提交 f0e51899 编写于 作者: T Travis CI

Deploy to GitHub Pages: 1566af8a

上级 4c2433d2
...@@ -518,13 +518,17 @@ please refer to the following explanation and references therein ...@@ -518,13 +518,17 @@ please refer to the following explanation and references therein
what-are-deconvolutional-layers/>`_ . what-are-deconvolutional-layers/>`_ .
The num_channel means input image’s channel number. It may be 1 or 3 when The num_channel means input image’s channel number. It may be 1 or 3 when
input is raw pixels of image(mono or RGB), or it may be the previous layer’s input is raw pixels of image(mono or RGB), or it may be the previous layer’s
num_filters * num_group.</p> num_filters.</p>
<p>There are several groups of filters in PaddlePaddle implementation. <p>There are several groups of filters in PaddlePaddle implementation.
Each group will process some channels of the input. For example, if If the groups attribute is greater than 1, for example groups=2,
num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create the input will be splitted into 2 parts along the channel axis, and
32*4 = 128 filters to process the input. The channels will be split into 4 the filters will also be splitted into 2 parts. The first half of the filters
pieces. First 256/4 = 64 channels will be processed by first 32 filters. The is only connected to the first half of the input channels, while the second
rest channels will be processed by the rest groups of filters.</p> half of the filters is only connected to the second half of the input. After
the computation of convolution for each part of input,
the output will be obtained by concatenating the two results.</p>
<p>The details of grouped convolution, please refer to:
<a class="reference external" href="http://www.cs.toronto.edu/~kriz/imagenet_classification_with_deep_convolutional.pdf">ImageNet Classification with Deep Convolutional Neural Networks</a></p>
<p>The example usage is:</p> <p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">conv</span> <span class="o">=</span> <span class="n">img_conv</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">filter_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">filter_size_y</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">conv</span> <span class="o">=</span> <span class="n">img_conv</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">filter_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">filter_size_y</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">num_channels</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span> <span class="n">num_channels</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span>
...@@ -548,7 +552,7 @@ the x axis, and the second is used to specify the dimension ...@@ -548,7 +552,7 @@ the x axis, and the second is used to specify the dimension
on the y axis when filter_size_y is not provided.</li> on the y axis when filter_size_y is not provided.</li>
<li><strong>filter_size_y</strong> (<em>int</em>) &#8211; The dimension of the filter kernel on the y axis. If the parameter <li><strong>filter_size_y</strong> (<em>int</em>) &#8211; The dimension of the filter kernel on the y axis. If the parameter
is not set, it will be set automatically according to filter_size.</li> is not set, it will be set automatically according to filter_size.</li>
<li><strong>num_filters</strong> &#8211; Each filter group&#8217;s number of filter</li> <li><strong>num_filters</strong> (<em>int</em>) &#8211; The number of filters. It is as same as the output image channel.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type. paddle.v2.activation.Relu is the default activation.</li> <li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type. paddle.v2.activation.Relu is the default activation.</li>
<li><strong>groups</strong> (<em>int</em>) &#8211; The group number. 1 is the default group number.</li> <li><strong>groups</strong> (<em>int</em>) &#8211; The group number. 1 is the default group number.</li>
<li><strong>stride</strong> (<em>int | tuple | list</em>) &#8211; The strides. If the parameter is set to one integer, the strides <li><strong>stride</strong> (<em>int | tuple | list</em>) &#8211; The strides. If the parameter is set to one integer, the strides
...@@ -2093,7 +2097,7 @@ sequence of a nested sequence, <code class="code docutils literal"><span class=" ...@@ -2093,7 +2097,7 @@ sequence of a nested sequence, <code class="code docutils literal"><span class="
</div> </div>
<div class="section" id="api-v2-layer-pooling"> <div class="section" id="api-v2-layer-pooling">
<span id="id1"></span><h3>pooling<a class="headerlink" href="#api-v2-layer-pooling" title="Permalink to this headline"></a></h3> <span id="id2"></span><h3>pooling<a class="headerlink" href="#api-v2-layer-pooling" title="Permalink to this headline"></a></h3>
<dl class="class"> <dl class="class">
<dt> <dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">pooling</code></dt> <em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">pooling</code></dt>
......
因为 它太大了无法显示 source diff 。你可以改为 查看blob
...@@ -531,13 +531,17 @@ please refer to the following explanation and references therein ...@@ -531,13 +531,17 @@ please refer to the following explanation and references therein
what-are-deconvolutional-layers/&gt;`_ . what-are-deconvolutional-layers/&gt;`_ .
The num_channel means input image&#8217;s channel number. It may be 1 or 3 when The num_channel means input image&#8217;s channel number. It may be 1 or 3 when
input is raw pixels of image(mono or RGB), or it may be the previous layer&#8217;s input is raw pixels of image(mono or RGB), or it may be the previous layer&#8217;s
num_filters * num_group.</p> num_filters.</p>
<p>There are several groups of filters in PaddlePaddle implementation. <p>There are several groups of filters in PaddlePaddle implementation.
Each group will process some channels of the input. For example, if If the groups attribute is greater than 1, for example groups=2,
num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create the input will be splitted into 2 parts along the channel axis, and
32*4 = 128 filters to process the input. The channels will be split into 4 the filters will also be splitted into 2 parts. The first half of the filters
pieces. First 256/4 = 64 channels will be processed by first 32 filters. The is only connected to the first half of the input channels, while the second
rest channels will be processed by the rest groups of filters.</p> half of the filters is only connected to the second half of the input. After
the computation of convolution for each part of input,
the output will be obtained by concatenating the two results.</p>
<p>The details of grouped convolution, please refer to:
<a class="reference external" href="http://www.cs.toronto.edu/~kriz/imagenet_classification_with_deep_convolutional.pdf">ImageNet Classification with Deep Convolutional Neural Networks</a></p>
<p>The example usage is:</p> <p>The example usage is:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">conv</span> <span class="o">=</span> <span class="n">img_conv</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">filter_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">filter_size_y</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">conv</span> <span class="o">=</span> <span class="n">img_conv</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">filter_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">filter_size_y</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">num_channels</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span> <span class="n">num_channels</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span>
...@@ -561,7 +565,7 @@ the x axis, and the second is used to specify the dimension ...@@ -561,7 +565,7 @@ the x axis, and the second is used to specify the dimension
on the y axis when filter_size_y is not provided.</li> on the y axis when filter_size_y is not provided.</li>
<li><strong>filter_size_y</strong> (<em>int</em>) &#8211; The dimension of the filter kernel on the y axis. If the parameter <li><strong>filter_size_y</strong> (<em>int</em>) &#8211; The dimension of the filter kernel on the y axis. If the parameter
is not set, it will be set automatically according to filter_size.</li> is not set, it will be set automatically according to filter_size.</li>
<li><strong>num_filters</strong> &#8211; Each filter group&#8217;s number of filter</li> <li><strong>num_filters</strong> (<em>int</em>) &#8211; The number of filters. It is as same as the output image channel.</li>
<li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type. paddle.v2.activation.Relu is the default activation.</li> <li><strong>act</strong> (<em>paddle.v2.activation.Base</em>) &#8211; Activation type. paddle.v2.activation.Relu is the default activation.</li>
<li><strong>groups</strong> (<em>int</em>) &#8211; The group number. 1 is the default group number.</li> <li><strong>groups</strong> (<em>int</em>) &#8211; The group number. 1 is the default group number.</li>
<li><strong>stride</strong> (<em>int | tuple | list</em>) &#8211; The strides. If the parameter is set to one integer, the strides <li><strong>stride</strong> (<em>int | tuple | list</em>) &#8211; The strides. If the parameter is set to one integer, the strides
...@@ -2106,7 +2110,7 @@ sequence of a nested sequence, <code class="code docutils literal"><span class=" ...@@ -2106,7 +2110,7 @@ sequence of a nested sequence, <code class="code docutils literal"><span class="
</div> </div>
<div class="section" id="api-v2-layer-pooling"> <div class="section" id="api-v2-layer-pooling">
<span id="id1"></span><h3>pooling<a class="headerlink" href="#api-v2-layer-pooling" title="永久链接至标题"></a></h3> <span id="id2"></span><h3>pooling<a class="headerlink" href="#api-v2-layer-pooling" title="永久链接至标题"></a></h3>
<dl class="class"> <dl class="class">
<dt> <dt>
<em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">pooling</code></dt> <em class="property">class </em><code class="descclassname">paddle.v2.layer.</code><code class="descname">pooling</code></dt>
......
因为 它太大了无法显示 source diff 。你可以改为 查看blob
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册