
(
cvtWgtVal_
)
{
pipeline
.
push_back
(
*
cvtWgtVal_
);
}
// add bwdData handle
CHECK
(
wgtValBwdData_
)
<<
"Should have weight memory"
;
bwdData_
.
reset
(
new
conv_bwdData
(
*
dataPD
,
*
out
,
*
wgtValBwdData_
,
*
in
));
pipeline
.
push_back
(
*
bwdData_
);
if
(
cvtInGrad_
)
{
pipeline
.
push_back
(
*
cvtInGrad_
);
}
}
void
MKLDNNConvLayer
::
resetOutGrad
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
MKLDNNMatrixPtr
&
out
)
{
const
MatrixPtr
&
outMat
=
output_
.
grad
;
out
=
MKLDNNMatrix
::
create
(
outMat
,
wgtPD
->
diff_dst_primitive_desc
());
CHECK
(
outVal_
!=
nullptr
&&
out
->
getPrimitiveDesc
()
==
outVal_
->
getPrimitiveDesc
())
<<
"primitive desc of out grad and value should be equal"
;
// TODO(TJ): merge outgrad
// TODO(TJ): merge outgrad
// add reorder if has user output grad
// create reorder if has output grad does not match
cpuOutGrad_
=
nullptr
;
cvtOutGrad_
=
nullptr
;
if
(
!
outputIsOnlyMKLDNN
())
{
if
(
!
outputIsOnlyMKLDNN
())
{
const
MatrixPtr
&
cpuOut
=
getOutput
(
CPU_DEVICE
).
grad
;
const
MatrixPtr
&
cpuOut
=
getOutput
(
CPU_DEVICE
).
grad
;
memory
::
dims
outDims
=
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
};
// same PrimitiveDesc with cpuInVal_
// same PrimitiveDesc with cpuInVal_
CHECK
(
cpuOutVal_
);
CHECK
(
cpuOutVal_
);
cpuOutGrad_
=
MKLDNNMatrix
::
create
(
cpuOut
,
cpuOutVal_
->
getPrimitiveDesc
());
cpuOutGrad_
=
MKLDNNMatrix
::
create
(
cpuOut
,
cpuOutVal_
->
getPrimitiveDesc
());
if
(
cpuOutGrad_
->
getPrimitiveDesc
()
==
out
->
getPrimitiveDesc
())
{
if
(
cpuOutGrad_
->
getPrimitiveDesc
()
==
out
->
getPrimitiveDesc
())
{
out
Grad
->
setData
(
cpuOut
->
getData
());
out
Mat
->
setData
(
cpuOut
->
getData
());
out
=
cpuOutGrad_
;
out
=
cpuOutGrad_
;
}
else
{
}
else
{
cvtOutGrad_
=
MKLDNNMatrix
::
createReorder
(
cpuOutGrad_
,
out
);
cvtOutGrad_
=
MKLDNNMatrix
::
createReorder
(
cpuOutGrad_
,
out
);
CHECK
(
cvtOutGrad_
);
CHECK
(
cvtOutGrad_
);
pipeline
.
push_back
(
*
cvtOutGrad_
);
}
}
}
}
}
// add bwdWgt handle
void
MKLDNNConvLayer
::
resetWgtBiasGrad
(
if
(
hasBias
)
{
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
bwdWgt_
.
reset
(
new
conv_bwdWgt
(
bwdWgtPD
,
*
inVal_
,
*
out
,
*
wgt
,
*
bias
));
MKLDNNMatrixPtr
&
wgt
,
}
else
{
MKLDNNMatrixPtr
&
bias
)
{
bwdWgt_
.
reset
(
new
conv_bwdWgt
(
bwdWgtPD
,
*
inVal_
,
*
out
,
*
wgt
));
wgt
=
MKLDNNMatrix
::
create
(
weight_
->
getWGrad
(),
}
wgtPD
->
diff_weights_primitive_desc
());
pipeline
.
push_back
(
*
bwdWgt_
);
CHECK
(
nullptr
!=
wgtVal_
&&
wgt
->
getPrimitiveDesc
()
==
wgtVal_
->
getPrimitiveDesc
())
<<
"primitive desc of weight grad and value should be equal"
;
VLOG
(
MKLDNN_FMTS
)
<<
"weight grad format: "
<<
wgt
->
getFormat
();
/// backward data
if
(
biasVal_
==
nullptr
)
{
const
MatrixPtr
&
inGrad
=
inputLayers_
[
0
]
->
getOutput
().
grad
;
if
(
inGrad
==
nullptr
)
{
return
;
return
;
}
}
bias
=
MKLDNNMatrix
::
create
(
biases_
->
getWGrad
(),
wgtPD
->
diff_bias_primitive_desc
());
CHECK
(
bias
->
getPrimitiveDesc
()
==
biasVal_
->
getPrimitiveDesc
())
<<
"primitive desc of bias grad should equal the bias value"
;
}
auto
bwdDataDesc
=
conv_bwdData
::
desc
(
algo
,
void
MKLDNNConvLayer
::
resetInGrad
(
inVal_
->
getMemoryDesc
(),
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
MKLDNNMatrixPtr
&
in
)
{
out
->
getMemoryDesc
(),
if
(
dataPD
==
nullptr
)
{
strides
,
return
;
padding
,
}
padR
,
padKind
);
auto
bwdDataPD
=
conv_bwdData
::
primitive_desc
(
bwdDataDesc
,
engine_
,
*
fwdPD_
);
CHECK
(
bwdDataPD
.
diff_src_primitive_desc
()
==
inVal_
->
getPrimitiveDesc
())
<<
"primitive desc of in grad should equal the in value"
;
CHECK
(
bwdDataPD
.
diff_dst_primitive_desc
()
==
out
->
getPrimitiveDesc
())
<<
"primitive desc of out grad should equal"
;
// create mkldnn matrix inGrad_ and reorder if necessary
// TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
// TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
in
=
MKLDNNMatrix
::
create
(
inGrad
,
bwdDataPD
.
diff_src_primitive_desc
());
in
=
MKLDNNMatrix
::
create
(
inputLayers_
[
0
]
->
getOutput
().
grad
,
dataPD
->
diff_src_primitive_desc
());
CHECK
(
nullptr
!=
inVal_
&&
in
->
getPrimitiveDesc
()
==
inVal_
->
getPrimitiveDesc
())
<<
"primitive desc of input grad and value should be equal"
;
// create reorder if has output grad does not match
cpuInGrad_
=
nullptr
;
cvtInGrad_
=
nullptr
;
cvtInGrad_
=
nullptr
;
if
(
!
inputIsOnlyMKLDNN
())
{
if
(
!
inputIsOnlyMKLDNN
())
{
const
MatrixPtr
&
cpuIn
=
getInputGrad
(
0
,
CPU_DEVICE
);
const
MatrixPtr
&
cpuIn
=
getInputGrad
(
0
,
CPU_DEVICE
);
...
@@ -360,43 +516,28 @@ void MKLDNNConvLayer::resetBwd(std::vector<primitive>& pipeline,
...
@@ -360,43 +516,28 @@ void MKLDNNConvLayer::resetBwd(std::vector<primitive>& pipeline,
in
=
cpuInGrad_
;
in
=
cpuInGrad_
;
}
}
}
}
}
// create new weight value for backward data, and reorder if necessary
void
MKLDNNConvLayer
::
resetWgtValBwdData
(
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
wgt
)
{
if
(
dataPD
==
nullptr
)
{
return
;
}
// create new weight value for backward data, and create reorder if necessary
// since the primitive_desc would be different with wgtVal_
// since the primitive_desc would be different with wgtVal_
if
(
bwdDataPD
.
weights_primitive_desc
()
!=
wgtVal_
->
getPrimitiveDesc
())
{
CHECK
(
wgtVal_
)
<<
"should have weight value"
;
if
(
dataPD
->
weights_primitive_desc
()
!=
wgtVal_
->
getPrimitiveDesc
())
{
wgtValBwdData_
=
wgtValBwdData_
=
MKLDNNMatrix
::
create
(
nullptr
,
bwdDataPD
.
weights_primitive_desc
());
MKLDNNMatrix
::
create
(
nullptr
,
dataPD
->
weights_primitive_desc
());
cvtWgtVal_
=
MKLDNNMatrix
::
createReorder
(
wgtVal_
,
wgtValBwdData_
);
cvtWgtVal_
=
MKLDNNMatrix
::
createReorder
(
wgtVal_
,
wgtValBwdData_
);
CHECK
(
cvtWgtVal_
);
CHECK
(
cvtWgtVal_
);
pipeline
.
push_back
(
*
cvtWgtVal_
);
}
else
{
}
else
{
wgtValBwdData_
=
wgtVal_
;
wgtValBwdData_
=
wgtVal_
;
}
}
VLOG
(
MKLDNN_FMTS
)
<<
"
Backward data, weight value format:
"
VLOG
(
MKLDNN_FMTS
)
<<
"
weight value format for backward data
"
<<
wgtValBwdData_
->
getFormat
();
<<
wgtValBwdData_
->
getFormat
();
// add bwdData handle
CHECK
(
wgtValBwdData_
)
<<
"Should have weight memory"
;
bwdData_
.
reset
(
new
conv_bwdData
(
bwdDataPD
,
*
out
,
*
wgtValBwdData_
,
*
in
));
pipeline
.
push_back
(
*
bwdData_
);
// add ingrad reorder after bwdData
if
(
cvtInGrad_
)
{
pipeline
.
push_back
(
*
cvtInGrad_
);
}
printGradFormatFlow
();
}
void
MKLDNNConvLayer
::
updateInputData
()
{
cpuInVal_
->
setData
(
getInputValue
(
0
,
CPU_DEVICE
)
->
getData
());
}
void
MKLDNNConvLayer
::
updateWeights
(
const
UpdateCallback
&
callback
)
{
weight_
->
getParameterPtr
()
->
incUpdate
(
callback
);
if
(
biases_
&&
biases_
->
getWGrad
())
{
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
}
}
// namespace paddle
}
// namespace paddle
paddle/gserver/layers/MKLDNNConvLayer.h
浏览文件 @
f2317b67
...
@@ -18,6 +18,9 @@ limitations under the License. */
...
@@ -18,6 +18,9 @@ limitations under the License. */
#include "mkldnn.hpp"
#include "mkldnn.hpp"
namespace
paddle
{
namespace
paddle
{
typedef
mkldnn
::
convolution_forward
conv_fwd
;
typedef
mkldnn
::
convolution_backward_weights
conv_bwdWgt
;
typedef
mkldnn
::
convolution_backward_data
conv_bwdData
;
/**
/**
* @brief A subclass of MKLDNNLayer conv layer.
* @brief A subclass of MKLDNNLayer conv layer.
...
@@ -43,7 +46,7 @@ protected:
...
@@ -43,7 +46,7 @@ protected:
std
::
shared_ptr
<
mkldnn
::
reorder
>
cvtWgtVal_
;
std
::
shared_ptr
<
mkldnn
::
reorder
>
cvtWgtVal_
;
// save forward primitive_desc, which can be used backward
// save forward primitive_desc, which can be used backward
std
::
shared_ptr
<
mkldnn
::
convolution_forwar
d
::
primitive_desc
>
fwdPD_
;
std
::
shared_ptr
<
conv_fw
d
::
primitive_desc
>
fwdPD_
;
// MKLDNNMatrixPtr which should be created from CPU Device
// MKLDNNMatrixPtr which should be created from CPU Device
MKLDNNMatrixPtr
cpuInVal_
;
MKLDNNMatrixPtr
cpuInVal_
;
...
@@ -99,7 +102,6 @@ public:
...
@@ -99,7 +102,6 @@ public:
void
convertWeightsToPaddle
()
override
;
void
convertWeightsToPaddle
()
override
;
protected:
void
printSizeInfo
()
override
{
void
printSizeInfo
()
override
{
MKLDNNLayer
::
printSizeInfo
();
MKLDNNLayer
::
printSizeInfo
();
VLOG
(
MKLDNN_SIZES
)
<<
getName
()
<<
": fh: "
<<
fh_
<<
", fw: "
<<
fw_
VLOG
(
MKLDNN_SIZES
)
<<
getName
()
<<
": fh: "
<<
fh_
<<
", fw: "
<<
fw_
...
@@ -116,6 +118,7 @@ protected:
...
@@ -116,6 +118,7 @@ protected:
VLOG
(
MKLDNN_FMTS
)
<<
" >>> "
<<
cpuOutVal_
->
getFormat
();
VLOG
(
MKLDNN_FMTS
)
<<
" >>> "
<<
cpuOutVal_
->
getFormat
();
}
}
}
}
void
printGradFormatFlow
()
override
{
void
printGradFormatFlow
()
override
{
if
(
cpuInGrad_
)
{
if
(
cpuInGrad_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
cpuInGrad_
->
getFormat
()
<<
" <<<"
;
VLOG
(
MKLDNN_FMTS
)
<<
cpuInGrad_
->
getFormat
()
<<
" <<<"
;
...
@@ -126,6 +129,107 @@ protected:
...
@@ -126,6 +129,107 @@ protected:
}
}
}
}
protected:
/**
* load the dims settings of this conv
*/
void
loadConvSettings
(
mkldnn
::
memory
::
dims
&
wgt
,
mkldnn
::
memory
::
dims
&
bias
,
mkldnn
::
memory
::
dims
&
stride
,
mkldnn
::
memory
::
dims
&
dilation
,
mkldnn
::
memory
::
dims
&
padL
,
mkldnn
::
memory
::
dims
&
padR
);
/**
* reset the forward primitive descriptor.
*/
void
resetFwdPD
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
);
/**
* reset the MKLDNNMatrix buffers used in forward.
*/
void
resetFwdBuffers
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
);
/**
* reset the forward pipeline.
*/
void
resetFwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
);
/**
* reset MKLDNNMatrix of input value
*/
void
resetInValue
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
);
/**
* reset MKLDNNMatrix of weight and bias value
*/
void
resetWgtBiasValue
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
);
/**
* reset MKLDNNMatrix of output value
*/
void
resetOutValue
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
out
);
/**
* reset the backward weight primitive descriptor.
*/
void
resetBwdWgtPD
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
pd
);
/**
* reset the backward data primitive descriptor.
*/
void
resetBwdDataPD
(
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
pd
);
/**
* reset the MKLDNNMatrix buffers used in backward.
*/
void
resetBwdBuffers
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
);
/**
* reset the backward pipeline.
*/
void
resetBwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
);
/**
* reset MKLDNNMatrix of output grad
*/
void
resetOutGrad
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
MKLDNNMatrixPtr
&
out
);
/**
* reset MKLDNNMatrix of weight and bias grad
*/
void
resetWgtBiasGrad
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
);
/**
* reset MKLDNNMatrix of input grad
*/
void
resetInGrad
(
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
in
);
/**
* reset MKLDNNMatrix of weight value for backward data
* since the primitive_desc would be different with wgtVal_
*/
void
resetWgtValBwdData
(
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
wgt
);
/**
/**
* get padding_r according to
* get padding_r according to
* https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
* https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录