From f1f79b0d9d18cebcf8b89775d2b066d6fdd04199 Mon Sep 17 00:00:00 2001 From: Leo Chen Date: Wed, 25 May 2022 12:32:49 +0800 Subject: [PATCH] fix maybe-uninitialized warning (#42902) * fix maybe-uninitialized warning * fix compile * fix xpu compile * fix npu compile * fix infer compile * fix compile * fix compile --- cmake/flags.cmake | 1 - paddle/fluid/distributed/fleet_executor/dist_model.cc | 6 +++--- .../framework/ir/quant_conv2d_dequant_fuse_pass.cc | 2 +- .../framework/ir/transpose_flatten_concat_fuse_pass.cc | 2 +- .../inference/analysis/ir_passes/lite_subgraph_pass.cc | 2 +- .../fluid/inference/api/analysis_predictor_tester.cc | 2 +- .../inference/tensorrt/convert/multihead_matmul_op.cc | 2 +- paddle/fluid/inference/tensorrt/convert/reduce_op.cc | 2 +- .../fluid/operators/amp/update_loss_scaling_op_npu.cc | 4 ++-- .../operators/elementwise/elementwise_op_npu_test.cc | 4 ++-- paddle/fluid/operators/fused/cudnn_bn_add_relu_test.cc | 2 +- paddle/fluid/operators/fused/cudnn_norm_conv_test.cc | 4 ++-- .../operators/fused/fusion_repeated_fc_relu_op.cc | 10 +++++----- .../fluid/operators/fused/fusion_seqpool_concat_op.cc | 6 +++--- .../operators/fused/fusion_seqpool_cvm_concat_op.cc | 6 +++--- paddle/fluid/operators/math/sample_prob.h | 2 +- paddle/fluid/operators/math/selected_rows_functor.cc | 10 +++++----- paddle/fluid/operators/math/softmax_impl.h | 2 +- paddle/fluid/operators/math/tree2col.cc | 6 +++--- paddle/fluid/operators/roi_align_op_xpu.cc | 2 +- paddle/phi/kernels/cpu/mv_grad_kernel.cc | 2 +- paddle/phi/kernels/cpu/psroi_pool_grad_kernel.cc | 2 +- paddle/phi/kernels/cpu/rnn_functor.h | 2 +- paddle/phi/kernels/cpu/tril_indices_kernel.cc | 2 +- paddle/phi/kernels/funcs/blas/blas_impl.h | 6 +++--- .../kernels/impl/channel_shuffle_grad_kernel_impl.h | 4 ++-- paddle/phi/kernels/impl/channel_shuffle_kernel_impl.h | 4 ++-- paddle/phi/kernels/impl/mv_kernel_impl.h | 2 +- .../phi/kernels/impl/pixel_shuffle_grad_kernel_impl.h | 4 ++-- paddle/phi/kernels/impl/pixel_shuffle_kernel_impl.h | 4 ++-- .../kernels/impl/pixel_unshuffle_grad_kernel_impl.h | 4 ++-- paddle/phi/kernels/impl/pixel_unshuffle_kernel_impl.h | 4 ++-- paddle/phi/kernels/impl/unfold_grad_kernel_impl.h | 2 +- paddle/phi/kernels/impl/unfold_kernel_impl.h | 2 +- paddle/utils/optional.h | 4 ++++ 35 files changed, 64 insertions(+), 61 deletions(-) diff --git a/cmake/flags.cmake b/cmake/flags.cmake index f9cac0579f..11f7391ff3 100644 --- a/cmake/flags.cmake +++ b/cmake/flags.cmake @@ -147,7 +147,6 @@ set(COMMON_FLAGS -Wno-error=terminate # Warning in PADDLE_ENFORCE -Wno-error=int-in-bool-context # Warning in Eigen gcc 7.2 -Wimplicit-fallthrough=0 # Warning in tinyformat.h - -Wno-error=maybe-uninitialized # Warning in boost gcc 7.2 ${fsanitize} ) diff --git a/paddle/fluid/distributed/fleet_executor/dist_model.cc b/paddle/fluid/distributed/fleet_executor/dist_model.cc index cacd55e02a..d8f937e218 100644 --- a/paddle/fluid/distributed/fleet_executor/dist_model.cc +++ b/paddle/fluid/distributed/fleet_executor/dist_model.cc @@ -546,9 +546,9 @@ bool DistModel::Run(const std::vector &input_data, DistModelTimer timer; timer.tic(); - double feed_elapse; - double fleet_exe_elapse; - double fetch_elapse; + double feed_elapse = 0; + double fleet_exe_elapse = 0; + double fetch_elapse = 0; if (!FeedData(input_data, scope_.get())) { LOG(ERROR) << "DistModel failed at feeding data."; diff --git a/paddle/fluid/framework/ir/quant_conv2d_dequant_fuse_pass.cc b/paddle/fluid/framework/ir/quant_conv2d_dequant_fuse_pass.cc index 281e0b9910..e436bee035 100644 --- a/paddle/fluid/framework/ir/quant_conv2d_dequant_fuse_pass.cc +++ b/paddle/fluid/framework/ir/quant_conv2d_dequant_fuse_pass.cc @@ -488,7 +488,7 @@ void QuantDequantFusePass::FuseDequant(ir::Graph* graph, Scope* scope, // Convert weight to fp32 range auto* weight_tensor = scope->Var(quantized_op_weight_node->Name())->GetMutable(); - auto w_dims = weight_tensor->dims(); + const auto& w_dims = weight_tensor->dims(); float* quantized_weight_data = weight_tensor->mutable_data(platform::CPUPlace()); // If quantized op is fc, weight scale size = 1; diff --git a/paddle/fluid/framework/ir/transpose_flatten_concat_fuse_pass.cc b/paddle/fluid/framework/ir/transpose_flatten_concat_fuse_pass.cc index f3d96c3850..bda6b90386 100644 --- a/paddle/fluid/framework/ir/transpose_flatten_concat_fuse_pass.cc +++ b/paddle/fluid/framework/ir/transpose_flatten_concat_fuse_pass.cc @@ -93,7 +93,7 @@ void TransposeFlattenConcatFusePass::RunTransposeFlattenConcatFuse( std::vector nodes; std::vector trans_axis0; - int flatten_axis0; + int flatten_axis0 = 0; for (int i = 0; i < times; i++) { PADDLE_ENFORCE_NOT_NULL( subgraph.at(pattern.GetPDNode("transpose" + std::to_string(i))), diff --git a/paddle/fluid/inference/analysis/ir_passes/lite_subgraph_pass.cc b/paddle/fluid/inference/analysis/ir_passes/lite_subgraph_pass.cc index a8c29579e1..083fc89911 100644 --- a/paddle/fluid/inference/analysis/ir_passes/lite_subgraph_pass.cc +++ b/paddle/fluid/inference/analysis/ir_passes/lite_subgraph_pass.cc @@ -268,7 +268,7 @@ void LiteSubgraphPass::SetUpEngine( auto nnadapter_model_cache_token = Get>("nnadapter_model_cache_token"); - lite_api::TargetType target_type; + lite_api::TargetType target_type = TARGET(kX86); if (use_gpu) { target_type = TARGET(kCUDA); } else if (use_xpu) { diff --git a/paddle/fluid/inference/api/analysis_predictor_tester.cc b/paddle/fluid/inference/api/analysis_predictor_tester.cc index ecb5eaf982..e8a1384166 100644 --- a/paddle/fluid/inference/api/analysis_predictor_tester.cc +++ b/paddle/fluid/inference/api/analysis_predictor_tester.cc @@ -522,7 +522,7 @@ TEST(Tensor, GpuShareExternalData) { auto out = predictor->GetOutputHandle("fc_1.tmp_2"); auto out_shape = out->shape(); - float* out_data; + float* out_data = nullptr; auto out_size = std::accumulate(out_shape.begin(), out_shape.end(), 1, std::multiplies()) * sizeof(float); diff --git a/paddle/fluid/inference/tensorrt/convert/multihead_matmul_op.cc b/paddle/fluid/inference/tensorrt/convert/multihead_matmul_op.cc index 21c79f0edd..4b4ad01f56 100644 --- a/paddle/fluid/inference/tensorrt/convert/multihead_matmul_op.cc +++ b/paddle/fluid/inference/tensorrt/convert/multihead_matmul_op.cc @@ -56,7 +56,7 @@ class MultiheadMatMulOpConverter : public OpConverter { weight_t->numel() * sizeof(float)); // (hidden_in, 3, hidden_out) - auto weight_dims = weight_t->dims(); + const auto& weight_dims = weight_t->dims(); int hidden_in = weight_dims[0]; // channels_in int three = weight_dims[1]; // channels_out diff --git a/paddle/fluid/inference/tensorrt/convert/reduce_op.cc b/paddle/fluid/inference/tensorrt/convert/reduce_op.cc index 7c5eaa309e..13886f55df 100644 --- a/paddle/fluid/inference/tensorrt/convert/reduce_op.cc +++ b/paddle/fluid/inference/tensorrt/convert/reduce_op.cc @@ -41,7 +41,7 @@ class ReduceOpConverter : public OpConverter { const framework::Scope& scope, bool test_mode) override { VLOG(4) << "convert a paddle " << op_type << " op to tensorrt reduce layer"; framework::OpDesc op_desc(op, nullptr); - nvinfer1::ReduceOperation reduce_type; + nvinfer1::ReduceOperation reduce_type = nvinfer1::ReduceOperation::kSUM; if (op_type == "reduce_sum") { reduce_type = nvinfer1::ReduceOperation::kSUM; } else if (op_type == "reduce_mean") { diff --git a/paddle/fluid/operators/amp/update_loss_scaling_op_npu.cc b/paddle/fluid/operators/amp/update_loss_scaling_op_npu.cc index 5808841333..f9a93a47ff 100644 --- a/paddle/fluid/operators/amp/update_loss_scaling_op_npu.cc +++ b/paddle/fluid/operators/amp/update_loss_scaling_op_npu.cc @@ -161,8 +161,8 @@ class LazyZerosNPU { } auto place = dev_ctx.GetPlace(); auto stream = dev_ctx.stream(); - Tensor* zero_tensor; - void* zero_ptr; + Tensor* zero_tensor = nullptr; + void* zero_ptr = nullptr; if (found_inf_vec[0]) { int max_num = -1; for (size_t i = 0; i < xs.size(); ++i) { diff --git a/paddle/fluid/operators/elementwise/elementwise_op_npu_test.cc b/paddle/fluid/operators/elementwise/elementwise_op_npu_test.cc index 3e9263fe93..39a80e9571 100644 --- a/paddle/fluid/operators/elementwise/elementwise_op_npu_test.cc +++ b/paddle/fluid/operators/elementwise/elementwise_op_npu_test.cc @@ -75,7 +75,7 @@ void Compare(f::Scope *scope, const p::DeviceContext &ctx, paddle::framework::TensorToVector(*tensor_out, ctx, &out_vec); ctx.Wait(); - float expected; + float expected = 0.0; if (op_type == "elementwise_add") { expected = 3.0; } else if (op_type == "elementwise_sub") { @@ -133,7 +133,7 @@ void CompareGrad(f::Scope *scope, const p::DeviceContext &ctx, paddle::framework::TensorToVector(*tensor_dy, ctx, &dy_vec); ctx.Wait(); - float expected_x, expected_y; + float expected_x = 0, expected_y = 0; if (op_type == "elementwise_add_grad") { expected_x = 1.0; expected_y = 6.0; diff --git a/paddle/fluid/operators/fused/cudnn_bn_add_relu_test.cc b/paddle/fluid/operators/fused/cudnn_bn_add_relu_test.cc index c5adee547b..516b10fa02 100644 --- a/paddle/fluid/operators/fused/cudnn_bn_add_relu_test.cc +++ b/paddle/fluid/operators/fused/cudnn_bn_add_relu_test.cc @@ -103,7 +103,7 @@ void ComputeSumAndSquareSum(const framework::Tensor &cpu_x, framework::Tensor *cpu_sum, framework::Tensor *cpu_sum_of_square) { // x is in NHWC format. - auto dims = cpu_x.dims(); + const auto &dims = cpu_x.dims(); int64_t c = dims[3]; const T *cpu_x_ptr = cpu_x.data(); diff --git a/paddle/fluid/operators/fused/cudnn_norm_conv_test.cc b/paddle/fluid/operators/fused/cudnn_norm_conv_test.cc index 884fca2c1b..5881322007 100644 --- a/paddle/fluid/operators/fused/cudnn_norm_conv_test.cc +++ b/paddle/fluid/operators/fused/cudnn_norm_conv_test.cc @@ -51,7 +51,7 @@ void InitRandomTensor(const std::vector &dims, template void TransposeNchwToNhwc(const framework::Tensor &cpu_in, framework::Tensor *cpu_out) { - auto in_dims = cpu_in.dims(); + const auto &in_dims = cpu_in.dims(); EXPECT_EQ(cpu_in.dims().size(), 4); const T *cpu_in_ptr = cpu_in.data(); @@ -184,7 +184,7 @@ template void ComputeSumAndSquareSum(const framework::Tensor &cpu_out, framework::Tensor *cpu_sum, framework::Tensor *cpu_sum_of_square) { - auto dims = cpu_out.dims(); + const auto &dims = cpu_out.dims(); int64_t c = dims[3]; const T *cpu_out_ptr = cpu_out.data(); diff --git a/paddle/fluid/operators/fused/fusion_repeated_fc_relu_op.cc b/paddle/fluid/operators/fused/fusion_repeated_fc_relu_op.cc index acb94e20df..bed5125b99 100644 --- a/paddle/fluid/operators/fused/fusion_repeated_fc_relu_op.cc +++ b/paddle/fluid/operators/fused/fusion_repeated_fc_relu_op.cc @@ -130,7 +130,7 @@ class FusionRepeatedFCReluKernel : public framework::OpKernel { int weight_sz = static_cast(weights.size()); auto i_dims = in->dims(); - auto w_dims = weights[0]->dims(); + const auto& w_dims = weights[0]->dims(); jit::matmul_attr_t attr; attr.m = i_dims[0]; attr.n = w_dims[1]; @@ -140,8 +140,8 @@ class FusionRepeatedFCReluKernel : public framework::OpKernel { relus[0]->mutable_data(place), attr); for (int i = 1; i < weight_sz - 1; ++i) { - auto i_dims = relus[i - 1]->dims(); - auto w_dims = weights[i]->dims(); + const auto& i_dims = relus[i - 1]->dims(); + const auto& w_dims = weights[i]->dims(); attr.m = i_dims[0]; attr.n = w_dims[1]; attr.k = w_dims[0]; @@ -150,8 +150,8 @@ class FusionRepeatedFCReluKernel : public framework::OpKernel { biases[i]->data(), relus[i]->mutable_data(place), attr); } - auto i_dims_last = relus[weight_sz - 2]->dims(); - auto w_dims_last = weights[weight_sz - 1]->dims(); + const auto& i_dims_last = relus[weight_sz - 2]->dims(); + const auto& w_dims_last = weights[weight_sz - 1]->dims(); attr.m = i_dims_last[0]; attr.n = w_dims_last[1]; attr.k = w_dims_last[0]; diff --git a/paddle/fluid/operators/fused/fusion_seqpool_concat_op.cc b/paddle/fluid/operators/fused/fusion_seqpool_concat_op.cc index 91bc855d43..e574d67e39 100644 --- a/paddle/fluid/operators/fused/fusion_seqpool_concat_op.cc +++ b/paddle/fluid/operators/fused/fusion_seqpool_concat_op.cc @@ -91,8 +91,8 @@ class FusionSeqPoolConcatKernel : public framework::OpKernel { auto* out = ctx.Output("Out"); std::string pooltype = ctx.Attr("pooltype"); auto x0_lod = ins[0]->lod(); - auto x0_dims = ins[0]->dims(); - auto y_dims = out->dims(); + const auto& x0_dims = ins[0]->dims(); + const auto& y_dims = out->dims(); size_t bs = x0_lod[0].size() - 1; out->Resize({static_cast(bs), y_dims[1]}); framework::LoD y_lod(1); @@ -122,7 +122,7 @@ class FusionSeqPoolConcatKernel : public framework::OpKernel { size_t n = ins.size(); size_t dst_step_size = n * w; for (size_t i = 0; i < n; ++i) { - auto x_dims = ins[i]->dims(); + const auto& x_dims = ins[i]->dims(); auto x_lod = ins[i]->lod()[0]; const T* src = ins[i]->data(); T* dst = y_data + i * w; diff --git a/paddle/fluid/operators/fused/fusion_seqpool_cvm_concat_op.cc b/paddle/fluid/operators/fused/fusion_seqpool_cvm_concat_op.cc index 123c4c885e..c74cc50484 100644 --- a/paddle/fluid/operators/fused/fusion_seqpool_cvm_concat_op.cc +++ b/paddle/fluid/operators/fused/fusion_seqpool_cvm_concat_op.cc @@ -92,8 +92,8 @@ class FusionSeqPoolCVMConcatKernel : public framework::OpKernel { auto* out = ctx.Output("Out"); std::string pooltype = ctx.Attr("pooltype"); auto x0_lod = ins[0]->lod(); - auto x0_dims = ins[0]->dims(); - auto y_dims = out->dims(); + const auto& x0_dims = ins[0]->dims(); + const auto& y_dims = out->dims(); size_t bs = x0_lod[0].size() - 1; out->Resize({static_cast(bs), y_dims[1]}); framework::LoD y_lod(1); @@ -121,7 +121,7 @@ class FusionSeqPoolCVMConcatKernel : public framework::OpKernel { size_t n = ins.size(); size_t dst_step_size = n * w; for (size_t i = 0; i < n; ++i) { - auto x_dims = ins[i]->dims(); + const auto& x_dims = ins[i]->dims(); auto x_lod = ins[i]->lod()[0]; const T* src = ins[i]->data(); T* dst = y_data + i * w; diff --git a/paddle/fluid/operators/math/sample_prob.h b/paddle/fluid/operators/math/sample_prob.h index 09daf0afe1..18a86d1531 100644 --- a/paddle/fluid/operators/math/sample_prob.h +++ b/paddle/fluid/operators/math/sample_prob.h @@ -52,7 +52,7 @@ class SampleWithProb { const std::size_t num_samples, const Tensor* L, Tensor* S, Tensor* P) { // UNDERSTAND: dimension issues - const auto lbl_dim = L->dims(); + const auto& lbl_dim = L->dims(); const int batch_size = lbl_dim[0]; const int num_true = lbl_dim[1]; const int num_sampled_classes = num_true + num_samples; diff --git a/paddle/fluid/operators/math/selected_rows_functor.cc b/paddle/fluid/operators/math/selected_rows_functor.cc index a880afb0e9..e4b033b6c5 100644 --- a/paddle/fluid/operators/math/selected_rows_functor.cc +++ b/paddle/fluid/operators/math/selected_rows_functor.cc @@ -98,8 +98,8 @@ struct SelectedRowsAddTensor { const phi::SelectedRows& input1, const framework::Tensor& input2, framework::Tensor* output) { auto in1_height = input1.height(); - auto in2_dims = input2.dims(); - auto out_dims = output->dims(); + const auto& in2_dims = input2.dims(); + const auto& out_dims = output->dims(); PADDLE_ENFORCE_EQ( in1_height, in2_dims[0], platform::errors::InvalidArgument("The two inputs height must be equal." @@ -249,7 +249,7 @@ struct SelectedRowsAddToTensor { return; } auto in1_height = input1.height(); - auto in2_dims = input2->dims(); + const auto& in2_dims = input2->dims(); PADDLE_ENFORCE_EQ( in1_height, in2_dims[0], platform::errors::InvalidArgument("The two inputs height must be equal." @@ -289,7 +289,7 @@ struct SelectedRowsAddToTensor { return; } auto in1_height = input1.height(); - auto in2_dims = input2->dims(); + const auto& in2_dims = input2->dims(); PADDLE_ENFORCE_EQ( in1_height, in2_dims[0], platform::errors::InvalidArgument("The two inputs height must be equal." @@ -838,7 +838,7 @@ struct UpdateToTensor { const ScatterOps& op, const phi::SelectedRows& input1, framework::Tensor* input2) { auto in1_height = input1.height(); - auto in2_dims = input2->dims(); + const auto& in2_dims = input2->dims(); PADDLE_ENFORCE_EQ( in1_height, in2_dims[0], platform::errors::InvalidArgument("The two inputs height must be equal." diff --git a/paddle/fluid/operators/math/softmax_impl.h b/paddle/fluid/operators/math/softmax_impl.h index 9833b4447e..69642c8194 100644 --- a/paddle/fluid/operators/math/softmax_impl.h +++ b/paddle/fluid/operators/math/softmax_impl.h @@ -231,7 +231,7 @@ class SoftmaxFunctor> { public: void operator()(const DeviceContext& context, const int axis_dim, const framework::Tensor* X, framework::Tensor* Y) { - auto in_dims = X->dims(); + const auto& in_dims = X->dims(); constexpr int kBatchDim = 0; constexpr int kClassDim = 1; diff --git a/paddle/fluid/operators/math/tree2col.cc b/paddle/fluid/operators/math/tree2col.cc index c07582c84a..cd1fa13001 100644 --- a/paddle/fluid/operators/math/tree2col.cc +++ b/paddle/fluid/operators/math/tree2col.cc @@ -53,7 +53,7 @@ std::vector Tree2ColUtil::construct_patch( void Tree2ColUtil::construct_tree(const framework::Tensor &EdgeSet, std::vector> *tr, size_t *node_count) { - auto edge_set_dims = EdgeSet.dims(); + const auto &edge_set_dims = EdgeSet.dims(); PADDLE_ENFORCE_EQ(edge_set_dims[1], 2, platform::errors::InvalidArgument( "The second dimension of the EdgeSet shall be 2, but " @@ -89,7 +89,7 @@ class Tree2ColFunctor { const framework::Tensor &node_features, framework::Tensor *patch, int max_depth) { std::vector> tr; - auto feature_dims = node_features.dims(); + const auto &feature_dims = node_features.dims(); auto cpu_place = context.GetPlace(); phi::funcs::SetConstant constant; int64_t feature_size = feature_dims[1]; @@ -142,7 +142,7 @@ class Col2TreeFunctor { const framework::Tensor &out_grad, framework::Tensor *in_grad, int max_depth) { std::vector> tr; - auto output_dims = out_grad.dims(); + const auto &output_dims = out_grad.dims(); auto cpu_place = context.GetPlace(); phi::funcs::SetConstant constant; int64_t output_size = output_dims[1]; diff --git a/paddle/fluid/operators/roi_align_op_xpu.cc b/paddle/fluid/operators/roi_align_op_xpu.cc index 13490d6fcd..7be1c19012 100644 --- a/paddle/fluid/operators/roi_align_op_xpu.cc +++ b/paddle/fluid/operators/roi_align_op_xpu.cc @@ -37,7 +37,7 @@ class XPUROIAlignOpKernel : public framework::OpKernel { auto sampling_ratio = ctx.Attr("sampling_ratio"); auto aligned = ctx.Attr("aligned"); - auto in_dims = in->dims(); + const auto& in_dims = in->dims(); int batch_size = in_dims[0]; int channels = in_dims[1]; int height = in_dims[2]; diff --git a/paddle/phi/kernels/cpu/mv_grad_kernel.cc b/paddle/phi/kernels/cpu/mv_grad_kernel.cc index c3b7f94be4..c87801bb69 100644 --- a/paddle/phi/kernels/cpu/mv_grad_kernel.cc +++ b/paddle/phi/kernels/cpu/mv_grad_kernel.cc @@ -31,7 +31,7 @@ void MvGradKernel(const Context& dev_ctx, auto dx = x_grad; auto dvec = vec_grad; - auto dim_x = x.dims(); + const auto& dim_x = x.dims(); int m = dim_x[0]; int n = dim_x[1]; diff --git a/paddle/phi/kernels/cpu/psroi_pool_grad_kernel.cc b/paddle/phi/kernels/cpu/psroi_pool_grad_kernel.cc index fbed3f1cb1..715e6b008e 100644 --- a/paddle/phi/kernels/cpu/psroi_pool_grad_kernel.cc +++ b/paddle/phi/kernels/cpu/psroi_pool_grad_kernel.cc @@ -32,7 +32,7 @@ void PsroiPoolGradKernel(const Context& ctx, float spatial_scale, DenseTensor* dx) { if (dx) { - auto in_dims = x.dims(); + const auto& in_dims = x.dims(); int input_channels = in_dims[1]; int height = in_dims[2]; int width = in_dims[3]; diff --git a/paddle/phi/kernels/cpu/rnn_functor.h b/paddle/phi/kernels/cpu/rnn_functor.h index 961bc7a214..ab6f98ffcd 100644 --- a/paddle/phi/kernels/cpu/rnn_functor.h +++ b/paddle/phi/kernels/cpu/rnn_functor.h @@ -330,7 +330,7 @@ void RnnFunc(const Context& dev_ctx, } } - DenseTensor* input_holder; + DenseTensor* input_holder = nullptr; DenseTensor* output_holder = output; bool has_allocate_mem = false; diff --git a/paddle/phi/kernels/cpu/tril_indices_kernel.cc b/paddle/phi/kernels/cpu/tril_indices_kernel.cc index c515a69f01..71c5cd820b 100644 --- a/paddle/phi/kernels/cpu/tril_indices_kernel.cc +++ b/paddle/phi/kernels/cpu/tril_indices_kernel.cc @@ -26,7 +26,7 @@ void TrilIndicesKernel(const Context& dev_ctx, DataType dtype, DenseTensor* out) { T* out_data = dev_ctx.template Alloc(out); - auto out_dims = out->dims(); + const auto& out_dims = out->dims(); int64_t tril_size = out_dims[1]; int64_t i = 0; T r = std::max(0, -offset), c = 0; diff --git a/paddle/phi/kernels/funcs/blas/blas_impl.h b/paddle/phi/kernels/funcs/blas/blas_impl.h index 2868aa5acb..db4796b3f6 100644 --- a/paddle/phi/kernels/funcs/blas/blas_impl.h +++ b/paddle/phi/kernels/funcs/blas/blas_impl.h @@ -1284,9 +1284,9 @@ void Blas::MatMul(const phi::DenseTensor &mat_a, T alpha, phi::DenseTensor *mat_out, T beta) const { - auto dim_a = mat_a.dims(); - auto dim_b = mat_b.dims(); - auto dim_out = mat_out->dims(); + const auto &dim_a = mat_a.dims(); + const auto &dim_b = mat_b.dims(); + const auto &dim_out = mat_out->dims(); PADDLE_ENFORCE_EQ( dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2, true, diff --git a/paddle/phi/kernels/impl/channel_shuffle_grad_kernel_impl.h b/paddle/phi/kernels/impl/channel_shuffle_grad_kernel_impl.h index 26bee763ec..b8406b9143 100644 --- a/paddle/phi/kernels/impl/channel_shuffle_grad_kernel_impl.h +++ b/paddle/phi/kernels/impl/channel_shuffle_grad_kernel_impl.h @@ -32,8 +32,8 @@ void ChannelShuffleGradKernel(const Context& dev_ctx, auto* dx = x_grad; dev_ctx.template Alloc(dx); bool channel_last = (data_format == "NHWC"); - auto do_dims = dout->dims(); - auto dx_dims = dx->dims(); + const auto& do_dims = dout->dims(); + const auto& dx_dims = dx->dims(); DenseTensor t(*dout); if (!channel_last) { diff --git a/paddle/phi/kernels/impl/channel_shuffle_kernel_impl.h b/paddle/phi/kernels/impl/channel_shuffle_kernel_impl.h index c723cd3622..7e31e02851 100644 --- a/paddle/phi/kernels/impl/channel_shuffle_kernel_impl.h +++ b/paddle/phi/kernels/impl/channel_shuffle_kernel_impl.h @@ -31,8 +31,8 @@ void ChannelShuffleKernel(const Context& dev_ctx, auto* in = &x; dev_ctx.template Alloc(out); bool channel_last = (data_format == "NHWC"); - auto in_dims = in->dims(); - auto o_dims = out->dims(); + const auto& in_dims = in->dims(); + const auto& o_dims = out->dims(); DenseTensor t(*in); if (!channel_last) { diff --git a/paddle/phi/kernels/impl/mv_kernel_impl.h b/paddle/phi/kernels/impl/mv_kernel_impl.h index 1754ea323c..4baee25a09 100644 --- a/paddle/phi/kernels/impl/mv_kernel_impl.h +++ b/paddle/phi/kernels/impl/mv_kernel_impl.h @@ -23,7 +23,7 @@ void MvKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& vec, DenseTensor* out) { - auto dim_x = x.dims(); + const auto& dim_x = x.dims(); // get data ptr const T* x_data = x.data(); diff --git a/paddle/phi/kernels/impl/pixel_shuffle_grad_kernel_impl.h b/paddle/phi/kernels/impl/pixel_shuffle_grad_kernel_impl.h index db19a04337..f71f6cd990 100644 --- a/paddle/phi/kernels/impl/pixel_shuffle_grad_kernel_impl.h +++ b/paddle/phi/kernels/impl/pixel_shuffle_grad_kernel_impl.h @@ -32,8 +32,8 @@ void PixelShuffleGradKernel(const Context& ctx, ctx.template Alloc(dx); int factor = upscale_factor; bool channel_last = (data_format == "NHWC"); - auto do_dims = dout->dims(); - auto dx_dims = dx->dims(); + const auto& do_dims = dout->dims(); + const auto& dx_dims = dx->dims(); DenseTensor t(*dout); if (!channel_last) { diff --git a/paddle/phi/kernels/impl/pixel_shuffle_kernel_impl.h b/paddle/phi/kernels/impl/pixel_shuffle_kernel_impl.h index 2303db4ea5..c5e41b4902 100644 --- a/paddle/phi/kernels/impl/pixel_shuffle_kernel_impl.h +++ b/paddle/phi/kernels/impl/pixel_shuffle_kernel_impl.h @@ -31,8 +31,8 @@ void PixelShuffleKernel(const Context& ctx, ctx.template Alloc(out); int factor = upscale_factor; bool channel_last = (data_format == "NHWC"); - auto in_dims = in->dims(); - auto o_dims = out->dims(); + const auto& in_dims = in->dims(); + const auto& o_dims = out->dims(); DenseTensor t(*in); if (!channel_last) { diff --git a/paddle/phi/kernels/impl/pixel_unshuffle_grad_kernel_impl.h b/paddle/phi/kernels/impl/pixel_unshuffle_grad_kernel_impl.h index cb02539f2e..399c6a5672 100644 --- a/paddle/phi/kernels/impl/pixel_unshuffle_grad_kernel_impl.h +++ b/paddle/phi/kernels/impl/pixel_unshuffle_grad_kernel_impl.h @@ -33,8 +33,8 @@ void PixelUnshuffleGradKernel(const Context& dev_ctx, dev_ctx.template Alloc(dx); int factor = downscale_factor; bool channel_last = (data_format == "NHWC"); - auto do_dims = dout->dims(); - auto dx_dims = dx->dims(); + const auto& do_dims = dout->dims(); + const auto& dx_dims = dx->dims(); DenseTensor t(*dout); if (!channel_last) { diff --git a/paddle/phi/kernels/impl/pixel_unshuffle_kernel_impl.h b/paddle/phi/kernels/impl/pixel_unshuffle_kernel_impl.h index 0a140b270b..7ffce62dac 100644 --- a/paddle/phi/kernels/impl/pixel_unshuffle_kernel_impl.h +++ b/paddle/phi/kernels/impl/pixel_unshuffle_kernel_impl.h @@ -32,8 +32,8 @@ void PixelUnshuffleKernel(const Context& dev_ctx, dev_ctx.template Alloc(out); int factor = downscale_factor; bool channel_last = (data_format == "NHWC"); - auto in_dims = in->dims(); - auto o_dims = out->dims(); + const auto& in_dims = in->dims(); + const auto& o_dims = out->dims(); DenseTensor t(*in); if (!channel_last) { diff --git a/paddle/phi/kernels/impl/unfold_grad_kernel_impl.h b/paddle/phi/kernels/impl/unfold_grad_kernel_impl.h index 5556654ee7..0724cffdd4 100644 --- a/paddle/phi/kernels/impl/unfold_grad_kernel_impl.h +++ b/paddle/phi/kernels/impl/unfold_grad_kernel_impl.h @@ -35,7 +35,7 @@ void UnfoldGradKernel(const Context& ctx, if (!x_grad) return; - auto x_dims = x_grad->dims(); + const auto& x_dims = x_grad->dims(); const int batch_size = static_cast(x_dims[0]); int out_height = phi::funcs::CalcOutputSize(x_dims[2], diff --git a/paddle/phi/kernels/impl/unfold_kernel_impl.h b/paddle/phi/kernels/impl/unfold_kernel_impl.h index e914f6cacb..4526d1c3dc 100644 --- a/paddle/phi/kernels/impl/unfold_kernel_impl.h +++ b/paddle/phi/kernels/impl/unfold_kernel_impl.h @@ -36,7 +36,7 @@ void UnfoldKernel(const Context& ctx, paddle::operators::math:: Im2ColFunctor im2col; - auto x_dims = x.dims(); + const auto& x_dims = x.dims(); int out_height = phi::funcs::CalcOutputSize(x_dims[2], kernel_sizes[0], diff --git a/paddle/utils/optional.h b/paddle/utils/optional.h index eec5f32be7..2b5a657f4d 100644 --- a/paddle/utils/optional.h +++ b/paddle/utils/optional.h @@ -100,7 +100,11 @@ class reference_content { public: // structors ~reference_content() {} +// TODO(zhiqiu): remove it +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wmaybe-uninitialized" reference_content(RefT r) : content_(r) {} +#pragma GCC diagnostic pop reference_content(const reference_content& operand) : content_(operand.content_) {} -- GitLab