From f06f013e9f990cb62683fe1c601b131336aec454 Mon Sep 17 00:00:00 2001 From: Travis CI Date: Wed, 31 Jan 2018 09:32:46 +0000 Subject: [PATCH] Deploy to GitHub Pages: 43262608442a7c3f11422d7a87c0be68ac3293d8 --- .../_sources/api/v2/fluid/data_feeder.rst.txt | 13 +- .../_sources/api/v2/fluid/evaluator.rst.txt | 28 +- .../_sources/api/v2/fluid/executor.rst.txt | 33 +- .../_sources/api/v2/fluid/initializer.rst.txt | 55 +- develop/doc/_sources/api/v2/fluid/io.rst.txt | 61 +- .../doc/_sources/api/v2/fluid/layers.rst.txt | 653 ++- .../doc/_sources/api/v2/fluid/nets.rst.txt | 22 +- .../_sources/api/v2/fluid/optimizer.rst.txt | 65 +- .../_sources/api/v2/fluid/param_attr.rst.txt | 22 +- .../_sources/api/v2/fluid/profiler.rst.txt | 25 +- .../_sources/api/v2/fluid/regularizer.rst.txt | 32 +- develop/doc/api/index_en.html | 22 +- develop/doc/api/v2/config/activation.html | 22 +- develop/doc/api/v2/config/attr.html | 22 +- develop/doc/api/v2/config/evaluators.html | 22 +- develop/doc/api/v2/config/layer.html | 22 +- develop/doc/api/v2/config/networks.html | 22 +- develop/doc/api/v2/config/optimizer.html | 22 +- develop/doc/api/v2/config/pooling.html | 22 +- develop/doc/api/v2/data.html | 22 +- develop/doc/api/v2/data/data_reader.html | 22 +- develop/doc/api/v2/data/dataset.html | 22 +- develop/doc/api/v2/data/image.html | 22 +- develop/doc/api/v2/fluid.html | 48 +- develop/doc/api/v2/fluid/data_feeder.html | 47 +- develop/doc/api/v2/fluid/evaluator.html | 112 +- develop/doc/api/v2/fluid/executor.html | 65 +- develop/doc/api/v2/fluid/initializer.html | 127 +- develop/doc/api/v2/fluid/io.html | 182 +- develop/doc/api/v2/fluid/layers.html | 4884 ++++++++++------- develop/doc/api/v2/fluid/nets.html | 45 +- develop/doc/api/v2/fluid/optimizer.html | 149 +- develop/doc/api/v2/fluid/param_attr.html | 58 +- develop/doc/api/v2/fluid/profiler.html | 87 +- develop/doc/api/v2/fluid/regularizer.html | 98 +- develop/doc/api/v2/model_configs.html | 22 +- develop/doc/api/v2/run_logic.html | 22 +- develop/doc/design/api.html | 22 +- develop/doc/design/auto_gradient_check.html | 22 +- develop/doc/design/backward.html | 22 +- develop/doc/design/block.html | 22 +- develop/doc/design/build_system/README.html | 22 +- develop/doc/design/cluster_train/README.html | 22 +- .../design/cluster_train/checkpointing.html | 22 +- .../design/cluster_train/data_dispatch.html | 22 +- .../cluster_train/large_model_dist_train.html | 22 +- .../design/cluster_train/master_server.html | 22 +- .../design/cluster_train/pserver_client.html | 22 +- .../remote_parameter_updater.html | 22 +- .../doc/design/cluster_train/save_model.html | 22 +- .../doc/design/cluster_train/submit-job.html | 22 +- .../doc/design/concurrent_programming.html | 22 +- develop/doc/design/csp.html | 22 +- .../distributed_architecture.html | 22 +- .../doc/design/dist_refactor/multi_cpu.html | 22 +- .../dist_refactor/parameter_server.html | 22 +- develop/doc/design/error_clip.html | 22 +- develop/doc/design/evaluator.html | 22 +- develop/doc/design/executor.html | 22 +- develop/doc/design/file_manager/README.html | 22 +- .../design/file_manager/pfs/pfsclient.html | 22 +- develop/doc/design/float16.html | 22 +- develop/doc/design/fluid.html | 22 +- develop/doc/design/fluid_compiler.html | 22 +- .../design/functions_operators_layers.html | 22 +- develop/doc/design/gan_api.html | 22 +- develop/doc/design/graph.html | 22 +- develop/doc/design/graph_survey.html | 22 +- develop/doc/design/if_else_op.html | 22 +- develop/doc/design/infer_var_type.html | 22 +- develop/doc/design/kernel_hint_design.html | 22 +- develop/doc/design/memory_optimization.html | 22 +- develop/doc/design/mkl/mkl_packed.html | 22 +- develop/doc/design/mkl/mkldnn.html | 22 +- develop/doc/design/mkl/mkldnn_fluid.html | 22 +- develop/doc/design/model_format.html | 22 +- .../00.why_plain_c.html | 22 +- .../01.inference_implementation.html | 22 +- develop/doc/design/operator_kernel_type.html | 22 +- develop/doc/design/ops/rnn.html | 22 +- develop/doc/design/ops/sequence_decoder.html | 22 +- develop/doc/design/optimizer.html | 22 +- develop/doc/design/paddle_nccl.html | 22 +- develop/doc/design/parameter_average.html | 22 +- develop/doc/design/parameters_in_cpp.html | 22 +- develop/doc/design/profiler.html | 22 +- develop/doc/design/program.html | 22 +- develop/doc/design/prune.html | 22 +- develop/doc/design/python_api.html | 22 +- develop/doc/design/reader/README.html | 22 +- develop/doc/design/refactorization.html | 22 +- develop/doc/design/register_grad_op.html | 22 +- develop/doc/design/regularization.html | 22 +- develop/doc/design/releasing_process.html | 22 +- develop/doc/design/scope.html | 22 +- develop/doc/design/selected_rows.html | 22 +- develop/doc/design/simple_op_design.html | 22 +- develop/doc/design/speech/deep_speech_2.html | 22 +- develop/doc/design/support_new_device.html | 22 +- develop/doc/design/switch_kernel.html | 22 +- develop/doc/design/tensor_array.html | 22 +- develop/doc/design/var_desc.html | 22 +- develop/doc/genindex.html | 45 +- .../build_from_source_en.html | 22 +- .../build_and_install/docker_install_en.html | 22 +- .../build_and_install/index_en.html | 22 +- .../build_and_install/pip_install_en.html | 22 +- develop/doc/getstarted/index_en.html | 22 +- .../doc/howto/deep_model/rnn/index_en.html | 22 +- .../howto/deep_model/rnn/rnn_config_en.html | 22 +- develop/doc/howto/dev/build_en.html | 22 +- .../howto/dev/contribute_to_paddle_en.html | 22 +- develop/doc/howto/dev/new_layer_en.html | 22 +- develop/doc/howto/dev/new_op_en.html | 22 +- develop/doc/howto/dev/new_op_kernel_en.html | 22 +- develop/doc/howto/dev/use_eigen_en.html | 22 +- develop/doc/howto/dev/write_docs_en.html | 22 +- develop/doc/howto/index_en.html | 22 +- .../doc/howto/optimization/cpu_profiling.html | 22 +- .../howto/optimization/gpu_profiling_en.html | 22 +- develop/doc/howto/read_source.html | 22 +- .../howto/usage/cluster/cluster_train_en.html | 22 +- .../doc/howto/usage/cluster/fabric_en.html | 22 +- .../usage/cluster/fluid_cluster_train_en.html | 22 +- .../doc/howto/usage/cluster/k8s_aws_en.html | 22 +- develop/doc/howto/usage/cluster/k8s_en.html | 22 +- .../doc/howto/usage/cluster/openmpi_en.html | 22 +- .../usage/cluster/src/k8s_data/README.html | 22 +- .../usage/cluster/src/k8s_train/README.html | 22 +- .../usage/cmd_parameter/arguments_en.html | 22 +- .../cmd_parameter/detail_introduction_en.html | 22 +- .../howto/usage/cmd_parameter/index_en.html | 22 +- .../usage/cmd_parameter/use_case_en.html | 22 +- develop/doc/index_en.html | 22 +- .../cross_compiling_for_android_en.html | 22 +- .../mobile/cross_compiling_for_ios_en.html | 22 +- .../cross_compiling_for_raspberry_en.html | 22 +- develop/doc/mobile/index_en.html | 26 +- develop/doc/objects.inv | Bin 3784 -> 3721 bytes develop/doc/py-modindex.html | 27 +- develop/doc/search.html | 22 +- develop/doc/searchindex.js | 2 +- .../survey/cluster_bootstrapping_tools.html | 22 +- .../_sources/api/v2/fluid/data_feeder.rst.txt | 13 +- .../_sources/api/v2/fluid/evaluator.rst.txt | 28 +- .../_sources/api/v2/fluid/executor.rst.txt | 33 +- .../_sources/api/v2/fluid/initializer.rst.txt | 55 +- .../doc_cn/_sources/api/v2/fluid/io.rst.txt | 61 +- .../_sources/api/v2/fluid/layers.rst.txt | 653 ++- .../doc_cn/_sources/api/v2/fluid/nets.rst.txt | 22 +- .../_sources/api/v2/fluid/optimizer.rst.txt | 65 +- .../_sources/api/v2/fluid/param_attr.rst.txt | 22 +- .../_sources/api/v2/fluid/profiler.rst.txt | 25 +- .../_sources/api/v2/fluid/regularizer.rst.txt | 32 +- develop/doc_cn/api/index_cn.html | 22 +- develop/doc_cn/api/v2/config/activation.html | 22 +- develop/doc_cn/api/v2/config/attr.html | 22 +- develop/doc_cn/api/v2/config/evaluators.html | 22 +- develop/doc_cn/api/v2/config/layer.html | 22 +- develop/doc_cn/api/v2/config/networks.html | 22 +- develop/doc_cn/api/v2/config/optimizer.html | 22 +- develop/doc_cn/api/v2/config/pooling.html | 22 +- develop/doc_cn/api/v2/data.html | 22 +- develop/doc_cn/api/v2/data/data_reader.html | 22 +- develop/doc_cn/api/v2/data/dataset.html | 22 +- develop/doc_cn/api/v2/data/image.html | 22 +- develop/doc_cn/api/v2/fluid.html | 48 +- develop/doc_cn/api/v2/fluid/data_feeder.html | 47 +- develop/doc_cn/api/v2/fluid/evaluator.html | 112 +- develop/doc_cn/api/v2/fluid/executor.html | 65 +- develop/doc_cn/api/v2/fluid/initializer.html | 127 +- develop/doc_cn/api/v2/fluid/io.html | 182 +- develop/doc_cn/api/v2/fluid/layers.html | 4884 ++++++++++------- develop/doc_cn/api/v2/fluid/nets.html | 45 +- develop/doc_cn/api/v2/fluid/optimizer.html | 149 +- develop/doc_cn/api/v2/fluid/param_attr.html | 58 +- develop/doc_cn/api/v2/fluid/profiler.html | 87 +- develop/doc_cn/api/v2/fluid/regularizer.html | 98 +- develop/doc_cn/api/v2/model_configs.html | 22 +- develop/doc_cn/api/v2/run_logic.html | 22 +- develop/doc_cn/design/api.html | 22 +- .../doc_cn/design/auto_gradient_check.html | 22 +- develop/doc_cn/design/backward.html | 22 +- develop/doc_cn/design/block.html | 22 +- .../doc_cn/design/build_system/README.html | 22 +- .../doc_cn/design/cluster_train/README.html | 22 +- .../design/cluster_train/checkpointing.html | 22 +- .../design/cluster_train/data_dispatch.html | 22 +- .../cluster_train/large_model_dist_train.html | 22 +- .../design/cluster_train/master_server.html | 22 +- .../design/cluster_train/pserver_client.html | 22 +- .../remote_parameter_updater.html | 22 +- .../design/cluster_train/save_model.html | 22 +- .../design/cluster_train/submit-job.html | 22 +- .../doc_cn/design/concurrent_programming.html | 22 +- develop/doc_cn/design/csp.html | 22 +- .../distributed_architecture.html | 22 +- .../design/dist_refactor/multi_cpu.html | 22 +- .../dist_refactor/parameter_server.html | 22 +- develop/doc_cn/design/error_clip.html | 22 +- develop/doc_cn/design/evaluator.html | 22 +- develop/doc_cn/design/executor.html | 22 +- .../doc_cn/design/file_manager/README.html | 22 +- .../design/file_manager/pfs/pfsclient.html | 22 +- develop/doc_cn/design/float16.html | 22 +- develop/doc_cn/design/fluid.html | 22 +- develop/doc_cn/design/fluid_compiler.html | 22 +- .../design/functions_operators_layers.html | 22 +- develop/doc_cn/design/gan_api.html | 22 +- develop/doc_cn/design/graph.html | 22 +- develop/doc_cn/design/graph_survey.html | 22 +- develop/doc_cn/design/if_else_op.html | 22 +- develop/doc_cn/design/infer_var_type.html | 22 +- develop/doc_cn/design/kernel_hint_design.html | 22 +- .../doc_cn/design/memory_optimization.html | 22 +- develop/doc_cn/design/mkl/mkl_packed.html | 22 +- develop/doc_cn/design/mkl/mkldnn.html | 22 +- develop/doc_cn/design/mkl/mkldnn_fluid.html | 22 +- develop/doc_cn/design/model_format.html | 22 +- .../00.why_plain_c.html | 22 +- .../01.inference_implementation.html | 22 +- .../doc_cn/design/operator_kernel_type.html | 22 +- develop/doc_cn/design/ops/rnn.html | 22 +- .../doc_cn/design/ops/sequence_decoder.html | 22 +- develop/doc_cn/design/optimizer.html | 22 +- develop/doc_cn/design/paddle_nccl.html | 22 +- develop/doc_cn/design/parameter_average.html | 22 +- develop/doc_cn/design/parameters_in_cpp.html | 22 +- develop/doc_cn/design/profiler.html | 22 +- develop/doc_cn/design/program.html | 22 +- develop/doc_cn/design/prune.html | 22 +- develop/doc_cn/design/python_api.html | 22 +- develop/doc_cn/design/reader/README.html | 22 +- develop/doc_cn/design/refactorization.html | 22 +- develop/doc_cn/design/register_grad_op.html | 22 +- develop/doc_cn/design/regularization.html | 22 +- develop/doc_cn/design/releasing_process.html | 22 +- develop/doc_cn/design/scope.html | 22 +- develop/doc_cn/design/selected_rows.html | 22 +- develop/doc_cn/design/simple_op_design.html | 22 +- .../doc_cn/design/speech/deep_speech_2.html | 22 +- develop/doc_cn/design/support_new_device.html | 22 +- develop/doc_cn/design/switch_kernel.html | 22 +- develop/doc_cn/design/tensor_array.html | 22 +- develop/doc_cn/design/var_desc.html | 22 +- .../faq/build_and_install/index_cn.html | 22 +- develop/doc_cn/faq/cluster/index_cn.html | 22 +- develop/doc_cn/faq/index_cn.html | 26 +- develop/doc_cn/faq/local/index_cn.html | 22 +- develop/doc_cn/faq/model/index_cn.html | 22 +- develop/doc_cn/faq/parameter/index_cn.html | 22 +- develop/doc_cn/genindex.html | 45 +- .../build_from_source_cn.html | 22 +- .../build_and_install/docker_install_cn.html | 22 +- .../build_and_install/index_cn.html | 22 +- .../build_and_install/pip_install_cn.html | 22 +- .../getstarted/concepts/use_concepts_cn.html | 22 +- develop/doc_cn/getstarted/index_cn.html | 22 +- .../deep_model/rnn/hierarchical_layer_cn.html | 22 +- .../rnn/hrnn_rnn_api_compare_cn.html | 22 +- .../doc_cn/howto/deep_model/rnn/index_cn.html | 22 +- .../deep_model/rnn/recurrent_group_cn.html | 22 +- .../howto/deep_model/rnn/rnn_config_cn.html | 22 +- develop/doc_cn/howto/dev/build_cn.html | 22 +- .../howto/dev/contribute_to_paddle_cn.html | 22 +- develop/doc_cn/howto/dev/new_layer_cn.html | 22 +- develop/doc_cn/howto/dev/new_op_cn.html | 22 +- develop/doc_cn/howto/dev/use_eigen_cn.html | 22 +- develop/doc_cn/howto/dev/write_docs_cn.html | 22 +- develop/doc_cn/howto/index_cn.html | 22 +- .../howto/optimization/cpu_profiling.html | 22 +- .../howto/optimization/cpu_profiling_cn.html | 22 +- .../howto/optimization/gpu_profiling_cn.html | 22 +- develop/doc_cn/howto/read_source.html | 22 +- .../usage/capi/compile_paddle_lib_cn.html | 22 +- develop/doc_cn/howto/usage/capi/index_cn.html | 22 +- .../capi/organization_of_the_inputs_cn.html | 22 +- .../howto/usage/capi/workflow_of_capi_cn.html | 22 +- .../howto/usage/cluster/cluster_train_cn.html | 22 +- .../doc_cn/howto/usage/cluster/fabric_cn.html | 22 +- .../howto/usage/cluster/k8s_aws_cn.html | 22 +- .../doc_cn/howto/usage/cluster/k8s_cn.html | 22 +- .../usage/cluster/k8s_distributed_cn.html | 22 +- .../howto/usage/cluster/openmpi_cn.html | 22 +- .../usage/cluster/src/k8s_data/README.html | 22 +- .../usage/cluster/src/k8s_train/README.html | 22 +- .../usage/cmd_parameter/arguments_cn.html | 22 +- .../cmd_parameter/detail_introduction_cn.html | 22 +- .../howto/usage/cmd_parameter/index_cn.html | 22 +- .../usage/cmd_parameter/use_case_cn.html | 22 +- develop/doc_cn/index_cn.html | 22 +- .../cross_compiling_for_android_cn.html | 22 +- .../mobile/cross_compiling_for_ios_cn.html | 22 +- .../cross_compiling_for_raspberry_cn.html | 22 +- develop/doc_cn/mobile/index_cn.html | 22 +- develop/doc_cn/objects.inv | Bin 4425 -> 4362 bytes develop/doc_cn/py-modindex.html | 27 +- develop/doc_cn/search.html | 22 +- develop/doc_cn/searchindex.js | 2 +- .../survey/cluster_bootstrapping_tools.html | 22 +- 300 files changed, 10894 insertions(+), 8496 deletions(-) diff --git a/develop/doc/_sources/api/v2/fluid/data_feeder.rst.txt b/develop/doc/_sources/api/v2/fluid/data_feeder.rst.txt index 0fa78f7dfb..a591c7334f 100644 --- a/develop/doc/_sources/api/v2/fluid/data_feeder.rst.txt +++ b/develop/doc/_sources/api/v2/fluid/data_feeder.rst.txt @@ -1,9 +1,14 @@ +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! + =========== -DataFeeder +data_feeder =========== DataFeeder ------------ -.. automodule:: paddle.v2.fluid.data_feeder - :members: DataFeeder +---------- + +.. autoclass:: paddle.v2.fluid.data_feeder.DataFeeder + :members: :noindex: + diff --git a/develop/doc/_sources/api/v2/fluid/evaluator.rst.txt b/develop/doc/_sources/api/v2/fluid/evaluator.rst.txt index a23f3301d0..00dcecfd62 100644 --- a/develop/doc/_sources/api/v2/fluid/evaluator.rst.txt +++ b/develop/doc/_sources/api/v2/fluid/evaluator.rst.txt @@ -1,9 +1,21 @@ -=========== -Evaluator -=========== - -Evaluator ------------ -.. automodule:: paddle.v2.fluid.evaluator - :members: Evaluator +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! + +========= +evaluator +========= + +Accuracy +-------- + +.. autoclass:: paddle.v2.fluid.evaluator.Accuracy + :members: :noindex: + +ChunkEvaluator +-------------- + +.. autoclass:: paddle.v2.fluid.evaluator.ChunkEvaluator + :members: + :noindex: + diff --git a/develop/doc/_sources/api/v2/fluid/executor.rst.txt b/develop/doc/_sources/api/v2/fluid/executor.rst.txt index 3a283538c1..a028f6283f 100644 --- a/develop/doc/_sources/api/v2/fluid/executor.rst.txt +++ b/develop/doc/_sources/api/v2/fluid/executor.rst.txt @@ -1,9 +1,32 @@ -=========== -Executor -=========== +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! + +======== +executor +======== Executor +-------- + +.. autoclass:: paddle.v2.fluid.executor.Executor + :members: + :noindex: + +global_scope +------------ + +.. autofunction:: paddle.v2.fluid.executor.global_scope + :noindex: + +scope_guard ----------- -.. automodule:: paddle.v2.fluid.executor - :members: Executor + +.. autofunction:: paddle.v2.fluid.executor.scope_guard + :noindex: + +switch_scope +------------ + +.. autofunction:: paddle.v2.fluid.executor.switch_scope :noindex: + diff --git a/develop/doc/_sources/api/v2/fluid/initializer.rst.txt b/develop/doc/_sources/api/v2/fluid/initializer.rst.txt index 8f587837e9..c38be033ff 100644 --- a/develop/doc/_sources/api/v2/fluid/initializer.rst.txt +++ b/develop/doc/_sources/api/v2/fluid/initializer.rst.txt @@ -1,50 +1,35 @@ +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! + =========== -Initializer +initializer =========== +Constant +-------- - -Initializer ------------ -.. automodule:: paddle.v2.fluid.initializer - :members: Initializer - :noindex: - - - -ConstantInitializer -------------------- -.. automodule:: paddle.v2.fluid.initializer - :members: ConstantInitializer +.. autoclass:: paddle.v2.fluid.initializer.Constant + :members: :noindex: +Uniform +------- - -UniformInitializer ------------------- -.. automodule:: paddle.v2.fluid.initializer - :members: UniformInitializer - :noindex: - - - -NormalInitializer ------------------ -.. automodule:: paddle.v2.fluid.initializer - :members: NormalInitializer +.. autoclass:: paddle.v2.fluid.initializer.Uniform + :members: :noindex: +Normal +------ -XavierInitializer ------------------ -.. automodule:: paddle.v2.fluid.initializer - :members: XavierInitializer +.. autoclass:: paddle.v2.fluid.initializer.Normal + :members: :noindex: +Xavier +------ -MSRAInitializer ---------------- -.. automodule:: paddle.v2.fluid.initializer - :members: MSRAInitializer +.. autoclass:: paddle.v2.fluid.initializer.Xavier + :members: :noindex: diff --git a/develop/doc/_sources/api/v2/fluid/io.rst.txt b/develop/doc/_sources/api/v2/fluid/io.rst.txt index 67f68c4e9e..37c9c273e3 100644 --- a/develop/doc/_sources/api/v2/fluid/io.rst.txt +++ b/develop/doc/_sources/api/v2/fluid/io.rst.txt @@ -1,10 +1,61 @@ -=========== -IO -=========== +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! +== +io +== +save_vars +--------- -is_parameter +.. autofunction:: paddle.v2.fluid.io.save_vars + :noindex: + +save_params ----------- -.. autofunction:: paddle.v2.fluid.io.is_parameter + +.. autofunction:: paddle.v2.fluid.io.save_params + :noindex: + +save_persistables +----------------- + +.. autofunction:: paddle.v2.fluid.io.save_persistables + :noindex: + +load_vars +--------- + +.. autofunction:: paddle.v2.fluid.io.load_vars + :noindex: + +load_params +----------- + +.. autofunction:: paddle.v2.fluid.io.load_params :noindex: + +load_persistables +----------------- + +.. autofunction:: paddle.v2.fluid.io.load_persistables + :noindex: + +save_inference_model +-------------------- + +.. autofunction:: paddle.v2.fluid.io.save_inference_model + :noindex: + +load_inference_model +-------------------- + +.. autofunction:: paddle.v2.fluid.io.load_inference_model + :noindex: + +get_inference_program +--------------------- + +.. autofunction:: paddle.v2.fluid.io.get_inference_program + :noindex: + diff --git a/develop/doc/_sources/api/v2/fluid/layers.rst.txt b/develop/doc/_sources/api/v2/fluid/layers.rst.txt index 231ec2d4ba..e24613b94b 100644 --- a/develop/doc/_sources/api/v2/fluid/layers.rst.txt +++ b/develop/doc/_sources/api/v2/fluid/layers.rst.txt @@ -1,546 +1,799 @@ -========== -Layers -========== +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! +====== +layers +====== -fc ---- -.. autofunction:: paddle.v2.fluid.layers.fc +control_flow +============ + +split_lod_tensor +---------------- + +.. autofunction:: paddle.v2.fluid.layers.split_lod_tensor :noindex: -embedding ---------- -.. autofunction:: paddle.v2.fluid.layers.embedding +merge_lod_tensor +---------------- + +.. autofunction:: paddle.v2.fluid.layers.merge_lod_tensor :noindex: -dynamic_lstm ------------- -.. autofunction:: paddle.v2.fluid.layers.dynamic_lstm +BlockGuard +---------- + +.. autoclass:: paddle.v2.fluid.layers.BlockGuard + :members: :noindex: -dynamic_lstmp -------------- -.. autofunction:: paddle.v2.fluid.layers.dynamic_lstmp +BlockGuardWithCompletion +------------------------ + +.. autoclass:: paddle.v2.fluid.layers.BlockGuardWithCompletion + :members: :noindex: -dynamic_gru ------------ -.. autofunction:: paddle.v2.fluid.layers.dynamic_gru +StaticRNNMemoryLink +------------------- + +.. autoclass:: paddle.v2.fluid.layers.StaticRNNMemoryLink + :members: :noindex: -data ----- -.. autofunction:: paddle.v2.fluid.layers.data +WhileGuard +---------- + +.. autoclass:: paddle.v2.fluid.layers.WhileGuard + :members: :noindex: -mean ----- -.. autofunction:: paddle.v2.fluid.layers.mean +While +----- + +.. autoclass:: paddle.v2.fluid.layers.While + :members: :noindex: -mul ---- -.. autofunction:: paddle.v2.fluid.layers.mul +lod_rank_table +-------------- + +.. autofunction:: paddle.v2.fluid.layers.lod_rank_table :noindex: -elementwise_add ---------------- -.. autofunction:: paddle.v2.fluid.layers.elementwise_add +max_sequence_len +---------------- + +.. autofunction:: paddle.v2.fluid.layers.max_sequence_len :noindex: -elementwise_sub ---------------- -.. autofunction:: paddle.v2.fluid.layers.elementwise_sub +topk +---- + +.. autofunction:: paddle.v2.fluid.layers.topk :noindex: -elementwise_mul ---------------- -.. autofunction:: paddle.v2.fluid.layers.elementwise_mul +lod_tensor_to_array +------------------- + +.. autofunction:: paddle.v2.fluid.layers.lod_tensor_to_array :noindex: -elementwise_div ---------------- -.. autofunction:: paddle.v2.fluid.layers.elementwise_div +array_to_lod_tensor +------------------- + +.. autofunction:: paddle.v2.fluid.layers.array_to_lod_tensor :noindex: +increment +--------- -dropout -------- -.. autofunction:: paddle.v2.fluid.layers.dropout +.. autofunction:: paddle.v2.fluid.layers.increment :noindex: +array_write +----------- -reshape --------- -.. autofunction:: paddle.v2.fluid.layers.reshape +.. autofunction:: paddle.v2.fluid.layers.array_write :noindex: +create_array +------------ -sigmoid +.. autofunction:: paddle.v2.fluid.layers.create_array + :noindex: + +less_than --------- -.. autofunction:: paddle.v2.fluid.layers.sigmoid + +.. autofunction:: paddle.v2.fluid.layers.less_than :noindex: +array_read +---------- -scale ---------- -.. autofunction:: paddle.v2.fluid.layers.scale +.. autofunction:: paddle.v2.fluid.layers.array_read + :noindex: + +shrink_memory +------------- + +.. autofunction:: paddle.v2.fluid.layers.shrink_memory :noindex: +array_length +------------ -transpose +.. autofunction:: paddle.v2.fluid.layers.array_length + :noindex: + +IfElse +------ + +.. autoclass:: paddle.v2.fluid.layers.IfElse + :members: + :noindex: + +DynamicRNN +---------- + +.. autoclass:: paddle.v2.fluid.layers.DynamicRNN + :members: + :noindex: + +ConditionalBlock +---------------- + +.. autoclass:: paddle.v2.fluid.layers.ConditionalBlock + :members: + :noindex: + +StaticRNN --------- -.. autofunction:: paddle.v2.fluid.layers.transpose + +.. autoclass:: paddle.v2.fluid.layers.StaticRNN + :members: :noindex: +reorder_lod_tensor_by_rank +-------------------------- -sigmoid_cross_entropy_with_logits ---------------------------------- -.. autofunction:: paddle.v2.fluid.layers.esigmoid_cross_entropy_with_logits +.. autofunction:: paddle.v2.fluid.layers.reorder_lod_tensor_by_rank :noindex: +ParallelDo +---------- -cast +.. autoclass:: paddle.v2.fluid.layers.ParallelDo + :members: + :noindex: + +Print +----- + +.. autofunction:: paddle.v2.fluid.layers.Print + :noindex: + +device +====== + +get_places +---------- + +.. autofunction:: paddle.v2.fluid.layers.get_places + :noindex: + +io +== + +data ---- -.. autofunction:: paddle.v2.fluid.layers.cast + +.. autofunction:: paddle.v2.fluid.layers.data :noindex: +BlockGuardServ +-------------- -concat -------- -.. autofunction:: paddle.v2.fluid.layers.concat +.. autoclass:: paddle.v2.fluid.layers.BlockGuardServ + :members: :noindex: +ListenAndServ +------------- -sums +.. autoclass:: paddle.v2.fluid.layers.ListenAndServ + :members: + :noindex: + +Send ---- -.. autofunction:: paddle.v2.fluid.layers.sums + +.. autofunction:: paddle.v2.fluid.layers.Send :noindex: +nn +== -linear_chain_crf ----------------- -.. autofunction:: paddle.v2.fluid.layers.linear_chain_crf +fc +-- + +.. autofunction:: paddle.v2.fluid.layers.fc :noindex: +embedding +--------- -assign -------- .. autofunction:: paddle.v2.fluid.layers.embedding :noindex: +dynamic_lstm +------------ -split_lod_tensor ----------------- -.. autofunction:: paddle.v2.fluid.layers.split_lod_tensor +.. autofunction:: paddle.v2.fluid.layers.dynamic_lstm :noindex: +dynamic_lstmp +------------- -merge_lod_tensor +.. autofunction:: paddle.v2.fluid.layers.dynamic_lstmp + :noindex: + +dynamic_gru +----------- + +.. autofunction:: paddle.v2.fluid.layers.dynamic_gru + :noindex: + +gru_unit +-------- + +.. autofunction:: paddle.v2.fluid.layers.gru_unit + :noindex: + +linear_chain_crf ---------------- -.. autofunction:: paddle.v2.fluid.layers.merge_lod_tensor + +.. autofunction:: paddle.v2.fluid.layers.linear_chain_crf + :noindex: + +crf_decoding +------------ + +.. autofunction:: paddle.v2.fluid.layers.crf_decoding :noindex: cos_sim --------- +------- + .. autofunction:: paddle.v2.fluid.layers.cos_sim :noindex: - cross_entropy ------------- + .. autofunction:: paddle.v2.fluid.layers.cross_entropy :noindex: - - square_error_cost ----------------- + .. autofunction:: paddle.v2.fluid.layers.square_error_cost :noindex: - accuracy ---------- +-------- + .. autofunction:: paddle.v2.fluid.layers.accuracy :noindex: +chunk_eval +---------- + +.. autofunction:: paddle.v2.fluid.layers.chunk_eval + :noindex: sequence_conv ------------- + .. autofunction:: paddle.v2.fluid.layers.sequence_conv :noindex: - conv2d ------ + .. autofunction:: paddle.v2.fluid.layers.conv2d :noindex: - sequence_pool ------------- + .. autofunction:: paddle.v2.fluid.layers.sequence_pool :noindex: +pool2d +------ -sequence_first_step -------------------- -.. autofunction:: paddle.v2.fluid.layers.sequence_first_step +.. autofunction:: paddle.v2.fluid.layers.pool2d :noindex: +batch_norm +---------- + +.. autofunction:: paddle.v2.fluid.layers.batch_norm + :noindex: -sequence_last_step +beam_search_decode ------------------ -.. autofunction:: paddle.v2.fluid.layers.sequence_last_step + +.. autofunction:: paddle.v2.fluid.layers.beam_search_decode :noindex: +conv2d_transpose +---------------- -pool2d ------- -.. autofunction:: paddle.v2.fluid.layers.pool2d +.. autofunction:: paddle.v2.fluid.layers.conv2d_transpose :noindex: +sequence_expand +--------------- -batch_norm +.. autofunction:: paddle.v2.fluid.layers.sequence_expand + :noindex: + +lstm_unit +--------- + +.. autofunction:: paddle.v2.fluid.layers.lstm_unit + :noindex: + +reduce_sum ---------- -.. autofunction:: paddle.v2.fluid.layers.batch_norm + +.. autofunction:: paddle.v2.fluid.layers.reduce_sum + :noindex: + +reduce_mean +----------- + +.. autofunction:: paddle.v2.fluid.layers.reduce_mean :noindex: +reduce_max +---------- + +.. autofunction:: paddle.v2.fluid.layers.reduce_max + :noindex: -beam_search_decode +reduce_min +---------- + +.. autofunction:: paddle.v2.fluid.layers.reduce_min + :noindex: + +sequence_first_step +------------------- + +.. autofunction:: paddle.v2.fluid.layers.sequence_first_step + :noindex: + +sequence_last_step ------------------ -.. autofunction:: paddle.v2.fluid.layers.beam_search_decode + +.. autofunction:: paddle.v2.fluid.layers.sequence_last_step + :noindex: + +dropout +------- + +.. autofunction:: paddle.v2.fluid.layers.dropout :noindex: +split +----- -lod_rank_table --------------- -.. autofunction:: paddle.v2.fluid.layers.lod_rank_table +.. autofunction:: paddle.v2.fluid.layers.split :noindex: +ctc_greedy_decoder +------------------ -max_sequence_len ----------------- -.. autofunction:: paddle.v2.fluid.layers.max_sequence_len +.. autofunction:: paddle.v2.fluid.layers.ctc_greedy_decoder :noindex: +edit_distance +------------- -topk ------ -.. autofunction:: paddle.v2.fluid.layers.topk +.. autofunction:: paddle.v2.fluid.layers.edit_distance :noindex: +l2_normalize +------------ -lod_tensor_to_array -------------------- -.. autofunction:: paddle.v2.fluid.layers.lod_tensor_to_array +.. autofunction:: paddle.v2.fluid.layers.l2_normalize :noindex: +matmul +------ - -array_to_lod_tensor -------------------- -.. autofunction:: paddle.v2.fluid.layers.array_to_lod_tensor +.. autofunction:: paddle.v2.fluid.layers.matmul :noindex: +warpctc +------- +.. autofunction:: paddle.v2.fluid.layers.warpctc + :noindex: +sequence_reshape +---------------- -fill_constant -------------- -.. autofunction:: paddle.v2.fluid.layers.fill_constant +.. autofunction:: paddle.v2.fluid.layers.sequence_reshape :noindex: +transpose +--------- +.. autofunction:: paddle.v2.fluid.layers.transpose + :noindex: -fill_constant_batch_size_like ------------------------------ -.. autofunction:: paddle.v2.fluid.layers.fill_constant_batch_size_like +im2sequence +----------- + +.. autofunction:: paddle.v2.fluid.layers.im2sequence :noindex: +nce +--- -ones ----- -.. autofunction:: paddle.v2.fluid.layers.ones +.. autofunction:: paddle.v2.fluid.layers.nce :noindex: +beam_search +----------- -zeros ------ -.. autofunction:: paddle.v2.fluid.layers.zeros +.. autofunction:: paddle.v2.fluid.layers.beam_search :noindex: +row_conv +-------- -increment ---------- -.. autofunction:: paddle.v2.fluid.layers.increment +.. autofunction:: paddle.v2.fluid.layers.row_conv :noindex: +multiplex +--------- -array_write ------------ -.. autofunction:: paddle.v2.fluid.layers.array_write +.. autofunction:: paddle.v2.fluid.layers.multiplex :noindex: +ops +=== +mean +---- -create_array ------------- -.. autofunction:: paddle.v2.fluid.layers.create_array +.. autofunction:: paddle.v2.fluid.layers.mean :noindex: +mul +--- -less_than ---------- -.. autofunction:: paddle.v2.fluid.layers.less_than +.. autofunction:: paddle.v2.fluid.layers.mul :noindex: +reshape +------- -array_read ----------- -.. autofunction:: paddle.v2.fluid.layers.array_read +.. autofunction:: paddle.v2.fluid.layers.reshape :noindex: +scale +----- -shrink_memory --------------- -.. autofunction:: paddle.v2.fluid.layers.shrink_memory +.. autofunction:: paddle.v2.fluid.layers.scale :noindex: +sigmoid_cross_entropy_with_logits +--------------------------------- -array_length -------------- -.. autofunction:: paddle.v2.fluid.layers.array_length +.. autofunction:: paddle.v2.fluid.layers.sigmoid_cross_entropy_with_logits :noindex: +elementwise_add +--------------- -conv2d_transpose ----------------- -.. autofunction:: paddle.v2.fluid.layers.conv2d_transpose +.. autofunction:: paddle.v2.fluid.layers.elementwise_add :noindex: - -sequence_expand +elementwise_div --------------- -.. autofunction:: paddle.v2.fluid.layers.sequence_expand + +.. autofunction:: paddle.v2.fluid.layers.elementwise_div :noindex: +elementwise_sub +--------------- -gru_unit --------- -.. autofunction:: paddle.v2.fluid.layers.gru_unit +.. autofunction:: paddle.v2.fluid.layers.elementwise_sub :noindex: +elementwise_mul +--------------- -lstm_unit ---------- -.. autofunction:: paddle.v2.fluid.layers.lstm_unit +.. autofunction:: paddle.v2.fluid.layers.elementwise_mul :noindex: +elementwise_max +--------------- -sequence_softmax ----------------- -.. autofunction:: paddle.v2.fluid.layers.sequence_softmax +.. autofunction:: paddle.v2.fluid.layers.elementwise_max :noindex: +elementwise_min +--------------- -reduce_sum ----------- -.. autofunction:: paddle.v2.fluid.layers.reduce_sum +.. autofunction:: paddle.v2.fluid.layers.elementwise_min :noindex: +elementwise_pow +--------------- -reduce_mean ------------ -.. autofunction:: paddle.v2.fluid.layers.reduce_mean +.. autofunction:: paddle.v2.fluid.layers.elementwise_pow :noindex: +clip +---- -reduce_max ----------- -.. autofunction:: paddle.v2.fluid.layers.reduce_max +.. autofunction:: paddle.v2.fluid.layers.clip :noindex: +clip_by_norm +------------ -reduce_min ----------- -.. autofunction:: paddle.v2.fluid.layers.reduce_min +.. autofunction:: paddle.v2.fluid.layers.clip_by_norm :noindex: +sequence_softmax +---------------- -split ------ -.. autofunction:: paddle.v2.fluid.layers.split +.. autofunction:: paddle.v2.fluid.layers.sequence_softmax :noindex: +sigmoid +------- -matmul ------- -.. autofunction:: paddle.v2.fluid.layers.matmul +.. autofunction:: paddle.v2.fluid.layers.sigmoid :noindex: logsigmoid ---------- + .. autofunction:: paddle.v2.fluid.layers.logsigmoid :noindex: exp --- + .. autofunction:: paddle.v2.fluid.layers.exp :noindex: relu ---- + .. autofunction:: paddle.v2.fluid.layers.relu :noindex: tanh ---- + .. autofunction:: paddle.v2.fluid.layers.tanh :noindex: tanh_shrink ----------- + .. autofunction:: paddle.v2.fluid.layers.tanh_shrink :noindex: softshrink ---------- + .. autofunction:: paddle.v2.fluid.layers.softshrink :noindex: sqrt ---- + .. autofunction:: paddle.v2.fluid.layers.sqrt :noindex: abs ----- +--- + .. autofunction:: paddle.v2.fluid.layers.abs :noindex: ceil ---- + .. autofunction:: paddle.v2.fluid.layers.ceil :noindex: floor ----- + .. autofunction:: paddle.v2.fluid.layers.floor :noindex: round ----- + .. autofunction:: paddle.v2.fluid.layers.round :noindex: reciprocal ---------- + .. autofunction:: paddle.v2.fluid.layers.reciprocal :noindex: log --- + .. autofunction:: paddle.v2.fluid.layers.log :noindex: square ------ + .. autofunction:: paddle.v2.fluid.layers.square :noindex: softplus -------- + .. autofunction:: paddle.v2.fluid.layers.softplus :noindex: softsign ---------- +-------- + .. autofunction:: paddle.v2.fluid.layers.softsign :noindex: brelu ----- + .. autofunction:: paddle.v2.fluid.layers.brelu :noindex: leaky_relu ---------- + .. autofunction:: paddle.v2.fluid.layers.leaky_relu :noindex: soft_relu --------- + .. autofunction:: paddle.v2.fluid.layers.soft_relu :noindex: elu ----- +--- + .. autofunction:: paddle.v2.fluid.layers.elu :noindex: relu6 ----- + .. autofunction:: paddle.v2.fluid.layers.relu6 :noindex: pow ----- +--- + .. autofunction:: paddle.v2.fluid.layers.pow :noindex: +stanh +----- + +.. autofunction:: paddle.v2.fluid.layers.stanh + :noindex: + hard_shrink ----------- + .. autofunction:: paddle.v2.fluid.layers.hard_shrink :noindex: thresholded_relu ---------------- + .. autofunction:: paddle.v2.fluid.layers.thresholded_relu :noindex: hard_sigmoid -------------- +------------ + .. autofunction:: paddle.v2.fluid.layers.hard_sigmoid :noindex: swish ------- +----- + .. autofunction:: paddle.v2.fluid.layers.swish :noindex: -im2sequence +tensor +====== + +create_tensor +------------- + +.. autofunction:: paddle.v2.fluid.layers.create_tensor + :noindex: + +create_parameter +---------------- + +.. autofunction:: paddle.v2.fluid.layers.create_parameter + :noindex: + +create_global_var +----------------- + +.. autofunction:: paddle.v2.fluid.layers.create_global_var + :noindex: + +cast +---- + +.. autofunction:: paddle.v2.fluid.layers.cast + :noindex: + +concat ------ -.. autofunction:: paddle.v2.fluid.layers.im2sequence + +.. autofunction:: paddle.v2.fluid.layers.concat :noindex: -edit_distance ---------------- -.. autofunction:: paddle.v2.fluid.layers.edit_distance_error +sums +---- + +.. autofunction:: paddle.v2.fluid.layers.sums :noindex: -ctc_greedy_decoder ---------------- -.. autofunction:: paddle.v2.fluid.layers.ctc_greedy_decoder +assign +------ + +.. autofunction:: paddle.v2.fluid.layers.assign :noindex: -l2_normalize ------------- -.. autofunction:: paddle.v2.fluid.layers.l2_normalize +fill_constant_batch_size_like +----------------------------- + +.. autofunction:: paddle.v2.fluid.layers.fill_constant_batch_size_like :noindex: -sequence_reshape ----------------- -.. autofunction:: paddle.v2.fluid.layers.sequence_reshape +fill_constant +------------- + +.. autofunction:: paddle.v2.fluid.layers.fill_constant :noindex: -row_conv --------- -.. autofunction:: paddle.v2.fluid.layers.row_conv +ones +---- + +.. autofunction:: paddle.v2.fluid.layers.ones :noindex: -multiplex ---------- -.. autofunction:: paddle.v2.fluid.layers.multiplex +zeros +----- + +.. autofunction:: paddle.v2.fluid.layers.zeros :noindex: + diff --git a/develop/doc/_sources/api/v2/fluid/nets.rst.txt b/develop/doc/_sources/api/v2/fluid/nets.rst.txt index 500019bc50..015581b766 100644 --- a/develop/doc/_sources/api/v2/fluid/nets.rst.txt +++ b/develop/doc/_sources/api/v2/fluid/nets.rst.txt @@ -1,33 +1,31 @@ -=========== -Nets -=========== +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! + +==== +nets +==== simple_img_conv_pool -------------------- -.. autofunction:: paddle.v2.fluid.nets.simple_img_conv_pool - :noindex: - -img_conv_group ---------------- -.. autofunction:: paddle.v2.fluid.nets.img_conv_group +.. autofunction:: paddle.v2.fluid.nets.simple_img_conv_pool :noindex: - sequence_conv_pool ------------------ + .. autofunction:: paddle.v2.fluid.nets.sequence_conv_pool :noindex: - glu --- + .. autofunction:: paddle.v2.fluid.nets.glu :noindex: - scaled_dot_product_attention ---------------------------- + .. autofunction:: paddle.v2.fluid.nets.scaled_dot_product_attention :noindex: diff --git a/develop/doc/_sources/api/v2/fluid/optimizer.rst.txt b/develop/doc/_sources/api/v2/fluid/optimizer.rst.txt index 19b4940f08..1691ebb9a7 100644 --- a/develop/doc/_sources/api/v2/fluid/optimizer.rst.txt +++ b/develop/doc/_sources/api/v2/fluid/optimizer.rst.txt @@ -1,54 +1,49 @@ -=========== -Optimizer -=========== - -Optimizer ------------ -.. automodule:: paddle.v2.fluid.optimizer - :members: Optimizer - :noindex: +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! +========= +optimizer +========= -SGDOptimizer ------------ -.. automodule:: paddle.v2.fluid.optimizer - :members: SGDOptimizer - :noindex: +SGD +--- +.. autoclass:: paddle.v2.fluid.optimizer.SGD + :members: + :noindex: +Momentum +-------- -MomentumOptimizer ------------------ -.. automodule:: paddle.v2.fluid.optimizer - :members: MomentumOptimizer +.. autoclass:: paddle.v2.fluid.optimizer.Momentum + :members: :noindex: +Adagrad +------- - -AdagradOptimizer ----------------- -.. automodule:: paddle.v2.fluid.optimizer - :members: AdagradOptimizer +.. autoclass:: paddle.v2.fluid.optimizer.Adagrad + :members: :noindex: +Adam +---- -AdamOptimizer -------------- -.. automodule:: paddle.v2.fluid.optimizer - :members: AdamOptimizer +.. autoclass:: paddle.v2.fluid.optimizer.Adam + :members: :noindex: +Adamax +------ -AdamaxOptimizer ------------ -.. automodule:: paddle.v2.fluid.optimizer - :members: AdamaxOptimizer +.. autoclass:: paddle.v2.fluid.optimizer.Adamax + :members: :noindex: +DecayedAdagrad +-------------- -DecayedAdagradOptimizer ------------------------ -.. automodule:: paddle.v2.fluid.optimizer - :members: DecayedAdagradOptimizer +.. autoclass:: paddle.v2.fluid.optimizer.DecayedAdagrad + :members: :noindex: diff --git a/develop/doc/_sources/api/v2/fluid/param_attr.rst.txt b/develop/doc/_sources/api/v2/fluid/param_attr.rst.txt index ca0c8af9e8..8083d0d858 100644 --- a/develop/doc/_sources/api/v2/fluid/param_attr.rst.txt +++ b/develop/doc/_sources/api/v2/fluid/param_attr.rst.txt @@ -1,11 +1,21 @@ -=========== +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! + +========== +param_attr +========== + ParamAttr -=========== +--------- +.. autoclass:: paddle.v2.fluid.param_attr.ParamAttr + :members: + :noindex: +WeightNormParamAttr +------------------- -ParamAttr ------------ -.. automodule:: paddle.v2.fluid.param_attr - :members: ParamAttr +.. autoclass:: paddle.v2.fluid.param_attr.WeightNormParamAttr + :members: :noindex: + diff --git a/develop/doc/_sources/api/v2/fluid/profiler.rst.txt b/develop/doc/_sources/api/v2/fluid/profiler.rst.txt index 7d4042d1f4..4a1ff7cb69 100644 --- a/develop/doc/_sources/api/v2/fluid/profiler.rst.txt +++ b/develop/doc/_sources/api/v2/fluid/profiler.rst.txt @@ -1,10 +1,25 @@ -=========== -Profiler -=========== +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! +======== +profiler +======== +cuda_profiler +------------- -Profiler ------------ .. autofunction:: paddle.v2.fluid.profiler.cuda_profiler :noindex: + +reset_profiler +-------------- + +.. autofunction:: paddle.v2.fluid.profiler.reset_profiler + :noindex: + +profiler +-------- + +.. autofunction:: paddle.v2.fluid.profiler.profiler + :noindex: + diff --git a/develop/doc/_sources/api/v2/fluid/regularizer.rst.txt b/develop/doc/_sources/api/v2/fluid/regularizer.rst.txt index 868e225ed3..2c17d15599 100644 --- a/develop/doc/_sources/api/v2/fluid/regularizer.rst.txt +++ b/develop/doc/_sources/api/v2/fluid/regularizer.rst.txt @@ -1,25 +1,27 @@ +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! + =========== -Regularizer +regularizer =========== -WeightDecayRegularizer ----------------------- -.. automodule:: paddle.v2.fluid.regularizer - :members: WeightDecayRegularizer - :noindex: - +append_regularization_ops +------------------------- -L2DecayRegularizer ------------------- -.. automodule:: paddle.v2.fluid.regularizer - :members: L2DecayRegularizer +.. autofunction:: paddle.v2.fluid.regularizer.append_regularization_ops :noindex: +L1Decay +------- +.. autoclass:: paddle.v2.fluid.regularizer.L1Decay + :members: + :noindex: -L1DecayRegularizer -------------------- -.. automodule:: paddle.v2.fluid.regularizer - :members: L1DecayRegularizer +L2Decay +------- +.. autoclass:: paddle.v2.fluid.regularizer.L2Decay + :members: + :noindex: diff --git a/develop/doc/api/index_en.html b/develop/doc/api/index_en.html index eaf4d803b3..64d35c6027 100644 --- a/develop/doc/api/index_en.html +++ b/develop/doc/api/index_en.html @@ -161,17 +161,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/api/v2/config/activation.html b/develop/doc/api/v2/config/activation.html index d5a7c774a3..34901501dd 100644 --- a/develop/doc/api/v2/config/activation.html +++ b/develop/doc/api/v2/config/activation.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/api/v2/config/attr.html b/develop/doc/api/v2/config/attr.html index 9411485212..c96d29213e 100644 --- a/develop/doc/api/v2/config/attr.html +++ b/develop/doc/api/v2/config/attr.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/api/v2/config/evaluators.html b/develop/doc/api/v2/config/evaluators.html index 8d94cfae13..75a7662a55 100644 --- a/develop/doc/api/v2/config/evaluators.html +++ b/develop/doc/api/v2/config/evaluators.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/api/v2/config/layer.html b/develop/doc/api/v2/config/layer.html index 59bb0e493e..46653b63e2 100644 --- a/develop/doc/api/v2/config/layer.html +++ b/develop/doc/api/v2/config/layer.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/api/v2/config/networks.html b/develop/doc/api/v2/config/networks.html index 8de7433b86..d7d5f12260 100644 --- a/develop/doc/api/v2/config/networks.html +++ b/develop/doc/api/v2/config/networks.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/api/v2/config/optimizer.html b/develop/doc/api/v2/config/optimizer.html index 54f0a51d06..8e006cb0d3 100644 --- a/develop/doc/api/v2/config/optimizer.html +++ b/develop/doc/api/v2/config/optimizer.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/api/v2/config/pooling.html b/develop/doc/api/v2/config/pooling.html index a4ebe1918a..6896032e94 100644 --- a/develop/doc/api/v2/config/pooling.html +++ b/develop/doc/api/v2/config/pooling.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/api/v2/data.html b/develop/doc/api/v2/data.html index 22bf3adccc..cd6e26d44a 100644 --- a/develop/doc/api/v2/data.html +++ b/develop/doc/api/v2/data.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/api/v2/data/data_reader.html b/develop/doc/api/v2/data/data_reader.html index 843fd04e5a..d6db947b15 100644 --- a/develop/doc/api/v2/data/data_reader.html +++ b/develop/doc/api/v2/data/data_reader.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/api/v2/data/dataset.html b/develop/doc/api/v2/data/dataset.html index 00774e9712..ae086f87bf 100644 --- a/develop/doc/api/v2/data/dataset.html +++ b/develop/doc/api/v2/data/dataset.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/api/v2/data/image.html b/develop/doc/api/v2/data/image.html index b11964f742..4cea42a092 100644 --- a/develop/doc/api/v2/data/image.html +++ b/develop/doc/api/v2/data/image.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/api/v2/fluid.html b/develop/doc/api/v2/fluid.html index db9048fe9a..b22facab89 100644 --- a/develop/doc/api/v2/fluid.html +++ b/develop/doc/api/v2/fluid.html @@ -34,7 +34,7 @@ - + @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • @@ -218,17 +218,17 @@

    Fluid

    @@ -240,7 +240,7 @@ @@ -216,10 +216,15 @@
    -
    -

    DataFeeder

    -
    -

    DataFeeder

    +
    +

    data_feeder

    +
    +

    DataFeeder

    +
    +
    +class paddle.v2.fluid.data_feeder.DataFeeder(feed_list, place, program=None)
    +
    +
    @@ -230,10 +235,10 @@ diff --git a/develop/doc/api/v2/fluid/evaluator.html b/develop/doc/api/v2/fluid/evaluator.html index a44ce3e959..a5230f3ccf 100644 --- a/develop/doc/api/v2/fluid/evaluator.html +++ b/develop/doc/api/v2/fluid/evaluator.html @@ -8,7 +8,7 @@ - Evaluator — PaddlePaddle documentation + evaluator — PaddlePaddle documentation @@ -34,8 +34,8 @@ - - + + @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • @@ -207,7 +207,7 @@
  • Fluid >
  • -
  • Evaluator
  • +
  • evaluator
  • @@ -217,76 +217,24 @@
    -

    Evaluator

    -
    -

    Evaluator

    +

    evaluator

    +
    +

    Accuracy

    -class paddle.v2.fluid.evaluator.Evaluator(name, **kwargs)
    -

    Base Class for all evaluators

    - --- - - - -
    Parameters:
      -
    • name (str) – The name of evaluator. such as, “accuracy”. Used for generate -temporary variable name.
    • -
    • main_program (Program, optional) – The evaluator should be added to this -main_program. Default default_main_program()
    • -
    • startup_program (Program, optional) – The parameter should be added to this -startup_program. Default default_startup_program()
    • -
    -
    -
    -
    -states
    -

    list – The list of state variables. states will be reset to zero -when reset is invoked.

    -
    - -
    -
    -metrics
    -

    list – The list of metrics variables. They will be calculate -every mini-batch

    -
    - -
    -
    -reset(executor, reset_program=None)
    -

    reset metric states at the begin of each pass/user specified batch

    -
    - -
    -
    -eval(executor, eval_program=None)
    -

    Evaluate the statistics merged by multiple mini-batches.

    +class paddle.v2.fluid.evaluator.Accuracy(input, label, k=1, **kwargs) +

    Average Accuracy for multiple mini-batches.

    -
    +
    +
    +

    ChunkEvaluator

    +
    -create_state(suffix, dtype, shape)
    -

    Create state variable.

    -

    NOTE: It is not a public API.

    - --- - - - -
    Parameters:
      -
    • suffix (str) – the state suffix.
    • -
    • dtype (str|core.DataType) – the state data type
    • -
    • shape (tuple|list) – the shape of state
    • -
    -
    -

    Returns: State variable

    -
    - +class paddle.v2.fluid.evaluator.ChunkEvaluator(input, label, chunk_scheme, num_chunk_types, excluded_chunk_types=None) +

    Accumulate counter numbers output by chunk_eval from mini-batches and +compute the precision recall and F1-score using the accumulated counter +numbers.

    @@ -299,10 +247,10 @@ every mini-batch

    diff --git a/develop/doc/api/v2/fluid/executor.html b/develop/doc/api/v2/fluid/executor.html index aa07c2f1e0..a81a5d9ab2 100644 --- a/develop/doc/api/v2/fluid/executor.html +++ b/develop/doc/api/v2/fluid/executor.html @@ -8,7 +8,7 @@ - Executor — PaddlePaddle documentation + executor — PaddlePaddle documentation @@ -34,8 +34,8 @@ - - + + @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • @@ -207,7 +207,7 @@
  • Fluid >
  • -
  • Executor
  • +
  • executor
  • @@ -217,9 +217,38 @@
    -

    Executor

    +

    executor

    Executor

    +
    +
    +class paddle.v2.fluid.executor.Executor(places)
    +
    + +
    +
    +

    global_scope

    +
    +
    +paddle.v2.fluid.executor.global_scope()
    +
    + +
    +
    +

    scope_guard

    +
    +
    +paddle.v2.fluid.executor.scope_guard(*args, **kwds)
    +
    + +
    +
    +

    switch_scope

    +
    +
    +paddle.v2.fluid.executor.switch_scope(scope)
    +
    +
    @@ -230,10 +259,10 @@ diff --git a/develop/doc/api/v2/fluid/initializer.html b/develop/doc/api/v2/fluid/initializer.html index d248f22940..c8cf498be9 100644 --- a/develop/doc/api/v2/fluid/initializer.html +++ b/develop/doc/api/v2/fluid/initializer.html @@ -8,7 +8,7 @@ - Initializer — PaddlePaddle documentation + initializer — PaddlePaddle documentation @@ -34,8 +34,8 @@ - - + + @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • @@ -207,7 +207,7 @@
  • Fluid >
  • -
  • Initializer
  • +
  • initializer
  • @@ -217,91 +217,40 @@
    -

    Initializer

    -
    -

    Initializer

    -
    +

    initializer

    +
    +

    Constant

    +
    -class paddle.v2.fluid.initializer.Initializer
    -

    Base class for variable initializers

    -

    Defines the common interface of variable initializers. -They add operations to the init program that are used -to initialize variables. Users should not use this class -directly, but need to use one of its implementations.

    +paddle.v2.fluid.initializer.Constant +

    alias of ConstantInitializer

    -
    -

    ConstantInitializer

    -
    +
    +

    Uniform

    +
    -class paddle.v2.fluid.initializer.ConstantInitializer(value=0.0)
    -

    Implements the constant initializer

    +paddle.v2.fluid.initializer.Uniform +

    alias of UniformInitializer

    -
    -

    UniformInitializer

    -
    +
    +

    Normal

    +
    -class paddle.v2.fluid.initializer.UniformInitializer(low=-1.0, high=1.0, seed=0)
    -

    Implements the random uniform distribution initializer

    +paddle.v2.fluid.initializer.Normal +

    alias of NormalInitializer

    -
    -

    NormalInitializer

    -
    +
    +

    Xavier

    +
    -class paddle.v2.fluid.initializer.NormalInitializer(loc=0.0, scale=1.0, seed=0)
    -

    Implements the random Normal(Gaussian) distribution initializer

    -
    - -
    -
    -

    XavierInitializer

    -
    -
    -class paddle.v2.fluid.initializer.XavierInitializer(uniform=True, fan_in=None, fan_out=None, seed=0)
    -

    Implements the Xavier initializer

    -

    This class implements the Xavier weight initializer from the paper -Understanding the difficulty of training deep feedforward neural -networks[1] by Xavier Glorot and Yoshua Bengio.

    -

    This initializer is designed to keep the scale of the gradients -approximately same in all the layers. In case of Uniform distribution, -the range is [-x, x], where x = sqrt(6 / (fan_in + fan_out)). -In case of Normal distribution, the mean is 0 and the standard deviation -is sqrt(2/ (fan_in + fan_out)).

    -

    References

    -
    -
    [1] Understanding the difficulty of training deep feedforward neural
    -
    networks. International conference on artificial intelligence and -statistics. -(http://proceedings.mlr.press/v9/glorot10a.html)
    -
    -
    - -
    -
    -

    MSRAInitializer

    -
    -
    -class paddle.v2.fluid.initializer.MSRAInitializer(uniform=True, fan_in=None, seed=0)
    -

    Implements the MSRA initializer a.k.a. Kaiming Initializer

    -

    This class implements the weight initialization from the paper -Delving Deep into Rectifiers: Surpassing Human-Level Performance on -ImageNet Classification[1] by Kaiming He, Xiangyu Zhang, Shaoqing Ren -and Jian Sun. This is a robust initialization method that particularly -considers the rectifier nonlinearities. In case of Uniform distribution, -the range is [-x, x], where x = sqrt(6 / fan_in). In case of Normal -distribution, the mean is 0 and the standard deviation -is sqrt(2/ fan_in).

    -

    References

    -
    -
    [1] Delving Deep into Rectifiers: Surpassing Human-Level Performance
    -
    on ImageNet Classification -(https://arxiv.org/abs/1502.01852)
    -
    +paddle.v2.fluid.initializer.Xavier +

    alias of XavierInitializer

    @@ -314,10 +263,10 @@ is sqrt(2/ fan_in).

    diff --git a/develop/doc/api/v2/fluid/io.html b/develop/doc/api/v2/fluid/io.html index 35c0fe2639..a133eeccf8 100644 --- a/develop/doc/api/v2/fluid/io.html +++ b/develop/doc/api/v2/fluid/io.html @@ -8,7 +8,7 @@ - IO — PaddlePaddle documentation + io — PaddlePaddle documentation @@ -35,7 +35,7 @@ - + @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • @@ -207,7 +207,7 @@
  • Fluid >
  • -
  • IO
  • +
  • io
  • @@ -217,26 +217,162 @@
    -

    IO

    -
    -

    is_parameter

    +

    io

    +
    +

    save_vars

    -paddle.v2.fluid.io.is_parameter(var)
    -

    Check whether the variable is a Parameter.

    -

    This function checks whether the input variable is a Parameter.

    +paddle.v2.fluid.io.save_vars(executor, dirname, main_program=None, vars=None, predicate=None) +

    Save variables to directory by executor.

    - + - + +
    Parameters:var – The input variable.
    Parameters:
      +
    • executor – executor that save variable
    • +
    • dirname – directory path
    • +
    • main_program – program. If vars is None, then filter all variables in this
    • +
    +
    Returns:boolean result whether the variable is a Parameter.
    +

    program which fit predicate. Default default_main_program. +:param predicate: The Predicate describes a callable that returns a variable +as a bool. If it returns true, the variables will be saved. +:param vars: variables need to be saved. If specify vars, program & predicate +will be ignored +:return: None

    +
    + +
    +
    +

    save_params

    +
    +
    +paddle.v2.fluid.io.save_params(executor, dirname, main_program=None)
    +

    Save all parameters to directory with executor.

    +
    + +
    +
    +

    save_persistables

    +
    +
    +paddle.v2.fluid.io.save_persistables(executor, dirname, main_program=None)
    +

    Save all persistables to directory with executor.

    +
    + +
    +
    +

    load_vars

    +
    +
    +paddle.v2.fluid.io.load_vars(executor, dirname, main_program=None, vars=None, predicate=None)
    +

    Load variables from directory by executor.

    + +++ +
    Parameters:
      +
    • executor – executor that save variable
    • +
    • dirname – directory path
    • +
    • main_program – program. If vars is None, then filter all variables in this
    • +
    +
    +

    program which fit predicate. Default default_main_program(). +:param predicate: The Predicate describes a callable that returns a variable +as a bool. If it returns true, the variables will be loaded. +:param vars: variables need to be loaded. If specify vars, program & +predicate will be ignored +:return: None

    +
    + +
    +
    +

    load_params

    +
    +
    +paddle.v2.fluid.io.load_params(executor, dirname, main_program=None)
    +

    load all parameters from directory by executor.

    +
    + +
    +
    +

    load_persistables

    +
    +
    +paddle.v2.fluid.io.load_persistables(executor, dirname, main_program=None)
    +

    load all persistables from directory by executor.

    +
    +
    +

    save_inference_model

    +
    +
    +paddle.v2.fluid.io.save_inference_model(dirname, feeded_var_names, target_vars, executor, main_program=None)
    +

    Build a model especially for inference, +and save it to directory by the executor.

    + +++ + + + + + +
    Parameters:
      +
    • dirname – directory path
    • +
    • feeded_var_names – Names of variables that need to be feeded data during inference
    • +
    • target_vars – Variables from which we can get inference results.
    • +
    • executor – executor that save inference model
    • +
    • main_program – original program, which will be pruned to build the inference model. +Default default_main_program().
    • +
    +
    Returns:

    None

    +
    +
    + +
    +
    +

    load_inference_model

    +
    +
    +paddle.v2.fluid.io.load_inference_model(dirname, executor)
    +

    Load inference model from a directory

    + +++ + + + + + +
    Parameters:
      +
    • dirname – directory path
    • +
    • executor – executor that load inference model
    • +
    +
    Returns:

    [program, feed_target_names, fetch_targets] +program: program especially for inference. +feed_target_names: Names of variables that need to feed data +fetch_targets: Variables from which we can get inference results.

    +
    +
    + +
    +
    +

    get_inference_program

    +
    +
    +paddle.v2.fluid.io.get_inference_program(target_vars, main_program=None)
    +
    +
    @@ -250,7 +386,7 @@ Next - Previous + Previous
    diff --git a/develop/doc/api/v2/fluid/layers.html b/develop/doc/api/v2/fluid/layers.html index eb2cdeea51..6e8d381e5b 100644 --- a/develop/doc/api/v2/fluid/layers.html +++ b/develop/doc/api/v2/fluid/layers.html @@ -8,7 +8,7 @@ - Layers — PaddlePaddle documentation + layers — PaddlePaddle documentation @@ -34,7 +34,7 @@ - + @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • @@ -207,7 +207,7 @@
  • Fluid >
  • -
  • Layers
  • +
  • layers
  • @@ -217,127 +217,79 @@
    -

    Layers

    -
    -

    fc

    +

    layers

    +
    +

    control_flow

    +
    +

    split_lod_tensor

    -paddle.v2.fluid.layers.fc(input, size, num_flatten_dims=1, param_attr=None, bias_attr=None, act=None, name=None)
    -

    Fully Connected Layer

    -

    The fully connected layer can take multiple tensors as its inputs. It -creates a variable (one for each input tensor) called weights for each -input tensor, which represents a fully connected weight matrix from -each input unit to each output unit. The fully connected layer -multiplies each input tensor with its coresponding weight to produce -an output Tensor. If multiple input tensors are given, the results of -multiple multiplications will be sumed up. If bias_attr is not None, -a biases variable will be created and added to the output. Finally, -if activation is not None, it will be applied to the output as well.

    -

    This process can be formulated as follows:

    -
    -\[Out = Act({\sum_{i=0}^{N-1}W_iX_i + b})\]
    -

    In the above equation:

    -
      -
    • \(N\): Number of the input.
    • -
    • \(X_i\): The input tensor.
    • -
    • \(W\): The weights created by this layer.
    • -
    • \(b\): The bias parameter created by this layer (if needed).
    • -
    • \(Act\): The activation funtion.
    • -
    • \(Out\): The output tensor.
    • -
    +paddle.v2.fluid.layers.split_lod_tensor(input, mask, level=0) +

    split_lod_tensor

    +

    This function takes in an input that contains the complete lod information, +and takes in a mask which is used to mask certain parts of the input. +The output is the true branch and the false branch with the mask applied to +the input at a certain level in the tensor.

    - - - -
    Parameters:
      -
    • input (Variable|list) – The input tensor(s) to the fully connected layer.
    • -
    • size (int) – The number of output units in the fully connected layer.
    • -
    • num_flatten_dims (int) – The fc layer can accept an input tensor with more -than two dimensions. If this happens, the -multidimensional tensor will first be flattened -into a 2-dimensional matrix. The parameter -num_flatten_dims determines how the input tensor -is flattened: the first num_flatten_dims -(inclusive, index starts from 1) dimensions will -be flatten to form the first dimension of the -final matrix (height of the matrix), and the rest -rank(X) - num_flatten_dims dimensions are -flattened to form the second dimension of the -final matrix (width of the matrix). For example, -suppose X is a 6-dimensional tensor with a shape -[2, 3, 4, 5, 6], and num_flatten_dims = 3. Then, -the flattened matrix will have a shape -[2 x 3 x 4, 5 x 6] = [24, 30]. By default, -num_flatten_dims is set to 1.
    • -
    • param_attr (ParamAttr|list) – The parameter attribute for learnable -parameters/weights of the fully connected -layer.
    • -
    • param_initializer (ParamAttr|list) – The initializer used for the -weight/parameter. If set None, -XavierInitializer() will be used.
    • -
    • bias_attr (ParamAttr|list) – The parameter attribute for the bias parameter -for this layer. If set None, no bias will be -added to the output units.
    • -
    • bias_initializer (ParamAttr|list) – The initializer used for the bias. -If set None, then ConstantInitializer() -will be used.
    • -
    • act (str) – Activation to be applied to the output of the fully connected -layer.
    • -
    • name (str) – Name/alias of the fully connected layer.
    • +
    • input (tuple|list|None) – The input tensor that contains complete +lod information needed to construct the output.
    • +
    • mask (list) – A bool column vector which masks the input.
    • +
    • level (int) – The specific lod level to rank.
    Returns:

    The output tensor variable.

    -
    Return type:

    Variable

    +
    Returns:

    The true branch of tensor as per the mask applied to input. +Variable: The false branch of tensor as per the mask applied to input.

    Raises:

    ValueError – If rank of the input tensor is less than 2.

    +
    Return type:

    Variable

    Examples

    -
    data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
    -fc = fluid.layers.fc(input=data, size=1000, act="tanh")
    +
    x = layers.data(name='x', shape=[1])
    +x.persistable = True
    +
    +y = layers.data(name='y', shape=[1])
    +y.persistable = True
    +
    +out_true, out_false = layers.split_lod_tensor(
    +      input=x, mask=y, level=level)
     
    -
    -

    embedding

    +
    +

    merge_lod_tensor

    -paddle.v2.fluid.layers.embedding(input, size, is_sparse=False, padding_idx=None, param_attr=None, dtype='float32')
    -

    Embedding Layer

    -

    This layer is used to lookup embeddings of IDs, provided by input, in -a lookup table. The result of this lookup is the embedding of each ID in the -input.

    -

    All the input variables are passed in as local variables to the LayerHelper -constructor.

    +paddle.v2.fluid.layers.merge_lod_tensor(in_true, in_false, x, mask, level=0) +

    merge_lod_tensor

    +

    This function takes in an input \(x\), the True branch, the False +branch and a binary \(mask\). Using this information, this function +merges the True and False branches of the tensor into a single Output +at a certain lod level indiacted by \(level\).

    - + + + + +
    Parameters:
      -
    • input (Variable) – The tensor variable containing the IDs.
    • -
    • size (tuple|list) – The shape of the look up table parameter. It should -have two elements which indicate the size of the dictionary of -embeddings and the size of each embedding vector respectively.
    • -
    • is_sparse (bool) – The flag indicating whether to use sparse update.
    • -
    • padding_idx (int|long|None) – If None, it makes no effect to lookup. -Otherwise the given padding_idx indicates padding the output -with zeros whenever lookup encounters it in input. If -\(padding_idx < 0\), the padding_idx to use in lookup is -\(size[0] + dim\).
    • -
    • param_attr (ParamAttr) – Parameters for this layer
    • -
    • dtype (np.dtype|core.DataType|str) – The type of data : float32, float_16, int etc
    • +
    • in_true (tuple|list|None) – The True branch to be merged.
    • +
    • in_false (tuple|list|None) – The False branch to be merged.
    • +
    • x (tuple|list|None) – The input tensor that contains complete +lod information needed to construct the output.
    • +
    • mask (list) – A bool column vector which masks the input.
    • +
    • level (int) – The specific lod level to rank.
    Returns:

    The tensor variable storing the embeddings of the supplied inputs.

    +
    Returns:

    The merged output tensor.

    Return type:

    Variable

    @@ -346,344 +298,209 @@ with zeros whenever lookup encounters it in Examples

    -
    dict_size = len(dataset.ids)
    -data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
    -fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
    +
    x = layers.data(
    +            name='x', shape=[1], dtype='float32', stop_gradient=False)
    +y = layers.data(
    +      name='y', shape=[1], dtype='bool', stop_gradient=False)
    +
    +level = 0
    +
    +out_true, out_false = layers.split_lod_tensor(
    +      input=x, mask=y, level=level)
    +out = layers.merge_lod_tensor(
    +      in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
     
    -
    -

    dynamic_lstm

    -
    +
    +

    BlockGuard

    +
    -paddle.v2.fluid.layers.dynamic_lstm(input, size, param_attr=None, bias_attr=None, use_peepholes=True, is_reverse=False, gate_activation='sigmoid', cell_activation='tanh', candidate_activation='tanh', dtype='float32', name=None)
    -

    Dynamic LSTM Layer

    -

    The defalut implementation is diagonal/peephole connection -(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

    -
    -\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)\\f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)\\\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)\\o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)\\c_t & = f_t \odot c_{t-1} + i_t \odot \tilde{c_t}\\h_t & = o_t \odot act_h(c_t)\end{aligned}\end{align} \]
    -

    where the \(W\) terms denote weight matrices (e.g. \(W_{xi}\) is -the matrix of weights from the input gate to the input), \(W_{ic}, W_{fc}, W_{oc}\) are diagonal weight matrices for peephole connections. In -our implementation, we use vectors to reprenset these diagonal weight -matrices. The \(b\) terms denote bias vectors (\(b_i\) is the input -gate bias vector), \(\sigma\) is the non-linear activations, such as -logistic sigmoid function, and \(i, f, o\) and \(c\) are the input -gate, forget gate, output gate, and cell activation vectors, respectively, -all of which have the same size as the cell output activation vector \(h\).

    -

    The \(\odot\) is the element-wise product of the vectors. \(act_g\) -and \(act_h\) are the cell input and cell output activation functions -and tanh is usually used for them. \(\tilde{c_t}\) is also called -candidate hidden state, which is computed based on the current input and -the previous hidden state.

    -

    Set use_peepholes to False to disable peephole connection. The formula -is omitted here, please refer to the paper -http://www.bioinf.jku.at/publications/older/2604.pdf for details.

    -

    Note that these \(W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\) -operations on the input \(x_{t}\) are NOT included in this operator. -Users can choose to use fully-connect layer before LSTM layer.

    +class paddle.v2.fluid.layers.BlockGuard(main_program) +

    BlockGuard class.

    +

    BlockGuard class is used to create a sub-block in a program by +using the Python with keyword.

    +
    + +
    +
    +

    BlockGuardWithCompletion

    +
    +
    +class paddle.v2.fluid.layers.BlockGuardWithCompletion(rnn)
    +

    BlockGuardWithCompletion class.

    +

    BlockGuardWithCompletion class is used to create an op with a block in a program.

    +
    + +
    + -
    -

    dynamic_lstmp

    +
    +

    WhileGuard

    +
    +
    +class paddle.v2.fluid.layers.WhileGuard(while_op)
    +
    + +
    +
    +

    While

    +
    +
    +class paddle.v2.fluid.layers.While(cond, name=None)
    +
    + +
    +
    +

    lod_rank_table

    -paddle.v2.fluid.layers.dynamic_lstmp(input, size, proj_size, param_attr=None, bias_attr=None, use_peepholes=True, is_reverse=False, gate_activation='sigmoid', cell_activation='tanh', candidate_activation='tanh', proj_activation='tanh', dtype='float32', name=None)
    -

    Dynamic LSTMP Layer

    -

    LSTMP (LSTM with recurrent projection) layer has a separate projection -layer after the LSTM layer, projecting the original hidden state to a -lower-dimensional one, which is proposed to reduce the number of total -parameters and furthermore computational complexity for the LSTM, -espeacially for the case that the size of output units is relative -large (https://research.google.com/pubs/archive/43905.pdf).

    -

    The formula is as follows:

    -
    -\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)\\f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)\\\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)\\o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)\\c_t & = f_t \odot c_{t-1} + i_t \odot \tilde{c_t}\\h_t & = o_t \odot act_h(c_t)\\r_t & = \overline{act_h}(W_{rh}h_t)\end{aligned}\end{align} \]
    -

    In the above formula:

    -
      -
    • \(W\): Denotes weight matrices (e.g. \(W_{xi}\) is the matrix of weights from the input gate to the input).
    • -
    • \(W_{ic}\), \(W_{fc}\), \(W_{oc}\): Diagonal weight matrices for peephole connections. In our implementation, we use vectors to reprenset these diagonal weight matrices.
    • -
    • \(b\): Denotes bias vectors (e.g. \(b_i\) is the input gate bias vector).
    • -
    • \(\sigma\): The activation, such as logistic sigmoid function.
    • -
    • \(i, f, o\) and \(c\): The input gate, forget gate, output gate, and cell activation vectors, respectively, all of which have the same size as the cell output activation vector \(h\).
    • -
    • \(h\): The hidden state.
    • -
    • \(r\): The recurrent projection of the hidden state.
    • -
    • \(\tilde{c_t}\): The candidate hidden state, whose computation is based on the current input and previous hidden state.
    • -
    • \(\odot\): The element-wise product of the vectors.
    • -
    • \(act_g\) and \(act_h\): The cell input and cell output activation functions and tanh is usually used for them.
    • -
    • \(\overline{act_h}\): The activation function for the projection output, usually using identity or same as \(act_h\).
    • -
    -

    Set use_peepholes to False to disable peephole connection. The formula -is omitted here, please refer to the paper -http://www.bioinf.jku.at/publications/older/2604.pdf for details.

    -

    Note that these \(W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\) -operations on the input \(x_{t}\) are NOT included in this operator. -Users can choose to use fully-connected layer before LSTMP layer.

    +paddle.v2.fluid.layers.lod_rank_table(x, level=0) +

    LoD Rank Table Operator. Given an input variable x and a level number +of LoD, this layer creates a LodRankTable object. A LoDRankTable object +contains a list of bi-element tuples. Each tuple consists of an index and +a length, both of which are int type. Refering to specified level of LoD, +the index is the sequence index number and the length representes the +sequence length. Please note that the list is ranked in descending order by +the length. The following is an example:

    +
    +
    x is a LoDTensor:
    +    x.lod = [[0,                2, 3],
    +             [0,             5, 6, 7]]
    +    x.data = [a, b, c, d, e, f, g]
    +
    +1. set level to 0:
    +    Create lod rank table:
    +        lod_rank_table_obj = lod_rank_table(x, level=0)
    +
    +    Get:
    +        lod_rank_table_obj.items() = [(0, 2), (1, 1)]
    +
    +2. set level to 1:
    +    Create lod rank table:
    +        lod_rank_table_obj = lod_rank_table(x, level=1)
    +
    +    Get:
    +        lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
    +
    +
    +
    - -
    Parameters:
      -
    • input (Variable) – The input of dynamic_lstmp layer, which supports -variable-time length input sequence. The underlying -tensor in this Variable is a matrix with shape -(T X 4D), where T is the total time steps in this -mini-batch, D is the hidden size.
    • -
    • size (int) – 4 * hidden size.
    • -
    • proj_size (int) – The size of projection output.
    • -
    • param_attr (ParamAttr|None) –

      The parameter attribute for the learnable -hidden-hidden weight and projection weight.

      -
        -
      • Hidden-hidden weight = {\(W_{ch}, W_{ih}, W_{fh}, W_{oh}\)}.
      • -
      • The shape of hidden-hidden weight is (P x 4D), -where P is the projection size and D the hidden -size.
      • -
      • Projection weight = {\(W_{rh}\)}.
      • -
      • The shape of projection weight is (D x P).
      • -
      -
    • -
    • bias_attr (ParamAttr|None) –

      The bias attribute for the learnable bias -weights, which contains two parts, input-hidden -bias weights and peephole connections weights if -setting use_peepholes to True.

      -
        -
      1. use_peepholes = False
      2. -
      -
      -
        -
      • Biases = {\(b_c, b_i, b_f, b_o\)}.
      • -
      • The shape is (1 x 4D).
      • -
      -
      -
        -
      1. use_peepholes = True
      2. -
      -
      -
        -
      • Biases = { \(b_c, b_i, b_f, b_o, W_{ic}, W_{fc}, W_{oc}\)}.
      • -
      • The shape is (1 x 7D).
      • -
      -
      -
    • -
    • use_peepholes (bool) – Whether to enable diagonal/peephole connections, -default True.
    • -
    • is_reverse (bool) – Whether to compute reversed LSTM, default False.
    • -
    • gate_activation (str) – The activation for input gate, forget gate and -output gate. Choices = [“sigmoid”, “tanh”, “relu”, -“identity”], default “sigmoid”.
    • -
    • cell_activation (str) – The activation for cell output. Choices = [“sigmoid”, -“tanh”, “relu”, “identity”], default “tanh”.
    • -
    • candidate_activation (str) – The activation for candidate hidden state. -Choices = [“sigmoid”, “tanh”, “relu”, “identity”], -default “tanh”.
    • -
    • proj_activation (str) – The activation for projection output. -Choices = [“sigmoid”, “tanh”, “relu”, “identity”], -default “tanh”.
    • -
    • dtype (str) – Data type. Choices = [“float32”, “float64”], default “float32”.
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • x (Variable) – Input variable, a LoDTensor based which to create the lod +rank table.
    • +
    • level (int) – Specify the LoD level, on which to create the lod rank +table.
    Returns:

    The projection of hidden state, and cell state of LSTMP. The shape of projection is (T x P), for the cell state which is (T x D), and both LoD is the same with the input.

    +
    Returns:

    The created LoDRankTable object.

    Return type:

    tuple

    +
    Return type:

    Variable

    Examples

    -
    hidden_dim, proj_dim = 512, 256
    -fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
    -                         act=None, bias_attr=None)
    -proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
    -                                         size=hidden_dim * 4,
    -                                         proj_size=proj_dim,
    -                                         use_peepholes=False,
    -                                         is_reverse=True,
    -                                         cell_activation="tanh",
    -                                         proj_activation="tanh")
    +
    x = fluid.layers.data(name='x', shape=[10],
    +                dtype='float32', lod_level=1)
    +out = layers.lod_rank_table(x=x, level=0)
     
    -
    -

    dynamic_gru

    +
    +

    max_sequence_len

    -paddle.v2.fluid.layers.dynamic_gru(input, size, param_attr=None, bias_attr=None, is_reverse=False, gate_activation='sigmoid', candidate_activation='tanh', h_0=None)
    -

    Dynamic GRU Layer

    -

    Refer to Empirical Evaluation of Gated Recurrent Neural Networks on -Sequence Modeling

    -

    The formula is as follows:

    -
    -\[ \begin{align}\begin{aligned}u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)\\r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)\\\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)\\h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \tilde{h_t}\end{aligned}\end{align} \]
    -

    The \(\odot\) is the element-wise product of the vectors. \(act_g\) -is the update gate and reset gate activation function and \(sigmoid\) -is usually used for it. \(act_c\) is the activation function for -candidate hidden state and \(tanh\) is usually used for it.

    -

    Note that these \(W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}\) operations on -the input \(x_{t}\) are NOT included in this operator. Users can choose -to use fully-connect layer before GRU layer.

    +paddle.v2.fluid.layers.max_sequence_len(rank_table) +

    Max Sequence Len Operator. Given a LoDRankTable object, this layer +returns the max length of a batch of sequences. In fact, a LoDRankTable +object contains a list of tuples(<sequence index, sequence length>) and +the list is already sorted by sequence length in descending order, so the +operator just returns the sequence length of the first tuple element.

    - + - + - +
    Parameters:
      -
    • input (Variable) – The input of dynamic_gru layer, which supports -variable-time length input sequence. The underlying tensor in this -Variable is a matrix with shape \((T \times 3D)\), where -\(T\) is the total time steps in this mini-batch, \(D\) -is the hidden size.
    • -
    • size (int) – The dimension of the gru cell.
    • -
    • param_attr (ParamAttr|None) –

      The parameter attribute for the learnable -hidden-hidden weight matrix. Note:

      -
        -
      • The shape of the weight matrix is \((T \times 3D)\), where -\(D\) is the hidden size.
      • -
      • All elements in the weight matrix can be divided into two parts. -The first part are weights of the update gate and reset gate with -shape \((D \times 2D)\), and the second part are weights for -candidate hidden state with shape \((D \times D)\).
      • -
      -
    • -
    • bias_attr (ParamAttr) – The parameter attribute for learnable the -hidden-hidden bias.
    • -
    • is_reverse (bool) – Whether to compute reversed GRU, default -False.
    • -
    • gate_activation (str) – The activation for update gate and reset gate. -Choices = [“sigmoid”, “tanh”, “relu”, “identity”], default “sigmoid”.
    • -
    • activation (str) – The activation for candidate hidden state. -Choices = [“sigmoid”, “tanh”, “relu”, “identity”], default “tanh”.
    • -
    -
    Parameters:rank_table (Variable) – Input variable which is a LoDRankTable object.
    Returns:

    The hidden state of GRU. The shape is (T times D), and lod is the same with the input.

    -
    Returns:The max length of sequence.
    Return type:

    Variable

    -
    Return type:Variable

    Examples

    -
    hidden_dim = 512
    -x = fluid.layers.fc(input=data, size=hidden_dim * 3)
    -hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    +
    x = fluid.layers.data(name='x', shape=[10],
    +                dtype='float32', lod_level=1)
    +rank_table = layers.lod_rank_table(x=x, level=0)
    +max_seq_len = layers.max_sequence_len(rank_table)
     
    -
    -

    data

    +
    +

    topk

    -paddle.v2.fluid.layers.data(name, shape, append_batch_size=True, dtype='float32', lod_level=0, type=VarType.LOD_TENSOR, stop_gradient=True)
    -

    Data Layer

    -

    This function takes in the input and based on whether data has -to be returned back as a minibatch, it creates the global variable by using -the helper functions. The global variables can be accessed by all the -following operators in the graph.

    -

    All the input variables of this function are passed in as local variables -to the LayerHelper constructor.

    +paddle.v2.fluid.layers.topk(input, k) +

    topk

    +

    This function performs the operation that selects the k entries in the input +vector and outputs their values and indices as vectors. Thus topk_out[j] is +the j-th largest entry in input, and its index is topk_indices[j]

    -
    Parameters:
      -
    • name (str) – The name/alias of the function
    • -
    • shape (list) – Tuple declaring the shape.
    • -
    • append_batch_size (bool) – Whether or not to append the data as a batch.
    • -
    • dtype (int|float) – The type of data : float32, float_16, int etc
    • -
    • type (VarType) – The output type. By default it is LOD_TENSOR.
    • -
    • lod_level (int) – The LoD Level. 0 means the input data is not a sequence.
    • -
    • main_program (Program) – Name of the main program that calls this
    • -
    • startup_program (Program) – Name of the startup program
    • -
    • stop_gradient (bool) – A boolean that mentions whether gradient should flow.
    • +
    • input (Variable|list) – The input tensor that has all the data.
    • +
    • k (int) – The number of top elements that the function will pick.
    Returns:

    The global variable that gives access to the data.

    +
    Returns:

    +
    The variable of type array that contains the k largest entries
    +

    from input.

    +
    +
    Variable: The variable of type array that contains the indices of k
    +

    largest entries from input.

    +
    +
    +

    Return type:

    Variable

    @@ -692,399 +509,388 @@ to the LayerHelper constructor.

    Examples

    -
    data = fluid.layers.data(name='x', shape=[784], dtype='float32')
    +
    x = fluid.layers.data(name='x', shape=[10])
    +k = 5
    +array = fluid.layers.topk(x, k)
     
    -
    -

    mean

    +
    +

    lod_tensor_to_array

    -paddle.v2.fluid.layers.mean(**kwargs)
    -

    Mean Operator.

    -

    Out is a scalar which is the mean of all elements in X.

    +paddle.v2.fluid.layers.lod_tensor_to_array(x, table) +

    Convert a LOD_TENSOR to an LOD_TENSOR_ARRAY.

    - - - + - -
    Parameters:x – The input of mean op -Duplicable: False Optional: False
    Returns:The output of mean op
    Parameters:
      +
    • x (Variable|list) – The LOD tensor to be converted to a LOD tensor array.
    • +
    • table (ParamAttr|list) – The variable that stores the level of lod +which is ordered by sequence length in +descending order.
    • +
    +
    -
    +
    Returns:

    +
    The variable of type array that has been converted from a
    +

    tensor.

    +
    +
    +

    +
    Return type:

    Variable

    +
    +

    Examples

    +
    x = fluid.layers.data(name='x', shape=[10])
    +table = fluid.layers.lod_rank_table(x, level=0)
    +array = fluid.layers.lod_tensor_to_array(x, table)
    +
    +
    +
    -
    -

    mul

    +
    +

    array_to_lod_tensor

    -paddle.v2.fluid.layers.mul(**kwargs)
    -

    Mul Operator.

    -

    This operator is used to perform matrix multiplication for input $X$ and $Y$.

    -

    The equation is:

    -

    $$Out = X * Y$$

    -

    Both the input $X$ and $Y$ can carry the LoD (Level of Details) information, -or not. But the output only shares the LoD information with input $X$.

    +paddle.v2.fluid.layers.array_to_lod_tensor(x, table) +

    Convert a LoD_Tensor_Aarry to an LoDTensor.

    - + +
    Parameters:
      -
    • x – (Tensor), The first input tensor of mul op. -Duplicable: False Optional: False
    • -
    • y – (Tensor), The second input tensor of mul op. -Duplicable: False Optional: False
    • -
    • x_num_col_dims (INT) – (int, default 1), The mul_op can take tensors with more than two -dimensions as its inputs. If the input $X$ is a tensor with more -than two dimensions, $X$ will be flattened into a two-dimensional -matrix first. The flattening rule is: the first num_col_dims -will be flattened to form the first dimension of the final matrix -(the height of the matrix), and the rest rank(X) - num_col_dims -dimensions are flattened to form the second dimension of the final -matrix (the width of the matrix). As a result, height of the -flattened matrix is equal to the product of $X$’s first -x_num_col_dims dimensions’ sizes, and width of the flattened -matrix is equal to the product of $X$’s last rank(x) - num_col_dims -dimensions’ size. For example, suppose $X$ is a 6-dimensional -tensor with the shape [2, 3, 4, 5, 6], and x_num_col_dims = 3. -Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = -[24, 30].
    • -
    • y_num_col_dims (INT) – (int, default 1), The mul_op can take tensors with more than two, -dimensions as its inputs. If the input $Y$ is a tensor with more -than two dimensions, $Y$ will be flattened into a two-dimensional -matrix first. The attribute y_num_col_dims determines how $Y$ is -flattened. See comments of x_num_col_dims for more details.
    • +
    • x (Variable|list) – The lod tensor array to be converted to a tensor.
    • +
    • table (ParamAttr|list) – The variable that stores the level of lod +which is ordered by sequence length in +descending order.
    Returns:

    (Tensor), The output tensor of mul op.

    +
    Returns:

    +
    The variable of type tensor that has been converted
    +

    from an array.

    +
    +
    +

    +
    Return type:

    Variable

    +

    Examples

    +
    x = fluid.layers.data(name='x', shape=[10])
    +table = fluid.layers.lod_rank_table(x, level=0)
    +array = fluid.layers.lod_tensor_to_array(x, table)
    +lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
    +
    +
    -
    -

    elementwise_add

    +
    +

    increment

    -paddle.v2.fluid.layers.elementwise_add(**kwargs)
    -

    Limited Elementwise Add Operator.

    -

    The equation is:

    -

    $$Out = X + Y$$

    -

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.

    -

    There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.

    -

    For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.

    -
    -
    For example
    -
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    -shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    -
    -
    -
    -
    -

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.

    +paddle.v2.fluid.layers.increment(x, value=1.0, in_place=True) +

    This function performs an operation that increments each value in the +input \(x\) by an amount: \(value\) as mentioned in the input +parameter. This operation is performed in-place by default.

    - + +
    Parameters:
      -
    • x – (Tensor), The first input tensor of elementwise op. -Duplicable: False Optional: False
    • -
    • y – (Tensor), The second input tensor of elementwise op. -Duplicable: False Optional: False
    • -
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    • +
    • x (Variable|list) – The tensor that has the input values.
    • +
    • value (float) – The amount by which the values should be incremented.
    • +
    • in_place (bool) – If the increment should be performed in-place.
    Returns:

    The output of elementwise op.

    +
    Returns:

    +
    The tensor variable storing the transformation of
    +

    element-wise increment of each value in the input.

    +
    +
    +

    +
    Return type:

    Variable

    +

    Examples

    +
    data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
    +data = fluid.layers.increment(x=data, value=3.0, in_place=True)
    +
    +
    -
    -

    elementwise_sub

    +
    +

    array_write

    -paddle.v2.fluid.layers.elementwise_sub(**kwargs)
    -

    Limited Elementwise Sub Operator.

    -

    The equation is:

    -

    $$Out = X - Y$$

    -

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.

    -

    There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.

    -

    For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.

    -
    -
    For example
    -
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    -shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    -
    -
    -
    -
    -

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.

    +paddle.v2.fluid.layers.array_write(x, i, array=None) +

    This function writes the given input variable to the specified position +indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the +output LOD_TENSOR_ARRAY is not given(None), a new one will be created and +returned.

    - + +
    Parameters:
      -
    • x – (Tensor), The first input tensor of elementwise op. -Duplicable: False Optional: False
    • -
    • y – (Tensor), The second input tensor of elementwise op. -Duplicable: False Optional: False
    • -
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    • +
    • x (Variable|list) – The input tensor from which the data will be read.
    • +
    • i (Variable|list) – The index of the output LOD_TENSOR_ARRAY, pointing to +the position to which the input tensor will be +written.
    • +
    • array (Variable|list) – The output LOD_TENSOR_ARRAY to which the input +tensor will be written. If this parameter is +NONE, a new LOD_TENSOR_ARRAY will be created and +returned.
    Returns:

    The output of elementwise op.

    +
    Returns:

    The output LOD_TENSOR_ARRAY where the input tensor is written.

    +
    Return type:

    Variable

    +

    Examples

    -
    -

    elementwise_mul

    +
    +

    create_array

    -paddle.v2.fluid.layers.elementwise_mul(**kwargs)
    -

    Limited Elementwise Mul Operator.

    -

    The equation is:

    -

    $$Out = X odotY$$

    -

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.

    -

    There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.

    -

    For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.

    -
    -
    For example
    -
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    -shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    +paddle.v2.fluid.layers.create_array(dtype)
    +

    This function creates an array of type \(LOD_TENSOR_ARRAY\) using the +LayerHelper.

    + +++ + + + + + + + +
    Parameters:dtype (int|float) – The data type of the elements in the array.
    Returns:The tensor variable storing the elements of data type.
    Return type:Variable
    +

    Examples

    +
    data = fluid.layers.create_array(dtype='float32')
     
    -
    -
    -

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.

    +
    + +
    +
    +

    less_than

    +
    +
    +paddle.v2.fluid.layers.less_than(x, y, cond=None, **ignored)
    +

    Less than

    +

    This layer returns the truth value of \(x < y\) elementwise.

    - + +
    Parameters:
      -
    • x – (Tensor), The first input tensor of elementwise op. -Duplicable: False Optional: False
    • -
    • y – (Tensor), The second input tensor of elementwise op. -Duplicable: False Optional: False
    • -
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    • +
    • x (Variable) – First operand of less_than
    • +
    • y (Variable) – Second operand of less_than
    • +
    • cond (Variable|None) – Optional output variable to store the result of less_than
    Returns:

    The output of elementwise op.

    +
    Returns:

    The tensor variable storing the output of less_than.

    +
    Return type:

    Variable

    +

    Examples

    +
    less = fluid.layers.less_than(x=label, y=limit)
    +
    +
    -
    -

    elementwise_div

    +
    +

    array_read

    -paddle.v2.fluid.layers.elementwise_div(**kwargs)
    -

    Limited Elementwise Div Operator.

    -

    The equation is:

    -

    $$Out = X / Y$$

    -

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.

    -

    There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.

    -

    For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.

    -
    -
    For example
    -
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    -shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    -
    -
    -
    -
    -

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.

    +paddle.v2.fluid.layers.array_read(array, i) +

    This function performs the operation to read the data in as an +LOD_TENSOR_ARRAY. +:param array: The input tensor that will be written to an array. +:type array: Variable|list +:param i: The subscript index in tensor array, that points the

    +
    +
    place where data will be written to.
    - + - +
    Parameters:
      -
    • x – (Tensor), The first input tensor of elementwise op. -Duplicable: False Optional: False
    • -
    • y – (Tensor), The second input tensor of elementwise op. -Duplicable: False Optional: False
    • -
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    • -
    -
    Returns:The tensor type variable that has the data written to it.
    Returns:

    The output of elementwise op.

    -
    Return type:Variable
    +

    Examples

    -
    -

    dropout

    +
    +

    shrink_memory

    -paddle.v2.fluid.layers.dropout(x, dropout_prob, is_test=False, seed=None, **kwargs)
    -

    Computes dropout.

    -

    Drop or keep each element of x independently. Dropout is a regularization -technique for reducing overfitting by preventing neuron co-adaption during -training. The dropout operator randomly set (according to the given dropout -probability) the outputs of some units to zero, while others are remain -unchanged.

    +paddle.v2.fluid.layers.shrink_memory(x, i, table) +

    This function creates an operator to shrink_rnn_memory using the RankTable +as mentioned in the input parameter.

    +
    + +
    +
    +

    array_length

    +
    +
    +paddle.v2.fluid.layers.array_length(array)
    +

    This function performs the operation to find the length of the input +LOD_TENSOR_ARRAY.

    - + - + - +
    Parameters:
      -
    • x (variable) – The input tensor.
    • -
    • dropout_prob (float) – Probability of setting units to zero.
    • -
    • is_test (bool) – A flag indicating whether it is in test phrase or not.
    • -
    • seed (int) – A Python integer used to create random seeds. If this -parameter is set to None, a random seed is used. -NOTE: If an integer seed is given, always the same output -units will be dropped. DO NOT use a fixed seed in training.
    • -
    -
    Parameters:array (LOD_TENSOR_ARRAY) – The input array that will be used +to compute the length.
    Returns:

    A tensor variable.

    -
    Returns:The length of the input LoDTensorArray.
    Return type:

    Variable

    -
    Return type:Variable

    Examples

    -
    x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
    -droped = fluid.layers.dropout(input=x, dropout_rate=0.5)
    -
    -
    -
    -

    reshape

    -
    +
    +

    IfElse

    +
    -paddle.v2.fluid.layers.reshape(**kwargs)
    -

    Reshape Operator.

    -

    Reshape Input(X) into the shape specified by Attr(shape).

    -

    An example: -Given a 2-D tensor X with 2 rows and 2 columns : [[1, 2], [3, 4]]

    -

    and target shape = [1, 4], the reshape operator will transform -the tensor X into a 2-D tensor: [[1, 2, 3, 4]]

    -

    One dimension in the target shape can be set -1, representing that its -size is unknown. In this case, the real dimension will be infered from -the original shape of Input(X) and other dimensions in the target shape.

    - +class paddle.v2.fluid.layers.IfElse(cond, name=None) +
    + + +
    +

    DynamicRNN

    +
    +
    +class paddle.v2.fluid.layers.DynamicRNN(name=None)
    +
    + +
    +
    +

    ConditionalBlock

    +
    +
    +class paddle.v2.fluid.layers.ConditionalBlock(inputs, name=None)
    +
    + +
    +
    +

    StaticRNN

    +
    +
    +class paddle.v2.fluid.layers.StaticRNN(name=None)
    +

    StaticRNN class.

    +

    StaticRNN class is used to create a StaticRNN. The RNN will have its +own parameters like inputs, outputs, memories, status and length.

    +
    +
    +memory(init=None, shape=None, batch_ref=None, init_value=0.0, init_batch_dim_idx=0, ref_batch_dim_idx=1)
    +
    - - -
    Parameters:
      -
    • x – The input tensor of reshape operator. -Duplicable: False Optional: False
    • -
    • shape (INTS) – (vector<int>) Target shape of reshape operator.
    • +
    Parameters:
      +
    • init – boot memory, if not set, a shape, batch_ref must be provided
    • +
    • shape – shape of the boot memory
    • +
    • batch_ref – batch size reference variable
    • +
    • init_value – the init value of boot memory
    • +
    • init_batch_dim_idx – the index of batch size in init’s dimension
    • +
    • ref_batch_dim_idx – the index of batch size in batch_ref’s dimension
    Returns:

    The output tensor of reshape operator.

    -
    -
    -
    -

    sigmoid

    -
    -
    -paddle.v2.fluid.layers.sigmoid(**kwargs)
    -

    Sigmoid Activation Operator

    -

    $$out = frac{1}{1 + e^{-x}}$$

    - --- - - - - - -
    Parameters:x – Input of Sigmoid operator -Duplicable: False Optional: False
    Returns:Output of Sigmoid operator
    -
    -

    scale

    +
    +

    reorder_lod_tensor_by_rank

    -paddle.v2.fluid.layers.scale(**kwargs)
    -

    Scale operator

    -

    $$Out = scale*X$$

    +paddle.v2.fluid.layers.reorder_lod_tensor_by_rank(x, rank_table) +

    ReorderLoDTensorByRankTable operator.

    +

    Input(X) is a batch of sequences. Input(RankTable) stores new orders of the +input sequence batch. The reorder_lod_tensor_by_rank operator reorders the +Input(X) according to the information provided by Input(RankTable).

    +

    For example:

    +

    If the indices stored in the Input(RankTable) are [3, 0, 2, 1], the +Input(X) will be reordered that the fourth sequence in Input(X) will become the +first one, and then followed by the original first, third, and the second one.

    +

    This is: +X = [Seq0, Seq1, Seq2, Seq3]. The indices in RankTable are [3, 0, 2, 1]. +Out = [Seq3, Seq0, Seq2, Seq1] with a new LoD information.

    +

    If the LoD information of Input(X) is empty, this means Input(X) is not sequence +data. This is also identical to a batch of sequences where each sequence has a +fixed length 1. In this case, the reorder_lod_tensor_by_rank operator reorders +each slice of Input(X) along the first axis according to Input(RankTable).

    +

    This is: +X = [Slice0, Slice1, Slice2, Slice3] and its LoD information is empty. The +indices in RankTable are [3, 0, 2, 1]. +Out = [Slice3, Slice0, Slice2, Slice1] with no LoD information is appended.

    +

    NOTE: This operator sorts Input(X) according to a given LoDRankTable which does +not need to be calculated according to Input(X). It can be calculated according +to another different sequence, and then this operator sorts Input(X) according +to the given LoDRankTable.

    - @@ -1092,26 +898,47 @@ Duplicable: False Optional: False -
    -

    transpose

    +
    +

    ParallelDo

    +
    +
    +class paddle.v2.fluid.layers.ParallelDo(places, name=None)
    +

    ParallelDo class.

    +

    ParallelDo class is used to create a ParallelDo.

    +
    + +
    +
    +

    Print

    -paddle.v2.fluid.layers.transpose(x, perm, name=None)
    -

    transpose Layer

    -

    Permute the dimensions of input according to perm.

    -

    The i-th dimension of the returned tensor will correspond to the -perm[i]-th dimension of input.

    +paddle.v2.fluid.layers.Print(input, first_n=-1, message=None, summarize=-1, print_tensor_name=True, print_tensor_type=True, print_tensor_shape=True, print_tensor_lod=True, print_phase='both') +

    Print operator

    +

    This creates a print op that will print when a tensor is accessed.

    +

    Wraps the tensor passed in so that whenever that a tensor is accessed, +the message message is printed, along with the current value of the +tensor t.

    Parameters:
      -
    • x – (Tensor) Input tensor of scale operator. +
    • x – (LoDTensor), the input lod tensor to be reordered according to Input(RankTable). +Duplicable: False Optional: False
    • +
    • rank_table – (LoDRankTable), the rank table according to which Input(X) is reordered. Duplicable: False Optional: False
    • -
    • scale (FLOAT) – (float, default 1.0)The scaling factor of the scale operator.
    Returns:

    (Tensor) Output tensor of scale operator.

    +
    Returns:

    (LoDTensor), the reordered lod tensor.

    -
    Parameters:
      -
    • input (Variable) – (Tensor), A Tensor.
    • -
    • perm (list) – A permutation of the dimensions of input.
    • +
    • input (Variable) – A Tensor to print.
    • +
    • summarize (int) – Print this number of elements in the tensor, will print +all if left is negative.
    • +
    • message (str) – A string message to print as a prefix.
    • +
    • first_n (int) – Only log first_n number of times.
    • +
    • print_tensor_name (bool) – Print the tensor name.
    • +
    • print_tensor_type (bool) – Print the tensor type.
    • +
    • print_tensor_shape (bool) – Print the tensor shape.
    • +
    • print_tensor_lod (bool) – Print the tensor lod.
    • +
    • print_phase (bool) – Which phase to displace, including ‘forward’, +‘backward’ and ‘both’. If set to ‘backward’ or ‘both’, will +print the gradients of input tensor.
    Returns:

    A transposed Tensor.

    +
    Returns:

    Output tensor, same data with input tensor.

    Return type:

    Variable

    @@ -1120,210 +947,260 @@ perm[i]-th dimension of input.

    Examples

    -
    x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
    -x_transposed = layers.transpose(x, perm=[1, 0, 2])
    +
    
     
    +

    value = some_layer(...) +Print(value, summarize=10,

    +
    +
    message=”The content of some_layer: ”)
    -
    -

    sigmoid_cross_entropy_with_logits

    -
    -
    -

    cast

    -
    -
    -paddle.v2.fluid.layers.cast(x, dtype)
    -

    This function takes in the input with input_dtype -and casts it to the output_dtype as the output.

    -
    -
    -
    -

    concat

    +
    +

    device

    +
    +

    get_places

    -paddle.v2.fluid.layers.concat(input, axis=0)
    -

    Concat

    -

    This function concatenates the input along the axis mentioned -and returns that as the output.

    +paddle.v2.fluid.layers.get_places(device_count=None, device_type=None) +

    Returns a list of places based on flags. The list will be used for parallel +execution.

    - - -
    Parameters:
      -
    • input (list) – List of tensors to be concatenated
    • -
    • axis (int) – Integer axis along which the tensors will be concatenated
    • +
    • device_count (INT) – device count
    • +
    • device_type (STRING) – device type
    Returns:

    Output variable of the concatenation

    -
    Return type:

    Variable

    +
    Returns:

    vector of Place

    -

    Examples

    -
    -

    sums

    +
    +
    +

    io

    +
    +

    data

    -paddle.v2.fluid.layers.sums(input, out=None)
    -

    This function performs the sum operation on the input and returns the -result as the output.

    +paddle.v2.fluid.layers.data(name, shape, append_batch_size=True, dtype='float32', lod_level=0, type=VarType.LOD_TENSOR, stop_gradient=True) +

    Data Layer

    +

    This function takes in the input and based on whether data has +to be returned back as a minibatch, it creates the global variable by using +the helper functions. The global variables can be accessed by all the +following operators in the graph.

    +

    All the input variables of this function are passed in as local variables +to the LayerHelper constructor.

    - + - - +
    Parameters:input (Variable|list) – The input tensor that has the elements -that need to be summed up.
    Parameters:
      +
    • name (str) – The name/alias of the function
    • +
    • shape (list) – Tuple declaring the shape.
    • +
    • append_batch_size (bool) – Whether or not to append the data as a batch.
    • +
    • dtype (int|float) – The type of data : float32, float_16, int etc
    • +
    • type (VarType) – The output type. By default it is LOD_TENSOR.
    • +
    • lod_level (int) – The LoD Level. 0 means the input data is not a sequence.
    • +
    • main_program (Program) – Name of the main program that calls this
    • +
    • startup_program (Program) – Name of the startup program
    • +
    • stop_gradient (bool) – A boolean that mentions whether gradient should flow.
    • +
    +
    Returns:
    -
    The tensor type variable that has the sum of input
    -
    written to it.
    -
    +
    Returns:

    The global variable that gives access to the data.

    Return type:Variable
    Return type:

    Variable

    +

    Examples

    +
    data = fluid.layers.data(name='x', shape=[784], dtype='float32')
    +
    +
    -
    -

    linear_chain_crf

    -
    +
    +

    BlockGuardServ

    +
    -paddle.v2.fluid.layers.linear_chain_crf(input, label, param_attr=None)
    -
    +class paddle.v2.fluid.layers.BlockGuardServ(server) +

    BlockGuardServ class.

    +

    BlockGuardServ class is used to create an op with a block in a program.

    +
    -
    -

    assign

    +
    +

    ListenAndServ

    +
    +
    +class paddle.v2.fluid.layers.ListenAndServ(endpoint, fan_in=1, optimizer_mode=True)
    +

    ListenAndServ class.

    +

    ListenAndServ class is used to wrap listen_and_serv op to create a server +which can receive variables from clients and run a block.

    +
    + +
    +
    +

    Send

    -paddle.v2.fluid.layers.embedding(input, size, is_sparse=False, padding_idx=None, param_attr=None, dtype='float32')
    -

    Embedding Layer

    -

    This layer is used to lookup embeddings of IDs, provided by input, in -a lookup table. The result of this lookup is the embedding of each ID in the -input.

    -

    All the input variables are passed in as local variables to the LayerHelper -constructor.

    +paddle.v2.fluid.layers.Send(endpoints, send_vars, get_vars) +

    Send layer

    - - - - -
    Parameters:
      -
    • input (Variable) – The tensor variable containing the IDs.
    • -
    • size (tuple|list) – The shape of the look up table parameter. It should -have two elements which indicate the size of the dictionary of -embeddings and the size of each embedding vector respectively.
    • -
    • is_sparse (bool) – The flag indicating whether to use sparse update.
    • -
    • padding_idx (int|long|None) – If None, it makes no effect to lookup. -Otherwise the given padding_idx indicates padding the output -with zeros whenever lookup encounters it in input. If -\(padding_idx < 0\), the padding_idx to use in lookup is -\(size[0] + dim\).
    • -
    • param_attr (ParamAttr) – Parameters for this layer
    • -
    • dtype (np.dtype|core.DataType|str) – The type of data : float32, float_16, int etc
    • +
    Parameters:
      +
    • endpoints – comma seperated IP:PORT pairs in the order +of send_vars to send
    • +
    • send_vars – vars to send
    • +
    • get_vars – vars to get from server after send completes.
    Returns:

    The tensor variable storing the embeddings of the supplied inputs.

    -
    Return type:

    Variable

    -
    -

    Examples

    -
    dict_size = len(dataset.ids)
    -data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
    -fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
    -
    -
    +

    Send variables to the server side, and get vars from server +side when server have finished running server side program.

    -
    -

    split_lod_tensor

    +
    +
    +

    nn

    +
    +

    fc

    -paddle.v2.fluid.layers.split_lod_tensor(input, mask, level=0)
    -

    split_lod_tensor

    -

    This function takes in an input that contains the complete lod information, -and takes in a mask which is used to mask certain parts of the input. -The output is the true branch and the false branch with the mask applied to -the input at a certain level in the tensor.

    +paddle.v2.fluid.layers.fc(input, size, num_flatten_dims=1, param_attr=None, bias_attr=None, act=None, name=None) +

    Fully Connected Layer

    +

    The fully connected layer can take multiple tensors as its inputs. It +creates a variable (one for each input tensor) called weights for each +input tensor, which represents a fully connected weight matrix from +each input unit to each output unit. The fully connected layer +multiplies each input tensor with its coresponding weight to produce +an output Tensor. If multiple input tensors are given, the results of +multiple multiplications will be sumed up. If bias_attr is not None, +a biases variable will be created and added to the output. Finally, +if activation is not None, it will be applied to the output as well.

    +

    This process can be formulated as follows:

    +
    +\[Out = Act({\sum_{i=0}^{N-1}W_iX_i + b})\]
    +

    In the above equation:

    +
      +
    • \(N\): Number of the input.
    • +
    • \(X_i\): The input tensor.
    • +
    • \(W\): The weights created by this layer.
    • +
    • \(b\): The bias parameter created by this layer (if needed).
    • +
    • \(Act\): The activation funtion.
    • +
    • \(Out\): The output tensor.
    • +
    - - + +
    Parameters:
      -
    • input (tuple|list|None) – The input tensor that contains complete -lod information needed to construct the output.
    • -
    • mask (list) – A bool column vector which masks the input.
    • -
    • level (int) – The specific lod level to rank.
    • +
    • input (Variable|list) – The input tensor(s) to the fully connected layer.
    • +
    • size (int) – The number of output units in the fully connected layer.
    • +
    • num_flatten_dims (int) – The fc layer can accept an input tensor with more +than two dimensions. If this happens, the +multidimensional tensor will first be flattened +into a 2-dimensional matrix. The parameter +num_flatten_dims determines how the input tensor +is flattened: the first num_flatten_dims +(inclusive, index starts from 1) dimensions will +be flatten to form the first dimension of the +final matrix (height of the matrix), and the rest +rank(X) - num_flatten_dims dimensions are +flattened to form the second dimension of the +final matrix (width of the matrix). For example, +suppose X is a 6-dimensional tensor with a shape +[2, 3, 4, 5, 6], and num_flatten_dims = 3. Then, +the flattened matrix will have a shape +[2 x 3 x 4, 5 x 6] = [24, 30]. By default, +num_flatten_dims is set to 1.
    • +
    • param_attr (ParamAttr|list) – The parameter attribute for learnable +parameters/weights of the fully connected +layer.
    • +
    • param_initializer (ParamAttr|list) – The initializer used for the +weight/parameter. If set None, +XavierInitializer() will be used.
    • +
    • bias_attr (ParamAttr|list) – The parameter attribute for the bias parameter +for this layer. If set None, no bias will be +added to the output units.
    • +
    • bias_initializer (ParamAttr|list) – The initializer used for the bias. +If set None, then ConstantInitializer() +will be used.
    • +
    • act (str) – Activation to be applied to the output of the fully connected +layer.
    • +
    • name (str) – Name/alias of the fully connected layer.
    Returns:

    The true branch of tensor as per the mask applied to input. -Variable: The false branch of tensor as per the mask applied to input.

    +
    Returns:

    The output tensor variable.

    Return type:

    Variable

    +
    Return type:

    Variable

    +
    Raises:

    ValueError – If rank of the input tensor is less than 2.

    Examples

    -
    x = layers.data(name='x', shape=[1])
    -x.persistable = True
    -
    -y = layers.data(name='y', shape=[1])
    -y.persistable = True
    -
    -out_true, out_false = layers.split_lod_tensor(
    -      input=x, mask=y, level=level)
    +
    data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
    +fc = fluid.layers.fc(input=data, size=1000, act="tanh")
     
    -
    -

    merge_lod_tensor

    +
    +

    embedding

    -paddle.v2.fluid.layers.merge_lod_tensor(in_true, in_false, x, mask, level=0)
    -

    merge_lod_tensor

    -

    This function takes in an input \(x\), the True branch, the False -branch and a binary \(mask\). Using this information, this function -merges the True and False branches of the tensor into a single Output -at a certain lod level indiacted by \(level\).

    +paddle.v2.fluid.layers.embedding(input, size, is_sparse=False, padding_idx=None, param_attr=None, dtype='float32') +

    Embedding Layer

    +

    This layer is used to lookup embeddings of IDs, provided by input, in +a lookup table. The result of this lookup is the embedding of each ID in the +input.

    +

    All the input variables are passed in as local variables to the LayerHelper +constructor.

    -
    Parameters:
      -
    • in_true (tuple|list|None) – The True branch to be merged.
    • -
    • in_false (tuple|list|None) – The False branch to be merged.
    • -
    • x (tuple|list|None) – The input tensor that contains complete -lod information needed to construct the output.
    • -
    • mask (list) – A bool column vector which masks the input.
    • -
    • level (int) – The specific lod level to rank.
    • +
    • input (Variable) – The tensor variable containing the IDs.
    • +
    • size (tuple|list) – The shape of the look up table parameter. It should +have two elements which indicate the size of the dictionary of +embeddings and the size of each embedding vector respectively.
    • +
    • is_sparse (bool) – The flag indicating whether to use sparse update.
    • +
    • padding_idx (int|long|None) – If None, it makes no effect to lookup. +Otherwise the given padding_idx indicates padding the output +with zeros whenever lookup encounters it in input. If +\(padding_idx < 0\), the padding_idx to use in lookup is +\(size[0] + dim\).
    • +
    • param_attr (ParamAttr) – Parameters for this layer
    • +
    • dtype (np.dtype|core.DataType|str) – The type of data : float32, float_16, int etc
    Returns:

    The merged output tensor.

    +
    Returns:

    The tensor variable storing the embeddings of the supplied inputs.

    Return type:

    Variable

    @@ -1332,150 +1209,298 @@ lod information needed to construct the output.

    Examples

    -
    x = layers.data(
    -            name='x', shape=[1], dtype='float32', stop_gradient=False)
    -y = layers.data(
    -      name='y', shape=[1], dtype='bool', stop_gradient=False)
    -
    -level = 0
    -
    -out_true, out_false = layers.split_lod_tensor(
    -      input=x, mask=y, level=level)
    -out = layers.merge_lod_tensor(
    -      in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    +
    dict_size = len(dataset.ids)
    +data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
    +fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
     
    -
    -

    cos_sim

    -
    -
    -paddle.v2.fluid.layers.cos_sim(X, Y, **kwargs)
    -

    This function performs the cosine similarity between two tensors -X and Y and returns that as the output.

    -
    - -
    -
    -

    cross_entropy

    +
    +

    dynamic_lstm

    -paddle.v2.fluid.layers.cross_entropy(input, label, **kwargs)
    -

    Cross Entropy Layer

    -

    This layer computes the cross entropy between input and label. It -supports both standard cross-entropy and soft-label cross-entropy loss -computation.

    -
      -
    1. -
      One-hot cross-entropy:
      -

      soft_label = False, Label[i, 0] indicates the class index for sample i:

      -
      -\[Y[i] = -\log(X[i, Label[i]])\]
      -
      -
      -
    2. -
    3. -
      Soft-label cross-entropy:
      -

      soft_label = True, Label[i, j] indicates the soft label of class j -for sample i:

      -
      -\[Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}\]
      -
      -
      -

      Please make sure that in this case the summation of each row of label -equals one.

      -
    4. -
    5. -
      One-hot cross-entropy with vecterized label:
      -

      As a special case of 2), when each row of ‘label’ has only one -non-zero element which is equal to 1, soft-label cross-entropy degenerates -to a one-hot cross-entropy with one-hot label representation.

      -
      -
      -
    6. -
    +paddle.v2.fluid.layers.dynamic_lstm(input, size, param_attr=None, bias_attr=None, use_peepholes=True, is_reverse=False, gate_activation='sigmoid', cell_activation='tanh', candidate_activation='tanh', dtype='float32', name=None) +

    Dynamic LSTM Layer

    +

    The defalut implementation is diagonal/peephole connection +(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

    +
    +\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)\\f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)\\\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)\\o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)\\c_t & = f_t \odot c_{t-1} + i_t \odot \tilde{c_t}\\h_t & = o_t \odot act_h(c_t)\end{aligned}\end{align} \]
    +

    where the \(W\) terms denote weight matrices (e.g. \(W_{xi}\) is +the matrix of weights from the input gate to the input), \(W_{ic}, W_{fc}, W_{oc}\) are diagonal weight matrices for peephole connections. In +our implementation, we use vectors to reprenset these diagonal weight +matrices. The \(b\) terms denote bias vectors (\(b_i\) is the input +gate bias vector), \(\sigma\) is the non-linear activations, such as +logistic sigmoid function, and \(i, f, o\) and \(c\) are the input +gate, forget gate, output gate, and cell activation vectors, respectively, +all of which have the same size as the cell output activation vector \(h\).

    +

    The \(\odot\) is the element-wise product of the vectors. \(act_g\) +and \(act_h\) are the cell input and cell output activation functions +and tanh is usually used for them. \(\tilde{c_t}\) is also called +candidate hidden state, which is computed based on the current input and +the previous hidden state.

    +

    Set use_peepholes to False to disable peephole connection. The formula +is omitted here, please refer to the paper +http://www.bioinf.jku.at/publications/older/2604.pdf for details.

    +

    Note that these \(W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\) +operations on the input \(x_{t}\) are NOT included in this operator. +Users can choose to use fully-connect layer before LSTM layer.

    - - - - + + + +
    Parameters:
      -
    • input (Variable|list) – a 2-D tensor with shape [N x D], where N is the -batch size and D is the number of classes. This -input is a probability computed by the previous -operator, which is almost always the result of -a softmax operator.
    • -
    • label (Variable|list) – the ground truth which is a 2-D tensor. When -soft_label is set to False, label is a -tensor<int64> with shape [N x 1]. When -soft_label is set to True, label is a -tensor<float/double> with shape [N x D].
    • -
    • soft_label (bool, via **kwargs) – a flag indicating whether to -interpretate the given labels as soft -labels, default False.
    • +
    • input (Variable) – The input of dynamic_lstm layer, which supports +variable-time length input sequence. The underlying +tensor in this Variable is a matrix with shape +(T X 4D), where T is the total time steps in this +mini-batch, D is the hidden size.
    • +
    • size (int) – 4 * hidden size.
    • +
    • param_attr (ParamAttr|None) –

      The parameter attribute for the learnable +hidden-hidden weights.

      +
        +
      • Weights = {\(W_{ch}, W_{ih}, W_{fh}, W_{oh}\)}
      • +
      • The shape is (D x 4D), where D is the hidden +size.
      -
    Returns:

    A 2-D tensor with shape [N x 1], the cross entropy loss.

    -
    Raises:

    ValueError – 1) the 1st dimension of input and label are not equal. -2) when soft_label == True, and the 2nd dimension of

    + +
  • bias_attr (ParamAttr|None) –

    The bias attribute for the learnable bias +weights, which contains two parts, input-hidden +bias weights and peephole connections weights if +setting use_peepholes to True.

    +
      +
    1. use_peepholes = False
    2. +
    -

    input and label are not equal.

    -
    -
      -
    1. when soft_label == False, and the 2nd dimension of -label is not 1.
    2. +
        +
      • Biases = {\(b_c, b_i, b_f, b_o\)}.
      • +
      • The shape is (1 x 4D).
      • +
      +
      +
        +
      1. use_peepholes = True
      +
      +
        +
      • Biases = { \(b_c, b_i, b_f, b_o, W_{ic}, W_{fc}, W_{oc}\)}.
      • +
      • The shape is (1 x 7D).
      • +
      +
      + +
    3. use_peepholes (bool) – Whether to enable diagonal/peephole connections, +default True.
    4. +
    5. is_reverse (bool) – Whether to compute reversed LSTM, default False.
    6. +
    7. gate_activation (str) – The activation for input gate, forget gate and +output gate. Choices = [“sigmoid”, “tanh”, “relu”, +“identity”], default “sigmoid”.
    8. +
    9. cell_activation (str) – The activation for cell output. Choices = [“sigmoid”, +“tanh”, “relu”, “identity”], default “tanh”.
    10. +
    11. candidate_activation (str) – The activation for candidate hidden state. +Choices = [“sigmoid”, “tanh”, “relu”, “identity”], +default “tanh”.
    12. +
    13. dtype (str) – Data type. Choices = [“float32”, “float64”], default “float32”.
    14. +
    15. name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    16. + +
  • Returns:

    The hidden state, and cell state of LSTM. The shape of both is (T x D), and lod is the same with the input.

    +
    Return type:

    tuple

    Examples

    -
    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
    -cost = fluid.layers.cross_entropy(input=predict, label=label)
    +
    hidden_dim = 512
    +forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
    +                               act=None, bias_attr=None)
    +forward, _ = fluid.layers.dynamic_lstm(
    +    input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
     
    -
    -

    square_error_cost

    +
    +

    dynamic_lstmp

    -paddle.v2.fluid.layers.square_error_cost(input, label, **kwargs)
    -

    Square error cost layer

    -

    This layer accepts input predictions and target label and returns the -squared error cost.

    -

    For predictions, \(X\), and target labels, \(Y\), the equation is:

    +paddle.v2.fluid.layers.dynamic_lstmp(input, size, proj_size, param_attr=None, bias_attr=None, use_peepholes=True, is_reverse=False, gate_activation='sigmoid', cell_activation='tanh', candidate_activation='tanh', proj_activation='tanh', dtype='float32', name=None) +

    Dynamic LSTMP Layer

    +

    LSTMP (LSTM with recurrent projection) layer has a separate projection +layer after the LSTM layer, projecting the original hidden state to a +lower-dimensional one, which is proposed to reduce the number of total +parameters and furthermore computational complexity for the LSTM, +espeacially for the case that the size of output units is relative +large (https://research.google.com/pubs/archive/43905.pdf).

    +

    The formula is as follows:

    -\[Out = (X - Y)^2\]
    -

    In the above equation:

    +\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)\\f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)\\\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)\\o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)\\c_t & = f_t \odot c_{t-1} + i_t \odot \tilde{c_t}\\h_t & = o_t \odot act_h(c_t)\\r_t & = \overline{act_h}(W_{rh}h_t)\end{aligned}\end{align} \]
    +

    In the above formula:

    +
      +
    • \(W\): Denotes weight matrices (e.g. \(W_{xi}\) is the matrix of weights from the input gate to the input).
    • +
    • \(W_{ic}\), \(W_{fc}\), \(W_{oc}\): Diagonal weight matrices for peephole connections. In our implementation, we use vectors to reprenset these diagonal weight matrices.
    • +
    • \(b\): Denotes bias vectors (e.g. \(b_i\) is the input gate bias vector).
    • +
    • \(\sigma\): The activation, such as logistic sigmoid function.
    • +
    • \(i, f, o\) and \(c\): The input gate, forget gate, output gate, and cell activation vectors, respectively, all of which have the same size as the cell output activation vector \(h\).
    • +
    • \(h\): The hidden state.
    • +
    • \(r\): The recurrent projection of the hidden state.
    • +
    • \(\tilde{c_t}\): The candidate hidden state, whose computation is based on the current input and previous hidden state.
    • +
    • \(\odot\): The element-wise product of the vectors.
    • +
    • \(act_g\) and \(act_h\): The cell input and cell output activation functions and tanh is usually used for them.
    • +
    • \(\overline{act_h}\): The activation function for the projection output, usually using identity or same as \(act_h\).
    • +
    +

    Set use_peepholes to False to disable peephole connection. The formula +is omitted here, please refer to the paper +http://www.bioinf.jku.at/publications/older/2604.pdf for details.

    +

    Note that these \(W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\) +operations on the input \(x_{t}\) are NOT included in this operator. +Users can choose to use fully-connected layer before LSTMP layer.

    + +++ + + + + + + + +
    Parameters:
      +
    • input (Variable) – The input of dynamic_lstmp layer, which supports +variable-time length input sequence. The underlying +tensor in this Variable is a matrix with shape +(T X 4D), where T is the total time steps in this +mini-batch, D is the hidden size.
    • +
    • size (int) – 4 * hidden size.
    • +
    • proj_size (int) – The size of projection output.
    • +
    • param_attr (ParamAttr|None) –

      The parameter attribute for the learnable +hidden-hidden weight and projection weight.

      +
        +
      • Hidden-hidden weight = {\(W_{ch}, W_{ih}, W_{fh}, W_{oh}\)}.
      • +
      • The shape of hidden-hidden weight is (P x 4D), +where P is the projection size and D the hidden +size.
      • +
      • Projection weight = {\(W_{rh}\)}.
      • +
      • The shape of projection weight is (D x P).
      • +
      +
    • +
    • bias_attr (ParamAttr|None) –

      The bias attribute for the learnable bias +weights, which contains two parts, input-hidden +bias weights and peephole connections weights if +setting use_peepholes to True.

      +
        +
      1. use_peepholes = False
      2. +
      -
        -
      • \(X\): Input predictions, a tensor.
      • -
      • \(Y\): Input labels, a tensor.
      • -
      • \(Out\): Output value, same shape with \(X\).
      • +
          +
        • Biases = {\(b_c, b_i, b_f, b_o\)}.
        • +
        • The shape is (1 x 4D).
        • +
        +
      +
        +
      1. use_peepholes = True
      2. +
      +
      +
        +
      • Biases = { \(b_c, b_i, b_f, b_o, W_{ic}, W_{fc}, W_{oc}\)}.
      • +
      • The shape is (1 x 7D).
      +
    • +
    • use_peepholes (bool) – Whether to enable diagonal/peephole connections, +default True.
    • +
    • is_reverse (bool) – Whether to compute reversed LSTM, default False.
    • +
    • gate_activation (str) – The activation for input gate, forget gate and +output gate. Choices = [“sigmoid”, “tanh”, “relu”, +“identity”], default “sigmoid”.
    • +
    • cell_activation (str) – The activation for cell output. Choices = [“sigmoid”, +“tanh”, “relu”, “identity”], default “tanh”.
    • +
    • candidate_activation (str) – The activation for candidate hidden state. +Choices = [“sigmoid”, “tanh”, “relu”, “identity”], +default “tanh”.
    • +
    • proj_activation (str) – The activation for projection output. +Choices = [“sigmoid”, “tanh”, “relu”, “identity”], +default “tanh”.
    • +
    • dtype (str) – Data type. Choices = [“float32”, “float64”], default “float32”.
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    • +
    +
    Returns:

    The projection of hidden state, and cell state of LSTMP. The shape of projection is (T x P), for the cell state which is (T x D), and both LoD is the same with the input.

    +
    Return type:

    tuple

    +
    +

    Examples

    +
    hidden_dim, proj_dim = 512, 256
    +fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
    +                         act=None, bias_attr=None)
    +proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
    +                                         size=hidden_dim * 4,
    +                                         proj_size=proj_dim,
    +                                         use_peepholes=False,
    +                                         is_reverse=True,
    +                                         cell_activation="tanh",
    +                                         proj_activation="tanh")
    +
    +
    +
    + +
    +
    +

    dynamic_gru

    +
    +
    +paddle.v2.fluid.layers.dynamic_gru(input, size, param_attr=None, bias_attr=None, is_reverse=False, gate_activation='sigmoid', candidate_activation='tanh', h_0=None)
    +

    Dynamic GRU Layer

    +

    Refer to Empirical Evaluation of Gated Recurrent Neural Networks on +Sequence Modeling

    +

    The formula is as follows:

    +
    +\[ \begin{align}\begin{aligned}u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)\\r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)\\\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)\\h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \tilde{h_t}\end{aligned}\end{align} \]
    +

    The \(\odot\) is the element-wise product of the vectors. \(act_g\) +is the update gate and reset gate activation function and \(sigmoid\) +is usually used for it. \(act_c\) is the activation function for +candidate hidden state and \(tanh\) is usually used for it.

    +

    Note that these \(W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}\) operations on +the input \(x_{t}\) are NOT included in this operator. Users can choose +to use fully-connect layer before GRU layer.

    -
    Parameters:
      -
    • input (Variable) – Input tensor, has predictions.
    • -
    • label (Variable) – Label tensor, has target labels.
    • +
    • input (Variable) – The input of dynamic_gru layer, which supports +variable-time length input sequence. The underlying tensor in this +Variable is a matrix with shape \((T \times 3D)\), where +\(T\) is the total time steps in this mini-batch, \(D\) +is the hidden size.
    • +
    • size (int) – The dimension of the gru cell.
    • +
    • param_attr (ParamAttr|None) –

      The parameter attribute for the learnable +hidden-hidden weight matrix. Note:

      +
        +
      • The shape of the weight matrix is \((T \times 3D)\), where +\(D\) is the hidden size.
      • +
      • All elements in the weight matrix can be divided into two parts. +The first part are weights of the update gate and reset gate with +shape \((D \times 2D)\), and the second part are weights for +candidate hidden state with shape \((D \times D)\).
      • +
      +
    • +
    • bias_attr (ParamAttr) – The parameter attribute for learnable the +hidden-hidden bias.
    • +
    • is_reverse (bool) – Whether to compute reversed GRU, default +False.
    • +
    • gate_activation (str) – The activation for update gate and reset gate. +Choices = [“sigmoid”, “tanh”, “relu”, “identity”], default “sigmoid”.
    • +
    • activation (str) – The activation for candidate hidden state. +Choices = [“sigmoid”, “tanh”, “relu”, “identity”], default “tanh”.
    Returns:

    -
    The tensor variable storing the element-wise squared error
    -

    difference of input and label.

    -
    -
    -

    +
    Returns:

    The hidden state of GRU. The shape is (T times D), and lod is the same with the input.

    Return type:

    Variable

    @@ -1484,199 +1509,884 @@ squared error cost.

    Examples

    -
    y = layers.data(name='y', shape=[1], dtype='float32')
    -y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
    -cost = layers.square_error_cost(input=y_predict, label=y)
    +
    hidden_dim = 512
    +x = fluid.layers.fc(input=data, size=hidden_dim * 3)
    +hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    +
    +
    +
    + +
    +
    +

    gru_unit

    +
    +
    +paddle.v2.fluid.layers.gru_unit(input, hidden, size, weight=None, bias=None, activation='tanh', gate_activation='sigmoid')
    +

    GRU unit layer. The equation of a gru step is:

    +
    +
    +\[ \begin{align}\begin{aligned}u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)\\r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)\\m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)\\h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})\end{aligned}\end{align} \]
    +
    +

    The inputs of gru unit includes \(z_t\), \(h_{t-1}\). In terms +of the equation above, the \(z_t\) is split into 3 parts - +\(xu_t\), \(xr_t\) and \(xm_t\). This means that in order to +implement a full GRU unit operator for an input, a fully +connected layer has to be applied, such that \(z_t = W_{fc}x_t\).

    +

    The terms \(u_t\) and \(r_t\) represent the update and reset gates +of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is +an intermediate candidate hidden output, which is denoted by \(m_t\). +This layer has three outputs \(h_t\), \(dot(r_t, h_{t-1})\) +and concatenation of \(u_t\), \(r_t\) and \(m_t\).

    + +++ + + + + + + + +
    Parameters:
      +
    • input (Variable) – The fc transformed input value of current step.
    • +
    • hidden (Variable) – The hidden value of lstm unit from previous step.
    • +
    • size (integer) – The input dimension value.
    • +
    • weight (ParamAttr) – The weight parameters for gru unit. Default: None
    • +
    • bias (ParamAttr) – The bias parameters for gru unit. Default: None
    • +
    • activation (string) – The activation type for cell (actNode). +Default: ‘tanh’
    • +
    • gate_activation (string) – The activation type for gates (actGate). +Default: ‘sigmoid’
    • +
    +
    Returns:

    The hidden value, reset-hidden value and gate values.

    +
    Return type:

    tuple

    +
    +

    Examples

    +
    # assuming we have x_t_data and prev_hidden of size=10
    +x_t = fluid.layers.fc(input=x_t_data, size=30)
    +hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
    +                                       hidden = prev_hidden)
    +
    +
    +
    + +
    +
    +

    linear_chain_crf

    +
    +
    +paddle.v2.fluid.layers.linear_chain_crf(input, label, param_attr=None)
    +
    + +
    +
    +

    crf_decoding

    +
    +
    +paddle.v2.fluid.layers.crf_decoding(input, param_attr, label=None)
    +
    + +
    +
    +

    cos_sim

    +
    +
    +paddle.v2.fluid.layers.cos_sim(X, Y, **kwargs)
    +

    This function performs the cosine similarity between two tensors +X and Y and returns that as the output.

    +
    + +
    +
    +

    cross_entropy

    +
    +
    +paddle.v2.fluid.layers.cross_entropy(input, label, **kwargs)
    +

    Cross Entropy Layer

    +

    This layer computes the cross entropy between input and label. It +supports both standard cross-entropy and soft-label cross-entropy loss +computation.

    +
      +
    1. +
      One-hot cross-entropy:
      +

      soft_label = False, Label[i, 0] indicates the class index for sample i:

      +
      +\[Y[i] = -\log(X[i, Label[i]])\]
      +
      +
      +
    2. +
    3. +
      Soft-label cross-entropy:
      +

      soft_label = True, Label[i, j] indicates the soft label of class j +for sample i:

      +
      +\[Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}\]
      +
      +
      +

      Please make sure that in this case the summation of each row of label +equals one.

      +
    4. +
    5. +
      One-hot cross-entropy with vecterized label:
      +

      As a special case of 2), when each row of ‘label’ has only one +non-zero element which is equal to 1, soft-label cross-entropy degenerates +to a one-hot cross-entropy with one-hot label representation.

      +
      +
      +
    6. +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (Variable|list) – a 2-D tensor with shape [N x D], where N is the +batch size and D is the number of classes. This +input is a probability computed by the previous +operator, which is almost always the result of +a softmax operator.
    • +
    • label (Variable|list) – the ground truth which is a 2-D tensor. When +soft_label is set to False, label is a +tensor<int64> with shape [N x 1]. When +soft_label is set to True, label is a +tensor<float/double> with shape [N x D].
    • +
    • soft_label (bool, via **kwargs) – a flag indicating whether to +interpretate the given labels as soft +labels, default False.
    • +
    +
    Returns:

    A 2-D tensor with shape [N x 1], the cross entropy loss.

    +
    Raises:

    ValueError – 1) the 1st dimension of input and label are not equal. +2) when soft_label == True, and the 2nd dimension of

    +
    +

    input and label are not equal.

    +
    +
      +
    1. when soft_label == False, and the 2nd dimension of +label is not 1.
    2. +
    +
    +

    Examples

    +
    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
    +cost = fluid.layers.cross_entropy(input=predict, label=label)
    +
    +
    +
    + +
    +
    +

    square_error_cost

    +
    +
    +paddle.v2.fluid.layers.square_error_cost(input, label, **kwargs)
    +

    Square error cost layer

    +

    This layer accepts input predictions and target label and returns the +squared error cost.

    +

    For predictions, \(X\), and target labels, \(Y\), the equation is:

    +
    +\[Out = (X - Y)^2\]
    +

    In the above equation:

    +
    +
      +
    • \(X\): Input predictions, a tensor.
    • +
    • \(Y\): Input labels, a tensor.
    • +
    • \(Out\): Output value, same shape with \(X\).
    • +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (Variable) – Input tensor, has predictions.
    • +
    • label (Variable) – Label tensor, has target labels.
    • +
    +
    Returns:

    +
    The tensor variable storing the element-wise squared error
    +

    difference of input and label.

    +
    +
    +

    +
    Return type:

    Variable

    +
    +

    Examples

    +
    y = layers.data(name='y', shape=[1], dtype='float32')
    +y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
    +cost = layers.square_error_cost(input=y_predict, label=y)
    +
    +
    +
    + +
    +
    +

    accuracy

    +
    +
    +paddle.v2.fluid.layers.accuracy(input, label, k=1, correct=None, total=None, **kwargs)
    +

    This function computes the accuracy using the input and label. +The output is the top_k inputs and their indices.

    +
    + +
    +
    +

    chunk_eval

    +
    +
    +paddle.v2.fluid.layers.chunk_eval(input, label, chunk_scheme, num_chunk_types, excluded_chunk_types=None, **kwargs)
    +

    This function computes and outputs the precision, recall and +F1-score of chunk detection.

    +
    + +
    +
    +

    sequence_conv

    +
    +
    +paddle.v2.fluid.layers.sequence_conv(input, num_filters, filter_size=3, filter_stride=1, padding=None, bias_attr=None, param_attr=None, act=None)
    +

    This function creates the op for sequence_conv, using the inputs and +other convolutional configurations for the filters and stride as given +in the input parameters to the function.

    +
    + +
    +
    +

    conv2d

    +
    +
    +paddle.v2.fluid.layers.conv2d(input, num_filters, filter_size, stride=None, padding=None, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None)
    +

    Convlution2D Layer

    +

    The convolution2D layer calculates the output based on the input, filter +and strides, paddings, dilations, groups parameters. Input(Input) and +Output(Output) are in NCHW format. Where N is batch size, C is the number of +channels, H is the height of the feature, and W is the width of the feature. +The details of convolution layer, please refer UFLDL’s convolution, . +If bias attribution and activation type are provided, bias is added to the +output of the convolution, and the corresponding activation function is +applied to the final result.

    +

    For each input \(X\), the equation is:

    +
    +\[Out = \sigma (W \ast X + b)\]
    +

    In the above equation:

    +
      +
    • \(X\): Input value, a tensor with NCHW format.
    • +
    • \(W\): Filter value, a tensor with MCHW format.
    • +
    • \(\ast\): Convolution operation.
    • +
    • \(b\): Bias value, a 2-D tensor with shape [M, 1].
    • +
    • \(\sigma\): Activation function.
    • +
    • +
      \(Out\): Output value, the shape of \(Out\) and \(X\) may be
      +
      different.
      +
      +
    • +
    +

    Example

    +
      +
    • Input:

      +

      Input shape: $(N, C_{in}, H_{in}, W_{in})$

      +

      Filter shape: $(C_{out}, C_{in}, H_f, W_f)$

      +
    • +
    • Output: +Output shape: $(N, C_{out}, H_{out}, W_{out})$

      +
    • +
    +

    Where

    +
    +\[\]
    +

    H_{out}&= frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \ +W_{out}&= frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    + +++ + + + + + + + + + +
    Parameters:
      +
    • input (Variable) – The input image with [N, C, H, W] format.
    • +
    • num_filters (int) – The number of filter. It is as same as the output +image channel.
    • +
    • filter_size (int|tuple|None) – The filter size. If filter_size is a tuple, +it must contain two integers, (filter_size_H, filter_size_W). +Otherwise, the filter will be a square.
    • +
    • stride (int|tuple) – The stride size. If stride is a tuple, it must +contain two integers, (stride_H, stride_W). Otherwise, the +stride_H = stride_W = stride. Default: stride = 1.
    • +
    • padding (int|tuple) – The padding size. If padding is a tuple, it must +contain two integers, (padding_H, padding_W). Otherwise, the +padding_H = padding_W = padding. Default: padding = 0.
    • +
    • groups (int) – The groups number of the Conv2d Layer. According to grouped +convolution in Alex Krizhevsky’s Deep CNN paper: when group=2, +the first half of the filters is only connected to the first half +of the input channels, while the second half of the filters is only +connected to the second half of the input channels. Default: groups=1
    • +
    • param_attr (ParamAttr) – The parameters to the Conv2d Layer. Default: None
    • +
    • bias_attr (ParamAttr) – Bias parameter for the Conv2d layer. Default: None
    • +
    • use_cudnn (bool) – Use cudnn kernel or not, it is valid only when the cudnn +library is installed. Default: True
    • +
    • act (str) – Activation type. Default: None
    • +
    +
    Returns:

    +
    The tensor variable storing the convolution and
    +

    non-linearity activation result.

    +
    +
    +

    +
    Return type:

    Variable

    +
    Raises:

    ValueError – If the shapes of input, filter_size, stride, padding and +groups mismatch.

    +
    +

    Examples

    +
    data = fluid.layers.data(
    +    name='data', shape=[3, 32, 32], dtype='float32')
    +conv2d = fluid.layers.conv2d(
    +    input=data, num_filters=2, filter_size=3, act="relu")
    +
    +
    +
    + +
    +
    +

    sequence_pool

    +
    +
    +paddle.v2.fluid.layers.sequence_pool(input, pool_type, **kwargs)
    +

    This function add the operator for sequence pooling. +It pools features of all time-steps of each instance, and is applied +on top of the input using pool_type mentioned in the parameters.

    +

    It supports four pool_type:

    +
      +
    • average: \(Out[i] = \frac{\sum_i X_i}{N}\)
    • +
    • sum: \(Out[i] = \sum_jX_{ij}\)
    • +
    • sqrt: \(Out[i] = \frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}\)
    • +
    • max: \(Out[i] = max(X_i)\)
    • +
    +
    x is a 1-level LoDTensor:
    +  x.lod = [[0, 2, 5, 7]]
    +  x.data = [1, 3, 2, 4, 6, 5, 1]
    +  x.dims = [7, 1]
    +
    +then output is a Tensor:
    +  out.dim = [3, 1]
    +  with condition len(x.lod[-1]) - 1 == out.dims[0]
    +
    +for different pool_type:
    +  average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
    +  sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
    +  sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
    +             6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
    +  max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
    +
    +
    + +++ + + + + + +
    Parameters:
      +
    • input (variable) – The input variable which is a LoDTensor.
    • +
    • pool_type (string) – The pooling type of sequence_pool. +It supports average, sum, sqrt and max.
    • +
    +
    Returns:

    The sequence pooling variable which is a Tensor.

    +
    +

    Examples

    +
    x = fluid.layers.data(name='x', shape=[7, 1],
    +                 dtype='float32', lod_level=1)
    +avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
    +sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
    +sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
    +max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
    +
    +
    +
    + +
    +
    +

    pool2d

    +
    +
    +paddle.v2.fluid.layers.pool2d(input, pool_size, pool_type, pool_stride=None, pool_padding=None, global_pooling=False, use_cudnn=True, name=None)
    +

    This function adds the operator for pooling in 2 dimensions, using the +pooling configurations mentioned in input parameters.

    +
    + +
    +
    +

    batch_norm

    +
    +
    +paddle.v2.fluid.layers.batch_norm(input, act=None, is_test=False, momentum=0.9, epsilon=1e-05, param_attr=None, bias_attr=None, data_layout='NCHW', name=None)
    +

    This function helps create an operator to implement +the BatchNorm layer using the configurations from the input parameters.

    +
    + +
    +
    +

    beam_search_decode

    +
    +
    +paddle.v2.fluid.layers.beam_search_decode(ids, scores, name=None)
    +
    + +
    +
    +

    conv2d_transpose

    +
    +
    +paddle.v2.fluid.layers.conv2d_transpose(input, num_filters, output_size=None, filter_size=None, padding=None, stride=None, dilation=None, param_attr=None, use_cudnn=True, name=None)
    +

    Convlution2D transpose layer

    +

    The convolution2D transpose layer calculates the output based on the input, +filter, and dilations, strides, paddings. Input(Input) and output(Output) +are in NCHW format. Where N is batch size, C is the number of channels, +H is the height of the feature, and W is the width of the feature. +Parameters(dilations, strides, paddings) are two elements. These two elements +represent height and width, respectively. The details of convolution transpose +layer, please refer to the following explanation and references +therein.

    +

    For each input \(X\), the equation is:

    +
    +\[Out = W \ast X\]
    +

    In the above equation:

    +
      +
    • \(X\): Input value, a tensor with NCHW format.
    • +
    • \(W\): Filter value, a tensor with MCHW format.
    • +
    • \(\ast\) : Convolution transpose operation.
    • +
    • +
      \(Out\): Output value, the shape of \(Out\) and \(X\) may be
      +
      different.
      +
      +
    • +
    +

    Example

    +
      +
    • Input:

      +

      Input shape: $(N, C_{in}, H_{in}, W_{in})$

      +

      Filter shape: $(C_{in}, C_{out}, H_f, W_f)$

      +
    • +
    • Output:

      +

      Output shape: $(N, C_{out}, H_{out}, W_{out})$

      +
    • +
    +

    Where

    +
    +\[\begin{split}H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\ +W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1\end{split}\]
    + +++ + + + + + + + + + +
    Parameters:
      +
    • input (Variable) – The input image with [N, C, H, W] format.
    • +
    • num_filters (int) – The number of the filter. It is as same as the output +image channel.
    • +
    • output_size (int|tuple|None) – The output image size. If output size is a +tuple, it must contain two integers, (image_H, image_W). This +parameter only works when filter_size is None.
    • +
    • filter_size (int|tuple|None) – The filter size. If filter_size is a tuple, +it must contain two integers, (filter_size_H, filter_size_W). +Otherwise, the filter will be a square. None if use output size to +calculate filter_size.
    • +
    • padding (int|tuple) – The padding size. If padding is a tuple, it must +contain two integers, (padding_H, padding_W). Otherwise, the +padding_H = padding_W = padding. Default: padding = 0.
    • +
    • stride (int|tuple) – The stride size. If stride is a tuple, it must +contain two integers, (stride_H, stride_W). Otherwise, the +stride_H = stride_W = stride. Default: stride = 1.
    • +
    • dilation (int|tuple) – The dilation size. If dilation is a tuple, it must +contain two integers, (dilation_H, dilation_W). Otherwise, the +dilation_H = dilation_W = dilation. Default: dilation = 1.
    • +
    • param_attr (ParamAttr) – The parameters to the Conv2d_transpose Layer. +Default: None
    • +
    • use_cudnn (bool) – Use cudnn kernel or not, it is valid only when the cudnn +library is installed. Default: True
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    • +
    +
    Returns:

    The tensor variable storing the convolution transpose result.

    +
    Return type:

    Variable

    +
    Raises:

    ValueError – If the shapes of input, filter_size, stride, padding and +groups mismatch.

    +
    +

    Examples

    +
    data = fluid.layers.data(
    +    name='data', shape=[3, 32, 32], dtype='float32')
    +conv2d_transpose = fluid.layers.conv2d_transpose(
    +    input=data, num_filters=2, filter_size=3)
    +
    +
    +
    + +
    +
    +

    sequence_expand

    +
    +
    +paddle.v2.fluid.layers.sequence_expand(x, y, name=None)
    +

    Sequence Expand Layer. This layer will expand the input variable x +according to LoD information of y. And the following examples will +explain how sequence_expand works:

    +
    * Case 1
    +    x is a LoDTensor:
    +        x.lod = [[0,       2, 3],
    +                 [0, 1,    3, 4]]
    +        x.data = [a, b, c, d]
    +        x.dims = [4, 1]
    +
    +    y is a LoDTensor:
    +        y.lod = [[0,    2,    4],
    +                 [0, 3, 6, 7, 8]]
    +
    +    with condition len(y.lod[-1]) - 1 == x.dims[0]
    +
    +    then output is a 2-level LoDTensor:
    +        out.lod = [[0,                2,    4],
    +                   [0,       3,       6, 7, 8]]
    +        out.data = [a, a, a, b, b, b, c, d]
    +        out.dims = [8, 1]
    +
    +* Case 2
    +    x is a Tensor:
    +        x.data = [a, b, c]
    +        x.dims = [3, 1]
    +
    +    y is a LoDTensor:
    +        y.lod = [[0, 2, 3, 6]]
    +
    +    with condition len(y.lod[-1]) - 1 == x.dims[0]
    +
    +    then output is a 1-level LoDTensor:
    +        out.lod = [[0,    2, 3,      6]]
    +        out.data = [a, a, b, c, c, c]
    +        out.dims = [6, 1]
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • x (Variable) – The input variable which is a Tensor or LoDTensor.
    • +
    • y (Variable) – The input variable which is a LoDTensor.
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    • +
    +
    Returns:

    The expanded variable which is a LoDTensor.

    +
    Return type:

    Variable

    +
    +

    Examples

    +
    x = fluid.layers.data(name='x', shape=[10], dtype='float32')
    +y = fluid.layers.data(name='y', shape=[10, 20],
    +                 dtype='float32', lod_level=1)
    +out = layers.sequence_expand(x=x, y=y)
    +
    +
    +
    + +
    +
    +

    lstm_unit

    +
    +
    +paddle.v2.fluid.layers.lstm_unit(x_t, hidden_t_prev, cell_t_prev, forget_bias=0.0, param_attr=None, bias_attr=None, name=None)
    +

    Lstm unit layer. The equation of a lstm step is:

    +
    +
    +\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)\\f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)\\c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)\\o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)\\h_t & = o_t tanh(c_t)\end{aligned}\end{align} \]
    +
    +

    The inputs of lstm unit include \(x_t\), \(h_{t-1}\) and +\(c_{t-1}\). The 2nd dimensions of \(h_{t-1}\) and \(c_{t-1}\) +should be same. The implementation separates the linear transformation and +non-linear transformation apart. Here, we take \(i_t\) as an example. +The linear transformation is applied by calling a fc layer and the +equation is:

    +
    +
    +\[L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i\]
    +
    +

    The non-linear transformation is applied by calling lstm_unit_op and the +equation is:

    +
    +
    +\[i_t = \sigma(L_{i_t})\]
    +
    +

    This layer has two outputs including \(h_t\) and \(o_t\).

    + +++ + + + + + + + + + +
    Parameters:
      +
    • x_t (Variable) – The input value of current step, a 2-D tensor with shape +M x N, M for batch size and N for input size.
    • +
    • hidden_t_prev (Variable) – The hidden value of lstm unit, a 2-D tensor +with shape M x S, M for batch size and S for size of lstm unit.
    • +
    • cell_t_prev (Variable) – The cell value of lstm unit, a 2-D tensor with +shape M x S, M for batch size and S for size of lstm unit.
    • +
    • forget_bias (float) – The forget bias of lstm unit.
    • +
    • param_attr (ParamAttr) – The attributes of parameter weights, used to set +initializer, name etc.
    • +
    • bias_attr (ParamAttr) – The attributes of bias weights, if not False, +bias weights will be created and be set to default value.
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    • +
    +
    Returns:

    The hidden value and cell value of lstm unit.

    +
    Return type:

    tuple

    +
    Raises:

    ValueError – The ranks of x_t, hidden_t_prev and cell_t_prev +not be 2 or the 1st dimensions of x_t, hidden_t_prev +and cell_t_prev not be the same or the 2nd dimensions of +hidden_t_prev and cell_t_prev not be the same.

    +
    +

    Examples

    +
    x_t = fluid.layers.fc(input=x_t_data, size=10)
    +prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
    +prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
    +hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
    +                                       hidden_t_prev=prev_hidden,
    +                                       cell_t_prev=prev_cell)
    +
    +
    +
    + +
    +
    +

    reduce_sum

    +
    +
    +paddle.v2.fluid.layers.reduce_sum(input, dim=None, keep_dim=False, name=None)
    +

    Computes the sum of tensor elements over the given dimension.

    + +++ + + + + + + + +
    Parameters:
      +
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • +
    • dim (int|None) – The dimension along which the sum is performed. If +None, sum all elements of input and return a +Tensor variable with a single element, otherwise must be in the +range \([-rank(input), rank(input))\). If \(dim < 0\), +the dimension to reduce is \(rank + dim\).
    • +
    • keep_dim (bool) – Whether to reserve the reduced dimension in the +output Tensor. The result tensor will have one fewer dimension +than the input unless keep_dim is true.
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    • +
    +
    Returns:

    The reduced Tensor variable.

    +
    Return type:

    Variable

    +
    +

    Examples

    +
    # x is a Tensor variable with following elements:
    +#    [[0.2, 0.3, 0.5, 0.9]
    +#     [0.1, 0.2, 0.6, 0.7]]
    +# Each example is followed by the correspending output tensor.
    +fluid.layers.reduce_sum(x)  # [3.5]
    +fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
    +fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
    +fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
    +
    +
    +
    + +
    +
    +

    reduce_mean

    +
    +
    +paddle.v2.fluid.layers.reduce_mean(input, dim=None, keep_dim=False, name=None)
    +

    Computes the mean of tensor elements over the given dimension.

    + +++ + + + + + + + +
    Parameters:
      +
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • +
    • dim (int|None) – The dimension along which the mean is computed. If +None, compute the mean over all elements of input +and return a Tensor variable with a single element, otherwise +must be in the range \([-rank(input), rank(input))\). If +\(dim < 0\), the dimension to reduce is \(rank + dim\).
    • +
    • keep_dim (bool) – Whether to reserve the reduced dimension in the +output Tensor. The result tensor will have one fewer dimension +than the input unless keep_dim is true.
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    • +
    +
    Returns:

    The reduced Tensor variable.

    +
    Return type:

    Variable

    +
    +

    Examples

    +
    # x is a Tensor variable with following elements:
    +#    [[0.2, 0.3, 0.5, 0.9]
    +#     [0.1, 0.2, 0.6, 0.7]]
    +# Each example is followed by the correspending output tensor.
    +fluid.layers.reduce_mean(x)  # [0.4375]
    +fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
    +fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
    +fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
     
    -
    -

    accuracy

    -
    -
    -paddle.v2.fluid.layers.accuracy(input, label, k=1, correct=None, total=None, **kwargs)
    -

    This function computes the accuracy using the input and label. -The output is the top_k inputs and their indices.

    -
    - -
    -
    -

    sequence_conv

    -
    -
    -paddle.v2.fluid.layers.sequence_conv(input, num_filters, filter_size=3, filter_stride=1, padding=None, bias_attr=None, param_attr=None, act=None)
    -

    This function creates the op for sequence_conv, using the inputs and -other convolutional configurations for the filters and stride as given -in the input parameters to the function.

    -
    - -
    -
    -

    conv2d

    +
    +

    reduce_max

    -paddle.v2.fluid.layers.conv2d(input, num_filters, filter_size, stride=None, padding=None, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None)
    -

    Convlution2D Layer

    -

    The convolution2D layer calculates the output based on the input, filter -and strides, paddings, dilations, groups parameters. Input(Input) and -Output(Output) are in NCHW format. Where N is batch size, C is the number of -channels, H is the height of the feature, and W is the width of the feature. -The details of convolution layer, please refer UFLDL’s convolution, . -If bias attribution and activation type are provided, bias is added to the -output of the convolution, and the corresponding activation function is -applied to the final result.

    -

    For each input \(X\), the equation is:

    -
    -\[Out = \sigma (W \ast X + b)\]
    -

    In the above equation:

    -
      -
    • \(X\): Input value, a tensor with NCHW format.
    • -
    • \(W\): Filter value, a tensor with MCHW format.
    • -
    • \(\ast\): Convolution operation.
    • -
    • \(b\): Bias value, a 2-D tensor with shape [M, 1].
    • -
    • \(\sigma\): Activation function.
    • -
    • -
      \(Out\): Output value, the shape of \(Out\) and \(X\) may be
      -
      different.
      -
      -
    • -
    -

    Example

    -
      -
    • Input:

      -

      Input shape: $(N, C_{in}, H_{in}, W_{in})$

      -

      Filter shape: $(C_{out}, C_{in}, H_f, W_f)$

      -
    • -
    • Output: -Output shape: $(N, C_{out}, H_{out}, W_{out})$

      -
    • -
    -

    Where

    -
    -\[\]
    -

    H_{out}&= frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \ -W_{out}&= frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    +paddle.v2.fluid.layers.reduce_max(input, dim=None, keep_dim=False, name=None) +

    Computes the maximum of tensor elements over the given dimension.

    - - - -
    Parameters:
      -
    • input (Variable) – The input image with [N, C, H, W] format.
    • -
    • num_filters (int) – The number of filter. It is as same as the output -image channel.
    • -
    • filter_size (int|tuple|None) – The filter size. If filter_size is a tuple, -it must contain two integers, (filter_size_H, filter_size_W). -Otherwise, the filter will be a square.
    • -
    • stride (int|tuple) – The stride size. If stride is a tuple, it must -contain two integers, (stride_H, stride_W). Otherwise, the -stride_H = stride_W = stride. Default: stride = 1.
    • -
    • padding (int|tuple) – The padding size. If padding is a tuple, it must -contain two integers, (padding_H, padding_W). Otherwise, the -padding_H = padding_W = padding. Default: padding = 0.
    • -
    • groups (int) – The groups number of the Conv2d Layer. According to grouped -convolution in Alex Krizhevsky’s Deep CNN paper: when group=2, -the first half of the filters is only connected to the first half -of the input channels, while the second half of the filters is only -connected to the second half of the input channels. Default: groups=1
    • -
    • param_attr (ParamAttr) – The parameters to the Conv2d Layer. Default: None
    • -
    • bias_attr (ParamAttr) – Bias parameter for the Conv2d layer. Default: None
    • -
    • use_cudnn (bool) – Use cudnn kernel or not, it is valid only when the cudnn -library is installed. Default: True
    • -
    • act (str) – Activation type. Default: None
    • +
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • +
    • dim (int|None) – The dimension along which the maximum is computed. +If None, compute the maximum over all elements of +input and return a Tensor variable with a single element, +otherwise must be in the range \([-rank(input), rank(input))\). +If \(dim < 0\), the dimension to reduce is \(rank + dim\).
    • +
    • keep_dim (bool) – Whether to reserve the reduced dimension in the +output Tensor. The result tensor will have one fewer dimension +than the input unless keep_dim is true.
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    Returns:

    -
    The tensor variable storing the convolution and
    -

    non-linearity activation result.

    -
    -
    -

    -
    Return type:

    Variable

    +
    Returns:

    The reduced Tensor variable.

    Raises:

    ValueError – If the shapes of input, filter_size, stride, padding and -groups mismatch.

    +
    Return type:

    Variable

    Examples

    -
    data = fluid.layers.data(
    -    name='data', shape=[3, 32, 32], dtype='float32')
    -conv2d = fluid.layers.conv2d(
    -    input=data, num_filters=2, filter_size=3, act="relu")
    +
    # x is a Tensor variable with following elements:
    +#    [[0.2, 0.3, 0.5, 0.9]
    +#     [0.1, 0.2, 0.6, 0.7]]
    +# Each example is followed by the correspending output tensor.
    +fluid.layers.reduce_max(x)  # [0.9]
    +fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
    +fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
    +fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
     
    -
    -

    sequence_pool

    +
    +

    reduce_min

    -paddle.v2.fluid.layers.sequence_pool(input, pool_type, **kwargs)
    -

    This function add the operator for sequence pooling. -It pools features of all time-steps of each instance, and is applied -on top of the input using pool_type mentioned in the parameters.

    -

    It supports four pool_type:

    -
      -
    • average: \(Out[i] = \frac{\sum_i X_i}{N}\)
    • -
    • sum: \(Out[i] = \sum_jX_{ij}\)
    • -
    • sqrt: \(Out[i] = \frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}\)
    • -
    • max: \(Out[i] = max(X_i)\)
    • -
    -
    x is a 1-level LoDTensor:
    -  x.lod = [[0, 2, 5, 7]]
    -  x.data = [1, 3, 2, 4, 6, 5, 1]
    -  x.dims = [7, 1]
    -
    -then output is a Tensor:
    -  out.dim = [3, 1]
    -  with condition len(x.lod[-1]) - 1 == out.dims[0]
    -
    -for different pool_type:
    -  average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
    -  sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
    -  sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
    -             6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
    -  max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
    -
    -
    +paddle.v2.fluid.layers.reduce_min(input, dim=None, keep_dim=False, name=None) +

    Computes the minimum of tensor elements over the given dimension.

    - + +
    Parameters:
      -
    • input (variable) – The input variable which is a LoDTensor.
    • -
    • pool_type (string) – The pooling type of sequence_pool. -It supports average, sum, sqrt and max.
    • +
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • +
    • dim (int|None) – The dimension along which the minimum is computed. +If None, compute the minimum over all elements of +input and return a Tensor variable with a single element, +otherwise must be in the range \([-rank(input), rank(input))\). +If \(dim < 0\), the dimension to reduce is \(rank + dim\).
    • +
    • keep_dim (bool) – Whether to reserve the reduced dimension in the +output Tensor. The result tensor will have one fewer dimension +than the input unless keep_dim is true.
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    Returns:

    The sequence pooling variable which is a Tensor.

    +
    Returns:

    The reduced Tensor variable.

    +
    Return type:

    Variable

    Examples

    -
    x = fluid.layers.data(name='x', shape=[7, 1],
    -                 dtype='float32', lod_level=1)
    -avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
    -sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
    -sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
    -max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
    +
    # x is a Tensor variable with following elements:
    +#    [[0.2, 0.3, 0.5, 0.9]
    +#     [0.1, 0.2, 0.6, 0.7]]
    +# Each example is followed by the correspending output tensor.
    +fluid.layers.reduce_min(x)  # [0.1]
    +fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
    +fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
    +fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
     
    -

    sequence_first_step

    +

    sequence_first_step

    paddle.v2.fluid.layers.sequence_first_step(input, **kwargs)
    @@ -1712,7 +2422,7 @@ then output is a Tensor:
    -

    sequence_last_step

    +

    sequence_last_step

    paddle.v2.fluid.layers.sequence_last_step(input, **kwargs)
    @@ -1733,95 +2443,47 @@ then output is a Tensor: Parameters:input (variable) – The input variable which is a LoDTensor. - -Returns:The sequence’s last step variable which is a Tensor. - - - -

    Examples

    -
    x = fluid.layers.data(name='x', shape=[7, 1],
    -                 dtype='float32', lod_level=1)
    -x_last_step = fluid.layers.sequence_last_step(input=x)
    -
    -
    -
    - -
    -
    -

    pool2d

    -
    -
    -paddle.v2.fluid.layers.pool2d(input, pool_size, pool_type, pool_stride=None, pool_padding=None, global_pooling=False, use_cudnn=True, name=None)
    -

    This function adds the operator for pooling in 2 dimensions, using the -pooling configurations mentioned in input parameters.

    -
    - -
    -
    -

    batch_norm

    -
    -
    -paddle.v2.fluid.layers.batch_norm(input, act=None, is_test=False, momentum=0.9, epsilon=1e-05, param_attr=None, bias_attr=None, data_layout='NCHW', name=None)
    -

    This function helps create an operator to implement -the BatchNorm layer using the configurations from the input parameters.

    -
    - -
    -
    -

    beam_search_decode

    -
    -
    -paddle.v2.fluid.layers.beam_search_decode(ids, scores, name=None)
    -
    - -
    -
    -

    lod_rank_table

    -
    -
    -paddle.v2.fluid.layers.lod_rank_table(x, level=0)
    -

    LoD Rank Table Operator. Given an input variable x and a level number -of LoD, this layer creates a LodRankTable object. A LoDRankTable object -contains a list of bi-element tuples. Each tuple consists of an index and -a length, both of which are int type. Refering to specified level of LoD, -the index is the sequence index number and the length representes the -sequence length. Please note that the list is ranked in descending order by -the length. The following is an example:

    -
    -
    x is a LoDTensor:
    -    x.lod = [[0,                2, 3],
    -             [0,             5, 6, 7]]
    -    x.data = [a, b, c, d, e, f, g]
    -
    -1. set level to 0:
    -    Create lod rank table:
    -        lod_rank_table_obj = lod_rank_table(x, level=0)
    -
    -    Get:
    -        lod_rank_table_obj.items() = [(0, 2), (1, 1)]
    -
    -2. set level to 1:
    -    Create lod rank table:
    -        lod_rank_table_obj = lod_rank_table(x, level=1)
    -
    -    Get:
    -        lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
    +
    +Returns:The sequence’s last step variable which is a Tensor.
    +
    +
    +
    +

    Examples

    +
    x = fluid.layers.data(name='x', shape=[7, 1],
    +                 dtype='float32', lod_level=1)
    +x_last_step = fluid.layers.sequence_last_step(input=x)
     
    -
    +
    + +
    +
    +

    dropout

    +
    +
    +paddle.v2.fluid.layers.dropout(x, dropout_prob, is_test=False, seed=None, **kwargs)
    +

    Computes dropout.

    +

    Drop or keep each element of x independently. Dropout is a regularization +technique for reducing overfitting by preventing neuron co-adaption during +training. The dropout operator randomly set (according to the given dropout +probability) the outputs of some units to zero, while others are remain +unchanged.

    -
    Parameters:
      -
    • x (Variable) – Input variable, a LoDTensor based which to create the lod -rank table.
    • -
    • level (int) – Specify the LoD level, on which to create the lod rank -table.
    • +
    • x (variable) – The input tensor.
    • +
    • dropout_prob (float) – Probability of setting units to zero.
    • +
    • is_test (bool) – A flag indicating whether it is in test phrase or not.
    • +
    • seed (int) – A Python integer used to create random seeds. If this +parameter is set to None, a random seed is used. +NOTE: If an integer seed is given, always the same output +units will be dropped. DO NOT use a fixed seed in training.
    Returns:

    The created LoDRankTable object.

    +
    Returns:

    A tensor variable.

    Return type:

    Variable

    @@ -1830,74 +2492,116 @@ table.

    Examples

    -
    x = fluid.layers.data(name='x', shape=[10],
    -                dtype='float32', lod_level=1)
    -out = layers.lod_rank_table(x=x, level=0)
    +
    x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
    +droped = fluid.layers.dropout(input=x, dropout_rate=0.5)
     
    -
    -

    max_sequence_len

    +
    +

    split

    -paddle.v2.fluid.layers.max_sequence_len(rank_table)
    -

    Max Sequence Len Operator. Given a LoDRankTable object, this layer -returns the max length of a batch of sequences. In fact, a LoDRankTable -object contains a list of tuples(<sequence index, sequence length>) and -the list is already sorted by sequence length in descending order, so the -operator just returns the sequence length of the first tuple element.

    +paddle.v2.fluid.layers.split(input, num_or_sections, dim=-1, name=None) +

    Split the input tensor into multiple sub-tensors.

    - + - + - +
    Parameters:rank_table (Variable) – Input variable which is a LoDRankTable object.
    Parameters:
      +
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • +
    • num_or_sections (int|list) – If num_or_sections is an integer, +then the integer indicates the number of equal sized sub-tensors +that the tensor will be divided into. If num_or_sections +is a list of integers, the length of list indicates the number of +sub-tensors and the integers indicate the sizes of sub-tensors’ +dim dimension orderly.
    • +
    • dim (int) – The dimension along which to split. If \(dim < 0\), the +dimension to split along is \(rank(input) + dim\).
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    • +
    +
    Returns:The max length of sequence.
    Returns:

    The list of segmented tensor variables.

    +
    Return type:Variable
    Return type:

    List

    +

    Examples

    -
    x = fluid.layers.data(name='x', shape=[10],
    -                dtype='float32', lod_level=1)
    -rank_table = layers.lod_rank_table(x=x, level=0)
    -max_seq_len = layers.max_sequence_len(rank_table)
    +
    # x is a Tensor variable with shape [3, 9, 5]:
    +x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
    +x0.shape  # [3, 3, 5]
    +x1.shape  # [3, 3, 5]
    +x2.shape  # [3, 3, 5]
    +x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
    +x0.shape  # [3, 2, 5]
    +x1.shape  # [3, 3, 5]
    +x2.shape  # [3, 4, 5]
     
    -
    -

    topk

    +
    +

    ctc_greedy_decoder

    -paddle.v2.fluid.layers.topk(input, k)
    -

    topk

    -

    This function performs the operation that selects the k entries in the input -vector and outputs their values and indices as vectors. Thus topk_out[j] is -the j-th largest entry in input, and its index is topk_indices[j]

    +paddle.v2.fluid.layers.ctc_greedy_decoder(input, blank, name=None) +

    This op is used to decode sequences by greedy policy by below steps: +1. Get the indexes of max value for each row in input. a.k.a.

    +
    +
    numpy.argmax(input, axis=0).
    +
      +
    1. For each sequence in result of step1, merge repeated tokens between two +blanks and delete all blanks.
    2. +
    +

    A simple example as below:

    +
    Given:
    +
    +input.data = [[0.6, 0.1, 0.3, 0.1],
    +              [0.3, 0.2, 0.4, 0.1],
    +              [0.1, 0.5, 0.1, 0.3],
    +              [0.5, 0.1, 0.3, 0.1],
    +
    +              [0.5, 0.1, 0.3, 0.1],
    +              [0.2, 0.2, 0.2, 0.4],
    +              [0.2, 0.2, 0.1, 0.5],
    +              [0.5, 0.1, 0.3, 0.1]]
    +
    +input.lod = [[0, 4, 8]]
    +
    +Then:
    +
    +output.data = [[2],
    +               [1],
    +               [3]]
    +
    +output.lod = [[0, 2, 3]]
    +
    +
    -
    Parameters:
      -
    • input (Variable|list) – The input tensor that has all the data.
    • -
    • k (int) – The number of top elements that the function will pick.
    • +
    • input (Variable) – (LoDTensor<float>), the probabilities of +variable-length sequences, which is a 2-D Tensor with +LoD information. It’s shape is [Lp, num_classes + 1], +where Lp is the sum of all input sequences’ length and +num_classes is the true number of classes. (not +including the blank label).
    • +
    • blank (int) – the blank label index of Connectionist Temporal +Classification (CTC) loss, which is in thehalf-opened +interval [0, num_classes + 1).
    Returns:

    -
    The variable of type array that contains the k largest entries
    -

    from input.

    -
    -
    Variable: The variable of type array that contains the indices of k
    -

    largest entries from input.

    -
    -
    -

    +
    Returns:

    CTC greedy decode result.

    Return type:

    Variable

    @@ -1906,38 +2610,50 @@ the j-th largest entry in input, and its index is topk_indices[j]

    Examples

    -
    x = fluid.layers.data(name='x', shape=[10])
    -k = 5
    -array = fluid.layers.topk(x, k)
    +
    x = fluid.layers.data(name='x', shape=[8], dtype='float32')
    +
    +cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
     
    -
    -

    lod_tensor_to_array

    +
    +

    edit_distance

    -paddle.v2.fluid.layers.lod_tensor_to_array(x, table)
    -

    Convert a LOD_TENSOR to an LOD_TENSOR_ARRAY.

    +paddle.v2.fluid.layers.edit_distance(input, label, normalized=False, ignored_tokens=None, name=None) +

    EditDistance operator computes the edit distances between a batch of +hypothesis strings and their references. Edit distance, also called +Levenshtein distance, measures how dissimilar two strings are by counting +the minimum number of operations to transform one string into anthor. +Here the operations include insertion, deletion, and substitution.

    +

    For example, given hypothesis string A = “kitten” and reference +B = “sitting”, the edit distance is 3 for A will be transformed into B +at least after two substitutions and one insertion:

    +

    “kitten” -> “sitten” -> “sittin” -> “sitting”

    +

    Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with +the total number denoted by batch_size, and the separation is specified +by the LoD information. And the batch_size reference strings are arranged +in order in the same way in the LoDTensor Input(Refs).

    +

    Output(Out) contains the batch_size results and each stands for the edit +distance for a pair of strings respectively. If Attr(normalized) is true, +the edit distance will be divided by the length of reference string.

    -
    Parameters:
      -
    • x (Variable|list) – The LOD tensor to be converted to a LOD tensor array.
    • -
    • table (ParamAttr|list) – The variable that stores the level of lod -which is ordered by sequence length in -descending order.
    • +
    • input (Variable) – The indices for hypothesis strings.
    • +
    • label (Variable) – The indices for reference strings.
    • +
    • normalized (bool) – Indicated whether to normalize the edit distance by +the length of reference string.
    • +
    • ignored_tokens (list of int) – Tokens that should be removed before +calculating edit distance.
    Returns:

    -
    The variable of type array that has been converted from a
    -

    tensor.

    -
    -
    -

    +
    Returns:

    sequence-to-sequence edit distance in shape [batch_size, 1].

    Return type:

    Variable

    @@ -1946,38 +2662,42 @@ descending order.

    Examples

    -
    x = fluid.layers.data(name='x', shape=[10])
    -table = fluid.layers.lod_rank_table(x, level=0)
    -array = fluid.layers.lod_tensor_to_array(x, table)
    +
    x = fluid.layers.data(name='x', shape=[8], dtype='float32')
    +y = fluid.layers.data(name='y', shape=[7], dtype='float32')
    +
    +cost = fluid.layers.edit_distance(input=x,label=y)
     
    -
    -

    array_to_lod_tensor

    +
    +

    l2_normalize

    -paddle.v2.fluid.layers.array_to_lod_tensor(x, table)
    -

    Convert a LoD_Tensor_Aarry to an LoDTensor.

    +paddle.v2.fluid.layers.l2_normalize(x, axis, epsilon=1e-12, name=None) +

    L2 normalize Layer

    +

    The l2 normalize layer normalizes x along dimension axis using an L2 +norm. For a 1-D tensor (dim is fixed to 0), this layer computes

    +

    output = x / sqrt(max(sum(x**2), epsilon))

    +

    For x with more dimensions, this layer independently normalizes each 1-D +slice along dimension axis.

    -
    Parameters:
      -
    • x (Variable|list) – The lod tensor array to be converted to a tensor.
    • -
    • table (ParamAttr|list) – The variable that stores the level of lod -which is ordered by sequence length in -descending order.
    • +
    • x (Variable|list) – The input tensor to l2_normalize layer.
    • +
    • axis (int) – Dimension along which to normalize the input.
    • +
    • epsilon (float) – A lower bound value for x‘s l2 norm. sqrt(epsilon) will +be used as the divisor if the l2 norm of x is less than +sqrt(epsilon).
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    Returns:

    -
    The variable of type tensor that has been converted
    -

    from an array.

    -
    -
    -

    +
    Returns:

    The output tensor variable.

    Return type:

    Variable

    @@ -1986,37 +2706,59 @@ descending order.

    Examples

    -
    x = fluid.layers.data(name='x', shape=[10])
    -table = fluid.layers.lod_rank_table(x, level=0)
    -array = fluid.layers.lod_tensor_to_array(x, table)
    -lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
    +
    data = fluid.layers.data(name="data",
    +                         shape=(3, 17, 13),
    +                         dtype="float32")
    +normed = fluid.layers.l2_normalize(x=data, axis=1)
     
    -
    -

    fill_constant

    +
    +

    matmul

    -paddle.v2.fluid.layers.fill_constant(shape, dtype, value, force_cpu=False, out=None)
    -

    fill_constant

    -

    This function creates a tensor with specified shape and dtype, and -initializes it with a constant specifed by value.

    -

    The attribute stop_gradient of the created tensor is set to True.

    +paddle.v2.fluid.layers.matmul(x, y, transpose_x=False, transpose_y=False, name=None) +

    Applies matrix multiplication to two tensors.

    +

    Currently, the input tensors’ rank can be any, but when the rank of any +inputs is bigger than 3, this two inputs’ rank should be equal.

    +

    The actual behavior depends on the shapes of \(x\), \(y\) and the +flag values of transpose_x, transpose_y. Specifically:

    +
      +
    • If a transpose flag is specified, the last two dimensions of the tensor +are transposed. If the tensor is rank-1 of shape \([D]\), then for +\(x\) it is treated as \([1, D]\) in nontransposed form and as +\([D, 1]\) in transposed form, whereas for \(y\) it is the +opposite: It is treated as \([D, 1]\) in nontransposed form and as +\([1, D]\) in transposed form.
    • +
    • After transpose, the two tensors are 2-D or n-D and matrix multiplication +performs in the following way.
        +
      • If both are 2-D, they are multiplied like conventional matrices.
      • +
      • If either is n-D, it is treated as a stack of matrices residing in the +last two dimensions and a batched matrix multiply supporting broadcast +applies on the two tensors.
      • +
      +
    • +
    +

    Also note that if the raw tensor \(x\) or \(y\) is rank-1 and +nontransposed, the prepended or appended dimension \(1\) will be +removed after matrix multiplication.

    -
    Parameters:
      -
    • shape (tuple|list|None) – Shape of the output tensor.
    • -
    • dtype (np.dtype|core.DataType|str) – Data type of the output tensor.
    • -
    • value (float) – The constant value used to initialize the output tensor.
    • -
    • out (Variable) – The output tensor.
    • +
    • x (Variable) – The input variable which is a Tensor or LoDTensor.
    • +
    • y (Variable) – The input variable which is a Tensor or LoDTensor.
    • +
    • transpose_x (bool) – Whether to transpose \(x\) before multiplication.
    • +
    • transpose_y (bool) – Whether to transpose \(y\) before multiplication.
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    Returns:

    The tensor variable storing the output.

    +
    Returns:

    The product Tensor variable.

    Return type:

    Variable

    @@ -2025,37 +2767,70 @@ initializes it with a constant specifed by value.

    Examples

    -
    data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
    +
    # Examples to clarify shapes of the inputs and output
    +# x: [B, ..., M, K], y: [B, ..., K, N]
    +fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
    +
    +# x: [B, M, K], y: [B, K, N]
    +fluid.layers.matmul(x, y)  # out: [B, M, N]
    +
    +# x: [B, M, K], y: [K, N]
    +fluid.layers.matmul(x, y)  # out: [B, M, N]
    +
    +# x: [M, K], y: [K, N]
    +fluid.layers.matmul(x, y)  # out: [M, N]
    +
    +# x: [B, M, K], y: [K]
    +fluid.layers.matmul(x, y)  # out: [B, M]
    +
    +# x: [K], y: [K]
    +fluid.layers.matmul(x, y)  # out: [1]
    +
    +# x: [M], y: [N]
    +fluid.layers.matmul(x, y, True, True)  # out: [M, N]
     
    -
    -

    fill_constant_batch_size_like

    +
    +

    warpctc

    -paddle.v2.fluid.layers.fill_constant_batch_size_like(input, shape, dtype, value, input_dim_idx=0, output_dim_idx=0)
    -

    fill_constant_batch_size_like

    -

    This function creates a tensor of specified shape, dtype and batch size, -and initializes this with a constant supplied in value. The batch size is -obtained from the input tensor.

    -

    It also sets stop_gradient to True.

    +paddle.v2.fluid.layers.warpctc(input, label, blank=0, norm_by_times=False, **kwargs) +

    An operator integrating the open source Warp-CTC library +(https://github.com/baidu-research/warp-ctc) +to compute Connectionist Temporal Classification (CTC) loss. +It can be aliased as softmax with CTC, since a native softmax activation is +interated to the Warp-CTC library, to to normlize values for each row of the +input tensor.

    -
    Parameters:
      -
    • input (Variable) – Tensor whose dimensions will be used to get batch size
    • -
    • shape (tuple|list|None) – Shape of output tensor
    • -
    • dtype (np.dtype|core.DataType|str) – Data type of output tensor
    • -
    • value (float) – Constant value to initialize the output tensor
    • -
    • input_dim_idx (int) – Index of input’s batch size dimension
    • -
    • output_dim_idx (int) – Index of output’s batch size dimension
    • +
    • input (Variable) – (LodTensor, default: LoDTensor<float>), +the unscaled probabilities of variable-length sequences, +which is a 2-D Tensor with LoD information. +It’s shape is [Lp, num_classes + 1], where Lp is the sum of all input +sequences’ length and num_classes is the true number of classes. +(not including the blank label).
    • +
    • label (Variable) – (LodTensor, default: LoDTensor<int>), the ground truth +of variable-length sequence, which is a 2-D Tensor with LoD +information. It is of the shape [Lg, 1], where Lg is th sum of +all labels’ length.
    • +
    • blank – (int, default: 0), the blank label index of Connectionist +Temporal Classification (CTC) loss, which is in the +half-opened interval [0, num_classes + 1).
    • +
    • norm_by_times – (bool, default: false), whether to normalize
    • +
    • gradients by the number of time-step, which is also the (the) –
    • +
    • length. There is no need to normalize the gradients (sequence's) –
    • +
    • warpctc layer was follewed by a mean_op. (if) –
    Returns:

    The tensor variable storing the output

    +
    Returns:

    The Connectionist Temporal Classification (CTC) loss, +which is a 2-D Tensor of the shape [batch_size, 1].

    Return type:

    Variable

    @@ -2064,33 +2839,49 @@ obtained from the input tensor.

    Examples

    -
    data = fluid.layers.fill_constant_batch_size_like(
    -    input=like, shape=[1], value=0, dtype='int64')
    -
    -
    -
    -

    ones

    +
    +

    sequence_reshape

    -paddle.v2.fluid.layers.ones(shape, dtype)
    -

    ones

    -

    This function creates a tensor of specified shape and -dtype, and initializes this with 1.

    -

    It also sets stop_gradient to True.

    +paddle.v2.fluid.layers.sequence_reshape(input, new_dim) +

    Sequence Reshape Layer

    +

    This layer will rearrange the input sequences. The new dimension is set by +user. Length of each sequence is computed according to original length, +original dimension and new dimension. The following example will help to +illustrate the function of this layer:

    +
    x is a LoDTensor:
    +    x.lod  = [[0, 2, 6]]
    +    x.data = [[1, 2], [3, 4],
    +              [5, 6], [7, 8], [9, 10], [11, 12]]
    +    x.dims = [6, 2]
    +
    +set new_dim = 4
    +
    +then out is a LoDTensor:
    +    out.lod  = [[0, 1, 3]]
    +    out.data = [[1, 2, 3, 4],
    +                [5, 6, 7, 8], [9, 10, 11, 12]]
    +    out.dims = [3, 4]
    +
    +
    +

    Currently, only 1-level LoDTensor is supported and please make sure +(original length * original dimension) can be divided by new dimension with +no remainder for each sequence.

    -
    Parameters:
      -
    • shape (tuple|list|None) – Shape of output tensor
    • -
    • dtype (np.dtype|core.DataType|str) – Data type of output tensor
    • +
    • input (Variable) – (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor +with shape being [N, M] where M for dimension.
    • +
    • new_dim (int) – New dimension which the input LoDTensor is reshaped to.
    Returns:

    The tensor variable storing the output

    +
    Returns:

    Reshaped LoDTensor according to new dimension.

    Return type:

    Variable

    @@ -2099,32 +2890,34 @@ obtained from the input tensor.

    Examples

    -
    data = fluid.layers.ones(shape=[1], dtype='int64')
    +
    x = fluid.layers.data(name='x', shape=[5, 20],
    +                  dtype='float32', lod_level=1)
    +x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
     
    -
    -

    zeros

    +
    +

    transpose

    -paddle.v2.fluid.layers.zeros(shape, dtype)
    -

    zeros

    -

    This function creates a tensor of specified shape and -dtype, and initializes this with 0.

    -

    It also sets stop_gradient to True.

    +paddle.v2.fluid.layers.transpose(x, perm, name=None) +

    transpose Layer

    +

    Permute the dimensions of input according to perm.

    +

    The i-th dimension of the returned tensor will correspond to the +perm[i]-th dimension of input.

    -
    Parameters:
      -
    • shape (tuple|list|None) – Shape of output tensor
    • -
    • dtype (np.dtype|core.DataType|str) – Data type of output tensor
    • +
    • input (Variable) – (Tensor), A Tensor.
    • +
    • perm (list) – A permutation of the dimensions of input.
    Returns:

    The tensor variable storing the output

    +
    Returns:

    A transposed Tensor.

    Return type:

    Variable

    @@ -2133,134 +2926,249 @@ obtained from the input tensor.

    Examples

    -
    data = fluid.layers.zeros(shape=[1], dtype='int64')
    +
    x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
    +x_transposed = layers.transpose(x, perm=[1, 0, 2])
     
    -
    -

    increment

    +
    +

    im2sequence

    -paddle.v2.fluid.layers.increment(x, value=1.0, in_place=True)
    -

    This function performs an operation that increments each value in the -input \(x\) by an amount: \(value\) as mentioned in the input -parameter. This operation is performed in-place by default.

    +paddle.v2.fluid.layers.im2sequence(input, filter_size=1, stride=1, padding=0, name=None) +

    Extracts image patches from the input tensor to form a tensor of shape +{input.batch_size * output_height * output_width, filter_size_H * +filter_size_W * input.channels} which is similar with im2col. +This op use filter / kernel to scan images and convert these images to +sequences. After expanding, the number of time step are +output_height * output_width for an image, in which output_height and +output_width are calculated by below equation:

    +
    +\[output\_size = 1 + (2 * padding + img\_size - block\_size + stride - 1) / stride\]
    +

    And the dimension of each time step is block_y * block_x * input.channels.

    - -
    Parameters:
      -
    • x (Variable|list) – The tensor that has the input values.
    • -
    • value (float) – The amount by which the values should be incremented.
    • -
    • in_place (bool) – If the increment should be performed in-place.
    • +
    • input (Variable) – The input should be a tensor in NCHW format.
    • +
    • filter_size (int|tuple|None) – The filter size. If filter_size is a tuple, +it must contain two integers, (filter_size_H, filter_size_W). +Otherwise, the filter will be a square.
    • +
    • stride (int|tuple) – The stride size. If stride is a tuple, it must +contain two integers, (stride_H, stride_W). Otherwise, the +stride_H = stride_W = stride. Default: stride = 1.
    • +
    • padding (int|tuple) – The padding size. If padding is a tuple, it can +contain two integers like (padding_H, padding_W) which means +padding_up = padding_down = padding_H and +padding_left = padding_right = padding_W. Or it can use +(padding_up, padding_left, padding_down, padding_right) to indicate +paddings of four direction. Otherwise, a scalar padding means +padding_up = padding_down = padding_left = padding_right = padding +Default: padding = 0.
    • +
    • name (int) – The name of this layer. It is optional.
    Returns:

    -
    The tensor variable storing the transformation of
    -

    element-wise increment of each value in the input.

    -
    -
    -

    +
    Returns:

    The output is a LoDTensor with shape +{input.batch_size * output_height * output_width, +filter_size_H * filter_size_W * input.channels}. +If we regard output as a matrix, each row of this matrix is +a step of a sequence.

    Return type:

    Variable

    +
    Return type:

    output

    -

    Examples

    -
    data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
    -data = fluid.layers.increment(x=data, value=3.0, in_place=True)
    +

    Examples:

    +

    As an example:

    +
    +
    Given:
    +
    +x = [[[[ 6.  2.  1.]
    +       [ 8.  3.  5.]
    +       [ 0.  2.  6.]]
    +
    +      [[ 2.  4.  4.]
    +       [ 6.  3.  0.]
    +       [ 6.  4.  7.]]]
    +
    +     [[[ 6.  7.  1.]
    +       [ 5.  7.  9.]
    +       [ 2.  4.  8.]]
    +
    +      [[ 1.  2.  1.]
    +       [ 1.  3.  5.]
    +       [ 9.  0.  8.]]]]
    +
    +x.dims = {2, 2, 3, 3}
    +
    +And:
    +
    +filter = [2, 2]
    +stride = [1, 1]
    +padding = [0, 0]
    +
    +Then:
    +
    +output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
    +               [ 2.  1.  3.  5.  4.  4.  3.  0.]
    +               [ 8.  3.  0.  2.  6.  3.  6.  4.]
    +               [ 3.  5.  2.  6.  3.  0.  4.  7.]
    +               [ 6.  7.  5.  7.  1.  2.  1.  3.]
    +               [ 7.  1.  7.  9.  2.  1.  3.  5.]
    +               [ 5.  7.  2.  4.  1.  3.  9.  0.]
    +               [ 7.  9.  4.  8.  3.  5.  0.  8.]]
    +
    +output.dims = {8, 9}
    +
    +output.lod = [[0, 4, 8]]
    +
    +
    +

    The simple usage is:

    +
    output = fluid.layers.im2sequence(
    +    input=layer, stride=[1, 1], filter_size=[2, 2])
     
    +
    -
    -

    array_write

    +
    +

    nce

    -paddle.v2.fluid.layers.array_write(x, i, array=None)
    -

    This function writes the given input variable to the specified position -indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the -output LOD_TENSOR_ARRAY is not given(None), a new one will be created and -returned.

    +paddle.v2.fluid.layers.nce(input, label, num_total_classes, sample_weight=None, param_attr=None, bias_attr=None, num_neg_samples=None) +

    Compute and return the noise-contrastive estimation training loss. +See [Noise-contrastive estimation: A new estimation principle for unnormalized statistical models](http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf). +By default this operator uses a uniform distribution for sampling.

    - - -
    Parameters:
      -
    • x (Variable|list) – The input tensor from which the data will be read.
    • -
    • i (Variable|list) – The index of the output LOD_TENSOR_ARRAY, pointing to -the position to which the input tensor will be -written.
    • -
    • array (Variable|list) – The output LOD_TENSOR_ARRAY to which the input -tensor will be written. If this parameter is -NONE, a new LOD_TENSOR_ARRAY will be created and -returned.
    • +
    • input – (Tensor) A tensor of shape [batch_size, dim]. +Duplicable: False Optional: False
    • +
    • label – (Tensor) A tensor of shape [batch_size, num_true_class]. ‘num_true_class’ is the number of target classes in each sample.The number of target classes per sample should be same. If you have a variable number of target classes, you can pad them out to a constant number by either repeating them or by padding with an otherwise unused class.) +Duplicable: False Optional: False
    • +
    • weight – (Tensor) A tensor of shape [num_class, dim]. ‘num_class’ is the total number of class. +Duplicable: False Optional: False
    • +
    • bias – (Tensor) A tensor of shape [num_class, 1]. ‘num_class’ is the total number of class. It is a dispensable input. +Duplicable: False Optional: True
    • +
    • sample_weight – (Tensor) A tensor of shape [batch_size, 1] storing a weight for each sample. And it is a dispensable input. The default value of sample is 1. +Duplicable: False Optional: True
    • +
    • num_total_classes (INT) – Total number of classes in all samples.
    • +
    • num_neg_samples (INT) – The number of negative classes. The default value is 10.
    • +
    • custom_neg_classes (INTS) – This attribute only be used in unitest. Classes in this list wiil be used as negative classes for every samples. Under normal conditions, user should avoid setting this attribute.
    Returns:

    The output LOD_TENSOR_ARRAY where the input tensor is written.

    -
    Return type:

    Variable

    +
    Returns:

    (Tensor) A tensor of shape [batch_size, 1]. Cost of samples.

    -

    Examples

    -
    -

    create_array

    + +
    +

    row_conv

    +
    +
    +paddle.v2.fluid.layers.row_conv(input, future_context_size, param_attr=None, act=None)
    +

    Row Conv Operator. This layer will apply lookahead convolution to +input. The input variable should be a 2D LoDTensor with shape [T, D]. +Parameters with shape [future_context_size + 1, D] will be created. The math +equation of row convolution is as follows:

    +
    +\[Out_{i} = \sum_{j = i} ^ {i + \tau} X_{j} \odot W_{i - j}\]
    +

    In the above equation:

    +
      +
    • \(Out_{i}\): The i-th row of output variable with shape [1, D].
    • +
    • \(\tau\): Future context size.
    • +
    • \(X_{j}\): The j-th row of input variable with shape [1, D].
    • +
    • \(W_{i-j}\): The (i-j)-th row of parameters with shape [1, D].
    • +
    +

    More details about row_conv please refer to the paper (http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf) and +the design document (https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645).

    - + - + - +
    Parameters:dtype (int|float) – The data type of the elements in the array.
    Parameters:
      +
    • input (Variable) – Input variable, a 2D LoDTensor with shape [T, D].
    • +
    • future_context_size (int) – Future context size. Please note, the shape +of convolution kernel is [future_context_size + 1, D].
    • +
    • param_attr (ParamAttr) – Attributes of parameters, including +name, initializer etc.
    • +
    • act (str) – Non-linear activation to be applied to output variable.
    • +
    +
    Returns:The tensor variable storing the elements of data type.
    Returns:

    The output tensor with same shape as input tensor.

    +
    Return type:Variable
    Return type:

    Variable

    +

    Examples

    -
    data = fluid.layers.create_array(dtype='float32')
    +
    x = fluid.layers.data(name='x', shape=[16],
    +                dtype='float32', lod_level=1)
    +out = fluid.layers.row_conv(input=x, future_context_size=2)
     
    -
    -

    less_than

    +
    +

    multiplex

    -paddle.v2.fluid.layers.less_than(x, y, cond=None, **ignored)
    -

    Less than

    -

    This layer returns the truth value of \(x < y\) elementwise.

    +paddle.v2.fluid.layers.multiplex(inputs, index) +

    Multiplex Layer

    +

    Referring to the given index variable, this layer selects rows from the +input variables to construct a multiplex variable. Assuming that there are +\(m\) input variables and \(I_i\) represents the i-th input +variable and \(i\) is in [0, \(m\)). All input variables are +tensors with same shape [\(d_0\), \(d_1\), ..., \(d_R\)]. +Please note that rank of the input tensor should be at least 2. Each input +variable will be treated as a 2-D matrix with shape [\(M\), \(N\)] +where \(M\) for \(d_0\) and \(N\) for \(d_1\) * \(d_2\) +* ... * \(d_R\). Let \(I_i[j]\) be the j-th row of the i-th input +variable. The given index variable should be a 2-D tensor with shape +[\(M\), 1]. Let ID[i] be the i-th index value of the index variable. +Then the output variable will be a tensor with shape [\(d_0\), +\(d_1\), ..., \(d_R\)]. If we treat the output tensor as a 2-D +matrix with shape [\(M\), \(N\)] and let \(O[i]\) be the i-th +row of the matrix, then O[i] is equal to \(I_{ID[i]}[i]\).

    -
    Parameters:
      -
    • x (Variable) – First operand of less_than
    • -
    • y (Variable) – Second operand of less_than
    • -
    • cond (Variable|None) – Optional output variable to store the result of less_than
    • +
    • inputs (list) – A list of variables to gather from. All variables have the +same shape and the rank is at least 2.
    • +
    • index (Variable) – Tensor<int32>, index variable which is a 2-D tensor +with shape [M, 1] where M is the batch size.
    Returns:

    The tensor variable storing the output of less_than.

    +
    Returns:

    Multiplex variable gathered from input variables.

    Return type:

    Variable

    @@ -2269,721 +3177,664 @@ LayerHelper.

    Examples

    -
    less = fluid.layers.less_than(x=label, y=limit)
    +
    x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    +x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    +index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    +out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
     
    -
    -

    array_read

    +
    +
    +

    ops

    +
    +

    mean

    -paddle.v2.fluid.layers.array_read(array, i)
    -

    This function performs the operation to read the data in as an -LOD_TENSOR_ARRAY. -:param array: The input tensor that will be written to an array. -:type array: Variable|list -:param i: The subscript index in tensor array, that points the

    -
    -
    place where data will be written to.
    +paddle.v2.fluid.layers.mean(**kwargs) +

    Mean Operator.

    +

    Out is a scalar which is the mean of all elements in X.

    - + - +
    Returns:The tensor type variable that has the data written to it.
    Parameters:x – The input of mean op +Duplicable: False Optional: False
    Return type:Variable
    Returns:The output of mean op
    -

    Examples

    -
    - -
    -
    -

    shrink_memory

    -
    -
    -paddle.v2.fluid.layers.shrink_memory(x, i, table)
    -

    This function creates an operator to shrink_rnn_memory using the RankTable -as mentioned in the input parameter.

    -
    -

    array_length

    +
    +

    mul

    -paddle.v2.fluid.layers.array_length(array)
    -

    This function performs the operation to find the length of the input -LOD_TENSOR_ARRAY.

    +paddle.v2.fluid.layers.mul(**kwargs) +

    Mul Operator.

    +

    This operator is used to perform matrix multiplication for input $X$ and $Y$.

    +

    The equation is:

    +

    $$Out = X * Y$$

    +

    Both the input $X$ and $Y$ can carry the LoD (Level of Details) information, +or not. But the output only shares the LoD information with input $X$.

    - - - + - +
    Parameters:array (LOD_TENSOR_ARRAY) – The input array that will be used -to compute the length.
    Returns:The length of the input LoDTensorArray.
    Parameters:
      +
    • x – (Tensor), The first input tensor of mul op. +Duplicable: False Optional: False
    • +
    • y – (Tensor), The second input tensor of mul op. +Duplicable: False Optional: False
    • +
    • x_num_col_dims (INT) – (int, default 1), The mul_op can take tensors with more than two +dimensions as its inputs. If the input $X$ is a tensor with more +than two dimensions, $X$ will be flattened into a two-dimensional +matrix first. The flattening rule is: the first num_col_dims +will be flattened to form the first dimension of the final matrix +(the height of the matrix), and the rest rank(X) - num_col_dims +dimensions are flattened to form the second dimension of the final +matrix (the width of the matrix). As a result, height of the +flattened matrix is equal to the product of $X$’s first +x_num_col_dims dimensions’ sizes, and width of the flattened +matrix is equal to the product of $X$’s last rank(x) - num_col_dims +dimensions’ size. For example, suppose $X$ is a 6-dimensional +tensor with the shape [2, 3, 4, 5, 6], and x_num_col_dims = 3. +Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = +[24, 30].
    • +
    • y_num_col_dims (INT) – (int, default 1), The mul_op can take tensors with more than two, +dimensions as its inputs. If the input $Y$ is a tensor with more +than two dimensions, $Y$ will be flattened into a two-dimensional +matrix first. The attribute y_num_col_dims determines how $Y$ is +flattened. See comments of x_num_col_dims for more details.
    • +
    +
    Return type:Variable
    Returns:

    (Tensor), The output tensor of mul op.

    +
    -

    Examples

    -
    -

    conv2d_transpose

    +
    +

    reshape

    -paddle.v2.fluid.layers.conv2d_transpose(input, num_filters, output_size=None, filter_size=None, padding=None, stride=None, dilation=None, param_attr=None, use_cudnn=True, name=None)
    -

    Convlution2D transpose layer

    -

    The convolution2D transpose layer calculates the output based on the input, -filter, and dilations, strides, paddings. Input(Input) and output(Output) -are in NCHW format. Where N is batch size, C is the number of channels, -H is the height of the feature, and W is the width of the feature. -Parameters(dilations, strides, paddings) are two elements. These two elements -represent height and width, respectively. The details of convolution transpose -layer, please refer to the following explanation and references -therein.

    -

    For each input \(X\), the equation is:

    -
    -\[Out = W \ast X\]
    -

    In the above equation:

    -
      -
    • \(X\): Input value, a tensor with NCHW format.
    • -
    • \(W\): Filter value, a tensor with MCHW format.
    • -
    • \(\ast\) : Convolution transpose operation.
    • -
    • -
      \(Out\): Output value, the shape of \(Out\) and \(X\) may be
      -
      different.
      -
      -
    • -
    -

    Example

    -
      -
    • Input:

      -

      Input shape: $(N, C_{in}, H_{in}, W_{in})$

      -

      Filter shape: $(C_{in}, C_{out}, H_f, W_f)$

      -
    • -
    • Output:

      -

      Output shape: $(N, C_{out}, H_{out}, W_{out})$

      -
    • -
    -

    Where

    -
    -\[\begin{split}H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\ -W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1\end{split}\]
    +paddle.v2.fluid.layers.reshape(**kwargs) +

    Reshape Operator.

    +

    Reshape Input(X) into the shape specified by Attr(shape).

    +

    An example: +Given a 2-D tensor X with 2 rows and 2 columns : [[1, 2], [3, 4]]

    +

    and target shape = [1, 4], the reshape operator will transform +the tensor X into a 2-D tensor: [[1, 2, 3, 4]]

    +

    One dimension in the target shape can be set -1, representing that its +size is unknown. In this case, the real dimension will be infered from +the original shape of Input(X) and other dimensions in the target shape.

    - - - - -
    Parameters:
      -
    • input (Variable) – The input image with [N, C, H, W] format.
    • -
    • num_filters (int) – The number of the filter. It is as same as the output -image channel.
    • -
    • output_size (int|tuple|None) – The output image size. If output size is a -tuple, it must contain two integers, (image_H, image_W). This -parameter only works when filter_size is None.
    • -
    • filter_size (int|tuple|None) – The filter size. If filter_size is a tuple, -it must contain two integers, (filter_size_H, filter_size_W). -Otherwise, the filter will be a square. None if use output size to -calculate filter_size.
    • -
    • padding (int|tuple) – The padding size. If padding is a tuple, it must -contain two integers, (padding_H, padding_W). Otherwise, the -padding_H = padding_W = padding. Default: padding = 0.
    • -
    • stride (int|tuple) – The stride size. If stride is a tuple, it must -contain two integers, (stride_H, stride_W). Otherwise, the -stride_H = stride_W = stride. Default: stride = 1.
    • -
    • dilation (int|tuple) – The dilation size. If dilation is a tuple, it must -contain two integers, (dilation_H, dilation_W). Otherwise, the -dilation_H = dilation_W = dilation. Default: dilation = 1.
    • -
    • param_attr (ParamAttr) – The parameters to the Conv2d_transpose Layer. -Default: None
    • -
    • use_cudnn (bool) – Use cudnn kernel or not, it is valid only when the cudnn -library is installed. Default: True
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • x – The input tensor of reshape operator. +Duplicable: False Optional: False
    • +
    • shape (INTS) – (vector<int>) Target shape of reshape operator.
    Returns:

    The tensor variable storing the convolution transpose result.

    -
    Return type:

    Variable

    -
    Raises:

    ValueError – If the shapes of input, filter_size, stride, padding and -groups mismatch.

    +
    Returns:

    The output tensor of reshape operator.

    -

    Examples

    -
    data = fluid.layers.data(
    -    name='data', shape=[3, 32, 32], dtype='float32')
    -conv2d_transpose = fluid.layers.conv2d_transpose(
    -    input=data, num_filters=2, filter_size=3)
    -
    -
    -
    - -
    -
    -

    sequence_expand

    -
    -
    -paddle.v2.fluid.layers.sequence_expand(x, y, name=None)
    -

    Sequence Expand Layer. This layer will expand the input variable x -according to LoD information of y. And the following examples will -explain how sequence_expand works:

    -
    * Case 1
    -    x is a LoDTensor:
    -        x.lod = [[0,       2, 3],
    -                 [0, 1,    3, 4]]
    -        x.data = [a, b, c, d]
    -        x.dims = [4, 1]
    -
    -    y is a LoDTensor:
    -        y.lod = [[0,    2,    4],
    -                 [0, 3, 6, 7, 8]]
    -
    -    with condition len(y.lod[-1]) - 1 == x.dims[0]
    -
    -    then output is a 2-level LoDTensor:
    -        out.lod = [[0,                2,    4],
    -                   [0,       3,       6, 7, 8]]
    -        out.data = [a, a, a, b, b, b, c, d]
    -        out.dims = [8, 1]
    -
    -* Case 2
    -    x is a Tensor:
    -        x.data = [a, b, c]
    -        x.dims = [3, 1]
    -
    -    y is a LoDTensor:
    -        y.lod = [[0, 2, 3, 6]]
    -
    -    with condition len(y.lod[-1]) - 1 == x.dims[0]
    +
    - then output is a 1-level LoDTensor: - out.lod = [[0, 2, 3, 6]] - out.data = [a, a, b, c, c, c] - out.dims = [6, 1] -
    +
    +

    scale

    +
    +
    +paddle.v2.fluid.layers.scale(**kwargs)
    +

    Scale operator

    +

    $$Out = scale*X$$

    - - -
    Parameters:
      -
    • x (Variable) – The input variable which is a Tensor or LoDTensor.
    • -
    • y (Variable) – The input variable which is a LoDTensor.
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • x – (Tensor) Input tensor of scale operator. +Duplicable: False Optional: False
    • +
    • scale (FLOAT) – (float, default 1.0)The scaling factor of the scale operator.
    Returns:

    The expanded variable which is a LoDTensor.

    -
    Return type:

    Variable

    +
    Returns:

    (Tensor) Output tensor of scale operator.

    -

    Examples

    -
    x = fluid.layers.data(name='x', shape=[10], dtype='float32')
    -y = fluid.layers.data(name='y', shape=[10, 20],
    -                 dtype='float32', lod_level=1)
    -out = layers.sequence_expand(x=x, y=y)
    -
    -
    -
    -

    gru_unit

    +
    +

    sigmoid_cross_entropy_with_logits

    -paddle.v2.fluid.layers.gru_unit(input, hidden, size, weight=None, bias=None, activation='tanh', gate_activation='sigmoid')
    -

    GRU unit layer. The equation of a gru step is:

    +paddle.v2.fluid.layers.sigmoid_cross_entropy_with_logits(**kwargs) +

    SigmoidCrossEntropyWithLogits Operator.

    +

    This measures the element-wise probability error in classification tasks +in which each class is independent. This can be thought of as predicting labels +for a data-point, where labels are not mutually exclusive. +For example, a news article can be about politics, technology or sports +at the same time or none of these.

    +

    The logistic loss is given as follows:

    -
    -\[ \begin{align}\begin{aligned}u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)\\r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)\\m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)\\h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})\end{aligned}\end{align} \]
    -
    -

    The inputs of gru unit includes \(z_t\), \(h_{t-1}\). In terms -of the equation above, the \(z_t\) is split into 3 parts - -\(xu_t\), \(xr_t\) and \(xm_t\). This means that in order to -implement a full GRU unit operator for an input, a fully -connected layer has to be applied, such that \(z_t = W_{fc}x_t\).

    -

    The terms \(u_t\) and \(r_t\) represent the update and reset gates -of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is -an intermediate candidate hidden output, which is denoted by \(m_t\). -This layer has three outputs \(h_t\), \(dot(r_t, h_{t-1})\) -and concatenation of \(u_t\), \(r_t\) and \(m_t\).

    +
    $$loss = -Labels * log(sigma(X)) - (1 - Labels) * log(1 - sigma(X))$$
    +

    We know that $$sigma(X) = (1 / (1 + exp(-X)))$$. By substituting this we get:

    +
    +
    $$loss = X - X * Labels + log(1 + exp(-X))$$
    +

    For stability and to prevent overflow of $$exp(-X)$$ when X < 0, +we reformulate the loss as follows:

    +
    +
    $$loss = max(X, 0) - X * Labels + log(1 + exp(-|X|))$$
    +

    Both the input X and Labels can carry the LoD (Level of Details) information. +However the output only shares the LoD with input X.

    - - -
    Parameters:
      -
    • input (Variable) – The fc transformed input value of current step.
    • -
    • hidden (Variable) – The hidden value of lstm unit from previous step.
    • -
    • size (integer) – The input dimension value.
    • -
    • weight (ParamAttr) – The weight parameters for gru unit. Default: None
    • -
    • bias (ParamAttr) – The bias parameters for gru unit. Default: None
    • -
    • activation (string) – The activation type for cell (actNode). -Default: ‘tanh’
    • -
    • gate_activation (string) – The activation type for gates (actGate). -Default: ‘sigmoid’
    • +
    • x – (Tensor, default Tensor<float>), a 2-D tensor with shape N x D, where N is the batch size and D is the number of classes. This input is a tensor of logits computed by the previous operator. Logits are unscaled log probabilities given as log(p/(1-p)). +Duplicable: False Optional: False
    • +
    • label – (Tensor, default Tensor<float>), a 2-D tensor of the same type and shape as X. This input is a tensor of probabalistic labels for each logit +Duplicable: False Optional: False
    Returns:

    The hidden value, reset-hidden value and gate values.

    -
    Return type:

    tuple

    +
    Returns:

    (Tensor, default Tensor<float>), a 2-D tensor with shape N x D of elementwise logistic losses.

    -

    Examples

    -
    # assuming we have x_t_data and prev_hidden of size=10
    -x_t = fluid.layers.fc(input=x_t_data, size=30)
    -hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
    -                                       hidden = prev_hidden)
    +
    + +
    +
    +

    elementwise_add

    +
    +
    +paddle.v2.fluid.layers.elementwise_add(**kwargs)
    +

    Limited Elementwise Add Operator.

    +

    The equation is:

    +

    $$Out = X + Y$$

    +

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be +smaller than or equal to the dimensions of $X$.

    +

    There are two cases for this operator: +1. The shape of $Y$ is same with $X$; +2. The shape of $Y$ is a subset of $X$.

    +

    For case 2: +$Y$ will be broadcasted to match the shape of $X$ and axis should be +set to index of the start dimension to broadcast $Y$ onto $X$.

    +
    +
    For example
    +
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    +shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
     
    +
    +
    +

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) +information. However, the output only shares the LoD information with input $X$.

    + +++ + + + + + +
    Parameters:
      +
    • x – (Tensor), The first input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • y – (Tensor), The second input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    • +
    +
    Returns:

    The output of elementwise op.

    +
    -
    -

    lstm_unit

    +
    +

    elementwise_div

    -paddle.v2.fluid.layers.lstm_unit(x_t, hidden_t_prev, cell_t_prev, forget_bias=0.0, param_attr=None, bias_attr=None, name=None)
    -

    Lstm unit layer. The equation of a lstm step is:

    -
    -
    -\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)\\f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)\\c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)\\o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)\\h_t & = o_t tanh(c_t)\end{aligned}\end{align} \]
    -
    -

    The inputs of lstm unit include \(x_t\), \(h_{t-1}\) and -\(c_{t-1}\). The 2nd dimensions of \(h_{t-1}\) and \(c_{t-1}\) -should be same. The implementation separates the linear transformation and -non-linear transformation apart. Here, we take \(i_t\) as an example. -The linear transformation is applied by calling a fc layer and the -equation is:

    -
    -
    -\[L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i\]
    -
    -

    The non-linear transformation is applied by calling lstm_unit_op and the -equation is:

    -
    -
    -\[i_t = \sigma(L_{i_t})\]
    -
    -

    This layer has two outputs including \(h_t\) and \(o_t\).

    +paddle.v2.fluid.layers.elementwise_div(**kwargs) +

    Limited Elementwise Div Operator.

    +

    The equation is:

    +

    $$Out = X / Y$$

    +

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be +smaller than or equal to the dimensions of $X$.

    +

    There are two cases for this operator: +1. The shape of $Y$ is same with $X$; +2. The shape of $Y$ is a subset of $X$.

    +

    For case 2: +$Y$ will be broadcasted to match the shape of $X$ and axis should be +set to index of the start dimension to broadcast $Y$ onto $X$.

    +
    +
    For example
    +
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    +shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    +
    +
    +
    +
    +

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) +information. However, the output only shares the LoD information with input $X$.

    - - +
    Parameters:
      -
    • x_t (Variable) – The input value of current step, a 2-D tensor with shape -M x N, M for batch size and N for input size.
    • -
    • hidden_t_prev (Variable) – The hidden value of lstm unit, a 2-D tensor -with shape M x S, M for batch size and S for size of lstm unit.
    • -
    • cell_t_prev (Variable) – The cell value of lstm unit, a 2-D tensor with -shape M x S, M for batch size and S for size of lstm unit.
    • -
    • forget_bias (float) – The forget bias of lstm unit.
    • -
    • param_attr (ParamAttr) – The attributes of parameter weights, used to set -initializer, name etc.
    • -
    • bias_attr (ParamAttr) – The attributes of bias weights, if not False, -bias weights will be created and be set to default value.
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • x – (Tensor), The first input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • y – (Tensor), The second input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    Returns:

    The hidden value and cell value of lstm unit.

    +
    Returns:

    The output of elementwise op.

    Return type:

    tuple

    +
    +
    + +
    +
    +

    elementwise_sub

    +
    +
    +paddle.v2.fluid.layers.elementwise_sub(**kwargs)
    +

    Limited Elementwise Sub Operator.

    +

    The equation is:

    +

    $$Out = X - Y$$

    +

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be +smaller than or equal to the dimensions of $X$.

    +

    There are two cases for this operator: +1. The shape of $Y$ is same with $X$; +2. The shape of $Y$ is a subset of $X$.

    +

    For case 2: +$Y$ will be broadcasted to match the shape of $X$ and axis should be +set to index of the start dimension to broadcast $Y$ onto $X$.

    +
    +
    For example
    +
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    +shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    +
    +
    +
    +
    +

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) +information. However, the output only shares the LoD information with input $X$.

    + +++ + -
    Parameters:
      +
    • x – (Tensor), The first input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • y – (Tensor), The second input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    • +
    Raises:

    ValueError – The ranks of x_t, hidden_t_prev and cell_t_prev -not be 2 or the 1st dimensions of x_t, hidden_t_prev -and cell_t_prev not be the same or the 2nd dimensions of -hidden_t_prev and cell_t_prev not be the same.

    +
    Returns:

    The output of elementwise op.

    -

    Examples

    -
    x_t = fluid.layers.fc(input=x_t_data, size=10)
    -prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
    -prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
    -hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
    -                                       hidden_t_prev=prev_hidden,
    -                                       cell_t_prev=prev_cell)
    +
    + +
    +
    +

    elementwise_mul

    +
    +
    +paddle.v2.fluid.layers.elementwise_mul(**kwargs)
    +

    Limited Elementwise Mul Operator.

    +

    The equation is:

    +

    $$Out = X odotY$$

    +

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be +smaller than or equal to the dimensions of $X$.

    +

    There are two cases for this operator: +1. The shape of $Y$ is same with $X$; +2. The shape of $Y$ is a subset of $X$.

    +

    For case 2: +$Y$ will be broadcasted to match the shape of $X$ and axis should be +set to index of the start dimension to broadcast $Y$ onto $X$.

    +
    +
    For example
    +
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    +shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
     
    -
    - -
    -
    -

    sequence_softmax

    -
    -
    -paddle.v2.fluid.layers.sequence_softmax(**kwargs)
    -

    Sequence Softmax Operator.

    -

    SequenceSoftmaxOp computes the softmax activation among all time-steps for each -sequence. The dimension of each time-step should be 1. Thus, the shape of -input Tensor can be either [N, 1] or [N], where N is the sum of the length -of all sequences.

    -

    The algorithm works as follows:

    -
    -
    for i-th sequence in a mini-batch:
    -

    $$ -Out(X[lod[i]:lod[i+1]], :) = frac{exp(X[lod[i]:lod[i+1], :])} {sum(exp(X[lod[i]:lod[i+1], :]))} -$$

    -

    For example, for a mini-batch of 3 sequences with variable-length, -each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7], -then softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :] -and N turns out to be 7.

    +
    +
    +

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) +information. However, the output only shares the LoD information with input $X$.

    - + - +
    Parameters:x – (LoDTensor) 1-D or 2-D input LoDTensor with the 2-nd dimension of length 1. -Duplicable: False Optional: False
    Parameters:
      +
    • x – (Tensor), The first input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • y – (Tensor), The second input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    • +
    +
    Returns:(LoDTensor) 1-D or 2-D output LoDTensor with the 2-nd dimension of length 1.
    Returns:

    The output of elementwise op.

    +
    -
    -

    reduce_sum

    +
    +

    elementwise_max

    -paddle.v2.fluid.layers.reduce_sum(input, dim=None, keep_dim=False, name=None)
    -

    Computes the sum of tensor elements over the given dimension.

    +paddle.v2.fluid.layers.elementwise_max(**kwargs) +

    Limited Elementwise Max Operator.

    +

    The equation is:

    +

    $$Out = max(X, Y)$$

    +

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be +smaller than or equal to the dimensions of $X$.

    +

    There are two cases for this operator: +1. The shape of $Y$ is same with $X$; +2. The shape of $Y$ is a subset of $X$.

    +

    For case 2: +$Y$ will be broadcasted to match the shape of $X$ and axis should be +set to index of the start dimension to broadcast $Y$ onto $X$.

    +
    +
    For example
    +
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    +shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    +
    +
    +
    +
    +

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) +information. However, the output only shares the LoD information with input $X$.

    - - -
    Parameters:
      -
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • -
    • dim (int|None) – The dimension along which the sum is performed. If -None, sum all elements of input and return a -Tensor variable with a single element, otherwise must be in the -range \([-rank(input), rank(input))\). If \(dim < 0\), -the dimension to reduce is \(rank + dim\).
    • -
    • keep_dim (bool) – Whether to reserve the reduced dimension in the -output Tensor. The result tensor will have one fewer dimension -than the input unless keep_dim is true.
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • x – (Tensor), The first input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • y – (Tensor), The second input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    Returns:

    The reduced Tensor variable.

    -
    Return type:

    Variable

    +
    Returns:

    The output of elementwise op.

    -

    Examples

    -
    # x is a Tensor variable with following elements:
    -#    [[0.2, 0.3, 0.5, 0.9]
    -#     [0.1, 0.2, 0.6, 0.7]]
    -# Each example is followed by the correspending output tensor.
    -fluid.layers.reduce_sum(x)  # [3.5]
    -fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
    -fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
    -fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
    -
    -
    -
    -

    reduce_mean

    +
    +

    elementwise_min

    -paddle.v2.fluid.layers.reduce_mean(input, dim=None, keep_dim=False, name=None)
    -

    Computes the mean of tensor elements over the given dimension.

    +paddle.v2.fluid.layers.elementwise_min(**kwargs) +

    Limited Elementwise Max Operator.

    +

    The equation is:

    +

    $$Out = min(X, Y)$$

    +

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be +smaller than or equal to the dimensions of $X$.

    +

    There are two cases for this operator: +1. The shape of $Y$ is same with $X$; +2. The shape of $Y$ is a subset of $X$.

    +

    For case 2: +$Y$ will be broadcasted to match the shape of $X$ and axis should be +set to index of the start dimension to broadcast $Y$ onto $X$.

    +
    +
    For example
    +
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    +shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    +
    +
    +
    +
    +

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) +information. However, the output only shares the LoD information with input $X$.

    - - -
    Parameters:
      -
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • -
    • dim (int|None) – The dimension along which the mean is computed. If -None, compute the mean over all elements of input -and return a Tensor variable with a single element, otherwise -must be in the range \([-rank(input), rank(input))\). If -\(dim < 0\), the dimension to reduce is \(rank + dim\).
    • -
    • keep_dim (bool) – Whether to reserve the reduced dimension in the -output Tensor. The result tensor will have one fewer dimension -than the input unless keep_dim is true.
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • x – (Tensor), The first input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • y – (Tensor), The second input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    Returns:

    The reduced Tensor variable.

    -
    Return type:

    Variable

    +
    Returns:

    The output of elementwise op.

    -

    Examples

    -
    # x is a Tensor variable with following elements:
    -#    [[0.2, 0.3, 0.5, 0.9]
    -#     [0.1, 0.2, 0.6, 0.7]]
    -# Each example is followed by the correspending output tensor.
    -fluid.layers.reduce_mean(x)  # [0.4375]
    -fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
    -fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
    -fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
    -
    -
    -
    -

    reduce_max

    +
    +

    elementwise_pow

    -paddle.v2.fluid.layers.reduce_max(input, dim=None, keep_dim=False, name=None)
    -

    Computes the maximum of tensor elements over the given dimension.

    +paddle.v2.fluid.layers.elementwise_pow(**kwargs) +

    Limited Elementwise Pow Operator.

    +

    The equation is:

    +

    $$Out = X ^ Y$$

    +

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be +smaller than or equal to the dimensions of $X$.

    +

    There are two cases for this operator: +1. The shape of $Y$ is same with $X$; +2. The shape of $Y$ is a subset of $X$.

    +

    For case 2: +$Y$ will be broadcasted to match the shape of $X$ and axis should be +set to index of the start dimension to broadcast $Y$ onto $X$.

    +
    +
    For example
    +
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    +shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    +
    +
    +
    +
    +

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) +information. However, the output only shares the LoD information with input $X$.

    - - -
    Parameters:
      -
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • -
    • dim (int|None) – The dimension along which the maximum is computed. -If None, compute the maximum over all elements of -input and return a Tensor variable with a single element, -otherwise must be in the range \([-rank(input), rank(input))\). -If \(dim < 0\), the dimension to reduce is \(rank + dim\).
    • -
    • keep_dim (bool) – Whether to reserve the reduced dimension in the -output Tensor. The result tensor will have one fewer dimension -than the input unless keep_dim is true.
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • x – (Tensor), The first input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • y – (Tensor), The second input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    Returns:

    The reduced Tensor variable.

    -
    Return type:

    Variable

    +
    Returns:

    The output of elementwise op.

    -

    Examples

    -
    # x is a Tensor variable with following elements:
    -#    [[0.2, 0.3, 0.5, 0.9]
    -#     [0.1, 0.2, 0.6, 0.7]]
    -# Each example is followed by the correspending output tensor.
    -fluid.layers.reduce_max(x)  # [0.9]
    -fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
    -fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
    -fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
    -
    -
    -
    -

    reduce_min

    +
    +

    clip

    -paddle.v2.fluid.layers.reduce_min(input, dim=None, keep_dim=False, name=None)
    -

    Computes the minimum of tensor elements over the given dimension.

    +paddle.v2.fluid.layers.clip(**kwargs) +

    Clip Operator.

    +

    The clip operator limits the value of given input within an interval. The +interval is specified with arguments ‘min’ and ‘max’:

    +

    $$ +Out = min(max(X, min), max) +$$

    - - -
    Parameters:
      -
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • -
    • dim (int|None) – The dimension along which the minimum is computed. -If None, compute the minimum over all elements of -input and return a Tensor variable with a single element, -otherwise must be in the range \([-rank(input), rank(input))\). -If \(dim < 0\), the dimension to reduce is \(rank + dim\).
    • -
    • keep_dim (bool) – Whether to reserve the reduced dimension in the -output Tensor. The result tensor will have one fewer dimension -than the input unless keep_dim is true.
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • x – (Tensor)The input of clip op.The number of dimensions must be between [1, 9]. +Duplicable: False Optional: False
    • +
    • min (FLOAT) – (float)Minimum value, under which element is replaced by min.
    • +
    • max (FLOAT) – (float)Maximum value, above which element is replaced by max
    Returns:

    The reduced Tensor variable.

    -
    Return type:

    Variable

    +
    Returns:

    (Tensor)The output of clip op with shape as input(X)

    -

    Examples

    -
    # x is a Tensor variable with following elements:
    -#    [[0.2, 0.3, 0.5, 0.9]
    -#     [0.1, 0.2, 0.6, 0.7]]
    -# Each example is followed by the correspending output tensor.
    -fluid.layers.reduce_min(x)  # [0.1]
    -fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
    -fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
    -fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
    -
    -
    -
    -

    split

    +
    +

    clip_by_norm

    -paddle.v2.fluid.layers.split(input, num_or_sections, dim=-1, name=None)
    -

    Split the input tensor into multiple sub-tensors.

    +paddle.v2.fluid.layers.clip_by_norm(**kwargs) +

    ClipByNorm Operator.

    +

    This operator limits the L2 norm of the input $X$ within $max_norm$. +If the L2 norm of $X$ is less than or equal to $max_norm$, $Out$ will be +the same as $X$. If the L2 norm of $X$ is greater than $max_norm$, $X$ will +be linearly scaled to make the L2 norm of $Out$ equal to $max_norm$, as +shown in the following formula:

    +

    $$ +Out = frac{max_norm * X}{norm(X)}, +$$

    +

    where $norm(X)$ represents the L2 norm of $X$.

    - - -
    Parameters:
      -
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • -
    • num_or_sections (int|list) – If num_or_sections is an integer, -then the integer indicates the number of equal sized sub-tensors -that the tensor will be divided into. If num_or_sections -is a list of integers, the length of list indicates the number of -sub-tensors and the integers indicate the sizes of sub-tensors’ -dim dimension orderly.
    • -
    • dim (int) – The dimension along which to split. If \(dim < 0\), the -dimension to split along is \(rank(input) + dim\).
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • x – (Tensor) The input of clip_by_norm op.The number of dimensions must be between [1, 9]. +Duplicable: False Optional: False
    • +
    • max_norm (FLOAT) – (float) The maximum norm value.
    Returns:

    The list of segmented tensor variables.

    -
    Return type:

    List

    +
    Returns:

    (Tensor) The output of clip_by_norm op with shape as input(X)

    -

    Examples

    -
    # x is a Tensor variable with shape [3, 9, 5]:
    -x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
    -x0.shape  # [3, 3, 5]
    -x1.shape  # [3, 3, 5]
    -x2.shape  # [3, 3, 5]
    -x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
    -x0.shape  # [3, 2, 5]
    -x1.shape  # [3, 3, 5]
    -x2.shape  # [3, 4, 5]
    -
    -
    -
    -

    matmul

    +
    +

    sequence_softmax

    -paddle.v2.fluid.layers.matmul(x, y, transpose_x=False, transpose_y=False, name=None)
    -

    Applies matrix multiplication to two tensors.

    -

    Currently, the input tensors’ rank can be any, but when the rank of any -inputs is bigger than 3, this two inputs’ rank should be equal.

    -

    The actual behavior depends on the shapes of \(x\), \(y\) and the -flag values of transpose_x, transpose_y. Specifically:

    -
      -
    • If a transpose flag is specified, the last two dimensions of the tensor -are transposed. If the tensor is rank-1 of shape \([D]\), then for -\(x\) it is treated as \([1, D]\) in nontransposed form and as -\([D, 1]\) in transposed form, whereas for \(y\) it is the -opposite: It is treated as \([D, 1]\) in nontransposed form and as -\([1, D]\) in transposed form.
    • -
    • After transpose, the two tensors are 2-D or n-D and matrix multiplication -performs in the following way.
        -
      • If both are 2-D, they are multiplied like conventional matrices.
      • -
      • If either is n-D, it is treated as a stack of matrices residing in the -last two dimensions and a batched matrix multiply supporting broadcast -applies on the two tensors.
      • -
      -
    • -
    -

    Also note that if the raw tensor \(x\) or \(y\) is rank-1 and -nontransposed, the prepended or appended dimension \(1\) will be -removed after matrix multiplication.

    +paddle.v2.fluid.layers.sequence_softmax(**kwargs) +

    Sequence Softmax Operator.

    +

    SequenceSoftmaxOp computes the softmax activation among all time-steps for each +sequence. The dimension of each time-step should be 1. Thus, the shape of +input Tensor can be either [N, 1] or [N], where N is the sum of the length +of all sequences.

    +

    The algorithm works as follows:

    +
    +
    for i-th sequence in a mini-batch:
    +

    $$ +Out(X[lod[i]:lod[i+1]], :) = frac{exp(X[lod[i]:lod[i+1], :])} {sum(exp(X[lod[i]:lod[i+1], :]))} +$$

    +

    For example, for a mini-batch of 3 sequences with variable-length, +each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7], +then softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :] +and N turns out to be 7.

    - - - + - +
    Parameters:
      -
    • x (Variable) – The input variable which is a Tensor or LoDTensor.
    • -
    • y (Variable) – The input variable which is a Tensor or LoDTensor.
    • -
    • transpose_x (bool) – Whether to transpose \(x\) before multiplication.
    • -
    • transpose_y (bool) – Whether to transpose \(y\) before multiplication.
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • -
    -
    Returns:

    The product Tensor variable.

    -
    Parameters:x – (LoDTensor) 1-D or 2-D input LoDTensor with the 2-nd dimension of length 1. +Duplicable: False Optional: False
    Return type:

    Variable

    -
    Returns:(LoDTensor) 1-D or 2-D output LoDTensor with the 2-nd dimension of length 1.
    -

    Examples

    -
    # Examples to clarify shapes of the inputs and output
    -# x: [B, ..., M, K], y: [B, ..., K, N]
    -fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
    -
    -# x: [B, M, K], y: [B, K, N]
    -fluid.layers.matmul(x, y)  # out: [B, M, N]
    -
    -# x: [B, M, K], y: [K, N]
    -fluid.layers.matmul(x, y)  # out: [B, M, N]
    -
    -# x: [M, K], y: [K, N]
    -fluid.layers.matmul(x, y)  # out: [M, N]
    -
    -# x: [B, M, K], y: [K]
    -fluid.layers.matmul(x, y)  # out: [B, M]
    -
    -# x: [K], y: [K]
    -fluid.layers.matmul(x, y)  # out: [1]
    +
    -# x: [M], y: [N] -fluid.layers.matmul(x, y, True, True) # out: [M, N] -
    +
    +

    sigmoid

    +
    +
    +paddle.v2.fluid.layers.sigmoid(**kwargs)
    +

    Sigmoid Activation Operator

    +

    $$out = frac{1}{1 + e^{-x}}$$

    + +++ + + + + + +
    Parameters:x – Input of Sigmoid operator +Duplicable: False Optional: False
    Returns:Output of Sigmoid operator
    -

    logsigmoid

    +

    logsigmoid

    paddle.v2.fluid.layers.logsigmoid(**kwargs)
    @@ -3004,7 +3855,7 @@ Duplicable: False Optional: False
    -

    exp

    +

    exp

    paddle.v2.fluid.layers.exp(**kwargs)
    @@ -3025,7 +3876,7 @@ Duplicable: False Optional: False
    -

    relu

    +

    relu

    paddle.v2.fluid.layers.relu(**kwargs)
    @@ -3046,7 +3897,7 @@ Duplicable: False Optional: False
    -

    tanh

    +

    tanh

    paddle.v2.fluid.layers.tanh(**kwargs)
    @@ -3067,7 +3918,7 @@ Duplicable: False Optional: False
    -

    tanh_shrink

    +

    tanh_shrink

    paddle.v2.fluid.layers.tanh_shrink(**kwargs)
    @@ -3088,7 +3939,7 @@ Duplicable: False Optional: False
    -

    softshrink

    +

    softshrink

    paddle.v2.fluid.layers.softshrink(**kwargs)
    @@ -3121,7 +3972,7 @@ Duplicable: False Optional: False
    -

    sqrt

    +

    sqrt

    paddle.v2.fluid.layers.sqrt(**kwargs)
    @@ -3142,7 +3993,7 @@ Duplicable: False Optional: False
    -

    abs

    +

    abs

    paddle.v2.fluid.layers.abs(**kwargs)
    @@ -3163,7 +4014,7 @@ Duplicable: False Optional: False
    -

    ceil

    +

    ceil

    paddle.v2.fluid.layers.ceil(**kwargs)
    @@ -3184,7 +4035,7 @@ Duplicable: False Optional: False
    -

    floor

    +

    floor

    paddle.v2.fluid.layers.floor(**kwargs)
    @@ -3205,7 +4056,7 @@ Duplicable: False Optional: False
    -

    round

    +

    round

    paddle.v2.fluid.layers.round(**kwargs)
    @@ -3226,7 +4077,7 @@ Duplicable: False Optional: False
    -

    reciprocal

    +

    reciprocal

    paddle.v2.fluid.layers.reciprocal(**kwargs)
    @@ -3247,7 +4098,7 @@ Duplicable: False Optional: False
    -

    log

    +

    log

    paddle.v2.fluid.layers.log(**kwargs)
    @@ -3269,7 +4120,7 @@ Duplicable: False Optional: False
    -

    square

    +

    square

    paddle.v2.fluid.layers.square(**kwargs)
    @@ -3290,7 +4141,7 @@ Duplicable: False Optional: False
    -

    softplus

    +

    softplus

    paddle.v2.fluid.layers.softplus(**kwargs)
    @@ -3311,12 +4162,12 @@ Duplicable: False Optional: False
    -

    softsign

    +

    softsign

    paddle.v2.fluid.layers.softsign(**kwargs)

    Softsign Activation Operator.

    -

    $$out = frac{x}{1 + |x|}$$

    +

    $$out = frac{x}{1 + |x|}$$

    @@ -3332,7 +4183,7 @@ Duplicable: False Optional: False
    -

    brelu

    +

    brelu

    paddle.v2.fluid.layers.brelu(**kwargs)
    @@ -3359,7 +4210,7 @@ Duplicable: False Optional: False
    -

    leaky_relu

    +

    leaky_relu

    paddle.v2.fluid.layers.leaky_relu(**kwargs)
    @@ -3385,7 +4236,7 @@ Duplicable: False Optional: False
    -

    soft_relu

    +

    soft_relu

    paddle.v2.fluid.layers.soft_relu(**kwargs)
    @@ -3411,7 +4262,7 @@ Duplicable: False Optional: False
    -

    elu

    +

    elu

    paddle.v2.fluid.layers.elu(**kwargs)
    @@ -3439,7 +4290,7 @@ Duplicable: False Optional: False
    -

    relu6

    +

    relu6

    paddle.v2.fluid.layers.relu6(**kwargs)
    @@ -3465,7 +4316,7 @@ Duplicable: False Optional: False
    -

    pow

    +

    pow

    paddle.v2.fluid.layers.pow(**kwargs)
    @@ -3489,9 +4340,36 @@ Duplicable: False Optional: False
    +
    +
    +

    stanh

    +
    +
    +paddle.v2.fluid.layers.stanh(**kwargs)
    +

    STanh Activation Operator.

    +

    $$out = b * frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$

    + +++ + + + + + +
    Parameters:
      +
    • x – Input of STanh operator +Duplicable: False Optional: False
    • +
    • scale_a (FLOAT) – The scale parameter of a for the input
    • +
    • scale_b (FLOAT) – The scale parameter of b for the input
    • +
    +
    Returns:

    Output of STanh operator

    +
    +
    +
    -

    hard_shrink

    +

    hard_shrink

    paddle.v2.fluid.layers.hard_shrink(**kwargs)
    @@ -3524,7 +4402,7 @@ Duplicable: False Optional: False
    -

    thresholded_relu

    +

    thresholded_relu

    paddle.v2.fluid.layers.thresholded_relu(**kwargs)
    @@ -3556,7 +4434,7 @@ Duplicable: False Optional: False
    -

    hard_sigmoid

    +

    hard_sigmoid

    paddle.v2.fluid.layers.hard_sigmoid(**kwargs)
    @@ -3588,7 +4466,7 @@ Duplicable: False Optional: False
    -

    swish

    +

    swish

    paddle.v2.fluid.layers.swish(**kwargs)
    @@ -3613,169 +4491,143 @@ Duplicable: False Optional: False
    -
    -

    im2sequence

    +
    +
    +

    tensor

    +
    +

    create_tensor

    -paddle.v2.fluid.layers.im2sequence(input, filter_size=1, stride=1, padding=0, name=None)
    -

    Extracts image patches from the input tensor to form a tensor of shape -{input.batch_size * output_height * output_width, filter_size_H * -filter_size_W * input.channels} which is similar with im2col. -This op use filter / kernel to scan images and convert these images to -sequences. After expanding, the number of time step are -output_height * output_width for an image, in which output_height and -output_width are calculated by below equation:

    -
    -\[output\_size = 1 + (2 * padding + img\_size - block\_size + stride - 1) / stride\]
    -

    And the dimension of each time step is block_y * block_x * input.channels.

    +paddle.v2.fluid.layers.create_tensor(dtype, name=None) +
    + +
    +
    +

    create_parameter

    +
    +
    +paddle.v2.fluid.layers.create_parameter(shape, dtype, attr=None, is_bias=False, default_initializer=None)
    +

    Create a parameter +:param shape: shape of the parameter +:type shape: list[int] +:param dtype: element type of the parameter +:type dtype: string +:param attr: attributes of the parameter +:type attr: ParamAttr +:param is_bias: This can affect which default initializer is chosen

    +
    +
    when default_initializer is None. If is_bias, +initializer.Constant(0.0) will be used. Otherwise, +Xavier() will be used.
    - + - + - +
    Parameters:
      -
    • input (Variable) – The input should be a tensor in NCHW format.
    • -
    • filter_size (int|tuple|None) – The filter size. If filter_size is a tuple, -it must contain two integers, (filter_size_H, filter_size_W). -Otherwise, the filter will be a square.
    • -
    • stride (int|tuple) – The stride size. If stride is a tuple, it must -contain two integers, (stride_H, stride_W). Otherwise, the -stride_H = stride_W = stride. Default: stride = 1.
    • -
    • padding (int|tuple) – The padding size. If padding is a tuple, it can -contain two integers like (padding_H, padding_W) which means -padding_up = padding_down = padding_H and -padding_left = padding_right = padding_W. Or it can use -(padding_up, padding_left, padding_down, padding_right) to indicate -paddings of four direction. Otherwise, a scalar padding means -padding_up = padding_down = padding_left = padding_right = padding -Default: padding = 0.
    • -
    • name (int) – The name of this layer. It is optional.
    • -
    -
    Parameters:default_initializer (Initializer) – initializer for the parameter
    Returns:

    The output is a LoDTensor with shape -{input.batch_size * output_height * output_width, -filter_size_H * filter_size_W * input.channels}. -If we regard output as a matrix, each row of this matrix is -a step of a sequence.

    -
    Returns:the created parameter
    Return type:

    output

    -
    Return type:Parameter
    -

    Examples:

    -

    As an example:

    -
    -
    Given:
    -
    -x = [[[[ 6.  2.  1.]
    -       [ 8.  3.  5.]
    -       [ 0.  2.  6.]]
    -
    -      [[ 2.  4.  4.]
    -       [ 6.  3.  0.]
    -       [ 6.  4.  7.]]]
    -
    -     [[[ 6.  7.  1.]
    -       [ 5.  7.  9.]
    -       [ 2.  4.  8.]]
    -
    -      [[ 1.  2.  1.]
    -       [ 1.  3.  5.]
    -       [ 9.  0.  8.]]]]
    -
    -x.dims = {2, 2, 3, 3}
    -
    -And:
    -
    -filter = [2, 2]
    -stride = [1, 1]
    -padding = [0, 0]
    -
    -Then:
    -
    -output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
    -               [ 2.  1.  3.  5.  4.  4.  3.  0.]
    -               [ 8.  3.  0.  2.  6.  3.  6.  4.]
    -               [ 3.  5.  2.  6.  3.  0.  4.  7.]
    -               [ 6.  7.  5.  7.  1.  2.  1.  3.]
    -               [ 7.  1.  7.  9.  2.  1.  3.  5.]
    -               [ 5.  7.  2.  4.  1.  3.  9.  0.]
    -               [ 7.  9.  4.  8.  3.  5.  0.  8.]]
    +
    -output.dims = {8, 9} +
    +
    +

    create_global_var

    +
    +
    +paddle.v2.fluid.layers.create_global_var(shape, value, dtype, persistable=False, name=None)
    +
    -output.lod = [[0, 4, 8]] -
    -

    The simple usage is:

    -
    output = fluid.layers.im2sequence(
    -    input=layer, stride=[1, 1], filter_size=[2, 2])
    -
    +
    +

    cast

    +
    +
    +paddle.v2.fluid.layers.cast(x, dtype)
    +

    This function takes in the input with input_dtype +and casts it to the output_dtype as the output.

    +
    +
    -
    +
    +

    concat

    +
    +
    +paddle.v2.fluid.layers.concat(input, axis=0)
    +

    Concat

    +

    This function concatenates the input along the axis mentioned +and returns that as the output.

    + +++ + + + + + + + +
    Parameters:
      +
    • input (list) – List of tensors to be concatenated
    • +
    • axis (int) – Integer axis along which the tensors will be concatenated
    • +
    +
    Returns:

    Output variable of the concatenation

    +
    Return type:

    Variable

    +
    +

    Examples

    -
    -

    edit_distance

    -
    -
    -

    ctc_greedy_decoder

    +
    +

    sums

    -paddle.v2.fluid.layers.ctc_greedy_decoder(input, blank, name=None)
    -

    This op is used to decode sequences by greedy policy by below steps: -1. Get the indexes of max value for each row in input. a.k.a.

    -
    -
    numpy.argmax(input, axis=0).
    -
      -
    1. For each sequence in result of step1, merge repeated tokens between two -blanks and delete all blanks.
    2. -
    -

    A simple example as below:

    -
    Given:
    -
    -input.data = [[0.6, 0.1, 0.3, 0.1],
    -              [0.3, 0.2, 0.4, 0.1],
    -              [0.1, 0.5, 0.1, 0.3],
    -              [0.5, 0.1, 0.3, 0.1],
    -
    -              [0.5, 0.1, 0.3, 0.1],
    -              [0.2, 0.2, 0.2, 0.4],
    -              [0.2, 0.2, 0.1, 0.5],
    -              [0.5, 0.1, 0.3, 0.1]]
    -
    -input.lod = [[0, 4, 8]]
    -
    -Then:
    -
    -output.data = [[2],
    -               [1],
    -               [3]]
    +paddle.v2.fluid.layers.sums(input, out=None)
    +

    This function performs the sum operation on the input and returns the +result as the output.

    + +++ + + + + + + + +
    Parameters:input (Variable|list) – The input tensor that has the elements +that need to be summed up.
    Returns:
    +
    The tensor type variable that has the sum of input
    +
    written to it.
    +
    +
    Return type:Variable
    +

    Examples

    +
    -output.lod = [[0, 2, 3]] -
    +
    +

    assign

    +
    +
    +paddle.v2.fluid.layers.assign(input, output)
    +

    Assign

    +

    This function copies the input Variable to the output Variable.

    -
    Parameters:
      -
    • input (Variable) – (LoDTensor<float>), the probabilities of -variable-length sequences, which is a 2-D Tensor with -LoD information. It’s shape is [Lp, num_classes + 1], -where Lp is the sum of all input sequences’ length and -num_classes is the true number of classes. (not -including the blank label).
    • -
    • blank (int) – the blank label index of Connectionist Temporal -Classification (CTC) loss, which is in thehalf-opened -interval [0, num_classes + 1).
    • +
    • input (Variable|numpy.ndarray) – The source variable
    • +
    • output (Variable) – The destination variable
    Returns:

    CTC greedy decode result.

    +
    Returns:

    The destination variable that was supplied as the output.

    Return type:

    Variable

    @@ -3784,41 +4636,34 @@ interval [0, num_classes + 1).

    Examples

    -
    x = fluid.layers.data(name='x', shape=[8], dtype='float32')
    -
    -cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
    -
    -
    -
    -

    l2_normalize

    +
    +

    fill_constant_batch_size_like

    -paddle.v2.fluid.layers.l2_normalize(x, axis, epsilon=1e-12, name=None)
    -

    L2 normalize Layer

    -

    The l2 normalize layer normalizes x along dimension axis using an L2 -norm. For a 1-D tensor (dim is fixed to 0), this layer computes

    -

    output = x / sqrt(max(sum(x**2), epsilon))

    -

    For x with more dimensions, this layer independently normalizes each 1-D -slice along dimension axis.

    +paddle.v2.fluid.layers.fill_constant_batch_size_like(input, shape, dtype, value, input_dim_idx=0, output_dim_idx=0) +

    fill_constant_batch_size_like

    +

    This function creates a tensor of specified shape, dtype and batch size, +and initializes this with a constant supplied in value. The batch size is +obtained from the input tensor.

    +

    It also sets stop_gradient to True.

    -
    Parameters:
      -
    • x (Variable|list) – The input tensor to l2_normalize layer.
    • -
    • axis (int) – Dimension along which to normalize the input.
    • -
    • epsilon (float) – A lower bound value for x‘s l2 norm. sqrt(epsilon) will -be used as the divisor if the l2 norm of x is less than -sqrt(epsilon).
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • input (Variable) – Tensor whose dimensions will be used to get batch size
    • +
    • shape (tuple|list|None) – Shape of output tensor
    • +
    • dtype (np.dtype|core.DataType|str) – Data type of output tensor
    • +
    • value (float) – Constant value to initialize the output tensor
    • +
    • input_dim_idx (int) – Index of input’s batch size dimension
    • +
    • output_dim_idx (int) – Index of output’s batch size dimension
    Returns:

    The output tensor variable.

    +
    Returns:

    The tensor variable storing the output

    Return type:

    Variable

    @@ -3827,55 +4672,35 @@ will be named automatically.

    Examples

    -
    data = fluid.layers.data(name="data",
    -                         shape=(3, 17, 13),
    -                         dtype="float32")
    -normed = fluid.layers.l2_normalize(x=data, axis=1)
    +
    data = fluid.layers.fill_constant_batch_size_like(
    +    input=like, shape=[1], value=0, dtype='int64')
     
    -
    -

    sequence_reshape

    +
    +

    fill_constant

    -paddle.v2.fluid.layers.sequence_reshape(input, new_dim)
    -

    Sequence Reshape Layer

    -

    This layer will rearrange the input sequences. The new dimension is set by -user. Length of each sequence is computed according to original length, -original dimension and new dimension. The following example will help to -illustrate the function of this layer:

    -
    x is a LoDTensor:
    -    x.lod  = [[0, 2, 6]]
    -    x.data = [[1, 2], [3, 4],
    -              [5, 6], [7, 8], [9, 10], [11, 12]]
    -    x.dims = [6, 2]
    -
    -set new_dim = 4
    -
    -then out is a LoDTensor:
    -    out.lod  = [[0, 1, 3]]
    -    out.data = [[1, 2, 3, 4],
    -                [5, 6, 7, 8], [9, 10, 11, 12]]
    -    out.dims = [3, 4]
    -
    -
    -

    Currently, only 1-level LoDTensor is supported and please make sure -(original length * original dimension) can be divided by new dimension with -no remainder for each sequence.

    +paddle.v2.fluid.layers.fill_constant(shape, dtype, value, force_cpu=False, out=None) +

    fill_constant

    +

    This function creates a tensor with specified shape and dtype, and +initializes it with a constant specifed by value.

    +

    The attribute stop_gradient of the created tensor is set to True.

    -
    Parameters:
      -
    • input (Variable) – (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor -with shape being [N, M] where M for dimension.
    • -
    • new_dim (int) – New dimension which the input LoDTensor is reshaped to.
    • +
    • shape (tuple|list|None) – Shape of the output tensor.
    • +
    • dtype (np.dtype|core.DataType|str) – Data type of the output tensor.
    • +
    • value (float) – The constant value used to initialize the output tensor.
    • +
    • out (Variable) – The output tensor.
    Returns:

    Reshaped LoDTensor according to new dimension.

    +
    Returns:

    The tensor variable storing the output.

    Return type:

    Variable

    @@ -3884,49 +4709,32 @@ with shape being [N, M] where M for dimension.

    Examples

    -
    x = fluid.layers.data(name='x', shape=[5, 20],
    -                  dtype='float32', lod_level=1)
    -x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
    +
    data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
     
    -
    -

    row_conv

    +
    +

    ones

    -paddle.v2.fluid.layers.row_conv(input, future_context_size, param_attr=None, act=None)
    -

    Row Conv Operator. This layer will apply lookahead convolution to -input. The input variable should be a 2D LoDTensor with shape [T, D]. -Parameters with shape [future_context_size + 1, D] will be created. The math -equation of row convolution is as follows:

    -
    -\[Out_{i} = \sum_{j = i} ^ {i + \tau} X_{j} \odot W_{i - j}\]
    -

    In the above equation:

    -
      -
    • \(Out_{i}\): The i-th row of output variable with shape [1, D].
    • -
    • \(\tau\): Future context size.
    • -
    • \(X_{j}\): The j-th row of input variable with shape [1, D].
    • -
    • \(W_{i-j}\): The (i-j)-th row of parameters with shape [1, D].
    • -
    -

    More details about row_conv please refer to the paper (http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf) and -the design document (https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645).

    +paddle.v2.fluid.layers.ones(shape, dtype) +

    ones

    +

    This function creates a tensor of specified shape and +dtype, and initializes this with 1.

    +

    It also sets stop_gradient to True.

    -
    Parameters:
      -
    • input (Variable) – Input variable, a 2D LoDTensor with shape [T, D].
    • -
    • future_context_size (int) – Future context size. Please note, the shape -of convolution kernel is [future_context_size + 1, D].
    • -
    • param_attr (ParamAttr) – Attributes of parameters, including -name, initializer etc.
    • -
    • act (str) – Non-linear activation to be applied to output variable.
    • +
    • shape (tuple|list|None) – Shape of output tensor
    • +
    • dtype (np.dtype|core.DataType|str) – Data type of output tensor
    Returns:

    The output tensor with same shape as input tensor.

    +
    Returns:

    The tensor variable storing the output

    Return type:

    Variable

    @@ -3935,48 +4743,32 @@ name, initializer etc.

    Examples

    -
    x = fluid.layers.data(name='x', shape=[16],
    -                dtype='float32', lod_level=1)
    -out = fluid.layers.row_conv(input=x, future_context_size=2)
    +
    data = fluid.layers.ones(shape=[1], dtype='int64')
     
    -
    -

    multiplex

    +
    +

    zeros

    -paddle.v2.fluid.layers.multiplex(inputs, index)
    -

    Multiplex Layer

    -

    Referring to the given index variable, this layer selects rows from the -input variables to construct a multiplex variable. Assuming that there are -\(m\) input variables and \(I_i\) represents the i-th input -variable and \(i\) is in [0, \(m\)). All input variables are -tensors with same shape [\(d_0\), \(d_1\), ..., \(d_R\)]. -Please note that rank of the input tensor should be at least 2. Each input -variable will be treated as a 2-D matrix with shape [\(M\), \(N\)] -where \(M\) for \(d_0\) and \(N\) for \(d_1\) * \(d_2\) -* ... * \(d_R\). Let \(I_i[j]\) be the j-th row of the i-th input -variable. The given index variable should be a 2-D tensor with shape -[\(M\), 1]. Let ID[i] be the i-th index value of the index variable. -Then the output variable will be a tensor with shape [\(d_0\), -\(d_1\), ..., \(d_R\)]. If we treat the output tensor as a 2-D -matrix with shape [\(M\), \(N\)] and let \(O[i]\) be the i-th -row of the matrix, then O[i] is equal to \(I_{ID[i]}[i]\).

    +paddle.v2.fluid.layers.zeros(shape, dtype) +

    zeros

    +

    This function creates a tensor of specified shape and +dtype, and initializes this with 0.

    +

    It also sets stop_gradient to True.

    -
    Parameters:
      -
    • inputs (list) – A list of variables to gather from. All variables have the -same shape and the rank is at least 2.
    • -
    • index (Variable) – Tensor<int32>, index variable which is a 2-D tensor -with shape [M, 1] where M is the batch size.
    • +
    • shape (tuple|list|None) – Shape of output tensor
    • +
    • dtype (np.dtype|core.DataType|str) – Data type of output tensor
    Returns:

    Multiplex variable gathered from input variables.

    +
    Returns:

    The tensor variable storing the output

    Return type:

    Variable

    @@ -3985,14 +4777,12 @@ with shape [M, 1] where M is the batch size.

    Examples

    -
    x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    -x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    -index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    -out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
    +
    data = fluid.layers.zeros(shape=[1], dtype='int64')
     
    +
    @@ -4003,7 +4793,7 @@ with shape [M, 1] where M is the batch size. @@ -217,7 +217,7 @@
    -

    Nets

    +

    nets

    simple_img_conv_pool

    @@ -225,15 +225,6 @@ paddle.v2.fluid.nets.simple_img_conv_pool(input, num_filters, filter_size, pool_size, pool_stride, act, param_attr=None, pool_type='max', use_cudnn=True)
    -
    -
    -

    img_conv_group

    -
    -
    -paddle.v2.fluid.nets.img_conv_group(input, conv_num_filter, pool_size, conv_padding=1, conv_filter_size=3, conv_act=None, param_attr=None, conv_with_batchnorm=False, conv_batchnorm_drop_rate=0.0, pool_stride=1, pool_type=None, use_cudnn=True)
    -

    Image Convolution Group, Used for vgg net.

    -
    -

    sequence_conv_pool

    @@ -361,10 +352,10 @@ parameters.

    diff --git a/develop/doc/api/v2/fluid/optimizer.html b/develop/doc/api/v2/fluid/optimizer.html index bd08781ae0..e75efcc1cb 100644 --- a/develop/doc/api/v2/fluid/optimizer.html +++ b/develop/doc/api/v2/fluid/optimizer.html @@ -8,7 +8,7 @@ - Optimizer — PaddlePaddle documentation + optimizer — PaddlePaddle documentation @@ -34,8 +34,8 @@ - - + + @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • @@ -207,7 +207,7 @@
  • Fluid >
  • -
  • Optimizer
  • +
  • optimizer
  • @@ -217,113 +217,58 @@
    -

    Optimizer

    -
    -

    Optimizer

    -
    -
    -class paddle.v2.fluid.optimizer.Optimizer(learning_rate, global_step=None, regularization=None)
    -

    Optimizer Base class.

    -

    Define the common interface of an optimizer. -User should not use this class directly, -but need to use one of it’s implementation.

    +

    optimizer

    +
    +

    SGD

    -global_learning_rate
    -

    get global decayed learning rate -:return:

    -
    - -
    -
    -create_optimization_pass(parameters_and_grads, loss, startup_program=None)
    -

    Add optimization operators to update gradients to variables.

    - --- - - - - - - - -
    Parameters:
      -
    • loss – the target that this optimization is for.
    • -
    • parameters_and_grads – a list of (variable, gradient) pair to update.
    • -
    -
    Returns:

    a list of operators that will complete one step of -optimization. This will include parameter update ops, global step -update ops and any other custom ops required by subclasses to manage -their internal state. -:param startup_program:

    -
    Return type:

    return_op_list

    -
    -
    - -
    -
    -minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)
    -

    Add operations to minimize loss by updating parameter_list.

    -

    This method combines interface append_backward() and -create_optimization_pass() into one.

    -
    - +paddle.v2.fluid.optimizer.SGD +

    alias of SGDOptimizer

    -
    -

    SGDOptimizer

    -
    -
    -class paddle.v2.fluid.optimizer.SGDOptimizer(learning_rate, **kwargs)
    -

    Simple SGD optimizer without any state.

    -
    - -
    -
    -

    MomentumOptimizer

    -
    +
    +

    Momentum

    +
    -class paddle.v2.fluid.optimizer.MomentumOptimizer(learning_rate, momentum, use_nesterov=False, **kwargs)
    -

    Simple Momentum optimizer with velocity state

    +paddle.v2.fluid.optimizer.Momentum +

    alias of MomentumOptimizer

    -
    -

    AdagradOptimizer

    -
    +
    +

    Adagrad

    +
    -class paddle.v2.fluid.optimizer.AdagradOptimizer(learning_rate, epsilon=1e-06, **kwargs)
    -

    Simple Adagrad optimizer with moment state

    +paddle.v2.fluid.optimizer.Adagrad +

    alias of AdagradOptimizer

    -
    -

    AdamOptimizer

    -
    +
    +

    Adam

    +
    -class paddle.v2.fluid.optimizer.AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, **kwargs)
    -

    Implements the Adam Optimizer

    +paddle.v2.fluid.optimizer.Adam +

    alias of AdamOptimizer

    -
    -

    AdamaxOptimizer

    -
    +
    +

    Adamax

    +
    -class paddle.v2.fluid.optimizer.AdamaxOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, **kwargs)
    -

    Implements the Adamax Optimizer

    +paddle.v2.fluid.optimizer.Adamax +

    alias of AdamaxOptimizer

    -
    -

    DecayedAdagradOptimizer

    -
    +
    +

    DecayedAdagrad

    +
    -class paddle.v2.fluid.optimizer.DecayedAdagradOptimizer(learning_rate, decay=0.95, epsilon=1e-06, **kwargs)
    -

    Simple Decayed Adagrad optimizer with moment state

    +paddle.v2.fluid.optimizer.DecayedAdagrad +

    alias of DecayedAdagradOptimizer

    @@ -336,10 +281,10 @@ their internal state. diff --git a/develop/doc/api/v2/fluid/param_attr.html b/develop/doc/api/v2/fluid/param_attr.html index 6ba47f50fb..d3e178399d 100644 --- a/develop/doc/api/v2/fluid/param_attr.html +++ b/develop/doc/api/v2/fluid/param_attr.html @@ -8,7 +8,7 @@ - ParamAttr — PaddlePaddle documentation + param_attr — PaddlePaddle documentation @@ -34,8 +34,8 @@ - - + + @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • @@ -207,7 +207,7 @@
  • Fluid >
  • -
  • ParamAttr
  • +
  • param_attr
  • @@ -216,10 +216,26 @@
    -
    -

    ParamAttr

    -
    -

    ParamAttr

    +
    +

    param_attr

    +
    +

    ParamAttr

    +
    +
    +class paddle.v2.fluid.param_attr.ParamAttr(name=None, initializer=None, learning_rate=1.0, regularizer=None, trainable=True, gradient_clip=None)
    +
    + +
    +
    +

    WeightNormParamAttr

    +
    +
    +class paddle.v2.fluid.param_attr.WeightNormParamAttr(dim=None, **kwargs)
    +

    Used for weight normalization. Any field in ParamAttr can also be set here. +Besides, an extra field dim can be set to indicate the dimension except +which to normalize.

    +
    +
    @@ -230,10 +246,10 @@ diff --git a/develop/doc/api/v2/fluid/profiler.html b/develop/doc/api/v2/fluid/profiler.html index cda12d3fe0..e2e4c0d110 100644 --- a/develop/doc/api/v2/fluid/profiler.html +++ b/develop/doc/api/v2/fluid/profiler.html @@ -8,7 +8,7 @@ - Profiler — PaddlePaddle documentation + profiler — PaddlePaddle documentation @@ -34,8 +34,8 @@ - - + + @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • @@ -207,7 +207,7 @@
  • Fluid >
  • -
  • Profiler
  • +
  • profiler
  • @@ -217,9 +217,9 @@
    -

    Profiler

    -
    -

    Profiler

    +

    profiler

    +
    +

    cuda_profiler

    paddle.v2.fluid.profiler.cuda_profiler(*args, **kwds)
    @@ -249,6 +249,53 @@ to “Compute Command Line Profiler User Guide”.
    +
    +
    +

    reset_profiler

    +
    +
    +paddle.v2.fluid.profiler.reset_profiler()
    +

    The profiler clear interface. +reset_profiler will clear the previous time record.

    +
    + +
    +
    +

    profiler

    +
    +
    +paddle.v2.fluid.profiler.profiler(*args, **kwds)
    +

    The profiler interface. +Different from cuda_profiler, this profiler can be used to profile both CPU +and GPU program. By defalut, it records the CPU and GPU operator kernels, +if you want to profile other program, you can refer the profiling tutorial +to add more records.

    + +++ + + + +
    Parameters:
      +
    • state (string) – The profiling state, which should be ‘CPU’ or ‘GPU’, +telling the profiler to use CPU timer or GPU timer for profiling. +Although users may have already specified the execution place +(CPUPlace/CUDAPlace) in the begining, for flexibility the profiler +would not inherit this place.
    • +
    • sorted_key (string) – If None, the profiling results will be printed +in the order of first end time of events. Otherwise, the profiling +results will be sorted by the this flag. This flag should be one +of ‘calls’, ‘total’, ‘max’, ‘min’ or ‘ave’. +The calls means sorting by the number of calls. +The total means sorting by the total execution time. +The max means sorting by the maximum execution time. +The min means sorting by the minimum execution time. +The ave means sorting by the average execution time.
    • +
    +
    +
    +
    @@ -259,10 +306,10 @@ to “Compute Command Line Profiler User Guide”. diff --git a/develop/doc/api/v2/fluid/regularizer.html b/develop/doc/api/v2/fluid/regularizer.html index b1c507121b..6ab82c163f 100644 --- a/develop/doc/api/v2/fluid/regularizer.html +++ b/develop/doc/api/v2/fluid/regularizer.html @@ -8,7 +8,7 @@ - Regularizer — PaddlePaddle documentation + regularizer — PaddlePaddle documentation @@ -34,8 +34,8 @@ - - + + @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • @@ -207,7 +207,7 @@
  • Fluid >
  • -
  • Regularizer
  • +
  • regularizer
  • @@ -217,37 +217,55 @@
    -

    Regularizer

    -
    -

    WeightDecayRegularizer

    -
    +

    regularizer

    +
    +

    append_regularization_ops

    +
    -class paddle.v2.fluid.regularizer.WeightDecayRegularizer
    -

    Base class for weight decay regularizers

    -

    Defines the common interface of weight-decay regularizers. -Weight-decay regularizers are added only during the backward -pass for faster regularization. They add operations to the network -that correspond to gradient of the regularization function. -Users should not use this class directly, but need to use one -of its implementations

    +paddle.v2.fluid.regularizer.append_regularization_ops(parameters_and_grads, regularization=None) +

    Create and add backward regularization Operators

    +

    Creates and adds backward regularization operators in the BlockDesc. +This will add gradients of the regularizer function to the gradients +of the parameters and return these modified gradients. This is the +same as implementing weight decay in optimizers for regularization.

    + +++ + + + + + + + +
    Parameters:
      +
    • parameters_and_grads – A list of (parameters, gradients) pairs +that need to be regularized.
    • +
    • regularization – A global regularizer. If the parameter is not +set. It will be applied with regularizer.
    • +
    +
    Returns:

    list of (parameters, gradients) pair with the regularized gradient

    +
    Raises:

    Exception – Unknown regularization type

    +
    -
    -

    L2DecayRegularizer

    -
    +
    +

    L1Decay

    +
    -class paddle.v2.fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0)
    -

    Implements the L2 Weight Decay Regularization

    +paddle.v2.fluid.regularizer.L1Decay +

    alias of L1DecayRegularizer

    -
    -

    L1DecayRegularizer

    -
    -
    -class paddle.v2.fluid.regularizer.L1DecayRegularizer(regularization_coeff=0.0)
    -

    Implements the L1 Weight Decay Regularization

    +
    +

    L2Decay

    +
    +
    +paddle.v2.fluid.regularizer.L2Decay
    +

    alias of L2DecayRegularizer

    @@ -260,10 +278,10 @@ of its implementations

    diff --git a/develop/doc/api/v2/model_configs.html b/develop/doc/api/v2/model_configs.html index 8042041351..29362778f3 100644 --- a/develop/doc/api/v2/model_configs.html +++ b/develop/doc/api/v2/model_configs.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/api/v2/run_logic.html b/develop/doc/api/v2/run_logic.html index f665bbb1b1..b1d3598a5a 100644 --- a/develop/doc/api/v2/run_logic.html +++ b/develop/doc/api/v2/run_logic.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/api.html b/develop/doc/design/api.html index 1903a81076..e1d938acfc 100644 --- a/develop/doc/design/api.html +++ b/develop/doc/design/api.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/auto_gradient_check.html b/develop/doc/design/auto_gradient_check.html index aa76c77cdf..aa07af7165 100644 --- a/develop/doc/design/auto_gradient_check.html +++ b/develop/doc/design/auto_gradient_check.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/backward.html b/develop/doc/design/backward.html index 1c9615f3df..9b6f06dc42 100644 --- a/develop/doc/design/backward.html +++ b/develop/doc/design/backward.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/block.html b/develop/doc/design/block.html index 0070b5ba1f..3ef2148991 100644 --- a/develop/doc/design/block.html +++ b/develop/doc/design/block.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/build_system/README.html b/develop/doc/design/build_system/README.html index fadbf9cc9e..c94834d70e 100644 --- a/develop/doc/design/build_system/README.html +++ b/develop/doc/design/build_system/README.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/cluster_train/README.html b/develop/doc/design/cluster_train/README.html index 42c30b6e08..2f0b21457c 100644 --- a/develop/doc/design/cluster_train/README.html +++ b/develop/doc/design/cluster_train/README.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/cluster_train/checkpointing.html b/develop/doc/design/cluster_train/checkpointing.html index a2a5de6e58..d1efe9f2be 100644 --- a/develop/doc/design/cluster_train/checkpointing.html +++ b/develop/doc/design/cluster_train/checkpointing.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/cluster_train/data_dispatch.html b/develop/doc/design/cluster_train/data_dispatch.html index fa2104ab47..a1bce4063f 100644 --- a/develop/doc/design/cluster_train/data_dispatch.html +++ b/develop/doc/design/cluster_train/data_dispatch.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/cluster_train/large_model_dist_train.html b/develop/doc/design/cluster_train/large_model_dist_train.html index 31e0b43a16..488d8d9261 100644 --- a/develop/doc/design/cluster_train/large_model_dist_train.html +++ b/develop/doc/design/cluster_train/large_model_dist_train.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/cluster_train/master_server.html b/develop/doc/design/cluster_train/master_server.html index 19384b28aa..6e1e19b8a9 100644 --- a/develop/doc/design/cluster_train/master_server.html +++ b/develop/doc/design/cluster_train/master_server.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/cluster_train/pserver_client.html b/develop/doc/design/cluster_train/pserver_client.html index e8925ce93d..d084c79c11 100644 --- a/develop/doc/design/cluster_train/pserver_client.html +++ b/develop/doc/design/cluster_train/pserver_client.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/cluster_train/remote_parameter_updater.html b/develop/doc/design/cluster_train/remote_parameter_updater.html index 65c936c03d..552a0cd15d 100644 --- a/develop/doc/design/cluster_train/remote_parameter_updater.html +++ b/develop/doc/design/cluster_train/remote_parameter_updater.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/cluster_train/save_model.html b/develop/doc/design/cluster_train/save_model.html index 124b51953a..dbccb108f3 100644 --- a/develop/doc/design/cluster_train/save_model.html +++ b/develop/doc/design/cluster_train/save_model.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/cluster_train/submit-job.html b/develop/doc/design/cluster_train/submit-job.html index 1bce5e75ac..b3c2147c7d 100644 --- a/develop/doc/design/cluster_train/submit-job.html +++ b/develop/doc/design/cluster_train/submit-job.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/concurrent_programming.html b/develop/doc/design/concurrent_programming.html index e77e6cb89c..3da59a42bb 100644 --- a/develop/doc/design/concurrent_programming.html +++ b/develop/doc/design/concurrent_programming.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/csp.html b/develop/doc/design/csp.html index 7c8095fd15..d9de142005 100644 --- a/develop/doc/design/csp.html +++ b/develop/doc/design/csp.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/dist_refactor/distributed_architecture.html b/develop/doc/design/dist_refactor/distributed_architecture.html index 00403656b0..e51c7abd9f 100644 --- a/develop/doc/design/dist_refactor/distributed_architecture.html +++ b/develop/doc/design/dist_refactor/distributed_architecture.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/dist_refactor/multi_cpu.html b/develop/doc/design/dist_refactor/multi_cpu.html index fe645c62b7..56d38fabaf 100644 --- a/develop/doc/design/dist_refactor/multi_cpu.html +++ b/develop/doc/design/dist_refactor/multi_cpu.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/dist_refactor/parameter_server.html b/develop/doc/design/dist_refactor/parameter_server.html index 11ba8e09ef..f6b922d167 100644 --- a/develop/doc/design/dist_refactor/parameter_server.html +++ b/develop/doc/design/dist_refactor/parameter_server.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/error_clip.html b/develop/doc/design/error_clip.html index e610479386..4b4a87a95e 100644 --- a/develop/doc/design/error_clip.html +++ b/develop/doc/design/error_clip.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/evaluator.html b/develop/doc/design/evaluator.html index fb66dc3ca7..969be56148 100644 --- a/develop/doc/design/evaluator.html +++ b/develop/doc/design/evaluator.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/executor.html b/develop/doc/design/executor.html index 7cd5028f8c..44665f60f7 100644 --- a/develop/doc/design/executor.html +++ b/develop/doc/design/executor.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/file_manager/README.html b/develop/doc/design/file_manager/README.html index 4f3387c367..e1ab469c7d 100644 --- a/develop/doc/design/file_manager/README.html +++ b/develop/doc/design/file_manager/README.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/file_manager/pfs/pfsclient.html b/develop/doc/design/file_manager/pfs/pfsclient.html index 322bfb080c..6b78bbc3a8 100644 --- a/develop/doc/design/file_manager/pfs/pfsclient.html +++ b/develop/doc/design/file_manager/pfs/pfsclient.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/float16.html b/develop/doc/design/float16.html index 9c3e0184ec..f487c93f74 100644 --- a/develop/doc/design/float16.html +++ b/develop/doc/design/float16.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/fluid.html b/develop/doc/design/fluid.html index 67f5df790b..3f116ee9d2 100644 --- a/develop/doc/design/fluid.html +++ b/develop/doc/design/fluid.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/fluid_compiler.html b/develop/doc/design/fluid_compiler.html index b6f0139d18..0ab78210a8 100644 --- a/develop/doc/design/fluid_compiler.html +++ b/develop/doc/design/fluid_compiler.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/functions_operators_layers.html b/develop/doc/design/functions_operators_layers.html index 13dc2a2f51..008db0fa35 100644 --- a/develop/doc/design/functions_operators_layers.html +++ b/develop/doc/design/functions_operators_layers.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/gan_api.html b/develop/doc/design/gan_api.html index 89f158bd6c..70db6a0d96 100644 --- a/develop/doc/design/gan_api.html +++ b/develop/doc/design/gan_api.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/graph.html b/develop/doc/design/graph.html index 2a20331305..02219f039b 100644 --- a/develop/doc/design/graph.html +++ b/develop/doc/design/graph.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/graph_survey.html b/develop/doc/design/graph_survey.html index 14583b9823..a250ded9cf 100644 --- a/develop/doc/design/graph_survey.html +++ b/develop/doc/design/graph_survey.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/if_else_op.html b/develop/doc/design/if_else_op.html index 50d60c82b1..95291ac621 100644 --- a/develop/doc/design/if_else_op.html +++ b/develop/doc/design/if_else_op.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/infer_var_type.html b/develop/doc/design/infer_var_type.html index c792683de6..12bccda538 100644 --- a/develop/doc/design/infer_var_type.html +++ b/develop/doc/design/infer_var_type.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/kernel_hint_design.html b/develop/doc/design/kernel_hint_design.html index fa7a059e1b..08301df674 100644 --- a/develop/doc/design/kernel_hint_design.html +++ b/develop/doc/design/kernel_hint_design.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/memory_optimization.html b/develop/doc/design/memory_optimization.html index fbc08771f0..089e7c57a3 100644 --- a/develop/doc/design/memory_optimization.html +++ b/develop/doc/design/memory_optimization.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/mkl/mkl_packed.html b/develop/doc/design/mkl/mkl_packed.html index 16f449849a..e149671117 100644 --- a/develop/doc/design/mkl/mkl_packed.html +++ b/develop/doc/design/mkl/mkl_packed.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/mkl/mkldnn.html b/develop/doc/design/mkl/mkldnn.html index fc716cc79a..ef6c603c3f 100644 --- a/develop/doc/design/mkl/mkldnn.html +++ b/develop/doc/design/mkl/mkldnn.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/mkl/mkldnn_fluid.html b/develop/doc/design/mkl/mkldnn_fluid.html index b5cb8b6227..a89b3e0202 100644 --- a/develop/doc/design/mkl/mkldnn_fluid.html +++ b/develop/doc/design/mkl/mkldnn_fluid.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/model_format.html b/develop/doc/design/model_format.html index 5a61ed9f2e..7d0d84bfef 100644 --- a/develop/doc/design/model_format.html +++ b/develop/doc/design/model_format.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/multi_language_interface/00.why_plain_c.html b/develop/doc/design/multi_language_interface/00.why_plain_c.html index 8f7341ada2..f5a7a3cb65 100644 --- a/develop/doc/design/multi_language_interface/00.why_plain_c.html +++ b/develop/doc/design/multi_language_interface/00.why_plain_c.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/multi_language_interface/01.inference_implementation.html b/develop/doc/design/multi_language_interface/01.inference_implementation.html index 46714697c2..ff33b526ea 100644 --- a/develop/doc/design/multi_language_interface/01.inference_implementation.html +++ b/develop/doc/design/multi_language_interface/01.inference_implementation.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/operator_kernel_type.html b/develop/doc/design/operator_kernel_type.html index fce8eb0420..fcd4c1c011 100644 --- a/develop/doc/design/operator_kernel_type.html +++ b/develop/doc/design/operator_kernel_type.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/ops/rnn.html b/develop/doc/design/ops/rnn.html index 809cb86708..f90a72a099 100644 --- a/develop/doc/design/ops/rnn.html +++ b/develop/doc/design/ops/rnn.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/ops/sequence_decoder.html b/develop/doc/design/ops/sequence_decoder.html index 1cf28a854e..8720cd8af5 100644 --- a/develop/doc/design/ops/sequence_decoder.html +++ b/develop/doc/design/ops/sequence_decoder.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/optimizer.html b/develop/doc/design/optimizer.html index b3c9d4b83d..494fab9138 100644 --- a/develop/doc/design/optimizer.html +++ b/develop/doc/design/optimizer.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/paddle_nccl.html b/develop/doc/design/paddle_nccl.html index c921b69244..01c7658852 100644 --- a/develop/doc/design/paddle_nccl.html +++ b/develop/doc/design/paddle_nccl.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/parameter_average.html b/develop/doc/design/parameter_average.html index 85b9e457e4..89d2afc7a7 100644 --- a/develop/doc/design/parameter_average.html +++ b/develop/doc/design/parameter_average.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/parameters_in_cpp.html b/develop/doc/design/parameters_in_cpp.html index 3fe816902d..840f4f869e 100644 --- a/develop/doc/design/parameters_in_cpp.html +++ b/develop/doc/design/parameters_in_cpp.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/profiler.html b/develop/doc/design/profiler.html index b6c3a68d4b..acb0ce9134 100644 --- a/develop/doc/design/profiler.html +++ b/develop/doc/design/profiler.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/program.html b/develop/doc/design/program.html index 488f6270ad..71156defab 100644 --- a/develop/doc/design/program.html +++ b/develop/doc/design/program.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/prune.html b/develop/doc/design/prune.html index a585945e2a..7193b7ca0d 100644 --- a/develop/doc/design/prune.html +++ b/develop/doc/design/prune.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/python_api.html b/develop/doc/design/python_api.html index 13317ceb34..558f7afe3d 100644 --- a/develop/doc/design/python_api.html +++ b/develop/doc/design/python_api.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/reader/README.html b/develop/doc/design/reader/README.html index c2c9042285..cb7145dd2e 100644 --- a/develop/doc/design/reader/README.html +++ b/develop/doc/design/reader/README.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/refactorization.html b/develop/doc/design/refactorization.html index ba67452b56..03ec56b1d4 100644 --- a/develop/doc/design/refactorization.html +++ b/develop/doc/design/refactorization.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/register_grad_op.html b/develop/doc/design/register_grad_op.html index cb52e5904a..e4f7e34751 100644 --- a/develop/doc/design/register_grad_op.html +++ b/develop/doc/design/register_grad_op.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/regularization.html b/develop/doc/design/regularization.html index 72f1790c02..71f341842a 100644 --- a/develop/doc/design/regularization.html +++ b/develop/doc/design/regularization.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/releasing_process.html b/develop/doc/design/releasing_process.html index c80000df72..a71443ad7b 100644 --- a/develop/doc/design/releasing_process.html +++ b/develop/doc/design/releasing_process.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/scope.html b/develop/doc/design/scope.html index c794bd4af3..09d3639c7a 100644 --- a/develop/doc/design/scope.html +++ b/develop/doc/design/scope.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/selected_rows.html b/develop/doc/design/selected_rows.html index 2fe39da2cf..5158cf8d2f 100644 --- a/develop/doc/design/selected_rows.html +++ b/develop/doc/design/selected_rows.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/simple_op_design.html b/develop/doc/design/simple_op_design.html index 7c28b0d501..b412b82f3a 100644 --- a/develop/doc/design/simple_op_design.html +++ b/develop/doc/design/simple_op_design.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/speech/deep_speech_2.html b/develop/doc/design/speech/deep_speech_2.html index 20fc13c9fa..b63d4024a1 100644 --- a/develop/doc/design/speech/deep_speech_2.html +++ b/develop/doc/design/speech/deep_speech_2.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/support_new_device.html b/develop/doc/design/support_new_device.html index ae5d59ee67..9fc56f2006 100644 --- a/develop/doc/design/support_new_device.html +++ b/develop/doc/design/support_new_device.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/switch_kernel.html b/develop/doc/design/switch_kernel.html index 1afc2ccb54..28881b1c2b 100644 --- a/develop/doc/design/switch_kernel.html +++ b/develop/doc/design/switch_kernel.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/tensor_array.html b/develop/doc/design/tensor_array.html index 843e8ce810..f581f4018f 100644 --- a/develop/doc/design/tensor_array.html +++ b/develop/doc/design/tensor_array.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/design/var_desc.html b/develop/doc/design/var_desc.html index 62516236a8..52fdc0883f 100644 --- a/develop/doc/design/var_desc.html +++ b/develop/doc/design/var_desc.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/genindex.html b/develop/doc/genindex.html index 9e1b8768ce..1bc21c386e 100644 --- a/develop/doc/genindex.html +++ b/develop/doc/genindex.html @@ -160,17 +160,17 @@
  • Training and Inference
  • Fluid
  • @@ -217,7 +217,6 @@ B | C | L - | M | P | R | S @@ -243,14 +242,12 @@

    L

    - +
    -

    M

    - - -
    -

    P

    - - - - - - - - -
    diff --git a/develop/doc/getstarted/build_and_install/docker_install_en.html b/develop/doc/getstarted/build_and_install/docker_install_en.html index 5c977bacdd..107af7a8af 100644 --- a/develop/doc/getstarted/build_and_install/docker_install_en.html +++ b/develop/doc/getstarted/build_and_install/docker_install_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/getstarted/build_and_install/index_en.html b/develop/doc/getstarted/build_and_install/index_en.html index a8551ac036..300df43fc6 100644 --- a/develop/doc/getstarted/build_and_install/index_en.html +++ b/develop/doc/getstarted/build_and_install/index_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/getstarted/build_and_install/pip_install_en.html b/develop/doc/getstarted/build_and_install/pip_install_en.html index af9bd09611..bda39adf16 100644 --- a/develop/doc/getstarted/build_and_install/pip_install_en.html +++ b/develop/doc/getstarted/build_and_install/pip_install_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/getstarted/index_en.html b/develop/doc/getstarted/index_en.html index 46535ff6f3..55369cdf90 100644 --- a/develop/doc/getstarted/index_en.html +++ b/develop/doc/getstarted/index_en.html @@ -161,17 +161,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/deep_model/rnn/index_en.html b/develop/doc/howto/deep_model/rnn/index_en.html index 7258726fbf..020d628ab2 100644 --- a/develop/doc/howto/deep_model/rnn/index_en.html +++ b/develop/doc/howto/deep_model/rnn/index_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/deep_model/rnn/rnn_config_en.html b/develop/doc/howto/deep_model/rnn/rnn_config_en.html index 1c80190ad0..bf53caf063 100644 --- a/develop/doc/howto/deep_model/rnn/rnn_config_en.html +++ b/develop/doc/howto/deep_model/rnn/rnn_config_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/dev/build_en.html b/develop/doc/howto/dev/build_en.html index 2d133a7aeb..2785b254b1 100644 --- a/develop/doc/howto/dev/build_en.html +++ b/develop/doc/howto/dev/build_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/dev/contribute_to_paddle_en.html b/develop/doc/howto/dev/contribute_to_paddle_en.html index 94e96db96f..6ff377b51f 100644 --- a/develop/doc/howto/dev/contribute_to_paddle_en.html +++ b/develop/doc/howto/dev/contribute_to_paddle_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/dev/new_layer_en.html b/develop/doc/howto/dev/new_layer_en.html index bd94698a90..b82b2ea4f1 100644 --- a/develop/doc/howto/dev/new_layer_en.html +++ b/develop/doc/howto/dev/new_layer_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/dev/new_op_en.html b/develop/doc/howto/dev/new_op_en.html index 444f064aaf..fdb00830ee 100644 --- a/develop/doc/howto/dev/new_op_en.html +++ b/develop/doc/howto/dev/new_op_en.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/dev/new_op_kernel_en.html b/develop/doc/howto/dev/new_op_kernel_en.html index e1501166ab..42a6234879 100644 --- a/develop/doc/howto/dev/new_op_kernel_en.html +++ b/develop/doc/howto/dev/new_op_kernel_en.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/dev/use_eigen_en.html b/develop/doc/howto/dev/use_eigen_en.html index 45a07afe77..8234a2f822 100644 --- a/develop/doc/howto/dev/use_eigen_en.html +++ b/develop/doc/howto/dev/use_eigen_en.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/dev/write_docs_en.html b/develop/doc/howto/dev/write_docs_en.html index a0ba728807..9b7c69c32a 100644 --- a/develop/doc/howto/dev/write_docs_en.html +++ b/develop/doc/howto/dev/write_docs_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/index_en.html b/develop/doc/howto/index_en.html index 7de5347cd4..3659db7905 100644 --- a/develop/doc/howto/index_en.html +++ b/develop/doc/howto/index_en.html @@ -161,17 +161,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/optimization/cpu_profiling.html b/develop/doc/howto/optimization/cpu_profiling.html index f04d192c25..8696c43644 100644 --- a/develop/doc/howto/optimization/cpu_profiling.html +++ b/develop/doc/howto/optimization/cpu_profiling.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/optimization/gpu_profiling_en.html b/develop/doc/howto/optimization/gpu_profiling_en.html index e0caa3af36..80d9288f05 100644 --- a/develop/doc/howto/optimization/gpu_profiling_en.html +++ b/develop/doc/howto/optimization/gpu_profiling_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/read_source.html b/develop/doc/howto/read_source.html index 1a3ae0b43a..8e6ee0d958 100644 --- a/develop/doc/howto/read_source.html +++ b/develop/doc/howto/read_source.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/usage/cluster/cluster_train_en.html b/develop/doc/howto/usage/cluster/cluster_train_en.html index 9f6574ca36..5fec7df248 100644 --- a/develop/doc/howto/usage/cluster/cluster_train_en.html +++ b/develop/doc/howto/usage/cluster/cluster_train_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/usage/cluster/fabric_en.html b/develop/doc/howto/usage/cluster/fabric_en.html index 292a8d875d..5e960fe356 100644 --- a/develop/doc/howto/usage/cluster/fabric_en.html +++ b/develop/doc/howto/usage/cluster/fabric_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/usage/cluster/fluid_cluster_train_en.html b/develop/doc/howto/usage/cluster/fluid_cluster_train_en.html index 15eeb62598..5446faa0c7 100644 --- a/develop/doc/howto/usage/cluster/fluid_cluster_train_en.html +++ b/develop/doc/howto/usage/cluster/fluid_cluster_train_en.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/usage/cluster/k8s_aws_en.html b/develop/doc/howto/usage/cluster/k8s_aws_en.html index 850e03b536..794cdd6ea0 100644 --- a/develop/doc/howto/usage/cluster/k8s_aws_en.html +++ b/develop/doc/howto/usage/cluster/k8s_aws_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/usage/cluster/k8s_en.html b/develop/doc/howto/usage/cluster/k8s_en.html index 4153404fa1..fecc89430d 100644 --- a/develop/doc/howto/usage/cluster/k8s_en.html +++ b/develop/doc/howto/usage/cluster/k8s_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/usage/cluster/openmpi_en.html b/develop/doc/howto/usage/cluster/openmpi_en.html index 65c6d010c0..29289e68ae 100644 --- a/develop/doc/howto/usage/cluster/openmpi_en.html +++ b/develop/doc/howto/usage/cluster/openmpi_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/usage/cluster/src/k8s_data/README.html b/develop/doc/howto/usage/cluster/src/k8s_data/README.html index 10c83c0239..9c50fa3114 100644 --- a/develop/doc/howto/usage/cluster/src/k8s_data/README.html +++ b/develop/doc/howto/usage/cluster/src/k8s_data/README.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/usage/cluster/src/k8s_train/README.html b/develop/doc/howto/usage/cluster/src/k8s_train/README.html index 0dd51f4333..ab14b4cb86 100644 --- a/develop/doc/howto/usage/cluster/src/k8s_train/README.html +++ b/develop/doc/howto/usage/cluster/src/k8s_train/README.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/usage/cmd_parameter/arguments_en.html b/develop/doc/howto/usage/cmd_parameter/arguments_en.html index 8ffbc2d03e..5f09ec2b63 100644 --- a/develop/doc/howto/usage/cmd_parameter/arguments_en.html +++ b/develop/doc/howto/usage/cmd_parameter/arguments_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/usage/cmd_parameter/detail_introduction_en.html b/develop/doc/howto/usage/cmd_parameter/detail_introduction_en.html index 8703357338..90e7268450 100644 --- a/develop/doc/howto/usage/cmd_parameter/detail_introduction_en.html +++ b/develop/doc/howto/usage/cmd_parameter/detail_introduction_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/usage/cmd_parameter/index_en.html b/develop/doc/howto/usage/cmd_parameter/index_en.html index 49cd7d599a..f47cb2500c 100644 --- a/develop/doc/howto/usage/cmd_parameter/index_en.html +++ b/develop/doc/howto/usage/cmd_parameter/index_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/howto/usage/cmd_parameter/use_case_en.html b/develop/doc/howto/usage/cmd_parameter/use_case_en.html index bc422f6246..93939c0388 100644 --- a/develop/doc/howto/usage/cmd_parameter/use_case_en.html +++ b/develop/doc/howto/usage/cmd_parameter/use_case_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/index_en.html b/develop/doc/index_en.html index d95a7cfce9..e9e8958665 100644 --- a/develop/doc/index_en.html +++ b/develop/doc/index_en.html @@ -160,17 +160,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/mobile/cross_compiling_for_android_en.html b/develop/doc/mobile/cross_compiling_for_android_en.html index 0e3b653435..cd91d89724 100644 --- a/develop/doc/mobile/cross_compiling_for_android_en.html +++ b/develop/doc/mobile/cross_compiling_for_android_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/mobile/cross_compiling_for_ios_en.html b/develop/doc/mobile/cross_compiling_for_ios_en.html index 4f1d77f0c4..040f163602 100644 --- a/develop/doc/mobile/cross_compiling_for_ios_en.html +++ b/develop/doc/mobile/cross_compiling_for_ios_en.html @@ -162,17 +162,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/mobile/cross_compiling_for_raspberry_en.html b/develop/doc/mobile/cross_compiling_for_raspberry_en.html index da676e7da6..4372f26f25 100644 --- a/develop/doc/mobile/cross_compiling_for_raspberry_en.html +++ b/develop/doc/mobile/cross_compiling_for_raspberry_en.html @@ -161,17 +161,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/mobile/index_en.html b/develop/doc/mobile/index_en.html index 991d819535..788d4ef52f 100644 --- a/develop/doc/mobile/index_en.html +++ b/develop/doc/mobile/index_en.html @@ -34,7 +34,7 @@ - + @@ -161,17 +161,17 @@
  • Training and Inference
  • Fluid
  • @@ -232,7 +232,7 @@ Next - Previous + Previous diff --git a/develop/doc/objects.inv b/develop/doc/objects.inv index e43f7b4a0aac4d2ab59eac80ce81d1f33c354a31..0a32d308584901424f6662291e5a977a86c48955 100644 GIT binary patch delta 3632 zcmV-04$tw(9f=)~e1A`G+{P8Z@24Q(-V$mPABw^#3doY|sMfzoa&sKalC!%LksNx4 zl)OC!PSB=k8Y2Z76gi|Y(xATB&9!LIL%)k;-SQRs<{!x+humFRJ$Oydd++z&3}@cF z_hyviI8MmM`P~hg;u#6@#l4ipWkQ1Y0-V$F`Q34h3p`fTjemKOCU-PF{8q>-EWbHOLZ$`cbT%*0G@)+;#Bhvo z7NdgWOiUS1-x8}D@wdf5lSM(q&5@u#F?_4H8)r@g{VhRa&UkTi6hYHGA-6Ha1w+yN zVs&{*qFGFyB7c$vqKNOsEDAy`V%rsWuz9pQGC&c_rgS#OfPapaj+Ug4$Dma2ZLp%? z1290<07sbPl)wTBHldA9%7V0z$T?0*Tre*B@oFB8x>LQkz!JP519mC0hS-yjZSjm0 z7mS|`SYkOe$borl!LYobDa^A0ODYx(bZB2&NI7E(&3|V7IEKLtwtg8kCXh!`Hf#QE z$#6_?43_RnFE+&y31FQm$_Xh%6H5IcuG#&tO_l)_9aKSzAw(e8Xz()XtdKtGdieyq zimzkCG%0E95m)V6@_~GG_;o+0g!qS|!=rH;4K7+Wy?e1L4vkd3ws4-3s2qeb3%#sA4p3Ei;J)ue1YzdNL`wE-)YAmQ%AfU!|;z&%Ly7HmL5EmH5t6^yh{ zS$_)i`ePDRk;{6>p+N~7C|%&TVj<_w&9n(QD*^-2!8OileN+(Kf?w}IRXhEfuu4w; zxNsz$kT|w+$C{Y6aP`zef11mMd=qFbxugEuBj+S>k*Cp3P(f-MwSXuW1rp@Rjqs#! zD1|E+7d^o@2bZ!6+k&{zDSb+AG_+b!{eQZM%?NZ&Oe<>sA5BV{#7OR%ENiWT8SKW8 zg%>0qYc83>(hS;?#I&ePU9gfz#3ng+6eYBX_vM=krQyxhh9(`4dK)T31$$rqoGxIPMPlNC`w}#lLFHOKnl*{(&HrO?4n@fQb6=OmIArW$i^PgN`EDA zhMFEa(A%mF{u2?Ws<+At_`a~=$pmy&iAj7`VKJDc14J3h=Vm)3Aho|Ke>JKEaEXC!!F zDkBy>N=hLsZYt#Ihxf5{d$3J~DNDpvoatAjzD3SpHMA1)<=k5B)yo%`-+%t`^7*r? zzx;6Z-6vOn`~JjBhxcvNgm(RcQD}@YTMvxBd0jq~TcQu~QNwB4% z_UMFTzL0}bSImY?;Ur}Rsr@M`bNJ>fj6$Da*SurJ*|6uaQ88s4>{g(9&G=0e_}ol_ zrAF1PT{BLArW45?HRU9wMffqBELT&pYBeY7J-}Ws5d4}=Dvd0QN`KC!ONNvI+;f`t zH~}wXw^LgcUvSg_yr9M0l$$J|$bD)=?!i1csuzseh8!%l6gipV2r{;DW5FTJqd6@g z6Dm3Js9Q~NHRl>^HbnfErDal36y@boQ!37`?j2R!B0&L*%nY#}-hC+(Y#lxJE3X$u zuUi=w=$g{Eq6z0rd4C7rC$5R6`w7RU%x~a!|JdyOg=xRU5X6cOfk@%NQ4ww*9IS_r`n*M(rGNV+H{)39lqw&oZzH#QwcpfsKv63|waX^PamadsK0+J6_uj_Ee1Y-=wssWxbgd@YbY_=- z|K|FiudZKya`ol+m(RbueEsd4FMn8W$@?4B9t(c9g~Q~-W|xt*0dL5bwh;)4f2p=(qgsouoRS4~sm6Rp1jtM~;#*~?NG-bQpYv8fs zUleoJ7bw(3j}?lhuEQ8^eLbN+RCVaa6b;h6%+U4oHY4cY2wNP!l-q?kgh_Nx$wjSV zMt@a4D=UQl@S@GqRZ zi>Dj$UOxZo`o$O5|M=|si%%`Ikab88oN9N*0^F%8T6T*}0#rvbyXEY{XPQIz6f6um zI0kZssn3L2-XC+dS?Yj;V_kfokm7=nOnIGM5$bVbRGvwD7b^msHQndd0Xw%TP4kE69uteP|JX2)ITlvGlJ6GaiD z^@d|*8~g(q9G6)=Gh`*SP*+!$n1A8B^}3RP9dFgD+@?M}9Td)Kev=-%Vy@=LLM;uN zH#INmmD`7hJEy_P>E`k2&h|(jtSTq25;_^+d(j3NtCT?JeZmh5|Lm2e6|f!dT7i2B z%u1e{LGmLh8)dGuef;6mYHwN=^-vWsa_$|cYhm&sY;*kqPMZFyLk zt@q=Gic-K>QSfKI@J$ZKcpwBjlF*2{YBAL{1Zbic*rlcryE7*yGBf?do zC#$}nOm57M(1mUg`|8VP&rtT)>4|gALm#=hM{nMq4D*`+%y&NT6QAMJV zng^NkBWXYVKymps=|cRP-SbN|E|{<0)w5p+gfGMjN^8#UXgc4v>VLgVl|MSsvCN}# zBAr1&M6VgEnPAmBDi5<|3c$N%X--#AQgaS|R7iNU{i9v4GQlHdtNOEnZf#&i5v~50 z84C(pB;;3vs`@UltSU3C%(-oa`Aj*+!7tV;VRi@85*(I=yp%Os_h#8@iU)3``EH*r zzhSnTT6Z%Tx`5V?A%C~M2n({Z(uRQ6`xy4eEod0|jCW0Jr+STz&xWA##^5@4VzDO=%@?61RDYx) z|CCl|q%wnv?cK-48gs{!`rLuGumJ{%AA~NAyOj&2Zi=7Wf*y(TVDrOKgMJIB7O9)W zJt=8)wp5e5qLfU9`JsHX$Occzt%ar~G}eiH9?6OaY^lYqT#l9H4h1H&_EUHeBSGY? z9~WJ>S>LJXM=7%Eqz}uh*lxmDA?wU}E*C_>SmM-Imvg(@yTcF^>Wa6582t|g_4TIt C^8`5n delta 3695 zcmV-#4v_JQ9mpM!e1Bh$+_n*a-%laHeM@v3`=Ka|qQLp?>|A~Sa(8YX1+K*1Wlj=h zQo8f@DM*4gMbj85(4fde3L_2b7rS{a8uX#x<<9q(uh1Ei`a_A*?w+p?UQ3*r-wY{o zI5XsBB#L6Xaei-O8W$|upywnmNY2H^PW6<~T(D4j+2TIQ;eT;b02WUIxAu#*l(#osDwvFOuhGPoCcFd(ro?`z>U4T+cYGL zV_QcU6DixKc2wBdEFm-MGB6@J87u05Wtu)Ac{mT$vkaz!CqYh>LDM1)bH>x!rZ%bz zE~IHrMGy*}-G3Y;rqetSY&Oq>Y0TaRh?6KFX%yswq;kqd@|IZDh`%jHFj<&+dNU;G zPXyoU?Z#P92~#VOb1w3mqezxyF};l;&Up~dFIJaF5=$fcETE|;^XPuWL(kVDWxL|` zHjj2k1}Nm|l+DHj@Xv|T(UNrW7?kS04F ziVmuz`F{{1kZUw}8Ff}jpLD%^yj{iDu|aJ+4spGUDanWUXz}ZQPAPQ{MTe)h{-Jsw zxwq$DD0>61r+*9Q84Zg;7{g#t%$p6uQkF9k_srf7j~Uy#p@qi#LAa4Uv_;e!mAzt` z>{`Q`4hytj7>U)&Z3zx7+7?I8n$=txdc2^=KYzAa8cq`ZV+%>}DT@aTDj5ulc^mZw zRJ}Oupv!ASY9$&3R5T8>*KrN7Mb{|%*yL@grb1Y|h$zw^<}(&LkSdx+ITZxv8~8x< zOS|cm3YzNWiyJUYG4@g_f;o*dm=A&R(Sg~fSu#V8^8kIN(if8n7&h$N?*Pp=3VhAr z8-E49Vf3{E9~2-+!NMURHRVqQk-h}~Uquzdd zkm?QCfcRRZUda^R1!A7JsguTIkO*T*x>35x+F7d$E)PIAsKay~93 z#J*z`$jW?d>=3O~0;jL(z6HIl+TcGK3Z{Citbp$e8y=>gt17p0RizFwe2oE#2ROSV zf#FfjbrLB@Ax|<0a-iec?MxyA=zlA~E&T!=%qW5{V5M#?V>rz0 z^)C((5WQ_4R?-k@2Qxt;MpM{)=QKQXp>?@T9u5TWks)|nNPt~at0`4XNO*QZMC8CN zNgC`y$*ATLuFaAy=1#LzyUAgyp56BzD0cM8Cn3*hg`%hb0%mM7KHk~f-hbb5VRpI7 z*z;+@1h}KEeR4*Oq!xZRK=NYMe18*99Bas9be9^ z)n2`Parx~ZFQ0#M^_L&6zWey-+XrY>VL17pS-;M^B0$&|L*enS8k<{0nBKi1A9Qrb@Ni~ZZR{D zV-hbUlOCUXiqBJgUex#yc^UA7F1?=I<|RbENGi_l+-5m?uzzdbvEppl^Teo_ zashTLP`zf{CQ5Q{Cc#ppYSyk9CqUDQWRIF+lCa$Wh)oxhXc4fHHHbk(mSY*3u;8E@<8iCcNSFnZm}ut3+8z7wf#0 zO@#LFMElzcJ?138`*RnRrgT51A=C)1;&HRxH5K|6rxFNEEGqgCD+Wi%so-E&;TYLT z@MO$EbX&PW=# zBWpvkpmFbcw10U}2@8_Bq9N7pa=S@Z2HX@}DK zY!2~epqm`PU8btSJc(&iVkHnFh(%z^;+>PlelAlUR)2)Dj82+CesUJ$KZsKx&v7j< zo1r{}$Z7oF*WUi)Jy;q_klP#LeTM@xNKu;hs{vw1g};4pupWNU=PlYS-7mQrMW_>1 zK33lbw|ceWJF`Z|-FPZZTu!n{c0|D{UVEsh6`W8*lmUZ4-q#_zqiaWP*6Sqxiy z5V~}&CV$ytb_f36JSQB~0a~F6TgVUGq$ig>w!Y zib<{y4h}OzX^Kinx>dI$8uG}w1G(6m_Cl;~sDIF)K_1Z*Emj*3-#(?OE(jsq%4E!LK2#LTINfQkKLzCIo31 zQ-7q+(Zu$0uYt#kf0565U!YJE9abosx(s8u_2q>AP}QOvQ#45PDnr-Lml;9-M%dzT zrQ9~eAxxrkMlWg=Gp6!ctPr}xi#AJFNmWFw!ZJMV#Z=AOfvY3o{@yehTF1s(sAs|p z8dD-+ZD5idQYoG2EuL<~d-?pU>la^K|9|7N>n}bnp(WNK9dN4M8Vhizs%Y6QGD%P! zVs&C z(k#%=!9AB62V2<*nw_YYd#l7X#&-rOy#R~PS?C=14wGZRG!ObpU;`4ejZI0c(tifY zJD94sN|&N0y{>Z41TWIcpXX`=3WyNI72r3?ovcG|UYkfO;V|%qM_1%ilDd{~EZhfK z5wCL|Wu(k&b#$SdeFb);eylSHMb+1yO1i7d_X{wx=QqpZ{M1MS0&(akoGtTPy(b1F9jHZsGu(GvW*6=u5`^2g_ z({6U$Wll+v;+-gp9IZDTE8E~6Nbk5v>zRR-&|F)<>7a1N zvYYhS7PB=!k!oqMtf_fPuk1cN+Bx-3PB)KFceY3RU{yJBmC#{;??fA9tbbAho%cyM zEc`34EUkcTan}m$OJJqsxfw(^ZcS}Y-9indaV#|}-s#cB<{;;R3H|$Udzej2sDCIVj1>ca)(hX{u#5+Sw}XU6)K!bAt_6T5dyy@c&gX(j zQB)bb0q$QE_9}S)@I&wP&>0}bIz6$jdFUfI`+w-o*^^;@6M(tS z=Uw7cG7&6XK~KeKW>51V6F-vn(+?GwTazxtuh~7fRO5R2>Rmnig$&4rTtR8g*&R*m z+g82DRQbab9m_l}Cg==uDtpaX&4g0DrSdRcrU1NKnq+JRB{k>ZM}>qp-9OrODw85q zwyHlG=+*{S6w&H`nSXLGXL(G2HK?lZ0?Vp0!^*7NRz%E{V;uZqy%J`3FfHC;k>jPT z(YiOwR#QB1E6sKLZ21kd)zsRX!O#V?ehl39LL%wPN*e-N?-SS`x1eF&!N1Gd!sRxZb4 zxkG_r)_w{PawI9<`mxb
  • Training and Inference
  • Fluid
  • @@ -229,11 +229,6 @@
    paddle
        - paddle.v2.fluid.regularizer -
        diff --git a/develop/doc/search.html b/develop/doc/search.html index 5a57ddffb4..248db3bb42 100644 --- a/develop/doc/search.html +++ b/develop/doc/search.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc/searchindex.js b/develop/doc/searchindex.js index cd5fe608f0..470ba3a484 100644 --- a/develop/doc/searchindex.js +++ b/develop/doc/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["api/index_en","api/v2/config/activation","api/v2/config/attr","api/v2/config/evaluators","api/v2/config/layer","api/v2/config/networks","api/v2/config/optimizer","api/v2/config/pooling","api/v2/data","api/v2/data/data_reader","api/v2/data/dataset","api/v2/data/image","api/v2/fluid","api/v2/fluid/data_feeder","api/v2/fluid/evaluator","api/v2/fluid/executor","api/v2/fluid/initializer","api/v2/fluid/io","api/v2/fluid/layers","api/v2/fluid/nets","api/v2/fluid/optimizer","api/v2/fluid/param_attr","api/v2/fluid/profiler","api/v2/fluid/regularizer","api/v2/model_configs","api/v2/run_logic","design/api","design/auto_gradient_check","design/backward","design/block","design/build_system/README","design/cluster_train/README","design/cluster_train/checkpointing","design/cluster_train/data_dispatch","design/cluster_train/large_model_dist_train","design/cluster_train/master_server","design/cluster_train/pserver_client","design/cluster_train/remote_parameter_updater","design/cluster_train/save_model","design/cluster_train/submit-job","design/concurrent_programming","design/csp","design/dist_refactor/distributed_architecture","design/dist_refactor/multi_cpu","design/dist_refactor/parameter_server","design/error_clip","design/evaluator","design/executor","design/file_manager/README","design/file_manager/pfs/pfsclient","design/float16","design/fluid","design/fluid_compiler","design/functions_operators_layers","design/gan_api","design/graph","design/graph_survey","design/if_else_op","design/infer_var_type","design/kernel_hint_design","design/memory_optimization","design/mkl/mkl_packed","design/mkl/mkldnn","design/mkl/mkldnn_fluid","design/model_format","design/multi_language_interface/00.why_plain_c","design/multi_language_interface/01.inference_implementation","design/operator_kernel_type","design/ops/rnn","design/ops/sequence_decoder","design/optimizer","design/paddle_nccl","design/parameter_average","design/parameters_in_cpp","design/profiler","design/program","design/prune","design/python_api","design/reader/README","design/refactorization","design/register_grad_op","design/regularization","design/releasing_process","design/scope","design/selected_rows","design/simple_op_design","design/speech/deep_speech_2","design/support_new_device","design/switch_kernel","design/tensor_array","design/var_desc","getstarted/build_and_install/build_from_source_en","getstarted/build_and_install/docker_install_en","getstarted/build_and_install/index_en","getstarted/build_and_install/pip_install_en","getstarted/index_en","howto/deep_model/rnn/index_en","howto/deep_model/rnn/rnn_config_en","howto/dev/build_en","howto/dev/contribute_to_paddle_en","howto/dev/new_layer_en","howto/dev/new_op_en","howto/dev/new_op_kernel_en","howto/dev/use_eigen_en","howto/dev/write_docs_en","howto/index_en","howto/optimization/cpu_profiling","howto/optimization/gpu_profiling_en","howto/read_source","howto/usage/cluster/cluster_train_en","howto/usage/cluster/fabric_en","howto/usage/cluster/fluid_cluster_train_en","howto/usage/cluster/k8s_aws_en","howto/usage/cluster/k8s_en","howto/usage/cluster/openmpi_en","howto/usage/cluster/src/k8s_data/README","howto/usage/cluster/src/k8s_train/README","howto/usage/cmd_parameter/arguments_en","howto/usage/cmd_parameter/detail_introduction_en","howto/usage/cmd_parameter/index_en","howto/usage/cmd_parameter/use_case_en","index_en","mobile/cross_compiling_for_android_en","mobile/cross_compiling_for_ios_en","mobile/cross_compiling_for_raspberry_en","mobile/index_en","survey/cluster_bootstrapping_tools"],envversion:50,filenames:["api/index_en.rst","api/v2/config/activation.rst","api/v2/config/attr.rst","api/v2/config/evaluators.rst","api/v2/config/layer.rst","api/v2/config/networks.rst","api/v2/config/optimizer.rst","api/v2/config/pooling.rst","api/v2/data.rst","api/v2/data/data_reader.rst","api/v2/data/dataset.rst","api/v2/data/image.rst","api/v2/fluid.rst","api/v2/fluid/data_feeder.rst","api/v2/fluid/evaluator.rst","api/v2/fluid/executor.rst","api/v2/fluid/initializer.rst","api/v2/fluid/io.rst","api/v2/fluid/layers.rst","api/v2/fluid/nets.rst","api/v2/fluid/optimizer.rst","api/v2/fluid/param_attr.rst","api/v2/fluid/profiler.rst","api/v2/fluid/regularizer.rst","api/v2/model_configs.rst","api/v2/run_logic.rst","design/api.md","design/auto_gradient_check.md","design/backward.md","design/block.md","design/build_system/README.md","design/cluster_train/README.md","design/cluster_train/checkpointing.md","design/cluster_train/data_dispatch.md","design/cluster_train/large_model_dist_train.md","design/cluster_train/master_server.md","design/cluster_train/pserver_client.md","design/cluster_train/remote_parameter_updater.md","design/cluster_train/save_model.md","design/cluster_train/submit-job.md","design/concurrent_programming.md","design/csp.md","design/dist_refactor/distributed_architecture.md","design/dist_refactor/multi_cpu.md","design/dist_refactor/parameter_server.md","design/error_clip.md","design/evaluator.md","design/executor.md","design/file_manager/README.md","design/file_manager/pfs/pfsclient.md","design/float16.md","design/fluid.md","design/fluid_compiler.md","design/functions_operators_layers.md","design/gan_api.md","design/graph.md","design/graph_survey.md","design/if_else_op.md","design/infer_var_type.md","design/kernel_hint_design.md","design/memory_optimization.md","design/mkl/mkl_packed.md","design/mkl/mkldnn.md","design/mkl/mkldnn_fluid.md","design/model_format.md","design/multi_language_interface/00.why_plain_c.md","design/multi_language_interface/01.inference_implementation.md","design/operator_kernel_type.md","design/ops/rnn.md","design/ops/sequence_decoder.md","design/optimizer.md","design/paddle_nccl.md","design/parameter_average.md","design/parameters_in_cpp.md","design/profiler.md","design/program.md","design/prune.md","design/python_api.md","design/reader/README.md","design/refactorization.md","design/register_grad_op.md","design/regularization.md","design/releasing_process.md","design/scope.md","design/selected_rows.md","design/simple_op_design.md","design/speech/deep_speech_2.md","design/support_new_device.md","design/switch_kernel.md","design/tensor_array.md","design/var_desc.md","getstarted/build_and_install/build_from_source_en.rst","getstarted/build_and_install/docker_install_en.rst","getstarted/build_and_install/index_en.rst","getstarted/build_and_install/pip_install_en.rst","getstarted/index_en.rst","howto/deep_model/rnn/index_en.rst","howto/deep_model/rnn/rnn_config_en.rst","howto/dev/build_en.md","howto/dev/contribute_to_paddle_en.md","howto/dev/new_layer_en.rst","howto/dev/new_op_en.md","howto/dev/new_op_kernel_en.md","howto/dev/use_eigen_en.md","howto/dev/write_docs_en.rst","howto/index_en.rst","howto/optimization/cpu_profiling.md","howto/optimization/gpu_profiling_en.rst","howto/read_source.md","howto/usage/cluster/cluster_train_en.md","howto/usage/cluster/fabric_en.md","howto/usage/cluster/fluid_cluster_train_en.md","howto/usage/cluster/k8s_aws_en.md","howto/usage/cluster/k8s_en.md","howto/usage/cluster/openmpi_en.md","howto/usage/cluster/src/k8s_data/README.md","howto/usage/cluster/src/k8s_train/README.md","howto/usage/cmd_parameter/arguments_en.md","howto/usage/cmd_parameter/detail_introduction_en.md","howto/usage/cmd_parameter/index_en.rst","howto/usage/cmd_parameter/use_case_en.md","index_en.rst","mobile/cross_compiling_for_android_en.md","mobile/cross_compiling_for_ios_en.md","mobile/cross_compiling_for_raspberry_en.md","mobile/index_en.rst","survey/cluster_bootstrapping_tools.md"],objects:{"paddle.v2":{image:[11,1,0,"-"]},"paddle.v2.fluid":{regularizer:[23,1,0,"-"]},"paddle.v2.fluid.evaluator.Evaluator":{metrics:[14,0,1,""],states:[14,0,1,""]},"paddle.v2.fluid.regularizer":{L1DecayRegularizer:[23,2,1,""]},"paddle.v2.image":{batch_images_from_tar:[11,3,1,""],center_crop:[11,3,1,""],left_right_flip:[11,3,1,""],load_and_transform:[11,3,1,""],load_image:[11,3,1,""],load_image_bytes:[11,3,1,""],random_crop:[11,3,1,""],resize_short:[11,3,1,""],simple_transform:[11,3,1,""],to_chw:[11,3,1,""]}},objnames:{"0":["py","attribute","Python attribute"],"1":["py","module","Python module"],"2":["py","class","Python class"],"3":["py","function","Python function"]},objtypes:{"0":"py:attribute","1":"py:module","2":"py:class","3":"py:function"},terms:{"00m":107,"03m":107,"0424m":107,"0473v3":5,"055ee37d":112,"0630u":107,"06u":107,"0810u":107,"0957m":107,"0_cudnn5":91,"0_cudnn5_avx_mkl":[92,94],"0_cudnn7_avx_mkl":94,"0ab":4,"0rc":109,"0rc1":82,"0rc2":82,"0x10f256d50":56,"0x7ffe4de00110":56,"100gb":107,"100gi":112,"10g":39,"10m":107,"1150u":107,"11\u5b9e\u73b0\u4e86c":66,"11e6":113,"124n":107,"12gb":60,"13m":113,"1490u":107,"1550u":107,"16u":107,"173n":107,"1770u":107,"18ad":112,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":113,"197u":107,"1gb":107,"1st":18,"210u":107,"211839e770f7b538e2d8":5,"215n":107,"228u":107,"2520u":107,"2680u":107,"279n":107,"27m":107,"285m":107,"2863m":107,"28m":107,"2977m":107,"2cbf7385":112,"2nd":18,"302n":107,"30u":107,"328n":107,"32u":107,"32x32":10,"331n":107,"3320u":107,"365e":112,"36u":107,"3710m":107,"3768m":107,"387u":107,"38u":107,"3920u":107,"39u":107,"3rd":123,"4035m":107,"4090u":107,"4096mb":118,"4279m":107,"43u":107,"448a5b355b84":113,"4560u":107,"4563m":107,"45u":107,"4650u":107,"4726m":107,"473m":113,"4gb":118,"50bd":112,"50gi":112,"514u":107,"525n":107,"526u":107,"536u":107,"5460u":107,"5470u":107,"54u":107,"5690m":107,"573u":107,"578n":107,"5798m":107,"586u":107,"58s":113,"5969m":107,"5_cudnn5_avx_mkl":94,"5_cudnn5_avx_openbla":[94,95],"6080u":107,"6140u":107,"6305m":107,"639u":107,"64m":64,"655u":107,"6780u":107,"6810u":107,"682u":107,"6970u":107,"6ce9":112,"704u":107,"7090u":107,"72u":107,"73u":107,"75u":107,"760u":107,"767u":107,"783n":107,"784u":107,"78m":107,"7eamaa":10,"7kb":113,"8250u":107,"8300u":107,"830n":107,"849m":107,"861u":107,"8661m":107,"892m":107,"901n":107,"90u":107,"918u":107,"9247m":107,"924n":107,"9261m":107,"9330m":107,"94u":107,"9530m":107,"983m":107,"988u":107,"997u":107,"99u":107,"9a235":123,"9f18":113,"\u4e00\u4e2a\u5178\u578b\u7684chunk\u5982\u4e0b\u6240\u793a":48,"\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u7684\u6a21\u578b\u7531\u5927\u91cf\u7684\u53c2\u6570\u7ec4\u6210":32,"\u4e00\u4e2achunk\u7531\u6240\u5728\u7684\u6587\u4ef6\u504f\u79fb":48,"\u4e00\u4e2aposix\u517c\u5bb9\u7684\u6587\u4ef6\u7cfb\u7edf":48,"\u4e00\u822c\u4e0d\u5141\u8bb8\u518d\u4ece":82,"\u4e00\u822c\u7531mkl":62,"\u4e0a\u4f20\u5230cloud\u6216\u8005\u4e0b\u8f7d\u5230\u672c\u5730\u7684\u65f6\u95f4\u53ef\u80fd\u6bd4\u8f83\u957f":48,"\u4e0a\u4f20\u65b9\u6cd5":82,"\u4e0a\u6ce8\u518c\u4e00\u4e0b":48,"\u4e0a\u8ff0paddlepaddl":82,"\u4e0b\u4e00\u4e2awheel\u5305\u9700\u8981\u66f4\u65b0\u7248\u672c\u53f7\u624d\u53ef\u4ee5\u4e0a\u4f20":82,"\u4e0b\u5b58\u653e\u516c\u5171\u6570\u636e\u96c6\u5408":33,"\u4e0b\u62c9\u6846\u4e2d\u627e\u5230\u751f\u6210\u76843\u4e2a\u4e8c\u8fdb\u5236\u6587\u4ef6":82,"\u4e0b\u8f7d":48,"\u4e0b\u8f7d\u5230\u672c\u5730":48,"\u4e0b\u8f7d\u5f97\u5230":82,"\u4e0b\u9762\u5206\u522b\u4ecb\u7ecd\u67d0\u4e00\u7c7b\u6587\u4ef6\u7684\u5b9e\u73b0\u65b9\u5f0f":66,"\u4e0d\u4e00\u81f4\u7684\u7531pfsclient\u4e0b\u8f7d\u6216\u8005\u4f20\u8f93chunk\u5b8c\u6210":48,"\u4e0d\u4f7f\u7528\u9759\u6001\u5e93":65,"\u4e0d\u4f7f\u7528c":65,"\u4e0d\u4f7f\u7528swig":65,"\u4e0d\u53ef\u4ee5\u66f4\u6539":82,"\u4e0d\u540c":62,"\u4e0d\u540c\u7248\u672c\u7684\u7f16\u8bd1\u5668\u4e4b\u95f4":65,"\u4e0d\u540c\u8bed\u8a00\u7684\u63a5\u53e3\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u7279\u6027":65,"\u4e0d\u5728":66,"\u4e0d\u5bb9\u6613\u51fa\u9519":48,"\u4e0d\u5d4c\u5165\u5176\u4ed6\u8bed\u8a00\u89e3\u91ca\u5668":65,"\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":65,"\u4e0d\u663e\u793a\u7684\u5199\u6bcf\u4e2a\u7c7b\u5177\u4f53\u5305\u542b\u4ec0\u4e48":65,"\u4e0d\u7528mount\u7684\u65b9\u5f0f\u6765\u8bbf\u95ee\u6570\u636e":33,"\u4e0e":62,"\u4e0e\u4e4b\u76f8\u5bf9\u7684\u662flocal":48,"\u4e0e\u5176\u4ed6\u7b2c\u4e09\u65b9\u5e93\u4e00\u6837":62,"\u4e0e\u529f\u80fd\u5206\u652f\u4e0d\u540c\u7684\u662f":82,"\u4e0e\u53ef\u80fd\u6709\u7684":82,"\u4e0ebatch":61,"\u4e14\u589e\u52a0\u4e00\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00":65,"\u4e14\u8c03\u7528\u65f6\u4e0d\u80fd\u629b\u51fa\u5f02\u5e38\u6216\u51fa\u73b0\u8fd0\u884c\u65f6\u9519\u8bef":66,"\u4e14c99\u652f\u6301bool\u7c7b\u578b\u548c\u5b9a\u957f\u6574\u6570":65,"\u4e14c99\u76f8\u5bf9\u4e8ec11\u4f7f\u7528\u66f4\u52a0\u5e7f\u6cdb":65,"\u4e25\u683c\u7684\u547d\u540d\u89c4\u8303pep":82,"\u4e2a\u6027\u5316\u63a8\u8350":82,"\u4e2d":[61,62,65,66],"\u4e2d\u4f1a\u63d0\u4f9b\u4e00\u4e9b\u5fc5\u8981\u7684\u63a5\u53e3\u548c\u51fd\u6570":62,"\u4e2d\u5199\u5165json\u5185\u5bb9":32,"\u4e2d\u5b8c\u5168\u4e00\u81f4":65,"\u4e2d\u5b9e\u73b0\u4e86\u4e00\u4e2amerge\u7684\u65b9\u6cd5":62,"\u4e2d\u5b9e\u73b0\u7684\u7ed3\u6784\u4f53":66,"\u4e2d\u5bf9\u5e94\u7684layer\u5904":61,"\u4e2d\u5f15\u5165\u7684":61,"\u4e2d\u63d0\u4f9b\u4e00\u4e2a\u4e0emkl\u6709\u5173\u7684\u603b\u5f00\u5173":62,"\u4e2d\u6839\u636e":61,"\u4e2d\u6dfb\u52a0":61,"\u4e2d\u6dfb\u52a0\u4e00\u4e2a":62,"\u4e2d\u7684\u7248\u672c\u4fe1\u606f":82,"\u4e2d\u8fd0\u884c\u4efb\u52a1\u7684\u89d2\u5ea6":33,"\u4e3a":[61,62],"\u4e3a\u4e86\u5c3d\u53ef\u80fd\u5c11\u7684\u5728\u7236\u7c7blayer\u4e2d\u6dfb\u52a0\u53d8\u91cf\u6216\u8005\u51fd\u6570":62,"\u4e3a\u4e86\u5e94\u5bf9\u4ee5\u4e0a\u7684\u95ee\u9898":48,"\u4e3a\u4e86\u66b4\u9732\u7684\u63a5\u53e3\u5c3d\u91cf\u7b80\u5355":66,"\u4e3a\u4e86\u66f4\u597d\u7684\u7b26\u5408paddlepaddle\u7684\u4ee3\u7801\u98ce\u683c":62,"\u4e3a\u4e86\u6700\u5927\u7a0b\u5ea6\u51cf\u5c11\u591a\u6b21\u8c03\u7528":61,"\u4e3a\u4e86\u8fdb\u4e00\u6b65\u63d0\u5347paddlepaddle\u5728\u57fa\u672c\u6570\u5b66\u8fd0\u7b97\u7684\u8ba1\u7b97\u901f\u5ea6":62,"\u4e3b\u8981\u529f\u80fd\u5305\u62ec":48,"\u4e3b\u8981\u5305\u62ec":62,"\u4e3b\u8981\u5305\u62ec\u4e86\u6df1\u5ea6\u5b66\u4e60\u76f8\u5173\u7684\u6570\u5b66\u539f\u8bed\u4e0e\u64cd\u4f5c":62,"\u4e3b\u8981\u9488\u5bf9paddlepaddle\u5728\u91cd\u6784\u4e4b\u524d\u7684\u4ee3\u7801\u6846\u67b6\u4ee5\u53cav1\u7684api":62,"\u4e4b\u5916\u7684\u6240\u6709\u5934\u6587\u4ef6":66,"\u4e5f\u4e0d\u4f7f\u7528\u5176\u4ed6\u52a8\u6001\u5e93":65,"\u4e5f\u4e0d\u5e94\u8be5\u62a5\u9519":66,"\u4e5f\u4e0d\u751f\u6210":66,"\u4e5f\u53ef\u4ee5\u4f7f\u7528\u8fd9\u4e9b\u955c\u50cf":82,"\u4e5f\u5c31\u662f\u8bf4\u8f93\u51fa\u7684\u7ed3\u679c\u4e0d\u4f1a\u5728\u539f\u6765\u7684\u6570\u636e\u4e0a\u7d2f\u52a0":62,"\u4e66\u5199":65,"\u4eba\u8138\u8bc6\u522b":33,"\u4ec5\u4ec5\u4f7f\u7528":65,"\u4ec5\u4f1a\u5728\u652f\u6301avx2\u6307\u4ee4\u96c6\u53ca\u4ee5\u4e0a\u7684\u673a\u5668\u624d\u4f7f\u7528mkl":62,"\u4ece":82,"\u4ece\u78c1\u76d8\u6587\u4ef6\u4e2d\u52a0\u8f7duuid\u6587\u4ef6\u540d\u7684\u68c0\u67e5\u70b9\u5feb\u7167\u6587\u4ef6":32,"\u4ece\u800c\u907f\u514d\u4e86packing\u5197\u4f59":61,"\u4eceetcd\u4e2d\u8bfb\u53d6\u8282\u70b9":32,"\u4ed6\u4e3b\u8981\u5305\u542b\u4e86\u5b9e\u9645\u66b4\u9732\u7684\u7c7b\u578b\u7ed3\u6784":66,"\u4ed6\u662f\u5c06":66,"\u4ed6\u7684\u76ee\u6807\u662f\u4f7f\u7528c":65,"\u4ee3\u7801\u751f\u6210\u7684\u7b26\u53f7\u53ef\u80fd\u4e0d\u4e00\u81f4":65,"\u4ee3\u8868\u8fd9\u4e2alayer\u662f\u7528\u4e8e\u8dd1\u5728mkl":62,"\u4ee3\u8868\u8fd9\u4e2ashard\u7684\u6700\u5927index":33,"\u4ee3\u8868shard\u7684index":33,"\u4ee5\u4e0a\u4ee3\u7801\u7684reader\u8f93\u51fa\u7684data":33,"\u4ee5\u4e0a\u547d\u4ee4\u4f1a\u5728\u5f53\u524d\u76ee\u5f55\u4e0b\u751f\u6210100\u4e2a\u6587\u4ef6":33,"\u4ee5\u4e0b":33,"\u4ee5\u4e0b\u7b80\u79f0rnn":61,"\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u628a\u66f4\u591a\u7684\u7cbe\u529b\u653e\u5230\u903b\u8f91\u672c\u8eab\u4e0a":48,"\u4ee5\u53ca":61,"\u4ee5\u53canumpi":33,"\u4ee5\u6b64\u8fbe\u5230\u6700\u597d\u7684\u6027\u80fd":62,"\u4ee5\u793a\u533a\u5206":[61,62],"\u4efb\u610f\u65f6\u523b\u53ea\u53ef\u80fd\u540c\u65f6\u6709\u4e00\u53f0\u670d\u52a1\u5668\u6545\u969c":32,"\u4f18\u5316\u524d":61,"\u4f18\u5316\u540e":61,"\u4f1a\u4ee5":[61,62],"\u4f1a\u4f7f\u7528\u76f8\u540c\u7684\u539f\u6570\u636e":61,"\u4f1a\u5148\u4e34\u65f6\u4fdd\u5b58\u5728":62,"\u4f1a\u5728":62,"\u4f1a\u5728\u7f16\u8bd1paddlepaddle\u7684\u65f6\u5019\u4e0b\u8f7d\u5e76\u7f16\u8bd1mkl":62,"\u4f1a\u5bfc\u81f4\u4e0d\u540c\u7248\u672cpython\u5728\u4e00\u4e2a\u8fdb\u7a0b\u91cc\u7684bug":65,"\u4f1a\u5f15\u5165":62,"\u4f1a\u628acpu\u7684buffer\u5bf9\u9f50\u4e3a4096":62,"\u4f1a\u6dfb\u52a0\u76f8\u5e94\u7684\u811a\u672c\u5728":62,"\u4f1a\u6dfb\u52a0\u76f8\u5e94\u7684\u811a\u672c\u7528\u4e8e\u6d4b\u8bd5\u548c\u5bf9\u6bd4\u5728\u4f7f\u7528mkl":61,"\u4f1a\u76f4\u63a5\u62a5\u9519\u9000\u51fa":65,"\u4f1a\u81ea\u52a8\u4f7f\u7528mklml\u5e93\u4f5c\u4e3apaddlepaddle\u7684cblas\u548clapack\u5e93":62,"\u4f1a\u81ea\u52a8\u6839\u636e\u786c\u4ef6\u914d\u7f6e":62,"\u4f1a\u88abpickle\u5e8f\u5217\u5316\u6210\u5b57\u7b26\u4e32":33,"\u4f20\u5165":33,"\u4f46":66,"\u4f46\u4e0d\u66b4\u9732":66,"\u4f46\u5e76\u6ca1\u6709\u7ecf\u8fc7\u56de\u5f52\u6d4b\u8bd5":82,"\u4f46\u6240\u6709fork\u7684\u7248\u672c\u5e93\u7684\u6240\u6709\u5206\u652f\u90fd\u76f8\u5f53\u4e8e\u7279\u6027\u5206\u652f":82,"\u4f46\u662f\u53c8\u8fc7\u4e8e\u7410\u788e":66,"\u4f46\u662f\u5728mkl":62,"\u4f46\u662f\u5728paddlepaddle\u4e2d":62,"\u4f46\u662f\u6574\u4e2a\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4e0d\u9700\u8981\u4efb\u4f55\u8f6c\u6362":62,"\u4f46\u662f\u6ce8\u610f\u7684\u662f":62,"\u4f46\u662f\u89e3\u91ca\u6027\u8bed\u8a00":65,"\u4f5c\u4e3a\u53e6\u4e00\u4e2a\u7b2c\u4e09\u65b9\u5e93\u96c6\u6210\u8fdbpaddlepaddl":62,"\u4f5c\u4e3a\u5b58\u50a8\u7cfb\u7edf":33,"\u4f5c\u4e3a\u7c7b\u53e5\u67c4":65,"\u4f7f\u7528":[62,66,82],"\u4f7f\u7528\u4e0b\u9762\u547d\u4ee4":33,"\u4f7f\u7528\u52a8\u6001\u5e93":65,"\u4f7f\u7528\u540c\u6837\u7684\u8bad\u7ec3\u6570\u636eblock":32,"\u4f7f\u7528\u667a\u80fd\u6307\u9488\u7684\u539f\u56e0\u662f":66,"\u4f7f\u7528\u7684\u53c2\u6570\u4e0epaddlepaddle\u7533\u8bf7\u7684buffer\u5171\u7528\u4e00\u5757\u5185\u5b58":62,"\u4f7f\u7528\u76f8\u5bf9\u8def\u5f84\u7684\u5f15\u7528\u65b9\u5f0f":66,"\u4f7f\u7528\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u5b8c\u6210\u5bf9\u65b0\u6570\u636e\u7684\u9884\u6d4b":32,"\u4f7f\u7528\u9759\u6001\u5e93\u548c\u52a8\u6001\u5e93\u96be\u5ea6\u5dee\u4e0d\u591a":65,"\u4f7f\u7528c":66,"\u4f7f\u7528c99\u505a\u63a5\u53e3":65,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c11\u7684\u539f\u56e0\u662f":65,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c89":65,"\u4f7f\u7528regress":82,"\u4f7f\u7528swig\u53ea\u652f\u6301cpython\u89e3\u91ca\u5668":65,"\u4f7f\u7528swig\u9700\u8981\u591a\u8bed\u8a00\u7ed1\u5b9a\u7684\u5f00\u53d1\u4eba\u5458\u719f\u7ec3\u638c\u63e1swig\u914d\u7f6e":65,"\u4f7f\u7528void":65,"\u4f8b\u5982":[33,65,66,82],"\u4f8b\u5982\u5728deepspeech2":61,"\u4f8b\u5982\u5bf9\u4e8ejava\u6216\u8005python":65,"\u4f8b\u5982\u5bf9\u4e8ejava\u6765\u8bf4":65,"\u4f8b\u5982\u5bf9\u4e8epython":65,"\u4f8b\u5982c":65,"\u4f8b\u5982java\u4e0epython\u7684\u9519\u8bef\u5904\u7406\u662f\u76f4\u63a5\u6254\u51fa\u6765except":65,"\u4f8b\u5982python\u53ef\u4ee5\u4f7f\u7528":65,"\u4f8b\u5982python\u7684":65,"\u4f8b\u5982rnn":61,"\u4f9d\u6b21\u7c7b\u63a8":82,"\u4fbf\u662f\u5c06\u9759\u6001\u5e93\u52a0\u5165jvm\u4e2d":65,"\u4fee\u590d\u6240\u6709bug\u540e":82,"\u4fee\u590ddocker\u7f16\u8bd1\u955c\u50cf\u95ee\u9898":82,"\u4fee\u6539":[62,82],"\u4fee\u6539\u6210":82,"\u505a\u53ea\u8bfb\u6302\u8f7d":33,"\u505a\u5982\u4e0b\u51e0\u4e2a\u64cd\u4f5c":82,"\u505a\u63a5\u53e3":65,"\u505c\u6b62\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":32,"\u5145\u5206\u53d1\u6325\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u4f18\u52bf":61,"\u5145\u5206\u5c55\u73b0\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u4f18\u52bf":62,"\u5148\u5b8c\u6210\u5bf9\u6743\u91cd\u7684packing\u64cd\u4f5c":61,"\u5148\u5b9e\u73b0\u6a21\u578b\u63a8\u65ad\u7684api":66,"\u5171\u4eab\u5185\u5b58":62,"\u5171\u4eab\u540c\u4e00\u4e2a\u6743\u91cd":61,"\u5176\u4e2d":[65,82],"\u5176\u4ed6\u51fd\u6570\u5747\u8fd4\u56de":66,"\u5176\u4ed6\u7528\u6237\u7684fork\u7248\u672c\u5e93\u5e76\u4e0d\u9700\u8981\u4e25\u683c\u9075\u5b88":82,"\u5176\u8f6c\u6362\u6b21\u6570\u51cf\u5c11\u81f3":61,"\u5177\u4f53\u4f7f\u7528\u65b9\u6cd5\u4e3a":66,"\u5177\u4f53\u539f\u56e0\u53c2\u8003":66,"\u5177\u4f53\u53ef\u4ee5\u53c2\u8003mkl":62,"\u5177\u4f53\u5b9e\u73b0\u65b9\u5f0f\u6bd4\u5982":[61,62],"\u5177\u4f53\u7684\u5b8c\u6210\u72b6\u6001\u53ef\u4ee5\u53c2\u89c1":62,"\u5177\u4f53\u8bf7\u53c2\u8003":66,"\u5185\u90e8\u5b58\u50a8":62,"\u5185\u90e8\u9a71\u52a8python\u89e3\u91ca\u5668\u8fdb\u884c\u6a21\u578b\u914d\u7f6e\u89e3\u6790\u548c\u6570\u636e\u8bfb\u53d6":65,"\u518d\u5728\u6bcf\u4e00\u4e2aapi\u4e2d\u81ea\u5df1\u68c0\u67e5\u7c7b\u578b":65,"\u518d\u57fa\u4e8e":82,"\u518d\u628a\u5df2\u8f6c\u6362\u4e3apacked\u683c\u5f0f\u7684\u6570\u636e\u4f20\u9012\u7ed9\u90a3\u4e9b\u590d\u7528\u540c\u4e00\u6570\u636e\u7684gemm":61,"\u5199\u4ee3\u7801":65,"\u5199\u5165\u5feb\u7167\u6570\u636e":32,"\u51fd\u6570":[61,62],"\u51fd\u6570\u5373\u53ef\u5b8c\u6210\u8f6c\u6362":33,"\u51fd\u6570\u540d\u4e3a":66,"\u51fd\u6570\u547d\u540d":65,"\u5206\u522b\u4ee3\u8868\u8f93\u5165\u6570\u636e":62,"\u5206\u522b\u5bf9\u5e94capi":82,"\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1":32,"\u5206\u652f":82,"\u5206\u652f\u4e00\u65e6\u5efa\u7acb":82,"\u5206\u652f\u4e2d":82,"\u5206\u652f\u4e3a\u5f00\u53d1":82,"\u5206\u652f\u4e3a\u6bcf\u4e00\u6b21release\u65f6\u5efa\u7acb\u7684\u4e34\u65f6\u5206\u652f":82,"\u5206\u652f\u4e3a\u7a33\u5b9a":82,"\u5206\u652f\u529f\u80fd\u7684\u5c01\u95ed":82,"\u5206\u652f\u5408\u5165":82,"\u5206\u652f\u5408\u5165master\u5206\u652f":82,"\u5206\u652f\u540c\u6b65\u4e3b\u7248\u672c\u5e93\u7684":82,"\u5206\u652f\u540d\u4e3a":82,"\u5206\u652f\u5b58\u5728\u7684\u65f6\u5019":82,"\u5206\u652f\u6d3e\u751f\u51fa\u65b0\u7684\u5206\u652f":82,"\u5206\u652f\u7684\u7248\u672c\u90fd\u662f\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5\u548c\u56de\u5f52\u6d4b\u8bd5\u7684\u7248\u672c":82,"\u5206\u652f\u7684\u7248\u672c\u90fd\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5":82,"\u5206\u7247":32,"\u5219\u4f7f\u7528\u542f\u52a8\u53c2\u6570\u5b9a\u4e49\u7684\u521d\u59cb\u5316\u65b9\u6cd5\u521d\u59cb\u5316\u53c2\u6570":32,"\u5219\u5ffd\u7565":32,"\u5219\u628a\u53e6\u4e00\u4e2a\u6162\u901f\u7684kill\u6389":32,"\u5219\u76f4\u63a5\u5f15\u5165\u53e6\u4e00\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":66,"\u5219\u9700\u8981\u56de\u6eda\u5230\u4e0a\u4e00\u4e2a\u68c0\u67e5\u70b9":32,"\u521b\u5efa":62,"\u5220\u9664\u78c1\u76d8\u76ee\u5f55\u4e2d\u4e0d\u662f\u5f53\u524duuid\u7684\u5feb\u7167\u6587\u4ef6":32,"\u5230":32,"\u5230\u7b2c\u4e8c\u6b65":82,"\u524d\u540e\u7684\u7f51\u7edc\u6027\u80fd":61,"\u529f\u80fd":48,"\u529f\u80fd\u7684\u6b63\u786e\u6027\u5305\u62ec\u9a8c\u8bc1paddlepaddle\u76ee\u524d\u7684":82,"\u52a8\u6001\u5e93":65,"\u5305\u542b\u4e86\u67d0\u79cd\u7c7b\u578b\u7684\u7c7b\u578b\u5b9a\u4e49\u548c\u66b4\u9732\u7684\u5168\u90e8\u51fd\u6570":66,"\u5305\u62ec":[33,61,62],"\u5305\u62ec\u6743\u91cdw\u548c\u504f\u7f6eb":32,"\u5305\u62ecmkl":62,"\u534f\u540c\u5b8c\u6210releas":82,"\u5355\u4e2a\u503c":33,"\u5355\u70b9\u6545\u969c":32,"\u5373":66,"\u5373\u4f7f\u7528":66,"\u5373\u4f7f\u7528\u6237\u76f4\u63a5\u5f15\u7528\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":66,"\u5373\u4f7fc":66,"\u5373\u4f8b\u5982":66,"\u5373\u4fbfpaddl":66,"\u5373\u5b8c\u6210\u67d0\u4e00\u4e2a\u4efb\u52a1\u7684\u6700\u5c11\u51fd\u6570":66,"\u5373\u66b4\u9732":66,"\u5373\u8868\u793a\u4e0d\u9700\u8981\u8f6c\u6362":62,"\u5373\u8fd9\u4e2a\u52a8\u6001\u5e93\u662f\u4e0d\u4f9d\u8d56\u4e8e\u5176\u4ed6\u4efb\u4f55\u6587\u4ef6\u7684":65,"\u539f\u6765\u7684\u65b9\u6848":62,"\u53c2\u6570":65,"\u53c2\u8003":[48,65],"\u53c2\u8003\u4e0b\u56fe":82,"\u53c8\u53ef\u4ee5\u907f\u514d\u4e0d\u5fc5\u8981\u7684\u8f6c\u6362":62,"\u53cc\u5411\u9a8c\u8bc1":48,"\u53d1\u578b\u7248":82,"\u53d1\u5e03\u5230dockerhub":82,"\u53d1\u5e03docker\u955c\u50cf\u53ea\u9700\u8981\u5bf9\u81ea\u52a8push\u7684\u955c\u50cf\u6253\u4e0a":82,"\u53d8\u91cf\u6765\u533a\u5206layer\u7684\u5c5e\u6027":62,"\u53ea\u5bf9\u7279\u6b8a\u5728\u7ebf\u7cfb\u7edf\u8003\u8651\u4e24\u53f0\u4ee5\u4e0a\u540c\u65f6\u6545\u969c\u7684\u5bb9\u707e":32,"\u53ea\u66b4\u9732\u6982\u5ff5\u7684\u63a5\u53e3":66,"\u53ea\u80fd\u8c03\u7528paddle\u7684\u52a8\u6001\u5e93":65,"\u53ea\u9700\u8981\u6062\u590d\u8fd9\u53f0\u8282\u70b9":32,"\u53ef\u4ee5":82,"\u53ef\u4ee5\u51cf\u5c0f\u7cfb\u7edf\u590d\u6742\u6027":32,"\u53ef\u4ee5\u5728\u4efb\u4f55\u673a\u5668\u4e0a\u6267\u884c\u7684":65,"\u53ef\u4ee5\u5728\u6b64\u9875\u9762\u7684":82,"\u53ef\u4ee5\u628a\u672c\u5730\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5b58\u50a8\u96c6\u7fa4\u4e2d":33,"\u53ef\u4ee5\u6709\u6548\u7684\u907f\u514dparamet":32,"\u53ef\u4ee5\u7528":48,"\u53ef\u4ee5\u7528\u4ee5\u4e0b\u6307\u4ee4":33,"\u53ef\u4ee5\u7ee7\u7eed\u5728\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f\u63d0\u4ea4\u4ee3\u7801":82,"\u53ef\u4ee5\u901a\u8fc7\u9636\u6bb5\u6027\u7684\u4fdd\u5b58\u6bcf\u4e2aparamet":32,"\u53ef\u80fd\u4f1a\u9020\u6210\u7f51\u7edc\u62e5\u585e":32,"\u53f3\u4fa7\u7684":82,"\u5404\u6b21\u524d\u5411\u4e4b\u95f4\u4e5f\u90fd\u4f7f\u7528\u4e86\u76f8\u540c\u7684\u6743\u91cd":61,"\u540c\u4e00\u6b21\u524d\u5411":61,"\u540c\u65f6":[61,62],"\u540c\u65f6\u4f1a\u5f00\u542fintel":62,"\u540c\u65f6\u518d\u5c06":82,"\u540c\u65f6\u53c8\u5c3d\u53ef\u80fd\u5c11\u7684\u727a\u7272mkl":62,"\u540c\u65f6\u63d0\u8d77":82,"\u540c\u65f6\u6570\u636e\u683c\u5f0f\u5c31\u662f":62,"\u540d\u5b57\u4fee\u9970":65,"\u540e\u5411":61,"\u540e\u5411\u65f6\u590d\u7528\u5df2\u7ecf\u8f6c\u6362\u8fc7\u7684\u6743\u91cd":61,"\u5411\u6307\u5b9a\u7684\u76ee\u5f55\u4e2d\u4e00\u4e2a\u65b0\u7684\u6587\u4ef6":32,"\u5411paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u63d0\u4ea4":82,"\u5426\u5219\u5f97\u628apaddle\u9759\u6001\u5e93\u94fe\u63a5\u5230\u89e3\u91ca\u5668\u91cc":65,"\u542f\u52a8\u4e00\u4e2a\u65b0\u7684\u7ebf\u7a0b\u5f00\u59cb\u4fdd\u5b58\u68c0\u67e5\u70b9":32,"\u548c":[33,61,62,65,66,82],"\u548c\u672a\u6765\u53ef\u80fd\u8fd8\u4f1a\u7528\u5230":62,"\u548c\u79bb\u7ebf\u6570\u636e\u7684\u65b9\u5f0f":33,"\u54ea\u4e2atrainer\u5148\u5b8c\u6210block\u7684\u8bad\u7ec3":32,"\u56e0\u4e3a\u8fd9\u6837\u505a\u4e5f\u6ca1\u6cd5\u4fdd\u8bc1\u6d88\u9664\u968f\u673a\u6027":32,"\u56e0\u4e3aswig\u5728\u7b2c\u4e09\u65b9\u8bed\u8a00\u4e2d\u66b4\u9732\u7684\u51fd\u6570\u540d":65,"\u56e0\u6b64":61,"\u56fe\u50cf\u5206\u7c7b":82,"\u5728":[61,62,66,82],"\u5728\u4e00\u4e2a\u4e0d\u53ef\u4e2d\u65ad\u5e76\u7f3a\u5c11\u5907\u4efd\u7684\u8bad\u7ec3\u4efb\u52a1\u4e2d":32,"\u5728\u4e0a\u56fe\u4e2d\u663e\u793a\u4e86\u5728\u4e00\u4e2a\u5b9e\u9645\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u5e94\u7528":33,"\u5728\u4f7f\u7528twine\u4e0a\u4f20\u4e4b\u524d":82,"\u5728\u51fa\u73b0\u5355\u70b9\u6545\u969c\u65f6":32,"\u5728\u5b9e\u73b0\u6bcf\u4e2a\u5b50\u7c7b\u7684\u65f6\u5019\u5c31\u4e0d\u9700\u8981\u5173\u5fc3\u5206\u652f\u7684\u4e8b\u60c5\u4e86":62,"\u5728\u5b9e\u73b0\u8fc7\u7a0b\u4e2d":66,"\u5728\u5bf9\u5e94\u7684":61,"\u5728\u5c42\u521d\u59cb\u5316\u7684\u65f6\u5019":61,"\u5728\u5f00\u59cb\u8bad\u7ec3\u4e4b\u524d":33,"\u5728\u5f02\u6784\u96c6\u7fa4\u4e2d":32,"\u5728\u5f15\u5165\u5176\u4ed6\u7c7b\u578b\u7684\u5934\u6587\u4ef6\u65f6":66,"\u5728\u5feb\u7167\u5199\u5165\u5b8c\u6210\u540e":32,"\u5728\u60a8\u7684\u5b9e\u9645\u73af\u5883\u4e2d":32,"\u5728\u6709\u666e\u901a\u7684cpu":62,"\u5728\u672c\u6587\u6863\u4e2d":48,"\u5728\u673a\u7fa4\u4e0a\u8fd0\u884c\u8f6c\u6362\u7a0b\u5e8f":33,"\u5728\u6837\u4f8b\u4e2d":66,"\u5728\u7528\u6237\u4f7f\u7528c":66,"\u5728\u7b2c\u4e8c\u4e2atab":82,"\u5728\u7ebf\u6a21\u578b\u9884\u6d4b\u670d\u52a1":33,"\u5728\u8bad\u7ec3\u7ed3\u675f\u7684\u65f6\u5019\u518d\u4fdd\u5b58\u4e3apaddlepaddle\u7684\u683c\u5f0f":62,"\u5728\u8bc4\u5ba1\u8fc7\u7a0b\u4e2d":82,"\u5728\u8fd9\u4e2a":82,"\u5728\u8fd9\u4e2a\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":65,"\u5728\u8fd9\u4e2a\u9636\u6bb5\u7684\u4ee3\u7801\u6b63\u5728\u7ecf\u5386\u56de\u5f52\u6d4b\u8bd5":82,"\u5728\u8fd9\u4e9b\u5934\u6587\u4ef6\u4e2d":66,"\u5728\u8fd9\u4e9b\u6587\u4ef6\u4e2d":66,"\u5728\u91cd\u6784\u524d\u7684paddlepaddle\u4e2d":62,"\u5728\u95ee\u9898\u672c\u8eab\u7684\u8ba1\u7b97\u91cf\u6bd4\u8f83\u5c0f\u7684\u65f6\u5019":61,"\u5728batch":61,"\u5728c":65,"\u5728c\u7684\u5934\u6587\u4ef6":65,"\u5728packing\u4e0a\u7684\u8017\u65f6":61,"\u5728paddle\u4e4b\u4e0a\u8fd0\u884c\u7684\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u8f93\u51fa\u7684\u6a21\u578b\u4f1a\u63d0\u4f9b\u7ed9\u5728\u7ebf\u4eba\u8138\u8bc6\u522b\u7684\u5e94\u7528\u4f7f\u7528":33,"\u5728paramet":32,"\u5728rnn\u7684\u60c5\u51b5\u4e0b":61,"\u5747\u4f1a\u88ab\u5b89\u88c5\u5230includ":66,"\u5747\u662f\u5728":66,"\u57fa\u4e8e\u7c98\u6027\u4f1a\u8bdd\u7684\u8d1f\u8f7d\u5747\u8861\u529f\u80fd":48,"\u5916\u90e8\u5b58\u50a8":62,"\u591a\u4e2a\u503c":33,"\u591a\u4e2aparamet":32,"\u591a\u6b21\u8c03\u7528":61,"\u5927\u591a\u6570\u8bed\u8a00\u90fd\u652f\u6301\u4f7f\u7528c\u8bed\u8a00api":65,"\u5982\u56fe\u4e2dtrainer":32,"\u5982\u679c\u4e0a\u9762\u4e24\u6b65\u51fa\u73b0\u9519\u8bef":32,"\u5982\u679c\u4e0d\u9700\u8981\u5916\u90e8\u5b58\u50a8\u7528\u4e8e\u8f6c\u6362":62,"\u5982\u679c\u4f7f\u7528swig\u6211\u4eec\u9700\u8981\u5c06\u5728interface\u6587\u4ef6\u91cc":65,"\u5982\u679c\u5728\u4f7f\u7528mkl":62,"\u5982\u679c\u5931\u8d25":82,"\u5982\u679c\u5b58\u5728\u6570\u636e\u6392\u5217\u683c\u5f0f\u4e0d\u4e00\u6837\u7684\u60c5\u51b5\u65f6":62,"\u5982\u679c\u5b58\u5728\u67d0\u4e9btrainer\u6267\u884c\u901f\u5ea6\u8fc7\u6162\u4f1a\u5f71\u54cd\u6574\u4f53\u96c6\u7fa4\u7684\u901f\u5ea6":32,"\u5982\u679c\u5df2\u7ecf\u6b63\u5728\u6267\u884c\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":32,"\u5982\u679c\u662f\u5176\u5b83\u7c7b\u578b":33,"\u5982\u679c\u6709bugfix\u7684\u884c\u4e3a":82,"\u5982\u679c\u67d0\u4e00\u4e2a\u7c7b\u578b\u9700\u8981\u5f15\u7528\u53e6\u4e00\u4e2a\u7c7b\u578b":66,"\u5982\u679c\u67d0\u4e00\u4e2apaddl":66,"\u5982\u679c\u67d0\u4e00\u4e2apaddle\u6982\u5ff5\u5fc5\u987b\u8981\u66b4\u9732":66,"\u5982\u679c\u6ee1\u8db3\u6761\u4ef6":32,"\u5982\u679c\u7528\u6237\u8981\u628apaddle\u7684\u9759\u6001\u5e93":65,"\u5982\u679c\u8981\u4e0a\u4f20gpu\u7248\u672c\u7684\u5305":82,"\u5982\u679c\u8c03\u7528\u9759\u6001\u5e93\u53ea\u80fd\u5c06\u9759\u6001\u5e93\u4e0e\u89e3\u91ca\u5668\u94fe\u63a5":65,"\u5982\u679c\u9700\u8981\u624b\u52a8\u7f16\u8bd1":82,"\u5982\u679cmkl":62,"\u5982\u679cparamet":32,"\u5b50\u7c7b\u53ea\u9700\u8981\u4f7f\u7528\u5b9a\u4e49\u597d\u7684\u63a5\u53e3":62,"\u5b57\u6bb5\u8bbe\u4e3a":82,"\u5b57\u7b26\u4e32":33,"\u5b58\u50a8":33,"\u5b66\u4e60\u6210\u672c\u9ad8":65,"\u5b83\u4eec\u4e3b\u8981\u662f\u7528\u4e8e":62,"\u5b83\u4eec\u7684\u6587\u4ef6\u540d\u662f":33,"\u5b83\u53ea\u4f1a\u5305\u62ec\u751f\u6210\u597d\u7684\u52a8\u6001\u5e93\u548c\u5934\u6587\u4ef6":62,"\u5b83\u8d1f\u8d23\u51b3\u5b9a\u7f16\u8bd1\u65f6\u662f\u5426\u4f7f\u7528mklml\u548cmkl":62,"\u5b89\u88c5\u540e\u7684\u76ee\u5f55\u7ed3\u6784\u4e3a":66,"\u5b8c\u6210\u4e00\u4e2a\u4f20\u8f93\u52a8\u4f5c\u5b8c\u6210\u7684\u65f6\u95f4\u4e5f\u6bd4\u8f83\u77ed":48,"\u5b8c\u6210\u5e38\u7528layer\u7684mkl":62,"\u5b8c\u6210\u5e38\u89c1\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edcvgg":62,"\u5b8c\u6210\u6570\u636e\u7684\u9884\u5904\u7406":33,"\u5b8c\u6210\u81ea\u52a8\u5316\u4e8c\u8fdb\u5236\u7f16\u8bd1":82,"\u5b9a\u4e49":62,"\u5b9a\u4e49\u4e00\u4e9b\u9664\u4e86layer\u548cmemory\u76f8\u5173\u7684\u7c7b\u548c\u51fd\u6570":62,"\u5b9e\u73b0\u5177\u4f53\u7684\u51fd\u6570\u529f\u80fd\u5373\u53ef":62,"\u5b9e\u73b0\u7b80\u5355":65,"\u5bf9\u4e8e\u4e0d\u540c\u8bed\u8a00":65,"\u5bf9\u4e8e\u540c\u4e00\u6bb5c":65,"\u5bf9\u4e8e\u540c\u6837\u8bbe\u7f6e\u7684\u7f51\u7edc\u6a21\u578b":61,"\u5bf9\u4e8e\u591a\u8bed\u8a00\u63a5\u53e3":65,"\u5bf9\u4e8e\u5927\u591a\u6570\u8bed\u8a00":65,"\u5bf9\u4e8e\u5e8f\u5217\u957f\u5ea6":61,"\u5bf9\u4e8e\u6709\u53c2\u6570\u7684\u5c42":62,"\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u65b0\u52a0\u7684rnn":61,"\u5bf9\u4e8e\u6bcf\u79cd\u7c7b\u578b":66,"\u5bf9\u4e8e\u6bcf\u79cdc":66,"\u5bf9\u65b0\u7684\u6743\u91cd\u8fdb\u884c\u8f6c\u6362\u7528\u4e8e\u4e0b\u6b21\u8fed\u4ee3":61,"\u5bf9\u6bd4":65,"\u5bf9\u6bd4\u4f18\u5316\u540elayer\u4e0e\u76f8\u5bf9\u5e94\u7684paddlepaddle\u539f\u6709lay":61,"\u5bf9\u6bd4\u4f18\u5316\u540elayer\u81ea\u8eab":61,"\u5bf9\u8f93\u5165\u53c2\u6570\u7684\u5b89\u5168\u6027\u8fdb\u884c\u4e86\u5fc5\u8981\u7684\u5224\u65ad":66,"\u5bf9\u8fd9\u4e2a\u7248\u672c\u7684\u63d0\u4ea4":82,"\u5bfb\u627e\u6709\u6ca1\u6709\u5176\u4ed6\u53ef\u4ee5\u4f18\u5316\u7684\u53ef\u80fd":62,"\u5bfc\u51fa\u8fd9\u4e9b\u63a5\u53e3":66,"\u5c06":82,"\u5c06\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u53c2\u6570\u62c6\u5206\u6210\u591a\u4efd":32,"\u5c06\u5927\u91cf\u7684":65,"\u5c06\u65b0\u5206\u652f\u7684\u7248\u672c\u6253\u4e0atag":82,"\u5c06master\u5206\u652f\u7684\u5408\u5165commit\u6253\u4e0atag":82,"\u5c0f\u4e8e\u67d0\u4e2a\u6bd4\u8f83\u5c0f\u7684\u9608\u503c\u8ba4\u4e3a\u901a\u8fc7":62,"\u5c31\u9700\u8981\u5bf9\u8fd9\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00\u589e\u52a0\u4e00\u4e9b\u5b9a\u4e49":65,"\u5de5\u5177\u4e0a\u4f20\u5373\u53ef":82,"\u5e73\u5747\u6545\u969c\u4fee\u590d\u65f6\u95f4":32,"\u5e73\u5747\u6545\u969c\u7387":32,"\u5e76\u4e14\u4f1a\u5199\u597d":62,"\u5e76\u4e14\u4f7f\u7528":66,"\u5e76\u4e14\u53ea\u9700\u8981\u5728\u5fc5\u8981\u7684\u65f6\u5019\u8f6c\u6362\u8fd9\u79cd\u683c\u5f0f":62,"\u5e76\u4e14\u5728\u5e38\u89c1\u7684\u5e73\u53f0\u4e0a":65,"\u5e76\u4e14\u5f53\u7f16\u8bd1\u65f6":61,"\u5e76\u4e14\u628a\u7cfb\u7edf\u751f\u6210\u7684ca":48,"\u5e76\u4e14\u628a\u7ed3\u679c\u8fd4\u56depfsclient\u7aef":48,"\u5e76\u4e14\u8ba9\u63a5\u53e3\u8131\u79bb\u5b9e\u73b0\u7ec6\u8282":65,"\u5e76\u4e14\u8f93\u5165\u8f93\u51fa\u90fd\u662f\u5171\u7528\u4e00\u5757\u5185\u5b58":62,"\u5e76\u5220\u9664":82,"\u5e76\u5220\u9664\u66f4\u65e9\u7684\u5feb\u7167":32,"\u5e76\u52a0\u8f7d\u5176\u4e2d\u7684\u53c2\u6570":32,"\u5e76\u53d1\u5e03\u5230pypi":82,"\u5e76\u5728\u6bcf\u6b21\u6743\u91cd\u66f4\u65b0\u540e":61,"\u5e76\u5728\u96c6\u7fa4\u4e2d\u8fd0\u884c\u591a\u4e2a\u5206\u5e03\u5f0f\u6570\u636e\u5904\u7406\u4efb\u52a1":33,"\u5e76\u5c06":82,"\u5e76\u5c06c":66,"\u5e76\u628a\u5feb\u7167\u4fdd\u5b58\u5230\u8fd9\u4e2a\u76ee\u5f55\u4e0b":32,"\u5e76\u628a\u7ed3\u679c\u653e\u5230\u5f53\u524d\u5c42\u7684":62,"\u5e76\u6ca1\u6709paddle\u7279\u522b\u9700\u8981\u7684\u7279\u6027":65,"\u5e76\u6dfb\u52a0\u5934\u6587\u4ef6":61,"\u5e76\u88ab\u5b58\u50a8\u5728\u8bf8\u5982hadoop":33,"\u5e76\u9002\u5e94github\u7684\u7279\u6027\u505a\u4e86\u4e00\u4e9b\u533a\u522b":82,"\u5e76\u91cd\u65b0\u6253\u5305wheel\u5305":82,"\u5efa\u8bae":82,"\u5f00\u53d1\u4e86\u6a21\u578b\u9884\u6d4b\u7684\u6837\u4f8b\u4ee3\u7801":66,"\u5f00\u53d1\u8005\u4fee\u6539\u81ea\u5df1\u7684\u4ee3\u7801":82,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4e2d":82,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4f7f\u7528":82,"\u5f00\u5934":[61,62],"\u5f00\u59cb\u63d0\u4f9b\u670d\u52a1":32,"\u5f15\u5165\u4e86\u4ee5\u4e0b\u56db\u4e2aapi":61,"\u5f15\u5165\u4e86\u7c7b\u578b\u7684\u5934\u6587\u4ef6":66,"\u5f39\u51fa\u4e0b\u9762\u7684\u9009\u62e9\u6846":82,"\u5f53\u529f\u80fd\u5206\u652f\u5f00\u53d1\u5b8c\u6bd5\u540e":82,"\u5f53\u53ea\u505a\u63a8\u65ad":61,"\u5f53\u5f00\u542f":62,"\u5f53\u6253\u5f00":62,"\u5f53\u6570\u636e\u683c\u5f0f\u4e0epaddlepaddle\u9ed8\u8ba4\u7684":62,"\u5f53\u7136\u8fd9\u4e24\u8005\u4e5f\u53ef\u4ee5\u76f8\u7b49":62,"\u5f53\u7528\u6237\u4f7f\u7528\u5b8c\u8fd9\u4e2a\u53c2\u6570\u540e":66,"\u5f53\u7f51\u7edc\u51fa\u73b0\u5206\u652f\u4e14\u5728":62,"\u5f53destination\u6587\u4ef6\u4e0d\u5b58\u5728\u6216\u8005\u5927\u5c0f\u548csource\u6587\u4ef6\u4e0d\u4e00\u81f4\u65f6":48,"\u5f88\u96be\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":65,"\u5f97\u4f7f\u7528":65,"\u5fc5\u8981":66,"\u5fc5\u987b\u5206\u522b\u4e0e":62,"\u60c5\u611f\u5206\u6790":82,"\u6211\u4eec\u4e5f\u53ef\u4ee5\u786e\u5b9a\u6bcf\u4e00\u4e2a\u53c2\u6570\u7684\u7c7b\u578b":66,"\u6211\u4eec\u4e5f\u5c06mklml\u5373":62,"\u6211\u4eec\u4f1a\u4fdd\u8bc1":62,"\u6211\u4eec\u4f1a\u5728\u7f51\u7edc\u8bad\u7ec3\u4e4b\u524d\u628a\u683c\u5f0f\u8f6c\u6362\u4e3amkl":62,"\u6211\u4eec\u4f1a\u5bf9\u6bd4\u5982\u4e0b2\u4e2a\u65b9\u9762":61,"\u6211\u4eec\u4f1a\u628amkl":62,"\u6211\u4eec\u4f1a\u6dfb\u52a0":[61,62],"\u6211\u4eec\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":65,"\u6211\u4eec\u51b3\u5b9a\u4f7f\u7528\u5df2\u6709\u7684":62,"\u6211\u4eec\u53ef\u4ee5\u5148\u5b8c\u6210\u5bf9\u539f\u6570\u636e\u7684packing\u64cd\u4f5c":61,"\u6211\u4eec\u603b\u7ed3\u51fa\u4e00\u4e9b\u7279\u522b\u9700\u8981\u6ce8\u610f\u7684\u70b9":62,"\u6211\u4eec\u63d0\u4f9b\u4e24\u4e2a\u8f6c\u6362\u65b9\u5f0f":33,"\u6211\u4eec\u63d0\u51fa\u4e86chunk\u7684\u6982\u5ff5":48,"\u6211\u4eec\u6700\u7ec8\u7684\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165python\u6216\u8005\u5176\u4ed6\u4efb\u4f55\u8bed\u8a00\u7684\u89e3\u91ca\u5668":65,"\u6211\u4eec\u8ba1\u5212\u5c06":61,"\u6211\u4eec\u8ba1\u5212\u5c06\u82f1\u7279\u5c14\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edc\u6570\u5b66\u5e93":62,"\u6211\u4eec\u8bbe\u8ba1\u8bf4\u660e\u4e86\u540d\u4e3afilemanager\u7cfb\u7edf":48,"\u6211\u4eec\u9009\u62e9":33,"\u6211\u4eec\u901a\u8fc7\u4f7f\u7528\u65b0\u5f15\u5165\u7684gemm":61,"\u6211\u4eec\u90fd\u63d0\u4f9bpython\u7684\u8f6c\u6362\u5e93":33,"\u6216\u8005":[62,65,66],"\u6216\u8005\u5c06\u8fd9\u53f0\u8282\u70b9\u8fc1\u79fb\u5230\u53e6\u4e00\u4e2a\u8282\u70b9\u5e76\u542f\u52a8\u5373\u53ef\u6062\u590d\u8bad\u7ec3\u4efb\u52a1":32,"\u6216\u8005\u7528tuple\u8868\u793a\u7684\u591a\u4e2a\u503c":33,"\u6216\u8005\u7531\u5b83\u4eec\u7ec4\u6210\u7684list":33,"\u6216activ":62,"\u6240\u4ee5":[62,82],"\u6240\u4ee5\u4e00\u4e2a\u7248\u672c\u53f7\u7684wheel\u5305\u53d1\u5e03\u4e4b\u540e":82,"\u6240\u4ee5\u4e0d\u5b58\u5728\u8fd9\u4e2a\u95ee\u9898":62,"\u6240\u4ee5\u5728":62,"\u6240\u4ee5\u5728\u5199\u5165\u5feb\u7167\u7684\u8fc7\u7a0b\u4e2d":32,"\u6240\u4ee5\u6211\u4eec\u5b9a\u4e49\u4e86\u4e00\u4e2a":62,"\u6240\u4ee5\u6574\u4f53\u4e0a":62,"\u6240\u4ee5\u6dfb\u52a0\u4e86\u5bf9\u5e94\u7684":62,"\u6240\u4ee5\u7528\u6237\u9700\u8981\u9996\u5148\u5728":48,"\u6240\u4ee5\u9700\u8981\u5f15\u5165\u4e00\u4e2a\u8f6c\u6362\u65b9\u6cd5":62,"\u6240\u6709\u4e0e\u7c7b\u578b\u76f8\u5173\u7684\u51fd\u6570":66,"\u6240\u6709\u5916\u90e8\u7684\u8f6c\u6362\u5de5\u4f5c\u90fd\u4f1a\u5728reset\u7cfb\u5217\u51fd\u6570\u4e2d\u90fd\u51c6\u5907\u597d":62,"\u6240\u6709\u7684":61,"\u6240\u6709\u7684\u63a5\u53e3\u5747\u4e3ac\u63a5\u53e3":66,"\u6240\u6709\u76f8\u5173\u7684":61,"\u6240\u6709\u7c7b\u578b\u540d\u4e3a":66,"\u6240\u6709mkl":62,"\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":65,"\u624d\u80fd\u66f4\u597d\u7684\u53d1\u6325mkl":62,"\u6253\u5f00\u8fd9\u4e2a\u7f16\u8bd1\u9009\u9879":66,"\u6267\u884c":82,"\u628a":33,"\u628a\u4e4b\u524d\u793a\u4f8b\u4e2d\u8f6c\u6362\u5b8c\u6bd5\u7684random":33,"\u6307\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u4e4b\u540e\u5f97\u5230\u7684\u6240\u6709\u53c2\u6570":32,"\u6309\u94ae":82,"\u63a5\u53e3":[65,66],"\u63a5\u53e3\u5c42\u505a\u8fc7\u591a\u5c01\u88c5":66,"\u63a5\u53e3\u662f":33,"\u63a5\u6536\u5904\u7406pfsclient\u7aef\u7684\u6587\u4ef6\u7ba1\u7406\u8bf7\u6c42":48,"\u63a7\u5236\u662f\u5426\u4f7f\u7528mkl":62,"\u63a7\u5236\u662f\u5426\u4f7f\u7528mklml\u5e93":62,"\u63a7\u5236\u7528\u6237\u6743\u9650":33,"\u63d0\u4f9b\u4e03\u5c42\u534f\u8bae\u7684\u53cd\u5411\u4ee3\u7406":48,"\u63d0\u4f9b\u5e38\u7528\u7684\u547d\u4ee4\u884c\u7ba1\u7406\u547d\u4ee4\u7ba1\u7406\u6587\u4ef6\u548c\u76ee\u5f55":48,"\u63d0\u4f9b\u7528\u6237\u7ba1\u7406\u6587\u4ef6\u7684\u547d\u4ee4":48,"\u63d0\u4f9b\u7ed9paddle\u4f5c\u4e3a\u8bad\u7ec3\u6570\u636e":33,"\u652f\u6301\u5927\u6587\u4ef6\u7684\u65ad\u70b9\u4e0a\u4f20":48,"\u6570\u636e":48,"\u6570\u636e\u8bfb\u53d6\u5747\u4ea4\u7531\u5176\u4ed6\u8bed\u8a00\u5b8c\u6210":65,"\u6570\u636e\u957f\u5ea6\u53ca\u6821\u9a8c\u503c\u7ec4\u6210":48,"\u6570\u636e\u96c6\u9700\u8981\u9884\u5148\u88ab\u8f6c\u6362\u6210paddlepaddle\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f7f\u7528\u7684\u5b58\u50a8\u683c":33,"\u6570\u636e\u9884\u5904\u7406\u4efb\u52a1":33,"\u6587\u4ef6":65,"\u6587\u4ef6\u4f20\u8f93\u7684\u7684\u5173\u952e\u5728\u4e8e\u9700\u8981pfsclient\u7aef\u5bf9\u6bd4source\u548cdestination\u7684\u6587\u4ef6chunks\u7684checksum\u662f\u5426\u4fdd\u6301\u4e00\u81f4":48,"\u6587\u4ef6\u5185\u5bb9\u4e3a":65,"\u6587\u4ef6\u540d\u4e3a\u6b64uuid":32,"\u6587\u4ef6\u5bf9\u5e94\u7684data":33,"\u6587\u4ef6\u7684\u4e0a\u4f20\u548c\u4e0b\u8f7d\u90fd\u662f\u901a\u8fc7\u5bf9chunk\u7684\u64cd\u4f5c\u6765\u5b9e\u73b0\u7684":48,"\u65b0\u624b\u5165\u95e8\u7ae0\u8282":82,"\u65b0\u7248\u672c":62,"\u65b9\u4fbf\u6d4b\u8bd5\u4eba\u5458\u6d4b\u8bd5paddlepaddle\u7684\u884c\u4e3a":82,"\u65b9\u4fbf\u7528\u6237\u4e0a\u4f20\u81ea\u5df1\u7684\u8bad\u7ec3\u6570\u636e\u4ee5\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":48,"\u65b9\u4fbf\u7528\u6237\u5728python\u7aef\u9009\u62e9\u662f\u5426\u542f\u7528\u8fd9\u4e2a\u529f\u80fd":61,"\u65b9\u4fbf\u7528\u6237\u9009\u62e9\u4f7f\u7528mkl":62,"\u65b9\u5f0f\u7c7b\u4f3c\u4e8e":62,"\u65e0\u6cd5\u505a\u5230\u5bf9\u4e8e\u5404\u79cd\u8bed\u8a00\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u7684\u9002\u914d":65,"\u65e0\u8bba\u5728\u672c\u5730\u8fd8\u662f\u5728\u4e91\u7aef":33,"\u65e0\u8bba\u662f\u4ece":33,"\u65e0\u8bba\u662f\u5728\u672c\u5730\u6216\u662f\u4e91\u7aef\u8f6c\u6362":33,"\u65e0\u8bba\u662f\u91cd\u6784\u524d\u7684layer\u8fd8\u662f\u91cd\u6784\u540e\u7684op":62,"\u65f6":[32,61,62],"\u65f6\u4e00\u8d77\u66f4\u65b0":62,"\u662f":[48,62],"\u662f\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3\u7684\u4ee3\u7801\u751f\u6210\u5668":65,"\u662f\u4e00\u4e2a\u7c7b\u578b\u7684\u6807\u5fd7":66,"\u662f\u4e0d\u5e38\u89c1\u7684\u505a\u6cd5":65,"\u662f\u5404\u4e2a\u5b9e\u73b0\u4e2d\u5171\u4eab\u7684\u5934\u6587\u4ef6":66,"\u662f\u5426\u6253\u5f00":61,"\u662f\u56e0\u4e3ac99\u652f\u6301":65,"\u662f\u5bf9\u7528\u6237\u6587\u4ef6\u5b58\u50a8\u7a7a\u95f4\u7684\u62bd\u8c61":48,"\u662f\u6307":66,"\u662f\u7528\u6237\u4f7f\u7528c":66,"\u662fc":66,"\u663e\u5f97\u76f8\u5bf9\u6765\u8bf4\u8f83\u4e3a\u8017\u65f6":61,"\u6682\u65f6\u4e0d\u8003\u8651\u591a\u4e2aparamet":32,"\u66b4\u9732\u8fd9\u4e2a\u6982\u5ff5\u5fc5\u8981\u51fd\u6570":66,"\u6700\u540e\u5220\u9664":82,"\u6700\u5e38\u89c1\u7684\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662fexcept":65,"\u6709\u6548\u63d0\u5347paddlepaddle\u5728\u82f1\u7279\u5c14\u67b6\u6784\u4e0a\u7684\u6027\u80fd":[61,62],"\u6709\u6807\u51c6\u7684":65,"\u6709\u7684\u65f6\u5019":65,"\u672c\u5217\u8868\u8bf4\u660epaddlepaddle\u53d1\u7248\u4e4b\u524d\u9700\u8981\u6d4b\u8bd5\u7684\u529f\u80fd\u70b9":82,"\u672c\u6587\u6863\u63cf\u8ff0paddl":66,"\u673a\u5668\u7ffb\u8bd1":82,"\u6765\u4fdd\u8bc1\u8bad\u7ec3\u8fc7\u7a0b\u53ef\u4ee5\u4ece\u4e2d\u95f4\u72b6\u6001\u91cd\u65b0\u542f\u52a8":32,"\u6765\u51b3\u5b9a\u662f\u5426\u5f00\u542fmkl":61,"\u6765\u5b9e\u73b0":62,"\u6765\u786e\u4fdd\u628a":65,"\u6765\u8868\u793apaddle\u5185\u90e8\u7c7b":65,"\u6765\u8bbf\u95ee\u7528\u6237\u81ea\u5df1\u7684\u6570\u636e":33,"\u6765\u8fdb\u884c\u8ba8\u8bba":66,"\u67e5\u770blatest":82,"\u6807\u51c6\u8868\u793apaddlepaddle\u7248\u672c\u53f7":82,"\u683c\u5f0f\u4e0d\u5339\u914d\u65f6":62,"\u68c0\u67e5\u70b9\u4fdd\u5b58\u7a0b\u5e8f\u6d41\u7a0b":32,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\u901a\u8fc7\u5b9a\u671f\u5411\u78c1\u76d8\u4e0a\u4fdd\u5b58\u4e00\u4efd\u5b58\u50a8\u5728paramet":32,"\u6a21\u578b\u6570\u636e\u68c0\u67e5\u70b9\u7684\u5b9e\u73b0":32,"\u6a21\u578b\u914d\u7f6e\u89e3\u6790":65,"\u6b21\u8fed\u4ee3\u6267\u884c\u7684\u8f6c\u6362\u6b21\u6570\u4e3a":61,"\u6b64\u65f6\u6bcf\u4e2a\u5c0f\u5206\u652f\u7684":62,"\u6b64\u65f6master\u5c06\u8d1f\u8d23\u542f\u52a8\u4e00\u4e2a\u65b0\u7684train":32,"\u6bcf\u4e00\u4e2a":82,"\u6bcf\u4e00\u4e2a\u6587\u4ef6\u662f\u6570\u636e\u96c6\u7684\u4e00\u4e2ashard":33,"\u6bcf\u4e2a":62,"\u6bcf\u4e2a\u503c\u7684\u7c7b\u578b\u53ef\u4ee5\u662f\u6574\u5f62":33,"\u6bcf\u4e2a\u6d4b\u8bd5\u4f1a\u5bf9\u6bd4paddlepaddle\u4e2dcpu\u7b97\u51fa\u7684\u7ed3\u679c\u4e0emkl":62,"\u6bcf\u4e2adata":33,"\u6bcf\u4e2amkldnnlayer\u90fd\u5305\u542b\u7528\u4e8e\u5185\u90e8\u5b58\u50a8\u548c\u5916\u90e8\u5b58\u50a8\u7684\u4e00\u7cfb\u5217mkldnnmatrix":62,"\u6bcf\u4e2aparamet":32,"\u6bcf\u4e2ashard\u5206\u522b\u5b58\u50a8\u5728\u5176\u4e2d\u4e00\u53f0paramet":32,"\u6bcf\u6b21\u8c03\u7528\u65f6\u5bf9\u539f\u6570\u636e\u7684\u91cd\u590dpacking\u4fbf\u6210\u4e3a\u4e86\u5197\u4f59":61,"\u6bcf\u6b21\u8f93\u51fa\u4e00\u4e2adata":33,"\u6bcf\u969410\u5206\u949f":32,"\u6bd4\u5982":[33,62],"\u6bd4\u5982\u53ef\u80fd\u4f1a\u7528openmp\u6539\u8fdbsgd\u7684\u66f4\u65b0\u6027\u80fd":62,"\u6bd4\u5982\u5c06":82,"\u6bd4\u5982\u6bcf\u969410\u5206\u949f\u6700\u65b0\u7684\u5feb\u7167":32,"\u6bd4\u5982\u6d41\u5f0f\u6570\u636e\u5904\u7406":33,"\u6bd4\u5982imagenet\u8fd9\u4e2a\u6570\u636e\u96c6\u53ef\u80fd\u88ab\u5206\u62101000\u4e2ashard":33,"\u6ca1\u6709\u5fc5\u8981\u5728\u6bcf\u6b21\u524d\u5411\u4e2d\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u8ba1\u7b97\u65f6\u5bf9\u6743\u91cd\u8fdb\u884c\u91cd\u590d\u7684packing\u64cd\u4f5c":61,"\u6ce8":[32,82],"\u6ce8\u518clayer\u7684\u65f6\u5019\u4fdd\u8bc1":[61,62],"\u6ce8\u610f":62,"\u6d4b\u8bd5\u5206\u4e3a\u6bcf\u4e2alayer":62,"\u6d4b\u8bd5\u672c\u6b21release\u7684\u6b63\u786e\u6027":82,"\u6d4b\u8bd5\u7684\u6027\u80fd\u5bf9\u6bd4\u7ed3\u679c\u4f1a\u5728":62,"\u6d6e\u70b9\u578b\u6570\u636e":33,"\u6df1\u5165paddlepaddl":62,"\u6dfb\u52a0":61,"\u6dfb\u52a0\u7684\u76f8\u5173\u6587\u4ef6\u548c\u76ee\u5f55\u7ed3\u6784\u5982\u4e0b":[61,62],"\u6fc0\u6d3b\u51fd\u6570\u662f\u72ec\u7acb\u4e8e":62,"\u70b9\u51fb":82,"\u7136\u540e\u5728\u524d\u5411":61,"\u7136\u540e\u5728etcd\u7684":32,"\u7136\u540e\u5c31\u53ef\u4ee5\u5e76\u53d1\u5199\u5165\u591a\u4e2achunk":48,"\u7136\u540e\u624d\u80fd\u4f7f\u7528pfsclient":48,"\u7136\u540e\u6309\u7167\u4e0a\u8ff0\u7684\u65b9\u6cd5":82,"\u7136\u540e\u70b9\u51fb":82,"\u7248\u672c\u5206\u652f":82,"\u7248\u672c\u53f7":82,"\u7248\u672c\u53f7\u5bf9\u5e94\u7684tag\u5373\u53ef":82,"\u7248\u672c\u53f7rc":82,"\u7248\u672cfork\u51fa\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f":82,"\u7279\u6709\u7684\u8bbe\u5907id":62,"\u73b0\u9636\u6bb5\u7684\u4f18\u5316\u4e3b\u8981\u9488\u5bf9":61,"\u73b0\u9636\u6bb5paddle\u6709\u4e00\u4e2a\u95ee\u9898\u662f":65,"\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u8bad\u7ec3\u6570\u636e\u96c6\u901a\u5e38\u4f53\u79ef\u5f88\u5927":33,"\u751f\u4ea7\u73af\u5883\u7684\u65e5\u5fd7\u6570\u636e\u4f1a\u901a\u8fc7\u5b9e\u65f6\u6d41\u7684\u65b9\u5f0f":33,"\u751f\u6210\u5404\u79cd\u8bed\u8a00\u7684\u7ed1\u5b9a\u4ee3\u7801":65,"\u751f\u6210\u6587\u6863":65,"\u751f\u6210\u7684":33,"\u751f\u6210\u7ed9\u5b9a":33,"\u751f\u6210api\u6587\u6863":65,"\u751f\u6210pfsclient\u548cpfsserver\u7684\u6846\u67b6\u90e8\u5206":48,"\u7528":48,"\u7528\u4e8e\u6d4b\u8bd5\u548c\u5bf9\u6bd4\u5728\u4f7f\u7528mkl":62,"\u7528\u4e8e\u7ba1\u7406mkl":62,"\u7528\u4e8e\u9009\u62e9\u662f\u5426\u4f7f\u7528\u76f8\u5173\u529f\u80fd":61,"\u7528\u4e8e\u9009\u62e9\u662f\u5426\u4f7f\u7528mkl":62,"\u7528\u4e8emkl":[61,62],"\u7528\u6237\u4e0a\u4f20\u6570\u636e\u540e":33,"\u7528\u6237\u4e5f\u53ef\u4ee5\u4e0a\u4f20label":33,"\u7528\u6237\u53ef\u4ee5\u5b89\u5168\u7684\u91ca\u653e\u67d0\u4e2ac":66,"\u7528\u6237\u53ef\u4ee5\u628a\u81ea\u5df1\u7684\u6570\u636e\u5206\u4eab\u7ed9\u522b\u4eba":33,"\u7528\u6237\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u8fd9\u4e2a\u52a8\u6001\u5e93\u6765\u5f15\u5165paddl":66,"\u7528\u6237\u5728\u672c\u5730\u8f6c\u6362\u597d\u518d\u4e0a\u4f20":33,"\u7528\u6237\u6587\u4ef6\u53ef\u80fd\u662f\u6bd4\u8f83\u5927\u7684":48,"\u7528\u6237\u901a\u8fc7c":66,"\u7531\u4e8e\u5728\u73b0\u6709\u7684\u67d0\u4e9b\u60c5\u51b5\u4e0b":61,"\u7531\u4e8e\u5bf9parameters\u7684\u66f4\u65b0\u9700\u8981\u83b7\u53d6parameters\u5185\u5b58\u7684":32,"\u7531\u4e8e\u96c6\u7fa4\u4e2d\u540c\u65f6\u5b58\u5728\u4e24\u53f0\u673a\u5668\u6545\u969c\u7684\u6982\u7387\u6781\u4f4e":32,"\u7531\u4e8ec":65,"\u7531\u4e8echunk\u6bd4\u8f83\u5c0f":48,"\u7531\u4e8emkl":62,"\u7531\u4e8epypi":82,"\u7531\u5206\u652f\u5904\u7684layer\u8d1f\u8d23\u6c42\u548c":62,"\u7533\u8bf7\u7528\u6237\u7a7a\u95f4":48,"\u7684\u4e00\u4e2a\u5b50\u96c6":62,"\u7684\u4fe1\u606f":62,"\u7684\u5355\u5143\u6d4b\u8bd5\u548c\u7b80\u5355\u7f51\u7edc\u7684\u6574\u4f53\u6d4b\u8bd5":62,"\u7684\u547d\u540d\u98ce\u683c\u5e76\u4e0d\u80fd\u9002\u5e94\u5176\u4ed6\u7b2c\u4e09\u65b9\u8bed\u8a00":65,"\u7684\u57fa\u672c\u903b\u8f91":62,"\u7684\u5934\u6587\u4ef6":65,"\u7684\u5b50\u7c7b\u53ea\u9700\u8981\u4f7f\u7528\u5185\u90e8\u5b58\u50a8\u5c31\u53ef\u4ee5\u4e86":62,"\u7684\u60c5\u51b5\u4e0b":61,"\u7684\u63a5\u53e3\u6837\u5f0f":65,"\u7684\u6570\u636e\u6d41\u56fe":33,"\u7684\u65f6\u5019":62,"\u7684\u683c\u5f0f\u59cb\u7ec8\u662f":62,"\u7684\u683c\u5f0f\u5b58\u50a8":62,"\u7684\u6982\u5ff5":62,"\u7684\u6e90\u7801\u91cc\u4f7f\u7528\u4e86":65,"\u7684\u7248\u672c":82,"\u7684\u7ed3\u679c":61,"\u7684\u7f29\u5199":48,"\u7684\u7f51\u7edc\u6a21\u578b":61,"\u7684\u89c4\u8303":65,"\u7684\u89d2\u5ea6":33,"\u7684\u914d\u7f6e\u5199\u5230\u914d\u7f6e\u6587\u4ef6\u4e2d":33,"\u7684flag":[61,62],"\u7684vanilla":61,"\u76ee\u524d\u53ea\u8003\u8651":62,"\u76ee\u524d\u53ea\u8003\u8651\u52a8\u6001\u6269\u5bb9trainer\u6570\u91cf":32,"\u76ee\u524d\u5728paddlepaddle\u4e2d":62,"\u76ee\u524d\u5728paddlepaddle\u4e2d\u6570\u636e\u90fd\u662f\u4ee5":62,"\u76ee\u524d\u5d4c\u5165python\u89e3\u91ca\u5668":65,"\u76ee\u524d\u6211\u4eec\u7528cephfs\u6765\u642d\u5efa":48,"\u76ee\u524d\u7684\u4f18\u5316":62,"\u76ee\u524dpaddle\u7684\u8fdb\u7a0b\u6a21\u578b\u662fc":65,"\u76ee\u524dpaddlepaddle\u91c7\u7528\u4e86":61,"\u76ee\u5f55\u4e0b":66,"\u76ee\u5f55\u4e0b\u5bf9\u5e94\u7684\u5730\u65b9":62,"\u76f4\u63a5\u4f7f\u7528c\u8bed\u8a00\u7684":65,"\u76f4\u63a5\u5220\u9664\u8fd9\u4e2a\u53c2\u6570\u5373\u53ef":66,"\u76f4\u63a5\u5bfc\u51fa\u5230c\u7684\u63a5\u53e3\u6bd4\u8f83\u56f0\u96be":65,"\u76f8\u5173\u5c42":61,"\u77e9\u9635\u5927\u5c0f\u662f":61,"\u793e\u533a\u53c2\u4e0e\u56f0\u96be":65,"\u793e\u533a\u8d21\u732e\u4ee3\u7801\u5b66\u4e60\u6210\u672c\u9ad8":65,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u53c2\u6570":32,"\u79bb\u7ebf\u6279\u5904\u7406":33,"\u7b2c\u4e00\u4e2atag\u4e3a":82,"\u7b2c\u4e09\u6b65\u5b8c\u6210\u540e":82,"\u7b2c\u4e8c\u4e2a\u4e3a":82,"\u7b49":[62,66],"\u7b49\u5168\u90e8\u9759\u6001\u5e93\u4e2d\u7684\u76ee\u6807\u6587\u4ef6\u5168\u90e8\u6253\u5305\u540e\u4ea7\u751f\u7684\u6587\u4ef6":66,"\u7b49\u5f85\u7f16\u8bd1\u5b8c\u6210\u540e":82,"\u7b49\u6587\u4ef6":66,"\u7c7b\u4f3c":66,"\u7c7b\u540d\u548cc":65,"\u7c7b\u578b":65,"\u7ed3\u8bba":65,"\u7edf\u4e00\u7528":33,"\u7f16\u8bd1\u5668\u6ca1\u6709":65,"\u7f16\u8bd1\u578b\u8bed\u8a00":65,"\u7f16\u8bd1\u65f6\u4f1a\u628a\u5bf9\u5e94\u7684\u5934\u6587\u4ef6\u548c\u5e93\u653e\u5728":62,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684docker\u53d1\u884c\u955c\u50cf":82,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684python":82,"\u7f16\u8bd1c":66,"\u800c\u4e0d\u5fc5\u5728\u610fpaddl":66,"\u800c\u4e0d\u652f\u6301pypy\u89e3\u91ca\u5668":65,"\u800c\u4e0d\u66b4\u9732\u6982\u5ff5\u7684\u5b9e\u73b0":66,"\u800c\u4e14\u5728\u4f20\u8f93\u7684\u8fc7\u7a0b\u4e2d\u4e5f\u53ef\u80fd\u51fa\u73b0\u7f51\u7edc\u4e0d\u7a33\u5b9a\u7684\u60c5\u51b5":48,"\u800c\u51fa\u73b0\u9636\u6bb5\u6027\u7684\u8fd0\u884c\u505c\u6ede":32,"\u800c\u5728cpp\u91cc\u9762\u5b9e\u73b0\u8fd9\u4e2ac\u7684\u63a5\u53e3":65,"\u800c\u591a\u8bed\u8a00\u63a5\u53e3\u9700\u8981\u76f4\u63a5\u8bfb\u53d6\u751f\u6210\u7684\u4e8c\u8fdb\u5236":65,"\u800c\u5bf9\u4e8egolang":65,"\u800c\u5bf9\u4e8egolang\u9519\u8bef\u5904\u7406\u5e94\u8be5\u4f7f\u7528\u8fd4\u56de\u503c":65,"\u800c\u662f\u76f4\u63a5\u4fee\u6539paddl":66,"\u800c\u662f\u76f4\u63a5\u7528api\u7684\u63a5\u53e3\u8fdc\u7a0b\u8bbf\u95ee":33,"\u800cswig\u53ea\u80fd\u7b80\u5355\u7684\u66b4\u9732c":65,"\u81ea\u52a8\u6302\u8f7d\u5206\u5e03\u5f0f\u5b58\u50a8\u76ee\u5f55":32,"\u81f3\u4e8e\u4e3a\u4ec0\u4e48\u9700\u8981c":66,"\u826f\u597d\u7684\u6587\u6863":65,"\u8282\u7701\u4e86\u4e0d\u5fc5\u8981\u7684\u64cd\u4f5c":62,"\u83b7\u53d6\u6700\u65b0\u7684\u68c0\u67e5\u70b9\u7684\u6587\u4ef6uuid":32,"\u867d\u7136\u4e0d\u9f13\u52b1\u8fd9\u6837":66,"\u8868\u793a\u5bf9\u8f93\u5165\u6570\u636e":62,"\u89e3\u91ca\u578b\u8bed\u8a00\u53ea\u80fd\u8c03\u7528\u52a8\u6001\u5e93":65,"\u89e3\u91ca\u6027\u8bed\u8a00\u5b9e\u9645\u8fd0\u884c\u7684\u4e8c\u8fdb\u5236\u662f\u89e3\u91ca\u5668\u672c\u8eab":65,"\u8ba1\u5212\u5728":[61,62],"\u8ba1\u7b97\u8fd9\u4e2a\u6587\u4ef6\u7684md5":32,"\u8ba9paddle\u6838\u5fc3\u4e2d":66,"\u8bad\u7ec3\u4efb\u52a1\u7684\u8fd0\u884c\u53ef\u80fd\u4f1a\u5360\u6ee1trainer\u548cparamet":32,"\u8bad\u7ec3\u548c\u7eaf\u4f7f\u7528":82,"\u8bad\u7ec3\u6a21\u578b\u6b63\u786e\u6027":82,"\u8bb0\u5f55\u4e0b\u6240\u6709\u5931\u8d25\u7684\u4f8b\u5b50":82,"\u8bbe\u7f6e":66,"\u8bc6\u522b\u6570\u5b57":82,"\u8bcd\u5411\u91cf":82,"\u8be5\u6587\u4ef6\u5bf9\u76f8\u5173gemm":61,"\u8be5\u7c7b\u7ee7\u627f\u4e8epaddlepaddle\u7684\u57fa\u7c7b":62,"\u8be6\u7ec6\u8bbe\u8ba1":48,"\u8bed\u610f\u89d2\u8272\u6807\u6ce8":82,"\u8bf4\u660e":32,"\u8bf7\u53c2\u8003":66,"\u8f6c\u6362\u5185\u5b58\u7684\u5de5\u4f5c":62,"\u8f6c\u6362\u5197\u4f59":61,"\u8f6c\u6362\u51fd\u6570":62,"\u8f6c\u6362\u751f\u6210\u7684\u6587\u4ef6\u540d\u4f1a\u662f\u4ee5\u4e0b\u683c\u5f0f":33,"\u8f6c\u6362\u8017\u65f6":61,"\u8f93\u5165\u68af\u5ea6":62,"\u8f93\u51fa\u6570\u636e\u548c\u8f93\u51fa\u68af\u5ea6":62,"\u8f93\u51fa\u6570\u636e\u548c\u8f93\u51fa\u68af\u5ea6\u7684\u8f6c\u6362":62,"\u8fbe\u5230\u5bb9\u707e\u7684\u76ee\u7684":32,"\u8fc7\u7a0b\u4e2d\u6240\u6709\u65f6\u95f4\u6b65":61,"\u8fd1\u671f\u76ee\u6807":62,"\u8fd4\u56de\u7b2c\u4e8c\u6b65":82,"\u8fd8\u662f\u4ece":33,"\u8fd9\u4e00\u5c42\u8fdb\u884c\u5c01\u88c5":66,"\u8fd9\u4e00\u6570\u636e\u683c\u5f0f\u7684\u8f6c\u6362\u64cd\u4f5c":61,"\u8fd9\u4e00\u6982\u5ff5\u4e0d\u518d\u7410\u788e":66,"\u8fd9\u4e09\u4e2a\u5206\u652f":82,"\u8fd9\u4e2a\u51fd\u6570\u672c\u8eab\u4f1a\u5728\u8ba1\u7b97\u524d\u5c06\u539f\u6570\u636e\u8f6c\u6362\u4e3a\u66f4\u9002\u5408\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u5185\u90e8\u683c\u5f0f":61,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u7684\u8fde\u63a5\u53c2\u6570\u4e0epaddle\u7684\u5176\u4ed6\u4e8c\u8fdb\u5236":66,"\u8fd9\u4e2a\u53c2\u6570\u4e5f\u4e0d\u4f1a\u4e00\u5e76\u5220\u9664":66,"\u8fd9\u4e2a\u5934\u6587\u4ef6\u4e0d\u5047\u8bbe\u5176\u4ed6\u6587\u4ef6\u7684\u5f15\u7528\u987a\u5e8f":66,"\u8fd9\u4e2a\u63a5\u53e3\u9700\u8981\u505a\u5230":65,"\u8fd9\u4e2a\u6587\u4ef6\u5177\u6709\u72ec\u7279\u7684\u8bed\u6cd5":65,"\u8fd9\u4e2a\u76ee\u5f55\u4e2d\u9664\u4e86":66,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u4e2d\u7684\u53e6\u4e00\u4e2a\u9879\u76ee\u662f":66,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u5305\u542b\u4e24\u4e2a\u9879\u76ee":66,"\u8fd9\u4e2a\u9009\u62e9":[61,62],"\u8fd9\u4e2a\u9759\u6001\u5e93\u5305\u542b\u4e86paddle\u7684\u5168\u90e8\u7b26\u53f7":66,"\u8fd9\u4e2ainstance\u53ef\u4ee5\u662f\u5355\u4e2a\u503c":33,"\u8fd9\u4e9b\u4f1a\u5728":[61,62],"\u8fd9\u4e9b\u51fd\u6570\u4f1a\u6839\u636e\u8f93\u5165\u53c2\u6570\u91cd\u65b0\u8bbe\u7f6e\u5185\u90e8\u548c\u5916\u90e8\u5b58\u50a8":62,"\u8fd9\u4e9b\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1\u901a\u5e38\u4f1a\u628a\u6570\u636e\u5207\u5272\u6210\u591a\u4e2a\u5206\u7247\u5206\u5e03\u5f0f\u7684\u5b58\u50a8\u5728\u591a\u4e2a\u8282\u70b9\u4e4b\u4e0a":33,"\u8fd9\u4e9b\u955c\u50cf\u4e5f\u53ef\u4ee5\u4ece":82,"\u8fd9\u5bf9\u4e8e\u901a\u5e38\u7684java\u7684\u5f00\u53d1\u8005\u6765\u8bf4":65,"\u8fd9\u662f\u56e0\u4e3a":65,"\u8fd9\u6837":66,"\u8fd9\u6837\u4e0b\u4e00\u4e2acpu":62,"\u8fd9\u6837\u4fdd\u8bc1":82,"\u8fd9\u6837\u5c31\u53ef\u4ee5\u5728\u4e91\u7aef\u6267\u884c\u591a\u79cd\u6570\u636e\u7c7b\u8ba1\u7b97\u4efb\u52a1":33,"\u8fd9\u6837\u5df2\u7ecf\u4f20\u8f93\u6210\u529f\u7684\u90e8\u5206\u5c31\u4e0d\u7528\u91cd\u65b0\u4f20\u8f93\u4e86":48,"\u8fd9\u6837\u5e26\u6765\u7684\u597d\u5904\u5c31\u662f\u4e0d\u9700\u8981\u4e00\u76f4\u6e05\u7a7amemori":62,"\u8fd9\u6837\u65e2\u4f7f\u5f97\u6700\u7ec8\u4fdd\u5b58\u7684\u53c2\u6570\u683c\u5f0f\u4e0epaddlepaddle\u4e00\u81f4":62,"\u8fd9\u90fd\u9700\u8981\u8fd9\u4e2a\u63a5\u53e3\u6309\u7167\u7ea6\u5b9a\u4fd7\u6210\u7684\u89c4\u5219\u6765\u6ce8\u91ca\u5b8c\u5907":65,"\u8fd9\u91cc":62,"\u8fd9\u91cc\u7684dockerimage\u4f5c\u4e3a\u7f16\u8bd1\u73af\u5883\u4ee5\u652f\u6301\u66f4\u591a\u7684linux":82,"\u8fd9\u91cc\u9009\u62e90":82,"\u8fd9\u91cc\u9700\u8981\u7528\u6237\u989d\u5916\u6ce8\u610f":32,"\u8fdb\u4e00\u6b65\u4f18\u5316":62,"\u8fdb\u5165":82,"\u8fdb\u800c\u8fdb\u884c\u4ee3\u7801\u8bc4\u5ba1":82,"\u9009\u62e9\u662f\u5426\u7f16\u8bd1mkl":62,"\u9009\u62e9\u9700\u8981\u53d1\u5e03\u7684\u7248\u672c":82,"\u900f\u4f20\u7528\u6237\u8eab\u4efd\u7684\u529e\u6cd5":48,"\u901a\u5e38":66,"\u901a\u5e38\u5305\u542b\u4e00\u4e2acpu\u7248\u672c\u548c\u4e00\u4e2agpu\u7248\u672c":82,"\u901a\u5e38\u6307\u5c06\u4e00\u4e2a\u6574\u4f53\u62c6\u5206\u6210\u591a\u4efd\u7684\u5176\u4e2d\u7684\u4e00\u4efd":32,"\u901a\u8fc7\u4f7f\u7528\u8fd9\u4e9bapi":61,"\u901a\u8fc7\u6a21\u578b\u63a8\u65adapi\u7684\u5b9e\u73b0\u4f5c\u4e3a\u4e00\u4e2a\u6837\u4f8b":66,"\u903b\u8f91\u5212\u4e0a\u6587\u4ef6\u5206\u5757\u7684\u5355\u4f4d":48,"\u9075\u5faa\u4ee5\u4e0b\u6d41\u7a0b":82,"\u90a3\u4e48":66,"\u90a3\u4e48\u5bf9\u5e94\u7684\u5185\u90e8\u5b58\u50a8\u4e5f\u4f1a\u4e0e\u5b83\u4eec\u5171\u4eab\u5185\u5b58":62,"\u90a3\u4e48\u5c31\u4f1a\u4f7f":62,"\u90fd\u4e0d\u4f1a\u60f3\u8981\u77e5\u9053next":62,"\u90fd\u662f\u4e94\u4f4d\u7684\u6570\u5b57":33,"\u90fd\u662f\u4ee5ext\u5f00\u5934":62,"\u90fd\u662fabi\u8c03\u7528\u6807\u51c6\u7684":65,"\u90fd\u7ee7\u627f\u4e8epaddlepaddle\u7684\u57fa\u7c7b":61,"\u914d\u7f6e\u7684\u65b9\u6cd5\u53c2\u8003":48,"\u91ca\u653e\u5bf9paramters\u5185\u5b58\u7684\u9501\u5b9a":32,"\u91cc\u6240\u6709\u7684\u7b26\u53f7\u90fd\u5199\u5165\u81ea\u5df1\u7684\u7a0b\u5e8f\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u91cc":65,"\u91cc\u9009\u62e9\u9700\u8981\u53d1\u5e03\u7684\u5206\u652f":82,"\u91cc\u9762\u6dfb\u52a0":62,"\u91cd\u5199\u7236\u7c7blayer\u7684":62,"\u91cd\u547d\u540d\u6210":65,"\u94fe\u63a5\u5230\u81ea\u5df1\u7684\u7a0b\u5e8f\u91cc":65,"\u9519\u8bef\u5904\u7406":65,"\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662f\u8fd4\u56de\u503c":65,"\u9519\u8bef\u5904\u7406\u7684\u65b9\u5f0f\u4e5f\u4e0d\u5c3d\u76f8\u540c":65,"\u9664\u6784\u9020\u67d0\u79cd\u7c7b\u578b\u7684\u51fd\u6570":66,"\u96c6\u6210\u5230":61,"\u96c6\u6210\u5230paddlepaddl":62,"\u9700\u8981":33,"\u9700\u8981\u4fee\u6539build":82,"\u9700\u8981\u53ef\u4ee5\u8de8\u5e73\u53f0\u6267\u884c":48,"\u9700\u8981\u5728cmake\u7684\u65f6\u5019":66,"\u9700\u8981\u5c06bugfix\u7684\u5206\u652f\u540c\u65f6merge\u5230":82,"\u9700\u8981\u5f15\u7528":66,"\u9700\u8981\u6709\u7a33\u5b9a\u7684\u5bfc\u51fa\u7b26\u53f7":65,"\u9700\u8981\u6ce8\u610f\u7684\u662f":[62,82],"\u9700\u8981\u7d2f\u52a0\u4e0d\u540clayer\u4f20\u8fc7\u6765\u7684\u68af\u5ea6":62,"\u9700\u8981\u88ab\u66b4\u9732\u5230\u5176\u4ed6\u8bed\u8a00":66,"\u9700\u8981\u91cd\u547d\u540dwheel\u5305\u4e2dplatform\u76f8\u5173\u7684\u540e\u7f00":82,"\u9ed8\u8ba4256k":48,"\u9ed8\u8ba4\u8bbe\u7f6e\u4e3a":61,"abstract":[40,47,51,72,81,83,100,118],"api\u4e2d\u4f7f\u7528":65,"api\u5bfc\u51fa\u7684\u52a8\u6001\u5e93":66,"api\u5bfc\u51fa\u7684\u9759\u6001\u5e93":66,"api\u63a5\u53d7\u7684\u7c7b\u578b\u5168\u662f":66,"api\u63a5\u53e3":48,"api\u63a5\u53e3\u7684\u53c2\u6570\u8f6c\u53d1\u7ed9":66,"api\u65f6":66,"api\u65f6\u6240\u552f\u4e00\u9700\u8981\u5f15\u5165\u7684\u5934\u6587\u4ef6":66,"api\u662f\u591a\u8bed\u8a00api\u7684\u57fa\u7840\u90e8\u5206":66,"api\u66b4\u9732\u7684\u7c7b\u578b":66,"api\u751f\u6210\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u4f1a\u88ab\u5b89\u88c5\u5230":66,"api\u7684\u5b9e\u4f8b":66,"api\u7684\u5b9e\u73b0\u7ec6\u8282":66,"api\u7684\u63a5\u53e3":66,"api\u7684\u65f6\u5019\u63a8\u8350paddle\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":66,"api\u7684\u7f16\u8bd1\u9009\u9879\u9ed8\u8ba4\u5173\u95ed":66,"api\u76ee\u5f55\u7ed3\u6784\u5982\u4e0a\u56fe\u8868\u6240\u793a":66,"api\u83b7\u5f97\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u53c2\u6570\u5b9e\u4f8b":66,"apis\u505a\u4e86\u5c01\u88c5":61,"block\u6784\u6210\u4e00\u4e2amodel":32,"book\u4e2d\u6240\u6709\u7ae0\u8282\u529f\u80fd\u7684\u6b63\u786e\u6027":82,"boolean":[17,18,47,49,57,65],"break":[9,30,86,89,90],"bugfix\u5206\u652f\u4e5f\u662f\u5728\u5f00\u53d1\u8005\u81ea\u5df1\u7684fork\u7248\u672c\u5e93\u7ef4\u62a4":82,"bugfix\u5206\u652f\u9700\u8981\u5206\u522b\u7ed9\u4e3b\u7248\u672c\u5e93\u7684":82,"byte":[9,11,48,64],"c99\u662f\u76ee\u524dc\u6700\u5e7f\u6cdb\u7684\u4f7f\u7528\u6807\u51c6":65,"c\u6709\u6807\u51c6\u7684abi":65,"c\u8bed\u8a00\u662f\u6709\u5bfc\u51fa\u7b26\u53f7\u7684\u6807\u51c6\u7684":65,"case":[4,16,18,34,40,42,47,51,60,66,72,76,78,79,97,100,101,107,111,112,119,126],"char":36,"ci\u73af\u5883\u4f7f\u7528":82,"ci\u7f16\u8bd1wheel\u5b8c\u6210\u540e\u4f1a\u81ea\u52a8\u5c06docker\u955c\u50cfpush\u5230dockerhub":82,"class":[1,2,3,4,5,6,7,9,10,14,16,18,20,23,25,26,29,40,41,42,45,46,50,51,52,53,55,56,58,60,65,69,70,74,75,79,80,81,83,84,85,87,89,101,102,103,108,117],"compute\u51fd\u6570":61,"const":[29,34,36,50,52,58,59,73,74,76,80,83,85,87,88,89,100,101,102,103],"core\u4e2d\u7684\u6a21\u578b\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u53c2\u6570":66,"core\u4e2d\u8fd9\u4e00\u7c7b\u578b\u63a5\u53e3\u7684\u667a\u80fd\u6307\u9488":66,"core\u662f\u5426\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u5b9e\u4f8b":66,"core\u6982\u5ff5":66,"data\u5230\u5206\u5e03\u5f0f\u5b58\u50a8\u8865\u5145\u8bad\u7ec3\u6570\u636e":33,"default":[2,3,4,5,6,7,9,10,11,14,18,19,22,25,26,29,30,40,45,54,58,64,67,68,76,77,83,84,85,90,91,92,94,98,99,101,102,106,109,110,112,113,118,120,122,123,124,126],"device\u5c31\u80fd\u62ff\u5230\u6b63\u786e\u7684\u6570\u636e":62,"dnn\u4e09\u8005\u5173\u7cfb\u5982\u4e0b\u8868":62,"dnn\u4e2d\u7684":62,"dnn\u4e2d\u7684\u6392\u5217\u65b9\u5f0f\u4e0d\u6b62\u8fd9\u4e00\u79cd":62,"dnn\u4f1a\u4f5c\u4e3a\u7b2c\u4e09\u65b9\u5e93\u96c6\u6210\u8fdbpaddlepaddl":62,"dnn\u4f1a\u7528\u5230":62,"dnn\u5171\u540c\u4f7f\u7528":62,"dnn\u524d\u540e\u7684cnn\u7f51\u7edc\u6027\u80fd":62,"dnn\u5728\u53d1\u5e03":62,"dnn\u5b9e\u73b0":62,"dnn\u5e0c\u671b\u7684\u683c\u5f0f":62,"dnn\u6570\u636e\u7684\u4e0d\u540c\u683c\u5f0f\u4ee5\u53ca\u76f8\u4e92\u4e4b\u95f4\u7684\u8f6c\u6362":62,"dnn\u7684":62,"dnn\u7684\u5e93\u76ee\u524d\u53ea\u6709\u52a8\u6001\u5e93":62,"dnn\u7684\u6027\u80fd":62,"dnn\u7684\u60c5\u51b5\u4e0b":62,"dnn\u7684\u64cd\u4f5c\u90fd\u662f\u76f4\u63a5\u8986\u76d6\u7684\u5f62\u5f0f":62,"dnn\u7684\u6d4b\u8bd5":62,"dnn\u7684\u73af\u5883\u4e0b":62,"dnn\u7684\u76f8\u5173\u529f\u80fd":62,"dnn\u7684\u7ed3\u679c":62,"dnn\u7684\u9ad8\u6027\u80fd\u683c\u5f0f\u4e0epaddlepaddle\u539f\u6709\u7684":62,"dnn\u7684layer":62,"dnn\u7684layers\u90fd\u4f1a\u7ee7\u627f\u4e8e":62,"enum":[34,36,41,67,74,75,84,85,90,102],"export":[51,56,92,104,109],"final":[4,5,18,27,28,42,56,68,69,86,89,100,101],"float":[2,3,4,6,9,18,19,45,50,58,85,87,88,100,101,102,103,107,120],"function":[4,5,9,17,18,19,23,26,28,29,31,35,36,37,39,40,41,42,45,46,50,52,55,58,63,68,69,72,73,74,75,76,78,79,80,81,83,85,89,97,100,101,102,103,106,107,109,111,118,126],"golang\u53ef\u4ee5\u4f7f\u7528":65,"golang\u7684":65,"gpu\u7b49":82,"h\u5e76\u4e0d\u56f0\u96be":65,"images\u6570\u636e\u96c6\u4e0a\u4f20\u5230\u4e91\u7aef\u7684":33,"import":[3,4,26,29,30,40,41,44,52,54,56,57,63,68,69,75,83,86,94,95,97,101,107,109,111,112,124],"ingress\u9700\u8981\u628apfsclient\u7684\u8eab\u4efd\u4fe1\u606f\u4f20\u7ed9pfsserv":48,"instance\u4e0e\u751f\u6210\u6570\u636e\u96c6\u65f6":33,"instance\u5305\u6db5\u4e24\u4e2a\u503c":33,"instance\u662f\u4e00\u6a21\u4e00\u6837\u7684":33,"int":[2,3,4,5,9,10,11,18,19,28,29,34,35,36,39,40,41,43,57,58,61,62,63,65,66,74,75,77,78,84,85,87,89,90,100,102,103,109,120],"interface\u6587\u4ef6\u7684\u5199\u6cd5\u975e\u5e38":65,"layer\u65f6":62,"layer\u7684\u540e\u9762\u63a5\u6709cpu":62,"list\u4f5c\u4e3a\u68c0\u67e5\u5217\u8868":82,"long":[4,5,9,18,41,107],"mkl\u5e93\u7684":61,"mklml\u4ee5\u53camkl":62,"mklml\u53ef\u4ee5\u4e0emkl":62,"mklml\u7684\u5e93\u76ee\u524d\u90fd\u662f\u52a8\u6001\u5e93":62,"mode\u4e0b\u7684\u7ed3\u679c":61,"model\u505a\u5206\u652f\u7ba1\u7406":82,"ndarray\u7c7b\u578b\u7684\u503c\u548c\u6574\u578b\u7684\u503c":33,"new":[4,9,18,27,28,29,30,31,34,35,36,37,38,41,42,45,50,51,60,61,63,67,69,72,77,78,79,81,85,86,89,95,98,99,105,112,113,126],"note\u7684\u4e66\u5199":82,"null":[56,100,118],"op\u7684\u4fe1\u606f":62,"openmp\u7528\u4e8e\u63d0\u9ad8mklml\u7684\u6027\u80fd":62,"org\u76ee\u524d\u9075\u5faa":82,"packed\u4f18\u5316\u540elayer\u7684\u6d4b\u8bd5":61,"packed\u76f8\u5173\u529f\u80fd":61,"paddle\u4e00\u4e2a\u52a8\u6001\u5e93\u53ef\u4ee5\u5728\u4efb\u4f55linux\u7cfb\u7edf\u4e0a\u8fd0\u884c":65,"paddle\u5185\u5d4c\u7684python\u89e3\u91ca\u5668\u548c\u5916\u90e8\u4f7f\u7528\u7684python\u5982\u679c\u7248\u672c\u4e0d\u540c":65,"paddle\u5185\u90e8\u7684\u7c7b\u4e3ac":65,"paddle\u7684\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0\u5305\u62ec\u4e00\u4e0b\u51e0\u4e2a\u65b9\u9762":65,"paddle\u7684\u7c7b\u578b\u5168\u90e8\u9000\u5316\u6210":66,"paddle\u7684\u94fe\u63a5\u65b9\u5f0f\u6bd4\u8f83\u590d\u6742":65,"paddle\u7684c":66,"paddle\u8bad\u7ec3\u4efb\u52a1":33,"paddle\u8def\u5f84\u4e0b":66,"paddle\u9700\u8981\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3":65,"paddle\u9700\u8981\u66b4\u9732\u7684api\u5f88\u591a":66,"paddle\u9759\u6001\u5e93\u94fe\u63a5\u590d\u6742":65,"paddle_\u7c7b\u578b\u540d":66,"paddle_\u7c7b\u578b\u540d_\u51fd\u6570\u540d":66,"paddlepaddle\u4e2d\u7684cudnn\u90e8\u5206\u4f7f\u7528\u7684\u4e5f\u662f":62,"paddlepaddle\u4f7f\u7528git":82,"paddlepaddle\u5f00\u53d1\u8fc7\u7a0b\u4f7f\u7528":82,"paddlepaddle\u63d0\u4f9b\u4e13\u7528\u7684":33,"paddlepaddle\u6bcf\u6b21\u53d1\u65b0\u7684\u7248\u672c":82,"paddlepaddle\u6bcf\u6b21\u53d1\u7248\u672c\u9996\u5148\u8981\u4fdd\u8bc1paddlepaddl":82,"paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u9075\u5faa":82,"paddlepaddle\u7684activation\u4f1a\u76f4\u63a5\u4f7f\u7528":62,"patch\u53f7":82,"patch\u53f7\u52a0\u4e00":82,"pfsclient\u9700\u8981\u548cingress\u4e4b\u95f4\u505a\u53cc\u5411\u9a8c\u8bc1":48,"pfsclient\u9700\u8981\u5728\u4f20\u8f93\u5b8c\u6bd5\u6700\u540e\u4e00\u4e2achunk\u7684\u65f6\u5019\u68c0\u67e5destination\u6587\u4ef6\u7684md5\u503c\u662f\u5426\u548csource\u6587\u4ef6\u4e00\u81f4":48,"pfsserver\u63d0\u4f9brest":48,"public":[10,14,18,29,50,53,58,74,80,83,85,86,87,89,100,101,102,103,109,112,113],"py\u4e2d":82,"pypi\u4e0a\u7684package\u540d\u79f0\u4e3apaddlepaddle\u548cpaddlepaddl":82,"pypi\u4e0d\u652f\u6301\u8986\u76d6\u4e0a\u4f20":82,"reader\u7684\u4f7f\u7528\u65b9\u5f0f\u90fd\u662f\u4e00\u81f4\u7684":33,"reader\u8f93\u51fa\u7684data":33,"resnet\u7684mkl":62,"return":[2,3,4,5,7,9,10,11,14,17,18,19,20,25,26,27,28,29,33,34,36,39,40,46,50,52,53,54,56,58,59,60,63,68,69,70,74,75,76,80,83,85,87,89,97,100,101,102,103,111,112],"rnn\u90e8\u5206\u4e2d":61,"s3\u4e4b\u7c7b\u7684\u5206\u5e03\u5f0f\u5b58\u50a8\u4e4b\u4e0a":33,"server\u4e4b\u4e0a":32,"server\u4e4b\u95f4\u7684\u7f51\u7edc\u5e26\u5bbd":32,"server\u4f1a\u6682\u505c\u53c2\u6570\u66f4\u65b0\u5e76\u7b49\u5f85":32,"server\u4f1a\u83b7\u53d6parameters\u5185\u5b58\u7684":32,"server\u5185\u5b58\u4e2d\u7684\u6a21\u578b\u6570\u636e\u7684\u5b8c\u6574\u955c\u50cf":32,"server\u540c\u6b65\u7684\u4fdd\u5b58\u4e00\u4e2a\u7279\u5b9a\u65f6\u95f4\u70b9\u7684\u5168\u5c40\u68c0\u67e5\u70b9":32,"server\u5728\u96c6\u7fa4\u4e2d\u542f\u52a8\u540e":32,"server\u6545\u969c\u540e\u88abkubernetes\u91cd\u65b0\u542f\u52a8":32,"server\u6b64\u65f6\u8fd8\u9700\u8981\u901a\u8fc7\u7f51\u7edc\u8bbf\u95ee\u5206\u5e03\u5f0f\u5b58\u50a8\u4ee5\u4fdd\u5b58\u5feb\u7167":32,"server\u751f\u6210\u4e00\u4e2auuid":32,"server\u7684\u5355\u70b9\u6216\u591a\u70b9\u540c\u65f6\u6545\u969c":32,"server\u7684\u6570\u636e\u5feb\u7167":32,"server\u7684\u68c0\u67e5\u70b9\u5404\u81ea\u72ec\u7acb\u4fdd\u5b58":32,"server\u7b2c\u4e00\u6b21\u542f\u52a8\u6216\u4efb\u610f\u65f6\u95f4paramet":32,"short":[4,5,50,54,77,83,86,89,101],"static":[25,36,66,83,85,112,123,126],"super":[77,100],"swig\u652f\u6301\u7684\u8bed\u8a00\u6216\u8005\u89e3\u91ca\u5668\u6709\u5c40\u9650":65,"swig\u66b4\u9732\u7684\u63a5\u53e3\u4fdd\u7559\u4e86c":65,"swig\u751f\u6210\u7684\u4ee3\u7801\u4e0d\u80fd\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":65,"swig\u76f4\u63a5\u8bfb\u53d6c":65,"swig\u9700\u8981\u5199\u4e00\u4e2ainterface\u6587\u4ef6":65,"switch":[29,66,112],"tag\u4e3a":82,"tag\u53ef\u4ee5\u662flatest\u6216latest":82,"tag\u7684\u66f4\u65b0\u65f6\u95f4\u662f\u5426\u5728\u4e0a\u8ff0\u7f16\u8bd1wheel\u5305\u5b8c\u6210\u540e\u662f\u5426\u6700\u65b0":82,"throw":112,"true":[2,3,4,5,6,7,9,11,16,18,19,25,26,28,29,34,51,57,61,70,75,76,77,78,82,85,89,97,100,109,112,118,120],"try":[30,31,34,35,36,51,56,60,63,78,83,86,92,94,98,107,111,123],"type\u5b57\u6bb5\u5747\u4e0d\u5c3d\u76f8\u540c":66,"var":[17,28,29,40,45,52,53,55,57,70,75,76,77,79,83,88,89,104],"void":[29,34,36,47,50,52,53,58,63,64,65,66,75,76,84,85,87,88,100,101,102,103],"wheel\u5305":82,"while":[2,4,9,18,29,38,41,51,56,59,60,69,72,73,78,81,83,87,97,101,103,118],AGE:[112,113],AWS:[9,33,109,115,116],Abs:18,Added:86,And:[3,4,6,9,10,11,18,25,27,34,38,39,47,54,56,67,71,74,78,83,87,97,112,120],But:[4,5,9,18,27,53,59,67,74,83,94,99,109,126],EOS:4,For:[3,4,5,6,9,18,25,26,28,29,35,36,37,39,40,42,45,46,51,52,53,55,58,60,64,67,68,69,72,73,74,75,76,77,78,79,80,81,84,85,86,87,88,90,91,92,95,97,99,100,101,102,103,106,107,111,117,118,120,122,124,126],IDE:[98,123],IDs:[10,18,38,41,69],IPs:109,IRs:42,Into:112,Its:[3,4,52,84,97,101,112],K8s:126,NMS:4,NOT:[18,77,101],Not:[26,31,60,86,94,126],OPs:[42,44,111],One:[3,5,18,25,27,38,64,67,83,86,88,97,100,118],Ops:[79,81,85,101],PFS:48,PRs:104,QoS:113,Such:[58,77,86,89],TLS:[26,48,112],That:[4,9,71,92,118,120],The:[1,2,3,4,5,6,9,10,11,14,17,18,19,22,25,26,27,28,30,31,35,37,38,39,41,42,44,45,46,49,50,52,56,59,60,63,64,66,68,69,71,72,74,75,76,77,78,81,83,84,85,86,87,88,89,90,92,94,97,98,99,100,101,102,103,104,106,107,108,109,110,111,112,113,118,120,122],Their:[4,31],Then:[4,5,18,40,42,53,58,60,71,74,76,91,92,94,97,100,106,107,109,111,112,113,114],There:[3,4,10,18,25,26,29,30,31,36,38,39,41,42,49,50,51,56,60,67,68,69,72,73,74,77,81,83,84,87,101,107,112,122,123],These:[3,11,18,28,29,45,50,55,70,81,84,85,86,91,109,120],Use:[3,9,18,26,43,49,78,79,86,91,100,106,107,112,118,119,124],Used:[5,14,19,79,87],Uses:[60,123],Using:[18,31,51,72,78,79,81,83,93,98,103,113],VMs:98,VPS:112,WITH:124,Will:[9,25],With:[4,5,40,45,51,71,75,86,89],YES:39,Yes:[62,92,98],___fc_layer_0__:112,__align__:50,__cuda_align__:50,__device__:50,__doc__:85,__file__:39,__forceinline__:50,__fp16:50,__global__:50,__gradient_machines__:25,__hadd:50,__half:50,__half_raw:50,__impl__:85,__init__:[45,46,54,60,70,77,89,100,106],__main__:54,__metaclass__:101,__name__:54,__param_conf__:25,__rnn_step__:97,__tmp_params__:25,__va_args__:80,__x:50,_addup_repetitive_outputs_:28,_append_backward_ops_:[28,45],_append_backward_vars_:28,_binari:30,_create_global_var:77,_def:60,_dtype:56,_filer:63,_filter:63,_fwd:63,_fwd_pd:63,_input:63,_librari:30,_link:5,_live_in:60,_live_out:60,_loss:54,_op:[56,101],_output:63,_presucessor:60,_program:60,_proj:4,_remove_no_grad_branch_:28,_reorder_input:63,_source_language_embed:97,_src_input:63,_sucessor:60,_target_language_embed:97,_test:30,_update_op:46,_use:60,_value_index:56,a75:50,a_op:101,a_prev:86,aaaaa:33,aaaaaaaaaaaaa:112,abbrevi:11,abc:4,abi:122,abil:54,abl:[4,26,28,41,42,58,70,74,77,126],about:[5,11,18,29,30,39,44,49,52,60,68,78,83,85,86,87,92,94,95,101,106,107,112,117,118,122,124],abov:[3,4,18,26,28,29,30,31,35,40,41,42,50,51,52,53,55,63,68,69,70,71,72,74,75,77,85,86,88,89,92,93,95,98,99,101,102,103,106,107,111,112,113,122,126],abs:[5,16,27,54],abs_numerical_grad:27,absolut:[92,122,124],acc:42,acceler:[4,32,62,71,72,92,120],accept:[2,4,9,18,26,79,122],access:[4,5,18,26,30,35,38,39,40,42,77,94,97,109],accessmod:112,accessor:77,accord:[3,4,11,18,27,28,36,42,44,55,69,79,89,101,109,117,118,120],accordingli:[3,4,100],account:[79,99,126],accoust:86,accrodingli:34,accumul:[31,36,46,71,72,86],accur:[27,38,74],accuraci:[3,14,46,86,100],achiev:[44,71,72,86,87,107],ack:118,acquir:51,across:[4,9,28,42,68,86],act1:56,act2:56,act:[4,5,18,19,29,42,56,69,77,89,95,97,108,111],act_output:85,act_typ:56,actgat:18,action:112,activ:[5,18,19,24,30,56,60,69,74,77,81,85,95,97,100,103,104,118],activi:5,actnod:18,actual:[4,18,34,45,51,54,56,63,67,72,85,87,88,103],actual_layout:63,adagrad:[20,72,84],adagradoptim:70,adam:[20,26,36,42,54],adamax:20,adapt:[3,6,18,25,74,88],add:[4,5,9,16,18,20,23,25,27,28,29,30,34,38,41,42,44,46,50,53,57,59,70,72,76,77,79,81,83,87,91,98,99,100,101,103,107,108,120,124],add_activ:77,add_bia:77,add_depend:30,add_execut:30,add_input:[68,100],add_memori:68,add_output:68,add_scalar:[29,69,75],add_sum:77,add_test:[30,100],add_two:[29,68],add_unittest_without_exec:100,addattr:[85,101],addbia:100,addcom:[85,101],added:[3,4,14,18,23,25,29,44,45,50,67,71,72,81,99,100,101,102],adding:[81,99],addinput:[85,101],addit:[4,5,28,41,71,74,79,81,89,101,103,111],addition:68,addmemori:63,addop:[53,103],addoutput:101,addprimit:63,addprimitivedesc:63,addr:31,address:[31,36,40,42,92,107,109,110,111,114,118,126],addrow:100,addtolay:4,addtyp:85,adjust:[28,45],admin:126,administr:[38,98,126],adopt:[50,54],advanc:[27,97,107,118],advantag:[27,50,51,72,78,109],adversari:[54,78],advic:107,affect:[4,29],affili:69,afford:35,aforement:30,after:[4,5,10,11,18,28,29,30,35,36,38,42,43,44,45,47,49,50,60,63,71,73,74,77,86,91,92,97,99,100,101,102,103,106,109,110,112,113,118,120,122,123],aftern:74,again:[26,31,72,107],against:112,age:10,agg_level:4,aggreg:[46,71,112],ago:30,ahead:86,aid:107,alex:18,alexnet_pass1:120,alexnet_pass2:120,algo:63,algorithm:[4,6,18,28,35,45,60,63,69,72,81,86,88,97],alia:[1,2,4,18],align:[4,5,9],all:[2,3,4,14,16,18,19,25,26,28,29,30,31,34,36,38,39,40,41,42,43,45,47,49,51,54,55,56,59,60,63,64,66,67,68,69,70,71,72,74,75,77,79,85,86,87,92,97,98,100,103,107,108,109,110,111,112,113,117,118,120,122,123,124,126],all_output_nam:28,alloc:[2,36,39,60,63,87,100,103,108,120],allow:[26,36,40,42,45,51,72,81,99,100,107,112,118],allow_only_one_model_on_one_gpu:[117,118,120],allreduc:71,almost:[18,98,110],along:[4,11,18,19],alpha:[18,30,81],alreadi:[18,30,31,51,63,77,83,92,107,110,112,118,124],alreali:117,also:[4,5,10,18,26,28,29,30,34,37,41,42,50,51,53,54,55,56,59,60,67,68,69,72,73,74,75,76,77,78,81,83,85,86,87,89,90,91,92,94,97,98,100,101,104,107,109,111,113,122,126],altern:[101,106],although:[28,71],altogeth:126,alwai:[4,5,18,25,30,64,84,112,118],amazon:[112,113],amazonaw:112,amazonec2fullaccess:112,amazonelasticfilesystemfullaccess:112,amazonroute53domainsfullaccess:112,amazonroute53fullaccess:112,amazons3fullaccess:112,amazonvpcfullaccess:112,ambigu:[78,86],amd64:112,amd:67,amend:99,amodei:86,among:[18,112],amort:71,amount:[18,107],analys:74,analysi:[74,106,107],analyz:60,ancestor:[75,77],andd:112,andrew:60,android:[124,125],android_abi:122,android_api:122,android_arm_neon:122,android_native_api_level:122,android_standalone_toolchain:122,android_toolchain:122,ani:[4,5,9,18,20,26,30,31,36,38,39,40,41,42,47,50,51,58,60,64,69,71,72,77,78,80,81,86,88,91,98,101,103,107,111,112,114,124],annoi:110,announc:50,anoth:[4,9,25,26,28,29,39,41,51,52,63,69,77,83,85,87,88,98,112,118],anroid_arm_mod:122,ans:112,answer:[40,51,99,112],anymor:71,anyth:[9,69,78,112],anytim:54,anywai:[106,122],apach:62,apart:18,api:[10,14,25,26,28,30,36,37,39,40,46,48,53,54,56,68,73,74,79,82,89,90,91,94,100,101,106,107,109,111,112,121,122,123,124,126],api_shar:30,api_test:30,api_trainer_config_helpers_lay:97,apiserv:112,apivers:[112,113],app:123,appar:28,appear:[40,51,55,87],appel:60,append:[18,25,28,45,46,69,77,78,86,97,99,100,109],append_backward:[20,28,70,106],append_batch_s:18,append_clip_op:45,append_gradient_machin:25,append_op:[45,59,77],append_oper:77,appl:123,appleyard:107,appli:[4,18,54,55,71,74,83,97,100],applic:[22,40,41,50,51,52,55,77,79,99,101,106,107,109,112,113,126],applyl1:34,appoint:101,appreci:[86,99],approach:[4,42,43,44,71,72,73,81,86,122,124,126],approxim:[16,18,72],apt:[92,106],arbitrari:[4,42,64,103],arch:122,archetectur:86,architectur:[50,86,91,109,122,123],archiv:[10,18,65,66],area:54,arg:[3,5,22,28,56,70,85,101,117],arg_nam:4,argmax:18,argu:76,argument:[4,9,11,22,28,29,34,35,42,70,73,76,77,91,97,99,100,118,119],arithmet:50,arm64:[122,123],arm64_standalone_toolchain:122,arm:[50,122,123,124],arm_standalone_toolchain:122,armeabi:122,armv7:[50,123],armv8:50,arn:112,around:[4,38,60,77,112,126],arrai:[2,4,9,11,18,25,36,40,41,55,69,75,77,78,79,89,101],arrang:89,arrari:18,array_to_lod_tensor:60,arrow:54,articl:[52,55,98,109,111,113,124],artifact:[82,94,112],artifici:[16,60],arxiv:[5,16,18,54,86],as_row_vector:4,as_step_input:29,asap:102,asgd:72,ask:[28,31,38,98],asr:86,assgin:60,assign:[3,4,19,28,35,40,43,45,50,52,71,86,103,109,111,112,118,126],assigne:86,assignmemt:60,associ:[73,80,103],assum:[3,4,18,29,42,63,92,97,111,120],assumpt:42,ast:40,astyp:[78,101],asyc:31,async:[31,44,117],async_count:118,async_lagged_grad_discard_ratio:118,async_lagged_ratio_default:[117,118],async_lagged_ratio_min:[117,118],asynchron:[31,41,71,74,109,118],atom:43,att_seq:5,attach:5,attend:5,attended_sequ:5,attenion:5,attent:[4,5,19],attr1:4,attr2:4,attr:[2,4,5,18,29,40,56,59,63,75,76,77,85,97,101],attr_map:85,attrdesc:75,attribu:63,attribut:[4,5,18,24,28,29,44,45,59,75,77,79,83,85,89,100,101],attributemap:101,attrproto:85,attrtyp:[75,85,101],attrvalu:85,auc:[46,117],aucvalidationlay:118,audio:86,augment:86,authent:112,author:[48,86,112],auto:[29,34,43,52,63,65,76,79,83,88,89,91,99,100,101,103,107],autom:[109,112],automat:[4,18,26,28,36,42,44,45,53,70,79,85,86,91,97,99,100,101,106,110,111,112,117,118,123],avail:[31,36,44,50,51,60,94,112,126],averag:[3,4,7,18,25,35,118],average_test_period:[117,118],avg:[107,111],avg_cost:[42,108,111],avg_loss_valu:111,avg_x:18,avgpool:4,avoid:[27,29,31,42,59,63,71,72,73,91,107],avx2:91,avx:[91,92],awai:51,await:113,awar:[26,40,46,52,68,77,98,106,112],awk:114,awni:86,aws:48,aws_account_id:112,awsaccountid:112,awskeymanagementservicepowerus:112,axi:[4,18],axis:4,b363:113,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:113,ba5f:112,back:[4,18,25,28,31,42,50,54,72,92,101],background:[3,4,81,86,109],background_id:[3,4],backpropag:[27,28],backward:[1,4,5,23,27,29,34,36,45,54,61,62,70,72,73,76,80,81,97,100,108,118,120],backward_first:97,backward_op:27,backwardactiv:100,baidu:[51,86,113],bake:42,balanc:[44,71,112,118],bandwidth:[50,71],bare:[111,113,126],barrier:[109,118],barrierstatset:107,basci:56,base:[3,4,7,9,10,14,16,18,20,23,26,35,45,46,50,51,58,63,67,70,71,72,74,79,80,81,87,89,97,98,100,101,106,107,108,112,118,122,123],baseactiv:5,baseerrorclipattr:45,baseev:25,baselin:86,basematrix:100,basenam:3,basepoolingtyp:[4,5],basestr:[2,3,4,5,7,25],bash:[91,92,98,109,112,113],basic:[4,25,42,56,63,74,75,79,80,86,89,100],batch:[4,5,9,11,14,18,19,25,26,29,31,33,34,41,42,46,47,51,54,57,67,68,69,71,72,86,89,99,100,111,112,113,118],batch_id:[25,54],batch_im:54,batch_images_from_tar:11,batch_label:54,batch_norm:[54,86],batch_norm_lay:5,batch_norm_typ:4,batch_read:[33,78],batch_siz:[9,18,42,54,61,69,111],batch_szi:54,batch_z:54,batchnorm:[18,54,86],batchsiz:[4,100],bazel:30,bbbbb:33,bbox:3,bcd:4,bcebo:10,bcm2708:124,bdist_wheel:82,beacus:56,beam:[4,97,118],beam_gen:[4,97],beam_search:[25,69,97],beam_siz:[4,69,97,117,118,120],becaus:[3,4,10,26,29,30,31,36,50,69,73,77,78,81,83,84,88,89,90,97,98,100,103,106,111,112,120,122],becom:[43,44,83,87,107],been:[4,5,18,28,30,35,41,51,98,99],befor:[4,5,18,28,31,38,41,45,49,52,55,67,72,73,74,78,81,91,92,99,101,102,106,112,122,123,126],begin:[3,4,14,18,28,34,36,46,49,55,69,71,100,109],beginiter:[25,26],beginn:97,beginpass:[25,26],begintrain:26,behavior:[18,107],behind:[51,89,111],being:[18,28,38,45,51,76,78,103,106],belong:[3,4,42,83],below:[18,29,31,36,42,44,50,51,64,73,78,81,89,90,91,94,97,100,107,109,112,122,123],benchmark:[64,86],benefit:[5,38,39,69],bengio:16,besid:[4,10,42,60,67,71,94],best:[30,63,92,98,118],besteffort:113,beta1:[6,20],beta2:[6,20],beta:[18,54],better:[5,30,51,60,63,69,88,112,123,126],between:[3,4,11,18,25,28,30,31,36,42,44,50,51,63,66,71,73,80,83,92,101,103,112],bgr:11,bi_gru:5,bi_lstm:5,bia:[4,5,18,69,77,97,100],bias:[4,18,100],bias_attr:[4,5,18,77,97],bias_initi:18,bias_param_attr:5,biases_:100,biasparameter_:100,biassiz:100,bidi:113,bidirect:[4,5,86,97],big:[40,44,60,107,126],bigger:[18,31],bilinear:4,bilinear_interpol:4,bilinearfwdbwd:107,bin:[92,109,112,113],binari:[3,4,9,18,30,39,42,50,52,54,64,91,93,94,98,106,107,112],bind:[40,41,50,53,83,87],bioinf:18,bit:50,bitcod:123,bla:[92,123],black:[54,123],blank:[4,18,112,123],block0:60,block1:60,block2:60,block:[4,28,32,34,36,40,41,42,43,44,45,46,47,51,58,60,67,68,70,87,90,100,101,103,107,118],block_expand:86,block_i:[4,18],block_id:[40,47],block_x:[4,18],blockdesc:[29,55,77,79],blockdescbind:58,blockingcount:43,blueprint:69,bn_bias_attr:5,bn_layer_attr:5,bn_param_attr:5,book:[10,79,86,97,104,108],book_distribut:111,bool:[2,3,4,5,6,7,9,11,18,25,29,50,57,59,61,62,63,76,77,84,85,89,90,100,102,118,120],boost:[67,86,87,102],boot:[4,97,126],boot_bia:4,boot_bias_active_typ:4,boot_lay:97,boot_stat:89,boot_with_const_id:4,bootstrapp:126,borrow:[54,89],bos_id:[4,97],both:[1,2,4,5,11,18,26,29,30,31,38,42,44,50,51,54,58,60,67,69,71,74,76,84,86,87,97,100,101,103,104,107,109,111,112,123],bottl:71,bottleneck:[74,107],bottom:[25,86],bound:[4,18,60],boundari:42,boundri:3,box:[4,54,107],brace:[29,55],brain:38,branch:[4,18,26,29,30,42,51,57,75,82,94,99,101,104],breadth:118,break_if:89,brief:[30,36,50,87,103],briefli:107,bring:[51,60,103],broadcast:[18,31,71,79,126],broken:99,browser:[92,104,106,112],bsd:[41,71,98],bsp:41,bucket_nam:112,buddy_alloc:99,buf:34,buf_siz:[9,42,111],buffer:[9,34,41,63,64,72,78,83,108,118],buffer_s:9,buffered_read:78,bufsiz:9,bug:[99,112],build:[4,10,30,39,42,55,56,60,62,72,81,82,85,86,92,94,95,99,101,106,109,111,112,115,116,118,125],build_android:122,build_dict:10,build_model:54,builder:99,buildtool:82,built:[30,40,42,50,52,60,67,71,85,86,89,91,94,98,106,122,124,126],bulk:41,bunch:[64,107,109],button:[99,104,112],c11:65,c703c041:99,c99:66,c99e:112,cach:[50,91],cacul:[5,46,109],caff:[29,51],caffe2:[29,40,41,51],calcul:[3,4,5,14,18,27,28,31,36,43,46,50,60,92,97,100,107,109,118,120],calcut:60,calendar:74,call:[3,4,5,9,18,25,26,27,28,29,34,35,36,37,39,40,41,42,45,52,54,55,60,68,69,70,74,77,79,80,83,85,87,89,95,97,98,100,101,102,103,106,107,109,111,112,118],callabl:[2,4,9,10],callback:[45,100],caller:[27,106,112],can:[2,3,4,5,9,10,11,18,19,22,25,26,27,28,29,30,31,34,35,38,39,40,41,42,44,45,47,50,51,52,53,54,55,56,58,59,60,63,67,68,69,70,71,72,74,75,76,77,78,79,80,81,85,87,88,89,90,91,92,93,94,95,97,98,99,100,101,102,103,104,106,107,109,110,111,112,113,114,117,118,120,122,123,124,126],cancel:38,candid:[4,18,69,86],candidate_activ:18,cannot:[79,83,88,89,100,101],cantain:56,capabl:[50,73,79],capac:[81,112],capi:[65,91],capi_prvi:66,caption:69,captur:[4,110],card:[71,109,111],care:[5,39,60,78,86,87,92,117,118,126],carefulli:[86,118],caret:25,carpedm20:54,carri:18,cast:[50,88],cast_to_op_attr:85,cat:[9,11,92,114],categor:101,categori:[4,10,31],categorig:10,categoryfil:113,caus:[31,49,94,101],caution:[112,113],cbla:61,cc_:30,cc_binari:30,cc_test:30,cclient:37,cde:4,cdn:10,cduadevicecontext:[67,87],ceil:4,ceil_mod:4,cell:[4,5,18],cell_activ:18,cell_t_prev:18,cell_valu:18,center:11,center_crop:11,cento:[91,94,95,126],central:[81,111],ceph:[9,33,113],cephf:[33,39,48],cer:86,certain:[18,59,67,70,74,83,87,102,117],certif:[26,48,112],cffi:65,cfg:[60,113],cgo:65,ch1:41,chain:[9,28,55,100],challeng:[4,31,51,57,87],chan:41,chanc:[26,50,100],chang:[4,10,30,35,39,42,51,63,73,75,78,80,82,83,86,91,97,99,100,101,103,107,109,111,112,118,122],changes:63,channel:[4,5,11,18,40,107],channel_shar:4,chapter:[68,69,86,111],chapter_data:68,chapter_out:68,charact:86,characterist:120,check:[9,17,28,29,30,45,63,76,79,91,94,99,101,104,109,112,118,120],check_align:9,check_attr:85,check_eq:100,check_grad:[27,101],check_l:100,check_output:101,check_sparse_distribution_batch:[117,118],check_sparse_distribution_in_pserv:[117,118],check_sparse_distribution_ratio:[117,118],check_sparse_distribution_unbalance_degre:[117,118],check_styl:99,checker:79,checkgrad:118,checkgrad_ep:118,checkmark:126,checkout:99,checkpoint:[44,76],checksum:48,child:29,china:92,chines:104,chip:51,chmod:112,choic:[18,30,51,92],choos:[18,59,91,92,93,98,102,118,122],chosen:[54,67],chunk:[35,48],chunk_schem:3,chunktyp:3,chw:11,circl:55,circular:41,circumst:87,claim:112,claimnam:112,clang:[50,65,99,122],clarifi:[3,18],clariti:69,classdim:18,classic:[4,60,86],classif:[4,16,18,55,120],classifi:[4,54],classification_error_evalu:3,classification_evalu:3,claster:112,clean:[29,30,47,73,79,91,98,99],clear:[3,30,69,73,83,88,124],clearer:[73,77],clearli:83,cli:112,click:[94,99,104,106,107,112],client:[34,37,79],clip:[2,5,118],clip_op:45,clip_op_desc:45,clock:4,clone:[4,91,98,99,104,106,122,124],close:[78,99],cloud:[30,31,39,48,49,79,126],cloud_read:9,cludform:112,cluster:[9,25,26,29,31,36,42,86,113,117,118],cluster_test_fil:109,cluster_train:110,cluster_train_fil:109,cluster_train_v2:[110,114],cm469:112,cmake:[66,91,98,99,100,101,104,106,107,111,122,123],cmake_build_typ:[106,122,123,124],cmake_c:123,cmake_install_prefix:122,cmake_system_nam:[122,123,124],cmakelist:[30,61,62,100],cmatrix:[65,66],cmd:113,cmu:18,cname:112,cnn:[4,18,113],coars:53,code:[4,9,26,28,30,38,41,42,44,47,50,53,54,55,59,64,67,70,72,73,74,76,78,79,80,81,85,89,91,92,94,95,97,98,100,101,102,103,104,105,107,109,111,112,113],codebas:[79,99],coeff:4,collabor:31,collect:[4,10,25,74],collectbia:100,color:11,colour:10,column:[3,4,18,55,78,100,106],column_evalu:3,com:[4,5,10,18,30,54,82,91,92,98,99,104,106,108,112,113,122,124,126],combin:[3,4,5,9,20,25,60,70,79,83],come:[42,46,60,75,86,89],comma:[22,25,36,111,118],command:[9,22,30,34,39,49,91,92,94,95,98,99,100,101,104,105,106,107,110,111,112,113,114,115,116,122,123,124],commandlin:107,comment:[18,30,56,85,86,99,101],commit:[30,99],common:[11,16,20,23,33,81,87,97,100,117],commonli:[49,81,97,106,107,120,124],commun:[31,36,37,41,42,44,71,99,100,109,111,112],compani:51,compar:[27,30,40,79,98,100,101],comparison:[30,51,102],compat:[19,50,53,71],compil:[4,30,42,51,56,58,60,67,71,80,84,85,90,98,100,104,109],complaint:30,complet:[4,5,10,18,20,25,28,29,31,35,36,45,48,55,64,67,79,93,100,101,103,106,111,112,113,126],complex:[5,18,38,41,60,69,79,97,107],complic:[4,42,53,78,88,89],compon:[41,42,56,86,89,90,100,102],compos:[9,19,26,41,53,56,68,77,79],composenotalign:9,composit:53,compress:35,compris:28,compromis:98,comput:[4,5,18,19,22,26,27,31,41,42,44,47,50,51,52,56,60,64,67,70,71,72,74,80,83,86,87,88,90,92,97,98,99,100,101,102,106,107,108,109,111,112,120,122,123,124],computation:[4,97],computationgraph:56,con:71,concat:[54,97],concaten:[4,5,18,54,68,89],concentr:79,concept:[3,26,40,41,51,53,54,56,63,68,69,72,73,75,83,89,90,97],conceptu:[41,47,51,54,56],concern:[26,41,46,123],concis:[54,89],conckerneltrac:22,conclud:101,concret:[79,87,101],concurr:[31,38,44,74,109],concurrentremoteparameterupdat:118,cond:[18,29,51,57,75],condit:[4,18,35,42,51,57,63,86,97,113],condtion:54,conduct:107,conf:[4,110],conf_paddle_gradient_num:112,conf_paddle_n:112,conf_paddle_port:112,conf_paddle_ports_num:112,conf_paddle_ports_num_spars:112,confer:16,confid:4,confidence_threshold:4,config:[2,4,22,33,49,69,100,112,113,117,118,126],config_:[34,118],config_arg:[117,118,120],config_bas:[3,4,25],config_lay:100,config_len:36,config_pars:[61,62,100],config_proto:36,configmap:42,configur:[0,4,18,25,28,34,36,38,39,42,44,51,56,59,77,86,87,88,95,96,98,99,100,101,103,107,109,111,118,122,124,126],confirm:49,conflict:[83,99],confus:[11,54,59],congest:118,conll:10,connect:[5,18,39,40,42,44,86,100,109,111,112,113,126],connectionist:[4,18],consequ:[4,5],consid:[3,4,16,28,76,87,98,107,120,126],consider:[4,5,67,86],consist:[3,4,10,11,18,35,41,52,64,75,78,79,80,85,86,90,101],consol:[107,112],consolid:[29,104],constant:[4,16,18,56,58,59,67,100,101],constantiniti:18,constraint:83,construct:[3,18,26,47,56,60,68,77,79,83,85,97,102],constructbackwardgraph:55,constructoptimizationgraph:55,constructor:[18,45,50,74,77,79,83,85,100,101],consum:[31,106],consumpt:60,contact:38,contain:[3,4,5,7,9,10,11,18,25,26,28,29,35,47,54,56,63,64,67,73,74,77,79,80,83,84,85,86,89,90,93,94,97,98,101,109,111,112,114,123],container:109,containerport:112,content:[36,49,64,69,104,113],content_dir:104,content_len:36,context:[4,5,10,18,19,45,63,83,84,87,97,101,103,108],context_attr:5,context_len:[4,5],context_proj_layer_nam:5,context_proj_param_attr:5,context_project:5,context_start:[4,5],contin:112,continu:[3,28,31,64,86,109,118,122],contrast:4,contrib:81,contribut:[81,86,98,105],contributor:79,control:[2,29,40,41,112,113,118,126],controlflowgraph:60,conv2d:[54,102],conv:[5,18,54,63,88],conv_act:[5,19],conv_batchnorm_drop_r:[5,19],conv_bias_attr:5,conv_filter_s:[5,19],conv_fwd:63,conv_layer_attr:5,conv_num_filt:[5,19],conv_op:4,conv_pad:[5,19],conv_param_attr:5,conv_pool_2:42,conv_strid:5,conv_with_batchnorm:[5,19],conveni:[26,28,56,70,85,86],convent:[18,28,36,99,101],converg:110,convers:[50,51],convert:[10,18,33,42,43,44,50,51,52,63,78,80,86,111],convlay:4,convlut:86,convlution2d:18,convolut:[4,5,9,18,19,54,67,77,87],convolution2d:18,convolution_algorithm_opt:63,convoper:4,convproject:4,convtranslay:4,convtransproject:4,cool:99,cooper:86,coordin:[31,36],copi:[25,26,35,38,49,55,68,69,71,72,89,91,99,109,112,114],copy_from:45,copyvariablewithtensor:88,core:[2,14,18,28,56,59,66,72,73,89,98,108,118],coreo:[112,126],corespond:18,corner:79,corpu:[10,86],correct:[4,18,27,28,50,71,100,101,102,112],correctli:[3,9,28,50,54,100],corresond:50,correspend:18,correspoind:26,correspond:[4,18,19,23,26,28,29,30,45,50,56,57,63,67,68,69,77,79,80,81,85,87,100,101,102,103,106,123],correspondingli:123,corss_entropi:26,cortex:50,cos:[4,85],cosin:[4,18,85],cosineop:85,cosineopproto:85,cosineopprotomak:85,cost:[18,25,26,28,42,55,70,71,75,76,88,108,111,118],cost_id:4,cost_np:76,could:[4,9,25,26,27,35,40,41,42,43,44,50,51,52,68,70,72,73,75,77,78,80,98,102,106,107,110,112,122],count:[3,31,39,46,76,78,86,107,109,111,113,118,120],counter:[22,31,35,43,55],cours:[3,39,67,98],covari:4,cover:[51,86,103],cp27:94,cp27m:[82,94],cp27mu:[82,94],cpp:[27,34,53,61,62,65,66,73,79,90,100,102,107],cprofil:106,cprofilev:106,cpu:[2,4,27,39,50,59,67,72,73,74,79,81,82,87,88,91,92,98,101,102,103,106,107,108,113,118],cpu_avx_mkl:[92,94],cpu_avx_openbla:[94,95],cpu_kernel:59,cpu_noavx_openbla:94,cpu_ns_:74,cpu_per_pserv:42,cpu_per_train:42,cpudevicecontext:[67,87,101,102],cpuelapsedu:74,cpuengin:62,cpuinfo:92,cpuplac:[42,59,63,67,87,88,101,102,103,108,111],cpusparsematrix:66,crash:[31,107,110,118],creat:[2,9,14,18,25,26,27,29,31,36,40,43,45,46,47,48,49,50,51,53,54,55,63,67,68,70,71,72,73,77,80,81,86,92,95,98,99,100,101,104,109,111,114,118,122,126],create_backward_pass:70,create_bias_paramet:100,create_block:77,create_doc_str:85,create_input_paramet:100,create_local_scop:47,create_oper:53,create_optimization_pass:[20,70],create_paramet:77,create_python_ops_creatation_funct:85,create_rnn:29,create_rnn_op:68,create_st:14,create_tmp_var:77,create_tmp_vari:77,create_var:77,create_whileloop:89,creategradientoper:80,creatememori:63,createop:85,createoper:29,createprimitivedesc:63,createstack:112,createvari:29,creation:[53,112],creationd:112,creator:[9,10,33,79,80],creator_:80,credenti:49,crf:[87,88],critic:[54,106],crlf:99,crop:[11,87],crop_grad:87,crop_siz:11,crope:11,cropgradkernel:87,cropkernel:87,cross:[4,18,77,101],cross_compil:124,cross_entropi:[4,26,42,54,60,88],cross_entropy_with_selfnorm:4,crt:48,csc:100,csr:100,csv:22,ctc:[3,18],ctc_error_evalu:86,ctc_evalu:3,ctest:[91,98,101],ctor:77,ctrl:[98,110],ctx:[63,88,101,103],cubla:[67,102],cublas_handle_:87,cublashandle_t:87,cuda7:[94,95],cuda8:[91,92,94],cuda:[22,30,52,67,74,79,87,92,94,98,101,102,107,109,111,118],cuda_context:52,cuda_dir:[117,118],cuda_fp16:50,cuda_profil:22,cuda_so:92,cudaconfigurecal:107,cudadevicecontext:[52,67,87,101],cudadevicegetattribut:107,cudaelapsedu:74,cudaevent_t:74,cudaeventcr:107,cudaeventcreatewithflag:107,cudafre:107,cudagetdevic:107,cudagetdevicecount:107,cudagetdeviceproperti:107,cudagetlasterror:107,cudahostalloc:107,cudalaunch:107,cudamalloc:107,cudamemcpi:107,cudaplac:[67,87,88,102],cudaprofilerstart:107,cudaprofilerstop:107,cudaruntimegetvers:107,cudasetdevic:107,cudasetupargu:107,cudastream_t:87,cudastreamcr:107,cudastreamcreatewithflag:107,cudastreamsynchron:107,cudeviceget:107,cudevicegetattribut:107,cudevicegetcount:107,cudevicegetnam:107,cudevicetotalmem:107,cudnn:[4,7,18,30,59,63,67,87,88,102,118],cudnn_batch_norm:4,cudnn_conv:4,cudnn_conv_workspace_limit_in_mb:[117,118],cudnn_convt:4,cudnn_dir:[117,118],cudnn_kernel:59,cudnnavginclpadpool:4,cudnnavgpool:4,cudnnconvopkernel:102,cudnnv5:91,cudrivergetvers:107,cuinit:107,cumtim:106,cumul:4,cur_mem:69,curl:112,curli:[29,55],current:[4,18,28,29,30,31,34,36,40,44,46,51,59,67,68,69,72,73,74,77,83,88,89,92,94,97,98,100,104,110,111,112,118,123],current_block:[75,77],current_endpoint:111,current_oper:75,current_word:97,curv:26,custom:[20,26,39,50,54,69,72,79,86,100,112],custom_batch_read:78,cut:[9,89],cut_lin:9,cutoff:10,cv2:11,cxx:123,cxx_compil:[122,123,124],cxx_flag:123,cxxabi_1:94,cycl:31,cyclic:4,cython:65,d3e0:112,d_b0:54,d_b1:54,d_b2:54,d_block:54,d_f:54,d_g:54,d_h0:54,d_h0_bn:54,d_h0_relu:54,d_h1:54,d_h1_bn:54,d_h1_relu:54,d_h2:54,d_loss:54,d_loss_fak:54,d_loss_real:54,d_optim:54,d_step:54,d_t:54,d_w0:54,d_w1:54,d_w2:54,daili:99,dandroid_abi:122,dandroid_arm_mod:122,dandroid_arm_neon:122,dandroid_standalone_toolchain:122,dangl:98,dario:86,darwin:112,dash:54,dat:33,data:[0,3,10,11,14,25,26,27,29,33,34,35,41,44,46,48,50,51,54,55,56,58,59,60,63,64,67,68,69,70,71,72,73,75,77,79,81,83,84,85,86,87,89,90,95,97,100,101,103,107,108,109,111,114,115,117,118,120],data_fil:11,data_i:54,data_lay:34,data_layout:18,data_layout_:88,data_read:[9,78],data_reader_creator_random_imag:78,data_shar:89,data_typ:[9,10,64,84,86,88,90,95,97,102],data_type_:[59,67,88],data_x:54,databas:10,datacent:[33,49],datacenter1:33,datacenter2:33,datacenter_1:33,datacenter_2:33,datacenter_nam:33,datadim:4,datafeed:[12,108,111],dataflow:56,dataflow_analysi:60,datalayout:88,dataparallel:42,dataprovider_convert:86,datasci:4,dataset:[0,18,33,39,42,72,78,86,95,97,106,111,118],dataset_nam:11,datatransform:88,datatyp:[10,14,18,59,63,84,86,88,90],date:109,dcgan:54,dcmake_install_prefix:[122,123,124],dcmake_system_nam:[122,123,124],dcuda_arch_nam:91,dcudnn_root:91,ddim:[67,87,103],dead:31,deal:[28,126],debug:[27,28,42,49,51,77,92,99,106],debug_str:56,decai:[6,20,23],decar:9,decayr:34,decent:35,decid:[26,38,54,64,72,80,81,84],declar:[18,29,54,68],decod:[4,5,18,86,97],decoder_boot:97,decoder_dim:69,decoder_group_nam:97,decoder_input:[69,97],decoder_mem:[69,97],decoder_prev:5,decoder_s:97,decoder_st:[5,97],deconv:[4,54],deconvolut:4,decor:[9,100],decrement:43,decrementcount:43,decrypt:112,deduc:79,deep:[4,16,18,28,38,41,47,54,55,60,62,74,79,81,86,87,92,107,111,123],deeper:[52,92],deepspeech2:61,def:[4,9,26,27,28,33,39,45,46,53,54,56,59,60,68,69,70,77,78,85,89,97,100,101],def_block:54,defalut:[18,118,120],default_block:54,default_devic:120,default_main_program:[14,108,111],default_param_attr:77,default_st:89,default_startup_program:[14,108,111],default_valu:120,defaultdict:60,defaultinfervartyp:58,defect:73,defer:38,defin:[4,5,9,16,20,23,25,26,28,29,30,31,38,40,43,44,45,50,51,52,53,54,56,59,60,67,68,71,75,77,78,79,83,85,87,89,97,100,103,106,108,109,110,111,118],definit:[28,29,31,35,42,47,52,59,75,80,85,89,92,101,106,108],definiton:53,degener:18,degre:4,deivc:102,delai:[72,87,103,118],delet:[18,39,48,99],deletestack:112,delimit:3,deliv:126,delta:[4,27],delv:[4,16],demand:[31,87],demo:[4,10,79,110,113,115],demolish:113,demonstr:[97,103],denot:[18,101,120],dens:[4,9,36,37,84,86,100,112],dense_arrai:9,dense_vector:[9,95],dense_vector_sequ:9,densescann:86,dep:30,depart:86,depend:[18,29,30,31,39,42,44,56,71,76,84,92,98,101,109,120,122,123,124,126],dependent_var:76,deploi:[4,110,120,126],deploy:[56,64,79,109,110,112,123,126],deprec:[4,86],depth:[29,51,86],dequeu:44,deriv:[1,26,42,45,57,70,122],desc:[29,45,63,64,77,85,89],desc_:29,descend:[18,89],descent:[4,31,72,109],descproto:64,describ:[26,28,29,30,35,40,42,47,52,59,63,64,68,69,73,75,77,79,84,85,88,90,100,101,102,103,112,113],describestack:112,describestackev:112,describestackresourc:112,descripotor:63,descript:[3,29,30,58,62,64,67,80,84,86,88,90,91,94,99,101,109,112,119],descriptor:[41,63,88],deseri:[25,64,73],deserializ:79,desgin:55,design:[4,9,16,18,28,34,59,60,65,72,74,81,101,126],desir:[9,31,42,72,112,113],destin:[36,49],destroi:[29,47],destruct:83,destructor:[74,100],det_output:3,detail:[2,3,4,5,6,18,27,28,35,39,42,44,49,51,54,56,60,63,64,67,68,74,77,81,83,87,88,89,90,91,95,97,98,100,101,102,103,104,106,107,110,111,112,113,119,120,124,126],detect:[58,91,99,122],detection_evalu:3,detection_output:3,determin:[4,9,18,29,42,60,67,79,100],dev:[79,92,98,106,122,126],dev_ctx:[29,63,74],devel:82,develop:[28,30,51,58,73,74,77,80,82,86,92,94,99,103,104,106,108,109,117,118,123,124],deverlop:118,deviat:[2,16],devic:[2,40,42,46,50,56,62,63,67,71,73,74,79,88,92,101,103,108,118,123],device_:74,device_context:[63,101],devicecontext:[29,67,74,101,102],deviceid:[62,120],deviceid_:62,deviceplac:87,devid:[4,118],devot:86,devtools2:91,dhcp:126,diagnos:110,diagon:18,diagram:[68,109],diamond:54,dic:11,dict:[3,10,25,28,77,109,114],dict_fil:3,dict_siz:[10,18,34,69],dictionari:[3,4,10,18,25,26,27,77,120],did:[73,92],diff_mat:27,differ:[3,4,18,25,28,29,30,31,36,38,42,43,44,45,46,47,50,51,54,56,57,60,63,67,69,71,72,74,76,80,83,86,88,89,90,92,97,100,101,102,103,106,110,112,113,118,123],differenti:53,difficult:[3,27,51,98],difficulti:16,dig:[92,107,112],digit:[4,109],digraph:56,dilat:[4,18,63],dilation_h:18,dilation_i:4,dilation_w:18,dim0:101,dim1:101,dim:[4,9,18,19,34,63,64,68,79,84,87,90,100,101,103],dim_:[87,103],dimens:[1,4,5,7,9,18,19,54,79,84,86,87,89,100,101,103,120],dimension:[4,18,97,100,103],dimes:4,dios_arch:123,dios_enable_bitcod:123,dios_platform:123,dios_use_veclib_for_bla:123,dir:122,direcit:86,direct:[4,5,11,18,51,60,72,86,106],directli:[5,16,20,23,30,37,39,42,50,59,73,85,88,89,91,93,110,113,122],director:101,directori:[4,30,33,38,48,49,87,91,92,98,103,104,107,109,110,113,114,118,122,123,124],disabl:[18,74],disadvantag:[72,77],discard:[9,31,35,69,118],discount:4,discov:31,discoveri:112,discrep:107,discret:4,discrim:54,discuss:[26,29,35,36,37,42,63,86],disk:[64,98,113],dispatch:[42,73,109,110,118],displai:[39,49,99],dist:[82,91],dist_train:[26,39],distanc:[3,4],distinguish:[30,110],distribut:[4,16,29,35,36,37,38,40,41,46,52,71,79,86,90,94,105,110,113,115,116,126],distribute_test:[117,118],distributedli:[42,100],distributetranspil:111,disucss:26,div:18,divid:[4,6,18,28,46,85,90,106,117],divisor:18,diy_beam_search_prob_so:[117,118],django:104,dnn:[63,86,91],dns:112,do_forward_backward:78,doc:[9,56,68,89,101,103,104,109],doc_cn:104,dockefil:98,docker:[82,91,93,99,104,109,112,115,116,126],docker_build:26,docker_clust:[110,114],docker_push:26,dockerfil:[98,122,124],dockerhub:92,document:[4,5,18,27,42,48,55,68,69,74,79,86,91,98,99,101,102,103,105,109,111,120,123],doe:[5,31,35,36,38,39,40,42,44,47,50,56,60,68,73,77,79,80,81,94,98,100,101,103,107,108],doesn:[2,4,9,26,29,40,41,78,92,98,99,106,107,113,122,123],doing:[34,38,42,55,107],domain:112,don:[5,26,30,53,55,60,78,86,91,92,98,99,101,104,112],done:[3,4,5,28,30,31,35,36,42,43,58,60,64,72,80,81,86,99,106,107,112],dot:[4,5,19,101,118],dot_period:[118,120],dotmuloper:4,dotmulproject:4,doubl:[18,42,50,55,74,88,91,101,102,118],down:[86,107],download:[10,30,31,34,38,48,91,92,94,109,123,126],dozen:30,draw:69,drive:83,driver:[92,109,111],drop:[4,5,18,19,69],drop_rat:2,drope:18,dropout:[2,5,19,100],dropout_prob:18,dropout_r:[4,18,19],drpi_arm_neon:124,drpi_toolchain:124,drwxr:113,ds2:86,dst:[36,63],dst_primitive_desc:63,dtoh:107,dtype:[14,18,41,42,56,77,108,111],due:[35,38,54,60,69,77,106],dummi:[25,35],dump:64,duplic:[18,44],durat:[35,107],dure:[4,5,18,23,28,29,31,35,38,39,46,51,60,71,72,74,77,79,86,90,100,101,112,117,118,126],duse_eigen_for_bla:122,dwith_c_api:[66,122,123,124],dwith_distribut:111,dwith_doc:111,dwith_gpu:[91,111,124],dwith_profil:107,dwith_python:[66,111,124],dwith_swig_pi:[66,111,122,123,124],dwith_test:[91,101,123],dwith_tim:107,dynam:[18,36,66,68,77,78,91,107,118],dynamic_cast:100,dynamic_recurrent_op:89,dyogatam:18,e2e:126,each:[3,4,5,7,9,10,14,18,19,25,27,28,30,31,34,35,36,38,39,40,41,42,45,46,47,52,55,58,60,63,67,68,69,71,73,74,76,77,78,79,80,83,84,85,86,87,88,89,90,97,100,102,106,109,110,111,112,118,120,126],each_feature_vector:1,each_time_step_output:1,eager:51,earli:[50,52,99,101],eas:[9,58,101],easi:[27,28,69,72,78,79,81,99,100,110],easier:[26,44,50,51,78,89,98,99,100],easili:[26,54,71,74,78,80,83,87],echo:92,edg:[11,60],edit:[3,41,92,98,112],editor:[77,98],edu:[10,18,112,113],eeoi3ezpr86c:112,effect:[4,18,25,91,112,118,123],effici:[4,42,64,78,86,87,97,98,100],effort:[42,86],efg:4,efs:112,efs_dns_nam:112,efsvol:112,egd:60,eigen:[50,67,72,79,81,87,101,122,123],eigen_device_:87,eigen_test:103,eigen_use_gpu:101,eigenmatrix:103,eigenscalar:103,eigentensor:103,eigenvector:103,either:[4,5,9,18,25,26,42,54,57,58,68,72,81,93,107,123],elabor:86,elb:112,elbapis:112,electr:60,electron:113,elem_dim:4,elememt:4,element:[3,4,5,9,11,18,25,27,35,41,44,56,69,79,101,103],element_typ:[36,102],elementari:79,elementwis:[18,19],elif:[26,85],els:[26,34,39,41,42,44,45,51,54,57,58,59,60,83,85,91,92,98,100,101],elsewher:74,emac:98,email:99,emailweixu:30,emb1:34,emb2:34,emb:113,embed:[26,29,34,44,58,69,84,89,97,109],embedding_lay:34,embedding_nam:[4,97],embedding_s:[4,97],emphas:107,empir:[4,18],emplace_back:100,emploi:[28,45,85,97],empti:[3,9,28,31,69,101],emul:50,enabl:[2,4,18,29,30,35,40,44,45,56,74,98,99,107,109,112,118,123],enable_grad_shar:[117,118],enable_parallel_vector:118,enableonstart:22,enc_proj:[5,97],enc_seq:5,enc_vec:97,encapsul:36,encod:[5,35,69,97],encoded_proj:[5,97],encoded_sequ:[5,97],encoded_vector:97,encoder_ctx:69,encoder_ctx_expand:69,encoder_ctx_proj:69,encoder_dim:69,encoder_last:4,encoder_out_seq:69,encoder_s:97,encount:[18,34],encourag:[42,47],encrypt:112,encrypt_decrypt:112,end2end:126,end:[3,4,18,25,28,29,42,45,52,56,60,69,73,74,78,83,86,94,97,98,99,118],end_pass:26,end_po:4,endforwardbackward:25,endian:64,endif:[67,74],enditer:[25,26],endpass:[25,26],endpoint:[9,33,112],endtrain:26,enforc:123,engin:[39,62,63,86,107],english:[4,86,104],enjoi:92,enough:[28,29,59,60,67,98],enqueu:44,ensembl:5,ensur:[31,63,71,83,92,94,98,100,123],enter:[29,47],enterpris:79,entir:[4,5,36,38,101],entiti:[3,29,83],entranc:47,entri:[9,18,35,39,58,98,99,100,112,122],entropi:[4,18,77],entry_point:39,enumer:[1,67],env:[104,106,112],environ:[26,42,91,94,98,99,106,107,109,112,113,117,118,123],environmenterror:109,eos_id:[4,97],epoch:54,epol:41,epsilon:[4,6,18,20],equal:[4,5,18,19,31,89,101,102,118],equat:[3,4,5,6,18,60,101],equip:97,equival:[26,29,40,45,51,57,85,126],erlang:41,error:[2,3,4,5,18,26,27,35,49,50,51,63,83,86,100,101,110,112,118],error_clip:45,error_clip_callback:45,error_clipping_threshold:2,errorclipbyvalu:45,espeaci:18,especi:[4,5,62,98],essenc:[26,28],essenti:[4,26,47,50,103],establish:40,estim:[4,26,44,72],eta:113,etal:18,etc:[3,9,18,29,41,42,46,63,71,72,78,83,86,91,102,109,112,117,120,126],etcd:[9,25,31,35,36,38],etcd_addr:36,etcd_endpoint:9,eth0:112,etyp:41,euclidean:4,eval:[3,14,29,46,54,79],eval_program:[14,46],eval_result:46,evalu:[4,12,18,24,25,38,56,76,86,107,108],evaluate_difficult:3,even:[26,50,71,77,78,98,99,107,118,123],evenli:[36,112],event:113,event_:74,event_block:74,event_handl:[25,26],eventkind:74,eventlist:74,eventu:[42,89],everi:[3,4,5,9,14,26,31,35,36,38,45,46,55,56,58,60,63,67,68,71,77,83,85,88,97,99,100,101,103,108,109,114,118],everyon:99,everyth:[42,44,54,122],everywher:98,evid:73,evolv:51,exactli:[4,5,112],exampl:[3,4,5,9,10,11,18,19,25,29,39,42,44,46,49,51,52,53,54,55,56,58,60,63,67,68,69,73,74,75,77,78,79,80,81,84,87,88,89,97,98,99,100,101,102,103,106,107,108,109,111,112,113,117,118,120,124],example_read:9,exceed:4,except:[4,10,38,40,51,55,74,86,89,120],excess:60,exchang:73,exclud:4,exclude_mod:4,exclude_param:25,excluded_chunk_typ:3,exconv:4,exconvt:4,exdb:10,exe:[42,108,111],exec:118,execut:[4,30,31,35,39,40,41,42,46,47,52,54,56,60,63,71,74,80,90,98,100,106,107,112],executioncontext:[63,88,101,102,103],executor:[12,14,40,42,46,50,51,52,54,70,75,77,88,90,106,108,111],exist:[26,29,31,49,51,69,77,78,80,85,87,89,94,98,100,103,112,118,123],exit:[36,49,111,113,118],expand:[18,69,92,100],expand_a:4,expand_level:4,expandconvlay:4,expans:4,expect:[4,88,107],expected_desc:63,expected_kernel_kei:88,experi:[64,86,120],experienc:99,expert:30,expir:31,explain:[3,18,31,40,51,53,55,99,102,106,109,111],explan:[4,18,27,39,40,42,83,88],explicit:[74,89,100,102],explicitli:[26,42,47,101,103,123],explod:45,explor:[4,69,81],expon:4,exponenti:[1,18],expos:[28,37,41,63,64,87,89,112],express:[26,44,46,56,60,101,112],extend:[3,72,89],extens:[38,44,69,101,122],extent:66,extern:[30,62,65,66,79,86],external_librari:30,extingrad_:62,extinval_:62,extoutgrad_:62,extoutval_:62,extra:[2,4,5,42,81,87,126],extra_lay:25,extraattr:[2,120],extraattribut:4,extraattributenon:4,extract:[3,4,18,51,73,86,101,112],extralayerattribut:[2,5],extralayeroutput:5,extrem:[4,40,51,107],f120da72:113,f7e3:112,fa0wx:113,fabric:109,face:[30,81],fact:[18,40,51,71,75,77],factor:[2,6,18],factor_s:4,factori:65,fail:[31,35,69,101,113,118,120],failur:[31,36,101],fake:54,fake_imag:78,faked_imag:54,fall:[50,76],falloc:48,fals:[2,3,4,5,6,9,18,19,20,27,28,29,51,57,59,61,68,75,76,78,84,90,95,97,100,101,109,113,118,120],false_block:[29,57,75],false_label:78,false_neg:46,false_posit:46,false_read:78,fan_in:16,fan_out:16,far:[45,89],fashion:42,fast:[4,35,51,107],faster:[4,5,18,23,31,51,92,97,107],fastest:51,fastli:99,fat:123,father:28,fault:[25,35,79,91],favorit:98,fbd1f2bb71f4:113,fc1:[56,100,120],fc1_bia:56,fc1_weight:56,fc2:[56,120],fc3:[56,120],fc4:120,fc8a365:112,fc8a:112,fc_act:5,fc_attr:5,fc_bias_attr:5,fc_layer:[77,85,100,120],fc_layer_nam:5,fc_mat:25,fc_op:85,fc_out:[18,29],fc_output:85,fc_param_attr:5,fc_without_b:29,fclayer:100,fcop:53,feasibl:72,featur:[1,4,9,10,18,28,42,50,56,71,74,86,99,118],feed:[5,25,26,42,55,68,81,108,111],feed_dict:54,feed_list:[108,111],feeder:[9,42,108,111],feedforward:16,feel:99,fetch:[10,31,34,42,76,97,100,108],fetch_list:[42,77,108,111],fetch_op:76,few:[30,31,41,42,60,72,78,84,86,98],fewer:[4,18,41,77],fft:86,fg0:4,field1:25,field2:25,field:[4,25,29,56,58,64,76,77,80,84,85,107,112],fifth:55,figur:[26,30,42,44,54,62,68,74,77,86,97,100,107],file:[3,4,9,10,11,22,25,26,28,30,31,33,35,36,38,39,41,48,49,51,52,56,64,66,78,79,86,87,90,92,94,95,97,98,99,100,101,102,103,108,109,110,111,114,118,122,123,124,126],file_typ:9,filelist:86,filenam:[11,33,77,106],fileoffset:48,filesystem:[38,39,42,48,112],fill:[4,31,35,67,77,112],fill_zero_grad:79,fill_zeros_like_op:28,filter:[4,5,18,45,63],filter_s:[4,5,18,19],filter_size_h:18,filter_size_i:4,filter_size_w:18,filter_strid:18,find:[4,18,29,31,38,41,50,56,63,69,83,88,91,94,107,111,114,122,123],find_var:27,findmemori:63,findop:29,findprimit:63,findprimitivedesc:63,findvar:[29,83],fine:[2,35,53],fingerprint:112,finish:[31,35,38,39,47,60,71,85,91,109,110,112,113],finit:100,finnal:92,first:[4,18,25,26,28,29,31,35,38,39,40,42,47,49,51,54,55,56,63,68,69,75,76,77,79,84,85,86,87,89,91,97,98,99,100,101,103,107,111,112,118,120,126],first_seq:97,firstli:[3,4,102],firstn:9,firstseen:113,fit:[10,50,59,60,64,69,79,111],fit_a_lin:111,five:[75,107],fix:[2,4,18,42,60,65,77,86,99,106],flag:[4,10,18,61,62,74,99,101,104,118],flatten0:56,flatten:[18,56,75,77,103],flexibl:[4,5,26,36,42,51,55,59,68,69,72,78,87,89,97],flip:11,flist:109,fliud:40,float16:41,float16_t:50,float32:[9,18,42,50,53,54,77,78,101,108,111],float64:18,float_16:18,float_to_half_rn:50,floor:4,flow:[18,29,40,41,68,74,82],fluid:[0,14,16,17,18,19,20,22,23,28,42,44,47,67,74,77,87,88,102,106],fluid_cuda_create_tensor:52,fluid_cuda_mult:52,fluid_cuda_read:52,fly:28,fnt03:112,focu:[41,56,106,107],focus:101,folder:[30,33,39,49,111,112],follow:[3,4,5,6,9,11,18,19,25,26,27,28,29,30,31,35,39,40,41,42,44,47,50,51,52,53,54,55,56,57,58,60,63,67,68,69,71,72,74,75,76,77,78,79,80,81,83,84,85,86,87,88,89,91,92,94,95,97,98,99,100,101,103,104,106,107,108,111,112,113,114,115,116,120,122,123,124,126],footprint:52,forbid:26,forc:[71,77,88],force_cpu:[18,59],force_cudnn:59,force_load:65,forest:29,forget:[6,18,26],forget_bia:18,fork:[4,99],form:[4,5,18,41,46,94,107],formal:88,format:[3,9,10,11,18,22,25,27,35,42,50,51,67,69,86,89,95,99,100,101,103,109,112,118],former:[26,30,51,60,72],formul:18,formula:[4,5,6,18,27,60],formular:4,forth:54,forward:[1,4,5,18,27,28,29,34,36,45,51,54,61,62,63,64,70,73,75,78,79,80,81,84,97,100,120],forward_infer:63,forward_list:74,forward_op:27,forward_proj:18,forward_train:63,forwardactiv:100,forwardbackward:25,found:[50,75,81,83,97,102,109,111,124],four:[3,18,46,51,55,63,67],foward:76,fp16:[50,79,90],fp32:[67,79,88,90],fp64:[67,90],fpga:[67,108],fpgadevicecontext:87,fpgaengin:62,fpgaplac:[67,87],frac:18,frame:[3,47,79,86,89],framework:[26,28,29,41,45,46,50,51,56,67,71,72,74,75,79,81,83,85,87,99,100,101,106,108,109,123],free:[10,52,87,99,126],freememoryop:52,frequenc:[10,86,107],frequent:[35,78,79,81,87,110,122,123],fresh:38,friend:83,friendli:54,from:[3,4,5,9,10,11,16,18,25,27,28,29,30,31,33,34,35,36,40,41,42,44,45,46,49,50,51,53,54,55,56,57,59,60,63,68,69,70,71,73,75,77,78,79,80,83,86,87,88,89,92,94,97,98,99,100,101,102,103,106,107,109,111,112,113,118,120,122,123,126],from_no_sequ:4,from_sequ:4,from_tar:25,fromfil:78,front:[56,60],fuction:22,fulfil:107,full:[4,18,31,38,68,71,72,97,100,102,126],full_matrix_project:[5,97],fulli:[18,42,44,86,100,107,111,126],fullmatrixproject:4,fullsiz:34,fully_matrix_project:5,fullyconnect:[56,77],fullyconnectedlay:100,func:[9,35,40,52,80],funciton:[5,18],functor:[53,56],fundament:[41,44,50,79],funtion:18,further:[4,85,126],furthermor:18,futur:[4,18,38,42,50,60,68,79,122],future_context_s:18,fvs:85,fwd_desc:63,fwd_op:80,fwd_primit:63,fwd_primitive_desc:63,fwd_var:45,g_b0:54,g_b1:54,g_b2:54,g_block:54,g_command_config_arg:[61,62],g_h0:54,g_h0_bn:54,g_h0_relu:54,g_h1:54,g_h1_bn:54,g_h1_relu:54,g_h2:54,g_im:54,g_loss:54,g_optim:54,g_program:77,g_state:74,g_step:54,g_w0:54,g_w1:54,g_w2:54,gain:4,gan:26,gangliao:30,gap:118,gate:[4,5,18,19],gate_act:[4,5],gate_activ:18,gate_attr:4,gate_bias_attr:4,gate_param_attr:4,gate_recurr:4,gate_v:18,gatedrecurrentlay:61,gather:[4,18,28,60,71,73,100,101],gauss:2,gaussian:16,gaussian_normal_random:54,gcc:[50,52,65,79,91,98,106,122,124],gcc_3:94,gcreators_:85,gemm:61,gemmconvkernel:102,gen:4,gender:10,gendrated_id:69,gener:[3,4,5,9,14,25,26,27,28,29,30,31,33,35,36,38,40,42,51,53,58,60,63,67,71,72,75,76,77,78,79,80,84,85,86,87,89,99,101,107,112,114,118,120,122,124],generated_id:69,generated_scor:69,generated_word_embed:4,generatedinput:[4,97],gereat:3,get:[3,4,10,18,20,25,27,28,29,30,31,35,36,38,39,48,51,54,56,59,60,61,62,63,67,68,69,74,77,79,80,83,85,88,89,91,92,94,97,99,100,101,102,106,107,109,110,112,114,121],get_all_op_proto:85,get_block:77,get_config_arg:120,get_data:113,get_dict:10,get_dim:27,get_embed:10,get_float_el:27,get_grad:25,get_grad_op_desc:28,get_input_lay:100,get_lin:9,get_movie_title_dict:10,get_numeric_gradi:27,get_numerical_gradi:27,get_output:27,get_program:60,get_pserver_program:111,get_shap:25,get_startup_program:111,get_support:94,get_symbol:56,get_tensor:27,get_trainer_program:111,get_vari:29,get_word_dict:10,get_worker_addr:40,getactualkerneltyp:59,getattr:45,getbatchs:100,getdeviceid:102,geteigendevic:103,getengin:63,getenv:[26,39,109],getexpectedkerneltyp:[59,63,88],getinfervartyp:58,getinput:100,getinputgrad:100,getinputvalu:100,getkerneltyp:50,getkerneltypeforvar:88,getlayeroutput:25,getlibrari:63,getmat:34,getoptconfig:34,getoutputgrad:100,getoutputvalu:100,getparam:34,getparameterconfig:34,getparameterptr:100,getparameterspars:34,getparametersremot:34,getplac:[63,87,101,102,103],getsiz:100,gettask:35,gettempl:112,gettensor:88,gettranspos:100,getw:100,getweight:100,getwgrad:100,gist:5,git:[82,91,98,99,104,122,124],github:[5,18,30,54,67,82,91,98,99,104,106,108,122,124],give:[18,31,68,77,79,88,98,99,100,107,112],given:[4,9,18,19,25,28,36,38,41,44,45,51,53,54,69,78,81,89,100,118],glibc:[94,122,124],glibc_2:94,glibcxx_3:94,glide:30,global:[2,18,20,26,29,30,31,52,56,59,73,74,79,83,85,87,88,98,107,112,118],global_block:77,global_learning_r:[2,20],global_pool:18,global_step:20,globalstat:107,globalstatinfo:107,glog:99,glog_v:99,glog_vmodul:99,glorot10a:16,glorot:16,gnueabihf:124,go_librari:30,go_test:30,goal:[41,44,50,55,71,79,86,107],gob:35,godep:30,godoc:65,goe:[5,31,51,57,83,108],going:[28,53,72,106,109,126],golang:30,good:[41,54,72,77,78,81,106,107,111,126],googl:[18,26,74,79,99,106,109,122],googleapi:112,googlenet:62,goroutin:[40,41],got:[59,83],gpg2:112,gpg:112,gprotos_:85,gpu:[2,4,7,27,39,41,46,50,60,67,71,72,73,74,79,81,82,87,88,91,94,95,98,102,103,105,108,109,111,126],gpu_id:[118,120],gpu_per_train:42,gpudevic:87,gpugpu_id:117,gpukernel:79,gpustarttimestamp:22,grab:31,grad:[27,28,36,45,62,77,84,118],grad_info_map:28,grad_n:45,grad_nam:45,grad_op:45,grad_op_class:79,grad_op_desc:45,grad_op_maker_:80,grad_op_typ:[79,80],grad_op_type_:80,grad_s_block:28,grad_share_block_num:[117,118],grad_to_var:[28,45],grad_var_nam:27,gradient:[2,3,4,6,16,18,20,23,25,31,35,41,43,45,55,58,70,71,72,73,77,79,84,101,106,109,111,118],gradient_clipping_threshold:2,gradient_evalu:3,gradient_flat:27,gradient_machin:[25,66],gradientmachin:[25,66,73],gradientmachine_:34,gradopdescmak:[58,80],gradopdescmakerbas:80,gradopmak:80,gradual:107,grai:11,grain:53,gram:86,grandient:25,grant:112,graph:[4,18,25,28,29,30,31,40,41,42,43,44,46,51,54,68,71,72,75,103],great:[44,86,126],greater:[4,45,72,109],greaterthan:85,greedi:[18,86],green:[40,54],grep:[92,114],gridsize3d:22,groudtruth:97,ground:[3,4,18],group:[5,18,19,35,56,63,87,101,126],group_input1:97,group_input2:97,group_input:97,grouplen:10,grow:99,grpc:126,gru:[4,18,69,86,97],gru_bias_attr:5,gru_decod:97,gru_decoder_with_attent:97,gru_layer_attr:5,gru_memori:5,gru_out:69,gru_param_attr:5,gru_step:[69,97],gru_step_lay:5,grumemori:[5,97],gserver:[4,61,62,100],gsizex:107,gtx:60,guarante:[63,77,100],guard:34,guest:[94,98],gui:[106,107],guid:[22,48,60,79,97,99,100,107,111,112,113,123],gzip:[35,113],h0_bn:54,h_0:18,h_f:18,h_prev:29,had:98,hadoop:26,half:[4,18,19,50,112],half_to_float:50,hand:[60,79,86,87,103,109,111],handi:30,handl:[9,26,28,39,40,42,56,60,63,67,73,78,83,87,89,102,108],handler:[25,29],hannun:86,happen:[18,35,85],hard:[42,51,69,86,89,98,112],hardshrink:18,hardsigmoid:18,hardwar:[51,52,87,98,102,107],has:[3,4,5,10,18,19,22,26,27,28,29,30,31,35,36,38,41,42,44,45,46,50,51,54,56,60,64,67,69,71,74,75,79,84,85,87,88,91,97,98,99,100,107,108,112,113,123,126],has_kei:[25,28,45],has_selected_colum:4,has_var_recurs:28,hasdependentvar:76,hash:[67,71],hasn:51,have:[4,5,9,18,19,26,27,28,29,30,31,35,36,38,39,41,42,44,45,47,50,51,52,53,54,55,59,60,63,64,67,68,69,71,72,73,74,75,77,78,79,80,83,84,86,87,88,90,91,92,97,98,100,101,102,107,109,112,118,120,123,124,126],haven:[51,98],hdf:[9,33],head:[19,99,101,109,114],header:[36,64,66,79,87,100,102,122,123,124],headip:114,heard:98,heavi:110,height:[4,9,11,18,29,65,78,100,101],height_:84,held:31,hello:26,help:[4,18,29,49,51,56,63,69,78,79,89,98,99,106,110],helper:[18,42,63,80,89,100],henc:[42,72,77,80,81,83],here:[2,3,4,5,9,18,19,26,30,31,37,41,44,45,47,49,51,55,56,63,67,68,78,81,85,91,92,94,97,99,101,102,104,109,110,111,112,113,117,120,123,124,126],heterogen:[42,44,74],heurist:[4,44,69,118],hidden:[4,5,18,70,77,97,112],hidden_dim:18,hidden_out:29,hidden_s:5,hidden_t_prev:18,hidden_v:18,hidden_valu:18,hierarch:[4,75,77,79,97],hierarchi:79,high:[2,16,50,71,86,87,100,109,126],higher:[53,68,89,99],highest:[9,29],highli:[10,86,89,97,120],him:26,hint:[59,106],histor:[53,102],histori:6,hl_get_sync_flag:100,hold:[26,28,31,35,37,41,50,54,56,58,60,83,85,87,88,103,111,112],holder_:[87,103],home:[33,49,92,106,112,113,114],honor:35,hook:2,hookattr:2,hookattribut:2,horizont:[4,11],host:[30,39,74,112,113,122,123,124],host_c:[122,123,124],hostfil:114,hostnam:112,hostpath:113,hostport:112,hot:18,hour:98,hourli:99,hous:[10,95],how:[2,4,18,26,29,31,35,40,41,42,47,49,51,53,56,59,63,68,69,73,74,81,85,88,97,98,102,106,109,111,112,113,118,121,124],howev:[4,5,18,27,28,38,41,42,47,51,60,67,72,73,77,78,80,81,84,85,86,87,88,97,112,117,118],howto:109,hpp:[50,65],html:[10,16],htod:107,http:[4,5,10,16,18,30,39,54,82,91,92,98,99,104,106,108,112,113,122,124,126],hub:82,huber:4,huge:72,human:[4,16,74,86],hundr:102,hwc:11,hyper:[4,54,100],hyperparamet:[4,81],hyperplan:9,i1117:107,i386:123,iOS:[124,125],iamfullaccess:112,iamusersshkei:112,icc:52,iclrworkshop2016:18,icml:86,ics:10,id_input:3,id_rsa:114,idea:[30,41,51,52,72,78,81,106,111],ideal:[42,88],ident:[4,18,80,101,112],identifi:[4,57,67,100],identityoffsetproject:4,identityproject:4,ids:[3,4,18,69,100],idx:[35,54,60,100],ies:49,if_else_op:28,ifdef:[67,74],ifels:[29,75],ifelseop:75,ignor:[4,18,118],iii:86,illustr:[3,18,31,36,42,53,68,97,100,107],im2col:18,im_siz:54,imag:[7,8,9,10,18,19,26,42,51,54,55,69,70,75,78,86,91,98,99,112,115,116,120,126],image_a:78,image_b:78,image_conv_lay:86,image_fil:78,image_h:18,image_lay:78,image_nam:26,image_path:78,image_reader_cr:78,image_w:18,imagenet:[4,16,33],imagepullpolici:112,imageri:4,images_reader_cr:78,imagin:55,img2label:11,img:[4,5],img_conv_lay:5,img_pool_lay:5,imgsiz:107,imgsizei:107,imgsizex:107,imikolov:109,immedi:[60,63,72,81,91,112],immutable_paramet:26,imper:40,imperfect:79,implement:[4,5,9,16,18,19,20,23,29,35,36,37,38,39,40,41,42,44,51,53,56,57,58,60,63,65,66,67,69,73,76,83,85,86,87,88,89,97],implemet:34,impli:30,implicitli:40,imposs:[69,126],impractic:88,improv:[4,43,44,60,79,86,106,107,112],in_fals:18,in_plac:18,in_tru:18,inarg:34,inbound:112,includ:[3,4,5,10,11,18,20,26,29,30,36,39,41,50,51,54,56,60,65,66,68,69,74,75,77,79,85,91,94,97,98,100,101,106,107,109,112,113,118,122,123,124],inclus:[18,69],incom:[40,59],incorpor:4,incorrect:4,increas:[31,35,50,109,118],increment:[46,55,60,118],incupd:100,inde:[9,41],independ:[4,18,27,28,36,43,83,87,126],index:[3,4,7,9,10,18,25,27,28,29,31,35,40,75,77,89,102,112],indexslot:4,indiact:18,indic:[3,4,18,28,29,36,47,54,68,75,80,84,87,89,110,112,122],indice_map:89,indices_map:89,individu:[31,71,112],industri:[31,64,126],ineffici:[73,88],infer:[0,11,18,26,28,29,31,46,51,57,58,59,60,61,65,67,76,77,79,84,86,88,95,123,124],infer_shap:77,infer_var_type_:58,inferenc:123,inferer:86,inferfac:58,inferior:38,infernec:124,infershap:[29,77,79,101,103],infershapecontext:[101,103],infervartypefn:58,info:[3,4,10,50,68,100,110,126],infom:4,inform:[4,10,18,25,29,39,49,56,59,60,63,64,67,68,71,77,81,83,84,99,100,101,103,106,107,112,118,122],infrastructur:[51,112],ingor:118,ingrad_:62,ingredi:[41,86],inherit:[29,70,79,87,101],ininst:26,init:[2,16,25,29,43,54,62,68,69,95,100,109,112,120],init_attr:77,init_from_tar:25,init_model_path:[117,118,120],initi:[2,4,5,10,12,18,25,28,30,35,40,42,43,44,46,55,68,71,72,77,81,85,89,95,97,100,101,108,118],initial_max:2,initial_mean:[2,4],initial_min:2,initial_std:[2,4],initialize_op_attr:77,initrd:126,inlcud:5,inlin:[87,102,103,112],inner:[4,100],inner_param_attr:5,inproj_attr:4,inproj_bias_attr:4,inproj_param_attr:4,input0:103,input1:[4,5,103],input2:4,input:[1,3,4,5,7,9,11,17,18,19,25,27,28,29,34,38,40,42,43,44,45,46,50,51,52,53,54,55,56,58,59,60,62,63,67,68,69,72,73,76,77,78,79,80,83,85,86,87,88,89,95,97,99,100,101,102,103,108,111,114,120],input_conf:4,input_data:100,input_data_target:100,input_dim_idx:18,input_dtyp:18,input_featur:1,input_hassub_sequence_data:100,input_id:4,input_imag:5,input_index:100,input_label:100,input_lay:100,input_loc:4,input_nam:26,input_proj_bias_attr:5,input_proj_layer_attr:5,input_seg:89,input_seq:[4,18],input_sequence_data:100,input_sequence_label:100,input_sparse_float_value_data:100,input_sparse_non_value_data:100,input_t:100,input_to_check:27,input_valu:27,input_var:[27,77],inputbuff:34,inputdef:100,inputgradi:80,inputlayers_:100,inputs_to_check:27,inputsizechang:63,inputtyp:9,insert:[28,45,52,71,76,79,80,99],insid:[3,5,28,31,42,44,45,46,59,63,73,74,78,79,80,92,112],inspir:74,instal:[4,18,39,62,82,91,92,98,99,104,106,109,113],install_android:122,instanc:[4,18,27,29,31,33,37,40,42,43,45,47,52,57,63,68,69,72,77,79,80,97,100,103,107,111,118],instance_ip:112,instanti:[31,47,108],instead:[4,5,7,28,30,34,39,40,41,42,50,51,55,56,86,98,99],instrins:50,instruct:[29,55,92,98,107,122],int16:90,int32:[18,67,75,89,90,118],int64:[18,42,48,67,84,88,90],int64_t:74,int8:67,integ:[3,4,9,18,35,39,40,50,65,69,100],integer_valu:9,integer_value_sequ:[9,69,86,97],integr:[3,91,126],intel:[51,67,87,102],intellig:[16,60],inteloptimizedpaddl:62,intend:91,intens:86,inter:[4,42],interact:[4,42,92,112],intercept:4,interchang:[55,79],interconnect:71,interest:[40,50,71,107],interfac:[0,2,4,5,16,20,22,23,25,29,35,39,49,56,71,73,79,80,86,87,91,101,103,112,123,126],intergr:4,intermedi:[18,42,49,52,54,60,70,86,98,122,124],intern:[4,5,16,20,25,50,86,106,109,110,112],internel:62,internet:[30,31,126],interpret:[3,18,47,51,52,90,91,107],interv:18,inth:103,intrins:[40,47,50,124],introduc:[4,11,29,31,54,61,64,81,83,85,101,106,109,113],introductori:98,intuit:[38,79],inval_:62,invalid:[78,83],invent:51,invoc:[30,53,79],invok:[4,14,25,28,42,45,73,77,79,80,85,88,98,99,107,112],involv:[69,101],iob:3,ioe:3,ios:123,ios_arch:123,ios_deployment_target:123,ios_development_root:123,ios_enable_bitcod:123,ios_platform:123,ios_sdk_root:123,ios_use_veclib_for_bla:123,ipad:123,iphon:123,ips:112,ipt:[4,77,85,97],ipx:126,ipython:26,is_color:11,is_cpu_plac:63,is_loc:25,is_mkldnn_librari:63,is_revers:18,is_seq:[4,97],is_spars:18,is_stat:2,is_target:76,is_tensor:85,is_test:[18,63],is_traget:76,is_train:11,isinst:45,ismkldnnkernel:63,isn:107,isspars:100,issu:[18,30,54,86,92,94,98,99,107],issuecom:18,istag:82,item:[4,9,18,25,38,50,78,95,126],iter:[4,5,6,9,25,26,31,42,51,52,60,63,72,74,78,86,89],iter_multiple_input_and_param:77,its:[4,5,16,18,23,25,26,27,28,29,31,35,40,41,44,45,46,51,52,54,55,56,58,60,64,68,69,71,72,73,76,77,79,80,83,84,85,87,88,94,100,101,102,103,107,109,112,118],itself:[28,31,38,52,63,72,83],ivs:85,java:[29,65,75,79],jeremi:107,jian:16,jku:18,job:[10,28,38,40,42,45,79,92,109,111,117,118,120],job_desc:42,job_dispatch_packag:110,job_id:10,job_nam:[39,112],job_namespac:112,job_path:112,job_workspac:110,jobdesc:42,jobnam:42,jobpath:112,jobport0:112,jobport1:112,jobport2:112,jobport3:112,jobserv:39,join:31,jointli:5,journei:92,jpg:11,json:[56,86,112,113],jth:5,judg:4,juditski:72,jupyt:[39,92],just:[1,3,4,5,10,18,30,35,36,40,42,51,52,54,58,63,72,73,77,78,79,80,81,83,84,91,94,98,99,110,112,120,122],jx4xr:112,jypyt:26,k8s:[40,126],k8s_data:112,k8s_job:26,k8s_token:26,k8s_train:112,k8s_user:26,kafka:33,kaim:16,kcpu:74,kcuda:74,kcudnn:102,kdisabl:74,kebilinearinterpbw:107,kebilinearinterpfw:107,keep:[4,9,11,16,18,31,41,51,52,55,69,72,77,83,85,91,99,126],keep_dim:18,keep_top_k:4,kei:[10,11,19,22,25,27,28,29,31,33,35,48,50,59,63,79,80,85,86,89,98,99,101,107],kenlm:86,kept:[4,60,77],kera:81,kernel0:102,kernel1:102,kernel:[4,18,27,41,50,52,59,62,72,74,81,84,86,87,88,101,103,107],kernel_hint:59,kernel_type_for_var:88,kerneltyp:[59,63],key1:118,key2:118,key_pair_nam:112,keyid:112,keymetadata:112,keypair:112,keyserv:112,keystat:112,keyusag:112,keyword:77,kforcecpu:59,kill:[31,112],kind:[26,27,31,37,42,45,52,55,59,63,70,71,74,87,88,90,92,102,112,113],kind_:74,kmark:74,kmkldnn:102,kms:112,knchw8c:67,knchw:67,knhwc:67,know:[26,35,40,60,64,99,100,106,107,109,112,122],knowledg:86,known:[28,29,41,51,53,68],kplain:102,kpoprang:74,kpushrang:74,kqueue:41,kriz:10,krizhevski:18,kselectedrow:84,ksimonyan:5,kstate:74,kube_cluster_tl:26,kube_ctrl_start_job:26,kube_get_workers_addr:40,kube_list_containers_in_job_and_return_current_containers_rank:26,kubeconfig:112,kubectl:[110,113,114],kuberent:[31,112],kubernet:[26,31,40,42,79,109,115,116,126],kubernetes_service_host:26,kusecudnn:59,kusemkldnn:59,kvp:22,kwarg:[5,6,9,14,18,20,46,56,77,85],kwd:22,l1_rate:2,l1_regularization_op:81,l2_rate:2,l2_regularization_op:81,l2_sim:4,l93:34,label:[3,4,9,10,11,18,25,42,46,51,54,55,56,70,75,78,86,88,108,111,113],label_dim:4,label_fil:78,label_lay:78,label_path:78,lag:118,lambda:[18,40,45],lambdacost:4,lambdarank:4,lan:109,languag:[4,10,19,40,41,51,55,60,74,79,83,86,120],larg:[7,10,18,42,44,45,60,64,72,86,99],larger:[2,3,4,60],larger_than:[29,57,75],largest:18,last:[3,4,5,18,28,45,60,68,74,75,97,118],last_seq:69,last_time_step_output:4,lastseen:113,latenc:[4,50,86,110,112],latent:4,later:[30,79,81,86,87,91,94,101,103,112],latest:[4,29,30,31,38,82,91,92,94,104,113,122,123],latter:[72,89,106],launch:[63,112,118],launcher:26,layer1:[4,5],layer2:4,layer3:4,layer:[2,3,5,7,9,12,16,24,25,28,29,34,40,42,44,51,54,55,57,70,72,75,78,79,81,85,86,87,89,95,97,105,108,111,117,118],layer_0:100,layer_attr:[4,97,120],layer_help:59,layer_num:120,layer_typ:[4,61,62],layerbas:100,layerconfig:100,layergradutil:100,layerhelp:[18,59,77],layermap:100,layeroutout:4,layeroutput:5,layout:[11,63,88],layout_:[59,67],layouttyp:59,lazi:[72,81],lbl:3,lead:[60,67,107],leaki:54,leakyrelu:18,learing_r:70,learn:[2,3,4,5,6,10,19,20,26,28,36,38,41,42,44,47,54,55,60,62,69,71,72,74,78,79,81,87,92,97,98,100,101,104,107,111,123],learnabl:[18,19,25],learning_r:[2,20,36,42,108,111],leas:31,least:[3,18,31,94,122],leav:[29,112],lectur:60,lecun:10,left:[4,29,103,123],left_right_flip:11,legaci:92,legal:85,len:[4,18,36,40,48,51,77,95,100],length:[4,5,9,10,11,18,36,50,61,64,68,69,79,86,89,97,113,118],leran:60,less:[4,18,26,45,111,126],less_than:[26,60],lesser:18,let02:113,let:[3,4,18,26,29,38,40,52,53,55,59,63,67,68,69,70,80,87,88,101,106,111,112],level:[2,4,16,18,50,53,56,64,68,69,74,87,89,90,99,110,118,122],lgtest:30,lgtest_main:30,lib64:[92,118],lib:[66,91,92,106,109,122,123,124],libapi:30,libari:66,libc:94,libcuda:92,libgcc_:94,libgoogl:106,libiomp5:62,libmkldnn:62,libmklml_intel:62,libnvidia:92,libpaddl:[65,66,79,106],libpaddle_capi:66,libpaddle_gserv:66,libpaddle_math:66,libpython2:91,librari:[4,18,30,37,41,42,62,63,66,71,86,88,91,94,101,102,109,111,118,123,124],library_:67,library_typ:102,library_type_:88,librarydevicecontext:67,librarytyp:[88,102],libstdc:94,licens:[62,71],life:31,lifecycl:[74,126],lifetim:[83,94],lightweight:53,like:[3,4,9,10,18,28,29,30,31,34,39,40,41,47,51,52,53,54,55,56,58,63,67,71,72,77,78,79,80,81,83,84,86,88,89,91,94,97,98,99,106,107,108,109,112,117,120,122,123,124,126],limit:[4,9,18,51,60,64,69,79,81,107,118],linaro:124,line:[3,9,22,30,34,39,41,49,55,72,75,77,79,81,98,99,105,106,107,110,111,112,120],line_break:9,linear:[4,18,19,69,95],lineno:106,link1:50,link2:50,link:[4,5,30,48,49,83,94,101,112,126],linux:[9,41,48,92,94,98,99,109,112,124],linux_x86_64:[82,94],lipo:123,list:[3,4,5,9,11,14,18,20,22,25,26,28,29,30,35,39,40,47,49,51,54,67,70,73,74,77,80,83,89,95,97,98,100,101,106,109,111,112,118,120,124],listdir:109,listen:[31,40,42,109,111,118],listen_and_do:40,listenanddo:40,littl:[36,59,64,118],live:[101,108],live_in:60,live_out:60,load:[11,26,31,42,54,71,77,91,101,112,118],load_and_transform:11,load_imag:11,load_image_byt:11,load_missing_parameter_strategi:[117,118,120],load_mnist:54,load_persist:111,loadsave_parameters_in_pserv:[34,117,118],loc:[3,16],local:[2,18,25,27,29,31,37,38,41,55,60,68,75,77,79,91,92,98,99,106,110,113,117,118],local_scop:27,localhost:[92,104],localpath:49,locat:[4,18,25,30,51,67,74,87,89,97,100,109,124],lock:[30,31,35,36],lod:[18,41,64,68,84,89,90],lod_desc:[84,90],lod_expand:69,lod_level:[18,77,84,90],lod_rank_table_obj:18,lod_tensor:[18,68,84,90],lod_tensor_aarri:18,lod_tensor_arrai:18,lodrankt:18,lodtensor:[18,19,41,58,64,79,90],lodtensorarrai:18,lodtensordesc:[64,84],log:[35,42,49,54,94,100,109,110,112,113,114,118,124],log_barrier_abstract:118,log_barrier_lowest_nod:[117,118],log_barrier_show_log:[117,118],log_clip:[117,118],log_error_clip:[117,118],log_period:[113,118,120],log_period_serv:[117,118],logarithm:[1,18],logic:[38,42,44,45,54,58,70,71,73,83,89,101],login:[94,114],logist:18,logit:[54,88],longer:[31,42,60],look:[3,18,29,39,40,51,52,55,72,77,80,81,86,108,109,111,112,113,117],lookahead:[4,18,86],lookup:[18,58,69,108],lookup_t:60,loop:[27,29,51,60,74,78,83],loop_var:89,loss:[4,18,20,28,42,54,56,70,72,81,86,100],lot:[42,67,69,72,77,81,87,109,117,126],low:[4,16,70,71,86,87,89],low_rnn:68,lower:[4,18,50,68,69,99,110],lower_level_rnn:68,lowest:118,lpaddle_capi_shar:66,lpaddle_capi_whol:66,lrelu:54,lstm:[4,18,97,113],lstm_bias_attr:5,lstm_cell_attr:5,lstm_group:5,lstm_layer_attr:5,lstm_step:5,lstm_unit_op:18,lstmemori:[5,97],lstmemory_group:4,lstmlayer:61,lstmp:18,ltr:4,luckili:60,mac:[66,98,99,122],machin:[5,10,25,42,44,51,54,60,62,71,72,81,91,94,98,100,112,113,114,117,118,120,124,126],machine_transl:97,maco:[94,95,98,123],macro:[53,67,80,101],made:[31,36,51,97],mai:[4,5,18,27,29,42,46,50,52,59,60,63,71,74,78,79,83,86,88,91,92,103,104,107,109,112,124],main:[18,40,41,45,51,52,56,71,75,79,94,106,109,112],main_program:[14,18,28,46],mainli:[37,60,67,87,91,101,118],mainlin:94,maintain:[4,29,35,72,77,79,112],majel:30,major:[42,50,88,122],make:[3,4,18,26,28,29,30,31,35,36,38,41,42,43,50,51,55,68,69,72,73,77,78,79,81,86,89,91,98,99,100,101,102,106,107,109,111,112,122,123,124,126],make_chan:41,make_ddim:103,make_function_oper:53,make_vari:85,maker:[79,80],malloc:[87,100],man:48,manag:[20,25,31,36,37,40,41,42,49,74,83,87,94,104],mandarin:[4,86],mandatori:123,mani:[5,11,28,30,35,40,41,51,54,59,60,69,73,74,77,79,80,83,84,85,88,89,98,118],manili:56,manipul:[51,77,80,110,123],manner:[4,72,81,86,87],mantain:60,manual:[42,70,72,80,110,122,123,126],manufactur:51,manylinux1:94,manylinux1_x86_64:[82,94],manylinux:82,map:[3,4,9,19,25,26,29,35,45,63,67,77,80,83,85,87,89,98,118,126],map_fn:89,map_read:9,mapper:9,mapreduc:[26,109],margin:18,mark:[28,44,54,55,68,69,74,83,97,106,126],marker:74,market:50,mask:[2,4,18],master:[26,38,79,82,118,124],mastermind:30,mat:[65,66],mat_cache_row:34,mat_norm:34,mat_normal_shar:34,mat_param_attr:5,mat_sparse_row:34,mat_sparse_row_auto_grow:34,mat_sparse_row_id:34,mat_sparse_row_prefetch:34,mat_sparse_row_prefetch_full_s:34,mat_value_shar:34,match:[18,30,50,94,107],matchbox:126,math:[5,18,62,65,79,99,100,101,107],mathemat:81,matirx:4,matmul:[29,56,68,89,101],matric:[18,97,100],matrix:[3,4,5,9,18,19,25,34,65,66,100,101,117,120,123],matrixptr:100,matrixtyp:66,mattyp:34,matur:109,max:[2,4,9,10,18,19,27,43,45,60,77,107,118,120],max_diff:27,max_id:[4,25],max_job_id:10,max_length:[4,69,97],max_movie_id:10,max_relative_error:[27,101],max_seq_len:18,max_sort_s:4,max_user_id:10,max_x:18,maxframe_evalu:3,maxid:3,maxid_evalu:3,maxim:[4,45],maximum:[3,4,10,18,29,36,97,101,107,118],maxinum:7,maxoutfunctor:87,maxpool:4,mayb:[29,63,101],mchw:18,md5:[10,32],mean:[2,3,4,5,6,7,9,11,16,25,28,30,42,43,45,56,69,76,78,83,86,88,92,97,98,101,106,107,108,111,112,118,120,126],mean_var_nam:4,meant:89,measur:[46,107],mechan:[4,5,19,28,37,46,63,77,80,97,102,112],mem:[4,29,39,69],mem_per_pserv:42,mem_per_train:42,member:[4,10,26,45,55,56,67,73,77,83,101],memcpi:[73,107],memor:4,memori:[5,28,29,34,35,39,50,52,62,63,64,67,69,72,74,79,88,97,98,99,100,103,107,108,113,118,120],memory_boot:5,memory_nam:4,memory_optim:60,memory_test:98,memory_threshold_on_load_data:118,memoryalloc:87,memorydesc:63,mention:[18,28,30,35,42,44,51,68,71,72,74,98],mere:5,merg:[4,14,18,36,38,43,46,62,68,71,73,99,104,118,123],messag:[29,40,41,47,51,52,55,64,74,75,76,77,79,80,84,90,99,113,118],metaclass:101,metadata:[48,112,113],metal:[111,126],metaphor:55,metaplotlib:26,method:[4,6,16,20,25,27,29,38,40,42,43,45,50,54,55,56,59,70,71,77,78,79,83,84,88,89,91,92,94,100,101,103,104,106,107,118,120],methodolog:72,metric:[14,46,74],microarchitectur:50,might:[4,29,30,40,41,51,60,75,86,98,99,100,106,112,122],mileag:107,million:[10,120],min:[2,4,18,43,45,77,107,112,120],min_block:29,min_count:44,min_desc:29,min_word_freq:10,mind:106,mini:[4,9,14,18,25,29,31,41,46,47,51,57,68],mini_batch:78,minibatch:[4,18,29,46,55,57,75],minim:[20,29,42,44,45,51,54,70,79,108,111,118,122,123,124],minimum:[4,18,86,111,123],minimun:118,minsizerel:[122,123,124],minu:80,minus_grad:80,minusgradop:80,minusop:80,minusopgradmak:80,minusopprotoandcheckermak:80,minut:[31,38,92,98,112],mirror:[30,92],mislead:36,mismatch:18,miss:[54,118],mistak:51,misus:102,mit:112,mix:[5,74,89,97],mixed_lay:5,mixed_layer_attr:5,mixedlayertyp:4,mixtur:106,mkdir:[49,91,104,112,114],mkl:[63,79,87,88,91,92,102],mkl_packed_:61,mkldnn:[4,62,67,88],mkldnn_:62,mkldnn_batch_norm:4,mkldnnactiv:62,mkldnnbase:62,mkldnnlayer:62,mkldnnmatrix:62,mkldnnstream:62,mkldnntester:62,mklml:62,mklpack:61,mklpackedgatedrecurrentlay:61,mklpackedgemm:61,mklpackedlstmlay:61,mklpackedrecurrentlay:61,mlp:56,mlr:16,mnist:[33,42,54,55,75,78,79,106],mnist_random_image_batch_read:78,mnist_train:78,mnist_train_batch_read:78,mobil:[50,51,60,79,104,121],mod:109,mode:[4,22,25,50,61,71,99,118],model:[0,4,5,10,18,19,25,28,29,31,32,40,42,44,45,46,55,60,61,70,71,72,79,81,86,88,89,95,99,100,104,105,109,111,112,118],model_list:[118,120],model_path:120,modelparallel:42,modern:60,modif:[86,93],modifi:[4,42,50,56,81,97,100,101,109,110,112],modul:[5,10,25,42,53,54,69,86,89,101,106],modular:69,modulo:4,moment:[20,106],momentum:[2,18,20,83,102],momentumop:106,mon:113,monitor:[41,74],mono:4,month:30,more:[3,4,5,9,18,26,27,28,30,31,35,38,39,41,42,44,49,50,51,52,53,55,59,60,63,67,68,69,70,74,77,78,79,81,86,87,89,91,92,95,97,98,100,101,102,103,104,106,107,108,109,111,113,120,124,126],most:[4,9,25,26,28,30,38,41,42,52,55,56,67,69,72,74,78,81,86,87,94,97,100,106,107,108,117,126],mostli:[50,126],motiv:79,mount:[39,92,109,112,113],mountpath:[112,113],move:[4,31,35,49,51,72,92,107,112,126],movement:107,movi:10,movidiu:51,movie_categori:10,movie_info:10,movie_review:10,movieinfo:10,moving_average_fract:4,mpi:[41,71,114],mpirun:114,mse:[51,55,70,75],msra:16,much:[4,18,31,51,63,70,78,81,89,107],mul:[53,60,77,100,101],mul_grad:101,mul_op:[18,101],mul_ratio:4,mul_result:77,mulgradkernel:101,mulkernel:101,mulop:[53,101],mulopgrad:101,mulopmak:101,mult:[40,52],multi:[4,19,46,71,73,88,100,106,110,111,117,118,126],multi_binary_label_cross_entropi:4,multidimension:18,multigradientmachin:73,multinomi:4,multip:19,multipl:[3,4,5,9,14,18,19,25,26,27,35,36,38,40,41,42,44,46,51,52,53,59,71,74,79,86,88,90,97,100,101,106,109,112,118,120],multiple_input:77,multiple_param_attr:77,multipli:[3,4,18,40,100],multiprocess:9,must:[1,3,4,5,9,11,18,28,36,45,60,63,64,67,74,76,77,78,79,85,90,97,100,101,103,109,111,112,118,120,122,124],mutabl:[87,103],mutable_data:[63,87,101,103],mutex:41,mutuable_data:[87,103],mxnet:[29,40,41,51],my_cluster_nam:112,my_external_dns_nam:112,my_lib:109,myerrorclip:45,myfil:9,mypaddl:113,naiv:40,name:[2,3,4,5,7,11,14,18,22,25,26,27,28,29,31,33,34,36,39,40,42,46,50,53,56,59,62,63,64,66,67,69,74,75,77,79,82,84,85,89,90,92,94,95,97,98,100,101,102,107,108,109,111,113,115,116,118,120,123,126],name_:74,name_prefix:33,namespac:[29,57,65,77,100,101,113],nativ:[4,50,99],natur:[18,35,38,44,69,89,120],navig:104,ncall:106,nccl1:71,nccl2:71,ncclinit:71,nchw8:88,nchw8c:88,nchw:[4,18,62,67],ndarrai:[11,25,33],ndcg:4,ndcg_num:4,ndk:122,nearest:50,nearli:27,necess:89,necessari:[4,28,29,36,38,45,46,60,64,69,73,77,85,89,100,114],necessarili:[40,100],neck:71,need:[3,4,5,9,16,18,19,20,23,26,27,28,30,34,35,36,38,39,41,42,44,45,46,49,51,52,53,54,59,60,63,67,69,70,71,72,73,74,76,77,79,80,81,83,84,85,86,87,89,91,92,93,94,95,97,100,101,102,103,104,109,111,112,113,117,118,120,122,123,124,126],neg:[3,4,18],neg_distribut:4,neg_overlap:4,neg_pos_ratio:4,neglect:4,neighberhood:71,neither:4,neon:[50,122,124],ner:3,nervana:51,nessesari:86,nest:[4,9,28,29,74,75,90],net:[4,5,12,18,29,54,68,83],netop:[29,79],network:[2,3,4,9,16,18,19,23,24,25,26,27,28,29,31,34,42,44,46,54,56,60,61,62,68,70,72,74,77,78,81,83,85,86,87,88,90,95,100,101,103,107,109,111,118,126],network_config:120,networkadministr:112,neural:[4,5,9,16,18,25,26,28,29,31,42,56,60,61,62,68,72,81,83,87,88,90,95,103,107,109,111,118],neuralnetwork:73,neuron:[18,100],never:[9,60,78,83,112,113],new_block_idx:77,new_dim:18,new_op_and_kernel:102,new_op_desc:45,new_scop:88,new_stat:68,newblock:77,newbuff:63,newer:122,newest:36,newli:[50,123,126],newop:29,newopdesc:77,newprogram:77,newscop:88,newvardesc:77,next:[4,10,28,31,37,41,45,69,71,89,97,100,101,106,107,112,113,118],nextlay:62,nfs4:112,nfs:112,nfsver:112,ngram:10,nic:[117,118],nil:35,nine:10,nlp:4,nltk:10,nms_threshold:4,nms_top_k:4,nnz:100,no_grad_dict:28,no_grad_set:[20,27,28,101],no_gradi:28,no_sequ:4,node1ip:114,node2ip:114,node3ip:114,node:[4,30,38,40,42,44,56,60,69,71,79,98,100,109,110,111,112,113,114,118,126],node_0:112,node_1:112,node_2:112,node_id:109,nodeattr:56,nodeentri:56,nodefil:110,nodesep:56,nohup:109,nois:[4,31,54,109],noisi:[4,54],non:[4,18,31,50,51,84,100,101,112,118],none:[2,3,4,5,6,7,11,14,16,18,19,20,25,26,27,28,29,45,46,54,56,57,68,69,70,75,77,85,89,97,108,111],noneedtran:63,nonlinear:[16,100],nontranspos:18,nor:[40,98],norm:[5,18,54,67],norm_by_tim:4,normal:[4,5,10,16,18,72,86,97,100,109,113,118],notat:[4,60],note:[2,4,5,7,11,14,18,25,26,28,29,34,35,39,60,64,67,71,78,79,87,88,91,92,101,103,104,107,109,111,112,118,120,123],notebook:[39,92],notest_dist_fit_a_lin:111,noteworthi:51,noth:[1,25,59,77,83,98,118],notic:[4,45,51,71,80,97,99,100],notif:99,notimplementederror:45,notin:88,notingradi:101,notion:89,notori:27,now:[9,28,30,31,44,54,64,67,72,79,80,81,83,111,112,118,123],np_arrai:9,nproc:98,nullptr:[63,74,80,83,100],num:[4,5,109,118],num_channel:[4,5],num_chunk_typ:3,num_class:[4,5,18,56],num_col_dim:18,num_filt:[4,5,18,19],num_flatten_dim:18,num_gradient_serv:[109,117,118],num_head:19,num_hidden:56,num_input:99,num_neg_sampl:4,num_or_sect:18,num_parameter_serv:26,num_pass:[25,113,117,118,120],num_per_batch:11,num_pserv:42,num_repeat:4,num_result:3,num_results_per_sampl:4,num_row:84,num_shard:33,num_step:89,num_train:42,number:[3,4,5,9,10,11,18,19,29,31,33,44,46,60,72,74,78,79,85,89,98,100,106,109,111,112,118],numchunktyp:3,numdevices_:120,numer:[4,101],numeric_grad:27,numerical_grad:27,numlogicaldevices_:120,numofallsampl:3,numofwrongpredict:3,numpi:[2,9,11,18,25,33,50,54,77,78,91,101],numreal:34,numsampl:107,numtagtyp:3,numtimeout:35,nv_:30,nv_gpu:98,nv_librari:30,nv_test:30,nvcc:[30,50,52],nvidia:[50,67,71,87,92,98,107,118],nvlink:71,nvprof:74,obei:3,object:[2,4,5,9,18,25,26,34,42,45,46,54,56,60,65,70,74,77,79,81,83,103,107],observ:[4,100,107],obtain:[4,18,38,72,87],obvious:[30,67,106],occup:60,occupi:[50,74],occur:[10,25,60],occurr:29,oct:113,odd:4,odoti:18,off:[66,91,92,98,109,111,122,123,124,126],offer:[29,79,85],offici:[4,30,99,104,112,122],offlin:[31,33,126],offset:[4,18,34],often:[4,34,56,60,67,99,106,109],ograd:100,old:[27,36,38,69,79,118],older:[18,51,122],omega:81,omit:18,omp_num_thread:106,ompi_comm_world_rank:109,onc:[4,31,35,40,42,44,46,51,55,72,99,100,104,112],one:[1,3,4,5,7,9,16,18,20,23,25,26,27,28,29,31,34,35,36,38,39,40,42,45,46,47,50,51,52,53,54,56,58,59,63,64,67,68,69,70,71,72,73,75,76,77,78,79,80,83,84,86,87,88,89,92,98,99,100,101,102,108,110,111,112,113,114,118,120,126],onehotcrossentropyopkernel:101,ones:[53,54,79,99],onli:[3,4,5,7,11,18,23,25,26,27,28,30,34,35,36,37,38,39,40,42,44,45,46,47,49,50,51,54,55,60,63,68,69,70,71,73,74,77,79,84,85,86,87,88,89,91,93,94,97,98,100,101,102,103,104,107,111,112,113,117,118,120,123,126],onlin:[4,6,31,33,60,78],only_cpu:27,onnx:51,onto:[18,42,44,112,114],op1:[60,88],op1_2_op2:88,op1_to_op2:88,op2:[60,88],op3:60,op_:101,op_check:101,op_class:[79,85],op_desc:[45,58,76],op_info:108,op_kei:63,op_maker_class:[79,85],op_proto:85,op_registri:108,op_siz:45,op_test:101,op_typ:[79,101,102],op_unique_kei:63,opattrcheck:101,opcreat:85,opdesc:[29,45,55,75,76,77,79,80,85,90],opdescbind:[58,80],opdescbuild:29,open:[4,11,18,26,33,51,54,62,78,99,106,109,112],openbla:[91,92,122],opencv:11,openmp:106,openmpi:109,opensourc:71,oper:[4,5,9,11,16,18,20,23,27,29,40,41,42,43,44,46,47,50,51,52,54,55,56,58,59,68,69,70,71,74,76,81,83,86,87,88,90,97,99,100,102,103,107,108,112,118,122],operand:[18,50],operator_grad:27,operator_list:74,operatorbas:[29,53,79,80,85,101],operatorwithkernel:[88,101],opinfo:[58,79,80],opinfomak:58,opinfomap:80,opkernel:103,opkernelbas:102,opkernelkei:79,opkerneltyp:[67,88,102],opmak:85,opposit:18,opproto:101,opprotoandcheckermak:[80,101],opprotomak:[85,101],opregist:85,opregistri:85,ops:[20,27,28,29,30,40,52,55,56,72,75,76,77,79,87,101,126],ops_:29,ops_test:30,opt:[26,70,76,85,91],opt_op_list:70,optest:101,optestmeta:101,optim:[2,12,24,25,27,28,42,43,44,52,54,71,72,73,75,79,81,84,86,100,106,107,108,109,111,122,124],optimis:70,optimize_op:111,optimize_op_attr:77,optimizer_op:111,option:[3,4,14,18,22,26,30,42,54,59,64,75,76,77,79,84,85,86,90,98,100,106,109,110,111,120,122,123,126],optmization_op_list:70,opts_np:76,optyp:[58,85],opwithkernel:84,order:[4,5,9,11,18,25,28,55,64,74,78,81,89,91,100,106,109,112,113,118,126],ordereddict:25,orderli:18,oregon:112,org:[3,4,5,10,16,18,33,48,54],organ:[3,4],orient:85,origin:[4,5,9,10,18,27,50,54,83,89,99,103],other:[3,4,5,9,18,20,29,31,36,40,49,50,51,52,58,60,63,67,68,72,76,81,83,85,86,87,88,91,97,98,99,106,108,109,111,112,113,120,122,123,124,126],otherchunktyp:3,otherwis:[4,9,10,11,18,25,26,28,31,36,38,54,58,63,78,86,97,99,110,120],our:[18,26,28,30,41,42,44,54,58,60,67,71,72,83,89,91,94,97,98,99,100,106,111,112,113,122],out:[4,18,25,26,29,30,35,38,42,45,51,56,60,63,68,69,77,88,95,97,101,103,106,107,112,113,114,118],out_dir:112,out_fals:18,out_left:4,out_mem:97,out_memori:5,out_right:4,out_size_i:4,out_size_x:4,out_tru:18,outer:4,outgrad_:62,outlier:4,outlin:119,outout_lay:25,outout_layer1:25,outout_layer2:25,output:[1,2,3,5,7,9,18,19,22,25,26,27,28,29,33,38,40,44,45,49,52,53,54,55,56,57,58,60,63,64,68,69,72,75,76,77,78,79,80,83,84,85,87,88,89,91,97,98,99,100,101,102,103,106,107,109,113,118,120,122],output_:[4,62,100],output_all_step:68,output_arg_nam:45,output_dim_idx:18,output_dtyp:18,output_fil:22,output_height:18,output_id:4,output_lay:[25,95],output_max_index:7,output_mem:[4,97],output_mod:22,output_nam:27,output_num:68,output_path:33,output_s:18,output_seg:89,output_width:18,outputbuff:34,outputgradi:80,outputh:4,outputw:4,outsid:[4,5,42,83],outupt:89,outv:100,outval_:62,over:[4,5,18,25,26,51,60,71,72,89,99,100,107],overal:[54,72,74,99,126],overfit:[18,81],overhead:107,overlap:[3,4,100],overlap_threshold:[3,4],overload:[50,59],overrid:[29,31,49,63,87,100,101,103],overview:[35,36,37,87],overwhelm:99,overwrit:[49,109],own:[4,28,36,38,45,47,56,58,70,71,72,81,85,101,109,110,112,122,123],owner:[98,99],pack:[89,122],packag:[9,10,35,39,40,53,62,82,91,92,99,101,106,112],pad:[5,18,63,86],pad_c:4,pad_h:4,pad_w:4,padding_attr:4,padding_down:18,padding_h:18,padding_i:4,padding_idx:18,padding_left:18,padding_right:18,padding_up:18,padding_w:18,padding_x:4,paddl:[1,2,3,4,5,6,7,9,10,11,14,16,17,18,19,20,22,23,25,26,29,30,31,33,39,42,49,52,53,54,57,61,62,63,64,65,66,68,69,73,75,79,81,82,85,86,87,89,91,92,94,95,97,98,99,100,101,102,104,106,107,108,109,110,111,112,113,114,118,120,122,126],paddle_begin_init_param:36,paddle_dir:101,paddle_element_typ:36,paddle_element_type_float32:36,paddle_element_type_float64:36,paddle_element_type_int32:36,paddle_element_type_int64:36,paddle_element_type_uint32:36,paddle_element_type_uint64:36,paddle_enforc:[29,63],paddle_enforce_eq:[101,103],paddle_error:[65,66],paddle_exampl:39,paddle_finish_init_param:36,paddle_get_param:36,paddle_gradi:36,paddle_init_num_gradient_serv:109,paddle_init_param:36,paddle_init_port:109,paddle_init_ports_num:109,paddle_init_ports_num_for_spars:109,paddle_init_pserv:109,paddle_init_trainer_count:109,paddle_init_trainer_id:109,paddle_init_use_gpu:109,paddle_job:39,paddle_manylinux_devel:91,paddle_matrix:[65,66],paddle_matrix_cr:66,paddle_matrix_get_shap:65,paddle_matrix_shap:65,paddle_new_etcd_pserver_cli:36,paddle_new_pserver_cli:36,paddle_on_cloud:39,paddle_output:113,paddle_paramet:36,paddle_pserver2:110,paddle_pserver_cli:36,paddle_pserver_client_releas:36,paddle_save_model:36,paddle_send_grad:36,paddle_train:[66,82,110],paddle_with_cuda:74,paddle_with_mkldnn:67,paddlepaddl:[4,5,9,10,11,18,25,30,31,33,36,37,38,39,40,42,48,49,53,54,55,57,59,64,68,69,70,73,74,77,78,79,83,89,90,93,95,97,98,99,100,101,102,106,107,109,110,114,115,116,125,126],paddlepaddle_gpu:94,paddlepaddlebook:92,paddlepaddlehub:92,page:[99,112],pair:[3,19,20,22,28,29,42,55,70,74,79],pairwis:4,pakcag:30,paper:[4,16,18,54,86],para:34,paradigm:[40,47,79],paragraph:68,paragraph_data:68,paragraph_out:68,parallel:[40,41,42,44,71,74,79,88,98,107,109,112,113,118,120],parallel_for:40,parallel_nn:[2,117,118],paralleldo:43,parallelfor:40,paralleliz:86,param:[2,4,5,9,18,20,27,29,36,73,77,87,103],param_attr:[4,5,18,19,34,77,97],param_config_proto:36,param_initi:18,paramattr:[2,4,12,18,97],paramet:[3,5,6,7,9,10,11,14,17,18,19,20,22,24,27,28,29,30,32,34,38,40,42,43,45,47,49,51,52,54,55,56,58,64,68,70,71,75,78,83,85,86,89,91,95,99,100,101,102,103,105,108,110,120,123],parameter_block_s:[117,118],parameter_block_size_for_spars:[117,118],parameter_learning_r:2,parameter_list:[20,28,70],parameter_nam:[25,26],parameter_serv:26,parameter_valu:34,parameterattribut:[2,4,5,34],parameterclient_:34,parametermap:100,parametermutex_:34,parameters_:100,parameters_and_grad:[20,70],parameterserver2:34,parameterset:26,parameterupdat:73,parameterupdater_:34,parametr:4,params_grad:[70,111],paramt:112,paraspars:100,parent:[29,40,75,77,79,100],parent_:[29,83],parent_idx:77,parenthes:79,pars:[9,10,30,42,56,98,112,120],parser:9,part:[3,4,18,19,28,29,38,42,51,63,64,75,77,86,87,97,100,106,107,109,111,126],parti:[98,107,122,123,124],partial:[4,25],partial_sum:4,particip:101,particular:[55,64,79,86,88,107],particularli:16,partit:[31,33,42,44,79,109,112],pass:[4,14,18,23,25,28,29,31,41,45,46,51,54,60,64,70,72,73,76,77,78,79,81,83,86,89,99,100,107,109,110,111,112,113,118],pass_gener:4,pass_id:[25,42,111],pass_idx:78,pass_num:111,passtyp:100,password:114,past:[26,92,95,112],patch:[18,48],path:[3,9,10,11,25,31,35,36,39,60,69,78,86,91,92,109,112,113,118,120,122,123,124],path_to_paddlepaddle_working_directori:104,pattern:[10,31,65,72,81,112],paus:[31,38],pcie:71,pdf:[5,18],peephol:18,peer:71,pem:[26,33,112],pend:[31,35],peopl:98,pep425tag:94,pep8:99,per:[3,4,10,11,18,31,36,71,72,78,81,101,118],percal:106,perf_test:106,perfectli:86,perfom:[118,120],perform:[4,5,16,18,27,36,41,42,46,50,51,54,60,71,73,74,78,79,81,86,87,88,97,98,100,101,105,109,111,117,122,123,124],perftool:[74,106],period:[31,38,118],perm:18,permiss:112,permut:18,peroid:[4,11],persist:[18,47,84,86,90,112],persistentvolum:112,persistentvolumeclaim:112,person:[3,26,59],perspect:[79,107],perturb:[27,100],pex:126,pfs:[33,49],pfsclient:33,pfspath:49,pgp:112,phase:[63,69,71,72,78,80,86,126],philosophi:[72,81],photo:54,phrase:18,physic:[123,126],pick:[18,112,123],pickl:[109,114],pictur:71,piec:[5,40,74,103,111],pil:[11,109],pillow:39,ping:99,pip:[82,91,93,95,99,104,106],pipe:9,pipelin:[46,86],piperead:9,pivot:63,pixel:[4,9,10,42],place:[18,28,29,31,38,42,44,47,59,63,71,79,88,100,103,107,108,111],place_:[59,67,87,88],place_typ:102,placehold:[54,87,103],placement:44,plain:[3,4,9,39,64,66,67],plan:[31,40,63,79,86,100,122],platform:[29,52,63,67,74,87,88,94,99,101,102,103,108,112,122,123,124],pleas:[2,4,5,6,11,18,26,31,35,36,37,40,52,56,67,68,77,78,79,86,87,90,91,92,94,97,98,99,100,101,103,104,106,109,111,112,122,123,124],plot:26,plu:[4,27],plug:[71,72],pne:101,pnpairvalidationlay:118,pnpairvalidationpredict_fil:117,pod:[33,39,40,112,113],pod_nam:112,point:[18,29,31,39,41,50,60,63,71,87,98,99,101,103,106,107,122,126],pointer:[29,36,56,60,67,77,79,83,87,103],polar:10,polici:[18,112],poll:41,pollut:38,polyak:72,ponit:56,pool3:100,pool:[5,18,24,43,60,86],pool_attr:5,pool_bias_attr:5,pool_layer_attr:5,pool_pad:[5,18],pool_siz:[4,5,18,19],pool_size_i:4,pool_strid:[5,18,19],pool_typ:[4,5,18,19],pooled_height:4,pooled_width:4,pooling_lay:5,pooling_typ:4,poolingtyp:7,pop:[29,47],popul:36,popular:[30,54,56,74],port:[30,40,106,109,111,112,113,117,118],port_num:117,portabl:56,portal:104,ports_num:[109,118],ports_num_for_spars:[34,109,117,118,120],pose:31,posit:[3,4,5,18],positive_label:3,possibl:[26,29,35,41,44,60,77,81,90,107],post:[39,48],postpon:81,potenti:[50,107],power:[50,60,71,86,103,126],ppo_workspac:104,pprof:106,practic:[97,100],pre:[4,5,10,26,36,59,60,91,99,112,113,122,124],pre_activ:77,pre_bia:77,pre_stat:[68,89],preambl:77,precis:[3,46,50,72,91],precision_evalu:3,precompil:47,pred:[56,60],predecessor:60,predetermin:[4,118],predic:10,predict:[3,4,18,25,42,81,95,97,118],predict_fil:118,predict_lay:25,predict_output_dir:[117,118],prediction1:25,prediction2:25,prefer:[51,59],prefetch:[34,100],prefix:[3,5,31,33,69,86,112],pregel:41,pregrad:100,prepand:77,prepar:[27,39,73,86,97,115],prepend:[18,77],prepend_oper:77,preprocess:[10,11,86,89,113],present:[26,28,29,74,89],preserv:49,press:16,prev_batch_st:[117,118],prev_cel:18,prev_cell_data:18,prev_hidden:18,prev_hidden_data:18,prevent:[6,18,26,31,35,38,45,81,106],preview:[79,104],previou:[4,5,18,25,28,31,44,49,68,69,100,106,112,118],previous:[4,113],previous_memori:29,price:[10,79,95],prim:63,primari:[51,55],primarili:[72,81],primer:99,primit:[50,62,63,71,89],primitive_desc:63,primitivedesc:63,principl:[26,30,67],print:[2,25,26,42,51,56,77,94,95,106,114,118],print_graphviz:56,printallstatu:107,printer:3,printstatu:107,priorbox:4,prioriti:79,prite:3,privat:[29,66,74,77,83,84,85,87,89,99,103],privileg:[98,112],pro:71,prob:[3,25,95],probabilist:4,probabl:[3,4,18,25,69,86,92,97,99],problem:[4,26,27,30,38,51,54,55,72,79,81,94,98],proc:92,proce:[9,31,78,92,112],procedur:[29,64,103,123],proceed:16,process:[2,4,5,9,18,26,28,29,33,34,35,38,40,41,42,46,47,51,52,56,60,62,64,71,81,85,88,97,99,106,109,110,112,113,118,120],process_num:9,processor:[50,107],produc:[4,5,9,18,31,51,56,78],product:[4,5,18,19,39,51,100,112,113],productgraph:113,prof:106,profil:[12,49,74,86],profilerst:74,proflier:[74,107],program:[9,14,16,18,22,26,28,33,36,38,42,44,47,55,57,60,70,71,74,78,79,83,90,106,107,110,118],programdesc:[40,42,47,51,60,64,76,77,80,90],programm:[42,51,77],progress:[31,35,118],proj:4,proj_activ:18,proj_dim:18,proj_out:18,proj_siz:18,project:[4,5,18,19,39,66,86,97,100,101],promis:[4,5,69],prompt:[49,51,111],prone:26,pronunc:86,prop_kind:63,propag:[4,6,28,51,72,101,118,120],proper:[59,109],properli:[59,98,111],properti:[56,81,118],propos:[18,29,43,44,69,70,71,72,89],proprietari:62,protect:[50,85,100,101],proto:[7,41,59,64,67,75,79,85,90,101],proto_:85,protobuf:[25,29,39,40,42,47,51,52,55,56,60,64,75,77,79,80,85],protoc:[122,124],protocol:[3,108,118,126],provi:109,provid:[4,10,18,26,29,36,39,40,46,47,50,51,54,56,58,59,67,71,72,74,77,81,85,86,87,89,92,95,103,106,107,109,110,111,112,122,123,126],providermemory_threshold_on_load_data:117,provis:[112,126],prune:[4,29],ps_desir:31,pserver:[25,34,36,37,39,79,109,111,112,117,118],pserver_addr:36,pserver_cpu:39,pserver_endpoint:111,pserver_id:32,pserver_mem:39,pserver_num_thread:[34,117,118],pserver_prog:111,pserver_spec:25,pserver_startup:111,pserverstart_pserv:117,pseudo:[26,28,39,80,89],pseudocod:89,psize:100,ptr:[66,87],pub:[18,114],publish:122,pull:[30,79,82,99,122],purpos:[4,31,42,44,59,107],push:[29,47,51,74,82,99],push_back:100,put:[30,31,34,44,60,63,77,87,100,111,113,122],pvc:112,pwd:[91,92,98,104,122],pxe:126,pybind:[29,41,50],pypi:94,pyramid:4,pyramid_height:4,python2:106,python3:94,python:[18,25,26,29,37,41,46,47,51,53,54,55,56,59,65,69,73,74,79,82,87,89,91,92,94,95,97,98,99,104,108,109,111,114],pytorch:[51,74],qualcomm:50,queri:[3,4,19,112],query_id:3,question:[4,26,40,44,85,111,112],queue:[41,44],quick:[56,118],quick_start:[39,112,113,115],quick_start_data:113,quickli:[69,77,79],quickstart:113,quit:[69,107],r14b:122,r_h_val:18,r_t:4,rais:[9,18,19,45,56,109],rajathkmp:54,ran:[44,107],rand:[54,107,118,120],random:[2,4,9,16,18,33,54,67,73,77,78,101,109,118],random_crop:11,random_imag:33,randomli:[11,18,38],randomnumberse:117,rang:[4,9,16,18,33,40,42,50,54,60,74,78,85,99,111,118,120],rank0:71,rank1:71,rank:[4,18,26,89,103,112],rank_tabl:18,rankdir:56,ranktabl:18,rapid:80,raspberri:125,raspberry_pi:124,raspberrypi:124,raspbian:124,rate:[2,3,4,5,6,10,19,20,36,86,100],rather:[28,39,54,89,112],ratio:[4,118],raw:[4,18,64],rdma:118,rdma_tcp:[117,118],reach:[31,60,71,107],read:[9,11,18,25,26,28,31,33,40,41,42,44,51,52,78,79,86,89,92,97,98,104,109,112,122,126],read_from_arrai:60,read_from_realistic_imag:26,read_from_rng:26,read_lock:32,read_minibatch:51,read_mnist_imag:26,read_ranking_model_data:26,readabl:[74,79,106],reader:[0,10,25,33,42,50,54,55,75,86,106,109,111],reader_cr:33,reader_creator_bool:78,reader_creator_random_imag:[9,78],reader_creator_random_image_and_label:[9,78],readi:[31,112,113,126],readlockguard:34,readm:66,readwritebuffer_:34,readwritemani:112,real:[4,18,34,54,78,109],realist:26,realiti:86,realiz:[29,68],realli:[51,81],reaon:102,rearrang:18,reason:[5,26,27,31,41,51,99,111,113],recal:3,receiv:[31,39,41,42,44,68,111],recent:[60,72],reciev:118,recognit:[4,86],recommend:[5,18,26,91,92,93,97,99,100,104,109,110,118,122],recompil:107,record:[9,35,63,74,85,112],recordev:74,recordio:[9,10,26,33,35],recov:[31,89],recover:79,recoveri:35,rectifi:[4,16],recurr:[18,61,68,83,86],recurrent_group:[5,86,97],recurrent_lay:5,recurrent_op:89,recurrentgradientmachin:[66,69,89],recurrentgroup:3,recurrentlay:[61,118],recurs:[28,29,30,49,60,79],recv:[40,42,44,71,112],recvparametertyp:34,red:[54,106],redirect:9,reduc:[4,18,44,50,71,79,92,99,106,110,118,120],reduce_by_kei:79,reduce_mean:54,refactor:[42,44,55,69,72,73,77,81,89],refer:[2,4,5,6,11,16,18,19,22,27,29,31,35,36,37,40,50,56,63,67,68,71,75,77,79,81,83,87,89,90,91,92,97,98,100,101,103,111,113,122,123],referenc:35,reflect:35,reformat:99,refrain:101,reg:85,regard:[18,126],region:[4,83,107],regist:[41,60,67,80,87,88,100,107],register_gpu_profil:107,register_lay:100,register_op:[53,79,80,85,101],register_op_cpu_kernel:[87,101],register_op_cuda_kernel:[87,101],register_op_kernel:102,register_op_without_gradi:[79,101],register_oper:[58,80],register_tim:34,register_timer_info:107,registerop:85,registr:[101,102,108],registri:[39,58,87,113,126],regress:4,regular:[2,12,18,20,28,100,112],regularization_coeff:23,reiniti:63,reinstal:91,rel:[5,18,27,38,81,101,122],relat:[31,38,39,50,67,74,83,88,99,106,113,123,124,126],relationship:[80,87],releas:[82,86,112,122,123,124],relev:101,reli:[27,40,69,70,72,81,101,106],reliabl:[31,81],relu1:56,relu2:56,relu:[4,54,56,60,100],relwithdebinfo:106,remain:[18,89],remaind:18,rememb:[4,99],remot:[2,30,34,42,79,99,100,112,118,120],remoteparameterupdat:[34,37,118],remov:[9,18,28,42,49,51,69,99,118,122,123],ren:16,renam:[28,49,50,94],reorder:63,reorder_primit:63,reorgan:4,repeat:[18,29,55,75,76,84,85,90,106],repeatedli:[55,60],replac:[30,35,58,72,80,86],repli:99,replic:42,replicaset:39,repo:[30,99,104,124],report:[35,50,51,74,107],reportdataset:35,repositori:[4,104,122],reprenset:18,repres:[4,5,18,28,29,35,40,42,44,45,51,56,64,67,69,72,77,79,81,84,87,89,90,97,100,112],represent:[4,18,36,42,52,54,55,60,67,69,84],reproduc:98,request:[30,31,34,38,40,79,82,99,112,113,126],requir:[3,4,20,26,28,31,36,38,39,42,44,45,49,50,56,60,62,68,72,74,75,76,79,81,84,85,86,90,94,98,99,100,101,104,109,112,113,122,124,126],requisit:60,rerun:101,research:[10,18,42,51],reserv:[18,49],reserveoutput:100,reset:[4,14,18,31,46],reset_program:[14,46],resetingrad:62,resetinvalu:62,resetoutgrad:62,resetoutvalu:62,resetxxx:62,reshap:[27,78,103],reshape_s:4,resid:[18,98],resiz:[11,34,87,101,103],resize_s:11,resize_short:11,resolv:[30,99,113],resourc:[42,47,71,74,87,102,112],respect:[18,19,27,45,50,54,68,97,100,118],respons:[4,34,41,42,46,54,71,72,73,81,112,113],rest:[18,29,39,48,52,88,126],restart:[31,36,112,113,126],restartpolici:[112,113],restor:[27,72],restrict:[81,83,106,118],result:[1,3,4,17,18,22,25,27,28,35,46,54,55,56,60,64,69,70,71,73,101,103,106,107,108,112,118],result_fil:3,resum:38,retain:103,retran:112,retriev:[29,69,83,98,100,106,113],retriv:109,return_op_list:20,return_seq:5,reuqest:82,reus:[29,38,69,78,79,100,101],rev:98,revamp:42,reveal:[26,106],revers:[4,5,18,28,97],review:[10,40,113],reviews_electronics_5:113,rewrit:[30,41,101],rgb:[4,11],rho:6,rid:51,right:[4,27,28,29,30,39,46,60,79,81,99,102],ring:71,risk:28,rkt:[39,98],rmsprop:72,rmspropoptim:72,rnn:[4,5,29,51,54,69,77,79,83,86,105,117],rnn_bias_attr:97,rnn_layer_attr:97,rnn_out:97,rnn_output:89,rnn_step:4,rnn_use_batch:[61,117,118],rnnalgorithm:69,rnnlm:10,rnnstep:89,roadmap:[86,89],robust:[4,16],rocmplac:67,roi:4,role:[10,26,35,36,42,71,111,112],rollback:77,root:[6,7,28,71,112,113,123],rot:4,roughli:86,round:[50,71],routin:[50,62,71],row:[3,4,9,18,34,41,100],row_id:4,rows_:84,rpc:35,rpcserver:35,rpi:124,rpi_arm_neon:124,rpi_toolchain:124,rsize:112,rtk:126,rtype:9,rule:[3,18,28,42,45,51,55,100,112],run:[26,27,28,29,30,31,39,40,42,43,44,46,50,51,52,53,54,55,56,60,63,67,68,70,71,72,74,75,76,77,79,82,83,84,86,87,88,93,94,95,98,99,100,102,103,104,106,107,109,110,111,112,114,115,116,118,122,123,124,126],run_test:91,runinitfunct:107,runnabl:44,running_on_cloud:39,runserv:104,runtim:[22,29,40,41,42,58,68,79,90,92,102,110,122],runtime_table_:29,s_block:28,s_recurrent_group:97,safe:39,sai:[4,52,55,57,60,78,98,118,120],said:51,sake:100,same:[3,4,5,16,18,19,25,26,27,35,36,38,40,41,42,53,54,56,59,60,68,69,71,77,79,80,83,86,88,89,91,97,101,102,103,110,111,112,120],samping_id:4,sampl:[3,9,10,18,46,54,77,85,92,109,110,118,120],sample_id:3,sample_num:3,sampler:54,satifi:[3,60],satisfi:[30,63,84,94,112],save:[4,9,25,31,33,35,36,39,40,42,55,56,60,64,72,84,90,98,109,112,113,118,120],save_dir:[113,118,120],save_only_on:[117,118],save_parameter_to_tar:25,save_persist:111,saving_period:[117,118],saving_period_by_batch:[117,118,120],scalabl:79,scalar:[4,18,28,29,57,89],scale:[1,16,19,42,44,72,80,85,86,101,109],scaleop:101,scaleopmak:[79,101],scalingproject:4,scan:[18,28,35,60,79],scatter:[4,28,71],scenario:[69,117],scene:117,schdule:112,schedul:[35,39,44,112],scheduler_factor:2,scheme:[3,6,34,81,101],scienc:60,scope:[27,40,43,47,52,88,108],score:[3,4,18,69],scorer:86,scp:114,script:[10,71,91,98,101,109,110,112,114,122],sdk:123,search:[4,31,83,91,97,118],second:[4,18,26,40,49,51,54,56,68,69,75,76,78,83,85,101,110],secret:112,section:[28,44,51,77,97,99,100,106,112],see:[4,5,18,26,28,31,40,41,44,50,51,77,86,99,101,103,106,107,111,112],seed:[16,18,107,118],seem:[30,41,50,51,86,94],seen:[19,81,101],segment:[3,18,68,89,103],sel_fc:4,selcet:4,select:[4,18,69,112],selected_generation_scor:69,selected_id:[4,69],selected_indic:4,selected_row:[84,90],selected_rows_desc:[84,90],selected_scor:69,selectedrow:[58,90],selectiv:4,selector:113,self:[27,45,46,54,56,60,61,62,64,70,77,89,100,101],self_addr:40,selfnorm:4,semant:[10,26,69,82],semaphor:41,semat:26,send:[31,36,40,42,44,59,71,79,85,99,109,111,112,118],send_back_parameter_typ:34,sendbackparameterspars:34,sendbackparametertyp:34,sendparameterrequest:34,sendparameterrespons:34,sens:[72,81,99,106],sensit:4,sent:[26,36,40,42,79,85,90,113],sentenc:[4,10,51,68,69,89,97],sentence_input:89,separ:[3,18,22,36,42,53,72,80,81,109,111,118],seper:89,seq:[4,10],seq_len:89,seq_pool:4,seq_silc:4,seq_text_print:3,seq_typ:9,seqtext_evalu:3,seqtoseq:4,seqtoseq_net:4,sequenc:[1,3,4,5,7,9,10,18,28,29,40,47,51,55,61,70,75,86,89,99,100],sequence_group:4,sequence_nest_group:4,sequencesoftmaxop:18,sequencestartposit:4,sequencetextprint:3,sequencetyp:4,sequenti:[4,29,40,41,97],seri:[5,94],serial:[25,29,35,64,73,79],serializ:[79,90],serv:[42,50,79,89,92,107,109,112],server:[26,30,34,37,38,42,52,71,79,91,100,110,117,126],server_endpoint:111,serverless:31,servic:[106,109,126],sess:[54,56,70],session:[56,70,76,107],set:[2,3,4,5,9,10,11,18,19,22,25,26,28,31,39,54,58,60,63,67,68,69,74,76,77,79,80,83,86,87,89,91,97,98,99,100,101,103,104,105,106,107,109,110,111,112,113,117,118,120,123,124],set_active_typ:100,set_attr:45,set_default_parameter_nam:2,set_drop_r:100,set_float_el:27,set_input:[4,45],set_output:45,set_siz:100,set_typ:[45,100],setdatatyp:84,setdefault:101,setp:112,setq:98,settup:100,setup:[42,72,82,100,101,126],seven:86,sever:[3,4,27,34,42,44,54,68,69,71,73,74,77,84,87,89,91,109,110,112,120],sexstant:126,sgd:[20,25,26,31,39,44,72,73,84,108,109,111],sgd_optim:[108,111],sgdasync_count:117,shall:[28,30],shaoq:16,shape:[3,4,9,14,18,19,25,27,28,29,42,54,57,67,68,75,77,79,84,86,87,101,103,108,111],shard:[31,32,33,34,35,36,38,42,44,109,112],share:[4,18,30,54,66,73,77,79,81,86,87,89,98,101,107,118],shared_bia:5,shared_bias:4,shared_librari:30,shared_ptr:[63,65,66,83,87,103],shell:[92,112],shift:[4,18],shorten:4,shorter:11,should:[2,3,4,9,11,14,16,18,19,20,22,23,25,26,27,28,29,36,39,41,42,45,46,50,52,53,54,58,59,63,67,68,69,70,72,73,74,75,78,79,80,81,84,85,86,88,89,90,95,97,101,102,104,110,111,112,122],should_be_fals:26,should_be_tru:26,show:[3,6,28,29,31,49,51,57,60,64,68,71,72,75,89,94,98,103,109,112,113,118],show_check_sparse_distribution_log:[117,118],show_layer_stat:[117,118],show_parameter_stats_period:[113,117,118,120],shown:[4,26,42,46,71,74,86,97,100,103,107,112],shrink:100,shrink_rnn_memori:18,shrunk:45,shuffl:[9,42,111],sid:112,side:[4,25,42,46,60,73,103,109],sig:112,sigint:110,sigmod:85,sigmod_op:85,sigmod_output:85,sigmoid:[4,19,29,85,89,100],sigmoidactiv:5,sign:[48,64,112],signal:110,signatur:112,signific:[86,107],similar:[4,18,29,40,41,42,44,47,51,69,72,74,78,79,81,86,87,88,89,101,106,112,126],similarli:[4,9,51,60,101],simpl:[1,3,4,5,9,10,18,20,25,40,44,50,52,55,56,60,68,72,75,81,83,85,86,89,107,111,118],simple_attent:97,simple_gru:97,simple_lstm:4,simple_rnn:[4,97],simple_transform:11,simpler:73,simplest:112,simpli:[4,11,26,36,42,92,95,97,107],simplifi:[26,69,77,85,86,100,113],simul:[51,123],simultan:112,sinc:[4,5,31,35,37,38,41,42,43,44,51,58,60,63,67,72,77,78,80,81,89,103,107,111,112,123,126],sincer:99,singl:[3,5,9,18,28,31,42,44,46,50,59,71,79,83,86,91,95,100,106,109,113],singleton:[40,43],sinlg:25,sit:42,site:[30,106,112],situat:[28,76,88],size:[3,4,5,9,10,11,18,19,25,31,33,34,36,41,42,50,54,60,64,69,72,77,78,84,85,86,87,89,92,95,97,100,101,103,108,111,118,122,123,124],size_a:4,size_b:4,size_in_byt:63,size_t:[34,87,89,100],sizeof:29,skip:[28,78,99,110,112],slice:[18,40],sliceproject:4,slide:[4,6,10,31],slight:51,slightli:54,slope:[4,18],slopeinterceptlay:4,slow:107,slowli:[98,106],small:[4,10,18,27,40,52,54,62,69,99,100,118],small_messag:[117,118],smaller:[18,27,31,50,69,99],smart:83,smooth:4,snap:113,snapdragon:50,snapshot:[32,38,112],snippet:[53,70,97,100,107,112],sock:39,sock_recv_buf_s:[117,118],sock_send_buf_s:[117,118],socket:118,soft:18,soft_label:18,softmax:[4,5,18,26,29,42,44,51,56,57,69,75,97,100],softmax_param_attr:5,softmax_selfnorm_alpha:4,softmaxoutput:56,softrelu:18,softwar:[50,74,107,126],solid:54,solut:[71,126],solv:[26,28,60,79],some:[2,4,9,11,18,25,26,28,29,30,34,35,36,38,39,42,44,45,50,52,53,54,55,59,60,63,67,68,69,70,75,76,77,78,79,80,83,87,88,89,99,100,101,102,103,107,109,112,117,118,120,122,123,124,126],some_c_api_funct:66,some_inst:66,some_op:[58,68,89],some_python_class:65,somecppclass:65,somedata:25,somegotyp:65,someth:[28,34,77,98,99,106],sometim:[4,74,78,98,107],somewhat:36,somewher:83,soon:31,sophist:100,sort:[4,10,18,89,106,112,118],sort_by_length:89,sortagrad:86,sourc:[4,10,27,30,49,51,54,62,64,66,69,78,79,97,98,106,109,112,113,123],source_dict_dim:[69,97],source_dict_s:69,source_language_word:[69,97],space:[3,4,44,50,77,81,86,97,98,107],space_seperated_tokens_from_dictionary_according_to_seq:3,space_seperated_tokens_from_dictionary_according_to_sub_seq:3,span:74,spars:[2,4,6,9,18,34,41,100,103,109,112,118],sparse_binary_vector:9,sparse_binary_vector_sequ:9,sparse_float_vector:9,sparse_float_vector_sequ:9,sparse_non_value_slot:9,sparse_remot:34,sparse_upd:[2,34],sparse_value_slot:9,sparseparam:100,sparseprefetchrowcpumatrix:100,spatial:4,spatial_scal:4,speak:97,spec:[112,113],specfii:118,special:[4,18,28,36,42,50,52,58,67,69,70,101],specialvartypeinfer:58,specif:[18,19,25,28,30,31,42,45,49,52,69,79,83,87,98,101,111,120,122],specifi:[3,4,14,18,26,27,34,35,36,39,40,41,42,43,45,46,47,49,54,64,74,77,83,85,89,92,97,98,99,100,103,104,106,112,118,122,123],spectrogram:86,speech:[4,86],speed:[4,5,50,64,71,72,91,126],speedup:74,sphinx:[65,104],split:[4,9,19,38,40,43,51,57,69,79,89,109,112,120],split_count:[109,112],spread:28,sqrt:16,sqrt_x:18,squar:[4,6,7,56],square_error_cost:[108,111],srand:118,src:[30,63,109],src_backward:97,src_embed:[69,97],src_forward:97,src_primitive_desc:63,src_word_id:[69,97],src_word_vec:69,sreializ:90,srl:10,ssd:4,ssh:[112,113,114,124],ssh_server:110,sstabl:26,stabil:[4,27,60,101],stabl:[82,112],stack:[18,47,79,89,112],stackexchang:4,stage:[30,37,43,54,60,63,86,90,110,122],stale:31,stamp:107,standalon:122,standard:[2,9,16,18,41,51,79,81,86,94,98,106],stanford:[10,27,113],star:30,start:[4,5,18,25,28,30,31,34,35,36,38,39,41,42,43,69,71,73,74,91,92,94,97,98,106,107,110,114,118,121],start_mpi_train:114,start_op_idx:28,start_pass:[117,118],start_po:4,start_pserv:118,startup:[18,31,39,51,112],startup_program:[14,18,20],stat:[107,118],state:[4,5,14,18,20,29,31,46,47,68,69,74,83,86,89,97,102,113,118],state_act:[4,5],statem:60,statement:[51,55,60,100,112],static_cast:[63,103],staticinput:[4,97],statist:[4,14,16,46,74,118],statset:107,statu:[39,69,107,112,113],status:113,std:[25,30,34,56,58,59,63,65,66,74,76,79,80,83,85,87,100,101,103,118],stdbuf:109,stderr:110,stdout:[9,110],step1:18,step:[4,5,7,18,20,27,29,31,36,42,44,46,51,54,55,61,69,72,73,77,79,85,86,89,91,92,97,99,100,106,107,109,112,113,114,122,124,126],step_gradi:28,step_id:89,step_input:89,step_net:29,step_output:89,step_scop:79,stepnet:[29,68,79,83],still:[28,35,38,42,51,60,80,94,103],stirng:77,stmt1482205552000:112,stmt1482205746000:112,stochast:[6,31,35,38,72,109],stop:[4,77,98,110,113,118],stop_gradi:[18,77],storag:[48,50,109,112,113],store:[3,4,10,18,25,27,29,30,34,47,56,58,64,67,69,73,75,77,79,80,81,83,89,100,101,103,104,109,112,113,114,118,123,124],str:[11,14,18,25,28,39,89,120],straight:[75,78,84],straightforward:63,strategi:[7,31,77,118],stream:[9,42,63,74,87,102],stream_:87,streamid:22,street:4,strict:[78,109],stride:[4,5,18,63,67,86],stride_h:18,stride_i:4,stride_w:18,stride_x:4,string:[3,4,9,11,18,22,25,28,29,35,49,56,59,64,74,75,76,77,79,80,83,84,85,90,100,101,112,118],strip:106,strongli:109,struct:[35,36,48,50,58,59,66,67,74,80,85,88,102],structur:[28,29,35,51,54,64,69,75,77,79,84,110,112],sts:112,stuff:99,style:[4,79,85,91],sub:[3,4,9,18,26,28,38,40,44,54,60,68,71,73,77,97,100,122],sub_block:28,sub_nest_seq:4,sub_sequ:4,subclass:[20,77],subcommand:49,subgradi:6,subgraph:[44,54],submiss:42,submit:[63,79,104,109,112,117,118],subnet0:112,subnet:[26,112],subobjectpath:113,subscript:18,subsequ:[4,71],subsequenceinput:4,subset:[18,100],succ:60,succeed:[35,113],success:[4,36,112,113],successfulcr:113,successfulli:101,successor:118,sucess:60,sucessor:60,sudo:[98,112],suffer:27,suffici:118,suffix:[14,39,94,109],suggest:[4,30,99,107],suit:126,suitabl:[84,87,118],sum:[4,6,19,28,29,32,43,58,77,97,100],sum_op:28,sum_x:18,sume:18,summar:[54,74],summari:74,summat:18,sumopgradmak:80,sun:16,supercomput:60,suppli:[18,84],support:[2,3,4,6,7,9,11,18,27,29,31,38,39,40,41,42,44,51,53,54,60,63,64,67,69,72,73,74,76,78,79,80,81,84,86,88,91,92,94,95,97,98,100,101,103,104,107,109,112,118,122,123,124,126],support_inplac:60,suppos:[5,18,19,30,40,53,84,100],suppress:[4,49],sure:[18,91,98,100,106,111,112],surpass:[4,16],svs:85,swagger:48,swig:[37,65,66,91,122,123],switchop:29,sychron:71,symbol:[4,29,56,66,94],symbols_ready_:29,symbolt:[29,79],symlink:99,sync:[31,72,81,118],sync_with_cpp:106,syncflag:100,synchron:[31,35,41,63,71,74,109,112,118],syntax:[40,47,51,69,78],sysroot:122,system:[29,30,31,36,38,41,42,44,48,53,54,60,62,86,91,92,94,101,104,106,109,113,122],t_max:18,t_min:18,tab:94,tabl:[3,4,18,29,40,51,58,64,84,90,123],tablelookup:84,tablelookupgrad:84,tablelookupop:84,tableproject:4,tag:[3,10,82,92,97,109],tagtyp:3,tail:69,take:[3,4,5,9,18,25,26,28,29,30,31,38,40,41,42,45,47,50,52,54,55,57,58,60,63,67,72,75,76,77,78,79,80,87,88,89,91,97,98,99,100,101,102,106,107,109,111,112,113],taken:[4,45,56,60,67,89],talk:[36,52,124],tangl:106,tanh:[4,5,54,69,97,100],tanhactiv:5,tanhshrink:18,tar:[11,25,112],tarbal:112,target:[4,10,18,20,25,28,29,30,45,47,54,56,70,76,79,91,97,101,122,123,124],target_block:[28,45],target_dict_dim:97,target_dict_s:69,target_dictionary_dim:4,target_language_embed:4,target_language_word:97,target_link_librari:30,target_word:69,targetinlink:4,task13:86,task14:86,task:[3,4,42,64,69,74,85,97,111,120],task_queu:35,taskentri:35,taskqueu:35,tbd:[37,63,86],tcp:[112,118],tear:107,technic:[28,31,111],techniqu:[18,60,97,100,106],technolog:[51,98],tee:113,tell:[31,35,36,69,85,92,107,122],templat:[53,63,85,87,101,102,103,113,126],tempor:[4,18,86],temporari:[14,28,39,47,60,72,77],tempori:60,ten:98,tensor:[18,19,27,30,40,41,43,44,50,51,52,54,56,58,59,63,64,67,68,69,84,89,90,101,108],tensor_arrai:40,tensor_array_read:89,tensor_array_s:89,tensor_array_stack:89,tensor_array_unstack:89,tensor_array_writ:89,tensor_data:64,tensor_in:88,tensor_s:27,tensor_test:30,tensor_to_check:27,tensorarrai:43,tensorarraydesc:89,tensordesc:[64,84],tensorflow:[29,40,41,42,44,51,54,57,81,89,103],term:[4,5,18,31,80,81,86],termin:113,terminolog:60,tessorarrai:89,test100:10,test10:10,test1:33,test:[4,9,10,11,18,25,26,27,30,56,66,72,78,82,95,98,103,107,108,109,111,114,117],test_:101,test_all_data_in_one_period:113,test_check_grad_ingore_i:101,test_check_grad_ingore_x:101,test_check_grad_norm:101,test_check_output:101,test_data_dir:109,test_fcgrad:100,test_gpuprofil:107,test_layergrad:100,test_mkldnn:62,test_mklpack:61,test_mul_op:[91,101],test_norm:101,test_pass:[117,118,120],test_period:[117,118,120],test_recurrent_op:99,test_wait:[117,118],testa:26,testb:26,testbilinearfwdbwd:107,testcas:101,testconfig:100,testfcgrad:100,testfclay:100,testlayergrad:100,testmodel_list:117,testmulop:101,testq:26,testresult:25,testsave_dir:117,testutil:100,text1:49,text:[3,5,9,18,26,64,68,74,86,112],text_fil:9,tflop:107,tftp:126,tgz:[10,94],than:[2,3,4,5,18,28,31,39,40,45,51,52,53,54,77,79,81,89,91,97,98,100,109,111,112,122,126],the_step:51,theano:51,thehalf:18,thei:[4,14,16,18,23,26,28,30,31,36,38,40,41,44,45,49,51,54,55,59,60,69,70,74,77,79,85,89,90,97,98,99,100,101,103,107,109,111,112,117],them:[3,4,5,11,18,26,27,28,30,31,34,39,41,44,45,51,52,53,58,59,60,69,77,78,79,80,83,84,85,88,89,90,98,99,101,104,107,111,112,117,118],themselv:[28,30],theori:[51,107],therefor:[28,60,72],therein:[4,18,29],theta:54,theta_d:54,theta_g:54,thi:[2,3,4,5,6,9,10,11,14,16,17,18,20,22,23,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,47,50,51,52,53,54,55,56,59,60,63,67,68,69,70,71,72,73,74,75,77,78,79,80,81,84,85,86,87,88,89,92,94,95,97,98,99,100,101,102,103,104,106,107,108,109,111,112,113,118,120,122,123,124,126],thin:58,thing:[42,54,79,87,107],think:[26,30,111],third:[4,31,56,101,106,107,122,123,124],third_parti:[4,62,122,123,124],thirt:98,those:[4,29,30,31,53,55,56,57,75,122],though:[89,126],thought:[30,107],thread:[40,41,43,74,100,106,107,118,120],thread_count:43,thread_id:74,thread_id_:74,thread_local_rand_use_global_se:[117,118],thread_pool:43,threadblocks:22,threadid:120,threadloc:107,threadpool:40,three:[3,4,18,19,27,28,31,41,46,50,51,52,55,63,69,70,73,74,75,78,86,87,118,122],threshold:[2,3,4,18,31,35,45,99,118],thresholdedrelu:18,through:[4,19,28,30,31,35,37,46,60,70,72,97,100,101,104,107,108,109,123],throughout:47,throughput:[107,109],thrust:79,thu:[4,18,38,46,56,60,86,100,112],tier:113,time:[4,5,7,9,18,25,26,27,30,31,35,38,41,42,44,45,51,53,58,60,61,67,68,69,71,74,77,78,79,80,84,85,86,89,90,91,97,98,103,106,107,113,118,120,126],timelin:[4,74,79,107],timeo:112,timeout:[31,35],timeout_sec:9,timestamp:[4,32],timestep:[4,83],tip:[122,123],titan:60,titl:10,tls:48,tmp:77,to_chw:11,to_no_sequ:4,to_sequ:4,to_tar:25,todo:[3,9,10,29,31,35,38,69,85,86],toend:4,togeth:[4,5,9,25,28,89,97,111],token:[3,4,18,26,86,97],toler:[25,27,91,101],too:[10,27,40,41,45,63,88,89],took:126,tool:[74,91,94,97,98,106,111,112,122,124],toolchain:[106,122,123],toolkit:86,top:[3,18,25,68,69,86,101],top_k:[3,18,69],top_level_rnn:68,topic:63,topk_generated_scor:69,topk_id:69,topk_indic:18,topk_out:18,topk_scor:69,toplevel:98,topolog:[26,31,42,56,60,64,73],topoloi:56,topolopi:25,torch:[29,51],toronto:10,total:[18,25,31,44,46,71,74,78,106,107,109,113,126],total_pass:78,tottim:106,toward:51,trace:[29,52,54],track:[31,35,56,77],tractabl:4,tradit:[4,29,50,86],traffic:42,trail:9,train100:10,train10:10,train:[0,2,3,4,9,10,11,16,18,28,29,33,35,36,38,40,45,46,47,51,52,54,55,60,61,64,71,72,73,74,75,76,77,79,81,84,86,87,90,97,100,105,107,115,116,117,123],train_config_dir:112,train_data:109,train_data_dir:109,train_id:112,train_list:109,train_loop:51,train_read:[42,111],trainabl:[4,64,77],traindot_period:117,trainer:[26,32,33,34,35,37,42,44,52,61,62,72,73,79,100,110,111,118,120],trainer_config:[112,113],trainer_config_help:100,trainer_count:[95,109,112,113,117,118,120],trainer_cpu:39,trainer_cr:39,trainer_gpu:39,trainer_id:[109,112,118],trainer_intern:34,trainer_mem:39,trainer_packag:39,trainer_prog:42,trainerid:38,training_rol:111,trainingjob:42,trainingtest_period:117,trainonebatch:34,tran:[63,100,118],trans_var:88,transact:[31,35],transcript:86,transfer:[60,74],transform:[4,5,11,18,79,86,97,100,103],transform_param_attr:5,transformed_st:5,translat:[4,5,60],translation_id:69,translation_scor:69,transpar:[69,110],transpil:[40,111],transport:118,transpos:[4,11,100],transpose_i:18,transpose_x:18,transposedfullmatrixproject:4,travers:[28,55,60],travi:99,treat:[4,18,29,36,60],treatment:[36,50],tree:[4,29,40,47,51,77,108,118,124],trg_dic_siz:69,trg_embed:[69,97],trick:69,tricki:65,trigger:[38,73],trim:4,trivial:[69,89],true_block:[29,57,75],true_imag:78,true_label:78,true_neg:46,true_posit:46,true_read:78,truth:[3,4,18],tune:[2,86,105,106],tuninglog_barrier_abstract:117,tupl:[4,5,9,10,11,14,18,25,28,77,78],ture:4,turn:[4,18,77,78,92],tutori:[91,92,97,100,101,106,107,112,114,115,116,123],twice:[44,54,111],twine:82,two:[3,4,5,18,19,26,28,36,37,38,39,40,41,42,46,49,50,51,52,54,55,58,60,64,67,69,72,74,75,78,79,80,81,83,84,85,86,88,89,90,91,97,101,103,107,110,112,120,122,124],txt:[30,39,49,61,62,100,104,109,112,114],type:[3,4,5,7,9,10,11,14,18,19,20,25,26,28,29,31,34,35,38,39,42,48,49,50,52,58,59,63,64,65,66,68,69,75,76,77,78,79,80,81,84,85,86,87,88,90,95,97,98,100,102,103,109,112,113,118,120,123],type_nam:85,typedef:[36,50,65,66,67,87,102],typeerror:45,typeid:85,typenam:[53,85,87,101,102,103],typic:[3,42,107,123],ubuntu:[82,94,95,106],ubyt:78,uci:10,uci_h:[95,111],ufldl:[4,18],uid:113,uint16_t:50,uint32:[48,64],uint32_t:74,uint64:[64,65],uint64_t:65,unawar:36,unbalanc:118,unbound:[60,97],unchang:18,unclear:38,uncreat:28,under:[30,35,44,71,88,91,92,103,104,109,110,112],underli:[18,69],understand:[16,51,77,86,106,107,126],understand_senti:97,undeterminist:107,uni:86,unidirect:[4,86],unifi:[47,56,84,99],uniform:[2,4,9,16,33,54,77,78,118],uniform_random:77,uniniti:28,uninstal:91,uniqu:[26,29,31,38,39,63,67,77,83,101,109,111,112,118],unique_nam:77,unique_name_gener:77,unique_ptr:[80,83,87,100],unit:[4,5,18,19,30,72,74,81,87,91,97,98,103],unittest:[66,99,101],unittestcheckgrad_ep:117,unix:41,unk:[84,90],unknown:[4,18],unless:18,unlik:[4,18,69,101],unnecessari:[28,86,99],unordered_map:83,unpack:89,unrol:68,unseen:81,unseg:4,unsign:[36,50],unstack:89,unstack_from:89,unsupervis:54,unsupport:101,until:[31,36,43,44,51,60,83,111,112],unzip:122,updat:[2,4,6,18,20,28,31,35,36,42,48,50,54,68,69,70,71,72,73,83,86,89,94,100,106,109,118,120],update_equ:25,update_hook:2,update_memori:29,update_op:70,updatecallback:100,updatestack:112,upgrad:[71,91,94],upload:[31,39,41,48,82,109],upon:31,upper:4,upstream:99,uri:112,url:[9,10,99],usag:[3,4,5,11,18,25,50,57,60,73,77,101,107,109,123],use:[2,3,4,5,7,9,10,11,16,18,20,23,25,26,27,29,30,31,37,42,43,44,47,50,54,56,58,59,60,63,67,69,70,71,73,74,77,83,84,85,86,88,89,90,91,92,94,95,97,98,99,100,101,102,104,106,107,109,112,113,118,120,122,123,124],use_cpu:59,use_cudnn:[18,19,59],use_eigen_bla:122,use_eigen_for_bla:[122,123],use_etcd:25,use_global_stat:4,use_gpu:[95,109,113,117,118,120],use_mkl_pack:61,use_mkldnn:[4,59,62],use_nesterov:20,use_old_updat:[34,117,118],use_peephol:18,use_sparse_remote_updat:34,used:[3,4,5,6,7,9,10,11,16,18,22,25,26,27,29,30,31,37,38,42,45,47,50,51,54,56,60,68,69,72,73,74,77,78,79,81,83,85,87,88,89,91,94,97,98,100,101,103,106,107,112,117,118,120,122,123,124],useful:[4,5,27,50,60,77,83,88,97,100,120,122],usegpu:100,user:[2,4,5,9,10,11,14,16,18,20,22,23,25,26,27,28,29,30,33,35,38,39,40,42,43,44,45,46,47,49,53,54,55,56,58,59,63,67,69,70,71,72,74,77,78,79,80,81,83,85,87,88,89,92,99,102,104,106,109,112,117,118,122,126],user_info:10,user_nam:33,usercert:33,userinfo:10,userkei:33,usernam:33,uses:[4,31,38,40,41,42,50,60,67,68,69,73,74,87,88,91,94,97,98,99,100,103,104,109,112,118,122],using:[2,4,5,9,18,25,26,28,29,30,31,35,36,38,39,41,42,47,49,50,51,53,54,56,58,60,68,70,72,75,77,78,80,81,83,85,86,87,91,92,93,94,95,97,99,100,101,102,103,104,107,109,112,113,114,118,120,122,124],usr:[91,92,109,112,118],usual:[4,18,25,28,39,60,67,74,75,81,87,99,101,106,107,112,118,120],util:[42,61,62,71,97,100,101,102,107,126],uuid:[32,38],v7a:122,v8a:122,val:28,valid:[4,11,18,78,79,83,101,112,123],valu:[2,3,4,7,9,10,11,16,18,19,22,25,27,28,29,31,40,41,45,46,56,57,60,62,64,68,69,70,72,73,75,79,83,84,85,89,90,97,100,101,102,111,112,118,120,122,123],value1:118,value2:118,value_:84,value_evalu:3,value_rang:9,valueerror:[18,19,56],values_:89,vanilla:97,var_nam:[28,88],var_recurs:45,vardesc:[29,55,75,77,79,84],vardescbuild:29,vari:[107,112],variabl:[6,9,10,14,16,17,18,19,20,26,27,29,40,42,44,45,46,47,52,54,55,56,57,58,67,68,69,70,72,75,76,80,81,84,85,86,88,89,100,101,102,106,108,109,112,113,122,123],variablenamemap:101,varialbl:54,varianc:4,variant:[4,58,67,87,89,102],varibal:28,varibl:56,varienc:89,varient:89,variou:[29,41,50,60,81,122],varproto:85,vars_:[29,83],vartyp:[18,84,90],vartypeinfer:58,vec1:4,vec2:4,vec2seq:86,veclib:123,vecter:18,vector:[4,5,9,10,18,26,29,34,36,56,57,63,68,69,74,77,79,80,84,86,89,97,100,103],vectorenable_parallel_vector:117,veloc:20,vendor:30,verb:10,verbos:[49,99],veri:[4,7,30,35,40,44,47,51,53,54,60,63,69,73,78,81,83,86,87,89,97,106,107,110],verifi:[29,100,123],version:[4,5,28,30,39,42,45,49,52,54,56,57,64,69,82,86,91,92,95,98,100,106,107,109,111,112,113,117,118,122,123,124],versu:26,vertic:4,vgg:[5,19],via:[18,28,31,67,93,99,107,111,112,123,126],view:[4,64,67],vim:92,viriabl:109,virtual:[45,58,59,80,87,98,102],virtualenv:98,visibl:[38,83],visit:[25,28],visual:[4,69,107],vlog:[34,99],vocabulari:86,voila:95,volum:[104,113],volumemount:[112,113],volumn:112,vutbr:10,w_f:18,wai:[3,5,18,26,28,36,38,41,47,51,59,60,69,72,77,78,81,89,97,98,99,100,120],wait:[31,36,43,102,109,111,118],walk:123,wang:18,wangkuiyi:30,want:[4,26,39,40,41,46,54,59,67,72,74,76,78,81,83,87,88,89,91,92,98,99,100,104,106,109,118,120,122,124],warn:[25,49],warp:[4,107],warp_ctc:86,warpctc:4,wast:71,watch:31,wbia:112,web:[104,106],websit:104,weight:[3,4,5,6,16,18,19,23,61,64,81,97,100,118,120],weight_act:5,weightlist:100,weights_:100,weights_primitive_desc:63,weights_t:100,welcom:[30,86],well:[18,28,39,41,42,44,51,53,54,81,84,86,100,111,112,118],wer:86,were:[3,30,41,51],west:112,wget:122,wgt:63,what:[2,4,30,51,54,69,77,85,88,101,106,126],whatev:[98,109],wheel:94,when:[2,3,4,6,9,14,18,19,25,27,28,29,30,31,34,35,36,39,40,42,44,45,46,47,49,50,51,52,56,69,71,72,73,74,75,77,79,87,89,91,93,97,98,99,100,101,103,104,106,107,109,112,113,118,120,122,123,126],whenev:[18,77,86,99],where:[4,5,6,16,18,19,26,28,29,31,38,40,42,51,52,55,67,68,69,72,75,79,81,87,89,97,100,101,106,107,108,118,120],wherea:[18,29,35,53,57,87,90],whether:[3,4,11,17,18,25,27,28,29,47,74,78,84,89,91,92,100,101,118,123],which:[2,3,4,5,9,10,11,18,19,25,26,27,28,29,30,31,33,35,36,38,39,40,41,42,43,45,47,50,51,52,53,54,56,58,60,63,64,67,68,69,70,71,73,75,76,77,78,79,80,83,84,85,88,89,90,91,94,97,98,99,100,101,102,103,106,107,109,110,111,112,118,120,122,123,126],while_grad:60,while_loop:[69,89],while_op:28,whileloop:89,whileop:29,white:86,whl:91,who:[28,53,55,71,77,99],whoever:36,whole:[3,9,28,54,57,60,65,66,68,71,76,85,86,99,109,112,113,126],whose:[4,9,18,27,28,31,38,45,68,79,80,85,89,97],why:[5,27,66,98],wide:[30,45,54,94,110,114],width:[3,4,9,11,18,34,65,78,100,101],wiki:[4,30],wikipedia:[4,10],window:[4,7,10,72,86,92,98,122],wirt:56,wise:[4,11,18,44,79,86,103],wish:[91,94,104,109,111],with_avx:[91,92,109,122,123],with_bia:85,with_c_api:[91,122,123,124],with_distribut:111,with_doc:91,with_doubl:[91,100,109],with_dso:91,with_golang:[91,122],with_gpu:[91,98,109,122,123],with_mkl:[61,62,91,122],with_mkldnn:62,with_mklml:62,with_profil:107,with_python:[91,109,122,123],with_rdma:[109,122,123],with_style_check:[91,99],with_swig_pi:[91,122,123],with_test:[91,101],with_tim:[107,109],within:[4,35,42,51,86,123],without:[3,4,20,28,31,36,41,74,77,78,79,86,101,106,109,114],wloop:89,wmt14:97,wmt_shrinked_data:10,won:[107,109],word2vec:[39,109],word:[3,4,10,28,44,55,58,60,68,69,79,85,86,89,97,102,109,120],word_dict:[109,114],word_idx:10,word_vector_dim:[4,69,97],wordcount:86,words_freq_sort:10,work:[4,9,18,26,29,30,31,42,47,50,51,59,70,72,74,77,92,97,98,99,100,104,106,107,109,111,112,113,118,126],worker:[44,90,112],workercount:112,workflow:[79,112],workspac:[99,109,110,118],world:109,worth:108,would:[25,29,30,31,38,41,42,43,44,51,53,54,55,63,70,72,73,77,78,84,86,89,92,98,99,106,111,112,122,126],wouldn:[51,55],wrap:[51,53,54,71,126],wrapper:[5,30,41,53,71,72,80,89,107],write:[9,18,26,31,38,40,42,44,50,51,52,53,56,58,63,70,72,77,78,79,80,87,89,98,105,109,112],write_lock:32,write_to_arrai:60,writer:[26,77],written:[18,22,28,29,40,44,47,54,64,72,79,80,84,91,92,101,103,106,110],wrong:78,wrote:56,wsize:112,www:[10,18],x64:[122,124],x86:123,x86_64:[122,123],x_first_step:18,x_last_step:18,x_neg:27,x_num_col_dim:18,x_po:27,x_reshap:18,x_t:18,x_t_data:18,x_transpos:18,xarg:[3,92,100,114],xavier:16,xavieriniti:18,xcode:123,xcodebuild:123,xeon:102,xgbe0:118,xgbe1:118,xiangyu:16,xmap_read:9,xpu:51,xrang:[27,51,54,74,78,95,100],xx_layer:59,xxx:[26,89],xxxx:32,xxxxxxxxx:112,xxxxxxxxxx:112,xxxxxxxxxxxxx:112,xxxxxxxxxxxxxxxxxxx:112,y_dim:54,y_neg:27,y_num_col_dim:18,y_po:27,y_predict:[18,95,108,111],yaml:[30,110,112,114,126],yancey1989:39,yann:10,yapf:99,year:51,yeild:25,yep:[74,106],yet:[51,86,126],yield:[9,26,33,78],yoshua:16,you:[2,4,5,9,19,25,27,39,42,50,83,91,92,93,94,95,97,98,99,100,101,102,104,106,107,109,110,111,112,114,118,120,122,123,124,126],your:[4,9,25,26,30,34,39,49,79,91,93,94,98,99,100,104,107,109,110,111,112,120,122,123,124,126],your_access_key_id:112,your_secrete_access_kei:112,your_source_root:66,yourself:91,yuang:51,yuyang18:[9,10],yuyang:106,z_dim:54,z_size:54,zero:[2,4,5,6,9,10,14,27,28,31,54,69,73,77,84,100,112,118],zhang:16,zip:[10,77,122],zone:112,zxvf:112},titles:["API","Activation","Parameter Attribute","Evaluators","Layers","Networks","Optimizer","Pooling","Data Reader Interface and DataSets","Data Reader Interface","Dataset","Image Interface","Fluid","DataFeeder","Evaluator","Executor","Initializer","IO","Layers","Nets","Optimizer","ParamAttr","Profiler","Regularizer","Model Configuration","Training and Inference","PaddlePaddle Design Doc","Auto Gradient Checker Design","Backward Building","Design Doc: Block and Scope","Required CMake Function","Design Doc: Distributed Training","\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\uff08Checkpointing\uff09","\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1","Alalysis of large model distributed training in Paddle","Design Doc: Master Server","Design Doc: The Client Library of Parameter Server","Design Doc: Remote Parameter Updater for Cluster Train","Design Doc: Save Model","Submit a Distributed Training Job","Design Doc: Concurrent Programming with Fluid","Design Doc: CSP in PaddlePaddle Fluid","Design Doc: Distributed Training Architecture","Design Doc: Execute the Program with Multi CPU","Design Doc: Parameter Server","Error Clip","Evaluator Design","Executor Design Doc","FileManager\u8bbe\u8ba1\u6587\u6863","PFSClient","Design Doc: float16","Design Doc: PaddlePaddle Fluid","PaddlePaddle Fluid: Towards a Compiled Programming Language","Design Doc: Functions, Operators, and Layers","Design for GAN","Design Doc: Computations as a Graph","Survey on Graph","The IfElse Operator","Design Doc: InferVarType","Problem","Memory Optimization","Intel\u00ae MKL Packed on PaddlePaddle: Design Doc","Intel\u00ae MKL-DNN on PaddlePaddle: Design Doc","Design Doc: Add MKLDNN Kernel in Fluid Operator","Design Doc: Model Format","Paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0","C-API \u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863","Design Doc: The Keys of Operator Kernel Type","RNNOp design","Design: Sequence Decoder Generating LoDTensors","Optimizer Design","Design Doc: NCCL support in Paddle Fluid","Averaging Parameter in PaddlePaddle","Design Doc: The C++ Class Parameters","Introduction","Design Doc: PaddlePaddle Programs","Prune","Design Doc: Python API","Python Data Reader Design Doc","Design Doc: Refactorization Overview","Design Doc: Gradient Operators Registration","Regularization in PaddlePaddle","PaddlePaddle\u53d1\u884c\u89c4\u8303","Design of Scope in Paddle","Design Doc: Selected Rows","Interaction between C++ and Python","DeepSpeech2 on PaddlePaddle: Design Doc","Design Doc: Supporting new Device/Library","Background","Design for TensorArray","Background","Build from Sources","Run in Docker Containers","Install and Build","Install Using pip","GET STARTED","RNN Models","RNN Configuration","Build using Docker","Contribute Code","Write New Layers","How to write a new operator","Add Kernels for a New Device","How to use Eigen in Paddle","Contribute Documentation","HOW TO","Profiling the Python Code","Tune GPU Performance","PaddlePaddle Fluid Source Code Overview","Distributed Training","Cluster Training Using Fabric","Fluid Distributed Training","Distributed PaddlePaddle Training on AWS with Kubernetes","PaddlePaddle On Kubernetes","Cluster Training Using OpenMPI","<no title>","<no title>","Argument Outline","Detail Description","Set Command-line Parameters","Use Case","PaddlePaddle Documentation","Build PaddlePaddle for Android","Build PaddlePaddle for iOS","Build PaddlePaddle for Raspberry Pi","MOBILE","Cluster bootstrapping tool survey"],titleterms:{"\u4e0a\u4f20\u8bad\u7ec3\u6587\u4ef6":33,"\u4e0d\u4f7f\u7528":65,"\u4e0d\u4f7f\u7528swig\u8fd9\u79cd\u4ee3\u7801\u751f\u6210\u5668":65,"\u4e0d\u5bfc\u51fapaddle\u5185\u90e8\u7684\u7ed3\u6784\u4f53":65,"\u4e0d\u5f15\u7528\u5176\u4ed6\u52a8\u6001\u5e93":65,"\u4ec5\u4ec5\u4f7f\u7528void":65,"\u4ece\u5feb\u7167\u6062\u590d":32,"\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":65,"\u4f7f\u7528\u8f6c\u6362\u5e93":33,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":66,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5b9e\u73b0\u6587\u4ef6":66,"\u5206\u5757\u6587\u4ef6\u4f20\u8f93":48,"\u5206\u652f\u89c4\u8303":82,"\u52a0\u901f\u6267\u884c":32,"\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":65,"\u52a8\u6001\u6269\u5bb9":32,"\u539f\u56e0":65,"\u539f\u56e0\u5217\u8868":65,"\u53c2\u8003\u6587\u6863":48,"\u53d1\u5e03docker\u955c\u50cf":82,"\u53d1\u5e03wheel\u5305\u5230pypi":82,"\u540d\u8bcd\u89e3\u91ca":48,"\u57fa\u672c\u8981\u6c42":65,"\u5b9e\u73b0":65,"\u5b9e\u73b0\u65b9\u5f0f":66,"\u5bfc\u51fac":65,"\u5feb\u7167\u4fdd\u5b58\u7684\u8bbe\u8ba1\u5982\u4e0b":32,"\u6307\u9488\u4f5c\u4e3a\u7c7b\u578b\u7684\u53e5\u67c4":65,"\u63a8\u6d4b\u6267\u884c":32,"\u652f\u6301\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u6570\u636e\u9884\u5904\u7406job":33,"\u6587\u4ef6\u4f20\u8f93\u4f18\u5316":48,"\u6587\u4ef6\u8bbf\u95ee\u65b9\u5f0f":33,"\u6587\u4ef6\u8bbf\u95ee\u7684\u6743\u9650":33,"\u6587\u4ef6\u9884\u5904\u7406":33,"\u66b4\u9732\u63a5\u53e3\u539f\u5219":66,"\u672f\u8bed":32,"\u67b6\u6784\u56fe":48,"\u6846\u67b6\u751f\u6210":48,"\u6982\u5ff5\u89e3\u91ca":33,"\u6a21\u5757":48,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9":32,"\u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863":66,"\u6d41\u7a0b\u4ecb\u7ecd":33,"\u751f\u6210sparse\u6587\u4ef6":48,"\u7528\u6237\u4f7f\u7528\u6d41\u7a0b":48,"\u76ee\u5f55\u7ed3\u6784":66,"\u76ee\u6807":48,"\u793a\u4f8b\u7a0b\u5e8f":33,"\u7b26\u53f7":65,"\u7c7b":65,"\u7f16\u8bd1\u9009\u9879":66,"\u7f29\u5bb9":32,"\u800c\u662f\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":65,"\u80cc\u666f":65,"\u8986\u76d6\u4e0d\u4e00\u81f4\u7684\u90e8\u5206":48,"\u8bad\u7ec3\u6570\u636e\u5b58\u50a8":33,"\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1":33,"\u8f6c\u6362\u5e93":33,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u4f7f\u7528c99\u6807\u51c6\u7684\u5934\u6587\u4ef6\u5bfc\u51fa\u4e00\u4e9b\u51fd\u6570":65,"\u8fdb\u884c\u8bad\u7ec3":33,"abstract":[42,43,44,71,126],"book\u4e2d\u6240\u6709\u7ae0\u8282":82,"case":[28,120],"class":[54,73,77,100],"filemanager\u8bbe\u8ba1\u6587\u6863":48,"final":59,"function":[30,53,54,77],"new":[87,100,101,102],"paddle\u52a8\u6001\u5e93\u4e2d":65,"paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0":65,"paddlepaddle\u53d1\u884c\u89c4\u8303":82,"paddlepaddle\u56de\u5f52\u6d4b\u8bd5\u5217\u8868":82,"return":[77,78],"switch":[63,87],"tensor\u5230eigentensor\u7684\u8f6c\u6362":103,AWS:112,Abs:1,DNS:112,E2E:111,EFS:112,For:[30,113],KMS:112,Not:98,The:[29,36,40,47,51,54,55,57,58,67,70,73,79,80,124],Use:[29,75,104,109,113,120],Using:[30,36,94,110,114,122],With:39,about:54,abs:18,absolut:69,access:112,account:112,accuraci:18,action:[61,62],activ:[1,4,62],actor:41,adadelta:6,adagrad:6,adagradoptim:20,adam:6,adamax:6,adamaxoptim:20,adamoptim:20,add:[60,63,102,112],address:112,addto:4,advanc:87,aggreg:4,aggregatelevel:4,alalysi:34,algorithm:[27,31,42,68,76],all:[83,89],analog:40,analysi:[42,60],android:122,api:[0,42,61,62,66,70,72,77,81,85],appendix:126,approach:107,arbitrari:51,architectur:[42,74,97],argument:[49,78,109,117,120,122,124],arrai:27,array_length:18,array_read:18,array_to_lod_tensor:18,array_writ:18,asset:112,assign:18,associ:[83,112],assumpt:126,async:118,attent:97,attribut:[2,60,81],auc:3,auto:27,averag:72,avg:7,aws:112,backgraound:27,background:[44,61,87,88,89,90,101,102],backward:[28,51,55,79,101],base:[39,69],basepool:7,basic:[60,87,126],batch:78,batch_norm:[4,18],batch_siz:78,beam:[69,86],beam_search:4,beam_search_decod:18,benchmark:[61,62],benefit:[44,79],between:[26,41,77,79,85,87],bidirectional_gru:5,bidirectional_lstm:5,bilinear_interp:4,binari:29,bind:101,bla:91,block:[29,52,54,55,75,77,79],block_expand:4,blockdesc:75,book:92,bool:91,bootstrap:126,bottleneck:106,brelu:[1,18],bring:126,bucket:112,build:[28,54,79,91,93,98,104,113,122,123,124],built:107,can:83,capi:66,capi_priv:66,cast:18,ceil:18,challeng:[28,44,76],chang:69,channel:41,check:[4,27,100,110],checker:27,checkpoint:[31,32,38],choic:59,choos:[30,112],chunk:3,cifar:10,classif:3,classification_error:3,classification_error_print:3,client:36,clip:[4,45],close:27,cloudform:112,cluster:[37,109,110,111,112,114,120,126],cmake:[30,61,62,124],code:[39,52,77,99,106,108],column_sum:3,command:[109,119,120],commit:113,common:118,commun:118,compar:126,comparis:77,compat:51,compil:[29,50,52,75,79,91,101,108,122,123,124],complet:51,compos:78,comput:[29,55,63,79,81,103],con:126,concat:[4,18],concept:[77,79,112],concern:62,conclus:[38,56,126],concurr:[40,41],condit:54,config:120,configur:[24,97,105,112,123],conll05:10,connect:4,constantiniti:16,construct:55,contain:[92,113],content:[61,62,66,86,107,112],context:102,context_project:4,contribut:[99,104],control:[60,79],contruct:60,conv2d:18,conv2d_transpos:18,conv:4,conv_oper:4,conv_project:4,conv_shift:4,convert:38,convolut:86,core:[27,77,112],corner:28,cos_sim:[4,18],cost:4,cpu:[43,120],creat:[28,41,78,79,83,112,113],create_arrai:18,creation:[35,72,81],creator:78,credenti:112,crf:4,crf_decod:4,cross:[122,123,124],cross_channel_norm:4,cross_entropi:18,cross_entropy_cost:4,cross_entropy_with_selfnorm_cost:4,csp:41,ctc:[4,86],ctc_error:3,ctc_greedy_decod:18,cuda:[50,91],cudnn:91,cudnnavg:7,cudnnmax:7,current:[50,80],custom:78,data:[4,8,9,18,31,42,78,88,112,113],datafeed:[9,13],dataflow:60,dataprovid:118,dataset:[8,10,31,35,109],datatyp:[9,67],decayedadagrad:6,decayedadagradoptim:20,decod:69,decor:78,deep:[29,51],deepspeech2:86,defin:[101,112],definit:90,delet:112,demo:[54,111,112],dens:38,dep:94,depend:[54,86,91,94],deploi:39,deriv:100,describ:[51,70],descript:[49,79,118],design:[26,27,29,31,35,36,37,38,40,41,42,43,44,46,47,50,51,53,54,55,58,61,62,63,64,67,68,69,70,71,73,75,77,78,79,80,83,84,86,87,89],destroi:[83,112],detail:[34,86,118],detect:[3,4],detection_map:3,detection_output:4,develop:[79,98,105],devic:[87,102,120],devicecontext:87,dictionari:78,differ:[79,87,109,120],directori:112,discrimin:54,discuss:[44,54],dispatch:[31,35],distribut:[26,31,34,39,42,44,109,111,112,118],dnn:62,doc:[26,29,31,35,36,37,38,40,41,42,43,44,47,50,51,53,55,58,61,62,63,64,67,71,73,75,77,78,79,80,84,86,87],docker:[39,92,98,113,122],document:[104,121],doe:78,dot_prod:4,dot_product_attent:5,dotmul_oper:4,dotmul_project:4,down:112,download:[112,113],dropout:[4,18],dure:[69,78],dylib:66,dynam:[31,89],dynamic_gru:18,dynamic_lstm:18,dynamic_lstmp:18,dynet:56,each:94,ec2:112,edit_dist:18,eigen:103,elast:112,elect:38,elementwise_add:18,elementwise_div:18,elementwise_mul:18,elementwise_sub:18,els:29,elu:18,embed:[4,18],engin:54,enough:27,entri:78,environ:[39,122],eos:4,equat:100,error:45,evalu:[3,14,46],event:[25,26,74],evolut:51,examin:106,exampl:[26,30,40,41,57,66],execut:[29,43,51,75,79],executor:[15,47],exp:[1,18],expand:4,expandlevel:4,explain:27,extern:112,fabric:110,factor:4,factorization_machin:4,faq:[93,94],fault:31,file:[29,106,112,113],fill_const:18,fill_constant_batch_size_lik:18,find:112,first_seq:4,float16:50,floor:18,flow:60,fluid:[12,40,41,51,52,63,71,108,111],format:[29,31,64],forward:[55,101],frame:29,framework:[27,102,103],from:[26,38,85,91,93],full_matrix_project:4,fulli:4,functor:87,futur:[51,86],gan:54,gate:97,gated_unit:4,gener:[52,54,69,97,98,106,126],get:[95,111,113],get_output:4,give:78,global:[75,77],glu:19,gotcha:98,gpu:[92,107,118,120],grad_op:28,gradient:[27,28,36,62,80,100],gradient_print:3,graident:27,graph:[55,56,60,79,81],group:[4,112],gru:[5,118],gru_group:5,gru_step:4,gru_unit:[5,18],grumemori:4,hand:107,handler:[26,65],happen:38,hard_shrink:18,hard_sigmoid:18,hardwar:50,have:111,helper:77,hierarchi:29,high:[70,72,81,85],how:[27,34,72,78,79,87,91,101,103,104,105,107],hsigmoid:4,huber_classification_cost:4,huber_regression_cost:4,iOS:123,iam:112,ident:1,identifi:106,identity_project:4,ifels:57,ifelseop:29,im2sequ:18,imag:[4,5,11,39,92,113,122],imdb:10,img_cmrnorm:4,img_conv:4,img_conv_bn_pool:5,img_conv_group:[5,19],img_pool:4,imikolov:10,implement:[27,28,30,34,43,45,46,50,64,68,71,72,77,78,79,80,81,100,101,102,103],increment:18,infer:[25,122],infershap:[75,84],infervartyp:58,ingredi:26,ingress:48,initi:[16,36,54,112,120],insid:83,inspect:112,instal:[93,94,95,111,112,122,123,124,126],instanc:112,instead:78,integr:[87,112],intel:[61,62],interact:85,interfac:[8,9,11,27,31,36,37,47,70,78,83],intermedi:79,interpol:4,introduc:[69,89,111],introduct:[74,81,109,111],is_paramet:17,isn:78,issu:50,job:[31,39,110,112,113,114],join:4,kei:[61,67,112],kernel:[63,67,79,102],kill:110,kmax_sequence_scor:4,kube:112,kubectl:112,kubernet:[39,112,113],l1decayregular:23,l2_distanc:4,l2_normal:18,l2decayregular:23,lambda_cost:4,languag:[29,52],larg:34,last_seq:4,launch:[92,110,114],layer:[4,18,26,53,61,62,77,100,120],layout:67,leaky_relu:18,learn:[29,51],learnabl:4,less_than:18,leval:85,level:[70,72,81,85],libpaddle_capi_shar:66,libpaddle_capi_whol:66,librari:[36,50,67,79,87,122],limit:42,line:[109,119],linear:1,linear_chain_crf:18,linear_comb:4,linux:[110,122],list:[32,78],live:60,load:41,local:[42,83,112,120],lod:69,lod_rank_t:18,lod_tensor_to_arrai:18,lodtensor:[68,69,89],lodtensordesc:90,log:[1,18,99],logic:35,logsigmoid:18,look:106,low:[72,81,85],lstm:[5,118],lstm_step:4,lstm_unit:18,lstmemori:4,lstmemory_group:5,lstmemory_unit:5,machin:[4,69],macro:79,main:54,make:60,manag:[30,109],map:[78,79],master:[31,35,39,40],math:[4,87],mathemat:27,matmul:18,matrix:[62,118],max:7,max_sequence_len:18,maxframe_print:3,maxid:4,maxid_print:3,maxout:4,mean:18,member:54,memori:[4,60,68,87],merge_lod_tensor:18,messag:85,method:69,might:54,migrat:79,mileston:79,mini:78,minibatch:[9,41],misc:4,mix:[4,120],mkl:[61,62],mkldnn:63,mkldnn_helper:63,mkldnndevicecontext:63,mnist:10,mobil:125,model:[24,26,34,36,38,41,51,54,64,69,96,97,110,120],modifi:113,modul:[79,87,103],momentum:6,momentumoptim:20,more:54,motiv:[28,41,47,64,71,76],movielen:10,msrainiti:16,mul:18,multi:[43,52],multi_binary_label_cross_entropy_cost:4,multibox_loss:4,multipl:78,multiplex:[4,18],mxnet:56,name:[83,112],nativ:52,nccl:71,nce:4,necess:77,necessari:79,need:[78,98,107],nest:68,net:19,network:[5,79,97,120],neural:97,nlp:[5,118],non:111,norm:[4,81],normaliniti:16,note:27,numer:27,numpi:27,nvprof:107,nvvp:107,object:31,offset:69,ones:18,onli:[78,83],op_mak:79,openmpi:114,oper:[53,57,60,63,67,72,75,77,79,80,84,89,101],opinfomap:79,opkernel:[79,87,101,102],opproto:85,ops:81,optim:[6,20,31,36,55,60,70,77,105],option:[49,91],opwithkernel:79,order:49,org:104,origin:79,orthogon:83,other:62,out_prod:4,outlin:117,output:[4,110,112],overview:[38,45,47,61,62,79,83,86,108],pack:[61,69],packag:[30,94],pad:4,paddl:[34,71,78,83,103],paddlejob:39,paddlepaddl:[26,29,41,51,52,61,62,72,75,81,82,86,91,92,94,104,108,111,112,113,121,122,123,124],pair:112,paradigm:51,parallel_nn:120,paramattr:21,paramet:[2,4,25,26,31,36,37,39,41,44,62,72,73,77,81,109,111,112,118,119],parameteraverageoptim:72,parent:83,part:55,partit:36,pass:[91,120],path:[38,49],penalti:81,perform:[72,106,107,118],persist:35,pfsclient:[48,49],pfsserver:48,pip:94,place:[60,67,87,102],placement:42,platform:109,pnpair:3,point:[61,112],polici:60,pool2d:18,pool:[4,7],pose:[58,80],potenti:59,pow:18,power:4,precision_recal:3,prefetch:78,prelu:4,prepar:[109,110,111,112,114,123],principl:63,print:3,privat:112,pro:126,problem:[46,58,59,60,67,70,80,88],procedur:126,process:[31,36,39,70,79,98],profil:[22,106,107],program:[29,40,41,43,51,52,75,77,92,109,111],programdesc:[52,75],project:30,propos:[58,80,81],protobuf:84,protomak:101,provid:78,prune:76,pserver:38,pull:92,python:[27,39,42,61,62,68,70,72,77,78,81,85,90,100,101,106],qualiti:79,queue:[31,35],quick:95,randomnumb:118,rank:3,rank_cost:4,raspberri:124,reader:[8,9,26,78],readi:111,realiz:79,reciproc:18,recoveri:31,recurr:[4,5,97],recurrent_group:4,recv:41,reduce_max:18,reduce_mean:18,reduce_min:18,reduce_sum:18,ref:27,refactor:79,refer:[42,44,60,61,62,86,107],region:112,regist:[58,79,85,101,102],registr:[79,80],registri:79,regular:[23,36,81],rel:69,relat:[79,89],relu6:18,relu:[1,18],remark:101,remot:37,remoteexecutor:42,render:112,repeat:4,represent:[29,79],requir:[30,54],reshap:[4,18],resiz:4,result:[110,113],retri:35,reus:77,review:99,rmsprop:6,rnn:[68,89,96,97,118],rnnop:[29,68,79],roi_pool:4,rotat:4,round:18,route53:112,row:[84,86],row_conv:[4,18],row_l2_norm:4,rpc:41,run:[47,91,92,101,108,113],runtim:[39,94],sampl:4,sampling_id:4,save:38,scale:[4,18,31],scale_shift:4,scaled_dot_product_attent:19,scaling_project:4,scope:[29,68,79,83],script:[111,113],search:[69,86],secur:112,select:[36,41,84],selectedrow:84,selective_fc:4,send:41,sentiment:10,separ:79,seq_concat:4,seq_reshap:4,seq_slic:4,seqtext_print:3,sequenc:[69,97],sequence_conv:18,sequence_conv_pool:[5,19],sequence_expand:18,sequence_first_step:18,sequence_last_step:18,sequence_pool:18,sequence_reshap:18,sequence_softmax:18,sequencesoftmax:1,server:[31,35,36,39,41,44,109,111,112,118],servic:112,set:119,setup:[112,122],sextant:126,sgd:118,sgdoptim:20,shape:69,share:[26,28,60,83],should:83,shrink_memori:18,shuffl:78,sigmoid:[1,18],sigmoid_cross_entropy_with_logit:18,simpl:[69,97],simple_attent:5,simple_gru2:5,simple_gru:5,simple_img_conv_pool:[5,19],simple_lstm:5,singl:78,slice:[4,111],slice_project:4,slope_intercept:4,small_vgg:5,smooth_l1_cost:4,soft_relu:18,softmax:1,softplu:18,softrelu:1,softshrink:18,softsign:[1,18],solut:[58,59,60,61,67,76,80,88],some:98,sourc:[91,93,108],spars:[36,37,38,84,120],specifi:120,split:18,split_lod_tensor:18,spp:4,sqrt:18,squar:[1,18],square_error_cost:[4,18],squarerootn:7,stack:29,standard:99,stanh:1,start:[26,95,109,112,113],startup:113,statement:46,step:[68,93],storag:81,store:31,strategi:60,style:99,sub_nested_seq:4,sub_seq:4,subcommond:49,submit:39,suffici:78,suitabl:30,sulut:63,sum:[3,7,18],sum_cost:4,sum_to_one_norm:4,summar:[26,40],summari:64,support:[50,71,87,89],survei:[50,56,81,126],swish:18,synopsi:49,syntax:41,system:[51,112],tabl:[66,86],table_project:4,tanh:[1,18],tanh_shrink:18,task:[31,35,86],tear:112,tecton:126,templat:112,tensor:[4,79,87,103],tensorarrai:[69,89],tensordesc:90,tensorflow:56,test:[61,62,63,91,99,100,101,118,120],text_conv_pool:5,theori:27,thi:83,think:54,three:89,thresholded_relu:18,time:108,timelin:38,timer:107,tip:107,todo:[32,33,43],togeth:83,toler:31,tool:[30,104,107,109,126],toolchain:124,topic:87,topk:18,toward:52,train:[25,26,31,34,37,39,42,70,78,92,109,110,111,112,113,114,118,120],trainer:[25,31,36,38,39,41,109,112],tran:4,trans_full_matrix_project:4,transform:88,translat:69,transpil:[42,43,44,52,60,71],transpos:18,tune:[107,118],ture:51,two:27,type:[41,67,91,101],uci_h:10,uniform:89,uniforminiti:16,unit:[61,62,63,99,100,101,118],unpack:69,updat:[26,37,38,104,111,112],usag:[28,45,68,69,78,103,105],use:[34,78,103],user:31,using:98,util:3,valu:77,value_print:3,vardesc:90,variabl:[28,60,77,79,83,90],vector:118,verifi:112,version:[40,50,94],vgg_16_network:5,volum:112,vpc:112,warp_ctc:4,weightdecayregular:23,what:[34,38,98,107],when:[38,83],whl:94,why:[50,51,72,78,79,89,107],wmt14:10,work:86,worker:40,workflow:99,wrapper:100,write:[99,100,101,102,104],www:104,xavieriniti:16,yaml:113,your:[92,102],zero:18}}) \ No newline at end of file +Search.setIndex({docnames:["api/index_en","api/v2/config/activation","api/v2/config/attr","api/v2/config/evaluators","api/v2/config/layer","api/v2/config/networks","api/v2/config/optimizer","api/v2/config/pooling","api/v2/data","api/v2/data/data_reader","api/v2/data/dataset","api/v2/data/image","api/v2/fluid","api/v2/fluid/data_feeder","api/v2/fluid/evaluator","api/v2/fluid/executor","api/v2/fluid/initializer","api/v2/fluid/io","api/v2/fluid/layers","api/v2/fluid/nets","api/v2/fluid/optimizer","api/v2/fluid/param_attr","api/v2/fluid/profiler","api/v2/fluid/regularizer","api/v2/model_configs","api/v2/run_logic","design/api","design/auto_gradient_check","design/backward","design/block","design/build_system/README","design/cluster_train/README","design/cluster_train/checkpointing","design/cluster_train/data_dispatch","design/cluster_train/large_model_dist_train","design/cluster_train/master_server","design/cluster_train/pserver_client","design/cluster_train/remote_parameter_updater","design/cluster_train/save_model","design/cluster_train/submit-job","design/concurrent_programming","design/csp","design/dist_refactor/distributed_architecture","design/dist_refactor/multi_cpu","design/dist_refactor/parameter_server","design/error_clip","design/evaluator","design/executor","design/file_manager/README","design/file_manager/pfs/pfsclient","design/float16","design/fluid","design/fluid_compiler","design/functions_operators_layers","design/gan_api","design/graph","design/graph_survey","design/if_else_op","design/infer_var_type","design/kernel_hint_design","design/memory_optimization","design/mkl/mkl_packed","design/mkl/mkldnn","design/mkl/mkldnn_fluid","design/model_format","design/multi_language_interface/00.why_plain_c","design/multi_language_interface/01.inference_implementation","design/operator_kernel_type","design/ops/rnn","design/ops/sequence_decoder","design/optimizer","design/paddle_nccl","design/parameter_average","design/parameters_in_cpp","design/profiler","design/program","design/prune","design/python_api","design/reader/README","design/refactorization","design/register_grad_op","design/regularization","design/releasing_process","design/scope","design/selected_rows","design/simple_op_design","design/speech/deep_speech_2","design/support_new_device","design/switch_kernel","design/tensor_array","design/var_desc","getstarted/build_and_install/build_from_source_en","getstarted/build_and_install/docker_install_en","getstarted/build_and_install/index_en","getstarted/build_and_install/pip_install_en","getstarted/index_en","howto/deep_model/rnn/index_en","howto/deep_model/rnn/rnn_config_en","howto/dev/build_en","howto/dev/contribute_to_paddle_en","howto/dev/new_layer_en","howto/dev/new_op_en","howto/dev/new_op_kernel_en","howto/dev/use_eigen_en","howto/dev/write_docs_en","howto/index_en","howto/optimization/cpu_profiling","howto/optimization/gpu_profiling_en","howto/read_source","howto/usage/cluster/cluster_train_en","howto/usage/cluster/fabric_en","howto/usage/cluster/fluid_cluster_train_en","howto/usage/cluster/k8s_aws_en","howto/usage/cluster/k8s_en","howto/usage/cluster/openmpi_en","howto/usage/cluster/src/k8s_data/README","howto/usage/cluster/src/k8s_train/README","howto/usage/cmd_parameter/arguments_en","howto/usage/cmd_parameter/detail_introduction_en","howto/usage/cmd_parameter/index_en","howto/usage/cmd_parameter/use_case_en","index_en","mobile/cross_compiling_for_android_en","mobile/cross_compiling_for_ios_en","mobile/cross_compiling_for_raspberry_en","mobile/index_en","survey/cluster_bootstrapping_tools"],envversion:50,filenames:["api/index_en.rst","api/v2/config/activation.rst","api/v2/config/attr.rst","api/v2/config/evaluators.rst","api/v2/config/layer.rst","api/v2/config/networks.rst","api/v2/config/optimizer.rst","api/v2/config/pooling.rst","api/v2/data.rst","api/v2/data/data_reader.rst","api/v2/data/dataset.rst","api/v2/data/image.rst","api/v2/fluid.rst","api/v2/fluid/data_feeder.rst","api/v2/fluid/evaluator.rst","api/v2/fluid/executor.rst","api/v2/fluid/initializer.rst","api/v2/fluid/io.rst","api/v2/fluid/layers.rst","api/v2/fluid/nets.rst","api/v2/fluid/optimizer.rst","api/v2/fluid/param_attr.rst","api/v2/fluid/profiler.rst","api/v2/fluid/regularizer.rst","api/v2/model_configs.rst","api/v2/run_logic.rst","design/api.md","design/auto_gradient_check.md","design/backward.md","design/block.md","design/build_system/README.md","design/cluster_train/README.md","design/cluster_train/checkpointing.md","design/cluster_train/data_dispatch.md","design/cluster_train/large_model_dist_train.md","design/cluster_train/master_server.md","design/cluster_train/pserver_client.md","design/cluster_train/remote_parameter_updater.md","design/cluster_train/save_model.md","design/cluster_train/submit-job.md","design/concurrent_programming.md","design/csp.md","design/dist_refactor/distributed_architecture.md","design/dist_refactor/multi_cpu.md","design/dist_refactor/parameter_server.md","design/error_clip.md","design/evaluator.md","design/executor.md","design/file_manager/README.md","design/file_manager/pfs/pfsclient.md","design/float16.md","design/fluid.md","design/fluid_compiler.md","design/functions_operators_layers.md","design/gan_api.md","design/graph.md","design/graph_survey.md","design/if_else_op.md","design/infer_var_type.md","design/kernel_hint_design.md","design/memory_optimization.md","design/mkl/mkl_packed.md","design/mkl/mkldnn.md","design/mkl/mkldnn_fluid.md","design/model_format.md","design/multi_language_interface/00.why_plain_c.md","design/multi_language_interface/01.inference_implementation.md","design/operator_kernel_type.md","design/ops/rnn.md","design/ops/sequence_decoder.md","design/optimizer.md","design/paddle_nccl.md","design/parameter_average.md","design/parameters_in_cpp.md","design/profiler.md","design/program.md","design/prune.md","design/python_api.md","design/reader/README.md","design/refactorization.md","design/register_grad_op.md","design/regularization.md","design/releasing_process.md","design/scope.md","design/selected_rows.md","design/simple_op_design.md","design/speech/deep_speech_2.md","design/support_new_device.md","design/switch_kernel.md","design/tensor_array.md","design/var_desc.md","getstarted/build_and_install/build_from_source_en.rst","getstarted/build_and_install/docker_install_en.rst","getstarted/build_and_install/index_en.rst","getstarted/build_and_install/pip_install_en.rst","getstarted/index_en.rst","howto/deep_model/rnn/index_en.rst","howto/deep_model/rnn/rnn_config_en.rst","howto/dev/build_en.md","howto/dev/contribute_to_paddle_en.md","howto/dev/new_layer_en.rst","howto/dev/new_op_en.md","howto/dev/new_op_kernel_en.md","howto/dev/use_eigen_en.md","howto/dev/write_docs_en.rst","howto/index_en.rst","howto/optimization/cpu_profiling.md","howto/optimization/gpu_profiling_en.rst","howto/read_source.md","howto/usage/cluster/cluster_train_en.md","howto/usage/cluster/fabric_en.md","howto/usage/cluster/fluid_cluster_train_en.md","howto/usage/cluster/k8s_aws_en.md","howto/usage/cluster/k8s_en.md","howto/usage/cluster/openmpi_en.md","howto/usage/cluster/src/k8s_data/README.md","howto/usage/cluster/src/k8s_train/README.md","howto/usage/cmd_parameter/arguments_en.md","howto/usage/cmd_parameter/detail_introduction_en.md","howto/usage/cmd_parameter/index_en.rst","howto/usage/cmd_parameter/use_case_en.md","index_en.rst","mobile/cross_compiling_for_android_en.md","mobile/cross_compiling_for_ios_en.md","mobile/cross_compiling_for_raspberry_en.md","mobile/index_en.rst","survey/cluster_bootstrapping_tools.md"],objects:{"paddle.v2":{image:[11,0,0,"-"]},"paddle.v2.image":{batch_images_from_tar:[11,1,1,""],center_crop:[11,1,1,""],left_right_flip:[11,1,1,""],load_and_transform:[11,1,1,""],load_image:[11,1,1,""],load_image_bytes:[11,1,1,""],random_crop:[11,1,1,""],resize_short:[11,1,1,""],simple_transform:[11,1,1,""],to_chw:[11,1,1,""]}},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"]},objtypes:{"0":"py:module","1":"py:function"},terms:{"00m":107,"03m":107,"0424m":107,"0473v3":5,"055ee37d":112,"0630u":107,"06u":107,"0810u":107,"0957m":107,"0_cudnn5":91,"0_cudnn5_avx_mkl":[92,94],"0_cudnn7_avx_mkl":94,"0ab":4,"0rc":109,"0rc1":82,"0rc2":82,"0x10f256d50":56,"0x7ffe4de00110":56,"100gb":107,"100gi":112,"10g":39,"10m":107,"1150u":107,"11\u5b9e\u73b0\u4e86c":66,"11e6":113,"124n":107,"12gb":60,"13m":113,"1490u":107,"1550u":107,"16u":107,"173n":107,"1770u":107,"18ad":112,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":113,"197u":107,"1gb":107,"1st":18,"210u":107,"211839e770f7b538e2d8":5,"215n":107,"228u":107,"2520u":107,"2680u":107,"279n":107,"27m":107,"285m":107,"2863m":107,"28m":107,"2977m":107,"2cbf7385":112,"2nd":18,"302n":107,"30u":107,"328n":107,"32u":107,"32x32":10,"331n":107,"3320u":107,"365e":112,"36u":107,"3710m":107,"3768m":107,"387u":107,"38u":107,"3920u":107,"39u":107,"3rd":123,"4035m":107,"4090u":107,"4096mb":118,"4279m":107,"43u":107,"448a5b355b84":113,"4560u":107,"4563m":107,"45u":107,"4650u":107,"4726m":107,"473m":113,"4gb":118,"50bd":112,"50gi":112,"514u":107,"525n":107,"526u":107,"536u":107,"5460u":107,"5470u":107,"54u":107,"5690m":107,"573u":107,"578n":107,"5798m":107,"586u":107,"58s":113,"5969m":107,"5_cudnn5_avx_mkl":94,"5_cudnn5_avx_openbla":[94,95],"6080u":107,"6140u":107,"6305m":107,"639u":107,"64m":64,"655u":107,"6780u":107,"6810u":107,"682u":107,"6970u":107,"6ce9":112,"704u":107,"7090u":107,"72u":107,"73u":107,"75u":107,"760u":107,"767u":107,"783n":107,"784u":107,"78m":107,"7eamaa":10,"7kb":113,"8250u":107,"8300u":107,"830n":107,"849m":107,"861u":107,"8661m":107,"892m":107,"901n":107,"90u":107,"918u":107,"9247m":107,"924n":107,"9261m":107,"9330m":107,"94u":107,"9530m":107,"983m":107,"988u":107,"997u":107,"99u":107,"9a235":123,"9f18":113,"\u4e00\u4e2a\u5178\u578b\u7684chunk\u5982\u4e0b\u6240\u793a":48,"\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u7684\u6a21\u578b\u7531\u5927\u91cf\u7684\u53c2\u6570\u7ec4\u6210":32,"\u4e00\u4e2achunk\u7531\u6240\u5728\u7684\u6587\u4ef6\u504f\u79fb":48,"\u4e00\u4e2aposix\u517c\u5bb9\u7684\u6587\u4ef6\u7cfb\u7edf":48,"\u4e00\u822c\u4e0d\u5141\u8bb8\u518d\u4ece":82,"\u4e00\u822c\u7531mkl":62,"\u4e0a\u4f20\u5230cloud\u6216\u8005\u4e0b\u8f7d\u5230\u672c\u5730\u7684\u65f6\u95f4\u53ef\u80fd\u6bd4\u8f83\u957f":48,"\u4e0a\u4f20\u65b9\u6cd5":82,"\u4e0a\u6ce8\u518c\u4e00\u4e0b":48,"\u4e0a\u8ff0paddlepaddl":82,"\u4e0b\u4e00\u4e2awheel\u5305\u9700\u8981\u66f4\u65b0\u7248\u672c\u53f7\u624d\u53ef\u4ee5\u4e0a\u4f20":82,"\u4e0b\u5b58\u653e\u516c\u5171\u6570\u636e\u96c6\u5408":33,"\u4e0b\u62c9\u6846\u4e2d\u627e\u5230\u751f\u6210\u76843\u4e2a\u4e8c\u8fdb\u5236\u6587\u4ef6":82,"\u4e0b\u8f7d":48,"\u4e0b\u8f7d\u5230\u672c\u5730":48,"\u4e0b\u8f7d\u5f97\u5230":82,"\u4e0b\u9762\u5206\u522b\u4ecb\u7ecd\u67d0\u4e00\u7c7b\u6587\u4ef6\u7684\u5b9e\u73b0\u65b9\u5f0f":66,"\u4e0d\u4e00\u81f4\u7684\u7531pfsclient\u4e0b\u8f7d\u6216\u8005\u4f20\u8f93chunk\u5b8c\u6210":48,"\u4e0d\u4f7f\u7528\u9759\u6001\u5e93":65,"\u4e0d\u4f7f\u7528c":65,"\u4e0d\u4f7f\u7528swig":65,"\u4e0d\u53ef\u4ee5\u66f4\u6539":82,"\u4e0d\u540c":62,"\u4e0d\u540c\u7248\u672c\u7684\u7f16\u8bd1\u5668\u4e4b\u95f4":65,"\u4e0d\u540c\u8bed\u8a00\u7684\u63a5\u53e3\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u7279\u6027":65,"\u4e0d\u5728":66,"\u4e0d\u5bb9\u6613\u51fa\u9519":48,"\u4e0d\u5d4c\u5165\u5176\u4ed6\u8bed\u8a00\u89e3\u91ca\u5668":65,"\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":65,"\u4e0d\u663e\u793a\u7684\u5199\u6bcf\u4e2a\u7c7b\u5177\u4f53\u5305\u542b\u4ec0\u4e48":65,"\u4e0d\u7528mount\u7684\u65b9\u5f0f\u6765\u8bbf\u95ee\u6570\u636e":33,"\u4e0e":62,"\u4e0e\u4e4b\u76f8\u5bf9\u7684\u662flocal":48,"\u4e0e\u5176\u4ed6\u7b2c\u4e09\u65b9\u5e93\u4e00\u6837":62,"\u4e0e\u529f\u80fd\u5206\u652f\u4e0d\u540c\u7684\u662f":82,"\u4e0e\u53ef\u80fd\u6709\u7684":82,"\u4e0ebatch":61,"\u4e14\u589e\u52a0\u4e00\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00":65,"\u4e14\u8c03\u7528\u65f6\u4e0d\u80fd\u629b\u51fa\u5f02\u5e38\u6216\u51fa\u73b0\u8fd0\u884c\u65f6\u9519\u8bef":66,"\u4e14c99\u652f\u6301bool\u7c7b\u578b\u548c\u5b9a\u957f\u6574\u6570":65,"\u4e14c99\u76f8\u5bf9\u4e8ec11\u4f7f\u7528\u66f4\u52a0\u5e7f\u6cdb":65,"\u4e25\u683c\u7684\u547d\u540d\u89c4\u8303pep":82,"\u4e2a\u6027\u5316\u63a8\u8350":82,"\u4e2d":[61,62,65,66],"\u4e2d\u4f1a\u63d0\u4f9b\u4e00\u4e9b\u5fc5\u8981\u7684\u63a5\u53e3\u548c\u51fd\u6570":62,"\u4e2d\u5199\u5165json\u5185\u5bb9":32,"\u4e2d\u5b8c\u5168\u4e00\u81f4":65,"\u4e2d\u5b9e\u73b0\u4e86\u4e00\u4e2amerge\u7684\u65b9\u6cd5":62,"\u4e2d\u5b9e\u73b0\u7684\u7ed3\u6784\u4f53":66,"\u4e2d\u5bf9\u5e94\u7684layer\u5904":61,"\u4e2d\u5f15\u5165\u7684":61,"\u4e2d\u63d0\u4f9b\u4e00\u4e2a\u4e0emkl\u6709\u5173\u7684\u603b\u5f00\u5173":62,"\u4e2d\u6839\u636e":61,"\u4e2d\u6dfb\u52a0":61,"\u4e2d\u6dfb\u52a0\u4e00\u4e2a":62,"\u4e2d\u7684\u7248\u672c\u4fe1\u606f":82,"\u4e2d\u8fd0\u884c\u4efb\u52a1\u7684\u89d2\u5ea6":33,"\u4e3a":[61,62],"\u4e3a\u4e86\u5c3d\u53ef\u80fd\u5c11\u7684\u5728\u7236\u7c7blayer\u4e2d\u6dfb\u52a0\u53d8\u91cf\u6216\u8005\u51fd\u6570":62,"\u4e3a\u4e86\u5e94\u5bf9\u4ee5\u4e0a\u7684\u95ee\u9898":48,"\u4e3a\u4e86\u66b4\u9732\u7684\u63a5\u53e3\u5c3d\u91cf\u7b80\u5355":66,"\u4e3a\u4e86\u66f4\u597d\u7684\u7b26\u5408paddlepaddle\u7684\u4ee3\u7801\u98ce\u683c":62,"\u4e3a\u4e86\u6700\u5927\u7a0b\u5ea6\u51cf\u5c11\u591a\u6b21\u8c03\u7528":61,"\u4e3a\u4e86\u8fdb\u4e00\u6b65\u63d0\u5347paddlepaddle\u5728\u57fa\u672c\u6570\u5b66\u8fd0\u7b97\u7684\u8ba1\u7b97\u901f\u5ea6":62,"\u4e3b\u8981\u529f\u80fd\u5305\u62ec":48,"\u4e3b\u8981\u5305\u62ec":62,"\u4e3b\u8981\u5305\u62ec\u4e86\u6df1\u5ea6\u5b66\u4e60\u76f8\u5173\u7684\u6570\u5b66\u539f\u8bed\u4e0e\u64cd\u4f5c":62,"\u4e3b\u8981\u9488\u5bf9paddlepaddle\u5728\u91cd\u6784\u4e4b\u524d\u7684\u4ee3\u7801\u6846\u67b6\u4ee5\u53cav1\u7684api":62,"\u4e4b\u5916\u7684\u6240\u6709\u5934\u6587\u4ef6":66,"\u4e5f\u4e0d\u4f7f\u7528\u5176\u4ed6\u52a8\u6001\u5e93":65,"\u4e5f\u4e0d\u5e94\u8be5\u62a5\u9519":66,"\u4e5f\u4e0d\u751f\u6210":66,"\u4e5f\u53ef\u4ee5\u4f7f\u7528\u8fd9\u4e9b\u955c\u50cf":82,"\u4e5f\u5c31\u662f\u8bf4\u8f93\u51fa\u7684\u7ed3\u679c\u4e0d\u4f1a\u5728\u539f\u6765\u7684\u6570\u636e\u4e0a\u7d2f\u52a0":62,"\u4e66\u5199":65,"\u4eba\u8138\u8bc6\u522b":33,"\u4ec5\u4ec5\u4f7f\u7528":65,"\u4ec5\u4f1a\u5728\u652f\u6301avx2\u6307\u4ee4\u96c6\u53ca\u4ee5\u4e0a\u7684\u673a\u5668\u624d\u4f7f\u7528mkl":62,"\u4ece":82,"\u4ece\u78c1\u76d8\u6587\u4ef6\u4e2d\u52a0\u8f7duuid\u6587\u4ef6\u540d\u7684\u68c0\u67e5\u70b9\u5feb\u7167\u6587\u4ef6":32,"\u4ece\u800c\u907f\u514d\u4e86packing\u5197\u4f59":61,"\u4eceetcd\u4e2d\u8bfb\u53d6\u8282\u70b9":32,"\u4ed6\u4e3b\u8981\u5305\u542b\u4e86\u5b9e\u9645\u66b4\u9732\u7684\u7c7b\u578b\u7ed3\u6784":66,"\u4ed6\u662f\u5c06":66,"\u4ed6\u7684\u76ee\u6807\u662f\u4f7f\u7528c":65,"\u4ee3\u7801\u751f\u6210\u7684\u7b26\u53f7\u53ef\u80fd\u4e0d\u4e00\u81f4":65,"\u4ee3\u8868\u8fd9\u4e2alayer\u662f\u7528\u4e8e\u8dd1\u5728mkl":62,"\u4ee3\u8868\u8fd9\u4e2ashard\u7684\u6700\u5927index":33,"\u4ee3\u8868shard\u7684index":33,"\u4ee5\u4e0a\u4ee3\u7801\u7684reader\u8f93\u51fa\u7684data":33,"\u4ee5\u4e0a\u547d\u4ee4\u4f1a\u5728\u5f53\u524d\u76ee\u5f55\u4e0b\u751f\u6210100\u4e2a\u6587\u4ef6":33,"\u4ee5\u4e0b":33,"\u4ee5\u4e0b\u7b80\u79f0rnn":61,"\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u628a\u66f4\u591a\u7684\u7cbe\u529b\u653e\u5230\u903b\u8f91\u672c\u8eab\u4e0a":48,"\u4ee5\u53ca":61,"\u4ee5\u53canumpi":33,"\u4ee5\u6b64\u8fbe\u5230\u6700\u597d\u7684\u6027\u80fd":62,"\u4ee5\u793a\u533a\u5206":[61,62],"\u4efb\u610f\u65f6\u523b\u53ea\u53ef\u80fd\u540c\u65f6\u6709\u4e00\u53f0\u670d\u52a1\u5668\u6545\u969c":32,"\u4f18\u5316\u524d":61,"\u4f18\u5316\u540e":61,"\u4f1a\u4ee5":[61,62],"\u4f1a\u4f7f\u7528\u76f8\u540c\u7684\u539f\u6570\u636e":61,"\u4f1a\u5148\u4e34\u65f6\u4fdd\u5b58\u5728":62,"\u4f1a\u5728":62,"\u4f1a\u5728\u7f16\u8bd1paddlepaddle\u7684\u65f6\u5019\u4e0b\u8f7d\u5e76\u7f16\u8bd1mkl":62,"\u4f1a\u5bfc\u81f4\u4e0d\u540c\u7248\u672cpython\u5728\u4e00\u4e2a\u8fdb\u7a0b\u91cc\u7684bug":65,"\u4f1a\u5f15\u5165":62,"\u4f1a\u628acpu\u7684buffer\u5bf9\u9f50\u4e3a4096":62,"\u4f1a\u6dfb\u52a0\u76f8\u5e94\u7684\u811a\u672c\u5728":62,"\u4f1a\u6dfb\u52a0\u76f8\u5e94\u7684\u811a\u672c\u7528\u4e8e\u6d4b\u8bd5\u548c\u5bf9\u6bd4\u5728\u4f7f\u7528mkl":61,"\u4f1a\u76f4\u63a5\u62a5\u9519\u9000\u51fa":65,"\u4f1a\u81ea\u52a8\u4f7f\u7528mklml\u5e93\u4f5c\u4e3apaddlepaddle\u7684cblas\u548clapack\u5e93":62,"\u4f1a\u81ea\u52a8\u6839\u636e\u786c\u4ef6\u914d\u7f6e":62,"\u4f1a\u88abpickle\u5e8f\u5217\u5316\u6210\u5b57\u7b26\u4e32":33,"\u4f20\u5165":33,"\u4f46":66,"\u4f46\u4e0d\u66b4\u9732":66,"\u4f46\u5e76\u6ca1\u6709\u7ecf\u8fc7\u56de\u5f52\u6d4b\u8bd5":82,"\u4f46\u6240\u6709fork\u7684\u7248\u672c\u5e93\u7684\u6240\u6709\u5206\u652f\u90fd\u76f8\u5f53\u4e8e\u7279\u6027\u5206\u652f":82,"\u4f46\u662f\u53c8\u8fc7\u4e8e\u7410\u788e":66,"\u4f46\u662f\u5728mkl":62,"\u4f46\u662f\u5728paddlepaddle\u4e2d":62,"\u4f46\u662f\u6574\u4e2a\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4e0d\u9700\u8981\u4efb\u4f55\u8f6c\u6362":62,"\u4f46\u662f\u6ce8\u610f\u7684\u662f":62,"\u4f46\u662f\u89e3\u91ca\u6027\u8bed\u8a00":65,"\u4f5c\u4e3a\u53e6\u4e00\u4e2a\u7b2c\u4e09\u65b9\u5e93\u96c6\u6210\u8fdbpaddlepaddl":62,"\u4f5c\u4e3a\u5b58\u50a8\u7cfb\u7edf":33,"\u4f5c\u4e3a\u7c7b\u53e5\u67c4":65,"\u4f7f\u7528":[62,66,82],"\u4f7f\u7528\u4e0b\u9762\u547d\u4ee4":33,"\u4f7f\u7528\u52a8\u6001\u5e93":65,"\u4f7f\u7528\u540c\u6837\u7684\u8bad\u7ec3\u6570\u636eblock":32,"\u4f7f\u7528\u667a\u80fd\u6307\u9488\u7684\u539f\u56e0\u662f":66,"\u4f7f\u7528\u7684\u53c2\u6570\u4e0epaddlepaddle\u7533\u8bf7\u7684buffer\u5171\u7528\u4e00\u5757\u5185\u5b58":62,"\u4f7f\u7528\u76f8\u5bf9\u8def\u5f84\u7684\u5f15\u7528\u65b9\u5f0f":66,"\u4f7f\u7528\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u5b8c\u6210\u5bf9\u65b0\u6570\u636e\u7684\u9884\u6d4b":32,"\u4f7f\u7528\u9759\u6001\u5e93\u548c\u52a8\u6001\u5e93\u96be\u5ea6\u5dee\u4e0d\u591a":65,"\u4f7f\u7528c":66,"\u4f7f\u7528c99\u505a\u63a5\u53e3":65,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c11\u7684\u539f\u56e0\u662f":65,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c89":65,"\u4f7f\u7528regress":82,"\u4f7f\u7528swig\u53ea\u652f\u6301cpython\u89e3\u91ca\u5668":65,"\u4f7f\u7528swig\u9700\u8981\u591a\u8bed\u8a00\u7ed1\u5b9a\u7684\u5f00\u53d1\u4eba\u5458\u719f\u7ec3\u638c\u63e1swig\u914d\u7f6e":65,"\u4f7f\u7528void":65,"\u4f8b\u5982":[33,65,66,82],"\u4f8b\u5982\u5728deepspeech2":61,"\u4f8b\u5982\u5bf9\u4e8ejava\u6216\u8005python":65,"\u4f8b\u5982\u5bf9\u4e8ejava\u6765\u8bf4":65,"\u4f8b\u5982\u5bf9\u4e8epython":65,"\u4f8b\u5982c":65,"\u4f8b\u5982java\u4e0epython\u7684\u9519\u8bef\u5904\u7406\u662f\u76f4\u63a5\u6254\u51fa\u6765except":65,"\u4f8b\u5982python\u53ef\u4ee5\u4f7f\u7528":65,"\u4f8b\u5982python\u7684":65,"\u4f8b\u5982rnn":61,"\u4f9d\u6b21\u7c7b\u63a8":82,"\u4fbf\u662f\u5c06\u9759\u6001\u5e93\u52a0\u5165jvm\u4e2d":65,"\u4fee\u590d\u6240\u6709bug\u540e":82,"\u4fee\u590ddocker\u7f16\u8bd1\u955c\u50cf\u95ee\u9898":82,"\u4fee\u6539":[62,82],"\u4fee\u6539\u6210":82,"\u505a\u53ea\u8bfb\u6302\u8f7d":33,"\u505a\u5982\u4e0b\u51e0\u4e2a\u64cd\u4f5c":82,"\u505a\u63a5\u53e3":65,"\u505c\u6b62\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":32,"\u5145\u5206\u53d1\u6325\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u4f18\u52bf":61,"\u5145\u5206\u5c55\u73b0\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u4f18\u52bf":62,"\u5148\u5b8c\u6210\u5bf9\u6743\u91cd\u7684packing\u64cd\u4f5c":61,"\u5148\u5b9e\u73b0\u6a21\u578b\u63a8\u65ad\u7684api":66,"\u5171\u4eab\u5185\u5b58":62,"\u5171\u4eab\u540c\u4e00\u4e2a\u6743\u91cd":61,"\u5176\u4e2d":[65,82],"\u5176\u4ed6\u51fd\u6570\u5747\u8fd4\u56de":66,"\u5176\u4ed6\u7528\u6237\u7684fork\u7248\u672c\u5e93\u5e76\u4e0d\u9700\u8981\u4e25\u683c\u9075\u5b88":82,"\u5176\u8f6c\u6362\u6b21\u6570\u51cf\u5c11\u81f3":61,"\u5177\u4f53\u4f7f\u7528\u65b9\u6cd5\u4e3a":66,"\u5177\u4f53\u539f\u56e0\u53c2\u8003":66,"\u5177\u4f53\u53ef\u4ee5\u53c2\u8003mkl":62,"\u5177\u4f53\u5b9e\u73b0\u65b9\u5f0f\u6bd4\u5982":[61,62],"\u5177\u4f53\u7684\u5b8c\u6210\u72b6\u6001\u53ef\u4ee5\u53c2\u89c1":62,"\u5177\u4f53\u8bf7\u53c2\u8003":66,"\u5185\u90e8\u5b58\u50a8":62,"\u5185\u90e8\u9a71\u52a8python\u89e3\u91ca\u5668\u8fdb\u884c\u6a21\u578b\u914d\u7f6e\u89e3\u6790\u548c\u6570\u636e\u8bfb\u53d6":65,"\u518d\u5728\u6bcf\u4e00\u4e2aapi\u4e2d\u81ea\u5df1\u68c0\u67e5\u7c7b\u578b":65,"\u518d\u57fa\u4e8e":82,"\u518d\u628a\u5df2\u8f6c\u6362\u4e3apacked\u683c\u5f0f\u7684\u6570\u636e\u4f20\u9012\u7ed9\u90a3\u4e9b\u590d\u7528\u540c\u4e00\u6570\u636e\u7684gemm":61,"\u5199\u4ee3\u7801":65,"\u5199\u5165\u5feb\u7167\u6570\u636e":32,"\u51fd\u6570":[61,62],"\u51fd\u6570\u5373\u53ef\u5b8c\u6210\u8f6c\u6362":33,"\u51fd\u6570\u540d\u4e3a":66,"\u51fd\u6570\u547d\u540d":65,"\u5206\u522b\u4ee3\u8868\u8f93\u5165\u6570\u636e":62,"\u5206\u522b\u5bf9\u5e94capi":82,"\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1":32,"\u5206\u652f":82,"\u5206\u652f\u4e00\u65e6\u5efa\u7acb":82,"\u5206\u652f\u4e2d":82,"\u5206\u652f\u4e3a\u5f00\u53d1":82,"\u5206\u652f\u4e3a\u6bcf\u4e00\u6b21release\u65f6\u5efa\u7acb\u7684\u4e34\u65f6\u5206\u652f":82,"\u5206\u652f\u4e3a\u7a33\u5b9a":82,"\u5206\u652f\u529f\u80fd\u7684\u5c01\u95ed":82,"\u5206\u652f\u5408\u5165":82,"\u5206\u652f\u5408\u5165master\u5206\u652f":82,"\u5206\u652f\u540c\u6b65\u4e3b\u7248\u672c\u5e93\u7684":82,"\u5206\u652f\u540d\u4e3a":82,"\u5206\u652f\u5b58\u5728\u7684\u65f6\u5019":82,"\u5206\u652f\u6d3e\u751f\u51fa\u65b0\u7684\u5206\u652f":82,"\u5206\u652f\u7684\u7248\u672c\u90fd\u662f\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5\u548c\u56de\u5f52\u6d4b\u8bd5\u7684\u7248\u672c":82,"\u5206\u652f\u7684\u7248\u672c\u90fd\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5":82,"\u5206\u7247":32,"\u5219\u4f7f\u7528\u542f\u52a8\u53c2\u6570\u5b9a\u4e49\u7684\u521d\u59cb\u5316\u65b9\u6cd5\u521d\u59cb\u5316\u53c2\u6570":32,"\u5219\u5ffd\u7565":32,"\u5219\u628a\u53e6\u4e00\u4e2a\u6162\u901f\u7684kill\u6389":32,"\u5219\u76f4\u63a5\u5f15\u5165\u53e6\u4e00\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":66,"\u5219\u9700\u8981\u56de\u6eda\u5230\u4e0a\u4e00\u4e2a\u68c0\u67e5\u70b9":32,"\u521b\u5efa":62,"\u5220\u9664\u78c1\u76d8\u76ee\u5f55\u4e2d\u4e0d\u662f\u5f53\u524duuid\u7684\u5feb\u7167\u6587\u4ef6":32,"\u5230":32,"\u5230\u7b2c\u4e8c\u6b65":82,"\u524d\u540e\u7684\u7f51\u7edc\u6027\u80fd":61,"\u529f\u80fd":48,"\u529f\u80fd\u7684\u6b63\u786e\u6027\u5305\u62ec\u9a8c\u8bc1paddlepaddle\u76ee\u524d\u7684":82,"\u52a8\u6001\u5e93":65,"\u5305\u542b\u4e86\u67d0\u79cd\u7c7b\u578b\u7684\u7c7b\u578b\u5b9a\u4e49\u548c\u66b4\u9732\u7684\u5168\u90e8\u51fd\u6570":66,"\u5305\u62ec":[33,61,62],"\u5305\u62ec\u6743\u91cdw\u548c\u504f\u7f6eb":32,"\u5305\u62ecmkl":62,"\u534f\u540c\u5b8c\u6210releas":82,"\u5355\u4e2a\u503c":33,"\u5355\u70b9\u6545\u969c":32,"\u5373":66,"\u5373\u4f7f\u7528":66,"\u5373\u4f7f\u7528\u6237\u76f4\u63a5\u5f15\u7528\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":66,"\u5373\u4f7fc":66,"\u5373\u4f8b\u5982":66,"\u5373\u4fbfpaddl":66,"\u5373\u5b8c\u6210\u67d0\u4e00\u4e2a\u4efb\u52a1\u7684\u6700\u5c11\u51fd\u6570":66,"\u5373\u66b4\u9732":66,"\u5373\u8868\u793a\u4e0d\u9700\u8981\u8f6c\u6362":62,"\u5373\u8fd9\u4e2a\u52a8\u6001\u5e93\u662f\u4e0d\u4f9d\u8d56\u4e8e\u5176\u4ed6\u4efb\u4f55\u6587\u4ef6\u7684":65,"\u539f\u6765\u7684\u65b9\u6848":62,"\u53c2\u6570":65,"\u53c2\u8003":[48,65],"\u53c2\u8003\u4e0b\u56fe":82,"\u53c8\u53ef\u4ee5\u907f\u514d\u4e0d\u5fc5\u8981\u7684\u8f6c\u6362":62,"\u53cc\u5411\u9a8c\u8bc1":48,"\u53d1\u578b\u7248":82,"\u53d1\u5e03\u5230dockerhub":82,"\u53d1\u5e03docker\u955c\u50cf\u53ea\u9700\u8981\u5bf9\u81ea\u52a8push\u7684\u955c\u50cf\u6253\u4e0a":82,"\u53d8\u91cf\u6765\u533a\u5206layer\u7684\u5c5e\u6027":62,"\u53ea\u5bf9\u7279\u6b8a\u5728\u7ebf\u7cfb\u7edf\u8003\u8651\u4e24\u53f0\u4ee5\u4e0a\u540c\u65f6\u6545\u969c\u7684\u5bb9\u707e":32,"\u53ea\u66b4\u9732\u6982\u5ff5\u7684\u63a5\u53e3":66,"\u53ea\u80fd\u8c03\u7528paddle\u7684\u52a8\u6001\u5e93":65,"\u53ea\u9700\u8981\u6062\u590d\u8fd9\u53f0\u8282\u70b9":32,"\u53ef\u4ee5":82,"\u53ef\u4ee5\u51cf\u5c0f\u7cfb\u7edf\u590d\u6742\u6027":32,"\u53ef\u4ee5\u5728\u4efb\u4f55\u673a\u5668\u4e0a\u6267\u884c\u7684":65,"\u53ef\u4ee5\u5728\u6b64\u9875\u9762\u7684":82,"\u53ef\u4ee5\u628a\u672c\u5730\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5b58\u50a8\u96c6\u7fa4\u4e2d":33,"\u53ef\u4ee5\u6709\u6548\u7684\u907f\u514dparamet":32,"\u53ef\u4ee5\u7528":48,"\u53ef\u4ee5\u7528\u4ee5\u4e0b\u6307\u4ee4":33,"\u53ef\u4ee5\u7ee7\u7eed\u5728\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f\u63d0\u4ea4\u4ee3\u7801":82,"\u53ef\u4ee5\u901a\u8fc7\u9636\u6bb5\u6027\u7684\u4fdd\u5b58\u6bcf\u4e2aparamet":32,"\u53ef\u80fd\u4f1a\u9020\u6210\u7f51\u7edc\u62e5\u585e":32,"\u53f3\u4fa7\u7684":82,"\u5404\u6b21\u524d\u5411\u4e4b\u95f4\u4e5f\u90fd\u4f7f\u7528\u4e86\u76f8\u540c\u7684\u6743\u91cd":61,"\u540c\u4e00\u6b21\u524d\u5411":61,"\u540c\u65f6":[61,62],"\u540c\u65f6\u4f1a\u5f00\u542fintel":62,"\u540c\u65f6\u518d\u5c06":82,"\u540c\u65f6\u53c8\u5c3d\u53ef\u80fd\u5c11\u7684\u727a\u7272mkl":62,"\u540c\u65f6\u63d0\u8d77":82,"\u540c\u65f6\u6570\u636e\u683c\u5f0f\u5c31\u662f":62,"\u540d\u5b57\u4fee\u9970":65,"\u540e\u5411":61,"\u540e\u5411\u65f6\u590d\u7528\u5df2\u7ecf\u8f6c\u6362\u8fc7\u7684\u6743\u91cd":61,"\u5411\u6307\u5b9a\u7684\u76ee\u5f55\u4e2d\u4e00\u4e2a\u65b0\u7684\u6587\u4ef6":32,"\u5411paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u63d0\u4ea4":82,"\u5426\u5219\u5f97\u628apaddle\u9759\u6001\u5e93\u94fe\u63a5\u5230\u89e3\u91ca\u5668\u91cc":65,"\u542f\u52a8\u4e00\u4e2a\u65b0\u7684\u7ebf\u7a0b\u5f00\u59cb\u4fdd\u5b58\u68c0\u67e5\u70b9":32,"\u548c":[33,61,62,65,66,82],"\u548c\u672a\u6765\u53ef\u80fd\u8fd8\u4f1a\u7528\u5230":62,"\u548c\u79bb\u7ebf\u6570\u636e\u7684\u65b9\u5f0f":33,"\u54ea\u4e2atrainer\u5148\u5b8c\u6210block\u7684\u8bad\u7ec3":32,"\u56e0\u4e3a\u8fd9\u6837\u505a\u4e5f\u6ca1\u6cd5\u4fdd\u8bc1\u6d88\u9664\u968f\u673a\u6027":32,"\u56e0\u4e3aswig\u5728\u7b2c\u4e09\u65b9\u8bed\u8a00\u4e2d\u66b4\u9732\u7684\u51fd\u6570\u540d":65,"\u56e0\u6b64":61,"\u56fe\u50cf\u5206\u7c7b":82,"\u5728":[61,62,66,82],"\u5728\u4e00\u4e2a\u4e0d\u53ef\u4e2d\u65ad\u5e76\u7f3a\u5c11\u5907\u4efd\u7684\u8bad\u7ec3\u4efb\u52a1\u4e2d":32,"\u5728\u4e0a\u56fe\u4e2d\u663e\u793a\u4e86\u5728\u4e00\u4e2a\u5b9e\u9645\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u5e94\u7528":33,"\u5728\u4f7f\u7528twine\u4e0a\u4f20\u4e4b\u524d":82,"\u5728\u51fa\u73b0\u5355\u70b9\u6545\u969c\u65f6":32,"\u5728\u5b9e\u73b0\u6bcf\u4e2a\u5b50\u7c7b\u7684\u65f6\u5019\u5c31\u4e0d\u9700\u8981\u5173\u5fc3\u5206\u652f\u7684\u4e8b\u60c5\u4e86":62,"\u5728\u5b9e\u73b0\u8fc7\u7a0b\u4e2d":66,"\u5728\u5bf9\u5e94\u7684":61,"\u5728\u5c42\u521d\u59cb\u5316\u7684\u65f6\u5019":61,"\u5728\u5f00\u59cb\u8bad\u7ec3\u4e4b\u524d":33,"\u5728\u5f02\u6784\u96c6\u7fa4\u4e2d":32,"\u5728\u5f15\u5165\u5176\u4ed6\u7c7b\u578b\u7684\u5934\u6587\u4ef6\u65f6":66,"\u5728\u5feb\u7167\u5199\u5165\u5b8c\u6210\u540e":32,"\u5728\u60a8\u7684\u5b9e\u9645\u73af\u5883\u4e2d":32,"\u5728\u6709\u666e\u901a\u7684cpu":62,"\u5728\u672c\u6587\u6863\u4e2d":48,"\u5728\u673a\u7fa4\u4e0a\u8fd0\u884c\u8f6c\u6362\u7a0b\u5e8f":33,"\u5728\u6837\u4f8b\u4e2d":66,"\u5728\u7528\u6237\u4f7f\u7528c":66,"\u5728\u7b2c\u4e8c\u4e2atab":82,"\u5728\u7ebf\u6a21\u578b\u9884\u6d4b\u670d\u52a1":33,"\u5728\u8bad\u7ec3\u7ed3\u675f\u7684\u65f6\u5019\u518d\u4fdd\u5b58\u4e3apaddlepaddle\u7684\u683c\u5f0f":62,"\u5728\u8bc4\u5ba1\u8fc7\u7a0b\u4e2d":82,"\u5728\u8fd9\u4e2a":82,"\u5728\u8fd9\u4e2a\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":65,"\u5728\u8fd9\u4e2a\u9636\u6bb5\u7684\u4ee3\u7801\u6b63\u5728\u7ecf\u5386\u56de\u5f52\u6d4b\u8bd5":82,"\u5728\u8fd9\u4e9b\u5934\u6587\u4ef6\u4e2d":66,"\u5728\u8fd9\u4e9b\u6587\u4ef6\u4e2d":66,"\u5728\u91cd\u6784\u524d\u7684paddlepaddle\u4e2d":62,"\u5728\u95ee\u9898\u672c\u8eab\u7684\u8ba1\u7b97\u91cf\u6bd4\u8f83\u5c0f\u7684\u65f6\u5019":61,"\u5728batch":61,"\u5728c":65,"\u5728c\u7684\u5934\u6587\u4ef6":65,"\u5728packing\u4e0a\u7684\u8017\u65f6":61,"\u5728paddle\u4e4b\u4e0a\u8fd0\u884c\u7684\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u8f93\u51fa\u7684\u6a21\u578b\u4f1a\u63d0\u4f9b\u7ed9\u5728\u7ebf\u4eba\u8138\u8bc6\u522b\u7684\u5e94\u7528\u4f7f\u7528":33,"\u5728paramet":32,"\u5728rnn\u7684\u60c5\u51b5\u4e0b":61,"\u5747\u4f1a\u88ab\u5b89\u88c5\u5230includ":66,"\u5747\u662f\u5728":66,"\u57fa\u4e8e\u7c98\u6027\u4f1a\u8bdd\u7684\u8d1f\u8f7d\u5747\u8861\u529f\u80fd":48,"\u5916\u90e8\u5b58\u50a8":62,"\u591a\u4e2a\u503c":33,"\u591a\u4e2aparamet":32,"\u591a\u6b21\u8c03\u7528":61,"\u5927\u591a\u6570\u8bed\u8a00\u90fd\u652f\u6301\u4f7f\u7528c\u8bed\u8a00api":65,"\u5982\u56fe\u4e2dtrainer":32,"\u5982\u679c\u4e0a\u9762\u4e24\u6b65\u51fa\u73b0\u9519\u8bef":32,"\u5982\u679c\u4e0d\u9700\u8981\u5916\u90e8\u5b58\u50a8\u7528\u4e8e\u8f6c\u6362":62,"\u5982\u679c\u4f7f\u7528swig\u6211\u4eec\u9700\u8981\u5c06\u5728interface\u6587\u4ef6\u91cc":65,"\u5982\u679c\u5728\u4f7f\u7528mkl":62,"\u5982\u679c\u5931\u8d25":82,"\u5982\u679c\u5b58\u5728\u6570\u636e\u6392\u5217\u683c\u5f0f\u4e0d\u4e00\u6837\u7684\u60c5\u51b5\u65f6":62,"\u5982\u679c\u5b58\u5728\u67d0\u4e9btrainer\u6267\u884c\u901f\u5ea6\u8fc7\u6162\u4f1a\u5f71\u54cd\u6574\u4f53\u96c6\u7fa4\u7684\u901f\u5ea6":32,"\u5982\u679c\u5df2\u7ecf\u6b63\u5728\u6267\u884c\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":32,"\u5982\u679c\u662f\u5176\u5b83\u7c7b\u578b":33,"\u5982\u679c\u6709bugfix\u7684\u884c\u4e3a":82,"\u5982\u679c\u67d0\u4e00\u4e2a\u7c7b\u578b\u9700\u8981\u5f15\u7528\u53e6\u4e00\u4e2a\u7c7b\u578b":66,"\u5982\u679c\u67d0\u4e00\u4e2apaddl":66,"\u5982\u679c\u67d0\u4e00\u4e2apaddle\u6982\u5ff5\u5fc5\u987b\u8981\u66b4\u9732":66,"\u5982\u679c\u6ee1\u8db3\u6761\u4ef6":32,"\u5982\u679c\u7528\u6237\u8981\u628apaddle\u7684\u9759\u6001\u5e93":65,"\u5982\u679c\u8981\u4e0a\u4f20gpu\u7248\u672c\u7684\u5305":82,"\u5982\u679c\u8c03\u7528\u9759\u6001\u5e93\u53ea\u80fd\u5c06\u9759\u6001\u5e93\u4e0e\u89e3\u91ca\u5668\u94fe\u63a5":65,"\u5982\u679c\u9700\u8981\u624b\u52a8\u7f16\u8bd1":82,"\u5982\u679cmkl":62,"\u5982\u679cparamet":32,"\u5b50\u7c7b\u53ea\u9700\u8981\u4f7f\u7528\u5b9a\u4e49\u597d\u7684\u63a5\u53e3":62,"\u5b57\u6bb5\u8bbe\u4e3a":82,"\u5b57\u7b26\u4e32":33,"\u5b58\u50a8":33,"\u5b66\u4e60\u6210\u672c\u9ad8":65,"\u5b83\u4eec\u4e3b\u8981\u662f\u7528\u4e8e":62,"\u5b83\u4eec\u7684\u6587\u4ef6\u540d\u662f":33,"\u5b83\u53ea\u4f1a\u5305\u62ec\u751f\u6210\u597d\u7684\u52a8\u6001\u5e93\u548c\u5934\u6587\u4ef6":62,"\u5b83\u8d1f\u8d23\u51b3\u5b9a\u7f16\u8bd1\u65f6\u662f\u5426\u4f7f\u7528mklml\u548cmkl":62,"\u5b89\u88c5\u540e\u7684\u76ee\u5f55\u7ed3\u6784\u4e3a":66,"\u5b8c\u6210\u4e00\u4e2a\u4f20\u8f93\u52a8\u4f5c\u5b8c\u6210\u7684\u65f6\u95f4\u4e5f\u6bd4\u8f83\u77ed":48,"\u5b8c\u6210\u5e38\u7528layer\u7684mkl":62,"\u5b8c\u6210\u5e38\u89c1\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edcvgg":62,"\u5b8c\u6210\u6570\u636e\u7684\u9884\u5904\u7406":33,"\u5b8c\u6210\u81ea\u52a8\u5316\u4e8c\u8fdb\u5236\u7f16\u8bd1":82,"\u5b9a\u4e49":62,"\u5b9a\u4e49\u4e00\u4e9b\u9664\u4e86layer\u548cmemory\u76f8\u5173\u7684\u7c7b\u548c\u51fd\u6570":62,"\u5b9e\u73b0\u5177\u4f53\u7684\u51fd\u6570\u529f\u80fd\u5373\u53ef":62,"\u5b9e\u73b0\u7b80\u5355":65,"\u5bf9\u4e8e\u4e0d\u540c\u8bed\u8a00":65,"\u5bf9\u4e8e\u540c\u4e00\u6bb5c":65,"\u5bf9\u4e8e\u540c\u6837\u8bbe\u7f6e\u7684\u7f51\u7edc\u6a21\u578b":61,"\u5bf9\u4e8e\u591a\u8bed\u8a00\u63a5\u53e3":65,"\u5bf9\u4e8e\u5927\u591a\u6570\u8bed\u8a00":65,"\u5bf9\u4e8e\u5e8f\u5217\u957f\u5ea6":61,"\u5bf9\u4e8e\u6709\u53c2\u6570\u7684\u5c42":62,"\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u65b0\u52a0\u7684rnn":61,"\u5bf9\u4e8e\u6bcf\u79cd\u7c7b\u578b":66,"\u5bf9\u4e8e\u6bcf\u79cdc":66,"\u5bf9\u65b0\u7684\u6743\u91cd\u8fdb\u884c\u8f6c\u6362\u7528\u4e8e\u4e0b\u6b21\u8fed\u4ee3":61,"\u5bf9\u6bd4":65,"\u5bf9\u6bd4\u4f18\u5316\u540elayer\u4e0e\u76f8\u5bf9\u5e94\u7684paddlepaddle\u539f\u6709lay":61,"\u5bf9\u6bd4\u4f18\u5316\u540elayer\u81ea\u8eab":61,"\u5bf9\u8f93\u5165\u53c2\u6570\u7684\u5b89\u5168\u6027\u8fdb\u884c\u4e86\u5fc5\u8981\u7684\u5224\u65ad":66,"\u5bf9\u8fd9\u4e2a\u7248\u672c\u7684\u63d0\u4ea4":82,"\u5bfb\u627e\u6709\u6ca1\u6709\u5176\u4ed6\u53ef\u4ee5\u4f18\u5316\u7684\u53ef\u80fd":62,"\u5bfc\u51fa\u8fd9\u4e9b\u63a5\u53e3":66,"\u5c06":82,"\u5c06\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u53c2\u6570\u62c6\u5206\u6210\u591a\u4efd":32,"\u5c06\u5927\u91cf\u7684":65,"\u5c06\u65b0\u5206\u652f\u7684\u7248\u672c\u6253\u4e0atag":82,"\u5c06master\u5206\u652f\u7684\u5408\u5165commit\u6253\u4e0atag":82,"\u5c0f\u4e8e\u67d0\u4e2a\u6bd4\u8f83\u5c0f\u7684\u9608\u503c\u8ba4\u4e3a\u901a\u8fc7":62,"\u5c31\u9700\u8981\u5bf9\u8fd9\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00\u589e\u52a0\u4e00\u4e9b\u5b9a\u4e49":65,"\u5de5\u5177\u4e0a\u4f20\u5373\u53ef":82,"\u5e73\u5747\u6545\u969c\u4fee\u590d\u65f6\u95f4":32,"\u5e73\u5747\u6545\u969c\u7387":32,"\u5e76\u4e14\u4f1a\u5199\u597d":62,"\u5e76\u4e14\u4f7f\u7528":66,"\u5e76\u4e14\u53ea\u9700\u8981\u5728\u5fc5\u8981\u7684\u65f6\u5019\u8f6c\u6362\u8fd9\u79cd\u683c\u5f0f":62,"\u5e76\u4e14\u5728\u5e38\u89c1\u7684\u5e73\u53f0\u4e0a":65,"\u5e76\u4e14\u5f53\u7f16\u8bd1\u65f6":61,"\u5e76\u4e14\u628a\u7cfb\u7edf\u751f\u6210\u7684ca":48,"\u5e76\u4e14\u628a\u7ed3\u679c\u8fd4\u56depfsclient\u7aef":48,"\u5e76\u4e14\u8ba9\u63a5\u53e3\u8131\u79bb\u5b9e\u73b0\u7ec6\u8282":65,"\u5e76\u4e14\u8f93\u5165\u8f93\u51fa\u90fd\u662f\u5171\u7528\u4e00\u5757\u5185\u5b58":62,"\u5e76\u5220\u9664":82,"\u5e76\u5220\u9664\u66f4\u65e9\u7684\u5feb\u7167":32,"\u5e76\u52a0\u8f7d\u5176\u4e2d\u7684\u53c2\u6570":32,"\u5e76\u53d1\u5e03\u5230pypi":82,"\u5e76\u5728\u6bcf\u6b21\u6743\u91cd\u66f4\u65b0\u540e":61,"\u5e76\u5728\u96c6\u7fa4\u4e2d\u8fd0\u884c\u591a\u4e2a\u5206\u5e03\u5f0f\u6570\u636e\u5904\u7406\u4efb\u52a1":33,"\u5e76\u5c06":82,"\u5e76\u5c06c":66,"\u5e76\u628a\u5feb\u7167\u4fdd\u5b58\u5230\u8fd9\u4e2a\u76ee\u5f55\u4e0b":32,"\u5e76\u628a\u7ed3\u679c\u653e\u5230\u5f53\u524d\u5c42\u7684":62,"\u5e76\u6ca1\u6709paddle\u7279\u522b\u9700\u8981\u7684\u7279\u6027":65,"\u5e76\u6dfb\u52a0\u5934\u6587\u4ef6":61,"\u5e76\u88ab\u5b58\u50a8\u5728\u8bf8\u5982hadoop":33,"\u5e76\u9002\u5e94github\u7684\u7279\u6027\u505a\u4e86\u4e00\u4e9b\u533a\u522b":82,"\u5e76\u91cd\u65b0\u6253\u5305wheel\u5305":82,"\u5efa\u8bae":82,"\u5f00\u53d1\u4e86\u6a21\u578b\u9884\u6d4b\u7684\u6837\u4f8b\u4ee3\u7801":66,"\u5f00\u53d1\u8005\u4fee\u6539\u81ea\u5df1\u7684\u4ee3\u7801":82,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4e2d":82,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4f7f\u7528":82,"\u5f00\u5934":[61,62],"\u5f00\u59cb\u63d0\u4f9b\u670d\u52a1":32,"\u5f15\u5165\u4e86\u4ee5\u4e0b\u56db\u4e2aapi":61,"\u5f15\u5165\u4e86\u7c7b\u578b\u7684\u5934\u6587\u4ef6":66,"\u5f39\u51fa\u4e0b\u9762\u7684\u9009\u62e9\u6846":82,"\u5f53\u529f\u80fd\u5206\u652f\u5f00\u53d1\u5b8c\u6bd5\u540e":82,"\u5f53\u53ea\u505a\u63a8\u65ad":61,"\u5f53\u5f00\u542f":62,"\u5f53\u6253\u5f00":62,"\u5f53\u6570\u636e\u683c\u5f0f\u4e0epaddlepaddle\u9ed8\u8ba4\u7684":62,"\u5f53\u7136\u8fd9\u4e24\u8005\u4e5f\u53ef\u4ee5\u76f8\u7b49":62,"\u5f53\u7528\u6237\u4f7f\u7528\u5b8c\u8fd9\u4e2a\u53c2\u6570\u540e":66,"\u5f53\u7f51\u7edc\u51fa\u73b0\u5206\u652f\u4e14\u5728":62,"\u5f53destination\u6587\u4ef6\u4e0d\u5b58\u5728\u6216\u8005\u5927\u5c0f\u548csource\u6587\u4ef6\u4e0d\u4e00\u81f4\u65f6":48,"\u5f88\u96be\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":65,"\u5f97\u4f7f\u7528":65,"\u5fc5\u8981":66,"\u5fc5\u987b\u5206\u522b\u4e0e":62,"\u60c5\u611f\u5206\u6790":82,"\u6211\u4eec\u4e5f\u53ef\u4ee5\u786e\u5b9a\u6bcf\u4e00\u4e2a\u53c2\u6570\u7684\u7c7b\u578b":66,"\u6211\u4eec\u4e5f\u5c06mklml\u5373":62,"\u6211\u4eec\u4f1a\u4fdd\u8bc1":62,"\u6211\u4eec\u4f1a\u5728\u7f51\u7edc\u8bad\u7ec3\u4e4b\u524d\u628a\u683c\u5f0f\u8f6c\u6362\u4e3amkl":62,"\u6211\u4eec\u4f1a\u5bf9\u6bd4\u5982\u4e0b2\u4e2a\u65b9\u9762":61,"\u6211\u4eec\u4f1a\u628amkl":62,"\u6211\u4eec\u4f1a\u6dfb\u52a0":[61,62],"\u6211\u4eec\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":65,"\u6211\u4eec\u51b3\u5b9a\u4f7f\u7528\u5df2\u6709\u7684":62,"\u6211\u4eec\u53ef\u4ee5\u5148\u5b8c\u6210\u5bf9\u539f\u6570\u636e\u7684packing\u64cd\u4f5c":61,"\u6211\u4eec\u603b\u7ed3\u51fa\u4e00\u4e9b\u7279\u522b\u9700\u8981\u6ce8\u610f\u7684\u70b9":62,"\u6211\u4eec\u63d0\u4f9b\u4e24\u4e2a\u8f6c\u6362\u65b9\u5f0f":33,"\u6211\u4eec\u63d0\u51fa\u4e86chunk\u7684\u6982\u5ff5":48,"\u6211\u4eec\u6700\u7ec8\u7684\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165python\u6216\u8005\u5176\u4ed6\u4efb\u4f55\u8bed\u8a00\u7684\u89e3\u91ca\u5668":65,"\u6211\u4eec\u8ba1\u5212\u5c06":61,"\u6211\u4eec\u8ba1\u5212\u5c06\u82f1\u7279\u5c14\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edc\u6570\u5b66\u5e93":62,"\u6211\u4eec\u8bbe\u8ba1\u8bf4\u660e\u4e86\u540d\u4e3afilemanager\u7cfb\u7edf":48,"\u6211\u4eec\u9009\u62e9":33,"\u6211\u4eec\u901a\u8fc7\u4f7f\u7528\u65b0\u5f15\u5165\u7684gemm":61,"\u6211\u4eec\u90fd\u63d0\u4f9bpython\u7684\u8f6c\u6362\u5e93":33,"\u6216\u8005":[62,65,66],"\u6216\u8005\u5c06\u8fd9\u53f0\u8282\u70b9\u8fc1\u79fb\u5230\u53e6\u4e00\u4e2a\u8282\u70b9\u5e76\u542f\u52a8\u5373\u53ef\u6062\u590d\u8bad\u7ec3\u4efb\u52a1":32,"\u6216\u8005\u7528tuple\u8868\u793a\u7684\u591a\u4e2a\u503c":33,"\u6216\u8005\u7531\u5b83\u4eec\u7ec4\u6210\u7684list":33,"\u6216activ":62,"\u6240\u4ee5":[62,82],"\u6240\u4ee5\u4e00\u4e2a\u7248\u672c\u53f7\u7684wheel\u5305\u53d1\u5e03\u4e4b\u540e":82,"\u6240\u4ee5\u4e0d\u5b58\u5728\u8fd9\u4e2a\u95ee\u9898":62,"\u6240\u4ee5\u5728":62,"\u6240\u4ee5\u5728\u5199\u5165\u5feb\u7167\u7684\u8fc7\u7a0b\u4e2d":32,"\u6240\u4ee5\u6211\u4eec\u5b9a\u4e49\u4e86\u4e00\u4e2a":62,"\u6240\u4ee5\u6574\u4f53\u4e0a":62,"\u6240\u4ee5\u6dfb\u52a0\u4e86\u5bf9\u5e94\u7684":62,"\u6240\u4ee5\u7528\u6237\u9700\u8981\u9996\u5148\u5728":48,"\u6240\u4ee5\u9700\u8981\u5f15\u5165\u4e00\u4e2a\u8f6c\u6362\u65b9\u6cd5":62,"\u6240\u6709\u4e0e\u7c7b\u578b\u76f8\u5173\u7684\u51fd\u6570":66,"\u6240\u6709\u5916\u90e8\u7684\u8f6c\u6362\u5de5\u4f5c\u90fd\u4f1a\u5728reset\u7cfb\u5217\u51fd\u6570\u4e2d\u90fd\u51c6\u5907\u597d":62,"\u6240\u6709\u7684":61,"\u6240\u6709\u7684\u63a5\u53e3\u5747\u4e3ac\u63a5\u53e3":66,"\u6240\u6709\u76f8\u5173\u7684":61,"\u6240\u6709\u7c7b\u578b\u540d\u4e3a":66,"\u6240\u6709mkl":62,"\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":65,"\u624d\u80fd\u66f4\u597d\u7684\u53d1\u6325mkl":62,"\u6253\u5f00\u8fd9\u4e2a\u7f16\u8bd1\u9009\u9879":66,"\u6267\u884c":82,"\u628a":33,"\u628a\u4e4b\u524d\u793a\u4f8b\u4e2d\u8f6c\u6362\u5b8c\u6bd5\u7684random":33,"\u6307\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u4e4b\u540e\u5f97\u5230\u7684\u6240\u6709\u53c2\u6570":32,"\u6309\u94ae":82,"\u63a5\u53e3":[65,66],"\u63a5\u53e3\u5c42\u505a\u8fc7\u591a\u5c01\u88c5":66,"\u63a5\u53e3\u662f":33,"\u63a5\u6536\u5904\u7406pfsclient\u7aef\u7684\u6587\u4ef6\u7ba1\u7406\u8bf7\u6c42":48,"\u63a7\u5236\u662f\u5426\u4f7f\u7528mkl":62,"\u63a7\u5236\u662f\u5426\u4f7f\u7528mklml\u5e93":62,"\u63a7\u5236\u7528\u6237\u6743\u9650":33,"\u63d0\u4f9b\u4e03\u5c42\u534f\u8bae\u7684\u53cd\u5411\u4ee3\u7406":48,"\u63d0\u4f9b\u5e38\u7528\u7684\u547d\u4ee4\u884c\u7ba1\u7406\u547d\u4ee4\u7ba1\u7406\u6587\u4ef6\u548c\u76ee\u5f55":48,"\u63d0\u4f9b\u7528\u6237\u7ba1\u7406\u6587\u4ef6\u7684\u547d\u4ee4":48,"\u63d0\u4f9b\u7ed9paddle\u4f5c\u4e3a\u8bad\u7ec3\u6570\u636e":33,"\u652f\u6301\u5927\u6587\u4ef6\u7684\u65ad\u70b9\u4e0a\u4f20":48,"\u6570\u636e":48,"\u6570\u636e\u8bfb\u53d6\u5747\u4ea4\u7531\u5176\u4ed6\u8bed\u8a00\u5b8c\u6210":65,"\u6570\u636e\u957f\u5ea6\u53ca\u6821\u9a8c\u503c\u7ec4\u6210":48,"\u6570\u636e\u96c6\u9700\u8981\u9884\u5148\u88ab\u8f6c\u6362\u6210paddlepaddle\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f7f\u7528\u7684\u5b58\u50a8\u683c":33,"\u6570\u636e\u9884\u5904\u7406\u4efb\u52a1":33,"\u6587\u4ef6":65,"\u6587\u4ef6\u4f20\u8f93\u7684\u7684\u5173\u952e\u5728\u4e8e\u9700\u8981pfsclient\u7aef\u5bf9\u6bd4source\u548cdestination\u7684\u6587\u4ef6chunks\u7684checksum\u662f\u5426\u4fdd\u6301\u4e00\u81f4":48,"\u6587\u4ef6\u5185\u5bb9\u4e3a":65,"\u6587\u4ef6\u540d\u4e3a\u6b64uuid":32,"\u6587\u4ef6\u5bf9\u5e94\u7684data":33,"\u6587\u4ef6\u7684\u4e0a\u4f20\u548c\u4e0b\u8f7d\u90fd\u662f\u901a\u8fc7\u5bf9chunk\u7684\u64cd\u4f5c\u6765\u5b9e\u73b0\u7684":48,"\u65b0\u624b\u5165\u95e8\u7ae0\u8282":82,"\u65b0\u7248\u672c":62,"\u65b9\u4fbf\u6d4b\u8bd5\u4eba\u5458\u6d4b\u8bd5paddlepaddle\u7684\u884c\u4e3a":82,"\u65b9\u4fbf\u7528\u6237\u4e0a\u4f20\u81ea\u5df1\u7684\u8bad\u7ec3\u6570\u636e\u4ee5\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":48,"\u65b9\u4fbf\u7528\u6237\u5728python\u7aef\u9009\u62e9\u662f\u5426\u542f\u7528\u8fd9\u4e2a\u529f\u80fd":61,"\u65b9\u4fbf\u7528\u6237\u9009\u62e9\u4f7f\u7528mkl":62,"\u65b9\u5f0f\u7c7b\u4f3c\u4e8e":62,"\u65e0\u6cd5\u505a\u5230\u5bf9\u4e8e\u5404\u79cd\u8bed\u8a00\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u7684\u9002\u914d":65,"\u65e0\u8bba\u5728\u672c\u5730\u8fd8\u662f\u5728\u4e91\u7aef":33,"\u65e0\u8bba\u662f\u4ece":33,"\u65e0\u8bba\u662f\u5728\u672c\u5730\u6216\u662f\u4e91\u7aef\u8f6c\u6362":33,"\u65e0\u8bba\u662f\u91cd\u6784\u524d\u7684layer\u8fd8\u662f\u91cd\u6784\u540e\u7684op":62,"\u65f6":[32,61,62],"\u65f6\u4e00\u8d77\u66f4\u65b0":62,"\u662f":[48,62],"\u662f\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3\u7684\u4ee3\u7801\u751f\u6210\u5668":65,"\u662f\u4e00\u4e2a\u7c7b\u578b\u7684\u6807\u5fd7":66,"\u662f\u4e0d\u5e38\u89c1\u7684\u505a\u6cd5":65,"\u662f\u5404\u4e2a\u5b9e\u73b0\u4e2d\u5171\u4eab\u7684\u5934\u6587\u4ef6":66,"\u662f\u5426\u6253\u5f00":61,"\u662f\u56e0\u4e3ac99\u652f\u6301":65,"\u662f\u5bf9\u7528\u6237\u6587\u4ef6\u5b58\u50a8\u7a7a\u95f4\u7684\u62bd\u8c61":48,"\u662f\u6307":66,"\u662f\u7528\u6237\u4f7f\u7528c":66,"\u662fc":66,"\u663e\u5f97\u76f8\u5bf9\u6765\u8bf4\u8f83\u4e3a\u8017\u65f6":61,"\u6682\u65f6\u4e0d\u8003\u8651\u591a\u4e2aparamet":32,"\u66b4\u9732\u8fd9\u4e2a\u6982\u5ff5\u5fc5\u8981\u51fd\u6570":66,"\u6700\u540e\u5220\u9664":82,"\u6700\u5e38\u89c1\u7684\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662fexcept":65,"\u6709\u6548\u63d0\u5347paddlepaddle\u5728\u82f1\u7279\u5c14\u67b6\u6784\u4e0a\u7684\u6027\u80fd":[61,62],"\u6709\u6807\u51c6\u7684":65,"\u6709\u7684\u65f6\u5019":65,"\u672c\u5217\u8868\u8bf4\u660epaddlepaddle\u53d1\u7248\u4e4b\u524d\u9700\u8981\u6d4b\u8bd5\u7684\u529f\u80fd\u70b9":82,"\u672c\u6587\u6863\u63cf\u8ff0paddl":66,"\u673a\u5668\u7ffb\u8bd1":82,"\u6765\u4fdd\u8bc1\u8bad\u7ec3\u8fc7\u7a0b\u53ef\u4ee5\u4ece\u4e2d\u95f4\u72b6\u6001\u91cd\u65b0\u542f\u52a8":32,"\u6765\u51b3\u5b9a\u662f\u5426\u5f00\u542fmkl":61,"\u6765\u5b9e\u73b0":62,"\u6765\u786e\u4fdd\u628a":65,"\u6765\u8868\u793apaddle\u5185\u90e8\u7c7b":65,"\u6765\u8bbf\u95ee\u7528\u6237\u81ea\u5df1\u7684\u6570\u636e":33,"\u6765\u8fdb\u884c\u8ba8\u8bba":66,"\u67e5\u770blatest":82,"\u6807\u51c6\u8868\u793apaddlepaddle\u7248\u672c\u53f7":82,"\u683c\u5f0f\u4e0d\u5339\u914d\u65f6":62,"\u68c0\u67e5\u70b9\u4fdd\u5b58\u7a0b\u5e8f\u6d41\u7a0b":32,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\u901a\u8fc7\u5b9a\u671f\u5411\u78c1\u76d8\u4e0a\u4fdd\u5b58\u4e00\u4efd\u5b58\u50a8\u5728paramet":32,"\u6a21\u578b\u6570\u636e\u68c0\u67e5\u70b9\u7684\u5b9e\u73b0":32,"\u6a21\u578b\u914d\u7f6e\u89e3\u6790":65,"\u6b21\u8fed\u4ee3\u6267\u884c\u7684\u8f6c\u6362\u6b21\u6570\u4e3a":61,"\u6b64\u65f6\u6bcf\u4e2a\u5c0f\u5206\u652f\u7684":62,"\u6b64\u65f6master\u5c06\u8d1f\u8d23\u542f\u52a8\u4e00\u4e2a\u65b0\u7684train":32,"\u6bcf\u4e00\u4e2a":82,"\u6bcf\u4e00\u4e2a\u6587\u4ef6\u662f\u6570\u636e\u96c6\u7684\u4e00\u4e2ashard":33,"\u6bcf\u4e2a":62,"\u6bcf\u4e2a\u503c\u7684\u7c7b\u578b\u53ef\u4ee5\u662f\u6574\u5f62":33,"\u6bcf\u4e2a\u6d4b\u8bd5\u4f1a\u5bf9\u6bd4paddlepaddle\u4e2dcpu\u7b97\u51fa\u7684\u7ed3\u679c\u4e0emkl":62,"\u6bcf\u4e2adata":33,"\u6bcf\u4e2amkldnnlayer\u90fd\u5305\u542b\u7528\u4e8e\u5185\u90e8\u5b58\u50a8\u548c\u5916\u90e8\u5b58\u50a8\u7684\u4e00\u7cfb\u5217mkldnnmatrix":62,"\u6bcf\u4e2aparamet":32,"\u6bcf\u4e2ashard\u5206\u522b\u5b58\u50a8\u5728\u5176\u4e2d\u4e00\u53f0paramet":32,"\u6bcf\u6b21\u8c03\u7528\u65f6\u5bf9\u539f\u6570\u636e\u7684\u91cd\u590dpacking\u4fbf\u6210\u4e3a\u4e86\u5197\u4f59":61,"\u6bcf\u6b21\u8f93\u51fa\u4e00\u4e2adata":33,"\u6bcf\u969410\u5206\u949f":32,"\u6bd4\u5982":[33,62],"\u6bd4\u5982\u53ef\u80fd\u4f1a\u7528openmp\u6539\u8fdbsgd\u7684\u66f4\u65b0\u6027\u80fd":62,"\u6bd4\u5982\u5c06":82,"\u6bd4\u5982\u6bcf\u969410\u5206\u949f\u6700\u65b0\u7684\u5feb\u7167":32,"\u6bd4\u5982\u6d41\u5f0f\u6570\u636e\u5904\u7406":33,"\u6bd4\u5982imagenet\u8fd9\u4e2a\u6570\u636e\u96c6\u53ef\u80fd\u88ab\u5206\u62101000\u4e2ashard":33,"\u6ca1\u6709\u5fc5\u8981\u5728\u6bcf\u6b21\u524d\u5411\u4e2d\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u8ba1\u7b97\u65f6\u5bf9\u6743\u91cd\u8fdb\u884c\u91cd\u590d\u7684packing\u64cd\u4f5c":61,"\u6ce8":[32,82],"\u6ce8\u518clayer\u7684\u65f6\u5019\u4fdd\u8bc1":[61,62],"\u6ce8\u610f":62,"\u6d4b\u8bd5\u5206\u4e3a\u6bcf\u4e2alayer":62,"\u6d4b\u8bd5\u672c\u6b21release\u7684\u6b63\u786e\u6027":82,"\u6d4b\u8bd5\u7684\u6027\u80fd\u5bf9\u6bd4\u7ed3\u679c\u4f1a\u5728":62,"\u6d6e\u70b9\u578b\u6570\u636e":33,"\u6df1\u5165paddlepaddl":62,"\u6dfb\u52a0":61,"\u6dfb\u52a0\u7684\u76f8\u5173\u6587\u4ef6\u548c\u76ee\u5f55\u7ed3\u6784\u5982\u4e0b":[61,62],"\u6fc0\u6d3b\u51fd\u6570\u662f\u72ec\u7acb\u4e8e":62,"\u70b9\u51fb":82,"\u7136\u540e\u5728\u524d\u5411":61,"\u7136\u540e\u5728etcd\u7684":32,"\u7136\u540e\u5c31\u53ef\u4ee5\u5e76\u53d1\u5199\u5165\u591a\u4e2achunk":48,"\u7136\u540e\u624d\u80fd\u4f7f\u7528pfsclient":48,"\u7136\u540e\u6309\u7167\u4e0a\u8ff0\u7684\u65b9\u6cd5":82,"\u7136\u540e\u70b9\u51fb":82,"\u7248\u672c\u5206\u652f":82,"\u7248\u672c\u53f7":82,"\u7248\u672c\u53f7\u5bf9\u5e94\u7684tag\u5373\u53ef":82,"\u7248\u672c\u53f7rc":82,"\u7248\u672cfork\u51fa\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f":82,"\u7279\u6709\u7684\u8bbe\u5907id":62,"\u73b0\u9636\u6bb5\u7684\u4f18\u5316\u4e3b\u8981\u9488\u5bf9":61,"\u73b0\u9636\u6bb5paddle\u6709\u4e00\u4e2a\u95ee\u9898\u662f":65,"\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u8bad\u7ec3\u6570\u636e\u96c6\u901a\u5e38\u4f53\u79ef\u5f88\u5927":33,"\u751f\u4ea7\u73af\u5883\u7684\u65e5\u5fd7\u6570\u636e\u4f1a\u901a\u8fc7\u5b9e\u65f6\u6d41\u7684\u65b9\u5f0f":33,"\u751f\u6210\u5404\u79cd\u8bed\u8a00\u7684\u7ed1\u5b9a\u4ee3\u7801":65,"\u751f\u6210\u6587\u6863":65,"\u751f\u6210\u7684":33,"\u751f\u6210\u7ed9\u5b9a":33,"\u751f\u6210api\u6587\u6863":65,"\u751f\u6210pfsclient\u548cpfsserver\u7684\u6846\u67b6\u90e8\u5206":48,"\u7528":48,"\u7528\u4e8e\u6d4b\u8bd5\u548c\u5bf9\u6bd4\u5728\u4f7f\u7528mkl":62,"\u7528\u4e8e\u7ba1\u7406mkl":62,"\u7528\u4e8e\u9009\u62e9\u662f\u5426\u4f7f\u7528\u76f8\u5173\u529f\u80fd":61,"\u7528\u4e8e\u9009\u62e9\u662f\u5426\u4f7f\u7528mkl":62,"\u7528\u4e8emkl":[61,62],"\u7528\u6237\u4e0a\u4f20\u6570\u636e\u540e":33,"\u7528\u6237\u4e5f\u53ef\u4ee5\u4e0a\u4f20label":33,"\u7528\u6237\u53ef\u4ee5\u5b89\u5168\u7684\u91ca\u653e\u67d0\u4e2ac":66,"\u7528\u6237\u53ef\u4ee5\u628a\u81ea\u5df1\u7684\u6570\u636e\u5206\u4eab\u7ed9\u522b\u4eba":33,"\u7528\u6237\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u8fd9\u4e2a\u52a8\u6001\u5e93\u6765\u5f15\u5165paddl":66,"\u7528\u6237\u5728\u672c\u5730\u8f6c\u6362\u597d\u518d\u4e0a\u4f20":33,"\u7528\u6237\u6587\u4ef6\u53ef\u80fd\u662f\u6bd4\u8f83\u5927\u7684":48,"\u7528\u6237\u901a\u8fc7c":66,"\u7531\u4e8e\u5728\u73b0\u6709\u7684\u67d0\u4e9b\u60c5\u51b5\u4e0b":61,"\u7531\u4e8e\u5bf9parameters\u7684\u66f4\u65b0\u9700\u8981\u83b7\u53d6parameters\u5185\u5b58\u7684":32,"\u7531\u4e8e\u96c6\u7fa4\u4e2d\u540c\u65f6\u5b58\u5728\u4e24\u53f0\u673a\u5668\u6545\u969c\u7684\u6982\u7387\u6781\u4f4e":32,"\u7531\u4e8ec":65,"\u7531\u4e8echunk\u6bd4\u8f83\u5c0f":48,"\u7531\u4e8emkl":62,"\u7531\u4e8epypi":82,"\u7531\u5206\u652f\u5904\u7684layer\u8d1f\u8d23\u6c42\u548c":62,"\u7533\u8bf7\u7528\u6237\u7a7a\u95f4":48,"\u7684\u4e00\u4e2a\u5b50\u96c6":62,"\u7684\u4fe1\u606f":62,"\u7684\u5355\u5143\u6d4b\u8bd5\u548c\u7b80\u5355\u7f51\u7edc\u7684\u6574\u4f53\u6d4b\u8bd5":62,"\u7684\u547d\u540d\u98ce\u683c\u5e76\u4e0d\u80fd\u9002\u5e94\u5176\u4ed6\u7b2c\u4e09\u65b9\u8bed\u8a00":65,"\u7684\u57fa\u672c\u903b\u8f91":62,"\u7684\u5934\u6587\u4ef6":65,"\u7684\u5b50\u7c7b\u53ea\u9700\u8981\u4f7f\u7528\u5185\u90e8\u5b58\u50a8\u5c31\u53ef\u4ee5\u4e86":62,"\u7684\u60c5\u51b5\u4e0b":61,"\u7684\u63a5\u53e3\u6837\u5f0f":65,"\u7684\u6570\u636e\u6d41\u56fe":33,"\u7684\u65f6\u5019":62,"\u7684\u683c\u5f0f\u59cb\u7ec8\u662f":62,"\u7684\u683c\u5f0f\u5b58\u50a8":62,"\u7684\u6982\u5ff5":62,"\u7684\u6e90\u7801\u91cc\u4f7f\u7528\u4e86":65,"\u7684\u7248\u672c":82,"\u7684\u7ed3\u679c":61,"\u7684\u7f29\u5199":48,"\u7684\u7f51\u7edc\u6a21\u578b":61,"\u7684\u89c4\u8303":65,"\u7684\u89d2\u5ea6":33,"\u7684\u914d\u7f6e\u5199\u5230\u914d\u7f6e\u6587\u4ef6\u4e2d":33,"\u7684flag":[61,62],"\u7684vanilla":61,"\u76ee\u524d\u53ea\u8003\u8651":62,"\u76ee\u524d\u53ea\u8003\u8651\u52a8\u6001\u6269\u5bb9trainer\u6570\u91cf":32,"\u76ee\u524d\u5728paddlepaddle\u4e2d":62,"\u76ee\u524d\u5728paddlepaddle\u4e2d\u6570\u636e\u90fd\u662f\u4ee5":62,"\u76ee\u524d\u5d4c\u5165python\u89e3\u91ca\u5668":65,"\u76ee\u524d\u6211\u4eec\u7528cephfs\u6765\u642d\u5efa":48,"\u76ee\u524d\u7684\u4f18\u5316":62,"\u76ee\u524dpaddle\u7684\u8fdb\u7a0b\u6a21\u578b\u662fc":65,"\u76ee\u524dpaddlepaddle\u91c7\u7528\u4e86":61,"\u76ee\u5f55\u4e0b":66,"\u76ee\u5f55\u4e0b\u5bf9\u5e94\u7684\u5730\u65b9":62,"\u76f4\u63a5\u4f7f\u7528c\u8bed\u8a00\u7684":65,"\u76f4\u63a5\u5220\u9664\u8fd9\u4e2a\u53c2\u6570\u5373\u53ef":66,"\u76f4\u63a5\u5bfc\u51fa\u5230c\u7684\u63a5\u53e3\u6bd4\u8f83\u56f0\u96be":65,"\u76f8\u5173\u5c42":61,"\u77e9\u9635\u5927\u5c0f\u662f":61,"\u793e\u533a\u53c2\u4e0e\u56f0\u96be":65,"\u793e\u533a\u8d21\u732e\u4ee3\u7801\u5b66\u4e60\u6210\u672c\u9ad8":65,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u53c2\u6570":32,"\u79bb\u7ebf\u6279\u5904\u7406":33,"\u7b2c\u4e00\u4e2atag\u4e3a":82,"\u7b2c\u4e09\u6b65\u5b8c\u6210\u540e":82,"\u7b2c\u4e8c\u4e2a\u4e3a":82,"\u7b49":[62,66],"\u7b49\u5168\u90e8\u9759\u6001\u5e93\u4e2d\u7684\u76ee\u6807\u6587\u4ef6\u5168\u90e8\u6253\u5305\u540e\u4ea7\u751f\u7684\u6587\u4ef6":66,"\u7b49\u5f85\u7f16\u8bd1\u5b8c\u6210\u540e":82,"\u7b49\u6587\u4ef6":66,"\u7c7b\u4f3c":66,"\u7c7b\u540d\u548cc":65,"\u7c7b\u578b":65,"\u7ed3\u8bba":65,"\u7edf\u4e00\u7528":33,"\u7f16\u8bd1\u5668\u6ca1\u6709":65,"\u7f16\u8bd1\u578b\u8bed\u8a00":65,"\u7f16\u8bd1\u65f6\u4f1a\u628a\u5bf9\u5e94\u7684\u5934\u6587\u4ef6\u548c\u5e93\u653e\u5728":62,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684docker\u53d1\u884c\u955c\u50cf":82,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684python":82,"\u7f16\u8bd1c":66,"\u800c\u4e0d\u5fc5\u5728\u610fpaddl":66,"\u800c\u4e0d\u652f\u6301pypy\u89e3\u91ca\u5668":65,"\u800c\u4e0d\u66b4\u9732\u6982\u5ff5\u7684\u5b9e\u73b0":66,"\u800c\u4e14\u5728\u4f20\u8f93\u7684\u8fc7\u7a0b\u4e2d\u4e5f\u53ef\u80fd\u51fa\u73b0\u7f51\u7edc\u4e0d\u7a33\u5b9a\u7684\u60c5\u51b5":48,"\u800c\u51fa\u73b0\u9636\u6bb5\u6027\u7684\u8fd0\u884c\u505c\u6ede":32,"\u800c\u5728cpp\u91cc\u9762\u5b9e\u73b0\u8fd9\u4e2ac\u7684\u63a5\u53e3":65,"\u800c\u591a\u8bed\u8a00\u63a5\u53e3\u9700\u8981\u76f4\u63a5\u8bfb\u53d6\u751f\u6210\u7684\u4e8c\u8fdb\u5236":65,"\u800c\u5bf9\u4e8egolang":65,"\u800c\u5bf9\u4e8egolang\u9519\u8bef\u5904\u7406\u5e94\u8be5\u4f7f\u7528\u8fd4\u56de\u503c":65,"\u800c\u662f\u76f4\u63a5\u4fee\u6539paddl":66,"\u800c\u662f\u76f4\u63a5\u7528api\u7684\u63a5\u53e3\u8fdc\u7a0b\u8bbf\u95ee":33,"\u800cswig\u53ea\u80fd\u7b80\u5355\u7684\u66b4\u9732c":65,"\u81ea\u52a8\u6302\u8f7d\u5206\u5e03\u5f0f\u5b58\u50a8\u76ee\u5f55":32,"\u81f3\u4e8e\u4e3a\u4ec0\u4e48\u9700\u8981c":66,"\u826f\u597d\u7684\u6587\u6863":65,"\u8282\u7701\u4e86\u4e0d\u5fc5\u8981\u7684\u64cd\u4f5c":62,"\u83b7\u53d6\u6700\u65b0\u7684\u68c0\u67e5\u70b9\u7684\u6587\u4ef6uuid":32,"\u867d\u7136\u4e0d\u9f13\u52b1\u8fd9\u6837":66,"\u8868\u793a\u5bf9\u8f93\u5165\u6570\u636e":62,"\u89e3\u91ca\u578b\u8bed\u8a00\u53ea\u80fd\u8c03\u7528\u52a8\u6001\u5e93":65,"\u89e3\u91ca\u6027\u8bed\u8a00\u5b9e\u9645\u8fd0\u884c\u7684\u4e8c\u8fdb\u5236\u662f\u89e3\u91ca\u5668\u672c\u8eab":65,"\u8ba1\u5212\u5728":[61,62],"\u8ba1\u7b97\u8fd9\u4e2a\u6587\u4ef6\u7684md5":32,"\u8ba9paddle\u6838\u5fc3\u4e2d":66,"\u8bad\u7ec3\u4efb\u52a1\u7684\u8fd0\u884c\u53ef\u80fd\u4f1a\u5360\u6ee1trainer\u548cparamet":32,"\u8bad\u7ec3\u548c\u7eaf\u4f7f\u7528":82,"\u8bad\u7ec3\u6a21\u578b\u6b63\u786e\u6027":82,"\u8bb0\u5f55\u4e0b\u6240\u6709\u5931\u8d25\u7684\u4f8b\u5b50":82,"\u8bbe\u7f6e":66,"\u8bc6\u522b\u6570\u5b57":82,"\u8bcd\u5411\u91cf":82,"\u8be5\u6587\u4ef6\u5bf9\u76f8\u5173gemm":61,"\u8be5\u7c7b\u7ee7\u627f\u4e8epaddlepaddle\u7684\u57fa\u7c7b":62,"\u8be6\u7ec6\u8bbe\u8ba1":48,"\u8bed\u610f\u89d2\u8272\u6807\u6ce8":82,"\u8bf4\u660e":32,"\u8bf7\u53c2\u8003":66,"\u8f6c\u6362\u5185\u5b58\u7684\u5de5\u4f5c":62,"\u8f6c\u6362\u5197\u4f59":61,"\u8f6c\u6362\u51fd\u6570":62,"\u8f6c\u6362\u751f\u6210\u7684\u6587\u4ef6\u540d\u4f1a\u662f\u4ee5\u4e0b\u683c\u5f0f":33,"\u8f6c\u6362\u8017\u65f6":61,"\u8f93\u5165\u68af\u5ea6":62,"\u8f93\u51fa\u6570\u636e\u548c\u8f93\u51fa\u68af\u5ea6":62,"\u8f93\u51fa\u6570\u636e\u548c\u8f93\u51fa\u68af\u5ea6\u7684\u8f6c\u6362":62,"\u8fbe\u5230\u5bb9\u707e\u7684\u76ee\u7684":32,"\u8fc7\u7a0b\u4e2d\u6240\u6709\u65f6\u95f4\u6b65":61,"\u8fd1\u671f\u76ee\u6807":62,"\u8fd4\u56de\u7b2c\u4e8c\u6b65":82,"\u8fd8\u662f\u4ece":33,"\u8fd9\u4e00\u5c42\u8fdb\u884c\u5c01\u88c5":66,"\u8fd9\u4e00\u6570\u636e\u683c\u5f0f\u7684\u8f6c\u6362\u64cd\u4f5c":61,"\u8fd9\u4e00\u6982\u5ff5\u4e0d\u518d\u7410\u788e":66,"\u8fd9\u4e09\u4e2a\u5206\u652f":82,"\u8fd9\u4e2a\u51fd\u6570\u672c\u8eab\u4f1a\u5728\u8ba1\u7b97\u524d\u5c06\u539f\u6570\u636e\u8f6c\u6362\u4e3a\u66f4\u9002\u5408\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u5185\u90e8\u683c\u5f0f":61,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u7684\u8fde\u63a5\u53c2\u6570\u4e0epaddle\u7684\u5176\u4ed6\u4e8c\u8fdb\u5236":66,"\u8fd9\u4e2a\u53c2\u6570\u4e5f\u4e0d\u4f1a\u4e00\u5e76\u5220\u9664":66,"\u8fd9\u4e2a\u5934\u6587\u4ef6\u4e0d\u5047\u8bbe\u5176\u4ed6\u6587\u4ef6\u7684\u5f15\u7528\u987a\u5e8f":66,"\u8fd9\u4e2a\u63a5\u53e3\u9700\u8981\u505a\u5230":65,"\u8fd9\u4e2a\u6587\u4ef6\u5177\u6709\u72ec\u7279\u7684\u8bed\u6cd5":65,"\u8fd9\u4e2a\u76ee\u5f55\u4e2d\u9664\u4e86":66,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u4e2d\u7684\u53e6\u4e00\u4e2a\u9879\u76ee\u662f":66,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u5305\u542b\u4e24\u4e2a\u9879\u76ee":66,"\u8fd9\u4e2a\u9009\u62e9":[61,62],"\u8fd9\u4e2a\u9759\u6001\u5e93\u5305\u542b\u4e86paddle\u7684\u5168\u90e8\u7b26\u53f7":66,"\u8fd9\u4e2ainstance\u53ef\u4ee5\u662f\u5355\u4e2a\u503c":33,"\u8fd9\u4e9b\u4f1a\u5728":[61,62],"\u8fd9\u4e9b\u51fd\u6570\u4f1a\u6839\u636e\u8f93\u5165\u53c2\u6570\u91cd\u65b0\u8bbe\u7f6e\u5185\u90e8\u548c\u5916\u90e8\u5b58\u50a8":62,"\u8fd9\u4e9b\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1\u901a\u5e38\u4f1a\u628a\u6570\u636e\u5207\u5272\u6210\u591a\u4e2a\u5206\u7247\u5206\u5e03\u5f0f\u7684\u5b58\u50a8\u5728\u591a\u4e2a\u8282\u70b9\u4e4b\u4e0a":33,"\u8fd9\u4e9b\u955c\u50cf\u4e5f\u53ef\u4ee5\u4ece":82,"\u8fd9\u5bf9\u4e8e\u901a\u5e38\u7684java\u7684\u5f00\u53d1\u8005\u6765\u8bf4":65,"\u8fd9\u662f\u56e0\u4e3a":65,"\u8fd9\u6837":66,"\u8fd9\u6837\u4e0b\u4e00\u4e2acpu":62,"\u8fd9\u6837\u4fdd\u8bc1":82,"\u8fd9\u6837\u5c31\u53ef\u4ee5\u5728\u4e91\u7aef\u6267\u884c\u591a\u79cd\u6570\u636e\u7c7b\u8ba1\u7b97\u4efb\u52a1":33,"\u8fd9\u6837\u5df2\u7ecf\u4f20\u8f93\u6210\u529f\u7684\u90e8\u5206\u5c31\u4e0d\u7528\u91cd\u65b0\u4f20\u8f93\u4e86":48,"\u8fd9\u6837\u5e26\u6765\u7684\u597d\u5904\u5c31\u662f\u4e0d\u9700\u8981\u4e00\u76f4\u6e05\u7a7amemori":62,"\u8fd9\u6837\u65e2\u4f7f\u5f97\u6700\u7ec8\u4fdd\u5b58\u7684\u53c2\u6570\u683c\u5f0f\u4e0epaddlepaddle\u4e00\u81f4":62,"\u8fd9\u90fd\u9700\u8981\u8fd9\u4e2a\u63a5\u53e3\u6309\u7167\u7ea6\u5b9a\u4fd7\u6210\u7684\u89c4\u5219\u6765\u6ce8\u91ca\u5b8c\u5907":65,"\u8fd9\u91cc":62,"\u8fd9\u91cc\u7684dockerimage\u4f5c\u4e3a\u7f16\u8bd1\u73af\u5883\u4ee5\u652f\u6301\u66f4\u591a\u7684linux":82,"\u8fd9\u91cc\u9009\u62e90":82,"\u8fd9\u91cc\u9700\u8981\u7528\u6237\u989d\u5916\u6ce8\u610f":32,"\u8fdb\u4e00\u6b65\u4f18\u5316":62,"\u8fdb\u5165":82,"\u8fdb\u800c\u8fdb\u884c\u4ee3\u7801\u8bc4\u5ba1":82,"\u9009\u62e9\u662f\u5426\u7f16\u8bd1mkl":62,"\u9009\u62e9\u9700\u8981\u53d1\u5e03\u7684\u7248\u672c":82,"\u900f\u4f20\u7528\u6237\u8eab\u4efd\u7684\u529e\u6cd5":48,"\u901a\u5e38":66,"\u901a\u5e38\u5305\u542b\u4e00\u4e2acpu\u7248\u672c\u548c\u4e00\u4e2agpu\u7248\u672c":82,"\u901a\u5e38\u6307\u5c06\u4e00\u4e2a\u6574\u4f53\u62c6\u5206\u6210\u591a\u4efd\u7684\u5176\u4e2d\u7684\u4e00\u4efd":32,"\u901a\u8fc7\u4f7f\u7528\u8fd9\u4e9bapi":61,"\u901a\u8fc7\u6a21\u578b\u63a8\u65adapi\u7684\u5b9e\u73b0\u4f5c\u4e3a\u4e00\u4e2a\u6837\u4f8b":66,"\u903b\u8f91\u5212\u4e0a\u6587\u4ef6\u5206\u5757\u7684\u5355\u4f4d":48,"\u9075\u5faa\u4ee5\u4e0b\u6d41\u7a0b":82,"\u90a3\u4e48":66,"\u90a3\u4e48\u5bf9\u5e94\u7684\u5185\u90e8\u5b58\u50a8\u4e5f\u4f1a\u4e0e\u5b83\u4eec\u5171\u4eab\u5185\u5b58":62,"\u90a3\u4e48\u5c31\u4f1a\u4f7f":62,"\u90fd\u4e0d\u4f1a\u60f3\u8981\u77e5\u9053next":62,"\u90fd\u662f\u4e94\u4f4d\u7684\u6570\u5b57":33,"\u90fd\u662f\u4ee5ext\u5f00\u5934":62,"\u90fd\u662fabi\u8c03\u7528\u6807\u51c6\u7684":65,"\u90fd\u7ee7\u627f\u4e8epaddlepaddle\u7684\u57fa\u7c7b":61,"\u914d\u7f6e\u7684\u65b9\u6cd5\u53c2\u8003":48,"\u91ca\u653e\u5bf9paramters\u5185\u5b58\u7684\u9501\u5b9a":32,"\u91cc\u6240\u6709\u7684\u7b26\u53f7\u90fd\u5199\u5165\u81ea\u5df1\u7684\u7a0b\u5e8f\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u91cc":65,"\u91cc\u9009\u62e9\u9700\u8981\u53d1\u5e03\u7684\u5206\u652f":82,"\u91cc\u9762\u6dfb\u52a0":62,"\u91cd\u5199\u7236\u7c7blayer\u7684":62,"\u91cd\u547d\u540d\u6210":65,"\u94fe\u63a5\u5230\u81ea\u5df1\u7684\u7a0b\u5e8f\u91cc":65,"\u9519\u8bef\u5904\u7406":65,"\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662f\u8fd4\u56de\u503c":65,"\u9519\u8bef\u5904\u7406\u7684\u65b9\u5f0f\u4e5f\u4e0d\u5c3d\u76f8\u540c":65,"\u9664\u6784\u9020\u67d0\u79cd\u7c7b\u578b\u7684\u51fd\u6570":66,"\u96c6\u6210\u5230":61,"\u96c6\u6210\u5230paddlepaddl":62,"\u9700\u8981":33,"\u9700\u8981\u4fee\u6539build":82,"\u9700\u8981\u53ef\u4ee5\u8de8\u5e73\u53f0\u6267\u884c":48,"\u9700\u8981\u5728cmake\u7684\u65f6\u5019":66,"\u9700\u8981\u5c06bugfix\u7684\u5206\u652f\u540c\u65f6merge\u5230":82,"\u9700\u8981\u5f15\u7528":66,"\u9700\u8981\u6709\u7a33\u5b9a\u7684\u5bfc\u51fa\u7b26\u53f7":65,"\u9700\u8981\u6ce8\u610f\u7684\u662f":[62,82],"\u9700\u8981\u7d2f\u52a0\u4e0d\u540clayer\u4f20\u8fc7\u6765\u7684\u68af\u5ea6":62,"\u9700\u8981\u88ab\u66b4\u9732\u5230\u5176\u4ed6\u8bed\u8a00":66,"\u9700\u8981\u91cd\u547d\u540dwheel\u5305\u4e2dplatform\u76f8\u5173\u7684\u540e\u7f00":82,"\u9ed8\u8ba4256k":48,"\u9ed8\u8ba4\u8bbe\u7f6e\u4e3a":61,"abstract":[40,47,51,72,81,83,100,118],"api\u4e2d\u4f7f\u7528":65,"api\u5bfc\u51fa\u7684\u52a8\u6001\u5e93":66,"api\u5bfc\u51fa\u7684\u9759\u6001\u5e93":66,"api\u63a5\u53d7\u7684\u7c7b\u578b\u5168\u662f":66,"api\u63a5\u53e3":48,"api\u63a5\u53e3\u7684\u53c2\u6570\u8f6c\u53d1\u7ed9":66,"api\u65f6":66,"api\u65f6\u6240\u552f\u4e00\u9700\u8981\u5f15\u5165\u7684\u5934\u6587\u4ef6":66,"api\u662f\u591a\u8bed\u8a00api\u7684\u57fa\u7840\u90e8\u5206":66,"api\u66b4\u9732\u7684\u7c7b\u578b":66,"api\u751f\u6210\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u4f1a\u88ab\u5b89\u88c5\u5230":66,"api\u7684\u5b9e\u4f8b":66,"api\u7684\u5b9e\u73b0\u7ec6\u8282":66,"api\u7684\u63a5\u53e3":66,"api\u7684\u65f6\u5019\u63a8\u8350paddle\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":66,"api\u7684\u7f16\u8bd1\u9009\u9879\u9ed8\u8ba4\u5173\u95ed":66,"api\u76ee\u5f55\u7ed3\u6784\u5982\u4e0a\u56fe\u8868\u6240\u793a":66,"api\u83b7\u5f97\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u53c2\u6570\u5b9e\u4f8b":66,"apis\u505a\u4e86\u5c01\u88c5":61,"block\u6784\u6210\u4e00\u4e2amodel":32,"book\u4e2d\u6240\u6709\u7ae0\u8282\u529f\u80fd\u7684\u6b63\u786e\u6027":82,"boolean":[18,47,49,57,65],"break":[9,30,86,89,90],"bugfix\u5206\u652f\u4e5f\u662f\u5728\u5f00\u53d1\u8005\u81ea\u5df1\u7684fork\u7248\u672c\u5e93\u7ef4\u62a4":82,"bugfix\u5206\u652f\u9700\u8981\u5206\u522b\u7ed9\u4e3b\u7248\u672c\u5e93\u7684":82,"byte":[9,11,48,64],"c99\u662f\u76ee\u524dc\u6700\u5e7f\u6cdb\u7684\u4f7f\u7528\u6807\u51c6":65,"c\u6709\u6807\u51c6\u7684abi":65,"c\u8bed\u8a00\u662f\u6709\u5bfc\u51fa\u7b26\u53f7\u7684\u6807\u51c6\u7684":65,"case":[4,18,34,40,42,47,51,60,66,72,76,78,79,97,100,101,107,111,112,119,126],"char":36,"ci\u73af\u5883\u4f7f\u7528":82,"ci\u7f16\u8bd1wheel\u5b8c\u6210\u540e\u4f1a\u81ea\u52a8\u5c06docker\u955c\u50cfpush\u5230dockerhub":82,"class":[1,2,3,4,5,6,7,9,10,13,14,15,18,21,25,26,29,40,41,42,45,46,50,51,52,53,55,56,58,60,65,69,70,74,75,79,80,81,83,84,85,87,89,101,102,103,108,117],"compute\u51fd\u6570":61,"const":[29,34,36,50,52,58,59,73,74,76,80,83,85,87,88,89,100,101,102,103],"core\u4e2d\u7684\u6a21\u578b\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u53c2\u6570":66,"core\u4e2d\u8fd9\u4e00\u7c7b\u578b\u63a5\u53e3\u7684\u667a\u80fd\u6307\u9488":66,"core\u662f\u5426\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u5b9e\u4f8b":66,"core\u6982\u5ff5":66,"data\u5230\u5206\u5e03\u5f0f\u5b58\u50a8\u8865\u5145\u8bad\u7ec3\u6570\u636e":33,"default":[2,3,4,5,6,7,9,10,11,17,18,19,22,25,26,29,30,40,45,54,58,64,67,68,76,77,83,84,85,90,91,92,94,98,99,101,102,106,109,110,112,113,118,120,122,123,124,126],"device\u5c31\u80fd\u62ff\u5230\u6b63\u786e\u7684\u6570\u636e":62,"dnn\u4e09\u8005\u5173\u7cfb\u5982\u4e0b\u8868":62,"dnn\u4e2d\u7684":62,"dnn\u4e2d\u7684\u6392\u5217\u65b9\u5f0f\u4e0d\u6b62\u8fd9\u4e00\u79cd":62,"dnn\u4f1a\u4f5c\u4e3a\u7b2c\u4e09\u65b9\u5e93\u96c6\u6210\u8fdbpaddlepaddl":62,"dnn\u4f1a\u7528\u5230":62,"dnn\u5171\u540c\u4f7f\u7528":62,"dnn\u524d\u540e\u7684cnn\u7f51\u7edc\u6027\u80fd":62,"dnn\u5728\u53d1\u5e03":62,"dnn\u5b9e\u73b0":62,"dnn\u5e0c\u671b\u7684\u683c\u5f0f":62,"dnn\u6570\u636e\u7684\u4e0d\u540c\u683c\u5f0f\u4ee5\u53ca\u76f8\u4e92\u4e4b\u95f4\u7684\u8f6c\u6362":62,"dnn\u7684":62,"dnn\u7684\u5e93\u76ee\u524d\u53ea\u6709\u52a8\u6001\u5e93":62,"dnn\u7684\u6027\u80fd":62,"dnn\u7684\u60c5\u51b5\u4e0b":62,"dnn\u7684\u64cd\u4f5c\u90fd\u662f\u76f4\u63a5\u8986\u76d6\u7684\u5f62\u5f0f":62,"dnn\u7684\u6d4b\u8bd5":62,"dnn\u7684\u73af\u5883\u4e0b":62,"dnn\u7684\u76f8\u5173\u529f\u80fd":62,"dnn\u7684\u7ed3\u679c":62,"dnn\u7684\u9ad8\u6027\u80fd\u683c\u5f0f\u4e0epaddlepaddle\u539f\u6709\u7684":62,"dnn\u7684layer":62,"dnn\u7684layers\u90fd\u4f1a\u7ee7\u627f\u4e8e":62,"enum":[34,36,41,67,74,75,84,85,90,102],"export":[51,56,92,104,109],"final":[4,5,18,27,28,42,56,68,69,86,89,100,101],"float":[2,3,4,6,9,18,19,45,50,58,85,87,88,100,101,102,103,107,120],"function":[4,5,9,18,19,23,26,28,29,31,35,36,37,39,40,41,42,45,46,50,52,55,58,63,68,69,72,73,74,75,76,78,79,80,81,83,85,89,97,100,101,102,103,106,107,109,111,118,126],"golang\u53ef\u4ee5\u4f7f\u7528":65,"golang\u7684":65,"gpu\u7b49":82,"h\u5e76\u4e0d\u56f0\u96be":65,"images\u6570\u636e\u96c6\u4e0a\u4f20\u5230\u4e91\u7aef\u7684":33,"import":[3,4,26,29,30,40,41,44,52,54,56,57,63,68,69,75,83,86,94,95,97,101,107,109,111,112,124],"ingress\u9700\u8981\u628apfsclient\u7684\u8eab\u4efd\u4fe1\u606f\u4f20\u7ed9pfsserv":48,"instance\u4e0e\u751f\u6210\u6570\u636e\u96c6\u65f6":33,"instance\u5305\u6db5\u4e24\u4e2a\u503c":33,"instance\u662f\u4e00\u6a21\u4e00\u6837\u7684":33,"int":[2,3,4,5,9,10,11,18,19,28,29,34,35,36,39,40,41,43,57,58,61,62,63,65,66,74,75,77,78,84,85,87,89,90,100,102,103,109,120],"interface\u6587\u4ef6\u7684\u5199\u6cd5\u975e\u5e38":65,"layer\u65f6":62,"layer\u7684\u540e\u9762\u63a5\u6709cpu":62,"list\u4f5c\u4e3a\u68c0\u67e5\u5217\u8868":82,"long":[4,5,9,18,41,107],"mkl\u5e93\u7684":61,"mklml\u4ee5\u53camkl":62,"mklml\u53ef\u4ee5\u4e0emkl":62,"mklml\u7684\u5e93\u76ee\u524d\u90fd\u662f\u52a8\u6001\u5e93":62,"mode\u4e0b\u7684\u7ed3\u679c":61,"model\u505a\u5206\u652f\u7ba1\u7406":82,"ndarray\u7c7b\u578b\u7684\u503c\u548c\u6574\u578b\u7684\u503c":33,"new":[4,9,18,27,28,29,30,31,34,35,36,37,38,41,42,45,50,51,60,61,63,67,69,72,77,78,79,81,85,86,89,95,98,99,105,112,113,126],"note\u7684\u4e66\u5199":82,"null":[56,100,118],"op\u7684\u4fe1\u606f":62,"openmp\u7528\u4e8e\u63d0\u9ad8mklml\u7684\u6027\u80fd":62,"org\u76ee\u524d\u9075\u5faa":82,"packed\u4f18\u5316\u540elayer\u7684\u6d4b\u8bd5":61,"packed\u76f8\u5173\u529f\u80fd":61,"paddle\u4e00\u4e2a\u52a8\u6001\u5e93\u53ef\u4ee5\u5728\u4efb\u4f55linux\u7cfb\u7edf\u4e0a\u8fd0\u884c":65,"paddle\u5185\u5d4c\u7684python\u89e3\u91ca\u5668\u548c\u5916\u90e8\u4f7f\u7528\u7684python\u5982\u679c\u7248\u672c\u4e0d\u540c":65,"paddle\u5185\u90e8\u7684\u7c7b\u4e3ac":65,"paddle\u7684\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0\u5305\u62ec\u4e00\u4e0b\u51e0\u4e2a\u65b9\u9762":65,"paddle\u7684\u7c7b\u578b\u5168\u90e8\u9000\u5316\u6210":66,"paddle\u7684\u94fe\u63a5\u65b9\u5f0f\u6bd4\u8f83\u590d\u6742":65,"paddle\u7684c":66,"paddle\u8bad\u7ec3\u4efb\u52a1":33,"paddle\u8def\u5f84\u4e0b":66,"paddle\u9700\u8981\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3":65,"paddle\u9700\u8981\u66b4\u9732\u7684api\u5f88\u591a":66,"paddle\u9759\u6001\u5e93\u94fe\u63a5\u590d\u6742":65,"paddle_\u7c7b\u578b\u540d":66,"paddle_\u7c7b\u578b\u540d_\u51fd\u6570\u540d":66,"paddlepaddle\u4e2d\u7684cudnn\u90e8\u5206\u4f7f\u7528\u7684\u4e5f\u662f":62,"paddlepaddle\u4f7f\u7528git":82,"paddlepaddle\u5f00\u53d1\u8fc7\u7a0b\u4f7f\u7528":82,"paddlepaddle\u63d0\u4f9b\u4e13\u7528\u7684":33,"paddlepaddle\u6bcf\u6b21\u53d1\u65b0\u7684\u7248\u672c":82,"paddlepaddle\u6bcf\u6b21\u53d1\u7248\u672c\u9996\u5148\u8981\u4fdd\u8bc1paddlepaddl":82,"paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u9075\u5faa":82,"paddlepaddle\u7684activation\u4f1a\u76f4\u63a5\u4f7f\u7528":62,"patch\u53f7":82,"patch\u53f7\u52a0\u4e00":82,"pfsclient\u9700\u8981\u548cingress\u4e4b\u95f4\u505a\u53cc\u5411\u9a8c\u8bc1":48,"pfsclient\u9700\u8981\u5728\u4f20\u8f93\u5b8c\u6bd5\u6700\u540e\u4e00\u4e2achunk\u7684\u65f6\u5019\u68c0\u67e5destination\u6587\u4ef6\u7684md5\u503c\u662f\u5426\u548csource\u6587\u4ef6\u4e00\u81f4":48,"pfsserver\u63d0\u4f9brest":48,"public":[10,18,29,50,53,58,74,80,83,85,86,87,89,100,101,102,103,109,112,113],"py\u4e2d":82,"pypi\u4e0a\u7684package\u540d\u79f0\u4e3apaddlepaddle\u548cpaddlepaddl":82,"pypi\u4e0d\u652f\u6301\u8986\u76d6\u4e0a\u4f20":82,"reader\u7684\u4f7f\u7528\u65b9\u5f0f\u90fd\u662f\u4e00\u81f4\u7684":33,"reader\u8f93\u51fa\u7684data":33,"resnet\u7684mkl":62,"return":[2,3,4,5,7,9,10,11,17,18,19,23,25,26,27,28,29,33,34,36,39,40,46,50,52,53,54,56,58,59,60,63,68,69,70,74,75,76,80,83,85,87,89,97,100,101,102,103,111,112],"rnn\u90e8\u5206\u4e2d":61,"s3\u4e4b\u7c7b\u7684\u5206\u5e03\u5f0f\u5b58\u50a8\u4e4b\u4e0a":33,"server\u4e4b\u4e0a":32,"server\u4e4b\u95f4\u7684\u7f51\u7edc\u5e26\u5bbd":32,"server\u4f1a\u6682\u505c\u53c2\u6570\u66f4\u65b0\u5e76\u7b49\u5f85":32,"server\u4f1a\u83b7\u53d6parameters\u5185\u5b58\u7684":32,"server\u5185\u5b58\u4e2d\u7684\u6a21\u578b\u6570\u636e\u7684\u5b8c\u6574\u955c\u50cf":32,"server\u540c\u6b65\u7684\u4fdd\u5b58\u4e00\u4e2a\u7279\u5b9a\u65f6\u95f4\u70b9\u7684\u5168\u5c40\u68c0\u67e5\u70b9":32,"server\u5728\u96c6\u7fa4\u4e2d\u542f\u52a8\u540e":32,"server\u6545\u969c\u540e\u88abkubernetes\u91cd\u65b0\u542f\u52a8":32,"server\u6b64\u65f6\u8fd8\u9700\u8981\u901a\u8fc7\u7f51\u7edc\u8bbf\u95ee\u5206\u5e03\u5f0f\u5b58\u50a8\u4ee5\u4fdd\u5b58\u5feb\u7167":32,"server\u751f\u6210\u4e00\u4e2auuid":32,"server\u7684\u5355\u70b9\u6216\u591a\u70b9\u540c\u65f6\u6545\u969c":32,"server\u7684\u6570\u636e\u5feb\u7167":32,"server\u7684\u68c0\u67e5\u70b9\u5404\u81ea\u72ec\u7acb\u4fdd\u5b58":32,"server\u7b2c\u4e00\u6b21\u542f\u52a8\u6216\u4efb\u610f\u65f6\u95f4paramet":32,"short":[4,5,50,54,77,83,86,89,101],"static":[25,36,66,83,85,112,123,126],"super":[77,100],"swig\u652f\u6301\u7684\u8bed\u8a00\u6216\u8005\u89e3\u91ca\u5668\u6709\u5c40\u9650":65,"swig\u66b4\u9732\u7684\u63a5\u53e3\u4fdd\u7559\u4e86c":65,"swig\u751f\u6210\u7684\u4ee3\u7801\u4e0d\u80fd\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":65,"swig\u76f4\u63a5\u8bfb\u53d6c":65,"swig\u9700\u8981\u5199\u4e00\u4e2ainterface\u6587\u4ef6":65,"switch":[29,66,112],"tag\u4e3a":82,"tag\u53ef\u4ee5\u662flatest\u6216latest":82,"tag\u7684\u66f4\u65b0\u65f6\u95f4\u662f\u5426\u5728\u4e0a\u8ff0\u7f16\u8bd1wheel\u5305\u5b8c\u6210\u540e\u662f\u5426\u6700\u65b0":82,"throw":112,"true":[2,3,4,5,6,7,9,11,17,18,19,21,25,26,28,29,34,51,57,61,70,75,76,77,78,82,85,89,97,100,109,112,118,120],"try":[30,31,34,35,36,51,56,60,63,78,83,86,92,94,98,107,111,123],"type\u5b57\u6bb5\u5747\u4e0d\u5c3d\u76f8\u540c":66,"var":[17,18,28,29,40,45,52,53,55,57,70,75,76,77,79,83,88,89,104],"void":[29,34,36,47,50,52,53,58,63,64,65,66,75,76,84,85,87,88,100,101,102,103],"wheel\u5305":82,"while":[2,4,9,29,38,41,51,56,59,60,69,72,73,78,81,83,87,97,101,103,118],AGE:[112,113],AWS:[9,33,109,115,116],Abs:18,Added:86,And:[3,4,6,9,10,11,18,25,27,34,38,39,47,54,56,67,71,74,78,83,87,97,112,120],But:[4,5,9,18,27,53,59,67,74,83,94,99,109,126],EOS:4,For:[3,4,5,6,9,18,25,26,28,29,35,36,37,39,40,42,45,46,51,52,53,55,58,60,64,67,68,69,72,73,74,75,76,77,78,79,80,81,84,85,86,87,88,90,91,92,95,97,99,100,101,102,103,106,107,111,117,118,120,122,124,126],IDE:[98,123],IDs:[10,18,38,41,69],IPs:109,IRs:42,Into:112,Its:[3,4,52,84,97,101,112],K8s:126,NMS:4,NOT:[18,77,101],Not:[26,31,60,86,94,126],OPs:[42,44,111],One:[3,5,18,25,27,38,64,67,83,86,88,97,100,118],Ops:[79,81,85,101],PFS:48,PRs:104,QoS:113,Such:[58,77,86,89],TLS:[26,48,112],That:[4,9,71,92,118,120],The:[1,2,3,4,5,6,9,10,11,17,18,19,22,25,26,27,28,30,31,35,37,38,39,41,42,44,45,46,49,50,52,56,59,60,63,64,66,68,69,71,72,74,75,76,77,78,81,83,84,85,86,87,88,89,90,92,94,97,98,99,100,101,102,103,104,106,107,108,109,110,111,112,113,118,120,122],Their:[4,31],Then:[4,5,18,40,42,53,58,60,71,74,76,91,92,94,97,100,106,107,109,111,112,113,114],There:[3,4,10,18,25,26,29,30,31,36,38,39,41,42,49,50,51,56,60,67,68,69,72,73,74,77,81,83,84,87,101,107,112,122,123],These:[3,11,18,28,29,45,50,55,70,81,84,85,86,91,109,120],Use:[3,9,18,26,43,49,78,79,86,91,100,106,107,112,118,119,124],Used:[5,21,79,87],Uses:[60,123],Using:[18,31,51,72,78,79,81,83,93,98,103,113],VMs:98,VPS:112,WITH:124,Will:[9,25],With:[4,5,40,45,51,71,75,86,89],YES:39,Yes:[62,92,98],___fc_layer_0__:112,__align__:50,__cuda_align__:50,__device__:50,__doc__:85,__file__:39,__forceinline__:50,__fp16:50,__global__:50,__gradient_machines__:25,__hadd:50,__half:50,__half_raw:50,__impl__:85,__init__:[45,46,54,60,70,77,89,100,106],__main__:54,__metaclass__:101,__name__:54,__param_conf__:25,__rnn_step__:97,__tmp_params__:25,__va_args__:80,__x:50,_addup_repetitive_outputs_:28,_append_backward_ops_:[28,45],_append_backward_vars_:28,_binari:30,_create_global_var:77,_def:60,_dtype:56,_filer:63,_filter:63,_fwd:63,_fwd_pd:63,_input:63,_librari:30,_link:5,_live_in:60,_live_out:60,_loss:54,_op:[56,101],_output:63,_presucessor:60,_program:60,_proj:4,_remove_no_grad_branch_:28,_reorder_input:63,_source_language_embed:97,_src_input:63,_sucessor:60,_target_language_embed:97,_test:30,_update_op:46,_use:60,_value_index:56,a75:50,a_op:101,a_prev:86,aaaaa:33,aaaaaaaaaaaaa:112,abbrevi:11,abc:4,abi:122,abil:54,abl:[4,26,28,41,42,58,70,74,77,126],about:[5,11,18,29,30,39,44,49,52,60,68,78,83,85,86,87,92,94,95,101,106,107,112,117,118,122,124],abov:[3,4,18,26,28,29,30,31,35,40,41,42,50,51,52,53,55,63,68,69,70,71,72,74,75,77,85,86,88,89,92,93,95,98,99,101,102,103,106,107,111,112,113,122,126],abs:[5,27,54],abs_numerical_grad:27,absolut:[92,122,124],acc:42,acceler:[4,32,62,71,72,92,120],accept:[2,4,9,18,26,79,122],access:[4,5,18,26,30,35,38,39,40,42,77,94,97,109],accessmod:112,accessor:77,accord:[3,4,11,18,27,28,36,42,44,55,69,79,89,101,109,117,118,120],accordingli:[3,4,100],account:[79,99,126],accoust:86,accrodingli:34,accumul:[14,31,36,46,71,72,86],accur:[27,38,74],accuraci:[3,46,86,100],achiev:[44,71,72,86,87,107],ack:118,acquir:51,across:[4,9,28,42,68,86],act1:56,act2:56,act:[4,5,18,19,29,42,56,69,77,89,95,97,108,111],act_output:85,act_typ:56,actgat:18,action:112,activ:[5,18,19,24,30,56,60,69,74,77,81,85,95,97,100,103,104,118],activi:5,actnod:18,actual:[4,18,34,45,51,54,56,63,67,72,85,87,88,103],actual_layout:63,adagrad:[72,84],adagradoptim:[20,70],adam:[26,36,42,54],adamaxoptim:20,adamoptim:20,adapt:[3,6,18,25,74,88],add:[4,5,9,18,22,23,25,27,28,29,30,34,38,41,42,44,46,50,53,57,59,70,72,76,77,79,81,83,87,91,98,99,100,101,103,107,108,120,124],add_activ:77,add_bia:77,add_depend:30,add_execut:30,add_input:[68,100],add_memori:68,add_output:68,add_scalar:[29,69,75],add_sum:77,add_test:[30,100],add_two:[29,68],add_unittest_without_exec:100,addattr:[85,101],addbia:100,addcom:[85,101],added:[3,4,18,25,29,44,45,50,67,71,72,81,99,100,101,102],adding:[81,99],addinput:[85,101],addit:[4,5,28,41,71,74,79,81,89,101,103,111],addition:68,addmemori:63,addop:[53,103],addoutput:101,addprimit:63,addprimitivedesc:63,addr:31,address:[31,36,40,42,92,107,109,110,111,114,118,126],addrow:100,addtolay:4,addtyp:85,adjust:[28,45],admin:126,administr:[38,98,126],adopt:[50,54],advanc:[27,97,107,118],advantag:[27,50,51,72,78,109],adversari:[54,78],advic:107,affect:[4,18,29],affili:69,afford:35,aforement:30,after:[4,5,10,11,18,28,29,30,35,36,38,42,43,44,45,47,49,50,60,63,71,73,74,77,86,91,92,97,99,100,101,102,103,106,109,110,112,113,118,120,122,123],aftern:74,again:[26,31,72,107],against:112,age:10,agg_level:4,aggreg:[46,71,112],ago:30,ahead:86,aid:107,alex:18,alexnet_pass1:120,alexnet_pass2:120,algo:63,algorithm:[4,6,18,28,35,45,60,63,69,72,81,86,88,97],alia:[1,2,4,16,18,20,23],alias:18,align:[4,5,9],all:[2,3,4,17,18,19,25,26,28,29,30,31,34,36,38,39,40,41,42,43,45,47,49,51,54,55,56,59,60,63,64,66,67,68,69,70,71,72,74,75,77,79,85,86,87,92,97,98,100,103,107,108,109,110,111,112,113,117,118,120,122,123,124,126],all_output_nam:28,alloc:[2,36,39,60,63,87,100,103,108,120],allow:[26,36,40,42,45,51,72,81,99,100,107,112,118],allow_only_one_model_on_one_gpu:[117,118,120],allreduc:71,almost:[18,98,110],along:[4,11,18,19],alpha:[18,30,81],alreadi:[18,22,30,31,51,63,77,83,92,107,110,112,118,124],alreali:117,also:[4,5,10,18,21,26,28,29,30,34,37,41,42,50,51,53,54,55,56,59,60,67,68,69,72,73,74,75,76,77,78,81,83,85,86,87,89,90,91,92,94,97,98,100,101,104,107,109,111,113,122,126],altern:[101,106],although:[22,28,71],altogeth:126,alwai:[4,5,18,25,30,64,84,112,118],amazon:[112,113],amazonaw:112,amazonec2fullaccess:112,amazonelasticfilesystemfullaccess:112,amazonroute53domainsfullaccess:112,amazonroute53fullaccess:112,amazons3fullaccess:112,amazonvpcfullaccess:112,ambigu:[78,86],amd64:112,amd:67,amend:99,amodei:86,among:[18,112],amort:71,amount:[18,107],analys:74,analysi:[74,106,107],analyz:60,ancestor:[75,77],andd:112,andrew:60,android:[124,125],android_abi:122,android_api:122,android_arm_neon:122,android_native_api_level:122,android_standalone_toolchain:122,android_toolchain:122,ani:[4,5,9,18,21,26,30,31,36,38,39,40,41,42,47,50,51,58,60,64,69,71,72,77,78,80,81,86,88,91,98,101,103,107,111,112,114,124],annoi:110,announc:50,anoth:[4,9,18,25,26,28,29,39,41,51,52,63,69,77,83,85,87,88,98,112,118],anroid_arm_mod:122,ans:112,answer:[40,51,99,112],anthor:18,anymor:71,anyth:[9,69,78,112],anytim:54,anywai:[106,122],apach:62,apart:18,api:[10,25,26,28,30,36,37,39,40,46,48,53,54,56,68,73,74,79,82,89,90,91,94,100,101,106,107,109,111,112,121,122,123,124,126],api_shar:30,api_test:30,api_trainer_config_helpers_lay:97,apiserv:112,apivers:[112,113],app:123,appar:28,appear:[40,51,55,87],appel:60,append:[18,25,28,45,46,69,77,78,86,97,99,100,109],append_backward:[28,70,106],append_batch_s:18,append_clip_op:45,append_gradient_machin:25,append_op:[45,59,77],append_oper:77,appl:123,appleyard:107,appli:[4,18,23,54,55,71,74,83,97,100],applic:[22,40,41,50,51,52,55,77,79,99,101,106,107,109,112,113,126],applyl1:34,appoint:101,appreci:[86,99],approach:[4,42,43,44,71,72,73,81,86,122,124,126],approxim:[18,72],apt:[92,106],arbitrari:[4,42,64,103],arch:122,archetectur:86,architectur:[50,86,91,109,122,123],archiv:[10,18,65,66],area:54,arg:[3,5,15,22,28,56,70,85,101,117],arg_nam:4,argmax:18,argu:76,argument:[4,9,11,18,22,28,29,34,35,42,70,73,76,77,91,97,99,100,118,119],arithmet:50,arm64:[122,123],arm64_standalone_toolchain:122,arm:[50,122,123,124],arm_standalone_toolchain:122,armeabi:122,armv7:[50,123],armv8:50,arn:112,around:[4,38,60,77,112,126],arrai:[2,4,9,11,18,25,36,40,41,55,69,75,77,78,79,89,101],arrang:[18,89],arrari:18,array_to_lod_tensor:60,arrow:54,articl:[18,52,55,98,109,111,113,124],artifact:[82,94,112],artifici:60,arxiv:[5,18,54,86],as_row_vector:4,as_step_input:29,asap:102,asgd:72,ask:[28,31,38,98],asr:86,assgin:60,assign:[3,4,19,28,35,40,43,45,50,52,71,86,103,109,111,112,118,126],assigne:86,assignmemt:60,associ:[73,80,103],assum:[3,4,18,29,42,63,92,97,111,120],assumpt:42,ast:40,astyp:[78,101],asyc:31,async:[31,44,117],async_count:118,async_lagged_grad_discard_ratio:118,async_lagged_ratio_default:[117,118],async_lagged_ratio_min:[117,118],asynchron:[31,41,71,74,109,118],atom:43,att_seq:5,attach:5,attend:5,attended_sequ:5,attenion:5,attent:[4,5,19],attr1:4,attr2:4,attr:[2,4,5,18,29,40,56,59,63,75,76,77,85,97,101],attr_map:85,attrdesc:75,attribu:63,attribut:[4,5,18,24,28,29,44,45,59,75,77,79,83,85,89,100,101],attributemap:101,attrproto:85,attrtyp:[75,85,101],attrvalu:85,auc:[46,117],aucvalidationlay:118,audio:86,augment:86,authent:112,author:[48,86,112],auto:[29,34,43,52,63,65,76,79,83,88,89,91,99,100,101,103,107],autom:[109,112],automat:[4,18,26,28,36,42,44,45,53,70,79,85,86,91,97,99,100,101,106,110,111,112,117,118,123],avail:[31,36,44,50,51,60,94,112,126],ave:22,averag:[3,4,7,14,18,22,25,35,118],average_test_period:[117,118],avg:[107,111],avg_cost:[42,108,111],avg_loss_valu:111,avg_x:18,avgpool:4,avoid:[18,27,29,31,42,59,63,71,72,73,91,107],avx2:91,avx:[91,92],awai:51,await:113,awar:[26,40,46,52,68,77,98,106,112],awk:114,awni:86,aws:48,aws_account_id:112,awsaccountid:112,awskeymanagementservicepowerus:112,axi:[4,18],axis:4,b363:113,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:113,ba5f:112,back:[4,18,25,28,31,42,50,54,72,92,101],background:[3,4,81,86,109],background_id:[3,4],backpropag:[27,28],backward:[1,4,5,18,23,27,29,34,36,45,54,61,62,70,72,73,76,80,81,97,100,108,118,120],backward_first:97,backward_op:27,backwardactiv:100,baidu:[18,51,86,113],bake:42,balanc:[44,71,112,118],bandwidth:[50,71],bare:[111,113,126],barrier:[109,118],barrierstatset:107,basci:56,base:[3,4,7,9,10,18,26,35,45,46,50,51,58,63,67,70,71,72,74,79,80,81,87,89,97,98,100,101,106,107,108,112,118,122,123],baseactiv:5,baseerrorclipattr:45,baseev:25,baselin:86,basematrix:100,basenam:3,basepoolingtyp:[4,5],basestr:[2,3,4,5,7,25],bash:[91,92,98,109,112,113],basic:[4,25,42,56,63,74,75,79,80,86,89,100],batch:[4,5,9,11,14,18,19,25,26,29,31,33,34,41,42,46,47,51,54,57,67,68,69,71,72,86,89,99,100,111,112,113,118],batch_id:[25,54],batch_im:54,batch_images_from_tar:11,batch_label:54,batch_norm:[54,86],batch_norm_lay:5,batch_norm_typ:4,batch_read:[33,78],batch_ref:18,batch_siz:[9,18,42,54,61,69,111],batch_szi:54,batch_z:54,batchnorm:[18,54,86],batchsiz:[4,100],bazel:30,bbbbb:33,bbox:3,bcd:4,bcebo:10,bcm2708:124,bdist_wheel:82,beacus:56,beam:[4,18,97,118],beam_gen:[4,97],beam_search:[25,69,97],beam_siz:[4,18,69,97,117,118,120],becaus:[3,4,10,26,29,30,31,36,50,69,73,77,78,81,83,84,88,89,90,97,98,100,103,106,111,112,120,122],becom:[18,43,44,83,87,107],been:[4,5,18,28,30,35,41,51,98,99],befor:[4,5,18,28,31,38,41,45,49,52,55,67,72,73,74,78,81,91,92,99,101,102,106,112,122,123,126],begin:[3,4,18,22,28,34,36,46,49,55,69,71,100,109],beginiter:[25,26],beginn:97,beginpass:[25,26],begintrain:26,behavior:[18,107],behind:[51,89,111],being:[18,28,38,45,51,76,78,103,106],belong:[3,4,42,83],below:[18,29,31,36,42,44,50,51,64,73,78,81,89,90,91,94,97,100,107,109,112,122,123],benchmark:[64,86],benefit:[5,38,39,69],besid:[4,10,21,42,60,67,71,94],best:[30,63,92,98,118],besteffort:113,beta1:6,beta2:6,beta:[18,54],better:[5,30,51,60,63,69,88,112,123,126],between:[3,4,11,18,25,28,30,31,36,42,44,50,51,63,66,71,73,80,83,92,101,103,112],bgr:11,bi_gru:5,bi_lstm:5,bia:[4,5,18,69,77,97,100],bias:[4,18,100],bias_attr:[4,5,18,77,97],bias_initi:18,bias_param_attr:5,biases_:100,biasparameter_:100,biassiz:100,bidi:113,bidirect:[4,5,86,97],big:[40,44,60,107,126],bigger:[18,31],bilinear:4,bilinear_interpol:4,bilinearfwdbwd:107,bin:[92,109,112,113],binari:[3,4,9,18,30,39,42,50,52,54,64,91,93,94,98,106,107,112],bind:[40,41,50,53,83,87],bioinf:18,bit:50,bitcod:123,bla:[92,123],black:[54,123],blank:[4,18,112,123],block0:60,block1:60,block2:60,block:[4,18,28,32,34,36,40,41,42,43,44,45,46,47,51,58,60,67,68,70,87,90,100,101,103,107,118],block_expand:86,block_i:[4,18],block_id:[40,47],block_x:[4,18],blockdesc:[23,29,55,77,79],blockdescbind:58,blockingcount:43,blueprint:69,bn_bias_attr:5,bn_layer_attr:5,bn_param_attr:5,book:[10,79,86,97,104,108],book_distribut:111,bool:[2,3,4,5,6,7,9,11,17,18,25,29,50,57,59,61,62,63,76,77,84,85,89,90,100,102,118,120],boost:[67,86,87,102],boot:[4,18,97,126],boot_bia:4,boot_bias_active_typ:4,boot_lay:97,boot_stat:89,boot_with_const_id:4,bootstrapp:126,borrow:[54,89],bos_id:[4,97],both:[1,2,4,5,11,18,22,26,29,30,31,38,42,44,50,51,54,58,60,67,69,71,74,76,84,86,87,97,100,101,103,104,107,109,111,112,123],bottl:71,bottleneck:[74,107],bottom:[25,86],bound:[4,18,60],boundari:42,boundri:3,box:[4,54,107],brace:[29,55],brain:38,branch:[4,18,26,29,30,42,51,57,75,82,94,99,101,104],breadth:118,break_if:89,brief:[30,36,50,87,103],briefli:107,bring:[51,60,103],broadcast:[18,31,71,79,126],broken:99,browser:[92,104,106,112],bsd:[41,71,98],bsp:41,bucket_nam:112,buddy_alloc:99,buf:34,buf_siz:[9,42,111],buffer:[9,34,41,63,64,72,78,83,108,118],buffer_s:9,buffered_read:78,bufsiz:9,bug:[99,112],build:[4,10,17,30,39,42,55,56,60,62,72,81,82,85,86,92,94,95,99,101,106,109,111,112,115,116,118,125],build_android:122,build_dict:10,build_model:54,builder:99,buildtool:82,built:[30,40,42,50,52,60,67,71,85,86,89,91,94,98,106,122,124,126],bulk:41,bunch:[64,107,109],button:[99,104,112],c11:65,c703c041:99,c99:66,c99e:112,cach:[50,91],cacul:[5,46,109],caff:[29,51],caffe2:[29,40,41,51],calcul:[3,4,5,18,27,28,31,36,43,46,50,60,92,97,100,107,109,118,120],calcut:60,calendar:74,call:[3,4,5,9,18,22,25,26,27,28,29,34,35,36,37,39,40,41,42,45,52,54,55,60,68,69,70,74,77,79,80,83,85,87,89,95,97,98,100,101,102,103,106,107,109,111,112,118],callabl:[2,4,9,10,17],callback:[45,100],caller:[27,106,112],can:[2,3,4,5,9,10,11,17,18,19,21,22,25,26,27,28,29,30,31,34,35,38,39,40,41,42,44,45,47,50,51,52,53,54,55,56,58,59,60,63,67,68,69,70,71,72,74,75,76,77,78,79,80,81,85,87,88,89,90,91,92,93,94,95,97,98,99,100,101,102,103,104,106,107,109,110,111,112,113,114,117,118,120,122,123,124,126],cancel:38,candid:[4,18,69,86],candidate_activ:18,cannot:[79,83,88,89,100,101],cantain:56,capabl:[50,73,79],capac:[81,112],capi:[65,91],capi_prvi:66,caption:69,captur:[4,110],card:[71,109,111],care:[5,39,60,78,86,87,92,117,118,126],carefulli:[86,118],caret:25,carpedm20:54,carri:18,cast:[50,88],cast_to_op_attr:85,cat:[9,11,92,114],categor:101,categori:[4,10,31],categorig:10,categoryfil:113,caus:[31,49,94,101],caution:[112,113],cbla:61,cc_:30,cc_binari:30,cc_test:30,cclient:37,cde:4,cdn:10,cduadevicecontext:[67,87],ceil:4,ceil_mod:4,cell:[4,5,18],cell_activ:18,cell_t_prev:18,cell_valu:18,center:11,center_crop:11,cento:[91,94,95,126],central:[81,111],ceph:[9,33,113],cephf:[33,39,48],cer:86,certain:[18,59,67,70,74,83,87,102,117],certif:[26,48,112],cffi:65,cfg:[60,113],cgo:65,ch1:41,chain:[9,28,55,100],challeng:[4,31,51,57,87],chan:41,chanc:[26,50,100],chang:[4,10,30,35,39,42,51,63,73,75,78,80,82,83,86,91,97,99,100,101,103,107,109,111,112,118,122],changes:63,channel:[4,5,11,18,40,107],channel_shar:4,chapter:[68,69,86,111],chapter_data:68,chapter_out:68,charact:86,characterist:120,check:[9,28,29,30,45,63,76,79,91,94,99,101,104,109,112,118,120],check_align:9,check_attr:85,check_eq:100,check_grad:[27,101],check_l:100,check_output:101,check_sparse_distribution_batch:[117,118],check_sparse_distribution_in_pserv:[117,118],check_sparse_distribution_ratio:[117,118],check_sparse_distribution_unbalance_degre:[117,118],check_styl:99,checker:79,checkgrad:118,checkgrad_ep:118,checkmark:126,checkout:99,checkpoint:[44,76],checksum:48,child:29,china:92,chines:104,chip:51,chmod:112,choic:[18,30,51,92],choos:[18,59,91,92,93,98,102,118,122],chosen:[18,54,67],chunk:[18,35,48],chunk_ev:14,chunk_schem:[3,14,18],chunktyp:3,chw:11,circl:55,circular:41,circumst:87,claim:112,claimnam:112,clang:[50,65,99,122],clarifi:[3,18],clariti:69,classdim:18,classic:[4,60,86],classif:[4,18,55,120],classifi:[4,54],classification_error_evalu:3,classification_evalu:3,claster:112,clean:[29,30,47,73,79,91,98,99],clear:[3,22,30,69,73,83,88,124],clearer:[73,77],clearli:83,cli:112,click:[94,99,104,106,107,112],client:[18,34,37,79],clip:[2,5,118],clip_op:45,clip_op_desc:45,clipbynorm:18,clock:4,clone:[4,91,98,99,104,106,122,124],close:[78,99],cloud:[30,31,39,48,49,79,126],cloud_read:9,cludform:112,cluster:[9,25,26,29,31,36,42,86,113,117,118],cluster_test_fil:109,cluster_train:110,cluster_train_fil:109,cluster_train_v2:[110,114],cm469:112,cmake:[66,91,98,99,100,101,104,106,107,111,122,123],cmake_build_typ:[106,122,123,124],cmake_c:123,cmake_install_prefix:122,cmake_system_nam:[122,123,124],cmakelist:[30,61,62,100],cmatrix:[65,66],cmd:113,cmu:18,cname:112,cnn:[4,18,113],coars:53,code:[4,9,26,28,30,38,41,42,44,47,50,53,54,55,59,64,67,70,72,73,74,76,78,79,80,81,85,89,91,92,94,95,97,98,100,101,102,103,104,105,107,109,111,112,113],codebas:[79,99],coeff:4,collabor:31,collect:[4,10,25,74],collectbia:100,color:11,colour:10,column:[3,4,18,55,78,100,106],column_evalu:3,com:[4,5,10,18,30,54,82,91,92,98,99,104,106,108,112,113,122,124,126],combin:[3,4,5,9,25,60,70,79,83],come:[42,46,60,75,86,89],comma:[18,22,25,36,111,118],command:[9,22,30,34,39,49,91,92,94,95,98,99,100,101,104,105,106,107,110,111,112,113,114,115,116,122,123,124],commandlin:107,comment:[18,30,56,85,86,99,101],commit:[30,99],common:[11,33,81,87,97,100,117],commonli:[49,81,97,106,107,120,124],commun:[31,36,37,41,42,44,71,99,100,109,111,112],compani:51,compar:[27,30,40,79,98,100,101],comparison:[30,51,102],compat:[19,50,53,71],compil:[4,30,42,51,56,58,60,67,71,80,84,85,90,98,100,104,109],complaint:30,complet:[4,5,10,18,25,28,29,31,35,36,45,48,55,64,67,79,93,100,101,103,106,111,112,113,126],complex:[5,18,38,41,60,69,79,97,107],complic:[4,42,53,78,88,89],compon:[41,42,56,86,89,90,100,102],compos:[9,19,26,41,53,56,68,77,79],composenotalign:9,composit:53,compress:35,compris:28,compromis:98,comput:[4,5,14,18,19,22,26,27,31,41,42,44,47,50,51,52,56,60,64,67,70,71,72,74,80,83,86,87,88,90,92,97,98,99,100,101,102,106,107,108,109,111,112,120,122,123,124],computation:[4,97],computationgraph:56,con:71,concat:[54,97],concaten:[4,5,18,54,68,89],concentr:79,concept:[3,26,40,41,51,53,54,56,63,68,69,72,73,75,83,89,90,97],conceptu:[41,47,51,54,56],concern:[26,41,46,123],concis:[54,89],conckerneltrac:22,conclud:101,concret:[79,87,101],concurr:[31,38,44,74,109],concurrentremoteparameterupdat:118,cond:[18,29,51,57,75],condit:[4,18,35,42,51,57,63,86,97,113],condtion:54,conduct:107,conf:[4,110],conf_paddle_gradient_num:112,conf_paddle_n:112,conf_paddle_port:112,conf_paddle_ports_num:112,conf_paddle_ports_num_spars:112,confid:4,confidence_threshold:4,config:[2,4,22,33,49,69,100,112,113,117,118,126],config_:[34,118],config_arg:[117,118,120],config_bas:[3,4,25],config_lay:100,config_len:36,config_pars:[61,62,100],config_proto:36,configmap:42,configur:[0,4,18,25,28,34,36,38,39,42,44,51,56,59,77,86,87,88,95,96,98,99,100,101,103,107,109,111,118,122,124,126],confirm:49,conflict:[83,99],confus:[11,54,59],congest:118,conll:10,connect:[5,18,39,40,42,44,86,100,109,111,112,113,126],connectionist:[4,18],consequ:[4,5],consid:[3,4,28,76,87,98,107,120,126],consider:[4,5,67,86],consist:[3,4,10,11,18,35,41,52,64,75,78,79,80,85,86,90,101],consol:[107,112],consolid:[29,104],constant:[4,18,56,58,59,67,100,101],constantiniti:[16,18],constraint:83,construct:[3,18,26,47,56,60,68,77,79,83,85,97,102],constructbackwardgraph:55,constructoptimizationgraph:55,constructor:[18,45,50,74,77,79,83,85,100,101],consum:[31,106],consumpt:60,contact:38,contain:[3,4,5,7,9,10,11,18,25,26,28,29,35,47,54,56,63,64,67,73,74,77,79,80,83,84,85,86,89,90,93,94,97,98,101,109,111,112,114,123],container:109,containerport:112,content:[18,36,49,64,69,104,113],content_dir:104,content_len:36,context:[4,5,10,18,19,45,63,83,84,87,97,101,103,108],context_attr:5,context_len:[4,5],context_proj_layer_nam:5,context_proj_param_attr:5,context_project:5,context_start:[4,5],contin:112,continu:[3,28,31,64,86,109,118,122],contrast:[4,18],contrib:81,contribut:[81,86,98,105],contributor:79,control:[2,29,40,41,112,113,118,126],controlflowgraph:60,conv2d:[54,102],conv:[5,18,54,63,88],conv_act:5,conv_batchnorm_drop_r:5,conv_bias_attr:5,conv_filter_s:5,conv_fwd:63,conv_layer_attr:5,conv_num_filt:5,conv_op:4,conv_pad:5,conv_param_attr:5,conv_pool_2:42,conv_strid:5,conv_with_batchnorm:5,conveni:[26,28,56,70,85,86],convent:[18,28,36,99,101],converg:110,convers:[50,51],convert:[10,18,33,42,43,44,50,51,52,63,78,80,86,111],convlay:4,convlut:86,convlution2d:18,convolut:[4,5,9,18,19,54,67,77,87],convolution2d:18,convolution_algorithm_opt:63,convoper:4,convproject:4,convtranslay:4,convtransproject:4,cool:99,cooper:86,coordin:[31,36],copi:[18,25,26,35,38,49,55,68,69,71,72,89,91,99,109,112,114],copy_from:45,copyvariablewithtensor:88,core:[2,18,28,56,59,66,72,73,89,98,108,118],coreo:[112,126],corespond:18,corner:79,corpu:[10,86],correct:[4,18,27,28,50,71,100,101,102,112],correctli:[3,9,28,50,54,100],corresond:50,correspend:18,correspoind:26,correspond:[4,18,19,26,28,29,30,45,50,56,57,63,67,68,69,77,79,80,81,85,87,100,101,102,103,106,123],correspondingli:123,corss_entropi:26,cortex:50,cos:[4,85],cosin:[4,18,85],cosineop:85,cosineopproto:85,cosineopprotomak:85,cost:[18,25,26,28,42,55,70,71,75,76,88,108,111,118],cost_id:4,cost_np:76,could:[4,9,25,26,27,35,40,41,42,43,44,50,51,52,68,70,72,73,75,77,78,80,98,102,106,107,110,112,122],count:[3,18,31,39,46,76,78,86,107,109,111,113,118,120],counter:[14,22,31,35,43,55],cours:[3,39,67,98],covari:4,cover:[51,86,103],cp27:94,cp27m:[82,94],cp27mu:[82,94],cpp:[27,34,53,61,62,65,66,73,79,90,100,102,107],cprofil:106,cprofilev:106,cpu:[2,4,22,27,39,50,59,67,72,73,74,79,81,82,87,88,91,92,98,101,102,103,106,107,108,113,118],cpu_avx_mkl:[92,94],cpu_avx_openbla:[94,95],cpu_kernel:59,cpu_noavx_openbla:94,cpu_ns_:74,cpu_per_pserv:42,cpu_per_train:42,cpudevicecontext:[67,87,101,102],cpuelapsedu:74,cpuengin:62,cpuinfo:92,cpuplac:[22,42,59,63,67,87,88,101,102,103,108,111],cpusparsematrix:66,crash:[31,107,110,118],creat:[2,9,18,23,25,26,27,29,31,36,40,43,45,46,47,48,49,50,51,53,54,55,63,67,68,70,71,72,73,77,80,81,86,92,95,98,99,100,101,104,109,111,114,118,122,126],create_backward_pass:70,create_bias_paramet:100,create_block:77,create_doc_str:85,create_input_paramet:100,create_local_scop:47,create_oper:53,create_optimization_pass:70,create_paramet:77,create_python_ops_creatation_funct:85,create_rnn:29,create_rnn_op:68,create_tmp_var:77,create_tmp_vari:77,create_var:77,create_whileloop:89,creategradientoper:80,creatememori:63,createop:85,createoper:29,createprimitivedesc:63,createstack:112,createvari:29,creation:[53,112],creationd:112,creator:[9,10,33,79,80],creator_:80,credenti:49,crf:[87,88],critic:[54,106],crlf:99,crop:[11,87],crop_grad:87,crop_siz:11,crope:11,cropgradkernel:87,cropkernel:87,cross:[4,18,77,101],cross_compil:124,cross_entropi:[4,26,42,54,60,88],cross_entropy_with_selfnorm:4,crt:48,csc:100,csr:100,csv:22,ctc:[3,18],ctc_error_evalu:86,ctc_evalu:3,ctest:[91,98,101],ctor:77,ctrl:[98,110],ctx:[63,88,101,103],cubla:[67,102],cublas_handle_:87,cublashandle_t:87,cuda7:[94,95],cuda8:[91,92,94],cuda:[22,30,52,67,74,79,87,92,94,98,101,102,107,109,111,118],cuda_context:52,cuda_dir:[117,118],cuda_fp16:50,cuda_so:92,cudaconfigurecal:107,cudadevicecontext:[52,67,87,101],cudadevicegetattribut:107,cudaelapsedu:74,cudaevent_t:74,cudaeventcr:107,cudaeventcreatewithflag:107,cudafre:107,cudagetdevic:107,cudagetdevicecount:107,cudagetdeviceproperti:107,cudagetlasterror:107,cudahostalloc:107,cudalaunch:107,cudamalloc:107,cudamemcpi:107,cudaplac:[22,67,87,88,102],cudaprofilerstart:107,cudaprofilerstop:107,cudaruntimegetvers:107,cudasetdevic:107,cudasetupargu:107,cudastream_t:87,cudastreamcr:107,cudastreamcreatewithflag:107,cudastreamsynchron:107,cudeviceget:107,cudevicegetattribut:107,cudevicegetcount:107,cudevicegetnam:107,cudevicetotalmem:107,cudnn:[4,7,18,30,59,63,67,87,88,102,118],cudnn_batch_norm:4,cudnn_conv:4,cudnn_conv_workspace_limit_in_mb:[117,118],cudnn_convt:4,cudnn_dir:[117,118],cudnn_kernel:59,cudnnavginclpadpool:4,cudnnavgpool:4,cudnnconvopkernel:102,cudnnv5:91,cudrivergetvers:107,cuinit:107,cumtim:106,cumul:4,cur_mem:69,curl:112,curli:[29,55],current:[4,18,28,29,30,31,34,36,40,44,46,51,59,67,68,69,72,73,74,77,83,88,89,92,94,97,98,100,104,110,111,112,118,123],current_block:[75,77],current_endpoint:111,current_oper:75,current_word:97,curv:26,custom:[26,39,50,54,69,72,79,86,100,112],custom_batch_read:78,custom_neg_class:18,cut:[9,89],cut_lin:9,cutoff:10,cv2:11,cxx:123,cxx_compil:[122,123,124],cxx_flag:123,cxxabi_1:94,cycl:31,cyclic:4,cython:65,d3e0:112,d_b0:54,d_b1:54,d_b2:54,d_block:54,d_f:54,d_g:54,d_h0:54,d_h0_bn:54,d_h0_relu:54,d_h1:54,d_h1_bn:54,d_h1_relu:54,d_h2:54,d_loss:54,d_loss_fak:54,d_loss_real:54,d_optim:54,d_step:54,d_t:54,d_w0:54,d_w1:54,d_w2:54,daili:99,dandroid_abi:122,dandroid_arm_mod:122,dandroid_arm_neon:122,dandroid_standalone_toolchain:122,dangl:98,dario:86,darwin:112,dash:54,dat:33,data:[0,3,10,11,17,25,26,27,29,33,34,35,41,44,46,48,50,51,54,55,56,58,59,60,63,64,67,68,69,70,71,72,73,75,77,79,81,83,84,85,86,87,89,90,95,97,100,101,103,107,108,109,111,114,115,117,118,120],data_feed:12,data_fil:11,data_i:54,data_lay:34,data_layout:18,data_layout_:88,data_read:[9,78],data_reader_creator_random_imag:78,data_shar:89,data_typ:[9,10,64,84,86,88,90,95,97,102],data_type_:[59,67,88],data_x:54,databas:10,datacent:[33,49],datacenter1:33,datacenter2:33,datacenter_1:33,datacenter_2:33,datacenter_nam:33,datadim:4,datafeed:[108,111],dataflow:56,dataflow_analysi:60,datalayout:88,dataparallel:42,dataprovider_convert:86,datasci:4,dataset:[0,18,33,39,42,72,78,86,95,97,106,111,118],dataset_nam:11,datatransform:88,datatyp:[10,18,59,63,84,86,88,90],date:109,dcgan:54,dcmake_install_prefix:[122,123,124],dcmake_system_nam:[122,123,124],dcuda_arch_nam:91,dcudnn_root:91,ddim:[67,87,103],dead:31,deal:[28,126],debug:[27,28,42,49,51,77,92,99,106],debug_str:56,decai:[6,23],decar:9,decayedadagradoptim:20,decayr:34,decent:35,decid:[26,38,54,64,72,80,81,84],declar:[18,29,54,68],decod:[4,5,18,86,97],decoder_boot:97,decoder_dim:69,decoder_group_nam:97,decoder_input:[69,97],decoder_mem:[69,97],decoder_prev:5,decoder_s:97,decoder_st:[5,97],deconv:[4,54],deconvolut:4,decor:[9,100],decrement:43,decrementcount:43,decrypt:112,deduc:79,deep:[4,18,28,38,41,47,54,55,60,62,74,79,81,86,87,92,107,111,123],deeper:[52,92],deepspeech2:61,def:[4,9,26,27,28,33,39,45,46,53,54,56,59,60,68,69,70,77,78,85,89,97,100,101],def_block:54,defalut:[18,22,118,120],default_block:54,default_devic:120,default_initi:18,default_main_program:[17,108,111],default_param_attr:77,default_st:89,default_startup_program:[108,111],default_valu:120,defaultdict:60,defaultinfervartyp:58,defect:73,defer:38,defin:[4,5,9,25,26,28,29,30,31,38,40,43,44,45,50,51,52,53,54,56,59,60,67,68,71,75,77,78,79,83,85,87,89,97,100,103,106,108,109,110,111,118],definit:[28,29,31,35,42,47,52,59,75,80,85,89,92,101,106,108],definiton:53,degener:18,degre:4,deivc:102,delai:[72,87,103,118],delet:[18,39,48,99],deletestack:112,delimit:3,deliv:126,delta:[4,27],delv:4,demand:[31,87],demo:[4,10,79,110,113,115],demolish:113,demonstr:[97,103],denot:[18,101,120],dens:[4,9,36,37,84,86,100,112],dense_arrai:9,dense_vector:[9,95],dense_vector_sequ:9,densescann:86,dep:30,depart:86,depend:[18,29,30,31,39,42,44,56,71,76,84,92,98,101,109,120,122,123,124,126],dependent_var:76,deploi:[4,110,120,126],deploy:[56,64,79,109,110,112,123,126],deprec:[4,86],depth:[29,51,86],dequeu:44,deriv:[1,26,42,45,57,70,122],desc:[29,45,63,64,77,85,89],desc_:29,descend:[18,89],descent:[4,31,72,109],descproto:64,describ:[17,26,28,29,30,35,40,42,47,52,59,63,64,68,69,73,75,77,79,84,85,88,90,100,101,102,103,112,113],describestack:112,describestackev:112,describestackresourc:112,descripotor:63,descript:[3,29,30,58,62,64,67,80,84,86,88,90,91,94,99,101,109,112,119],descriptor:[41,63,88],deseri:[25,64,73],deserializ:79,desgin:55,design:[4,9,18,28,34,59,60,65,72,74,81,101,126],desir:[9,31,42,72,112,113],destin:[18,36,49],destroi:[29,47],destruct:83,destructor:[74,100],det_output:3,detail:[2,3,4,5,6,18,27,28,35,39,42,44,49,51,54,56,60,63,64,67,68,74,77,81,83,87,88,89,90,91,95,97,98,100,101,102,103,104,106,107,110,111,112,113,119,120,124,126],detect:[18,58,91,99,122],detection_evalu:3,detection_output:3,determin:[4,9,18,29,42,60,67,79,100],dev:[79,92,98,106,122,126],dev_ctx:[29,63,74],devel:82,develop:[28,30,51,58,73,74,77,80,82,86,92,94,99,103,104,106,108,109,117,118,123,124],deverlop:118,deviat:2,devic:[2,40,42,46,50,56,62,63,67,71,73,74,79,88,92,101,103,108,118,123],device_:74,device_context:[63,101],device_count:18,device_typ:18,devicecontext:[29,67,74,101,102],deviceid:[62,120],deviceid_:62,deviceplac:87,devid:[4,118],devot:86,devtools2:91,dhcp:126,diagnos:110,diagon:18,diagram:[68,109],diamond:54,dic:11,dict:[3,10,25,28,77,109,114],dict_fil:3,dict_siz:[10,18,34,69],dictionari:[3,4,10,18,25,26,27,77,120],did:[73,92],diff_mat:27,differ:[3,4,18,22,25,28,29,30,31,36,38,42,43,44,45,46,47,50,51,54,56,57,60,63,67,69,71,72,74,76,80,83,86,88,89,90,92,97,100,101,102,103,106,110,112,113,118,123],differenti:53,difficult:[3,27,51,98],dig:[92,107,112],digit:[4,109],digraph:56,dilat:[4,18,63],dilation_h:18,dilation_i:4,dilation_w:18,dim0:101,dim1:101,dim:[4,9,18,19,21,34,63,64,68,79,84,87,90,100,101,103],dim_:[87,103],dimens:[1,4,5,7,9,18,19,21,54,79,84,86,87,89,100,101,103,120],dimension:[4,18,97,100,103],dimes:4,dios_arch:123,dios_enable_bitcod:123,dios_platform:123,dios_use_veclib_for_bla:123,dir:122,direcit:86,direct:[4,5,11,18,51,60,72,86,106],directli:[5,30,37,39,42,50,59,73,85,88,89,91,93,110,113,122],director:101,directori:[4,17,30,33,38,48,49,87,91,92,98,103,104,107,109,110,113,114,118,122,123,124],dirnam:17,disabl:[18,74],disadvantag:[72,77],discard:[9,31,35,69,118],discount:4,discov:31,discoveri:112,discrep:107,discret:4,discrim:54,discuss:[26,29,35,36,37,42,63,86],disk:[64,98,113],dispatch:[42,73,109,110,118],dispens:18,displac:18,displai:[39,49,99],dissimilar:18,dist:[82,91],dist_train:[26,39],distanc:[3,4,18],distinguish:[30,110],distribut:[4,18,29,35,36,37,38,40,41,46,52,71,79,86,90,94,105,110,113,115,116,126],distribute_test:[117,118],distributedli:[42,100],distributetranspil:111,disucss:26,div:18,divid:[4,6,18,28,46,85,90,106,117],divisor:18,diy_beam_search_prob_so:[117,118],django:104,dnn:[63,86,91],dns:112,do_forward_backward:78,doc:[9,56,68,89,101,103,104,109],doc_cn:104,dockefil:98,docker:[82,91,93,99,104,109,112,115,116,126],docker_build:26,docker_clust:[110,114],docker_push:26,dockerfil:[98,122,124],dockerhub:92,document:[4,5,18,27,42,48,55,68,69,74,79,86,91,98,99,101,102,103,105,109,111,120,123],doe:[5,18,31,35,36,38,39,40,42,44,47,50,56,60,68,73,77,79,80,81,94,98,100,101,103,107,108],doesn:[2,4,9,26,29,40,41,78,92,98,99,106,107,113,122,123],doing:[34,38,42,55,107],domain:112,don:[5,26,30,53,55,60,78,86,91,92,98,99,101,104,112],done:[3,4,5,28,30,31,35,36,42,43,58,60,64,72,80,81,86,99,106,107,112],dot:[4,5,19,101,118],dot_period:[118,120],dotmuloper:4,dotmulproject:4,doubl:[18,42,50,55,74,88,91,101,102,118],down:[86,107],download:[10,30,31,34,38,48,91,92,94,109,123,126],dozen:30,draw:69,drive:83,driver:[92,109,111],drop:[4,5,18,19,69],drop_rat:2,drope:18,dropout:[2,5,19,100],dropout_prob:18,dropout_r:[4,18,19],drpi_arm_neon:124,drpi_toolchain:124,drwxr:113,ds2:86,dst:[36,63],dst_primitive_desc:63,dtoh:107,dtype:[18,41,42,56,77,108,111],due:[35,38,54,60,69,77,106],dummi:[25,35],dump:64,duplic:[18,44],durat:[35,107],dure:[4,5,17,18,28,29,31,35,38,39,46,51,60,71,72,74,77,79,86,90,100,101,112,117,118,126],duse_eigen_for_bla:122,dwith_c_api:[66,122,123,124],dwith_distribut:111,dwith_doc:111,dwith_gpu:[91,111,124],dwith_profil:107,dwith_python:[66,111,124],dwith_swig_pi:[66,111,122,123,124],dwith_test:[91,101,123],dwith_tim:107,dynam:[18,36,66,68,77,78,91,107,118],dynamic_cast:100,dynamic_recurrent_op:89,dyogatam:18,e2e:126,each:[3,4,5,7,9,10,18,19,25,27,28,30,31,34,35,36,38,39,40,41,42,45,46,47,52,55,58,60,63,67,68,69,71,73,74,76,77,78,79,80,83,84,85,86,87,88,89,90,97,100,102,106,109,110,111,112,118,120,126],each_feature_vector:1,each_time_step_output:1,eager:51,earli:[50,52,99,101],eas:[9,58,101],easi:[27,28,69,72,78,79,81,99,100,110],easier:[26,44,50,51,78,89,98,99,100],easili:[26,54,71,74,78,80,83,87],echo:92,edg:[11,60],edit:[3,18,41,92,98,112],editdist:18,editor:[77,98],edu:[10,18,112,113],eeoi3ezpr86c:112,effect:[4,18,25,91,112,118,123],effici:[4,42,64,78,86,87,97,98,100],effort:[42,86],efg:4,efs:112,efs_dns_nam:112,efsvol:112,egd:60,eigen:[50,67,72,79,81,87,101,122,123],eigen_device_:87,eigen_test:103,eigen_use_gpu:101,eigenmatrix:103,eigenscalar:103,eigentensor:103,eigenvector:103,either:[4,5,9,18,25,26,42,54,57,58,68,72,81,93,107,123],elabor:86,elb:112,elbapis:112,electr:60,electron:113,elem_dim:4,elememt:4,element:[3,4,5,9,11,18,25,27,35,41,44,56,69,79,101,103],element_typ:[36,102],elementari:79,elementwis:[18,19],elif:[26,85],els:[26,34,39,41,42,44,45,51,54,57,58,59,60,83,85,91,92,98,100,101],elsewher:74,emac:98,email:99,emailweixu:30,emb1:34,emb2:34,emb:113,embed:[26,29,34,44,58,69,84,89,97,109],embedding_lay:34,embedding_nam:[4,97],embedding_s:[4,97],emphas:107,empir:[4,18],emplace_back:100,emploi:[28,45,85,97],empti:[3,9,18,28,31,69,101],emul:50,enabl:[2,4,18,29,30,35,40,44,45,56,74,98,99,107,109,112,118,123],enable_grad_shar:[117,118],enable_parallel_vector:118,enableonstart:22,enc_proj:[5,97],enc_seq:5,enc_vec:97,encapsul:36,encod:[5,35,69,97],encoded_proj:[5,97],encoded_sequ:[5,97],encoded_vector:97,encoder_ctx:69,encoder_ctx_expand:69,encoder_ctx_proj:69,encoder_dim:69,encoder_last:4,encoder_out_seq:69,encoder_s:97,encount:[18,34],encourag:[42,47],encrypt:112,encrypt_decrypt:112,end2end:126,end:[3,4,18,22,25,28,29,42,45,52,56,60,69,73,74,78,83,86,94,97,98,99,118],end_id:18,end_pass:26,end_po:4,endforwardbackward:25,endian:64,endif:[67,74],enditer:[25,26],endpass:[25,26],endpoint:[9,18,33,112],endtrain:26,enforc:123,engin:[39,62,63,86,107],english:[4,86,104],enjoi:92,enough:[28,29,59,60,67,98],enqueu:44,ensembl:5,ensur:[31,63,71,83,92,94,98,100,123],enter:[29,47],enterpris:79,entir:[4,5,36,38,101],entiti:[3,29,83],entranc:47,entri:[9,18,35,39,58,98,99,100,112,122],entropi:[4,18,77],entry_point:39,enumer:[1,67],env:[104,106,112],environ:[26,42,91,94,98,99,106,107,109,112,113,117,118,123],environmenterror:109,eos_id:[4,97],epoch:54,epol:41,epsilon:[4,6,18],equal:[4,5,18,19,31,89,101,102,118],equat:[3,4,5,6,18,60,101],equip:97,equival:[26,29,40,45,51,57,85,126],erlang:41,error:[2,3,4,5,18,26,27,35,49,50,51,63,83,86,100,101,110,112,118],error_clip:45,error_clip_callback:45,error_clipping_threshold:2,errorclipbyvalu:45,espeaci:18,especi:[4,5,17,62,98],essenc:[26,28],essenti:[4,26,47,50,103],establish:40,estim:[4,18,26,44,72],eta:113,etal:18,etc:[3,9,18,29,41,42,46,63,71,72,78,83,86,91,102,109,112,117,120,126],etcd:[9,25,31,35,36,38],etcd_addr:36,etcd_endpoint:9,eth0:112,etyp:41,euclidean:4,eval:[3,29,46,54,79],eval_program:46,eval_result:46,evalu:[4,12,18,24,25,38,56,76,86,107,108],evaluate_difficult:3,even:[26,50,71,77,78,98,99,107,118,123],evenli:[36,112],event:[22,113],event_:74,event_block:74,event_handl:[25,26],eventkind:74,eventlist:74,eventu:[42,89],everi:[3,4,5,9,18,26,31,35,36,38,45,46,55,56,58,60,63,67,68,71,77,83,85,88,97,99,100,101,103,108,109,114,118],everyon:99,everyth:[42,44,54,122],everywher:98,evid:73,evolv:51,exactli:[4,5,112],exampl:[3,4,5,9,10,11,18,19,25,29,39,42,44,46,49,51,52,53,54,55,56,58,60,63,67,68,69,73,74,75,77,78,79,80,81,84,87,88,89,97,98,99,100,101,102,103,106,107,108,109,111,112,113,117,118,120,124],example_read:9,exceed:4,except:[4,10,21,23,38,40,51,55,74,86,89,120],excess:60,exchang:73,exclud:4,exclude_mod:4,exclude_param:25,excluded_chunk_typ:[3,14,18],exclus:18,exconv:4,exconvt:4,exdb:10,exe:[42,108,111],exec:118,execut:[4,18,22,30,31,35,39,40,41,42,46,47,52,54,56,60,63,71,74,80,90,98,100,106,107,112],executioncontext:[63,88,101,102,103],executor:[12,17,40,42,46,50,51,52,54,70,75,77,88,90,106,108,111],exist:[26,29,31,49,51,69,77,78,80,85,87,89,94,98,100,103,112,118,123],exit:[36,49,111,113,118],expand:[18,69,92,100],expand_a:4,expand_level:4,expandconvlay:4,expans:4,expect:[4,88,107],expected_desc:63,expected_kernel_kei:88,experi:[64,86,120],experienc:99,expert:30,expir:31,explain:[3,18,31,40,51,53,55,99,102,106,109,111],explan:[4,18,27,39,40,42,83,88],explicit:[74,89,100,102],explicitli:[26,42,47,101,103,123],explod:45,explor:[4,69,81],expon:4,exponenti:[1,18],expos:[28,37,41,63,64,87,89,112],express:[26,44,46,56,60,101,112],extend:[3,72,89],extens:[38,44,69,101,122],extent:66,extern:[30,62,65,66,79,86],external_librari:30,extingrad_:62,extinval_:62,extoutgrad_:62,extoutval_:62,extra:[2,4,5,21,42,81,87,126],extra_lay:25,extraattr:[2,120],extraattribut:4,extraattributenon:4,extract:[3,4,18,51,73,86,101,112],extralayerattribut:[2,5],extralayeroutput:5,extrem:[4,40,51,107],f120da72:113,f7e3:112,fa0wx:113,fabric:109,face:[30,81],fact:[18,40,51,71,75,77],factor:[2,6,18],factor_s:4,factori:65,fail:[31,35,69,101,113,118,120],failur:[31,36,101],fake:54,fake_imag:78,faked_imag:54,fall:[50,76],falloc:48,fals:[2,3,4,5,6,9,18,27,28,29,51,57,59,61,68,75,76,78,84,90,95,97,100,101,109,113,118,120],false_block:[29,57,75],false_label:78,false_neg:46,false_posit:46,false_read:78,fan_in:18,far:[45,89],fashion:42,fast:[4,35,51,107],faster:[4,5,18,31,51,92,97,107],fastest:51,fastli:99,fat:123,father:28,fault:[25,35,79,91],favorit:98,fbd1f2bb71f4:113,fc1:[56,100,120],fc1_bia:56,fc1_weight:56,fc2:[56,120],fc3:[56,120],fc4:120,fc8a365:112,fc8a:112,fc_act:5,fc_attr:5,fc_bias_attr:5,fc_layer:[77,85,100,120],fc_layer_nam:5,fc_mat:25,fc_op:85,fc_out:[18,29],fc_output:85,fc_param_attr:5,fc_without_b:29,fclayer:100,fcop:53,feasibl:72,featur:[1,4,9,10,18,28,42,50,56,71,74,86,99,118],feed:[5,17,25,26,42,55,68,81,108,111],feed_dict:54,feed_list:[13,108,111],feed_target_nam:17,feeded_var_nam:17,feeder:[9,42,108,111],feel:99,fetch:[10,31,34,42,76,97,100,108],fetch_list:[42,77,108,111],fetch_op:76,fetch_target:17,few:[30,31,41,42,60,72,78,84,86,98],fewer:[4,18,41,77],fft:86,fg0:4,field1:25,field2:25,field:[4,21,25,29,56,58,64,76,77,80,84,85,107,112],fifth:55,figur:[26,30,42,44,54,62,68,74,77,86,97,100,107],file:[3,4,9,10,11,22,25,26,28,30,31,33,35,36,38,39,41,48,49,51,52,56,64,66,78,79,86,87,90,92,94,95,97,98,99,100,101,102,103,108,109,110,111,114,118,122,123,124,126],file_typ:9,filelist:86,filenam:[11,33,77,106],fileoffset:48,filesystem:[38,39,42,48,112],fill:[4,31,35,67,77,112],fill_zero_grad:79,fill_zeros_like_op:28,filter:[4,5,17,18,45,63],filter_s:[4,5,18,19],filter_size_h:18,filter_size_i:4,filter_size_w:18,filter_strid:18,find:[4,18,29,31,38,41,50,56,63,69,83,88,91,94,107,111,114,122,123],find_var:27,findmemori:63,findop:29,findprimit:63,findprimitivedesc:63,findvar:[29,83],fine:[2,35,53],fingerprint:112,finish:[18,31,35,38,39,47,60,71,85,91,109,110,112,113],finit:100,finnal:92,first:[4,18,22,25,26,28,29,31,35,38,39,40,42,47,49,51,54,55,56,63,68,69,75,76,77,79,84,85,86,87,89,91,97,98,99,100,101,103,107,111,112,118,120,126],first_n:18,first_seq:97,firstli:[3,4,102],firstn:9,firstseen:113,fit:[10,17,50,59,60,64,69,79,111],fit_a_lin:111,five:[75,107],fix:[2,4,18,42,60,65,77,86,99,106],flag:[4,10,18,22,61,62,74,99,101,104,118],flatten0:56,flatten:[18,56,75,77,103],flexibl:[4,5,22,26,36,42,51,55,59,68,69,72,78,87,89,97],flip:11,flist:109,fliud:40,float16:41,float16_t:50,float32:[9,18,42,50,53,54,77,78,101,108,111],float64:18,float_16:18,float_to_half_rn:50,floor:4,flow:[18,29,40,41,68,74,82],fluid:[0,13,14,15,16,17,18,19,20,21,22,23,28,42,44,47,67,74,77,87,88,102,106],fluid_cuda_create_tensor:52,fluid_cuda_mult:52,fluid_cuda_read:52,fly:28,fnt03:112,focu:[41,56,106,107],focus:101,folder:[30,33,39,49,111,112],follew:18,follow:[3,4,5,6,9,11,18,19,25,26,27,28,29,30,31,35,39,40,41,42,44,47,50,51,52,53,54,55,56,57,58,60,63,67,68,69,71,72,74,75,76,77,78,79,80,81,83,84,85,86,87,88,89,91,92,94,95,97,98,99,100,101,103,104,106,107,108,111,112,113,114,115,116,120,122,123,124,126],footprint:52,forbid:26,forc:[71,77,88],force_cpu:[18,59],force_cudnn:59,force_load:65,forest:29,forget:[6,18,26],forget_bia:18,fork:[4,99],form:[4,5,18,41,46,94,107],formal:88,format:[3,9,10,11,18,22,25,27,35,42,50,51,67,69,86,89,95,99,100,101,103,109,112,118],former:[26,30,51,60,72],formul:18,formula:[4,5,6,18,27,60],formular:4,forth:54,forward:[1,4,5,18,27,28,29,34,36,45,51,54,61,62,63,64,70,73,75,78,79,80,81,84,97,100,120],forward_infer:63,forward_list:74,forward_op:27,forward_proj:18,forward_train:63,forwardactiv:100,forwardbackward:25,found:[50,75,81,83,97,102,109,111,124],four:[3,18,46,51,55,63,67],fourth:18,foward:76,fp16:[50,79,90],fp32:[67,79,88,90],fp64:[67,90],fpga:[67,108],fpgadevicecontext:87,fpgaengin:62,fpgaplac:[67,87],frac:18,frame:[3,47,79,86,89],framework:[26,28,29,41,45,46,50,51,56,67,71,72,74,75,79,81,83,85,87,99,100,101,106,108,109,123],free:[10,52,87,99,126],freememoryop:52,frequenc:[10,86,107],frequent:[35,78,79,81,87,110,122,123],fresh:38,friend:83,friendli:54,from:[3,4,5,9,10,11,14,17,18,22,25,27,28,29,30,31,33,34,35,36,40,41,42,44,45,46,49,50,51,53,54,55,56,57,59,60,63,68,69,70,71,73,75,77,78,79,80,83,86,87,88,89,92,94,97,98,99,100,101,102,103,106,107,109,111,112,113,118,120,122,123,126],from_no_sequ:4,from_sequ:4,from_tar:25,fromfil:78,front:[56,60],fuction:22,fulfil:107,full:[4,18,31,38,68,71,72,97,100,102,126],full_matrix_project:[5,97],fulli:[18,42,44,86,100,107,111,126],fullmatrixproject:4,fullsiz:34,fully_matrix_project:5,fullyconnect:[56,77],fullyconnectedlay:100,func:[9,35,40,52,80],funciton:[5,18],functor:[53,56],fundament:[41,44,50,79],funtion:18,further:[4,85,126],furthermor:18,futur:[4,18,38,42,50,60,68,79,122],future_context_s:18,fvs:85,fwd_desc:63,fwd_op:80,fwd_primit:63,fwd_primitive_desc:63,fwd_var:45,g_b0:54,g_b1:54,g_b2:54,g_block:54,g_command_config_arg:[61,62],g_h0:54,g_h0_bn:54,g_h0_relu:54,g_h1:54,g_h1_bn:54,g_h1_relu:54,g_h2:54,g_im:54,g_loss:54,g_optim:54,g_program:77,g_state:74,g_step:54,g_w0:54,g_w1:54,g_w2:54,gain:4,gan:26,gangliao:30,gap:118,gate:[4,5,18,19],gate_act:[4,5],gate_activ:18,gate_attr:4,gate_bias_attr:4,gate_param_attr:4,gate_recurr:4,gate_v:18,gatedrecurrentlay:61,gather:[4,18,28,60,71,73,100,101],gauss:2,gaussian_normal_random:54,gcc:[50,52,65,79,91,98,106,122,124],gcc_3:94,gcreators_:85,gemm:61,gemmconvkernel:102,gen:4,gender:10,gendrated_id:69,gener:[3,4,5,9,25,26,27,28,29,30,31,33,35,36,38,40,42,51,53,58,60,63,67,71,72,75,76,77,78,79,80,84,85,86,87,89,99,101,107,112,114,118,120,122,124],generated_id:69,generated_scor:69,generated_word_embed:4,generatedinput:[4,97],gereat:3,get:[3,4,10,17,18,25,27,28,29,30,31,35,36,38,39,48,51,54,56,59,60,61,62,63,67,68,69,74,77,79,80,83,85,88,89,91,92,94,97,99,100,101,102,106,107,109,110,112,114,121],get_all_op_proto:85,get_block:77,get_config_arg:120,get_data:113,get_dict:10,get_dim:27,get_embed:10,get_float_el:27,get_grad:25,get_grad_op_desc:28,get_input_lay:100,get_lin:9,get_movie_title_dict:10,get_numeric_gradi:27,get_numerical_gradi:27,get_output:27,get_program:60,get_pserver_program:111,get_shap:25,get_startup_program:111,get_support:94,get_symbol:56,get_tensor:27,get_trainer_program:111,get_var:18,get_vari:29,get_word_dict:10,get_worker_addr:40,getactualkerneltyp:59,getattr:45,getbatchs:100,getdeviceid:102,geteigendevic:103,getengin:63,getenv:[26,39,109],getexpectedkerneltyp:[59,63,88],getinfervartyp:58,getinput:100,getinputgrad:100,getinputvalu:100,getkerneltyp:50,getkerneltypeforvar:88,getlayeroutput:25,getlibrari:63,getmat:34,getoptconfig:34,getoutputgrad:100,getoutputvalu:100,getparam:34,getparameterconfig:34,getparameterptr:100,getparameterspars:34,getparametersremot:34,getplac:[63,87,101,102,103],getsiz:100,gettask:35,gettempl:112,gettensor:88,gettranspos:100,getw:100,getweight:100,getwgrad:100,gist:5,git:[82,91,98,99,104,122,124],github:[5,18,30,54,67,82,91,98,99,104,106,108,122,124],give:[18,31,68,77,79,88,98,99,100,107,112],given:[4,9,18,19,25,28,36,38,41,44,45,51,53,54,69,78,81,89,100,118],glibc:[94,122,124],glibc_2:94,glibcxx_3:94,glide:30,global:[2,18,23,26,29,30,31,52,56,59,73,74,79,83,85,87,88,98,107,112,118],global_block:77,global_learning_r:2,global_pool:18,globalstat:107,globalstatinfo:107,glog:99,glog_v:99,glog_vmodul:99,gnueabihf:124,go_librari:30,go_test:30,goal:[41,44,50,55,71,79,86,107],gob:35,godep:30,godoc:65,goe:[5,31,51,57,83,108],going:[28,53,72,106,109,126],golang:30,good:[41,54,72,77,78,81,106,107,111,126],googl:[18,26,74,79,99,106,109,122],googleapi:112,googlenet:62,goroutin:[40,41],got:[59,83],gpg2:112,gpg:112,gprotos_:85,gpu:[2,4,7,22,27,39,41,46,50,60,67,71,72,73,74,79,81,82,87,88,91,94,95,98,102,103,105,108,109,111,126],gpu_id:[118,120],gpu_per_train:42,gpudevic:87,gpugpu_id:117,gpukernel:79,gpustarttimestamp:22,grab:31,grad:[27,28,36,45,62,77,84,118],grad_info_map:28,grad_n:45,grad_nam:45,grad_op:45,grad_op_class:79,grad_op_desc:45,grad_op_maker_:80,grad_op_typ:[79,80],grad_op_type_:80,grad_s_block:28,grad_share_block_num:[117,118],grad_to_var:[28,45],grad_var_nam:27,gradient:[2,3,4,6,18,23,25,31,35,41,43,45,55,58,70,71,72,73,77,79,84,101,106,109,111,118],gradient_clip:21,gradient_clipping_threshold:2,gradient_evalu:3,gradient_flat:27,gradient_machin:[25,66],gradientmachin:[25,66,73],gradientmachine_:34,gradopdescmak:[58,80],gradopdescmakerbas:80,gradopmak:80,gradual:107,grai:11,grain:53,gram:86,grandient:25,grant:112,graph:[4,18,25,28,29,30,31,40,41,42,43,44,46,51,54,68,71,72,75,103],great:[44,86,126],greater:[4,18,45,72,109],greaterthan:85,greedi:[18,86],green:[40,54],grep:[92,114],gridsize3d:22,groudtruth:97,ground:[3,4,18],group:[5,18,35,56,63,87,101,126],group_input1:97,group_input2:97,group_input:97,grouplen:10,grow:99,grpc:126,gru:[4,18,69,86,97],gru_bias_attr:5,gru_decod:97,gru_decoder_with_attent:97,gru_layer_attr:5,gru_memori:5,gru_out:69,gru_param_attr:5,gru_step:[69,97],gru_step_lay:5,grumemori:[5,97],gserver:[4,61,62,100],gsizex:107,gtx:60,guarante:[63,77,100],guard:34,guest:[94,98],gui:[106,107],guid:[22,48,60,79,97,99,100,107,111,112,113,123],gutmann10a:18,gzip:[35,113],h0_bn:54,h_0:18,h_f:18,h_prev:29,had:98,hadoop:26,half:[4,18,19,50,112],half_to_float:50,hand:[60,79,86,87,103,109,111],handi:30,handl:[9,26,28,39,40,42,56,60,63,67,73,78,83,87,89,102,108],handler:[25,29],hannun:86,happen:[18,35,85],hard:[42,51,69,86,89,98,112],hardshrink:18,hardsigmoid:18,hardwar:[51,52,87,98,102,107],has:[3,4,5,10,18,19,22,26,27,28,29,30,31,35,36,38,41,42,44,45,46,50,51,54,56,60,64,67,69,71,74,75,79,84,85,87,88,91,97,98,99,100,107,108,112,113,123,126],has_kei:[25,28,45],has_selected_colum:4,has_var_recurs:28,hasdependentvar:76,hash:[67,71],hasn:51,have:[4,5,9,18,19,22,26,27,28,29,30,31,35,36,38,39,41,42,44,45,47,50,51,52,53,54,55,59,60,63,64,67,68,69,71,72,73,74,75,77,78,79,80,83,84,86,87,88,90,91,92,97,98,100,101,102,107,109,112,118,120,123,124,126],haven:[51,98],hdf:[9,33],head:[19,99,101,109,114],header:[36,64,66,79,87,100,102,122,123,124],headip:114,heard:98,heavi:110,height:[4,9,11,18,29,65,78,100,101],height_:84,held:31,hello:26,help:[4,18,29,49,51,56,63,69,78,79,89,98,99,106,110],helper:[18,42,63,80,89,100],henc:[42,72,77,80,81,83],here:[2,3,4,5,9,18,19,21,26,30,31,37,41,44,45,47,49,51,55,56,63,67,68,78,81,85,91,92,94,97,99,101,102,104,109,110,111,112,113,117,120,123,124,126],heterogen:[42,44,74],heurist:[4,44,69,118],hidden:[4,5,18,70,77,97,112],hidden_dim:18,hidden_out:29,hidden_s:5,hidden_t_prev:18,hidden_v:18,hidden_valu:18,hierarch:[4,75,77,79,97],hierarchi:79,high:[2,50,71,86,87,100,109,126],higher:[53,68,89,99],highest:[9,29],highli:[10,86,89,97,120],him:26,hint:[59,106],histor:[53,102],histori:6,hl_get_sync_flag:100,hold:[26,28,31,35,37,41,50,54,56,58,60,83,85,87,88,103,111,112],holder_:[87,103],home:[33,49,92,106,112,113,114],honor:35,hook:2,hookattr:2,hookattribut:2,horizont:[4,11],host:[30,39,74,112,113,122,123,124],host_c:[122,123,124],hostfil:114,hostnam:112,hostpath:113,hostport:112,hot:18,hour:98,hourli:99,hous:[10,95],how:[2,4,18,26,29,31,35,40,41,42,47,49,51,53,56,59,63,68,69,73,74,81,85,88,97,98,102,106,109,111,112,113,118,121,124],howev:[4,5,18,27,28,38,41,42,47,51,60,67,72,73,77,78,80,81,84,85,86,87,88,97,112,117,118],howto:109,hpp:[50,65],html:10,htod:107,http:[4,5,10,18,30,39,54,82,91,92,98,99,104,106,108,112,113,122,124,126],hub:82,huber:4,huge:72,human:[4,74,86],hundr:102,hwc:11,hyp:18,hyper:[4,54,100],hyperparamet:[4,81],hyperplan:9,hypothesi:18,i1117:107,i386:123,iOS:[124,125],iamfullaccess:112,iamusersshkei:112,icc:52,iclrworkshop2016:18,icml:86,ics:10,id_input:3,id_rsa:114,idea:[30,41,51,52,72,78,81,106,111],ideal:[42,88],ident:[4,18,80,101,112],identifi:[4,57,67,100],identityoffsetproject:4,identityproject:4,ids:[3,4,18,69,100],idx:[35,54,60,100],ies:49,if_else_op:28,ifdef:[67,74],ifels:[29,75],ifelseop:75,ignor:[4,17,18,118],ignored_token:18,iii:86,illustr:[3,18,31,36,42,53,68,97,100,107],im2col:18,im_siz:54,imag:[7,8,9,10,18,26,42,51,54,55,69,70,75,78,86,91,98,99,112,115,116,120,126],image_a:78,image_b:78,image_conv_lay:86,image_fil:78,image_h:18,image_lay:78,image_nam:26,image_path:78,image_reader_cr:78,image_w:18,imagenet:[4,33],imagepullpolici:112,imageri:4,images_reader_cr:78,imagin:55,img2label:11,img:[4,5],img_conv_lay:5,img_pool_lay:5,imgsiz:107,imgsizei:107,imgsizex:107,imikolov:109,immedi:[60,63,72,81,91,112],immutable_paramet:26,imper:40,imperfect:79,implement:[4,5,9,18,19,23,29,35,36,37,38,39,40,41,42,44,51,53,56,57,58,60,63,65,66,67,69,73,76,83,85,86,87,88,89,97],implemet:34,impli:30,implicitli:40,imposs:[69,126],impractic:88,improv:[4,43,44,60,79,86,106,107,112],in_fals:18,in_plac:18,in_tru:18,inarg:34,inbound:112,includ:[3,4,5,10,11,18,26,29,30,36,39,41,50,51,54,56,60,65,66,68,69,74,75,77,79,85,91,94,97,98,100,101,106,107,109,112,113,118,122,123,124],inclus:[18,69],incom:[40,59],incorpor:4,incorrect:4,increas:[31,35,50,109,118],increment:[46,55,60,118],incupd:100,inde:[9,41],independ:[4,18,27,28,36,43,83,87,126],index:[3,4,7,9,10,18,25,27,28,29,31,35,40,75,77,89,102,112],indexslot:4,indiact:18,indic:[3,4,18,21,28,29,36,47,54,68,75,80,84,87,89,110,112,122],indice_map:89,indices_map:89,individu:[31,71,112],industri:[31,64,126],ineffici:[73,88],infer:[0,11,17,18,26,28,29,31,46,51,57,58,59,60,61,65,67,76,77,79,84,86,88,95,123,124],infer_shap:77,infer_var_type_:58,inferenc:123,inferer:86,inferfac:58,inferior:38,infernec:124,infershap:[29,77,79,101,103],infershapecontext:[101,103],infervartypefn:58,info:[3,4,10,50,68,100,110,126],infom:4,inform:[4,10,18,25,29,39,49,56,59,60,63,64,67,68,71,77,81,83,84,99,100,101,103,106,107,112,118,122],infrastructur:[51,112],ingor:118,ingrad_:62,ingredi:[41,86],inherit:[22,29,70,79,87,101],ininst:26,init:[2,18,25,29,43,54,62,68,69,95,100,109,112,120],init_attr:77,init_batch_dim_idx:18,init_from_tar:25,init_model_path:[117,118,120],init_valu:18,initi:[2,4,5,10,12,18,21,25,28,30,35,40,42,43,44,46,55,68,71,72,77,81,85,89,95,97,100,101,108,118],initial_max:2,initial_mean:[2,4],initial_min:2,initial_std:[2,4],initialize_op_attr:77,initrd:126,inlcud:5,inlin:[87,102,103,112],inner:[4,100],inner_param_attr:5,inproj_attr:4,inproj_bias_attr:4,inproj_param_attr:4,input0:103,input1:[4,5,103],input2:4,input:[1,3,4,5,7,9,11,14,18,19,25,27,28,29,34,38,40,42,43,44,45,46,50,51,52,53,54,55,56,58,59,60,62,63,67,68,69,72,73,76,77,78,79,80,83,85,86,87,88,89,95,97,99,100,101,102,103,108,111,114,120],input_conf:4,input_data:100,input_data_target:100,input_dim_idx:18,input_dtyp:18,input_featur:1,input_hassub_sequence_data:100,input_id:4,input_imag:5,input_index:100,input_label:100,input_lay:100,input_loc:4,input_nam:26,input_proj_bias_attr:5,input_proj_layer_attr:5,input_seg:89,input_seq:[4,18],input_sequence_data:100,input_sequence_label:100,input_sparse_float_value_data:100,input_sparse_non_value_data:100,input_t:100,input_to_check:27,input_valu:27,input_var:[27,77],inputbuff:34,inputdef:100,inputgradi:80,inputlayers_:100,inputs_to_check:27,inputsizechang:63,inputtyp:9,insert:[18,28,45,52,71,76,79,80,99],insid:[3,5,28,31,42,44,45,46,59,63,73,74,78,79,80,92,112],inspir:74,instal:[4,18,39,62,82,91,92,98,99,104,106,109,113],install_android:122,instanc:[4,18,27,29,31,33,37,40,42,43,45,47,52,57,63,68,69,72,77,79,80,97,100,103,107,111,118],instance_ip:112,instanti:[31,47,108],instead:[4,5,7,28,30,34,39,40,41,42,50,51,55,56,86,98,99],instrins:50,instruct:[29,55,92,98,107,122],int16:90,int32:[18,67,75,89,90,118],int64:[18,42,48,67,84,88,90],int64_t:74,int8:67,integ:[3,4,9,18,35,39,40,50,65,69,100],integer_valu:9,integer_value_sequ:[9,69,86,97],integr:[3,18,91,126],intel:[51,67,87,102],intellig:60,inteloptimizedpaddl:62,intend:91,intens:86,inter:[4,18,42],interact:[4,42,92,112],intercept:4,interchang:[55,79],interconnect:71,interest:[40,50,71,107],interfac:[0,2,4,5,22,25,29,35,39,49,56,71,73,79,80,86,87,91,101,103,112,123,126],intergr:4,intermedi:[18,42,49,52,54,60,70,86,98,122,124],intern:[4,5,25,50,86,106,109,110,112],internel:62,internet:[30,31,126],interpret:[3,18,47,51,52,90,91,107],interv:18,inth:103,intrins:[40,47,50,124],introduc:[4,11,29,31,54,61,64,81,83,85,101,106,109,113],introductori:98,intuit:[38,79],inval_:62,invalid:[78,83],invent:51,invoc:[30,53,79],invok:[4,25,28,42,45,73,77,79,80,85,88,98,99,107,112],involv:[69,101],iob:3,ioe:3,ios:123,ios_arch:123,ios_deployment_target:123,ios_development_root:123,ios_enable_bitcod:123,ios_platform:123,ios_sdk_root:123,ios_use_veclib_for_bla:123,ipad:123,iphon:123,ips:112,ipt:[4,77,85,97],ipx:126,ipython:26,is_bia:18,is_color:11,is_cpu_plac:63,is_loc:25,is_mkldnn_librari:63,is_revers:18,is_seq:[4,97],is_spars:18,is_stat:2,is_target:76,is_tensor:85,is_test:[18,63],is_traget:76,is_train:11,isinst:45,ismkldnnkernel:63,isn:107,isspars:100,issu:[18,30,54,86,92,94,98,99,107],issuecom:18,istag:82,item:[4,9,18,25,38,50,78,95,126],iter:[4,5,6,9,25,26,31,42,51,52,60,63,72,74,78,86,89],iter_multiple_input_and_param:77,its:[4,5,18,25,26,27,28,29,31,35,40,41,44,45,46,51,52,54,55,56,58,60,64,68,69,71,72,73,76,77,79,80,83,84,85,87,88,94,100,101,102,103,107,109,112,118],itself:[28,31,38,52,63,72,83],ivs:85,java:[29,65,75,79],jeremi:107,jku:18,jmlr:18,job:[10,28,38,40,42,45,79,92,109,111,117,118,120],job_desc:42,job_dispatch_packag:110,job_id:10,job_nam:[39,112],job_namespac:112,job_path:112,job_workspac:110,jobdesc:42,jobnam:42,jobpath:112,jobport0:112,jobport1:112,jobport2:112,jobport3:112,jobserv:39,join:31,jointli:5,journei:92,jpg:11,json:[56,86,112,113],jth:5,judg:4,juditski:72,jupyt:[39,92],just:[1,3,4,5,10,18,30,35,36,40,42,51,52,54,58,63,72,73,77,78,79,80,81,83,84,91,94,98,99,110,112,120,122],jx4xr:112,jypyt:26,k8s:[40,126],k8s_data:112,k8s_job:26,k8s_token:26,k8s_train:112,k8s_user:26,kafka:33,kcpu:74,kcuda:74,kcudnn:102,kdisabl:74,kebilinearinterpbw:107,kebilinearinterpfw:107,keep:[4,9,11,18,31,41,51,52,55,69,72,77,83,85,91,99,126],keep_dim:18,keep_top_k:4,kei:[10,11,19,22,25,27,28,29,31,33,35,48,50,59,63,79,80,85,86,89,98,99,101,107],kenlm:86,kept:[4,60,77],kera:81,kernel0:102,kernel1:102,kernel:[4,18,22,27,41,50,52,59,62,72,74,81,84,86,87,88,101,103,107],kernel_hint:59,kernel_type_for_var:88,kerneltyp:[59,63],key1:118,key2:118,key_pair_nam:112,keyid:112,keymetadata:112,keypair:112,keyserv:112,keystat:112,keyusag:112,keyword:[18,77],kforcecpu:59,kill:[31,112],kind:[26,27,31,37,42,45,52,55,59,63,70,71,74,87,88,90,92,102,112,113],kind_:74,kitten:18,kmark:74,kmkldnn:102,kms:112,knchw8c:67,knchw:67,knhwc:67,know:[18,26,35,40,60,64,99,100,106,107,109,112,122],knowledg:86,known:[28,29,41,51,53,68],kplain:102,kpoprang:74,kpushrang:74,kqueue:41,kriz:10,krizhevski:18,kselectedrow:84,ksimonyan:5,kstate:74,kube_cluster_tl:26,kube_ctrl_start_job:26,kube_get_workers_addr:40,kube_list_containers_in_job_and_return_current_containers_rank:26,kubeconfig:112,kubectl:[110,113,114],kuberent:[31,112],kubernet:[26,31,40,42,79,109,115,116,126],kubernetes_service_host:26,kusecudnn:59,kusemkldnn:59,kvp:22,kwarg:[5,6,9,14,18,21,46,56,77,85],kwd:[15,22],l1_rate:2,l1_regularization_op:81,l1decayregular:23,l2_rate:2,l2_regularization_op:81,l2_sim:4,l2decayregular:23,l93:34,label:[3,4,9,10,11,14,18,25,42,46,51,54,55,56,70,75,78,86,88,108,111,113],label_dim:4,label_fil:78,label_lay:78,label_path:78,lag:118,lambda:[18,40,45],lambdacost:4,lambdarank:4,lan:109,languag:[4,10,19,40,41,51,55,60,74,79,83,86,120],larg:[7,10,18,42,44,45,60,64,72,86,99],larger:[2,3,4,60],larger_than:[29,57,75],largest:18,last:[3,4,5,18,28,45,60,68,74,75,97,118],last_seq:69,last_time_step_output:4,lastseen:113,latenc:[4,50,86,110,112],latent:4,later:[30,79,81,86,87,91,94,101,103,112],latest:[4,29,30,31,38,82,91,92,94,104,113,122,123],latter:[72,89,106],launch:[63,112,118],launcher:26,layer1:[4,5],layer2:4,layer3:4,layer:[2,3,5,7,9,12,24,25,28,29,34,40,42,44,51,54,55,57,70,72,75,78,79,81,85,86,87,89,95,97,105,108,111,117,118],layer_0:100,layer_attr:[4,97,120],layer_help:59,layer_num:120,layer_typ:[4,61,62],layerbas:100,layerconfig:100,layergradutil:100,layerhelp:[18,59,77],layermap:100,layeroutout:4,layeroutput:5,layout:[11,63,88],layout_:[59,67],layouttyp:59,lazi:[72,81],lbl:3,lead:[60,67,107],leaki:54,leakyrelu:18,learing_r:70,learn:[2,3,4,5,6,10,19,26,28,36,38,41,42,44,47,54,55,60,62,69,71,72,74,78,79,81,87,92,97,98,100,101,104,107,111,123],learnabl:[18,19,25],learning_r:[2,21,36,42,108,111],leas:31,least:[3,18,31,94,122],leav:[29,112],lectur:60,lecun:10,left:[4,18,29,103,123],left_right_flip:11,legaci:92,legal:85,len:[4,18,36,40,48,51,77,95,100],length:[4,5,9,10,11,18,36,50,61,64,68,69,79,86,89,97,113,118],leran:60,less:[4,18,26,45,111,126],less_than:[26,60],lesser:18,let02:113,let:[3,4,18,26,29,38,40,52,53,55,59,63,67,68,69,70,80,87,88,101,106,111,112],level:[2,4,18,50,53,56,64,68,69,74,87,89,90,99,110,118,122],levenshtein:18,lgtest:30,lgtest_main:30,lib64:[92,118],lib:[66,91,92,106,109,122,123,124],libapi:30,libari:66,libc:94,libcuda:92,libgcc_:94,libgoogl:106,libiomp5:62,libmkldnn:62,libmklml_intel:62,libnvidia:92,libpaddl:[65,66,79,106],libpaddle_capi:66,libpaddle_gserv:66,libpaddle_math:66,libpython2:91,librari:[4,18,30,37,41,42,62,63,66,71,86,88,91,94,101,102,109,111,118,123,124],library_:67,library_typ:102,library_type_:88,librarydevicecontext:67,librarytyp:[88,102],libstdc:94,licens:[62,71],life:31,lifecycl:[74,126],lifetim:[83,94],lightweight:53,like:[3,4,9,10,18,28,29,30,31,34,39,40,41,47,51,52,53,54,55,56,58,63,67,71,72,77,78,79,80,81,83,84,86,88,89,91,94,97,98,99,106,107,108,109,112,117,120,122,123,124,126],limit:[4,9,18,51,60,64,69,79,81,107,118],linaro:124,line:[3,9,22,30,34,39,41,49,55,72,75,77,79,81,98,99,105,106,107,110,111,112,120],line_break:9,linear:[4,18,19,69,95],linearli:18,lineno:106,link1:50,link2:50,link:[4,5,18,30,48,49,83,94,101,112,126],linux:[9,41,48,92,94,98,99,109,112,124],linux_x86_64:[82,94],lipo:123,list:[3,4,5,9,11,18,22,23,25,26,28,29,30,35,39,40,47,49,51,54,67,70,73,74,77,80,83,89,95,97,98,100,101,106,109,111,112,118,120,124],listdir:109,listen:[31,40,42,109,111,118],listen_and_do:40,listen_and_serv:18,listenanddo:40,littl:[36,59,64,118],live:[101,108],live_in:60,live_out:60,load:[11,17,26,31,42,54,71,77,91,101,112,118],load_and_transform:11,load_imag:11,load_image_byt:11,load_missing_parameter_strategi:[117,118,120],load_mnist:54,load_persist:111,loadsave_parameters_in_pserv:[34,117,118],loc:3,local:[2,18,25,27,29,31,37,38,41,55,60,68,75,77,79,91,92,98,99,106,110,113,117,118],local_scop:27,localhost:[92,104],localpath:49,locat:[4,18,25,30,51,67,74,87,89,97,100,109,124],lock:[30,31,35,36],lod:[18,41,64,68,84,89,90],lod_desc:[84,90],lod_expand:69,lod_level:[18,77,84,90],lod_rank_table_obj:18,lod_tensor:[18,68,84,90],lod_tensor_aarri:18,lod_tensor_arrai:18,lodrankt:18,lodtensor:[18,19,41,58,64,79,90],lodtensorarrai:18,lodtensordesc:[64,84],log:[35,42,49,54,94,100,109,110,112,113,114,118,124],log_barrier_abstract:118,log_barrier_lowest_nod:[117,118],log_barrier_show_log:[117,118],log_clip:[117,118],log_error_clip:[117,118],log_period:[113,118,120],log_period_serv:[117,118],logarithm:[1,18],logic:[38,42,44,45,54,58,70,71,73,83,89,101],login:[94,114],logist:18,logit:[18,54,88],longer:[31,42,60],look:[3,18,29,39,40,51,52,55,72,77,80,81,86,108,109,111,112,113,117],lookahead:[4,18,86],lookup:[18,58,69,108],lookup_t:60,loop:[27,29,51,60,74,78,83],loop_var:89,loss:[4,18,28,42,54,56,70,72,81,86,100],lot:[42,67,69,72,77,81,87,109,117,126],low:[4,70,71,86,87,89],low_rnn:68,lower:[4,18,50,68,69,99,110],lower_level_rnn:68,lowest:118,lpaddle_capi_shar:66,lpaddle_capi_whol:66,lrelu:54,lstm:[4,18,97,113],lstm_bias_attr:5,lstm_cell_attr:5,lstm_group:5,lstm_layer_attr:5,lstm_step:5,lstm_unit_op:18,lstmemori:[5,97],lstmemory_group:4,lstmlayer:61,lstmp:18,ltr:4,luckili:60,mac:[66,98,99,122],machin:[5,10,25,42,44,51,54,60,62,71,72,81,91,94,98,100,112,113,114,117,118,120,124,126],machine_transl:97,maco:[94,95,98,123],macro:[53,67,80,101],made:[31,36,51,97],mai:[4,5,18,22,27,29,42,46,50,52,59,60,63,71,74,78,79,83,86,88,91,92,103,104,107,109,112,124],main:[18,40,41,45,51,52,56,71,75,79,94,106,109,112],main_program:[17,18,28,46],mainli:[37,60,67,87,91,101,118],mainlin:94,maintain:[4,29,35,72,77,79,112],majel:30,major:[42,50,88,122],make:[3,4,18,26,28,29,30,31,35,36,38,41,42,43,50,51,55,68,69,72,73,77,78,79,81,86,89,91,98,99,100,101,102,106,107,109,111,112,122,123,124,126],make_chan:41,make_ddim:103,make_function_oper:53,make_vari:85,maker:[79,80],malloc:[87,100],man:48,manag:[25,31,36,37,40,41,42,49,74,83,87,94,104],mandarin:[4,86],mandatori:123,mani:[5,11,28,30,35,40,41,51,54,59,60,69,73,74,77,79,80,83,84,85,88,89,98,118],manili:56,manipul:[51,77,80,110,123],manner:[4,72,81,86,87],mantain:60,manual:[42,70,72,80,110,122,123,126],manufactur:51,manylinux1:94,manylinux1_x86_64:[82,94],manylinux:82,map:[3,4,9,19,25,26,29,35,45,63,67,77,80,83,85,87,89,98,118,126],map_fn:89,map_read:9,mapper:9,mapreduc:[26,109],margin:18,mark:[28,44,54,55,68,69,74,83,97,106,126],marker:74,market:50,mask:[2,4,18],master:[26,38,79,82,118,124],mastermind:30,mat:[65,66],mat_cache_row:34,mat_norm:34,mat_normal_shar:34,mat_param_attr:5,mat_sparse_row:34,mat_sparse_row_auto_grow:34,mat_sparse_row_id:34,mat_sparse_row_prefetch:34,mat_sparse_row_prefetch_full_s:34,mat_value_shar:34,match:[18,30,50,94,107],matchbox:126,math:[5,18,62,65,79,99,100,101,107],mathemat:81,matirx:4,matmul:[29,56,68,89,101],matric:[18,97,100],matrix:[3,4,5,9,18,19,25,34,65,66,100,101,117,120,123],matrixptr:100,matrixtyp:66,mattyp:34,matur:109,max:[2,4,9,10,18,19,22,27,43,45,60,77,107,118,120],max_diff:27,max_id:[4,25],max_job_id:10,max_length:[4,69,97],max_movie_id:10,max_norm:18,max_relative_error:[27,101],max_seq_len:18,max_sort_s:4,max_user_id:10,max_x:18,maxframe_evalu:3,maxid:3,maxid_evalu:3,maxim:[4,45],maximum:[3,4,10,18,22,29,36,97,101,107,118],maxinum:7,maxoutfunctor:87,maxpool:4,mayb:[29,63,101],mchw:18,md5:[10,32],mean:[2,3,4,5,6,7,9,11,22,25,28,30,42,43,45,56,69,76,78,83,86,88,92,97,98,101,106,107,108,111,112,118,120,126],mean_op:18,mean_var_nam:4,meant:89,measur:[18,46,107],mechan:[4,5,19,28,37,46,63,77,80,97,102,112],mem:[4,18,29,39,69],mem_per_pserv:42,mem_per_train:42,member:[4,10,26,45,55,56,67,73,77,83,101],memcpi:[73,107],memor:4,memori:[5,18,28,29,34,35,39,50,52,62,63,64,67,69,72,74,79,88,97,98,99,100,103,107,108,113,118,120],memory_boot:5,memory_nam:4,memory_optim:60,memory_test:98,memory_threshold_on_load_data:118,memoryalloc:87,memorydesc:63,mention:[18,28,30,35,42,44,51,68,71,72,74,98],mere:5,merg:[4,18,36,38,43,46,62,68,71,73,99,104,118,123],messag:[18,29,40,41,47,51,52,55,64,74,75,76,77,79,80,84,90,99,113,118],metaclass:101,metadata:[48,112,113],metal:[111,126],metaphor:55,metaplotlib:26,method:[4,6,25,27,29,38,40,42,43,45,50,54,55,56,59,70,71,77,78,79,83,84,88,89,91,92,94,100,101,103,104,106,107,118,120],methodolog:72,metric:[46,74],microarchitectur:50,might:[4,29,30,40,41,51,60,75,86,98,99,100,106,112,122],mileag:107,million:[10,120],min:[2,4,18,22,43,45,77,107,112,120],min_block:29,min_count:44,min_desc:29,min_word_freq:10,mind:106,mini:[4,9,14,18,25,29,31,41,46,47,51,57,68],mini_batch:78,minibatch:[4,18,29,46,55,57,75],minim:[29,42,44,45,51,54,70,79,108,111,118,122,123,124],minimum:[4,18,22,86,111,123],minimun:118,minsizerel:[122,123,124],minu:80,minus_grad:80,minusgradop:80,minusop:80,minusopgradmak:80,minusopprotoandcheckermak:80,minut:[31,38,92,98,112],mirror:[30,92],mislead:36,mismatch:18,miss:[54,118],mistak:51,misus:102,mit:112,mix:[5,74,89,97],mixed_lay:5,mixed_layer_attr:5,mixedlayertyp:4,mixtur:106,mkdir:[49,91,104,112,114],mkl:[63,79,87,88,91,92,102],mkl_packed_:61,mkldnn:[4,62,67,88],mkldnn_:62,mkldnn_batch_norm:4,mkldnnactiv:62,mkldnnbase:62,mkldnnlayer:62,mkldnnmatrix:62,mkldnnstream:62,mkldnntester:62,mklml:62,mklpack:61,mklpackedgatedrecurrentlay:61,mklpackedgemm:61,mklpackedlstmlay:61,mklpackedrecurrentlay:61,mlp:56,mnist:[33,42,54,55,75,78,79,106],mnist_random_image_batch_read:78,mnist_train:78,mnist_train_batch_read:78,mobil:[50,51,60,79,104,121],mod:109,mode:[4,22,25,50,61,71,99,118],model:[0,4,5,10,17,18,19,25,28,29,31,32,40,42,44,45,46,55,60,61,70,71,72,79,81,86,88,89,95,99,100,104,105,109,111,112,118],model_list:[118,120],model_path:120,modelparallel:42,modern:60,modif:[86,93],modifi:[4,23,42,50,56,81,97,100,101,109,110,112],modul:[5,10,25,42,53,54,69,86,89,101,106],modular:69,modulo:4,moment:106,momentum:[2,18,83,102],momentumop:106,momentumoptim:20,mon:113,monitor:[41,74],mono:4,month:30,more:[3,4,5,9,18,22,26,27,28,30,31,35,38,39,41,42,44,49,50,51,52,53,55,59,60,63,67,68,69,70,74,77,78,79,81,86,87,89,91,92,95,97,98,100,101,102,103,104,106,107,108,109,111,113,120,124,126],most:[4,9,25,26,28,30,38,41,42,52,55,56,67,69,72,74,78,81,86,87,94,97,100,106,107,108,117,126],mostli:[50,126],motiv:79,mount:[39,92,109,112,113],mountpath:[112,113],move:[4,31,35,49,51,72,92,107,112,126],movement:107,movi:10,movidiu:51,movie_categori:10,movie_info:10,movie_review:10,movieinfo:10,moving_average_fract:4,mpi:[41,71,114],mpirun:114,mse:[51,55,70,75],much:[4,18,31,51,63,70,78,81,89,107],mul:[53,60,77,100,101],mul_grad:101,mul_op:[18,101],mul_ratio:4,mul_result:77,mulgradkernel:101,mulkernel:101,mulop:[53,101],mulopgrad:101,mulopmak:101,mult:[40,52],multi:[4,19,46,71,73,88,100,106,110,111,117,118,126],multi_binary_label_cross_entropi:4,multidimension:18,multigradientmachin:73,multinomi:4,multip:19,multipl:[3,4,5,9,14,18,19,25,26,27,35,36,38,40,41,42,44,46,51,52,53,59,71,74,79,86,88,90,97,100,101,106,109,112,118,120],multiple_input:77,multiple_param_attr:77,multipli:[3,4,18,40,100],multiprocess:9,must:[1,3,4,5,9,11,18,28,36,45,60,63,64,67,74,76,77,78,79,85,90,97,100,101,103,109,111,112,118,120,122,124],mutabl:[87,103],mutable_data:[63,87,101,103],mutex:41,mutuable_data:[87,103],mutual:18,mxnet:[29,40,41,51],my_cluster_nam:112,my_external_dns_nam:112,my_lib:109,myerrorclip:45,myfil:9,mypaddl:113,naiv:40,name:[2,3,4,5,7,11,17,18,21,22,25,26,27,28,29,31,33,34,36,39,40,42,46,50,53,56,59,62,63,64,66,67,69,74,75,77,79,82,84,85,89,90,92,94,95,97,98,100,101,102,107,108,109,111,113,115,116,118,120,123,126],name_:74,name_prefix:33,namespac:[29,57,65,77,100,101,113],nativ:[4,18,50,99],natur:[18,35,38,44,69,89,120],navig:104,ncall:106,nccl1:71,nccl2:71,ncclinit:71,nchw8:88,nchw8c:88,nchw:[4,18,62,67],ndarrai:[11,18,25,33],ndcg:4,ndcg_num:4,ndk:122,nearest:50,nearli:27,necess:89,necessari:[4,28,29,36,38,45,46,60,64,69,73,77,85,89,100,114],necessarili:[40,100],neck:71,need:[3,4,5,9,17,18,19,23,26,27,28,30,34,35,36,38,39,41,42,44,45,46,49,51,52,53,54,59,60,63,67,69,70,71,72,73,74,76,77,79,80,81,83,84,85,86,87,89,91,92,93,94,95,97,100,101,102,103,104,109,111,112,113,117,118,120,122,123,124,126],neg:[3,4,18],neg_distribut:4,neg_overlap:4,neg_pos_ratio:4,neglect:4,neighberhood:71,neither:4,neon:[50,122,124],ner:3,nervana:51,nessesari:86,nest:[4,9,28,29,74,75,90],net:[4,5,12,18,29,54,68,83],netop:[29,79],network:[2,3,4,9,18,19,24,25,26,27,28,29,31,34,42,44,46,54,56,60,61,62,68,70,72,74,77,78,81,83,85,86,87,88,90,95,100,101,103,107,109,111,118,126],network_config:120,networkadministr:112,neural:[4,5,9,18,25,26,28,29,31,42,56,60,61,62,68,72,81,83,87,88,90,95,103,107,109,111,118],neuralnetwork:73,neuron:[18,100],never:[9,60,78,83,112,113],new_block_idx:77,new_dim:18,new_op_and_kernel:102,new_op_desc:45,new_scop:88,new_stat:68,newblock:77,newbuff:63,newer:122,newest:36,newli:[50,123,126],newop:29,newopdesc:77,newprogram:77,newscop:88,newvardesc:77,next:[4,10,28,31,37,41,45,69,71,89,97,100,101,106,107,112,113,118],nextlay:62,nfs4:112,nfs:112,nfsver:112,ngram:10,nic:[117,118],nil:35,nine:10,nlp:4,nltk:10,nms_threshold:4,nms_top_k:4,nnz:100,no_grad_dict:28,no_grad_set:[27,28,101],no_gradi:28,no_sequ:4,node1ip:114,node2ip:114,node3ip:114,node:[4,30,38,40,42,44,56,60,69,71,79,98,100,109,110,111,112,113,114,118,126],node_0:112,node_1:112,node_2:112,node_id:109,nodeattr:56,nodeentri:56,nodefil:110,nodesep:56,nohup:109,nois:[4,18,31,54,109],noisi:[4,54],non:[4,18,31,50,51,84,100,101,112,118],none:[2,3,4,5,6,7,11,13,14,17,18,19,21,22,23,25,26,27,28,29,45,46,54,56,57,68,69,70,75,77,85,89,97,108,111],noneedtran:63,nonlinear:100,nontranspos:18,nor:[40,98],norm:[5,18,54,67],norm_by_tim:[4,18],normal:[4,5,10,18,21,72,86,97,100,109,113,118],normaliniti:16,normliz:18,notat:[4,60],note:[2,4,5,7,11,18,25,26,28,29,34,35,39,60,64,67,71,78,79,87,88,91,92,101,103,104,107,109,111,112,118,120,123],notebook:[39,92],notest_dist_fit_a_lin:111,noteworthi:51,noth:[1,25,59,77,83,98,118],notic:[4,45,51,71,80,97,99,100],notif:99,notimplementederror:45,notin:88,notingradi:101,notion:89,notori:27,now:[9,28,30,31,44,54,64,67,72,79,80,81,83,111,112,118,123],np_arrai:9,nproc:98,nullptr:[63,74,80,83,100],num:[4,5,109,118],num_channel:[4,5],num_chunk_typ:[3,14,18],num_class:[4,5,18,56],num_col_dim:18,num_filt:[4,5,18,19],num_flatten_dim:18,num_gradient_serv:[109,117,118],num_head:19,num_hidden:56,num_input:99,num_neg_sampl:[4,18],num_or_sect:18,num_parameter_serv:26,num_pass:[25,113,117,118,120],num_per_batch:11,num_pserv:42,num_repeat:4,num_result:3,num_results_per_sampl:4,num_row:84,num_shard:33,num_step:89,num_total_class:18,num_train:42,num_true_class:18,number:[3,4,5,9,10,11,14,18,19,22,29,31,33,44,46,60,72,74,78,79,85,89,98,100,106,109,111,112,118],numchunktyp:3,numdevices_:120,numer:[4,101],numeric_grad:27,numerical_grad:27,numlogicaldevices_:120,numofallsampl:3,numofwrongpredict:3,numpi:[2,9,11,18,25,33,50,54,77,78,91,101],numreal:34,numsampl:107,numtagtyp:3,numtimeout:35,nv_:30,nv_gpu:98,nv_librari:30,nv_test:30,nvcc:[30,50,52],nvidia:[50,67,71,87,92,98,107,118],nvlink:71,nvprof:74,obei:3,object:[2,4,5,9,18,25,26,34,42,45,46,54,56,60,65,70,74,77,79,81,83,103,107],observ:[4,100,107],obtain:[4,18,38,72,87],obvious:[30,67,106],occup:60,occupi:[50,74],occur:[10,25,60],occurr:29,oct:113,odd:4,odoti:18,off:[66,91,92,98,109,111,122,123,124,126],offer:[29,79,85],offici:[4,30,99,104,112,122],offlin:[31,33,126],offset:[4,18,34],often:[4,34,56,60,67,99,106,109],ograd:100,old:[27,36,38,69,79,118],older:[18,51,122],omega:81,omit:18,omp_num_thread:106,ompi_comm_world_rank:109,onc:[4,31,35,40,42,44,46,51,55,72,99,100,104,112],one:[1,3,4,5,7,9,18,22,25,26,27,28,29,31,34,35,36,38,39,40,42,45,46,47,50,51,52,53,54,56,58,59,63,64,67,68,69,70,71,72,73,75,76,77,78,79,80,83,84,86,87,88,89,92,98,99,100,101,102,108,110,111,112,113,114,118,120,126],onehotcrossentropyopkernel:101,ones:[53,54,79,99],onli:[3,4,5,7,11,18,25,26,27,28,30,34,35,36,37,38,39,40,42,44,45,46,47,49,50,51,54,55,60,63,68,69,70,71,73,74,77,79,84,85,86,87,88,89,91,93,94,97,98,100,101,102,103,104,107,111,112,113,117,118,120,123,126],onlin:[4,6,31,33,60,78],only_cpu:27,onnx:51,onto:[18,42,44,112,114],op1:[60,88],op1_2_op2:88,op1_to_op2:88,op2:[60,88],op3:60,op_:101,op_check:101,op_class:[79,85],op_desc:[45,58,76],op_info:108,op_kei:63,op_maker_class:[79,85],op_proto:85,op_registri:108,op_siz:45,op_test:101,op_typ:[79,101,102],op_unique_kei:63,opattrcheck:101,opcreat:85,opdesc:[29,45,55,75,76,77,79,80,85,90],opdescbind:[58,80],opdescbuild:29,open:[4,11,18,26,33,51,54,62,78,99,106,109,112],openbla:[91,92,122],opencv:11,openmp:106,openmpi:109,opensourc:71,oper:[4,5,9,11,18,22,23,27,29,40,41,42,43,44,46,47,50,51,52,54,55,56,58,59,68,69,70,71,74,76,81,83,86,87,88,90,97,99,100,102,103,107,108,112,118,122],operand:[18,50],operator_grad:27,operator_list:74,operatorbas:[29,53,79,80,85,101],operatorwithkernel:[88,101],opinfo:[58,79,80],opinfomak:58,opinfomap:80,opkernel:103,opkernelbas:102,opkernelkei:79,opkerneltyp:[67,88,102],opmak:85,opposit:18,opproto:101,opprotoandcheckermak:[80,101],opprotomak:[85,101],opregist:85,opregistri:85,ops:[27,28,29,30,40,52,55,56,72,75,76,77,79,87,101,126],ops_:29,ops_test:30,opt:[26,70,76,85,91],opt_op_list:70,optest:101,optestmeta:101,optim:[2,12,23,24,25,27,28,42,43,44,52,54,71,72,73,75,79,81,84,86,100,106,107,108,109,111,122,124],optimis:70,optimize_op:111,optimize_op_attr:77,optimizer_mod:18,optimizer_op:111,option:[3,4,18,22,26,30,42,54,59,64,75,76,77,79,84,85,86,90,98,100,106,109,110,111,120,122,123,126],optmization_op_list:70,opts_np:76,optyp:[58,85],opwithkernel:84,order:[4,5,9,11,18,22,25,28,55,64,74,78,81,89,91,100,106,109,112,113,118,126],ordereddict:25,orderli:18,oregon:112,org:[3,4,5,10,18,33,48,54],organ:[3,4],orient:85,origin:[4,5,9,10,17,18,27,50,54,83,89,99,103],other:[3,4,5,9,18,22,29,31,36,40,49,50,51,52,58,60,63,67,68,72,76,81,83,85,86,87,88,91,97,98,99,106,108,109,111,112,113,120,122,123,124,126],otherchunktyp:3,otherwis:[4,9,10,11,18,22,25,26,28,31,36,38,54,58,63,78,86,97,99,110,120],our:[18,26,28,30,41,42,44,54,58,60,67,71,72,83,89,91,94,97,98,99,100,106,111,112,113,122],out:[4,18,25,26,29,30,35,38,42,45,51,56,60,63,68,69,77,88,95,97,101,103,106,107,112,113,114,118],out_dir:112,out_fals:18,out_left:4,out_mem:97,out_memori:5,out_right:4,out_size_i:4,out_size_x:4,out_tru:18,outer:4,outgrad_:62,outlier:4,outlin:119,outout_lay:25,outout_layer1:25,outout_layer2:25,output:[1,2,3,5,7,9,14,18,19,22,25,26,27,28,29,33,38,40,44,45,49,52,53,54,55,56,57,58,60,63,64,68,69,72,75,76,77,78,79,80,83,84,85,87,88,89,91,97,98,99,100,101,102,103,106,107,109,113,118,120,122],output_:[4,62,100],output_all_step:68,output_arg_nam:45,output_dim_idx:18,output_dtyp:18,output_fil:22,output_height:18,output_id:4,output_lay:[25,95],output_max_index:7,output_mem:[4,97],output_mod:22,output_nam:27,output_num:68,output_path:33,output_s:18,output_seg:89,output_width:18,outputbuff:34,outputgradi:80,outputh:4,outputw:4,outsid:[4,5,42,83],outupt:89,outv:100,outval_:62,over:[4,5,18,25,26,51,60,71,72,89,99,100,107],overal:[54,72,74,99,126],overfit:[18,81],overflow:18,overhead:107,overlap:[3,4,100],overlap_threshold:[3,4],overload:[50,59],overrid:[29,31,49,63,87,100,101,103],overview:[35,36,37,87],overwhelm:99,overwrit:[49,109],own:[4,18,28,36,38,45,47,56,58,70,71,72,81,85,101,109,110,112,122,123],owner:[98,99],pack:[89,122],packag:[9,10,35,39,40,53,62,82,91,92,99,101,106,112],pad:[5,18,63,86],pad_c:4,pad_h:4,pad_w:4,padding_attr:4,padding_down:18,padding_h:18,padding_i:4,padding_idx:18,padding_left:18,padding_right:18,padding_up:18,padding_w:18,padding_x:4,paddl:[1,2,3,4,5,6,7,9,10,11,13,14,15,16,17,18,19,20,21,22,23,25,26,29,30,31,33,39,42,49,52,53,54,57,61,62,63,64,65,66,68,69,73,75,79,81,82,85,86,87,89,91,92,94,95,97,98,99,100,101,102,104,106,107,108,109,110,111,112,113,114,118,120,122,126],paddle_begin_init_param:36,paddle_dir:101,paddle_element_typ:36,paddle_element_type_float32:36,paddle_element_type_float64:36,paddle_element_type_int32:36,paddle_element_type_int64:36,paddle_element_type_uint32:36,paddle_element_type_uint64:36,paddle_enforc:[29,63],paddle_enforce_eq:[101,103],paddle_error:[65,66],paddle_exampl:39,paddle_finish_init_param:36,paddle_get_param:36,paddle_gradi:36,paddle_init_num_gradient_serv:109,paddle_init_param:36,paddle_init_port:109,paddle_init_ports_num:109,paddle_init_ports_num_for_spars:109,paddle_init_pserv:109,paddle_init_trainer_count:109,paddle_init_trainer_id:109,paddle_init_use_gpu:109,paddle_job:39,paddle_manylinux_devel:91,paddle_matrix:[65,66],paddle_matrix_cr:66,paddle_matrix_get_shap:65,paddle_matrix_shap:65,paddle_new_etcd_pserver_cli:36,paddle_new_pserver_cli:36,paddle_on_cloud:39,paddle_output:113,paddle_paramet:36,paddle_pserver2:110,paddle_pserver_cli:36,paddle_pserver_client_releas:36,paddle_save_model:36,paddle_send_grad:36,paddle_train:[66,82,110],paddle_with_cuda:74,paddle_with_mkldnn:67,paddlepaddl:[4,5,9,10,11,18,25,30,31,33,36,37,38,39,40,42,48,49,53,54,55,57,59,64,68,69,70,73,74,77,78,79,83,89,90,93,95,97,98,99,100,101,102,106,107,109,110,114,115,116,125,126],paddlepaddle_gpu:94,paddlepaddlebook:92,paddlepaddlehub:92,page:[99,112],pair:[3,18,19,22,23,28,29,42,55,70,74,79],pairwis:4,pakcag:30,paper:[4,18,54,86],para:34,paradigm:[40,47,79],paragraph:68,paragraph_data:68,paragraph_out:68,parallel:[18,40,41,42,44,71,74,79,88,98,107,109,112,113,118,120],parallel_for:40,parallel_nn:[2,117,118],paralleldo:43,parallelfor:40,paralleliz:86,param:[2,4,5,9,17,18,27,29,36,73,77,87,103],param_attr:[4,5,12,18,19,34,77,97],param_config_proto:36,param_initi:18,paramattr:[2,4,18,97],paramet:[3,5,6,7,9,10,11,17,18,19,22,23,24,27,28,29,30,32,34,38,40,42,43,45,47,49,51,52,54,55,56,58,64,68,70,71,75,78,83,85,86,89,91,95,99,100,101,102,103,105,108,110,120,123],parameter_block_s:[117,118],parameter_block_size_for_spars:[117,118],parameter_learning_r:2,parameter_list:[28,70],parameter_nam:[25,26],parameter_serv:26,parameter_valu:34,parameterattribut:[2,4,5,34],parameterclient_:34,parametermap:100,parametermutex_:34,parameters_:100,parameters_and_grad:[23,70],parameterserver2:34,parameterset:26,parameterupdat:73,parameterupdater_:34,parametr:4,params_grad:[70,111],paramt:112,paraspars:100,parent:[29,40,75,77,79,100],parent_:[29,83],parent_idx:77,parenthes:79,pars:[9,10,30,42,56,98,112,120],parser:9,part:[3,4,18,19,28,29,38,42,51,63,64,75,77,86,87,97,100,106,107,109,111,126],parti:[98,107,122,123,124],partial:[4,25],partial_sum:4,particip:101,particular:[55,64,79,86,88,107],partit:[31,33,42,44,79,109,112],pass:[4,18,25,28,29,31,41,45,46,51,54,60,64,70,72,73,76,77,78,79,81,83,86,89,99,100,107,109,110,111,112,113,118],pass_gener:4,pass_id:[25,42,111],pass_idx:78,pass_num:111,passtyp:100,password:114,past:[26,92,95,112],patch:[18,48],path:[3,9,10,11,17,25,31,35,36,39,60,69,78,86,91,92,109,112,113,118,120,122,123,124],path_to_paddlepaddle_working_directori:104,pattern:[10,31,65,72,81,112],paus:[31,38],pcie:71,pdf:[5,18],peephol:18,peer:71,pem:[26,33,112],pend:[31,35],peopl:98,pep425tag:94,pep8:99,per:[3,4,10,11,18,31,36,71,72,78,81,101,118],percal:106,perf_test:106,perfectli:86,perfom:[118,120],perform:[4,5,18,27,36,41,42,46,50,51,54,60,71,73,74,78,79,81,86,87,88,97,98,100,101,105,109,111,117,122,123,124],perftool:[74,106],period:[31,38,118],perm:18,permiss:112,permut:18,peroid:[4,11],persist:[17,18,47,84,86,90,112],persistentvolum:112,persistentvolumeclaim:112,person:[3,26,59],perspect:[79,107],perturb:[27,100],pex:126,pfs:[33,49],pfsclient:33,pfspath:49,pgp:112,phase:[18,63,69,71,72,78,80,86,126],philosophi:[72,81],photo:54,phrase:18,physic:[123,126],pick:[18,112,123],pickl:[109,114],pictur:71,piec:[5,40,74,103,111],pil:[11,109],pillow:39,ping:99,pip:[82,91,93,95,99,104,106],pipe:9,pipelin:[46,86],piperead:9,pivot:63,pixel:[4,9,10,42],place:[13,15,18,22,28,29,31,38,42,44,47,59,63,71,79,88,100,103,107,108,111],place_:[59,67,87,88],place_typ:102,placehold:[54,87,103],placement:44,plain:[3,4,9,39,64,66,67],plan:[31,40,63,79,86,100,122],platform:[29,52,63,67,74,87,88,94,99,101,102,103,108,112,122,123,124],pleas:[2,4,5,6,11,18,26,31,35,36,37,40,52,56,67,68,77,78,79,86,87,90,91,92,94,97,98,99,100,101,103,104,106,109,111,112,122,123,124],plot:26,plu:[4,27],plug:[71,72],pne:101,pnpairvalidationlay:118,pnpairvalidationpredict_fil:117,pod:[33,39,40,112,113],pod_nam:112,point:[18,29,31,39,41,50,60,63,71,87,98,99,101,103,106,107,122,126],pointer:[29,36,56,60,67,77,79,83,87,103],polar:10,polici:[18,112],polit:18,poll:41,pollut:38,polyak:72,ponit:56,pool3:100,pool:[5,18,24,43,60,86],pool_attr:5,pool_bias_attr:5,pool_layer_attr:5,pool_pad:[5,18],pool_siz:[4,5,18,19],pool_size_i:4,pool_strid:[5,18,19],pool_typ:[4,5,18,19],pooled_height:4,pooled_width:4,pooling_lay:5,pooling_typ:4,poolingtyp:7,pop:[29,47],popul:36,popular:[30,54,56,74],port:[18,30,40,106,109,111,112,113,117,118],port_num:117,portabl:56,portal:104,ports_num:[109,118],ports_num_for_spars:[34,109,117,118,120],pose:31,posit:[3,4,5,18],positive_label:3,possibl:[26,29,35,41,44,60,77,81,90,107],post:[39,48],postpon:81,potenti:[50,107],power:[50,60,71,86,103,126],ppo_workspac:104,pprof:106,practic:[97,100],pre:[4,5,10,26,36,59,60,91,99,112,113,122,124],pre_activ:77,pre_bia:77,pre_id:18,pre_mem:18,pre_stat:[68,89],preambl:77,precis:[3,14,18,46,50,72,91],precision_evalu:3,precompil:47,pred:[56,60],predecessor:60,predetermin:[4,118],predic:[10,17],predict:[3,4,18,25,42,81,95,97,118],predict_fil:118,predict_lay:25,predict_output_dir:[117,118],prediction1:25,prediction2:25,prefer:[51,59],prefetch:[34,100],prefix:[3,5,18,31,33,69,86,112],pregel:41,pregrad:100,prepand:77,prepar:[27,39,73,86,97,115],prepend:[18,77],prepend_oper:77,preprocess:[10,11,86,89,113],present:[26,28,29,74,89],preserv:49,prev_batch_st:[117,118],prev_cel:18,prev_cell_data:18,prev_hidden:18,prev_hidden_data:18,prevent:[6,18,26,31,35,38,45,81,106],preview:[79,104],previou:[4,5,18,22,25,28,31,44,49,68,69,100,106,112,118],previous:[4,113],previous_memori:29,price:[10,79,95],prim:63,primari:[51,55],primarili:[72,81],primer:99,primit:[50,62,63,71,89],primitive_desc:63,primitivedesc:63,principl:[18,26,30,67],print:[2,22,25,26,42,51,56,77,94,95,106,114,118],print_graphviz:56,print_phas:18,print_tensor_lod:18,print_tensor_nam:18,print_tensor_shap:18,print_tensor_typ:18,printallstatu:107,printer:3,printstatu:107,priorbox:4,prioriti:79,prite:3,privat:[29,66,74,77,83,84,85,87,89,99,103],privileg:[98,112],pro:71,prob:[3,25,95],probabalist:18,probabilist:4,probabl:[3,4,18,25,69,86,92,97,99],problem:[4,26,27,30,38,51,54,55,72,79,81,94,98],proc:92,proce:[9,31,78,92,112],procedur:[29,64,103,123],proceed:18,process:[2,4,5,9,18,26,28,29,33,34,35,38,40,41,42,46,47,51,52,56,60,62,64,71,81,85,88,97,99,106,109,110,112,113,118,120],process_num:9,processor:[50,107],produc:[4,5,9,18,31,51,56,78],product:[4,5,18,19,39,51,100,112,113],productgraph:113,prof:106,profil:[12,49,74,86],profilerst:74,proflier:[74,107],program:[9,13,17,18,22,26,28,33,36,38,42,44,47,55,57,60,70,71,74,78,79,83,90,106,107,110,118],programdesc:[40,42,47,51,60,64,76,77,80,90],programm:[42,51,77],progress:[31,35,118],proj:4,proj_activ:18,proj_dim:18,proj_out:18,proj_siz:18,project:[4,5,18,19,39,66,86,97,100,101],promis:[4,5,69],prompt:[49,51,111],prone:26,pronunc:86,prop_kind:63,propag:[4,6,28,51,72,101,118,120],proper:[59,109],properli:[59,98,111],properti:[56,81,118],propos:[18,29,43,44,69,70,71,72,89],proprietari:62,protect:[50,85,100,101],proto:[7,41,59,64,67,75,79,85,90,101],proto_:85,protobuf:[25,29,39,40,42,47,51,52,55,56,60,64,75,77,79,80,85],protoc:[122,124],protocol:[3,108,118,126],provi:109,provid:[4,10,18,26,29,36,39,40,46,47,50,51,54,56,58,59,67,71,72,74,77,81,85,86,87,89,92,95,103,106,107,109,110,111,112,122,123,126],providermemory_threshold_on_load_data:117,provis:[112,126],prune:[4,17,29],ps_desir:31,pserver:[25,34,36,37,39,79,109,111,112,117,118],pserver_addr:36,pserver_cpu:39,pserver_endpoint:111,pserver_id:32,pserver_mem:39,pserver_num_thread:[34,117,118],pserver_prog:111,pserver_spec:25,pserver_startup:111,pserverstart_pserv:117,pseudo:[26,28,39,80,89],pseudocod:89,psize:100,ptr:[66,87],pub:[18,114],publish:122,pull:[30,79,82,99,122],purpos:[4,31,42,44,59,107],push:[29,47,51,74,82,99],push_back:100,put:[30,31,34,44,60,63,77,87,100,111,113,122],pvc:112,pwd:[91,92,98,104,122],pxe:126,pybind:[29,41,50],pypi:94,pyramid:4,pyramid_height:4,python2:106,python3:94,python:[18,25,26,29,37,41,46,47,51,53,54,55,56,59,65,69,73,74,79,82,87,89,91,92,94,95,97,98,99,104,108,109,111,114],pytorch:[51,74],qualcomm:50,queri:[3,4,19,112],query_id:3,question:[4,26,40,44,85,111,112],queue:[41,44],quick:[56,118],quick_start:[39,112,113,115],quick_start_data:113,quickli:[69,77,79],quickstart:113,quit:[69,107],r14b:122,r_h_val:18,r_t:4,rais:[9,18,19,23,45,56,109],rajathkmp:54,ran:[44,107],rand:[54,107,118,120],random:[2,4,9,18,33,54,67,73,77,78,101,109,118],random_crop:11,random_imag:33,randomli:[11,18,38],randomnumberse:117,rang:[4,9,18,33,40,42,50,54,60,74,78,85,99,111,118,120],rank0:71,rank1:71,rank:[4,18,26,89,103,112],rank_tabl:18,rankdir:56,ranktabl:18,rapid:80,raspberri:125,raspberry_pi:124,raspberrypi:124,raspbian:124,rate:[2,3,4,5,6,10,19,36,86,100],rather:[28,39,54,89,112],ratio:[4,118],raw:[4,18,64],rdma:118,rdma_tcp:[117,118],reach:[31,60,71,107],read:[9,11,18,25,26,28,31,33,40,41,42,44,51,52,78,79,86,89,92,97,98,104,109,112,122,126],read_from_arrai:60,read_from_realistic_imag:26,read_from_rng:26,read_lock:32,read_minibatch:51,read_mnist_imag:26,read_ranking_model_data:26,readabl:[74,79,106],reader:[0,10,25,33,42,50,54,55,75,86,106,109,111],reader_cr:33,reader_creator_bool:78,reader_creator_random_imag:[9,78],reader_creator_random_image_and_label:[9,78],readi:[31,112,113,126],readlockguard:34,readm:66,readwritebuffer_:34,readwritemani:112,real:[4,18,34,54,78,109],realist:26,realiti:86,realiz:[29,68],realli:[51,81],reaon:102,rearrang:18,reason:[5,26,27,31,41,51,99,111,113],recal:[3,14,18],receiv:[18,31,39,41,42,44,68,111],recent:[60,72],reciev:118,recognit:[4,86],recommend:[5,18,26,91,92,93,97,99,100,104,109,110,118,122],recompil:107,record:[9,22,35,63,74,85,112],recordev:74,recordio:[9,10,26,33,35],recov:[31,89],recover:79,recoveri:35,rectifi:4,recurr:[18,61,68,83,86],recurrent_group:[5,86,97],recurrent_lay:5,recurrent_op:89,recurrentgradientmachin:[66,69,89],recurrentgroup:3,recurrentlay:[61,118],recurs:[28,29,30,49,60,79],recv:[40,42,44,71,112],recvparametertyp:34,red:[54,106],redirect:9,reduc:[4,18,44,50,71,79,92,99,106,110,118,120],reduce_by_kei:79,reduce_mean:54,ref:18,ref_batch_dim_idx:18,refactor:[42,44,55,69,72,73,77,81,89],refer:[2,4,5,6,11,18,19,22,27,29,31,35,36,37,40,50,56,63,67,68,71,75,77,79,81,83,87,89,90,91,92,97,98,100,101,103,111,113,122,123],referenc:35,reflect:35,reformat:99,reformul:18,refrain:101,reg:85,regard:[18,126],region:[4,83,107],regist:[41,60,67,80,87,88,100,107],register_gpu_profil:107,register_lay:100,register_op:[53,79,80,85,101],register_op_cpu_kernel:[87,101],register_op_cuda_kernel:[87,101],register_op_kernel:102,register_op_without_gradi:[79,101],register_oper:[58,80],register_tim:34,register_timer_info:107,registerop:85,registr:[101,102,108],registri:[39,58,87,113,126],regress:4,regular:[2,12,18,21,28,100,112],reiniti:63,reinstal:91,rel:[5,18,27,38,81,101,122],relat:[31,38,39,50,67,74,83,88,99,106,113,123,124,126],relationship:[80,87],releas:[82,86,112,122,123,124],relev:101,reli:[27,40,69,70,72,81,101,106],reliabl:[31,81],relu1:56,relu2:56,relu:[4,54,56,60,100],relwithdebinfo:106,remain:[18,89],remaind:18,rememb:[4,99],remot:[2,30,34,42,79,99,100,112,118,120],remoteparameterupdat:[34,37,118],remov:[9,18,28,42,49,51,69,99,118,122,123],renam:[28,49,50,94],reorder:[18,63],reorder_primit:63,reorderlodtensorbyrankt:18,reorgan:4,repeat:[18,29,55,75,76,84,85,90,106],repeatedli:[55,60],replac:[18,30,35,58,72,80,86],repli:99,replic:42,replicaset:39,repo:[30,99,104,124],report:[35,50,51,74,107],reportdataset:35,repositori:[4,104,122],reprenset:18,repres:[4,5,18,28,29,35,40,42,44,45,51,56,64,67,69,72,77,79,81,84,87,89,90,97,100,112],represent:[4,18,36,42,52,54,55,60,67,69,84],reproduc:98,request:[30,31,34,38,40,79,82,99,112,113,126],requir:[3,4,26,28,31,36,38,39,42,44,45,49,50,56,60,62,68,72,74,75,76,79,81,84,85,86,90,94,98,99,100,101,104,109,112,113,122,124,126],requisit:60,rerun:101,research:[10,18,42,51],reserv:[18,49],reserveoutput:100,reset:[4,18,31,46],reset_program:46,resetingrad:62,resetinvalu:62,resetoutgrad:62,resetoutvalu:62,resetxxx:62,reshap:[27,78,103],reshape_s:4,resid:[18,98],resiz:[11,34,87,101,103],resize_s:11,resize_short:11,resolv:[30,99,113],resourc:[42,47,71,74,87,102,112],respect:[18,19,27,45,50,54,68,97,100,118],respons:[4,34,41,42,46,54,71,72,73,81,112,113],rest:[18,29,39,48,52,88,126],restart:[31,36,112,113,126],restartpolici:[112,113],restor:[27,72],restrict:[81,83,106,118],result:[1,3,4,17,18,22,25,27,28,35,46,54,55,56,60,64,69,70,71,73,101,103,106,107,108,112,118],result_fil:3,resum:38,retain:103,retran:112,retriev:[29,69,83,98,100,106,113],retriv:109,return_seq:5,reuqest:82,reus:[29,38,69,78,79,100,101],rev:98,revamp:42,reveal:[26,106],revers:[4,5,18,28,97],review:[10,40,113],reviews_electronics_5:113,rewrit:[30,41,101],rgb:[4,11],rho:6,rid:51,right:[4,27,28,29,30,39,46,60,79,81,99,102],ring:71,risk:28,rkt:[39,98],rmsprop:72,rmspropoptim:72,rnn:[4,5,18,29,51,54,69,77,79,83,86,105,117],rnn_bias_attr:97,rnn_layer_attr:97,rnn_out:97,rnn_output:89,rnn_step:4,rnn_use_batch:[61,117,118],rnnalgorithm:69,rnnlm:10,rnnstep:89,roadmap:[86,89],robust:4,rocmplac:67,roi:4,role:[10,26,35,36,42,71,111,112],rollback:77,root:[6,7,28,71,112,113,123],rot:4,roughli:86,round:[50,71],routin:[50,62,71],row:[3,4,9,18,34,41,100],row_id:4,rows_:84,rpc:35,rpcserver:35,rpi:124,rpi_arm_neon:124,rpi_toolchain:124,rsize:112,rtk:126,rtype:9,rule:[3,18,28,42,45,51,55,100,112],run:[18,26,27,28,29,30,31,39,40,42,43,44,46,50,51,52,53,54,55,56,60,63,67,68,70,71,72,74,75,76,77,79,82,83,84,86,87,88,93,94,95,98,99,100,102,103,104,106,107,109,110,111,112,114,115,116,118,122,123,124,126],run_test:91,runinitfunct:107,runnabl:44,running_on_cloud:39,runserv:104,runtim:[22,29,40,41,42,58,68,79,90,92,102,110,122],runtime_table_:29,s_block:28,s_recurrent_group:97,safe:39,sai:[4,52,55,57,60,78,98,118,120],said:51,sake:100,same:[3,4,5,18,19,23,25,26,27,35,36,38,40,41,42,53,54,56,59,60,68,69,71,77,79,80,83,86,88,89,91,97,101,102,103,110,111,112,120],samping_id:4,sampl:[3,9,10,18,46,54,77,85,92,109,110,118,120],sample_id:3,sample_num:3,sample_weight:18,sampler:54,satifi:[3,60],satisfi:[30,63,84,94,112],save:[4,9,17,25,31,33,35,36,39,40,42,55,56,60,64,72,84,90,98,109,112,113,118,120],save_dir:[113,118,120],save_only_on:[117,118],save_parameter_to_tar:25,save_persist:111,saving_period:[117,118],saving_period_by_batch:[117,118,120],scalabl:79,scalar:[4,18,28,29,57,89],scale:[1,19,42,44,72,80,85,86,101,109],scale_a:18,scale_b:18,scaleop:101,scaleopmak:[79,101],scalingproject:4,scan:[18,28,35,60,79],scatter:[4,28,71],scenario:[69,117],scene:117,schdule:112,schedul:[35,39,44,112],scheduler_factor:2,scheme:[3,6,34,81,101],scienc:60,scope:[15,27,40,43,47,52,88,108],score:[3,4,14,18,69],scorer:86,scp:114,script:[10,71,91,98,101,109,110,112,114,122],sdk:123,search:[4,18,31,83,91,97,118],second:[4,18,26,40,49,51,54,56,68,69,75,76,78,83,85,101,110],secret:112,section:[28,44,51,77,97,99,100,106,112],see:[4,5,18,26,28,31,40,41,44,50,51,77,86,99,101,103,106,107,111,112],seed:[18,107,118],seem:[30,41,50,51,86,94],seen:[19,81,101],segment:[3,18,68,89,103],sel_fc:4,selcet:4,select:[4,18,69,112],selected_generation_scor:69,selected_id:[4,69],selected_indic:4,selected_row:[84,90],selected_rows_desc:[84,90],selected_scor:69,selectedrow:[58,90],selectiv:4,selector:113,self:[27,45,46,54,56,60,61,62,64,70,77,89,100,101],self_addr:40,selfnorm:4,semant:[10,26,69,82],semaphor:41,semat:26,send:[31,36,40,42,44,59,71,79,85,99,109,111,112,118],send_back_parameter_typ:34,send_var:18,sendbackparameterspars:34,sendbackparametertyp:34,sendparameterrequest:34,sendparameterrespons:34,sens:[72,81,99,106],sensit:4,sent:[26,36,40,42,79,85,90,113],sentenc:[4,10,51,68,69,89,97],sentence_input:89,separ:[3,18,22,36,42,53,72,80,81,109,111,118],seper:[18,89],seq0:18,seq1:18,seq2:18,seq3:18,seq:[4,10],seq_len:89,seq_pool:4,seq_silc:4,seq_text_print:3,seq_typ:9,seqtext_evalu:3,seqtoseq:4,seqtoseq_net:4,sequenc:[1,3,4,5,7,9,10,18,28,29,40,47,51,55,61,70,75,86,89,99,100],sequence_group:4,sequence_nest_group:4,sequencesoftmaxop:18,sequencestartposit:4,sequencetextprint:3,sequencetyp:4,sequenti:[4,29,40,41,97],seri:[5,94],serial:[25,29,35,64,73,79],serializ:[79,90],serv:[42,50,79,89,92,107,109,112],server:[18,26,30,34,37,38,42,52,71,79,91,100,110,117,126],server_endpoint:111,serverless:31,servic:[106,109,126],sess:[54,56,70],session:[56,70,76,107],set:[2,3,4,5,9,10,11,18,19,21,22,23,25,26,28,31,39,54,58,60,63,67,68,69,74,76,77,79,80,83,86,87,89,91,97,98,99,100,101,103,104,105,106,107,109,110,111,112,113,117,118,120,123,124],set_active_typ:100,set_attr:45,set_default_parameter_nam:2,set_drop_r:100,set_float_el:27,set_input:[4,45],set_output:45,set_siz:100,set_typ:[45,100],setdatatyp:84,setdefault:101,setp:112,setq:98,settup:100,setup:[42,72,82,100,101,126],seven:86,sever:[3,4,27,34,42,44,54,68,69,71,73,74,77,84,87,89,91,109,110,112,120],sexstant:126,sgd:[25,26,31,39,44,72,73,84,108,109,111],sgd_optim:[108,111],sgdasync_count:117,sgdoptim:20,shall:[28,30],shape:[3,4,9,18,19,25,27,28,29,42,54,57,67,68,75,77,79,84,86,87,101,103,108,111],shard:[31,32,33,34,35,36,38,42,44,109,112],share:[4,18,30,54,66,73,77,79,81,86,87,89,98,101,107,118],shared_bia:5,shared_bias:4,shared_librari:30,shared_ptr:[63,65,66,83,87,103],shell:[92,112],shift:[4,18],shorten:4,shorter:11,should:[2,3,4,9,11,18,19,22,25,26,27,28,29,36,39,41,42,45,46,50,52,53,54,58,59,63,67,68,69,70,72,73,74,75,78,79,80,81,84,85,86,88,89,90,95,97,101,102,104,110,111,112,122],should_be_fals:26,should_be_tru:26,show:[3,6,28,29,31,49,51,57,60,64,68,71,72,75,89,94,98,103,109,112,113,118],show_check_sparse_distribution_log:[117,118],show_layer_stat:[117,118],show_parameter_stats_period:[113,117,118,120],shown:[4,18,26,42,46,71,74,86,97,100,103,107,112],shrink:100,shrink_rnn_memori:18,shrunk:45,shuffl:[9,42,111],sid:112,side:[4,18,25,42,46,60,73,103,109],sig:112,sigint:110,sigma:18,sigmod:85,sigmod_op:85,sigmod_output:85,sigmoid:[4,19,29,85,89,100],sigmoidactiv:5,sigmoidcrossentropywithlogit:18,sign:[48,64,112],signal:110,signatur:112,signific:[86,107],similar:[4,18,29,40,41,42,44,47,51,69,72,74,78,79,81,86,87,88,89,101,106,112,126],similarli:[4,9,51,60,101],simpl:[1,3,4,5,9,10,18,25,40,44,50,52,55,56,60,68,72,75,81,83,85,86,89,107,111,118],simple_attent:97,simple_gru:97,simple_lstm:4,simple_rnn:[4,97],simple_transform:11,simpler:73,simplest:112,simpli:[4,11,26,36,42,92,95,97,107],simplifi:[26,69,77,85,86,100,113],simul:[51,123],simultan:112,sinc:[4,5,18,31,35,37,38,41,42,43,44,51,58,60,63,67,72,77,78,80,81,89,103,107,111,112,123,126],sincer:99,singl:[3,5,9,18,28,31,42,44,46,50,59,71,79,83,86,91,95,100,106,109,113],singleton:[40,43],sinlg:25,sit:[18,42],site:[30,106,112],sitten:18,sittin:18,situat:[28,76,88],size:[3,4,5,9,10,11,18,19,25,31,33,34,36,41,42,50,54,60,64,69,72,77,78,84,85,86,87,89,92,95,97,100,101,103,108,111,118,122,123,124],size_a:4,size_b:4,size_in_byt:63,size_t:[34,87,89,100],sizeof:29,skip:[28,78,99,110,112],slice0:18,slice1:18,slice2:18,slice3:18,slice:[18,40],sliceproject:4,slide:[4,6,10,31],slight:51,slightli:54,slope:[4,18],slopeinterceptlay:4,slow:107,slowli:[98,106],small:[4,10,18,27,40,52,54,62,69,99,100,118],small_messag:[117,118],smaller:[18,27,31,50,69,99],smart:83,smooth:4,snap:113,snapdragon:50,snapshot:[32,38,112],snippet:[53,70,97,100,107,112],sock:39,sock_recv_buf_s:[117,118],sock_send_buf_s:[117,118],socket:118,soft:18,soft_label:18,softmax:[4,5,18,26,29,42,44,51,56,57,69,75,97,100],softmax_param_attr:5,softmax_selfnorm_alpha:4,softmaxoutput:56,softrelu:18,softwar:[50,74,107,126],solid:54,solut:[71,126],solv:[26,28,60,79],some:[2,4,9,11,18,25,26,28,29,30,34,35,36,38,39,42,44,45,50,52,53,54,55,59,60,63,67,68,69,70,75,76,77,78,79,80,83,87,88,89,99,100,101,102,103,107,109,112,117,118,120,122,123,124,126],some_c_api_funct:66,some_inst:66,some_lay:18,some_op:[58,68,89],some_python_class:65,somecppclass:65,somedata:25,somegotyp:65,someth:[28,34,77,98,99,106],sometim:[4,74,78,98,107],somewhat:36,somewher:83,soon:31,sophist:100,sort:[4,10,18,22,89,106,112,118],sort_by_length:89,sortagrad:86,sorted_kei:22,sourc:[4,10,18,27,30,49,51,54,62,64,66,69,78,79,97,98,106,109,112,113,123],source_dict_dim:[69,97],source_dict_s:69,source_language_word:[69,97],space:[3,4,44,50,77,81,86,97,98,107],space_seperated_tokens_from_dictionary_according_to_seq:3,space_seperated_tokens_from_dictionary_according_to_sub_seq:3,span:74,spars:[2,4,6,9,18,34,41,100,103,109,112,118],sparse_binary_vector:9,sparse_binary_vector_sequ:9,sparse_float_vector:9,sparse_float_vector_sequ:9,sparse_non_value_slot:9,sparse_remot:34,sparse_upd:[2,34],sparse_value_slot:9,sparseparam:100,sparseprefetchrowcpumatrix:100,spatial:4,spatial_scal:4,speak:97,spec:[112,113],specfii:118,special:[4,18,28,36,42,50,52,58,67,69,70,101],specialvartypeinfer:58,specif:[18,19,25,28,30,31,42,45,49,52,69,79,83,87,98,101,111,120,122],specifi:[3,4,17,18,22,26,27,34,35,36,39,40,41,42,43,45,46,47,49,54,64,74,77,83,85,89,92,97,98,99,100,103,104,106,112,118,122,123],spectrogram:86,speech:[4,86],speed:[4,5,50,64,71,72,91,126],speedup:74,sphinx:[65,104],split:[4,9,19,38,40,43,51,57,69,79,89,109,112,120],split_count:[109,112],sport:18,spread:28,sqrt_x:18,squar:[4,6,7,56],square_error_cost:[108,111],srand:118,src:[30,63,109],src_backward:97,src_embed:[69,97],src_forward:97,src_primitive_desc:63,src_word_id:[69,97],src_word_vec:69,sreializ:90,srl:10,ssd:4,ssh:[112,113,114,124],ssh_server:110,sstabl:26,stabil:[4,18,27,60,101],stabl:[82,112],stack:[18,47,79,89,112],stackexchang:4,stage:[30,37,43,54,60,63,86,90,110,122],stale:31,stamp:107,stand:18,standalon:122,standard:[2,9,18,41,51,79,81,86,94,98,106],stanford:[10,27,113],star:30,start:[4,5,18,25,28,30,31,34,35,36,38,39,41,42,43,69,71,73,74,91,92,94,97,98,106,107,110,114,118,121],start_mpi_train:114,start_op_idx:28,start_pass:[117,118],start_po:4,start_pserv:118,startup:[18,31,39,51,112],startup_program:18,stat:[107,118],state:[4,5,18,22,29,31,46,47,68,69,74,83,86,89,97,102,113,118],state_act:[4,5],statem:60,statement:[51,55,60,100,112],static_cast:[63,103],staticinput:[4,97],statist:[4,18,46,74,118],statset:107,statu:[18,39,69,107,112,113],status:113,std:[25,30,34,56,58,59,63,65,66,74,76,79,80,83,85,87,100,101,103,118],stdbuf:109,stderr:110,stdout:[9,110],step1:18,step:[4,5,7,18,27,29,31,36,42,44,46,51,54,55,61,69,72,73,77,79,85,86,89,91,92,97,99,100,106,107,109,112,113,114,122,124,126],step_gradi:28,step_id:89,step_input:89,step_net:29,step_output:89,step_scop:79,stepnet:[29,68,79,83],still:[28,35,38,42,51,60,80,94,103],stirng:77,stmt1482205552000:112,stmt1482205746000:112,stochast:[6,31,35,38,72,109],stop:[4,77,98,110,113,118],stop_gradi:[18,77],storag:[48,50,109,112,113],store:[3,4,10,18,25,27,29,30,34,47,56,58,64,67,69,73,75,77,79,80,81,83,89,100,101,103,104,109,112,113,114,118,123,124],str:[11,18,25,28,39,89,120],straight:[75,78,84],straightforward:63,strategi:[7,31,77,118],stream:[9,42,63,74,87,102],stream_:87,streamid:22,street:4,strict:[78,109],stride:[4,5,18,63,67,86],stride_h:18,stride_i:4,stride_w:18,stride_x:4,string:[3,4,9,11,18,22,25,28,29,35,49,56,59,64,74,75,76,77,79,80,83,84,85,90,100,101,112,118],strip:106,strongli:109,struct:[35,36,48,50,58,59,66,67,74,80,85,88,102],structur:[28,29,35,51,54,64,69,75,77,79,84,110,112],sts:112,stuff:99,style:[4,79,85,91],sub:[3,4,9,18,26,28,38,40,44,54,60,68,71,73,77,97,100,122],sub_block:28,sub_nest_seq:4,sub_sequ:4,subclass:77,subcommand:49,subgradi:6,subgraph:[44,54],submiss:42,submit:[63,79,104,109,112,117,118],subnet0:112,subnet:[26,112],subobjectpath:113,subscript:18,subsequ:[4,71],subsequenceinput:4,subset:[18,100],substitut:18,succ:60,succeed:[35,113],success:[4,36,112,113],successfulcr:113,successfulli:101,successor:118,sucess:60,sucessor:60,sudo:[98,112],suffer:27,suffici:118,suffix:[39,94,109],suggest:[4,30,99,107],suit:126,suitabl:[84,87,118],sum:[4,6,19,28,29,32,43,58,77,97,100],sum_op:28,sum_x:18,sume:18,summar:[18,54,74],summari:74,summat:18,sumopgradmak:80,supercomput:60,suppli:[18,84],support:[2,3,4,6,7,9,11,18,27,29,31,38,39,40,41,42,44,51,53,54,60,63,64,67,69,72,73,74,76,78,79,80,81,84,86,88,91,92,94,95,97,98,100,101,103,104,107,109,112,118,122,123,124,126],support_inplac:60,suppos:[5,18,19,30,40,53,84,100],suppress:[4,49],sure:[18,91,98,100,106,111,112],surpass:4,svs:85,swagger:48,swig:[37,65,66,91,122,123],switchop:29,sychron:71,symbol:[4,29,56,66,94],symbols_ready_:29,symbolt:[29,79],symlink:99,sync:[31,72,81,118],sync_with_cpp:106,syncflag:100,synchron:[31,35,41,63,71,74,109,112,118],syntax:[40,47,51,69,78],sysroot:122,system:[29,30,31,36,38,41,42,44,48,53,54,60,62,86,91,92,94,101,104,106,109,113,122],t_max:18,t_min:18,tab:94,tabl:[3,4,18,29,40,51,58,64,84,90,123],tablelookup:84,tablelookupgrad:84,tablelookupop:84,tableproject:4,tag:[3,10,82,92,97,109],tagtyp:3,tail:69,take:[3,4,5,9,18,25,26,28,29,30,31,38,40,41,42,45,47,50,52,54,55,57,58,60,63,67,72,75,76,77,78,79,80,87,88,89,91,97,98,99,100,101,102,106,107,109,111,112,113],taken:[4,45,56,60,67,89],talk:[36,52,124],tangl:106,tanh:[4,5,54,69,97,100],tanhactiv:5,tanhshrink:18,tar:[11,25,112],tarbal:112,target:[4,10,18,25,28,29,30,45,47,54,56,70,76,79,91,97,101,122,123,124],target_block:[28,45],target_dict_dim:97,target_dict_s:69,target_dictionary_dim:4,target_language_embed:4,target_language_word:97,target_link_librari:30,target_var:17,target_word:69,targetinlink:4,task13:86,task14:86,task:[3,4,18,42,64,69,74,85,97,111,120],task_queu:35,taskentri:35,taskqueu:35,tbd:[37,63,86],tcp:[112,118],tear:107,technic:[28,31,111],techniqu:[18,60,97,100,106],technolog:[18,51,98],tee:113,tell:[22,31,35,36,69,85,92,107,122],templat:[53,63,85,87,101,102,103,113,126],tempor:[4,18,86],temporari:[28,39,47,60,72,77],tempori:60,ten:98,tensor:[19,27,30,40,41,43,44,50,51,52,54,56,58,59,63,64,67,68,69,84,89,90,101,108],tensor_arrai:40,tensor_array_read:89,tensor_array_s:89,tensor_array_stack:89,tensor_array_unstack:89,tensor_array_writ:89,tensor_data:64,tensor_in:88,tensor_s:27,tensor_test:30,tensor_to_check:27,tensorarrai:43,tensorarraydesc:89,tensordesc:[64,84],tensorflow:[29,40,41,42,44,51,54,57,81,89,103],term:[4,5,18,31,80,81,86],termin:113,terminolog:60,tessorarrai:89,test100:10,test10:10,test1:33,test:[4,9,10,11,18,25,26,27,30,56,66,72,78,82,95,98,103,107,108,109,111,114,117],test_:101,test_all_data_in_one_period:113,test_check_grad_ingore_i:101,test_check_grad_ingore_x:101,test_check_grad_norm:101,test_check_output:101,test_data_dir:109,test_fcgrad:100,test_gpuprofil:107,test_layergrad:100,test_mkldnn:62,test_mklpack:61,test_mul_op:[91,101],test_norm:101,test_pass:[117,118,120],test_period:[117,118,120],test_recurrent_op:99,test_wait:[117,118],testa:26,testb:26,testbilinearfwdbwd:107,testcas:101,testconfig:100,testfcgrad:100,testfclay:100,testlayergrad:100,testmodel_list:117,testmulop:101,testq:26,testresult:25,testsave_dir:117,testutil:100,text1:49,text:[3,5,9,18,26,64,68,74,86,112],text_fil:9,tflop:107,tftp:126,tgz:[10,94],than:[2,3,4,5,18,28,31,39,40,45,51,52,53,54,77,79,81,89,91,97,98,100,109,111,112,122,126],the_step:51,theano:51,thehalf:18,thei:[4,18,26,28,30,31,36,38,40,41,44,45,49,51,54,55,59,60,69,70,74,77,79,85,89,90,97,98,99,100,101,103,107,109,111,112,117],them:[3,4,5,11,18,26,27,28,30,31,34,39,41,44,45,51,52,53,58,59,60,69,77,78,79,80,83,84,85,88,89,90,98,99,101,104,107,111,112,117,118],themselv:[28,30],theori:[51,107],therefor:[28,60,72],therein:[4,18,29],theta:54,theta_d:54,theta_g:54,thi:[2,3,4,5,6,9,10,11,17,18,22,23,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,47,50,51,52,53,54,55,56,59,60,63,67,68,69,70,71,72,73,74,75,77,78,79,80,81,84,85,86,87,88,89,92,94,95,97,98,99,100,101,102,103,104,106,107,108,109,111,112,113,118,120,122,123,124,126],thin:58,thing:[42,54,79,87,107],think:[26,30,111],third:[4,18,31,56,101,106,107,122,123,124],third_parti:[4,62,122,123,124],thirt:98,those:[4,29,30,31,53,55,56,57,75,122],though:[89,126],thought:[18,30,107],thread:[40,41,43,74,100,106,107,118,120],thread_count:43,thread_id:74,thread_id_:74,thread_local_rand_use_global_se:[117,118],thread_pool:43,threadblocks:22,threadid:120,threadloc:107,threadpool:40,three:[3,4,18,19,27,28,31,41,46,50,51,52,55,63,69,70,73,74,75,78,86,87,118,122],threshold:[2,3,4,18,31,35,45,99,118],thresholdedrelu:18,through:[4,19,28,30,31,35,37,46,60,70,72,97,100,101,104,107,108,109,123],throughout:47,throughput:[107,109],thrust:79,thu:[4,18,38,46,56,60,86,100,112],tier:113,time:[4,5,7,9,18,22,25,26,27,30,31,35,38,41,42,44,45,51,53,58,60,61,67,68,69,71,74,77,78,79,80,84,85,86,89,90,91,97,98,103,106,107,113,118,120,126],timelin:[4,74,79,107],timeo:112,timeout:[31,35],timeout_sec:9,timer:22,timestamp:[4,32],timestep:[4,83],tip:[122,123],titan:60,titl:10,tls:48,tmp:77,to_chw:11,to_no_sequ:4,to_sequ:4,to_tar:25,todo:[3,9,10,29,31,35,38,69,85,86],toend:4,togeth:[4,5,9,25,28,89,97,111],token:[3,4,18,26,86,97],toler:[25,27,91,101],too:[10,27,40,41,45,63,88,89],took:126,tool:[74,91,94,97,98,106,111,112,122,124],toolchain:[106,122,123],toolkit:86,top:[3,18,25,68,69,86,101],top_k:[3,18,69],top_level_rnn:68,topic:63,topk_generated_scor:69,topk_id:69,topk_indic:18,topk_out:18,topk_scor:69,toplevel:98,topolog:[26,31,42,56,60,64,73],topoloi:56,topolopi:25,torch:[29,51],toronto:10,total:[18,22,25,31,44,46,71,74,78,106,107,109,113,126],total_pass:78,tottim:106,toward:51,trace:[29,52,54],track:[31,35,56,77],tractabl:4,tradit:[4,29,50,86],traffic:42,trail:9,train100:10,train10:10,train:[0,2,3,4,9,10,11,18,28,29,33,35,36,38,40,45,46,47,51,52,54,55,60,61,64,71,72,73,74,75,76,77,79,81,84,86,87,90,97,100,105,107,115,116,117,123],train_config_dir:112,train_data:109,train_data_dir:109,train_id:112,train_list:109,train_loop:51,train_read:[42,111],trainabl:[4,21,64,77],traindot_period:117,trainer:[26,32,33,34,35,37,42,44,52,61,62,72,73,79,100,110,111,118,120],trainer_config:[112,113],trainer_config_help:100,trainer_count:[95,109,112,113,117,118,120],trainer_cpu:39,trainer_cr:39,trainer_gpu:39,trainer_id:[109,112,118],trainer_intern:34,trainer_mem:39,trainer_packag:39,trainer_prog:42,trainerid:38,training_rol:111,trainingjob:42,trainingtest_period:117,trainonebatch:34,tran:[63,100,118],trans_var:88,transact:[31,35],transcript:86,transfer:[60,74],transform:[4,5,11,18,79,86,97,100,103],transform_param_attr:5,transformed_st:5,translat:[4,5,60],translation_id:69,translation_scor:69,transpar:[69,110],transpil:[40,111],transport:118,transpos:[4,11,100],transpose_i:18,transpose_x:18,transposedfullmatrixproject:4,travers:[28,55,60],travi:99,treat:[4,18,29,36,60],treatment:[36,50],tree:[4,29,40,47,51,77,108,118,124],trg_dic_siz:69,trg_embed:[69,97],trick:69,tricki:65,trigger:[38,73],trim:4,trivial:[69,89],true_block:[29,57,75],true_imag:78,true_label:78,true_neg:46,true_posit:46,true_read:78,truth:[3,4,18],tune:[2,86,105,106],tuninglog_barrier_abstract:117,tupl:[4,5,9,10,11,18,25,28,77,78],ture:4,turn:[4,18,77,78,92],tutori:[22,91,92,97,100,101,106,107,112,114,115,116,123],twice:[44,54,111],twine:82,two:[3,4,5,18,19,26,28,36,37,38,39,40,41,42,46,49,50,51,52,54,55,58,60,64,67,69,72,74,75,78,79,80,81,83,84,85,86,88,89,90,91,97,101,103,107,110,112,120,122,124],txt:[30,39,49,61,62,100,104,109,112,114],type:[3,4,5,7,9,10,11,18,19,23,25,26,28,29,31,34,35,38,39,42,48,49,50,52,58,59,63,64,65,66,68,69,75,76,77,78,79,80,81,84,85,86,87,88,90,95,97,98,100,102,103,109,112,113,118,120,123],type_nam:85,typedef:[36,50,65,66,67,87,102],typeerror:45,typeid:85,typenam:[53,85,87,101,102,103],typic:[3,42,107,123],ubuntu:[82,94,95,106],ubyt:78,uci:10,uci_h:[95,111],ufldl:[4,18],uid:113,uint16_t:50,uint32:[48,64],uint32_t:74,uint64:[64,65],uint64_t:65,unawar:36,unbalanc:118,unbound:[60,97],unchang:18,unclear:38,uncreat:28,under:[18,30,35,44,71,88,91,92,103,104,109,110,112],underli:[18,69],understand:[51,77,86,106,107,126],understand_senti:97,undeterminist:107,uni:86,unidirect:[4,86],unifi:[47,56,84,99],uniform:[2,4,9,18,33,54,77,78,118],uniform_random:77,uniforminiti:16,uniniti:28,uninstal:91,uniqu:[26,29,31,38,39,63,67,77,83,101,109,111,112,118],unique_nam:77,unique_name_gener:77,unique_ptr:[80,83,87,100],unit:[4,5,18,19,30,72,74,81,87,91,97,98,103],unitest:18,unittest:[66,99,101],unittestcheckgrad_ep:117,unix:41,unk:[84,90],unknown:[4,18,23],unless:18,unlik:[4,18,69,101],unnecessari:[28,86,99],unnorm:18,unordered_map:83,unpack:89,unrol:68,unscal:18,unseen:81,unseg:4,unsign:[36,50],unstack:89,unstack_from:89,unsupervis:54,unsupport:101,until:[31,36,43,44,51,60,83,111,112],unus:18,unzip:122,updat:[2,4,6,18,28,31,35,36,42,48,50,54,68,69,70,71,72,73,83,86,89,94,100,106,109,118,120],update_equ:25,update_hook:2,update_memori:29,update_op:70,updatecallback:100,updatestack:112,upgrad:[71,91,94],upload:[31,39,41,48,82,109],upon:31,upper:4,upstream:99,uri:112,url:[9,10,99],usag:[3,4,5,11,18,25,50,57,60,73,77,101,107,109,123],use:[2,3,4,5,7,9,10,11,18,22,25,26,27,29,30,31,37,42,43,44,47,50,54,56,58,59,60,63,67,69,70,71,73,74,77,83,84,85,86,88,89,90,91,92,94,95,97,98,99,100,101,102,104,106,107,109,112,113,118,120,122,123,124],use_cpu:59,use_cudnn:[18,19,59],use_eigen_bla:122,use_eigen_for_bla:[122,123],use_etcd:25,use_global_stat:4,use_gpu:[95,109,113,117,118,120],use_mkl_pack:61,use_mkldnn:[4,59,62],use_old_updat:[34,117,118],use_peephol:18,use_sparse_remote_updat:34,used:[3,4,5,6,7,9,10,11,18,22,25,26,27,29,30,31,37,38,42,45,47,50,51,54,56,60,68,69,72,73,74,77,78,79,81,83,85,87,88,89,91,94,97,98,100,101,103,106,107,112,117,118,120,122,123,124],useful:[4,5,27,50,60,77,83,88,97,100,120,122],usegpu:100,user:[2,4,5,9,10,11,18,22,25,26,27,28,29,30,33,35,38,39,40,42,43,44,45,46,47,49,53,54,55,56,58,59,63,67,69,70,71,72,74,77,78,79,80,81,83,85,87,88,89,92,99,102,104,106,109,112,117,118,122,126],user_info:10,user_nam:33,usercert:33,userinfo:10,userkei:33,usernam:33,uses:[4,18,31,38,40,41,42,50,60,67,68,69,73,74,87,88,91,94,97,98,99,100,103,104,109,112,118,122],using:[2,4,5,9,14,18,25,26,28,29,30,31,35,36,38,39,41,42,47,49,50,51,53,54,56,58,60,68,70,72,75,77,78,80,81,83,85,86,87,91,92,93,94,95,97,99,100,101,102,103,104,107,109,112,113,114,118,120,122,124],usr:[91,92,109,112,118],usual:[4,18,25,28,39,60,67,74,75,81,87,99,101,106,107,112,118,120],util:[42,61,62,71,97,100,101,102,107,126],uuid:[32,38],v7a:122,v8a:122,val:28,valid:[4,11,18,78,79,83,101,112,123],valu:[2,3,4,7,9,10,11,18,19,22,25,27,28,29,31,40,41,45,46,56,57,60,62,64,68,69,70,72,73,75,79,83,84,85,89,90,97,100,101,102,111,112,118,120,122,123],value1:118,value2:118,value_:84,value_evalu:3,value_rang:9,valueerror:[18,19,56],values_:89,vanilla:97,var_nam:[28,88],var_recurs:45,vardesc:[29,55,75,77,79,84],vardescbuild:29,vari:[107,112],variabl:[6,9,10,17,18,19,26,27,29,40,42,44,45,46,47,52,54,55,56,57,58,67,68,69,70,72,75,76,80,81,84,85,86,88,89,100,101,102,106,108,109,112,113,122,123],variablenamemap:101,varialbl:54,varianc:4,variant:[4,58,67,87,89,102],varibal:28,varibl:56,varienc:89,varient:89,variou:[29,41,50,60,81,122],varproto:85,vars_:[29,83],vartyp:[18,84,90],vartypeinfer:58,vec1:4,vec2:4,vec2seq:86,veclib:123,vecter:18,vector:[4,5,9,10,18,26,29,34,36,56,57,63,68,69,74,77,79,80,84,86,89,97,100,103],vectorenable_parallel_vector:117,vendor:30,verb:10,verbos:[49,99],veri:[4,7,30,35,40,44,47,51,53,54,60,63,69,73,78,81,83,86,87,89,97,106,107,110],verifi:[29,100,123],version:[4,5,28,30,39,42,45,49,52,54,56,57,64,69,82,86,91,92,95,98,100,106,107,109,111,112,113,117,118,122,123,124],versu:26,vertic:4,vgg:5,via:[18,28,31,67,93,99,107,111,112,123,126],view:[4,64,67],vim:92,viriabl:109,virtual:[45,58,59,80,87,98,102],virtualenv:98,visibl:[38,83],visit:[25,28],visual:[4,69,107],vlog:[34,99],vocabulari:86,voila:95,volum:[104,113],volumemount:[112,113],volumn:112,vutbr:10,w_f:18,wai:[3,5,18,26,28,36,38,41,47,51,59,60,69,72,77,78,81,89,97,98,99,100,120],wait:[31,36,43,102,109,111,118],walk:123,wang:18,wangkuiyi:30,want:[4,22,26,39,40,41,46,54,59,67,72,74,76,78,81,83,87,88,89,91,92,98,99,100,104,106,109,118,120,122,124],warn:[25,49],warp:[4,18,107],warp_ctc:86,warpctc:4,wast:71,watch:31,wbia:112,web:[104,106],websit:104,weight:[3,4,5,6,18,19,21,23,61,64,81,97,100,118,120],weight_act:5,weightlist:100,weights_:100,weights_primitive_desc:63,weights_t:100,welcom:[30,86],well:[18,28,39,41,42,44,51,53,54,81,84,86,100,111,112,118],wer:86,were:[3,30,41,51],west:112,wget:122,wgt:63,what:[2,4,30,51,54,69,77,85,88,101,106,126],whatev:[98,109],wheel:94,when:[2,3,4,6,9,18,19,25,27,28,29,30,31,34,35,36,39,40,42,44,45,46,47,49,50,51,52,56,69,71,72,73,74,75,77,79,87,89,91,93,97,98,99,100,101,103,104,106,107,109,112,113,118,120,122,123,126],whenev:[18,77,86,99],where:[4,5,6,18,19,26,28,29,31,38,40,42,51,52,55,67,68,69,72,75,79,81,87,89,97,100,101,106,107,108,118,120],wherea:[18,29,35,53,57,87,90],whether:[3,4,11,18,25,27,28,29,47,74,78,84,89,91,92,100,101,118,123],which:[2,3,4,5,9,10,11,17,18,19,21,22,25,26,27,28,29,30,31,33,35,36,38,39,40,41,42,43,45,47,50,51,52,53,54,56,58,60,63,64,67,68,69,70,71,73,75,76,77,78,79,80,83,84,85,88,89,90,91,94,97,98,99,100,101,102,103,106,107,109,110,111,112,118,120,122,123,126],while_grad:60,while_loop:[69,89],while_op:[18,28],whileloop:89,whileop:29,white:86,whl:91,who:[28,53,55,71,77,99],whoever:36,whole:[3,9,28,54,57,60,65,66,68,71,76,85,86,99,109,112,113,126],whose:[4,9,18,27,28,31,38,45,68,79,80,85,89,97],why:[5,27,66,98],wide:[30,45,54,94,110,114],width:[3,4,9,11,18,34,65,78,100,101],wiil:18,wiki:[4,30],wikipedia:[4,10],window:[4,7,10,72,86,92,98,122],wirt:56,wise:[4,11,18,44,79,86,103],wish:[91,94,104,109,111],with_avx:[91,92,109,122,123],with_bia:85,with_c_api:[91,122,123,124],with_distribut:111,with_doc:91,with_doubl:[91,100,109],with_dso:91,with_golang:[91,122],with_gpu:[91,98,109,122,123],with_mkl:[61,62,91,122],with_mkldnn:62,with_mklml:62,with_profil:107,with_python:[91,109,122,123],with_rdma:[109,122,123],with_style_check:[91,99],with_swig_pi:[91,122,123],with_test:[91,101],with_tim:[107,109],within:[4,18,35,42,51,86,123],without:[3,4,28,31,36,41,74,77,78,79,86,101,106,109,114],wloop:89,wmt14:97,wmt_shrinked_data:10,won:[107,109],word2vec:[39,109],word:[3,4,10,28,44,55,58,60,68,69,79,85,86,89,97,102,109,120],word_dict:[109,114],word_idx:10,word_vector_dim:[4,69,97],wordcount:86,words_freq_sort:10,work:[4,9,18,26,29,30,31,42,47,50,51,59,70,72,74,77,92,97,98,99,100,104,106,107,109,111,112,113,118,126],worker:[44,90,112],workercount:112,workflow:[79,112],workspac:[99,109,110,118],world:109,worth:108,would:[22,25,29,30,31,38,41,42,43,44,51,53,54,55,63,70,72,73,77,78,84,86,89,92,98,99,106,111,112,122,126],wouldn:[51,55],wrap:[18,51,53,54,71,126],wrapper:[5,30,41,53,71,72,80,89,107],write:[9,18,26,31,38,40,42,44,50,51,52,53,56,58,63,70,72,77,78,79,80,87,89,98,105,109,112],write_lock:32,write_to_arrai:60,writer:[26,77],written:[18,22,28,29,40,44,47,54,64,72,79,80,84,91,92,101,103,106,110],wrong:78,wrote:56,wsize:112,www:[10,18],x64:[122,124],x86:123,x86_64:[122,123],x_first_step:18,x_last_step:18,x_neg:27,x_num_col_dim:18,x_po:27,x_reshap:18,x_t:18,x_t_data:18,x_transpos:18,xarg:[3,92,100,114],xavier:18,xavieriniti:[16,18],xcode:123,xcodebuild:123,xeon:102,xgbe0:118,xgbe1:118,xmap_read:9,xpu:51,xrang:[27,51,54,74,78,95,100],xx_layer:59,xxx:[26,89],xxxx:32,xxxxxxxxx:112,xxxxxxxxxx:112,xxxxxxxxxxxxx:112,xxxxxxxxxxxxxxxxxxx:112,y_dim:54,y_neg:27,y_num_col_dim:18,y_po:27,y_predict:[18,95,108,111],yaml:[30,110,112,114,126],yancey1989:39,yann:10,yapf:99,year:51,yeild:25,yep:[74,106],yet:[51,86,126],yield:[9,26,33,78],you:[2,4,5,9,18,19,22,25,27,39,42,50,83,91,92,93,94,95,97,98,99,100,101,102,104,106,107,109,110,111,112,114,118,120,122,123,124,126],your:[4,9,25,26,30,34,39,49,79,91,93,94,98,99,100,104,107,109,110,111,112,120,122,123,124,126],your_access_key_id:112,your_secrete_access_kei:112,your_source_root:66,yourself:91,yuang:51,yuyang18:[9,10],yuyang:106,z_dim:54,z_size:54,zero:[2,4,5,6,9,10,27,28,31,54,69,73,77,84,100,112,118],zip:[10,77,122],zone:112,zxvf:112},titles:["API","Activation","Parameter Attribute","Evaluators","Layers","Networks","Optimizer","Pooling","Data Reader Interface and DataSets","Data Reader Interface","Dataset","Image Interface","Fluid","data_feeder","evaluator","executor","initializer","io","layers","nets","optimizer","param_attr","profiler","regularizer","Model Configuration","Training and Inference","PaddlePaddle Design Doc","Auto Gradient Checker Design","Backward Building","Design Doc: Block and Scope","Required CMake Function","Design Doc: Distributed Training","\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\uff08Checkpointing\uff09","\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1","Alalysis of large model distributed training in Paddle","Design Doc: Master Server","Design Doc: The Client Library of Parameter Server","Design Doc: Remote Parameter Updater for Cluster Train","Design Doc: Save Model","Submit a Distributed Training Job","Design Doc: Concurrent Programming with Fluid","Design Doc: CSP in PaddlePaddle Fluid","Design Doc: Distributed Training Architecture","Design Doc: Execute the Program with Multi CPU","Design Doc: Parameter Server","Error Clip","Evaluator Design","Executor Design Doc","FileManager\u8bbe\u8ba1\u6587\u6863","PFSClient","Design Doc: float16","Design Doc: PaddlePaddle Fluid","PaddlePaddle Fluid: Towards a Compiled Programming Language","Design Doc: Functions, Operators, and Layers","Design for GAN","Design Doc: Computations as a Graph","Survey on Graph","The IfElse Operator","Design Doc: InferVarType","Problem","Memory Optimization","Intel\u00ae MKL Packed on PaddlePaddle: Design Doc","Intel\u00ae MKL-DNN on PaddlePaddle: Design Doc","Design Doc: Add MKLDNN Kernel in Fluid Operator","Design Doc: Model Format","Paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0","C-API \u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863","Design Doc: The Keys of Operator Kernel Type","RNNOp design","Design: Sequence Decoder Generating LoDTensors","Optimizer Design","Design Doc: NCCL support in Paddle Fluid","Averaging Parameter in PaddlePaddle","Design Doc: The C++ Class Parameters","Introduction","Design Doc: PaddlePaddle Programs","Prune","Design Doc: Python API","Python Data Reader Design Doc","Design Doc: Refactorization Overview","Design Doc: Gradient Operators Registration","Regularization in PaddlePaddle","PaddlePaddle\u53d1\u884c\u89c4\u8303","Design of Scope in Paddle","Design Doc: Selected Rows","Interaction between C++ and Python","DeepSpeech2 on PaddlePaddle: Design Doc","Design Doc: Supporting new Device/Library","Background","Design for TensorArray","Background","Build from Sources","Run in Docker Containers","Install and Build","Install Using pip","GET STARTED","RNN Models","RNN Configuration","Build using Docker","Contribute Code","Write New Layers","How to write a new operator","Add Kernels for a New Device","How to use Eigen in Paddle","Contribute Documentation","HOW TO","Profiling the Python Code","Tune GPU Performance","PaddlePaddle Fluid Source Code Overview","Distributed Training","Cluster Training Using Fabric","Fluid Distributed Training","Distributed PaddlePaddle Training on AWS with Kubernetes","PaddlePaddle On Kubernetes","Cluster Training Using OpenMPI","<no title>","<no title>","Argument Outline","Detail Description","Set Command-line Parameters","Use Case","PaddlePaddle Documentation","Build PaddlePaddle for Android","Build PaddlePaddle for iOS","Build PaddlePaddle for Raspberry Pi","MOBILE","Cluster bootstrapping tool survey"],titleterms:{"\u4e0a\u4f20\u8bad\u7ec3\u6587\u4ef6":33,"\u4e0d\u4f7f\u7528":65,"\u4e0d\u4f7f\u7528swig\u8fd9\u79cd\u4ee3\u7801\u751f\u6210\u5668":65,"\u4e0d\u5bfc\u51fapaddle\u5185\u90e8\u7684\u7ed3\u6784\u4f53":65,"\u4e0d\u5f15\u7528\u5176\u4ed6\u52a8\u6001\u5e93":65,"\u4ec5\u4ec5\u4f7f\u7528void":65,"\u4ece\u5feb\u7167\u6062\u590d":32,"\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":65,"\u4f7f\u7528\u8f6c\u6362\u5e93":33,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":66,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5b9e\u73b0\u6587\u4ef6":66,"\u5206\u5757\u6587\u4ef6\u4f20\u8f93":48,"\u5206\u652f\u89c4\u8303":82,"\u52a0\u901f\u6267\u884c":32,"\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":65,"\u52a8\u6001\u6269\u5bb9":32,"\u539f\u56e0":65,"\u539f\u56e0\u5217\u8868":65,"\u53c2\u8003\u6587\u6863":48,"\u53d1\u5e03docker\u955c\u50cf":82,"\u53d1\u5e03wheel\u5305\u5230pypi":82,"\u540d\u8bcd\u89e3\u91ca":48,"\u57fa\u672c\u8981\u6c42":65,"\u5b9e\u73b0":65,"\u5b9e\u73b0\u65b9\u5f0f":66,"\u5bfc\u51fac":65,"\u5feb\u7167\u4fdd\u5b58\u7684\u8bbe\u8ba1\u5982\u4e0b":32,"\u6307\u9488\u4f5c\u4e3a\u7c7b\u578b\u7684\u53e5\u67c4":65,"\u63a8\u6d4b\u6267\u884c":32,"\u652f\u6301\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u6570\u636e\u9884\u5904\u7406job":33,"\u6587\u4ef6\u4f20\u8f93\u4f18\u5316":48,"\u6587\u4ef6\u8bbf\u95ee\u65b9\u5f0f":33,"\u6587\u4ef6\u8bbf\u95ee\u7684\u6743\u9650":33,"\u6587\u4ef6\u9884\u5904\u7406":33,"\u66b4\u9732\u63a5\u53e3\u539f\u5219":66,"\u672f\u8bed":32,"\u67b6\u6784\u56fe":48,"\u6846\u67b6\u751f\u6210":48,"\u6982\u5ff5\u89e3\u91ca":33,"\u6a21\u5757":48,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9":32,"\u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863":66,"\u6d41\u7a0b\u4ecb\u7ecd":33,"\u751f\u6210sparse\u6587\u4ef6":48,"\u7528\u6237\u4f7f\u7528\u6d41\u7a0b":48,"\u76ee\u5f55\u7ed3\u6784":66,"\u76ee\u6807":48,"\u793a\u4f8b\u7a0b\u5e8f":33,"\u7b26\u53f7":65,"\u7c7b":65,"\u7f16\u8bd1\u9009\u9879":66,"\u7f29\u5bb9":32,"\u800c\u662f\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":65,"\u80cc\u666f":65,"\u8986\u76d6\u4e0d\u4e00\u81f4\u7684\u90e8\u5206":48,"\u8bad\u7ec3\u6570\u636e\u5b58\u50a8":33,"\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1":33,"\u8f6c\u6362\u5e93":33,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u4f7f\u7528c99\u6807\u51c6\u7684\u5934\u6587\u4ef6\u5bfc\u51fa\u4e00\u4e9b\u51fd\u6570":65,"\u8fdb\u884c\u8bad\u7ec3":33,"abstract":[42,43,44,71,126],"book\u4e2d\u6240\u6709\u7ae0\u8282":82,"case":[28,120],"class":[54,73,77,100],"filemanager\u8bbe\u8ba1\u6587\u6863":48,"final":59,"function":[30,53,54,77],"new":[87,100,101,102],"paddle\u52a8\u6001\u5e93\u4e2d":65,"paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0":65,"paddlepaddle\u53d1\u884c\u89c4\u8303":82,"paddlepaddle\u56de\u5f52\u6d4b\u8bd5\u5217\u8868":82,"return":[77,78],"switch":[63,87],"tensor\u5230eigentensor\u7684\u8f6c\u6362":103,"while":18,AWS:112,Abs:1,DNS:112,E2E:111,EFS:112,For:[30,113],KMS:112,Not:98,The:[29,36,40,47,51,54,55,57,58,67,70,73,79,80,124],Use:[29,75,104,109,113,120],Using:[30,36,94,110,114,122],With:39,about:54,abs:18,absolut:69,access:112,account:112,accuraci:[14,18],action:[61,62],activ:[1,4,62],actor:41,adadelta:6,adagrad:[6,20],adam:[6,20],adamax:[6,20],add:[60,63,102,112],address:112,addto:4,advanc:87,aggreg:4,aggregatelevel:4,alalysi:34,algorithm:[27,31,42,68,76],all:[83,89],analog:40,analysi:[42,60],android:122,api:[0,42,61,62,66,70,72,77,81,85],append_regularization_op:23,appendix:126,approach:107,arbitrari:51,architectur:[42,74,97],argument:[49,78,109,117,120,122,124],arrai:27,array_length:18,array_read:18,array_to_lod_tensor:18,array_writ:18,asset:112,assign:18,associ:[83,112],assumpt:126,async:118,attent:97,attribut:[2,60,81],auc:3,auto:27,averag:72,avg:7,aws:112,backgraound:27,background:[44,61,87,88,89,90,101,102],backward:[28,51,55,79,101],base:[39,69],basepool:7,basic:[60,87,126],batch:78,batch_norm:[4,18],batch_siz:78,beam:[69,86],beam_search:[4,18],beam_search_decod:18,benchmark:[61,62],benefit:[44,79],between:[26,41,77,79,85,87],bidirectional_gru:5,bidirectional_lstm:5,bilinear_interp:4,binari:29,bind:101,bla:91,block:[29,52,54,55,75,77,79],block_expand:4,blockdesc:75,blockguard:18,blockguardserv:18,blockguardwithcomplet:18,book:92,bool:91,bootstrap:126,bottleneck:106,brelu:[1,18],bring:126,bucket:112,build:[28,54,79,91,93,98,104,113,122,123,124],built:107,can:83,capi:66,capi_priv:66,cast:18,ceil:18,challeng:[28,44,76],chang:69,channel:41,check:[4,27,100,110],checker:27,checkpoint:[31,32,38],choic:59,choos:[30,112],chunk:3,chunk_ev:18,chunkevalu:14,cifar:10,classif:3,classification_error:3,classification_error_print:3,client:36,clip:[4,18,45],clip_by_norm:18,close:27,cloudform:112,cluster:[37,109,110,111,112,114,120,126],cmake:[30,61,62,124],code:[39,52,77,99,106,108],column_sum:3,command:[109,119,120],commit:113,common:118,commun:118,compar:126,comparis:77,compat:51,compil:[29,50,52,75,79,91,101,108,122,123,124],complet:51,compos:78,comput:[29,55,63,79,81,103],con:126,concat:[4,18],concept:[77,79,112],concern:62,conclus:[38,56,126],concurr:[40,41],condit:54,conditionalblock:18,config:120,configur:[24,97,105,112,123],conll05:10,connect:4,constant:16,construct:55,contain:[92,113],content:[61,62,66,86,107,112],context:102,context_project:4,contribut:[99,104],control:[60,79],control_flow:18,contruct:60,conv2d:18,conv2d_transpos:18,conv:4,conv_oper:4,conv_project:4,conv_shift:4,convert:38,convolut:86,core:[27,77,112],corner:28,cos_sim:[4,18],cost:4,cpu:[43,120],creat:[28,41,78,79,83,112,113],create_arrai:18,create_global_var:18,create_paramet:18,create_tensor:18,creation:[35,72,81],creator:78,credenti:112,crf:4,crf_decod:[4,18],cross:[122,123,124],cross_channel_norm:4,cross_entropi:18,cross_entropy_cost:4,cross_entropy_with_selfnorm_cost:4,csp:41,ctc:[4,86],ctc_error:3,ctc_greedy_decod:18,cuda:[50,91],cuda_profil:22,cudnn:91,cudnnavg:7,cudnnmax:7,current:[50,80],custom:78,data:[4,8,9,18,31,42,78,88,112,113],data_feed:13,datafeed:[9,13],dataflow:60,dataprovid:118,dataset:[8,10,31,35,109],datatyp:[9,67],decayedadagrad:[6,20],decod:69,decor:78,deep:[29,51],deepspeech2:86,defin:[101,112],definit:90,delet:112,demo:[54,111,112],dens:38,dep:94,depend:[54,86,91,94],deploi:39,deriv:100,describ:[51,70],descript:[49,79,118],design:[26,27,29,31,35,36,37,38,40,41,42,43,44,46,47,50,51,53,54,55,58,61,62,63,64,67,68,69,70,71,73,75,77,78,79,80,83,84,86,87,89],destroi:[83,112],detail:[34,86,118],detect:[3,4],detection_map:3,detection_output:4,develop:[79,98,105],devic:[18,87,102,120],devicecontext:87,dictionari:78,differ:[79,87,109,120],directori:112,discrimin:54,discuss:[44,54],dispatch:[31,35],distribut:[26,31,34,39,42,44,109,111,112,118],dnn:62,doc:[26,29,31,35,36,37,38,40,41,42,43,44,47,50,51,53,55,58,61,62,63,64,67,71,73,75,77,78,79,80,84,86,87],docker:[39,92,98,113,122],document:[104,121],doe:78,dot_prod:4,dot_product_attent:5,dotmul_oper:4,dotmul_project:4,down:112,download:[112,113],dropout:[4,18],dure:[69,78],dylib:66,dynam:[31,89],dynamic_gru:18,dynamic_lstm:18,dynamic_lstmp:18,dynamicrnn:18,dynet:56,each:94,ec2:112,edit_dist:18,eigen:103,elast:112,elect:38,elementwise_add:18,elementwise_div:18,elementwise_max:18,elementwise_min:18,elementwise_mul:18,elementwise_pow:18,elementwise_sub:18,els:29,elu:18,embed:[4,18],engin:54,enough:27,entri:78,environ:[39,122],eos:4,equat:100,error:45,evalu:[3,14,46],event:[25,26,74],evolut:51,examin:106,exampl:[26,30,40,41,57,66],execut:[29,43,51,75,79],executor:[15,47],exp:[1,18],expand:4,expandlevel:4,explain:27,extern:112,fabric:110,factor:4,factorization_machin:4,faq:[93,94],fault:31,file:[29,106,112,113],fill_const:18,fill_constant_batch_size_lik:18,find:112,first_seq:4,float16:50,floor:18,flow:60,fluid:[12,40,41,51,52,63,71,108,111],format:[29,31,64],forward:[55,101],frame:29,framework:[27,102,103],from:[26,38,85,91,93],full_matrix_project:4,fulli:4,functor:87,futur:[51,86],gan:54,gate:97,gated_unit:4,gener:[52,54,69,97,98,106,126],get:[95,111,113],get_inference_program:17,get_output:4,get_plac:18,give:78,global:[75,77],global_scop:15,glu:19,gotcha:98,gpu:[92,107,118,120],grad_op:28,gradient:[27,28,36,62,80,100],gradient_print:3,graident:27,graph:[55,56,60,79,81],group:[4,112],gru:[5,118],gru_group:5,gru_step:4,gru_unit:[5,18],grumemori:4,hand:107,handler:[26,65],happen:38,hard_shrink:18,hard_sigmoid:18,hardwar:50,have:111,helper:77,hierarchi:29,high:[70,72,81,85],how:[27,34,72,78,79,87,91,101,103,104,105,107],hsigmoid:4,huber_classification_cost:4,huber_regression_cost:4,iOS:123,iam:112,ident:1,identifi:106,identity_project:4,ifels:[18,57],ifelseop:29,im2sequ:18,imag:[4,5,11,39,92,113,122],imdb:10,img_cmrnorm:4,img_conv:4,img_conv_bn_pool:5,img_conv_group:5,img_pool:4,imikolov:10,implement:[27,28,30,34,43,45,46,50,64,68,71,72,77,78,79,80,81,100,101,102,103],increment:18,infer:[25,122],infershap:[75,84],infervartyp:58,ingredi:26,ingress:48,initi:[16,36,54,112,120],insid:83,inspect:112,instal:[93,94,95,111,112,122,123,124,126],instanc:112,instead:78,integr:[87,112],intel:[61,62],interact:85,interfac:[8,9,11,27,31,36,37,47,70,78,83],intermedi:79,interpol:4,introduc:[69,89,111],introduct:[74,81,109,111],isn:78,issu:50,job:[31,39,110,112,113,114],join:4,kei:[61,67,112],kernel:[63,67,79,102],kill:110,kmax_sequence_scor:4,kube:112,kubectl:112,kubernet:[39,112,113],l1decai:23,l2_distanc:4,l2_normal:18,l2decai:23,lambda_cost:4,languag:[29,52],larg:34,last_seq:4,launch:[92,110,114],layer:[4,18,26,53,61,62,77,100,120],layout:67,leaky_relu:18,learn:[29,51],learnabl:4,less_than:18,leval:85,level:[70,72,81,85],libpaddle_capi_shar:66,libpaddle_capi_whol:66,librari:[36,50,67,79,87,122],limit:42,line:[109,119],linear:1,linear_chain_crf:18,linear_comb:4,linux:[110,122],list:[32,78],listenandserv:18,live:60,load:41,load_inference_model:17,load_param:17,load_persist:17,load_var:17,local:[42,83,112,120],lod:69,lod_rank_t:18,lod_tensor_to_arrai:18,lodtensor:[68,69,89],lodtensordesc:90,log:[1,18,99],logic:35,logsigmoid:18,look:106,low:[72,81,85],lstm:[5,118],lstm_step:4,lstm_unit:18,lstmemori:4,lstmemory_group:5,lstmemory_unit:5,machin:[4,69],macro:79,main:54,make:60,manag:[30,109],map:[78,79],master:[31,35,39,40],math:[4,87],mathemat:27,matmul:18,matrix:[62,118],max:7,max_sequence_len:18,maxframe_print:3,maxid:4,maxid_print:3,maxout:4,mean:18,member:54,memori:[4,60,68,87],merge_lod_tensor:18,messag:85,method:69,might:54,migrat:79,mileston:79,mini:78,minibatch:[9,41],misc:4,mix:[4,120],mkl:[61,62],mkldnn:63,mkldnn_helper:63,mkldnndevicecontext:63,mnist:10,mobil:125,model:[24,26,34,36,38,41,51,54,64,69,96,97,110,120],modifi:113,modul:[79,87,103],momentum:[6,20],more:54,motiv:[28,41,47,64,71,76],movielen:10,mul:18,multi:[43,52],multi_binary_label_cross_entropy_cost:4,multibox_loss:4,multipl:78,multiplex:[4,18],mxnet:56,name:[83,112],nativ:52,nccl:71,nce:[4,18],necess:77,necessari:79,need:[78,98,107],nest:68,net:19,network:[5,79,97,120],neural:97,nlp:[5,118],non:111,norm:[4,81],normal:16,note:27,numer:27,numpi:27,nvprof:107,nvvp:107,object:31,offset:69,ones:18,onli:[78,83],op_mak:79,openmpi:114,oper:[53,57,60,63,67,72,75,77,79,80,84,89,101],opinfomap:79,opkernel:[79,87,101,102],opproto:85,ops:[18,81],optim:[6,20,31,36,55,60,70,77,105],option:[49,91],opwithkernel:79,order:49,org:104,origin:79,orthogon:83,other:62,out_prod:4,outlin:117,output:[4,110,112],overview:[38,45,47,61,62,79,83,86,108],pack:[61,69],packag:[30,94],pad:4,paddl:[34,71,78,83,103],paddlejob:39,paddlepaddl:[26,29,41,51,52,61,62,72,75,81,82,86,91,92,94,104,108,111,112,113,121,122,123,124],pair:112,paradigm:51,parallel_nn:120,paralleldo:18,param_attr:21,paramattr:21,paramet:[2,4,25,26,31,36,37,39,41,44,62,72,73,77,81,109,111,112,118,119],parameteraverageoptim:72,parent:83,part:55,partit:36,pass:[91,120],path:[38,49],penalti:81,perform:[72,106,107,118],persist:35,pfsclient:[48,49],pfsserver:48,pip:94,place:[60,67,87,102],placement:42,platform:109,pnpair:3,point:[61,112],polici:60,pool2d:18,pool:[4,7],pose:[58,80],potenti:59,pow:18,power:4,precision_recal:3,prefetch:78,prelu:4,prepar:[109,110,111,112,114,123],principl:63,print:[3,18],privat:112,pro:126,problem:[46,58,59,60,67,70,80,88],procedur:126,process:[31,36,39,70,79,98],profil:[22,106,107],program:[29,40,41,43,51,52,75,77,92,109,111],programdesc:[52,75],project:30,propos:[58,80,81],protobuf:84,protomak:101,provid:78,prune:76,pserver:38,pull:92,python:[27,39,42,61,62,68,70,72,77,78,81,85,90,100,101,106],qualiti:79,queue:[31,35],quick:95,randomnumb:118,rank:3,rank_cost:4,raspberri:124,reader:[8,9,26,78],readi:111,realiz:79,reciproc:18,recoveri:31,recurr:[4,5,97],recurrent_group:4,recv:41,reduce_max:18,reduce_mean:18,reduce_min:18,reduce_sum:18,ref:27,refactor:79,refer:[42,44,60,61,62,86,107],region:112,regist:[58,79,85,101,102],registr:[79,80],registri:79,regular:[23,36,81],rel:69,relat:[79,89],relu6:18,relu:[1,18],remark:101,remot:37,remoteexecutor:42,render:112,reorder_lod_tensor_by_rank:18,repeat:4,represent:[29,79],requir:[30,54],reset_profil:22,reshap:[4,18],resiz:4,result:[110,113],retri:35,reus:77,review:99,rmsprop:6,rnn:[68,89,96,97,118],rnnop:[29,68,79],roi_pool:4,rotat:4,round:18,route53:112,row:[84,86],row_conv:[4,18],row_l2_norm:4,rpc:41,run:[47,91,92,101,108,113],runtim:[39,94],sampl:4,sampling_id:4,save:38,save_inference_model:17,save_param:17,save_persist:17,save_var:17,scale:[4,18,31],scale_shift:4,scaled_dot_product_attent:19,scaling_project:4,scope:[29,68,79,83],scope_guard:15,script:[111,113],search:[69,86],secur:112,select:[36,41,84],selectedrow:84,selective_fc:4,send:[18,41],sentiment:10,separ:79,seq_concat:4,seq_reshap:4,seq_slic:4,seqtext_print:3,sequenc:[69,97],sequence_conv:18,sequence_conv_pool:[5,19],sequence_expand:18,sequence_first_step:18,sequence_last_step:18,sequence_pool:18,sequence_reshap:18,sequence_softmax:18,sequencesoftmax:1,server:[31,35,36,39,41,44,109,111,112,118],servic:112,set:119,setup:[112,122],sextant:126,sgd:[20,118],shape:69,share:[26,28,60,83],should:83,shrink_memori:18,shuffl:78,sigmoid:[1,18],sigmoid_cross_entropy_with_logit:18,simpl:[69,97],simple_attent:5,simple_gru2:5,simple_gru:5,simple_img_conv_pool:[5,19],simple_lstm:5,singl:78,slice:[4,111],slice_project:4,slope_intercept:4,small_vgg:5,smooth_l1_cost:4,soft_relu:18,softmax:1,softplu:18,softrelu:1,softshrink:18,softsign:[1,18],solut:[58,59,60,61,67,76,80,88],some:98,sourc:[91,93,108],spars:[36,37,38,84,120],specifi:120,split:18,split_lod_tensor:18,spp:4,sqrt:18,squar:[1,18],square_error_cost:[4,18],squarerootn:7,stack:29,standard:99,stanh:[1,18],start:[26,95,109,112,113],startup:113,statement:46,staticrnn:18,staticrnnmemorylink:18,step:[68,93],storag:81,store:31,strategi:60,style:99,sub_nested_seq:4,sub_seq:4,subcommond:49,submit:39,suffici:78,suitabl:30,sulut:63,sum:[3,7,18],sum_cost:4,sum_to_one_norm:4,summar:[26,40],summari:64,support:[50,71,87,89],survei:[50,56,81,126],swish:18,switch_scop:15,synopsi:49,syntax:41,system:[51,112],tabl:[66,86],table_project:4,tanh:[1,18],tanh_shrink:18,task:[31,35,86],tear:112,tecton:126,templat:112,tensor:[4,18,79,87,103],tensorarrai:[69,89],tensordesc:90,tensorflow:56,test:[61,62,63,91,99,100,101,118,120],text_conv_pool:5,theori:27,thi:83,think:54,three:89,thresholded_relu:18,time:108,timelin:38,timer:107,tip:107,todo:[32,33,43],togeth:83,toler:31,tool:[30,104,107,109,126],toolchain:124,topic:87,topk:18,toward:52,train:[25,26,31,34,37,39,42,70,78,92,109,110,111,112,113,114,118,120],trainer:[25,31,36,38,39,41,109,112],tran:4,trans_full_matrix_project:4,transform:88,translat:69,transpil:[42,43,44,52,60,71],transpos:18,tune:[107,118],ture:51,two:27,type:[41,67,91,101],uci_h:10,uniform:[16,89],unit:[61,62,63,99,100,101,118],unpack:69,updat:[26,37,38,104,111,112],usag:[28,45,68,69,78,103,105],use:[34,78,103],user:31,using:98,util:3,valu:77,value_print:3,vardesc:90,variabl:[28,60,77,79,83,90],vector:118,verifi:112,version:[40,50,94],vgg_16_network:5,volum:112,vpc:112,warp_ctc:4,warpctc:18,weightnormparamattr:21,what:[34,38,98,107],when:[38,83],whileguard:18,whl:94,why:[50,51,72,78,79,89,107],wmt14:10,work:86,worker:40,workflow:99,wrapper:100,write:[99,100,101,102,104],www:104,xavier:16,yaml:113,your:[92,102],zero:18}}) \ No newline at end of file diff --git a/develop/doc/survey/cluster_bootstrapping_tools.html b/develop/doc/survey/cluster_bootstrapping_tools.html index 8a54bebca7..5286ba6b99 100644 --- a/develop/doc/survey/cluster_bootstrapping_tools.html +++ b/develop/doc/survey/cluster_bootstrapping_tools.html @@ -159,17 +159,17 @@
  • Training and Inference
  • Fluid
  • diff --git a/develop/doc_cn/_sources/api/v2/fluid/data_feeder.rst.txt b/develop/doc_cn/_sources/api/v2/fluid/data_feeder.rst.txt index 0fa78f7dfb..a591c7334f 100644 --- a/develop/doc_cn/_sources/api/v2/fluid/data_feeder.rst.txt +++ b/develop/doc_cn/_sources/api/v2/fluid/data_feeder.rst.txt @@ -1,9 +1,14 @@ +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! + =========== -DataFeeder +data_feeder =========== DataFeeder ------------ -.. automodule:: paddle.v2.fluid.data_feeder - :members: DataFeeder +---------- + +.. autoclass:: paddle.v2.fluid.data_feeder.DataFeeder + :members: :noindex: + diff --git a/develop/doc_cn/_sources/api/v2/fluid/evaluator.rst.txt b/develop/doc_cn/_sources/api/v2/fluid/evaluator.rst.txt index a23f3301d0..00dcecfd62 100644 --- a/develop/doc_cn/_sources/api/v2/fluid/evaluator.rst.txt +++ b/develop/doc_cn/_sources/api/v2/fluid/evaluator.rst.txt @@ -1,9 +1,21 @@ -=========== -Evaluator -=========== - -Evaluator ------------ -.. automodule:: paddle.v2.fluid.evaluator - :members: Evaluator +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! + +========= +evaluator +========= + +Accuracy +-------- + +.. autoclass:: paddle.v2.fluid.evaluator.Accuracy + :members: :noindex: + +ChunkEvaluator +-------------- + +.. autoclass:: paddle.v2.fluid.evaluator.ChunkEvaluator + :members: + :noindex: + diff --git a/develop/doc_cn/_sources/api/v2/fluid/executor.rst.txt b/develop/doc_cn/_sources/api/v2/fluid/executor.rst.txt index 3a283538c1..a028f6283f 100644 --- a/develop/doc_cn/_sources/api/v2/fluid/executor.rst.txt +++ b/develop/doc_cn/_sources/api/v2/fluid/executor.rst.txt @@ -1,9 +1,32 @@ -=========== -Executor -=========== +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! + +======== +executor +======== Executor +-------- + +.. autoclass:: paddle.v2.fluid.executor.Executor + :members: + :noindex: + +global_scope +------------ + +.. autofunction:: paddle.v2.fluid.executor.global_scope + :noindex: + +scope_guard ----------- -.. automodule:: paddle.v2.fluid.executor - :members: Executor + +.. autofunction:: paddle.v2.fluid.executor.scope_guard + :noindex: + +switch_scope +------------ + +.. autofunction:: paddle.v2.fluid.executor.switch_scope :noindex: + diff --git a/develop/doc_cn/_sources/api/v2/fluid/initializer.rst.txt b/develop/doc_cn/_sources/api/v2/fluid/initializer.rst.txt index 8f587837e9..c38be033ff 100644 --- a/develop/doc_cn/_sources/api/v2/fluid/initializer.rst.txt +++ b/develop/doc_cn/_sources/api/v2/fluid/initializer.rst.txt @@ -1,50 +1,35 @@ +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! + =========== -Initializer +initializer =========== +Constant +-------- - -Initializer ------------ -.. automodule:: paddle.v2.fluid.initializer - :members: Initializer - :noindex: - - - -ConstantInitializer -------------------- -.. automodule:: paddle.v2.fluid.initializer - :members: ConstantInitializer +.. autoclass:: paddle.v2.fluid.initializer.Constant + :members: :noindex: +Uniform +------- - -UniformInitializer ------------------- -.. automodule:: paddle.v2.fluid.initializer - :members: UniformInitializer - :noindex: - - - -NormalInitializer ------------------ -.. automodule:: paddle.v2.fluid.initializer - :members: NormalInitializer +.. autoclass:: paddle.v2.fluid.initializer.Uniform + :members: :noindex: +Normal +------ -XavierInitializer ------------------ -.. automodule:: paddle.v2.fluid.initializer - :members: XavierInitializer +.. autoclass:: paddle.v2.fluid.initializer.Normal + :members: :noindex: +Xavier +------ -MSRAInitializer ---------------- -.. automodule:: paddle.v2.fluid.initializer - :members: MSRAInitializer +.. autoclass:: paddle.v2.fluid.initializer.Xavier + :members: :noindex: diff --git a/develop/doc_cn/_sources/api/v2/fluid/io.rst.txt b/develop/doc_cn/_sources/api/v2/fluid/io.rst.txt index 67f68c4e9e..37c9c273e3 100644 --- a/develop/doc_cn/_sources/api/v2/fluid/io.rst.txt +++ b/develop/doc_cn/_sources/api/v2/fluid/io.rst.txt @@ -1,10 +1,61 @@ -=========== -IO -=========== +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! +== +io +== +save_vars +--------- -is_parameter +.. autofunction:: paddle.v2.fluid.io.save_vars + :noindex: + +save_params ----------- -.. autofunction:: paddle.v2.fluid.io.is_parameter + +.. autofunction:: paddle.v2.fluid.io.save_params + :noindex: + +save_persistables +----------------- + +.. autofunction:: paddle.v2.fluid.io.save_persistables + :noindex: + +load_vars +--------- + +.. autofunction:: paddle.v2.fluid.io.load_vars + :noindex: + +load_params +----------- + +.. autofunction:: paddle.v2.fluid.io.load_params :noindex: + +load_persistables +----------------- + +.. autofunction:: paddle.v2.fluid.io.load_persistables + :noindex: + +save_inference_model +-------------------- + +.. autofunction:: paddle.v2.fluid.io.save_inference_model + :noindex: + +load_inference_model +-------------------- + +.. autofunction:: paddle.v2.fluid.io.load_inference_model + :noindex: + +get_inference_program +--------------------- + +.. autofunction:: paddle.v2.fluid.io.get_inference_program + :noindex: + diff --git a/develop/doc_cn/_sources/api/v2/fluid/layers.rst.txt b/develop/doc_cn/_sources/api/v2/fluid/layers.rst.txt index 231ec2d4ba..e24613b94b 100644 --- a/develop/doc_cn/_sources/api/v2/fluid/layers.rst.txt +++ b/develop/doc_cn/_sources/api/v2/fluid/layers.rst.txt @@ -1,546 +1,799 @@ -========== -Layers -========== +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! +====== +layers +====== -fc ---- -.. autofunction:: paddle.v2.fluid.layers.fc +control_flow +============ + +split_lod_tensor +---------------- + +.. autofunction:: paddle.v2.fluid.layers.split_lod_tensor :noindex: -embedding ---------- -.. autofunction:: paddle.v2.fluid.layers.embedding +merge_lod_tensor +---------------- + +.. autofunction:: paddle.v2.fluid.layers.merge_lod_tensor :noindex: -dynamic_lstm ------------- -.. autofunction:: paddle.v2.fluid.layers.dynamic_lstm +BlockGuard +---------- + +.. autoclass:: paddle.v2.fluid.layers.BlockGuard + :members: :noindex: -dynamic_lstmp -------------- -.. autofunction:: paddle.v2.fluid.layers.dynamic_lstmp +BlockGuardWithCompletion +------------------------ + +.. autoclass:: paddle.v2.fluid.layers.BlockGuardWithCompletion + :members: :noindex: -dynamic_gru ------------ -.. autofunction:: paddle.v2.fluid.layers.dynamic_gru +StaticRNNMemoryLink +------------------- + +.. autoclass:: paddle.v2.fluid.layers.StaticRNNMemoryLink + :members: :noindex: -data ----- -.. autofunction:: paddle.v2.fluid.layers.data +WhileGuard +---------- + +.. autoclass:: paddle.v2.fluid.layers.WhileGuard + :members: :noindex: -mean ----- -.. autofunction:: paddle.v2.fluid.layers.mean +While +----- + +.. autoclass:: paddle.v2.fluid.layers.While + :members: :noindex: -mul ---- -.. autofunction:: paddle.v2.fluid.layers.mul +lod_rank_table +-------------- + +.. autofunction:: paddle.v2.fluid.layers.lod_rank_table :noindex: -elementwise_add ---------------- -.. autofunction:: paddle.v2.fluid.layers.elementwise_add +max_sequence_len +---------------- + +.. autofunction:: paddle.v2.fluid.layers.max_sequence_len :noindex: -elementwise_sub ---------------- -.. autofunction:: paddle.v2.fluid.layers.elementwise_sub +topk +---- + +.. autofunction:: paddle.v2.fluid.layers.topk :noindex: -elementwise_mul ---------------- -.. autofunction:: paddle.v2.fluid.layers.elementwise_mul +lod_tensor_to_array +------------------- + +.. autofunction:: paddle.v2.fluid.layers.lod_tensor_to_array :noindex: -elementwise_div ---------------- -.. autofunction:: paddle.v2.fluid.layers.elementwise_div +array_to_lod_tensor +------------------- + +.. autofunction:: paddle.v2.fluid.layers.array_to_lod_tensor :noindex: +increment +--------- -dropout -------- -.. autofunction:: paddle.v2.fluid.layers.dropout +.. autofunction:: paddle.v2.fluid.layers.increment :noindex: +array_write +----------- -reshape --------- -.. autofunction:: paddle.v2.fluid.layers.reshape +.. autofunction:: paddle.v2.fluid.layers.array_write :noindex: +create_array +------------ -sigmoid +.. autofunction:: paddle.v2.fluid.layers.create_array + :noindex: + +less_than --------- -.. autofunction:: paddle.v2.fluid.layers.sigmoid + +.. autofunction:: paddle.v2.fluid.layers.less_than :noindex: +array_read +---------- -scale ---------- -.. autofunction:: paddle.v2.fluid.layers.scale +.. autofunction:: paddle.v2.fluid.layers.array_read + :noindex: + +shrink_memory +------------- + +.. autofunction:: paddle.v2.fluid.layers.shrink_memory :noindex: +array_length +------------ -transpose +.. autofunction:: paddle.v2.fluid.layers.array_length + :noindex: + +IfElse +------ + +.. autoclass:: paddle.v2.fluid.layers.IfElse + :members: + :noindex: + +DynamicRNN +---------- + +.. autoclass:: paddle.v2.fluid.layers.DynamicRNN + :members: + :noindex: + +ConditionalBlock +---------------- + +.. autoclass:: paddle.v2.fluid.layers.ConditionalBlock + :members: + :noindex: + +StaticRNN --------- -.. autofunction:: paddle.v2.fluid.layers.transpose + +.. autoclass:: paddle.v2.fluid.layers.StaticRNN + :members: :noindex: +reorder_lod_tensor_by_rank +-------------------------- -sigmoid_cross_entropy_with_logits ---------------------------------- -.. autofunction:: paddle.v2.fluid.layers.esigmoid_cross_entropy_with_logits +.. autofunction:: paddle.v2.fluid.layers.reorder_lod_tensor_by_rank :noindex: +ParallelDo +---------- -cast +.. autoclass:: paddle.v2.fluid.layers.ParallelDo + :members: + :noindex: + +Print +----- + +.. autofunction:: paddle.v2.fluid.layers.Print + :noindex: + +device +====== + +get_places +---------- + +.. autofunction:: paddle.v2.fluid.layers.get_places + :noindex: + +io +== + +data ---- -.. autofunction:: paddle.v2.fluid.layers.cast + +.. autofunction:: paddle.v2.fluid.layers.data :noindex: +BlockGuardServ +-------------- -concat -------- -.. autofunction:: paddle.v2.fluid.layers.concat +.. autoclass:: paddle.v2.fluid.layers.BlockGuardServ + :members: :noindex: +ListenAndServ +------------- -sums +.. autoclass:: paddle.v2.fluid.layers.ListenAndServ + :members: + :noindex: + +Send ---- -.. autofunction:: paddle.v2.fluid.layers.sums + +.. autofunction:: paddle.v2.fluid.layers.Send :noindex: +nn +== -linear_chain_crf ----------------- -.. autofunction:: paddle.v2.fluid.layers.linear_chain_crf +fc +-- + +.. autofunction:: paddle.v2.fluid.layers.fc :noindex: +embedding +--------- -assign -------- .. autofunction:: paddle.v2.fluid.layers.embedding :noindex: +dynamic_lstm +------------ -split_lod_tensor ----------------- -.. autofunction:: paddle.v2.fluid.layers.split_lod_tensor +.. autofunction:: paddle.v2.fluid.layers.dynamic_lstm :noindex: +dynamic_lstmp +------------- -merge_lod_tensor +.. autofunction:: paddle.v2.fluid.layers.dynamic_lstmp + :noindex: + +dynamic_gru +----------- + +.. autofunction:: paddle.v2.fluid.layers.dynamic_gru + :noindex: + +gru_unit +-------- + +.. autofunction:: paddle.v2.fluid.layers.gru_unit + :noindex: + +linear_chain_crf ---------------- -.. autofunction:: paddle.v2.fluid.layers.merge_lod_tensor + +.. autofunction:: paddle.v2.fluid.layers.linear_chain_crf + :noindex: + +crf_decoding +------------ + +.. autofunction:: paddle.v2.fluid.layers.crf_decoding :noindex: cos_sim --------- +------- + .. autofunction:: paddle.v2.fluid.layers.cos_sim :noindex: - cross_entropy ------------- + .. autofunction:: paddle.v2.fluid.layers.cross_entropy :noindex: - - square_error_cost ----------------- + .. autofunction:: paddle.v2.fluid.layers.square_error_cost :noindex: - accuracy ---------- +-------- + .. autofunction:: paddle.v2.fluid.layers.accuracy :noindex: +chunk_eval +---------- + +.. autofunction:: paddle.v2.fluid.layers.chunk_eval + :noindex: sequence_conv ------------- + .. autofunction:: paddle.v2.fluid.layers.sequence_conv :noindex: - conv2d ------ + .. autofunction:: paddle.v2.fluid.layers.conv2d :noindex: - sequence_pool ------------- + .. autofunction:: paddle.v2.fluid.layers.sequence_pool :noindex: +pool2d +------ -sequence_first_step -------------------- -.. autofunction:: paddle.v2.fluid.layers.sequence_first_step +.. autofunction:: paddle.v2.fluid.layers.pool2d :noindex: +batch_norm +---------- + +.. autofunction:: paddle.v2.fluid.layers.batch_norm + :noindex: -sequence_last_step +beam_search_decode ------------------ -.. autofunction:: paddle.v2.fluid.layers.sequence_last_step + +.. autofunction:: paddle.v2.fluid.layers.beam_search_decode :noindex: +conv2d_transpose +---------------- -pool2d ------- -.. autofunction:: paddle.v2.fluid.layers.pool2d +.. autofunction:: paddle.v2.fluid.layers.conv2d_transpose :noindex: +sequence_expand +--------------- -batch_norm +.. autofunction:: paddle.v2.fluid.layers.sequence_expand + :noindex: + +lstm_unit +--------- + +.. autofunction:: paddle.v2.fluid.layers.lstm_unit + :noindex: + +reduce_sum ---------- -.. autofunction:: paddle.v2.fluid.layers.batch_norm + +.. autofunction:: paddle.v2.fluid.layers.reduce_sum + :noindex: + +reduce_mean +----------- + +.. autofunction:: paddle.v2.fluid.layers.reduce_mean :noindex: +reduce_max +---------- + +.. autofunction:: paddle.v2.fluid.layers.reduce_max + :noindex: -beam_search_decode +reduce_min +---------- + +.. autofunction:: paddle.v2.fluid.layers.reduce_min + :noindex: + +sequence_first_step +------------------- + +.. autofunction:: paddle.v2.fluid.layers.sequence_first_step + :noindex: + +sequence_last_step ------------------ -.. autofunction:: paddle.v2.fluid.layers.beam_search_decode + +.. autofunction:: paddle.v2.fluid.layers.sequence_last_step + :noindex: + +dropout +------- + +.. autofunction:: paddle.v2.fluid.layers.dropout :noindex: +split +----- -lod_rank_table --------------- -.. autofunction:: paddle.v2.fluid.layers.lod_rank_table +.. autofunction:: paddle.v2.fluid.layers.split :noindex: +ctc_greedy_decoder +------------------ -max_sequence_len ----------------- -.. autofunction:: paddle.v2.fluid.layers.max_sequence_len +.. autofunction:: paddle.v2.fluid.layers.ctc_greedy_decoder :noindex: +edit_distance +------------- -topk ------ -.. autofunction:: paddle.v2.fluid.layers.topk +.. autofunction:: paddle.v2.fluid.layers.edit_distance :noindex: +l2_normalize +------------ -lod_tensor_to_array -------------------- -.. autofunction:: paddle.v2.fluid.layers.lod_tensor_to_array +.. autofunction:: paddle.v2.fluid.layers.l2_normalize :noindex: +matmul +------ - -array_to_lod_tensor -------------------- -.. autofunction:: paddle.v2.fluid.layers.array_to_lod_tensor +.. autofunction:: paddle.v2.fluid.layers.matmul :noindex: +warpctc +------- +.. autofunction:: paddle.v2.fluid.layers.warpctc + :noindex: +sequence_reshape +---------------- -fill_constant -------------- -.. autofunction:: paddle.v2.fluid.layers.fill_constant +.. autofunction:: paddle.v2.fluid.layers.sequence_reshape :noindex: +transpose +--------- +.. autofunction:: paddle.v2.fluid.layers.transpose + :noindex: -fill_constant_batch_size_like ------------------------------ -.. autofunction:: paddle.v2.fluid.layers.fill_constant_batch_size_like +im2sequence +----------- + +.. autofunction:: paddle.v2.fluid.layers.im2sequence :noindex: +nce +--- -ones ----- -.. autofunction:: paddle.v2.fluid.layers.ones +.. autofunction:: paddle.v2.fluid.layers.nce :noindex: +beam_search +----------- -zeros ------ -.. autofunction:: paddle.v2.fluid.layers.zeros +.. autofunction:: paddle.v2.fluid.layers.beam_search :noindex: +row_conv +-------- -increment ---------- -.. autofunction:: paddle.v2.fluid.layers.increment +.. autofunction:: paddle.v2.fluid.layers.row_conv :noindex: +multiplex +--------- -array_write ------------ -.. autofunction:: paddle.v2.fluid.layers.array_write +.. autofunction:: paddle.v2.fluid.layers.multiplex :noindex: +ops +=== +mean +---- -create_array ------------- -.. autofunction:: paddle.v2.fluid.layers.create_array +.. autofunction:: paddle.v2.fluid.layers.mean :noindex: +mul +--- -less_than ---------- -.. autofunction:: paddle.v2.fluid.layers.less_than +.. autofunction:: paddle.v2.fluid.layers.mul :noindex: +reshape +------- -array_read ----------- -.. autofunction:: paddle.v2.fluid.layers.array_read +.. autofunction:: paddle.v2.fluid.layers.reshape :noindex: +scale +----- -shrink_memory --------------- -.. autofunction:: paddle.v2.fluid.layers.shrink_memory +.. autofunction:: paddle.v2.fluid.layers.scale :noindex: +sigmoid_cross_entropy_with_logits +--------------------------------- -array_length -------------- -.. autofunction:: paddle.v2.fluid.layers.array_length +.. autofunction:: paddle.v2.fluid.layers.sigmoid_cross_entropy_with_logits :noindex: +elementwise_add +--------------- -conv2d_transpose ----------------- -.. autofunction:: paddle.v2.fluid.layers.conv2d_transpose +.. autofunction:: paddle.v2.fluid.layers.elementwise_add :noindex: - -sequence_expand +elementwise_div --------------- -.. autofunction:: paddle.v2.fluid.layers.sequence_expand + +.. autofunction:: paddle.v2.fluid.layers.elementwise_div :noindex: +elementwise_sub +--------------- -gru_unit --------- -.. autofunction:: paddle.v2.fluid.layers.gru_unit +.. autofunction:: paddle.v2.fluid.layers.elementwise_sub :noindex: +elementwise_mul +--------------- -lstm_unit ---------- -.. autofunction:: paddle.v2.fluid.layers.lstm_unit +.. autofunction:: paddle.v2.fluid.layers.elementwise_mul :noindex: +elementwise_max +--------------- -sequence_softmax ----------------- -.. autofunction:: paddle.v2.fluid.layers.sequence_softmax +.. autofunction:: paddle.v2.fluid.layers.elementwise_max :noindex: +elementwise_min +--------------- -reduce_sum ----------- -.. autofunction:: paddle.v2.fluid.layers.reduce_sum +.. autofunction:: paddle.v2.fluid.layers.elementwise_min :noindex: +elementwise_pow +--------------- -reduce_mean ------------ -.. autofunction:: paddle.v2.fluid.layers.reduce_mean +.. autofunction:: paddle.v2.fluid.layers.elementwise_pow :noindex: +clip +---- -reduce_max ----------- -.. autofunction:: paddle.v2.fluid.layers.reduce_max +.. autofunction:: paddle.v2.fluid.layers.clip :noindex: +clip_by_norm +------------ -reduce_min ----------- -.. autofunction:: paddle.v2.fluid.layers.reduce_min +.. autofunction:: paddle.v2.fluid.layers.clip_by_norm :noindex: +sequence_softmax +---------------- -split ------ -.. autofunction:: paddle.v2.fluid.layers.split +.. autofunction:: paddle.v2.fluid.layers.sequence_softmax :noindex: +sigmoid +------- -matmul ------- -.. autofunction:: paddle.v2.fluid.layers.matmul +.. autofunction:: paddle.v2.fluid.layers.sigmoid :noindex: logsigmoid ---------- + .. autofunction:: paddle.v2.fluid.layers.logsigmoid :noindex: exp --- + .. autofunction:: paddle.v2.fluid.layers.exp :noindex: relu ---- + .. autofunction:: paddle.v2.fluid.layers.relu :noindex: tanh ---- + .. autofunction:: paddle.v2.fluid.layers.tanh :noindex: tanh_shrink ----------- + .. autofunction:: paddle.v2.fluid.layers.tanh_shrink :noindex: softshrink ---------- + .. autofunction:: paddle.v2.fluid.layers.softshrink :noindex: sqrt ---- + .. autofunction:: paddle.v2.fluid.layers.sqrt :noindex: abs ----- +--- + .. autofunction:: paddle.v2.fluid.layers.abs :noindex: ceil ---- + .. autofunction:: paddle.v2.fluid.layers.ceil :noindex: floor ----- + .. autofunction:: paddle.v2.fluid.layers.floor :noindex: round ----- + .. autofunction:: paddle.v2.fluid.layers.round :noindex: reciprocal ---------- + .. autofunction:: paddle.v2.fluid.layers.reciprocal :noindex: log --- + .. autofunction:: paddle.v2.fluid.layers.log :noindex: square ------ + .. autofunction:: paddle.v2.fluid.layers.square :noindex: softplus -------- + .. autofunction:: paddle.v2.fluid.layers.softplus :noindex: softsign ---------- +-------- + .. autofunction:: paddle.v2.fluid.layers.softsign :noindex: brelu ----- + .. autofunction:: paddle.v2.fluid.layers.brelu :noindex: leaky_relu ---------- + .. autofunction:: paddle.v2.fluid.layers.leaky_relu :noindex: soft_relu --------- + .. autofunction:: paddle.v2.fluid.layers.soft_relu :noindex: elu ----- +--- + .. autofunction:: paddle.v2.fluid.layers.elu :noindex: relu6 ----- + .. autofunction:: paddle.v2.fluid.layers.relu6 :noindex: pow ----- +--- + .. autofunction:: paddle.v2.fluid.layers.pow :noindex: +stanh +----- + +.. autofunction:: paddle.v2.fluid.layers.stanh + :noindex: + hard_shrink ----------- + .. autofunction:: paddle.v2.fluid.layers.hard_shrink :noindex: thresholded_relu ---------------- + .. autofunction:: paddle.v2.fluid.layers.thresholded_relu :noindex: hard_sigmoid -------------- +------------ + .. autofunction:: paddle.v2.fluid.layers.hard_sigmoid :noindex: swish ------- +----- + .. autofunction:: paddle.v2.fluid.layers.swish :noindex: -im2sequence +tensor +====== + +create_tensor +------------- + +.. autofunction:: paddle.v2.fluid.layers.create_tensor + :noindex: + +create_parameter +---------------- + +.. autofunction:: paddle.v2.fluid.layers.create_parameter + :noindex: + +create_global_var +----------------- + +.. autofunction:: paddle.v2.fluid.layers.create_global_var + :noindex: + +cast +---- + +.. autofunction:: paddle.v2.fluid.layers.cast + :noindex: + +concat ------ -.. autofunction:: paddle.v2.fluid.layers.im2sequence + +.. autofunction:: paddle.v2.fluid.layers.concat :noindex: -edit_distance ---------------- -.. autofunction:: paddle.v2.fluid.layers.edit_distance_error +sums +---- + +.. autofunction:: paddle.v2.fluid.layers.sums :noindex: -ctc_greedy_decoder ---------------- -.. autofunction:: paddle.v2.fluid.layers.ctc_greedy_decoder +assign +------ + +.. autofunction:: paddle.v2.fluid.layers.assign :noindex: -l2_normalize ------------- -.. autofunction:: paddle.v2.fluid.layers.l2_normalize +fill_constant_batch_size_like +----------------------------- + +.. autofunction:: paddle.v2.fluid.layers.fill_constant_batch_size_like :noindex: -sequence_reshape ----------------- -.. autofunction:: paddle.v2.fluid.layers.sequence_reshape +fill_constant +------------- + +.. autofunction:: paddle.v2.fluid.layers.fill_constant :noindex: -row_conv --------- -.. autofunction:: paddle.v2.fluid.layers.row_conv +ones +---- + +.. autofunction:: paddle.v2.fluid.layers.ones :noindex: -multiplex ---------- -.. autofunction:: paddle.v2.fluid.layers.multiplex +zeros +----- + +.. autofunction:: paddle.v2.fluid.layers.zeros :noindex: + diff --git a/develop/doc_cn/_sources/api/v2/fluid/nets.rst.txt b/develop/doc_cn/_sources/api/v2/fluid/nets.rst.txt index 500019bc50..015581b766 100644 --- a/develop/doc_cn/_sources/api/v2/fluid/nets.rst.txt +++ b/develop/doc_cn/_sources/api/v2/fluid/nets.rst.txt @@ -1,33 +1,31 @@ -=========== -Nets -=========== +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! + +==== +nets +==== simple_img_conv_pool -------------------- -.. autofunction:: paddle.v2.fluid.nets.simple_img_conv_pool - :noindex: - -img_conv_group ---------------- -.. autofunction:: paddle.v2.fluid.nets.img_conv_group +.. autofunction:: paddle.v2.fluid.nets.simple_img_conv_pool :noindex: - sequence_conv_pool ------------------ + .. autofunction:: paddle.v2.fluid.nets.sequence_conv_pool :noindex: - glu --- + .. autofunction:: paddle.v2.fluid.nets.glu :noindex: - scaled_dot_product_attention ---------------------------- + .. autofunction:: paddle.v2.fluid.nets.scaled_dot_product_attention :noindex: diff --git a/develop/doc_cn/_sources/api/v2/fluid/optimizer.rst.txt b/develop/doc_cn/_sources/api/v2/fluid/optimizer.rst.txt index 19b4940f08..1691ebb9a7 100644 --- a/develop/doc_cn/_sources/api/v2/fluid/optimizer.rst.txt +++ b/develop/doc_cn/_sources/api/v2/fluid/optimizer.rst.txt @@ -1,54 +1,49 @@ -=========== -Optimizer -=========== - -Optimizer ------------ -.. automodule:: paddle.v2.fluid.optimizer - :members: Optimizer - :noindex: +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! +========= +optimizer +========= -SGDOptimizer ------------ -.. automodule:: paddle.v2.fluid.optimizer - :members: SGDOptimizer - :noindex: +SGD +--- +.. autoclass:: paddle.v2.fluid.optimizer.SGD + :members: + :noindex: +Momentum +-------- -MomentumOptimizer ------------------ -.. automodule:: paddle.v2.fluid.optimizer - :members: MomentumOptimizer +.. autoclass:: paddle.v2.fluid.optimizer.Momentum + :members: :noindex: +Adagrad +------- - -AdagradOptimizer ----------------- -.. automodule:: paddle.v2.fluid.optimizer - :members: AdagradOptimizer +.. autoclass:: paddle.v2.fluid.optimizer.Adagrad + :members: :noindex: +Adam +---- -AdamOptimizer -------------- -.. automodule:: paddle.v2.fluid.optimizer - :members: AdamOptimizer +.. autoclass:: paddle.v2.fluid.optimizer.Adam + :members: :noindex: +Adamax +------ -AdamaxOptimizer ------------ -.. automodule:: paddle.v2.fluid.optimizer - :members: AdamaxOptimizer +.. autoclass:: paddle.v2.fluid.optimizer.Adamax + :members: :noindex: +DecayedAdagrad +-------------- -DecayedAdagradOptimizer ------------------------ -.. automodule:: paddle.v2.fluid.optimizer - :members: DecayedAdagradOptimizer +.. autoclass:: paddle.v2.fluid.optimizer.DecayedAdagrad + :members: :noindex: diff --git a/develop/doc_cn/_sources/api/v2/fluid/param_attr.rst.txt b/develop/doc_cn/_sources/api/v2/fluid/param_attr.rst.txt index ca0c8af9e8..8083d0d858 100644 --- a/develop/doc_cn/_sources/api/v2/fluid/param_attr.rst.txt +++ b/develop/doc_cn/_sources/api/v2/fluid/param_attr.rst.txt @@ -1,11 +1,21 @@ -=========== +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! + +========== +param_attr +========== + ParamAttr -=========== +--------- +.. autoclass:: paddle.v2.fluid.param_attr.ParamAttr + :members: + :noindex: +WeightNormParamAttr +------------------- -ParamAttr ------------ -.. automodule:: paddle.v2.fluid.param_attr - :members: ParamAttr +.. autoclass:: paddle.v2.fluid.param_attr.WeightNormParamAttr + :members: :noindex: + diff --git a/develop/doc_cn/_sources/api/v2/fluid/profiler.rst.txt b/develop/doc_cn/_sources/api/v2/fluid/profiler.rst.txt index 7d4042d1f4..4a1ff7cb69 100644 --- a/develop/doc_cn/_sources/api/v2/fluid/profiler.rst.txt +++ b/develop/doc_cn/_sources/api/v2/fluid/profiler.rst.txt @@ -1,10 +1,25 @@ -=========== -Profiler -=========== +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! +======== +profiler +======== +cuda_profiler +------------- -Profiler ------------ .. autofunction:: paddle.v2.fluid.profiler.cuda_profiler :noindex: + +reset_profiler +-------------- + +.. autofunction:: paddle.v2.fluid.profiler.reset_profiler + :noindex: + +profiler +-------- + +.. autofunction:: paddle.v2.fluid.profiler.profiler + :noindex: + diff --git a/develop/doc_cn/_sources/api/v2/fluid/regularizer.rst.txt b/develop/doc_cn/_sources/api/v2/fluid/regularizer.rst.txt index 868e225ed3..2c17d15599 100644 --- a/develop/doc_cn/_sources/api/v2/fluid/regularizer.rst.txt +++ b/develop/doc_cn/_sources/api/v2/fluid/regularizer.rst.txt @@ -1,25 +1,27 @@ +.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}` + !DO NOT EDIT THIS FILE MANUALLY! + =========== -Regularizer +regularizer =========== -WeightDecayRegularizer ----------------------- -.. automodule:: paddle.v2.fluid.regularizer - :members: WeightDecayRegularizer - :noindex: - +append_regularization_ops +------------------------- -L2DecayRegularizer ------------------- -.. automodule:: paddle.v2.fluid.regularizer - :members: L2DecayRegularizer +.. autofunction:: paddle.v2.fluid.regularizer.append_regularization_ops :noindex: +L1Decay +------- +.. autoclass:: paddle.v2.fluid.regularizer.L1Decay + :members: + :noindex: -L1DecayRegularizer -------------------- -.. automodule:: paddle.v2.fluid.regularizer - :members: L1DecayRegularizer +L2Decay +------- +.. autoclass:: paddle.v2.fluid.regularizer.L2Decay + :members: + :noindex: diff --git a/develop/doc_cn/api/index_cn.html b/develop/doc_cn/api/index_cn.html index e630b53aeb..92ad7605dd 100644 --- a/develop/doc_cn/api/index_cn.html +++ b/develop/doc_cn/api/index_cn.html @@ -172,17 +172,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/api/v2/config/activation.html b/develop/doc_cn/api/v2/config/activation.html index b4e9d3d8e4..55bc0e3171 100644 --- a/develop/doc_cn/api/v2/config/activation.html +++ b/develop/doc_cn/api/v2/config/activation.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/api/v2/config/attr.html b/develop/doc_cn/api/v2/config/attr.html index f4118fe1c2..84bcd0e6f2 100644 --- a/develop/doc_cn/api/v2/config/attr.html +++ b/develop/doc_cn/api/v2/config/attr.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/api/v2/config/evaluators.html b/develop/doc_cn/api/v2/config/evaluators.html index 6a3dd7b7ff..110f99429d 100644 --- a/develop/doc_cn/api/v2/config/evaluators.html +++ b/develop/doc_cn/api/v2/config/evaluators.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/api/v2/config/layer.html b/develop/doc_cn/api/v2/config/layer.html index d2fda21af9..87ee264489 100644 --- a/develop/doc_cn/api/v2/config/layer.html +++ b/develop/doc_cn/api/v2/config/layer.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/api/v2/config/networks.html b/develop/doc_cn/api/v2/config/networks.html index 6435474c51..d97762c6ee 100644 --- a/develop/doc_cn/api/v2/config/networks.html +++ b/develop/doc_cn/api/v2/config/networks.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/api/v2/config/optimizer.html b/develop/doc_cn/api/v2/config/optimizer.html index 2010c91abc..8391ad321f 100644 --- a/develop/doc_cn/api/v2/config/optimizer.html +++ b/develop/doc_cn/api/v2/config/optimizer.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/api/v2/config/pooling.html b/develop/doc_cn/api/v2/config/pooling.html index a8aa37b0f5..3dcaa73592 100644 --- a/develop/doc_cn/api/v2/config/pooling.html +++ b/develop/doc_cn/api/v2/config/pooling.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/api/v2/data.html b/develop/doc_cn/api/v2/data.html index 400ae40c63..7a7a9d88c4 100644 --- a/develop/doc_cn/api/v2/data.html +++ b/develop/doc_cn/api/v2/data.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/api/v2/data/data_reader.html b/develop/doc_cn/api/v2/data/data_reader.html index 4ff1e824ed..683de17006 100644 --- a/develop/doc_cn/api/v2/data/data_reader.html +++ b/develop/doc_cn/api/v2/data/data_reader.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/api/v2/data/dataset.html b/develop/doc_cn/api/v2/data/dataset.html index 634ab6b609..0243e7ae1c 100644 --- a/develop/doc_cn/api/v2/data/dataset.html +++ b/develop/doc_cn/api/v2/data/dataset.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/api/v2/data/image.html b/develop/doc_cn/api/v2/data/image.html index 271b20e7f4..20298b47d8 100644 --- a/develop/doc_cn/api/v2/data/image.html +++ b/develop/doc_cn/api/v2/data/image.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/api/v2/fluid.html b/develop/doc_cn/api/v2/fluid.html index c90e71492d..acc7de0a9e 100644 --- a/develop/doc_cn/api/v2/fluid.html +++ b/develop/doc_cn/api/v2/fluid.html @@ -34,7 +34,7 @@ - + @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • @@ -237,17 +237,17 @@

    Fluid

    @@ -259,7 +259,7 @@ @@ -235,10 +235,15 @@
    -
    -

    DataFeeder

    -
    -

    DataFeeder

    +
    +

    data_feeder

    +
    +

    DataFeeder

    +
    +
    +class paddle.v2.fluid.data_feeder.DataFeeder(feed_list, place, program=None)
    +
    +
    @@ -249,10 +254,10 @@ diff --git a/develop/doc_cn/api/v2/fluid/evaluator.html b/develop/doc_cn/api/v2/fluid/evaluator.html index 0054570a76..3c964240fb 100644 --- a/develop/doc_cn/api/v2/fluid/evaluator.html +++ b/develop/doc_cn/api/v2/fluid/evaluator.html @@ -8,7 +8,7 @@ - Evaluator — PaddlePaddle 文档 + evaluator — PaddlePaddle 文档 @@ -34,8 +34,8 @@ - - + + @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • @@ -226,7 +226,7 @@
  • Fluid >
  • -
  • Evaluator
  • +
  • evaluator
  • @@ -236,76 +236,24 @@
    -

    Evaluator

    -
    -

    Evaluator

    +

    evaluator

    +
    +

    Accuracy

    -class paddle.v2.fluid.evaluator.Evaluator(name, **kwargs)
    -

    Base Class for all evaluators

    - --- - - - -
    参数:
      -
    • name (str) – The name of evaluator. such as, “accuracy”. Used for generate -temporary variable name.
    • -
    • main_program (Program, optional) – The evaluator should be added to this -main_program. Default default_main_program()
    • -
    • startup_program (Program, optional) – The parameter should be added to this -startup_program. Default default_startup_program()
    • -
    -
    -
    -
    -states
    -

    list – The list of state variables. states will be reset to zero -when reset is invoked.

    -
    - -
    -
    -metrics
    -

    list – The list of metrics variables. They will be calculate -every mini-batch

    -
    - -
    -
    -reset(executor, reset_program=None)
    -

    reset metric states at the begin of each pass/user specified batch

    -
    - -
    -
    -eval(executor, eval_program=None)
    -

    Evaluate the statistics merged by multiple mini-batches.

    +class paddle.v2.fluid.evaluator.Accuracy(input, label, k=1, **kwargs) +

    Average Accuracy for multiple mini-batches.

    -
    +
    +
    +

    ChunkEvaluator

    +
    -create_state(suffix, dtype, shape)
    -

    Create state variable.

    -

    NOTE: It is not a public API.

    - --- - - - -
    参数:
      -
    • suffix (str) – the state suffix.
    • -
    • dtype (str|core.DataType) – the state data type
    • -
    • shape (tuple|list) – the shape of state
    • -
    -
    -

    Returns: State variable

    -
    - +class paddle.v2.fluid.evaluator.ChunkEvaluator(input, label, chunk_scheme, num_chunk_types, excluded_chunk_types=None) +

    Accumulate counter numbers output by chunk_eval from mini-batches and +compute the precision recall and F1-score using the accumulated counter +numbers.

    @@ -318,10 +266,10 @@ every mini-batch

    diff --git a/develop/doc_cn/api/v2/fluid/executor.html b/develop/doc_cn/api/v2/fluid/executor.html index 569e950f28..d1c95576c3 100644 --- a/develop/doc_cn/api/v2/fluid/executor.html +++ b/develop/doc_cn/api/v2/fluid/executor.html @@ -8,7 +8,7 @@ - Executor — PaddlePaddle 文档 + executor — PaddlePaddle 文档 @@ -34,8 +34,8 @@ - - + + @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • @@ -226,7 +226,7 @@
  • Fluid >
  • -
  • Executor
  • +
  • executor
  • @@ -236,9 +236,38 @@
    -

    Executor

    +

    executor

    Executor

    +
    +
    +class paddle.v2.fluid.executor.Executor(places)
    +
    + +
    +
    +

    global_scope

    +
    +
    +paddle.v2.fluid.executor.global_scope()
    +
    + +
    +
    +

    scope_guard

    +
    +
    +paddle.v2.fluid.executor.scope_guard(*args, **kwds)
    +
    + +
    +
    +

    switch_scope

    +
    +
    +paddle.v2.fluid.executor.switch_scope(scope)
    +
    +
    @@ -249,10 +278,10 @@ diff --git a/develop/doc_cn/api/v2/fluid/initializer.html b/develop/doc_cn/api/v2/fluid/initializer.html index 8427e9a108..d302e002ec 100644 --- a/develop/doc_cn/api/v2/fluid/initializer.html +++ b/develop/doc_cn/api/v2/fluid/initializer.html @@ -8,7 +8,7 @@ - Initializer — PaddlePaddle 文档 + initializer — PaddlePaddle 文档 @@ -34,8 +34,8 @@ - - + + @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • @@ -226,7 +226,7 @@
  • Fluid >
  • -
  • Initializer
  • +
  • initializer
  • @@ -236,91 +236,40 @@
    -

    Initializer

    -
    -

    Initializer

    -
    +

    initializer

    +
    +

    Constant

    +
    -class paddle.v2.fluid.initializer.Initializer
    -

    Base class for variable initializers

    -

    Defines the common interface of variable initializers. -They add operations to the init program that are used -to initialize variables. Users should not use this class -directly, but need to use one of its implementations.

    +paddle.v2.fluid.initializer.Constant +

    ConstantInitializer 的别名

    -
    -

    ConstantInitializer

    -
    +
    +

    Uniform

    +
    -class paddle.v2.fluid.initializer.ConstantInitializer(value=0.0)
    -

    Implements the constant initializer

    +paddle.v2.fluid.initializer.Uniform +

    UniformInitializer 的别名

    -
    -

    UniformInitializer

    -
    +
    +

    Normal

    +
    -class paddle.v2.fluid.initializer.UniformInitializer(low=-1.0, high=1.0, seed=0)
    -

    Implements the random uniform distribution initializer

    +paddle.v2.fluid.initializer.Normal +

    NormalInitializer 的别名

    -
    -

    NormalInitializer

    -
    +
    +

    Xavier

    +
    -class paddle.v2.fluid.initializer.NormalInitializer(loc=0.0, scale=1.0, seed=0)
    -

    Implements the random Normal(Gaussian) distribution initializer

    -
    - -
    -
    -

    XavierInitializer

    -
    -
    -class paddle.v2.fluid.initializer.XavierInitializer(uniform=True, fan_in=None, fan_out=None, seed=0)
    -

    Implements the Xavier initializer

    -

    This class implements the Xavier weight initializer from the paper -Understanding the difficulty of training deep feedforward neural -networks[1] by Xavier Glorot and Yoshua Bengio.

    -

    This initializer is designed to keep the scale of the gradients -approximately same in all the layers. In case of Uniform distribution, -the range is [-x, x], where x = sqrt(6 / (fan_in + fan_out)). -In case of Normal distribution, the mean is 0 and the standard deviation -is sqrt(2/ (fan_in + fan_out)).

    -

    References

    -
    -
    [1] Understanding the difficulty of training deep feedforward neural
    -
    networks. International conference on artificial intelligence and -statistics. -(http://proceedings.mlr.press/v9/glorot10a.html)
    -
    -
    - -
    -
    -

    MSRAInitializer

    -
    -
    -class paddle.v2.fluid.initializer.MSRAInitializer(uniform=True, fan_in=None, seed=0)
    -

    Implements the MSRA initializer a.k.a. Kaiming Initializer

    -

    This class implements the weight initialization from the paper -Delving Deep into Rectifiers: Surpassing Human-Level Performance on -ImageNet Classification[1] by Kaiming He, Xiangyu Zhang, Shaoqing Ren -and Jian Sun. This is a robust initialization method that particularly -considers the rectifier nonlinearities. In case of Uniform distribution, -the range is [-x, x], where x = sqrt(6 / fan_in). In case of Normal -distribution, the mean is 0 and the standard deviation -is sqrt(2/ fan_in).

    -

    References

    -
    -
    [1] Delving Deep into Rectifiers: Surpassing Human-Level Performance
    -
    on ImageNet Classification -(https://arxiv.org/abs/1502.01852)
    -
    +paddle.v2.fluid.initializer.Xavier +

    XavierInitializer 的别名

    @@ -333,10 +282,10 @@ is sqrt(2/ fan_in).

    diff --git a/develop/doc_cn/api/v2/fluid/io.html b/develop/doc_cn/api/v2/fluid/io.html index a68b6e9425..0a0c51c9f5 100644 --- a/develop/doc_cn/api/v2/fluid/io.html +++ b/develop/doc_cn/api/v2/fluid/io.html @@ -8,7 +8,7 @@ - IO — PaddlePaddle 文档 + io — PaddlePaddle 文档 @@ -35,7 +35,7 @@ - + @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • @@ -226,7 +226,7 @@
  • Fluid >
  • -
  • IO
  • +
  • io
  • @@ -236,26 +236,162 @@
    -

    IO

    -
    -

    is_parameter

    +

    io

    +
    +

    save_vars

    -paddle.v2.fluid.io.is_parameter(var)
    -

    Check whether the variable is a Parameter.

    -

    This function checks whether the input variable is a Parameter.

    +paddle.v2.fluid.io.save_vars(executor, dirname, main_program=None, vars=None, predicate=None) +

    Save variables to directory by executor.

    - + - + +
    参数:var – The input variable.
    参数:
      +
    • executor – executor that save variable
    • +
    • dirname – directory path
    • +
    • main_program – program. If vars is None, then filter all variables in this
    • +
    +
    返回:boolean result whether the variable is a Parameter.
    +

    program which fit predicate. Default default_main_program. +:param predicate: The Predicate describes a callable that returns a variable +as a bool. If it returns true, the variables will be saved. +:param vars: variables need to be saved. If specify vars, program & predicate +will be ignored +:return: None

    +
    + +
    +
    +

    save_params

    +
    +
    +paddle.v2.fluid.io.save_params(executor, dirname, main_program=None)
    +

    Save all parameters to directory with executor.

    +
    + +
    +
    +

    save_persistables

    +
    +
    +paddle.v2.fluid.io.save_persistables(executor, dirname, main_program=None)
    +

    Save all persistables to directory with executor.

    +
    + +
    +
    +

    load_vars

    +
    +
    +paddle.v2.fluid.io.load_vars(executor, dirname, main_program=None, vars=None, predicate=None)
    +

    Load variables from directory by executor.

    + +++ +
    参数:
      +
    • executor – executor that save variable
    • +
    • dirname – directory path
    • +
    • main_program – program. If vars is None, then filter all variables in this
    • +
    +
    +

    program which fit predicate. Default default_main_program(). +:param predicate: The Predicate describes a callable that returns a variable +as a bool. If it returns true, the variables will be loaded. +:param vars: variables need to be loaded. If specify vars, program & +predicate will be ignored +:return: None

    +
    + +
    +
    +

    load_params

    +
    +
    +paddle.v2.fluid.io.load_params(executor, dirname, main_program=None)
    +

    load all parameters from directory by executor.

    +
    + +
    +
    +

    load_persistables

    +
    +
    +paddle.v2.fluid.io.load_persistables(executor, dirname, main_program=None)
    +

    load all persistables from directory by executor.

    +
    +
    +

    save_inference_model

    +
    +
    +paddle.v2.fluid.io.save_inference_model(dirname, feeded_var_names, target_vars, executor, main_program=None)
    +

    Build a model especially for inference, +and save it to directory by the executor.

    + +++ + + + + + +
    参数:
      +
    • dirname – directory path
    • +
    • feeded_var_names – Names of variables that need to be feeded data during inference
    • +
    • target_vars – Variables from which we can get inference results.
    • +
    • executor – executor that save inference model
    • +
    • main_program – original program, which will be pruned to build the inference model. +Default default_main_program().
    • +
    +
    返回:

    None

    +
    +
    + +
    +
    +

    load_inference_model

    +
    +
    +paddle.v2.fluid.io.load_inference_model(dirname, executor)
    +

    Load inference model from a directory

    + +++ + + + + + +
    参数:
      +
    • dirname – directory path
    • +
    • executor – executor that load inference model
    • +
    +
    返回:

    [program, feed_target_names, fetch_targets] +program: program especially for inference. +feed_target_names: Names of variables that need to feed data +fetch_targets: Variables from which we can get inference results.

    +
    +
    + +
    +
    +

    get_inference_program

    +
    +
    +paddle.v2.fluid.io.get_inference_program(target_vars, main_program=None)
    +
    +
    @@ -269,7 +405,7 @@ Next - Previous + Previous
    diff --git a/develop/doc_cn/api/v2/fluid/layers.html b/develop/doc_cn/api/v2/fluid/layers.html index 7c937ccee1..46fde35a24 100644 --- a/develop/doc_cn/api/v2/fluid/layers.html +++ b/develop/doc_cn/api/v2/fluid/layers.html @@ -8,7 +8,7 @@ - Layers — PaddlePaddle 文档 + layers — PaddlePaddle 文档 @@ -34,7 +34,7 @@ - + @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • @@ -226,7 +226,7 @@
  • Fluid >
  • -
  • Layers
  • +
  • layers
  • @@ -236,127 +236,79 @@
    -

    Layers

    -
    -

    fc

    +

    layers

    +
    +

    control_flow

    +
    +

    split_lod_tensor

    -paddle.v2.fluid.layers.fc(input, size, num_flatten_dims=1, param_attr=None, bias_attr=None, act=None, name=None)
    -

    Fully Connected Layer

    -

    The fully connected layer can take multiple tensors as its inputs. It -creates a variable (one for each input tensor) called weights for each -input tensor, which represents a fully connected weight matrix from -each input unit to each output unit. The fully connected layer -multiplies each input tensor with its coresponding weight to produce -an output Tensor. If multiple input tensors are given, the results of -multiple multiplications will be sumed up. If bias_attr is not None, -a biases variable will be created and added to the output. Finally, -if activation is not None, it will be applied to the output as well.

    -

    This process can be formulated as follows:

    -
    -\[Out = Act({\sum_{i=0}^{N-1}W_iX_i + b})\]
    -

    In the above equation:

    -
      -
    • \(N\): Number of the input.
    • -
    • \(X_i\): The input tensor.
    • -
    • \(W\): The weights created by this layer.
    • -
    • \(b\): The bias parameter created by this layer (if needed).
    • -
    • \(Act\): The activation funtion.
    • -
    • \(Out\): The output tensor.
    • -
    +paddle.v2.fluid.layers.split_lod_tensor(input, mask, level=0) +

    split_lod_tensor

    +

    This function takes in an input that contains the complete lod information, +and takes in a mask which is used to mask certain parts of the input. +The output is the true branch and the false branch with the mask applied to +the input at a certain level in the tensor.

    - - - -
    参数:
      -
    • input (Variable|list) – The input tensor(s) to the fully connected layer.
    • -
    • size (int) – The number of output units in the fully connected layer.
    • -
    • num_flatten_dims (int) – The fc layer can accept an input tensor with more -than two dimensions. If this happens, the -multidimensional tensor will first be flattened -into a 2-dimensional matrix. The parameter -num_flatten_dims determines how the input tensor -is flattened: the first num_flatten_dims -(inclusive, index starts from 1) dimensions will -be flatten to form the first dimension of the -final matrix (height of the matrix), and the rest -rank(X) - num_flatten_dims dimensions are -flattened to form the second dimension of the -final matrix (width of the matrix). For example, -suppose X is a 6-dimensional tensor with a shape -[2, 3, 4, 5, 6], and num_flatten_dims = 3. Then, -the flattened matrix will have a shape -[2 x 3 x 4, 5 x 6] = [24, 30]. By default, -num_flatten_dims is set to 1.
    • -
    • param_attr (ParamAttr|list) – The parameter attribute for learnable -parameters/weights of the fully connected -layer.
    • -
    • param_initializer (ParamAttr|list) – The initializer used for the -weight/parameter. If set None, -XavierInitializer() will be used.
    • -
    • bias_attr (ParamAttr|list) – The parameter attribute for the bias parameter -for this layer. If set None, no bias will be -added to the output units.
    • -
    • bias_initializer (ParamAttr|list) – The initializer used for the bias. -If set None, then ConstantInitializer() -will be used.
    • -
    • act (str) – Activation to be applied to the output of the fully connected -layer.
    • -
    • name (str) – Name/alias of the fully connected layer.
    • +
    • input (tuple|list|None) – The input tensor that contains complete +lod information needed to construct the output.
    • +
    • mask (list) – A bool column vector which masks the input.
    • +
    • level (int) – The specific lod level to rank.
    返回:

    The output tensor variable.

    -
    返回类型:

    Variable

    +
    返回:

    The true branch of tensor as per the mask applied to input. +Variable: The false branch of tensor as per the mask applied to input.

    Raises:

    ValueError – If rank of the input tensor is less than 2.

    +
    返回类型:

    Variable

    Examples

    -
    data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
    -fc = fluid.layers.fc(input=data, size=1000, act="tanh")
    +
    x = layers.data(name='x', shape=[1])
    +x.persistable = True
    +
    +y = layers.data(name='y', shape=[1])
    +y.persistable = True
    +
    +out_true, out_false = layers.split_lod_tensor(
    +      input=x, mask=y, level=level)
     
    -
    -

    embedding

    +
    +

    merge_lod_tensor

    -paddle.v2.fluid.layers.embedding(input, size, is_sparse=False, padding_idx=None, param_attr=None, dtype='float32')
    -

    Embedding Layer

    -

    This layer is used to lookup embeddings of IDs, provided by input, in -a lookup table. The result of this lookup is the embedding of each ID in the -input.

    -

    All the input variables are passed in as local variables to the LayerHelper -constructor.

    +paddle.v2.fluid.layers.merge_lod_tensor(in_true, in_false, x, mask, level=0) +

    merge_lod_tensor

    +

    This function takes in an input \(x\), the True branch, the False +branch and a binary \(mask\). Using this information, this function +merges the True and False branches of the tensor into a single Output +at a certain lod level indiacted by \(level\).

    - + + + + +
    参数:
      -
    • input (Variable) – The tensor variable containing the IDs.
    • -
    • size (tuple|list) – The shape of the look up table parameter. It should -have two elements which indicate the size of the dictionary of -embeddings and the size of each embedding vector respectively.
    • -
    • is_sparse (bool) – The flag indicating whether to use sparse update.
    • -
    • padding_idx (int|long|None) – If None, it makes no effect to lookup. -Otherwise the given padding_idx indicates padding the output -with zeros whenever lookup encounters it in input. If -\(padding_idx < 0\), the padding_idx to use in lookup is -\(size[0] + dim\).
    • -
    • param_attr (ParamAttr) – Parameters for this layer
    • -
    • dtype (np.dtype|core.DataType|str) – The type of data : float32, float_16, int etc
    • +
    • in_true (tuple|list|None) – The True branch to be merged.
    • +
    • in_false (tuple|list|None) – The False branch to be merged.
    • +
    • x (tuple|list|None) – The input tensor that contains complete +lod information needed to construct the output.
    • +
    • mask (list) – A bool column vector which masks the input.
    • +
    • level (int) – The specific lod level to rank.
    返回:

    The tensor variable storing the embeddings of the supplied inputs.

    +
    返回:

    The merged output tensor.

    返回类型:

    Variable

    @@ -365,344 +317,209 @@ with zeros whenever lookup encounters it in Examples

    -
    dict_size = len(dataset.ids)
    -data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
    -fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
    +
    x = layers.data(
    +            name='x', shape=[1], dtype='float32', stop_gradient=False)
    +y = layers.data(
    +      name='y', shape=[1], dtype='bool', stop_gradient=False)
    +
    +level = 0
    +
    +out_true, out_false = layers.split_lod_tensor(
    +      input=x, mask=y, level=level)
    +out = layers.merge_lod_tensor(
    +      in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
     
    -
    -

    dynamic_lstm

    -
    +
    +

    BlockGuard

    +
    -paddle.v2.fluid.layers.dynamic_lstm(input, size, param_attr=None, bias_attr=None, use_peepholes=True, is_reverse=False, gate_activation='sigmoid', cell_activation='tanh', candidate_activation='tanh', dtype='float32', name=None)
    -

    Dynamic LSTM Layer

    -

    The defalut implementation is diagonal/peephole connection -(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

    -
    -\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)\\f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)\\\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)\\o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)\\c_t & = f_t \odot c_{t-1} + i_t \odot \tilde{c_t}\\h_t & = o_t \odot act_h(c_t)\end{aligned}\end{align} \]
    -

    where the \(W\) terms denote weight matrices (e.g. \(W_{xi}\) is -the matrix of weights from the input gate to the input), \(W_{ic}, W_{fc}, W_{oc}\) are diagonal weight matrices for peephole connections. In -our implementation, we use vectors to reprenset these diagonal weight -matrices. The \(b\) terms denote bias vectors (\(b_i\) is the input -gate bias vector), \(\sigma\) is the non-linear activations, such as -logistic sigmoid function, and \(i, f, o\) and \(c\) are the input -gate, forget gate, output gate, and cell activation vectors, respectively, -all of which have the same size as the cell output activation vector \(h\).

    -

    The \(\odot\) is the element-wise product of the vectors. \(act_g\) -and \(act_h\) are the cell input and cell output activation functions -and tanh is usually used for them. \(\tilde{c_t}\) is also called -candidate hidden state, which is computed based on the current input and -the previous hidden state.

    -

    Set use_peepholes to False to disable peephole connection. The formula -is omitted here, please refer to the paper -http://www.bioinf.jku.at/publications/older/2604.pdf for details.

    -

    Note that these \(W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\) -operations on the input \(x_{t}\) are NOT included in this operator. -Users can choose to use fully-connect layer before LSTM layer.

    +class paddle.v2.fluid.layers.BlockGuard(main_program) +

    BlockGuard class.

    +

    BlockGuard class is used to create a sub-block in a program by +using the Python with keyword.

    +
    + +
    +
    +

    BlockGuardWithCompletion

    +
    +
    +class paddle.v2.fluid.layers.BlockGuardWithCompletion(rnn)
    +

    BlockGuardWithCompletion class.

    +

    BlockGuardWithCompletion class is used to create an op with a block in a program.

    +
    + +
    + -
    -

    dynamic_lstmp

    +
    +

    WhileGuard

    +
    +
    +class paddle.v2.fluid.layers.WhileGuard(while_op)
    +
    + +
    +
    +

    While

    +
    +
    +class paddle.v2.fluid.layers.While(cond, name=None)
    +
    + +
    +
    +

    lod_rank_table

    -paddle.v2.fluid.layers.dynamic_lstmp(input, size, proj_size, param_attr=None, bias_attr=None, use_peepholes=True, is_reverse=False, gate_activation='sigmoid', cell_activation='tanh', candidate_activation='tanh', proj_activation='tanh', dtype='float32', name=None)
    -

    Dynamic LSTMP Layer

    -

    LSTMP (LSTM with recurrent projection) layer has a separate projection -layer after the LSTM layer, projecting the original hidden state to a -lower-dimensional one, which is proposed to reduce the number of total -parameters and furthermore computational complexity for the LSTM, -espeacially for the case that the size of output units is relative -large (https://research.google.com/pubs/archive/43905.pdf).

    -

    The formula is as follows:

    -
    -\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)\\f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)\\\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)\\o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)\\c_t & = f_t \odot c_{t-1} + i_t \odot \tilde{c_t}\\h_t & = o_t \odot act_h(c_t)\\r_t & = \overline{act_h}(W_{rh}h_t)\end{aligned}\end{align} \]
    -

    In the above formula:

    -
      -
    • \(W\): Denotes weight matrices (e.g. \(W_{xi}\) is the matrix of weights from the input gate to the input).
    • -
    • \(W_{ic}\), \(W_{fc}\), \(W_{oc}\): Diagonal weight matrices for peephole connections. In our implementation, we use vectors to reprenset these diagonal weight matrices.
    • -
    • \(b\): Denotes bias vectors (e.g. \(b_i\) is the input gate bias vector).
    • -
    • \(\sigma\): The activation, such as logistic sigmoid function.
    • -
    • \(i, f, o\) and \(c\): The input gate, forget gate, output gate, and cell activation vectors, respectively, all of which have the same size as the cell output activation vector \(h\).
    • -
    • \(h\): The hidden state.
    • -
    • \(r\): The recurrent projection of the hidden state.
    • -
    • \(\tilde{c_t}\): The candidate hidden state, whose computation is based on the current input and previous hidden state.
    • -
    • \(\odot\): The element-wise product of the vectors.
    • -
    • \(act_g\) and \(act_h\): The cell input and cell output activation functions and tanh is usually used for them.
    • -
    • \(\overline{act_h}\): The activation function for the projection output, usually using identity or same as \(act_h\).
    • -
    -

    Set use_peepholes to False to disable peephole connection. The formula -is omitted here, please refer to the paper -http://www.bioinf.jku.at/publications/older/2604.pdf for details.

    -

    Note that these \(W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\) -operations on the input \(x_{t}\) are NOT included in this operator. -Users can choose to use fully-connected layer before LSTMP layer.

    +paddle.v2.fluid.layers.lod_rank_table(x, level=0) +

    LoD Rank Table Operator. Given an input variable x and a level number +of LoD, this layer creates a LodRankTable object. A LoDRankTable object +contains a list of bi-element tuples. Each tuple consists of an index and +a length, both of which are int type. Refering to specified level of LoD, +the index is the sequence index number and the length representes the +sequence length. Please note that the list is ranked in descending order by +the length. The following is an example:

    +
    +
    x is a LoDTensor:
    +    x.lod = [[0,                2, 3],
    +             [0,             5, 6, 7]]
    +    x.data = [a, b, c, d, e, f, g]
    +
    +1. set level to 0:
    +    Create lod rank table:
    +        lod_rank_table_obj = lod_rank_table(x, level=0)
    +
    +    Get:
    +        lod_rank_table_obj.items() = [(0, 2), (1, 1)]
    +
    +2. set level to 1:
    +    Create lod rank table:
    +        lod_rank_table_obj = lod_rank_table(x, level=1)
    +
    +    Get:
    +        lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
    +
    +
    +
    - -
    参数:
      -
    • input (Variable) – The input of dynamic_lstmp layer, which supports -variable-time length input sequence. The underlying -tensor in this Variable is a matrix with shape -(T X 4D), where T is the total time steps in this -mini-batch, D is the hidden size.
    • -
    • size (int) – 4 * hidden size.
    • -
    • proj_size (int) – The size of projection output.
    • -
    • param_attr (ParamAttr|None) –

      The parameter attribute for the learnable -hidden-hidden weight and projection weight.

      -
        -
      • Hidden-hidden weight = {\(W_{ch}, W_{ih}, W_{fh}, W_{oh}\)}.
      • -
      • The shape of hidden-hidden weight is (P x 4D), -where P is the projection size and D the hidden -size.
      • -
      • Projection weight = {\(W_{rh}\)}.
      • -
      • The shape of projection weight is (D x P).
      • -
      -
    • -
    • bias_attr (ParamAttr|None) –

      The bias attribute for the learnable bias -weights, which contains two parts, input-hidden -bias weights and peephole connections weights if -setting use_peepholes to True.

      -
        -
      1. use_peepholes = False
      2. -
      -
      -
        -
      • Biases = {\(b_c, b_i, b_f, b_o\)}.
      • -
      • The shape is (1 x 4D).
      • -
      -
      -
        -
      1. use_peepholes = True
      2. -
      -
      -
        -
      • Biases = { \(b_c, b_i, b_f, b_o, W_{ic}, W_{fc}, W_{oc}\)}.
      • -
      • The shape is (1 x 7D).
      • -
      -
      -
    • -
    • use_peepholes (bool) – Whether to enable diagonal/peephole connections, -default True.
    • -
    • is_reverse (bool) – Whether to compute reversed LSTM, default False.
    • -
    • gate_activation (str) – The activation for input gate, forget gate and -output gate. Choices = [“sigmoid”, “tanh”, “relu”, -“identity”], default “sigmoid”.
    • -
    • cell_activation (str) – The activation for cell output. Choices = [“sigmoid”, -“tanh”, “relu”, “identity”], default “tanh”.
    • -
    • candidate_activation (str) – The activation for candidate hidden state. -Choices = [“sigmoid”, “tanh”, “relu”, “identity”], -default “tanh”.
    • -
    • proj_activation (str) – The activation for projection output. -Choices = [“sigmoid”, “tanh”, “relu”, “identity”], -default “tanh”.
    • -
    • dtype (str) – Data type. Choices = [“float32”, “float64”], default “float32”.
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • x (Variable) – Input variable, a LoDTensor based which to create the lod +rank table.
    • +
    • level (int) – Specify the LoD level, on which to create the lod rank +table.
    返回:

    The projection of hidden state, and cell state of LSTMP. The shape of projection is (T x P), for the cell state which is (T x D), and both LoD is the same with the input.

    +
    返回:

    The created LoDRankTable object.

    返回类型:

    tuple

    +
    返回类型:

    Variable

    Examples

    -
    hidden_dim, proj_dim = 512, 256
    -fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
    -                         act=None, bias_attr=None)
    -proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
    -                                         size=hidden_dim * 4,
    -                                         proj_size=proj_dim,
    -                                         use_peepholes=False,
    -                                         is_reverse=True,
    -                                         cell_activation="tanh",
    -                                         proj_activation="tanh")
    +
    x = fluid.layers.data(name='x', shape=[10],
    +                dtype='float32', lod_level=1)
    +out = layers.lod_rank_table(x=x, level=0)
     
    -
    -

    dynamic_gru

    +
    +

    max_sequence_len

    -paddle.v2.fluid.layers.dynamic_gru(input, size, param_attr=None, bias_attr=None, is_reverse=False, gate_activation='sigmoid', candidate_activation='tanh', h_0=None)
    -

    Dynamic GRU Layer

    -

    Refer to Empirical Evaluation of Gated Recurrent Neural Networks on -Sequence Modeling

    -

    The formula is as follows:

    -
    -\[ \begin{align}\begin{aligned}u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)\\r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)\\\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)\\h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \tilde{h_t}\end{aligned}\end{align} \]
    -

    The \(\odot\) is the element-wise product of the vectors. \(act_g\) -is the update gate and reset gate activation function and \(sigmoid\) -is usually used for it. \(act_c\) is the activation function for -candidate hidden state and \(tanh\) is usually used for it.

    -

    Note that these \(W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}\) operations on -the input \(x_{t}\) are NOT included in this operator. Users can choose -to use fully-connect layer before GRU layer.

    +paddle.v2.fluid.layers.max_sequence_len(rank_table) +

    Max Sequence Len Operator. Given a LoDRankTable object, this layer +returns the max length of a batch of sequences. In fact, a LoDRankTable +object contains a list of tuples(<sequence index, sequence length>) and +the list is already sorted by sequence length in descending order, so the +operator just returns the sequence length of the first tuple element.

    - + - + - +
    参数:
      -
    • input (Variable) – The input of dynamic_gru layer, which supports -variable-time length input sequence. The underlying tensor in this -Variable is a matrix with shape \((T \times 3D)\), where -\(T\) is the total time steps in this mini-batch, \(D\) -is the hidden size.
    • -
    • size (int) – The dimension of the gru cell.
    • -
    • param_attr (ParamAttr|None) –

      The parameter attribute for the learnable -hidden-hidden weight matrix. Note:

      -
        -
      • The shape of the weight matrix is \((T \times 3D)\), where -\(D\) is the hidden size.
      • -
      • All elements in the weight matrix can be divided into two parts. -The first part are weights of the update gate and reset gate with -shape \((D \times 2D)\), and the second part are weights for -candidate hidden state with shape \((D \times D)\).
      • -
      -
    • -
    • bias_attr (ParamAttr) – The parameter attribute for learnable the -hidden-hidden bias.
    • -
    • is_reverse (bool) – Whether to compute reversed GRU, default -False.
    • -
    • gate_activation (str) – The activation for update gate and reset gate. -Choices = [“sigmoid”, “tanh”, “relu”, “identity”], default “sigmoid”.
    • -
    • activation (str) – The activation for candidate hidden state. -Choices = [“sigmoid”, “tanh”, “relu”, “identity”], default “tanh”.
    • -
    -
    参数:rank_table (Variable) – Input variable which is a LoDRankTable object.
    返回:

    The hidden state of GRU. The shape is (T times D), and lod is the same with the input.

    -
    返回:The max length of sequence.
    返回类型:

    Variable

    -
    返回类型:Variable

    Examples

    -
    hidden_dim = 512
    -x = fluid.layers.fc(input=data, size=hidden_dim * 3)
    -hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    +
    x = fluid.layers.data(name='x', shape=[10],
    +                dtype='float32', lod_level=1)
    +rank_table = layers.lod_rank_table(x=x, level=0)
    +max_seq_len = layers.max_sequence_len(rank_table)
     
    -
    -

    data

    +
    +

    topk

    -paddle.v2.fluid.layers.data(name, shape, append_batch_size=True, dtype='float32', lod_level=0, type=VarType.LOD_TENSOR, stop_gradient=True)
    -

    Data Layer

    -

    This function takes in the input and based on whether data has -to be returned back as a minibatch, it creates the global variable by using -the helper functions. The global variables can be accessed by all the -following operators in the graph.

    -

    All the input variables of this function are passed in as local variables -to the LayerHelper constructor.

    +paddle.v2.fluid.layers.topk(input, k) +

    topk

    +

    This function performs the operation that selects the k entries in the input +vector and outputs their values and indices as vectors. Thus topk_out[j] is +the j-th largest entry in input, and its index is topk_indices[j]

    -
    参数:
      -
    • name (str) – The name/alias of the function
    • -
    • shape (list) – Tuple declaring the shape.
    • -
    • append_batch_size (bool) – Whether or not to append the data as a batch.
    • -
    • dtype (int|float) – The type of data : float32, float_16, int etc
    • -
    • type (VarType) – The output type. By default it is LOD_TENSOR.
    • -
    • lod_level (int) – The LoD Level. 0 means the input data is not a sequence.
    • -
    • main_program (Program) – Name of the main program that calls this
    • -
    • startup_program (Program) – Name of the startup program
    • -
    • stop_gradient (bool) – A boolean that mentions whether gradient should flow.
    • +
    • input (Variable|list) – The input tensor that has all the data.
    • +
    • k (int) – The number of top elements that the function will pick.
    返回:

    The global variable that gives access to the data.

    +
    返回:

    +
    The variable of type array that contains the k largest entries
    +

    from input.

    +
    +
    Variable: The variable of type array that contains the indices of k
    +

    largest entries from input.

    +
    +
    +

    返回类型:

    Variable

    @@ -711,399 +528,388 @@ to the LayerHelper constructor.

    Examples

    -
    data = fluid.layers.data(name='x', shape=[784], dtype='float32')
    +
    x = fluid.layers.data(name='x', shape=[10])
    +k = 5
    +array = fluid.layers.topk(x, k)
     
    -
    -

    mean

    +
    +

    lod_tensor_to_array

    -paddle.v2.fluid.layers.mean(**kwargs)
    -

    Mean Operator.

    -

    Out is a scalar which is the mean of all elements in X.

    +paddle.v2.fluid.layers.lod_tensor_to_array(x, table) +

    Convert a LOD_TENSOR to an LOD_TENSOR_ARRAY.

    - - - + - -
    参数:x – The input of mean op -Duplicable: False Optional: False
    返回:The output of mean op
    参数:
      +
    • x (Variable|list) – The LOD tensor to be converted to a LOD tensor array.
    • +
    • table (ParamAttr|list) – The variable that stores the level of lod +which is ordered by sequence length in +descending order.
    • +
    +
    -
    +
    返回:

    +
    The variable of type array that has been converted from a
    +

    tensor.

    +
    +
    +

    +
    返回类型:

    Variable

    +
    +

    Examples

    +
    x = fluid.layers.data(name='x', shape=[10])
    +table = fluid.layers.lod_rank_table(x, level=0)
    +array = fluid.layers.lod_tensor_to_array(x, table)
    +
    +
    +
    -
    -

    mul

    +
    +

    array_to_lod_tensor

    -paddle.v2.fluid.layers.mul(**kwargs)
    -

    Mul Operator.

    -

    This operator is used to perform matrix multiplication for input $X$ and $Y$.

    -

    The equation is:

    -

    $$Out = X * Y$$

    -

    Both the input $X$ and $Y$ can carry the LoD (Level of Details) information, -or not. But the output only shares the LoD information with input $X$.

    +paddle.v2.fluid.layers.array_to_lod_tensor(x, table) +

    Convert a LoD_Tensor_Aarry to an LoDTensor.

    - + +
    参数:
      -
    • x – (Tensor), The first input tensor of mul op. -Duplicable: False Optional: False
    • -
    • y – (Tensor), The second input tensor of mul op. -Duplicable: False Optional: False
    • -
    • x_num_col_dims (INT) – (int, default 1), The mul_op can take tensors with more than two -dimensions as its inputs. If the input $X$ is a tensor with more -than two dimensions, $X$ will be flattened into a two-dimensional -matrix first. The flattening rule is: the first num_col_dims -will be flattened to form the first dimension of the final matrix -(the height of the matrix), and the rest rank(X) - num_col_dims -dimensions are flattened to form the second dimension of the final -matrix (the width of the matrix). As a result, height of the -flattened matrix is equal to the product of $X$’s first -x_num_col_dims dimensions’ sizes, and width of the flattened -matrix is equal to the product of $X$’s last rank(x) - num_col_dims -dimensions’ size. For example, suppose $X$ is a 6-dimensional -tensor with the shape [2, 3, 4, 5, 6], and x_num_col_dims = 3. -Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = -[24, 30].
    • -
    • y_num_col_dims (INT) – (int, default 1), The mul_op can take tensors with more than two, -dimensions as its inputs. If the input $Y$ is a tensor with more -than two dimensions, $Y$ will be flattened into a two-dimensional -matrix first. The attribute y_num_col_dims determines how $Y$ is -flattened. See comments of x_num_col_dims for more details.
    • +
    • x (Variable|list) – The lod tensor array to be converted to a tensor.
    • +
    • table (ParamAttr|list) – The variable that stores the level of lod +which is ordered by sequence length in +descending order.
    返回:

    (Tensor), The output tensor of mul op.

    +
    返回:

    +
    The variable of type tensor that has been converted
    +

    from an array.

    +
    +
    +

    +
    返回类型:

    Variable

    +

    Examples

    +
    x = fluid.layers.data(name='x', shape=[10])
    +table = fluid.layers.lod_rank_table(x, level=0)
    +array = fluid.layers.lod_tensor_to_array(x, table)
    +lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
    +
    +
    -
    -

    elementwise_add

    +
    +

    increment

    -paddle.v2.fluid.layers.elementwise_add(**kwargs)
    -

    Limited Elementwise Add Operator.

    -

    The equation is:

    -

    $$Out = X + Y$$

    -

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.

    -

    There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.

    -

    For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.

    -
    -
    For example
    -
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    -shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    -
    -
    -
    -
    -

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.

    +paddle.v2.fluid.layers.increment(x, value=1.0, in_place=True) +

    This function performs an operation that increments each value in the +input \(x\) by an amount: \(value\) as mentioned in the input +parameter. This operation is performed in-place by default.

    - + +
    参数:
      -
    • x – (Tensor), The first input tensor of elementwise op. -Duplicable: False Optional: False
    • -
    • y – (Tensor), The second input tensor of elementwise op. -Duplicable: False Optional: False
    • -
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    • +
    • x (Variable|list) – The tensor that has the input values.
    • +
    • value (float) – The amount by which the values should be incremented.
    • +
    • in_place (bool) – If the increment should be performed in-place.
    返回:

    The output of elementwise op.

    +
    返回:

    +
    The tensor variable storing the transformation of
    +

    element-wise increment of each value in the input.

    +
    +
    +

    +
    返回类型:

    Variable

    +

    Examples

    +
    data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
    +data = fluid.layers.increment(x=data, value=3.0, in_place=True)
    +
    +
    -
    -

    elementwise_sub

    +
    +

    array_write

    -paddle.v2.fluid.layers.elementwise_sub(**kwargs)
    -

    Limited Elementwise Sub Operator.

    -

    The equation is:

    -

    $$Out = X - Y$$

    -

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.

    -

    There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.

    -

    For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.

    -
    -
    For example
    -
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    -shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    -
    -
    -
    -
    -

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.

    +paddle.v2.fluid.layers.array_write(x, i, array=None) +

    This function writes the given input variable to the specified position +indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the +output LOD_TENSOR_ARRAY is not given(None), a new one will be created and +returned.

    - + +
    参数:
      -
    • x – (Tensor), The first input tensor of elementwise op. -Duplicable: False Optional: False
    • -
    • y – (Tensor), The second input tensor of elementwise op. -Duplicable: False Optional: False
    • -
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    • +
    • x (Variable|list) – The input tensor from which the data will be read.
    • +
    • i (Variable|list) – The index of the output LOD_TENSOR_ARRAY, pointing to +the position to which the input tensor will be +written.
    • +
    • array (Variable|list) – The output LOD_TENSOR_ARRAY to which the input +tensor will be written. If this parameter is +NONE, a new LOD_TENSOR_ARRAY will be created and +returned.
    返回:

    The output of elementwise op.

    +
    返回:

    The output LOD_TENSOR_ARRAY where the input tensor is written.

    +
    返回类型:

    Variable

    +

    Examples

    -
    -

    elementwise_mul

    +
    +

    create_array

    -paddle.v2.fluid.layers.elementwise_mul(**kwargs)
    -

    Limited Elementwise Mul Operator.

    -

    The equation is:

    -

    $$Out = X odotY$$

    -

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.

    -

    There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.

    -

    For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.

    -
    -
    For example
    -
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    -shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    +paddle.v2.fluid.layers.create_array(dtype)
    +

    This function creates an array of type \(LOD_TENSOR_ARRAY\) using the +LayerHelper.

    + +++ + + + + + + + +
    参数:dtype (int|float) – The data type of the elements in the array.
    返回:The tensor variable storing the elements of data type.
    返回类型:Variable
    +

    Examples

    +
    data = fluid.layers.create_array(dtype='float32')
     
    -
    -
    -

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.

    +
    + +
    +
    +

    less_than

    +
    +
    +paddle.v2.fluid.layers.less_than(x, y, cond=None, **ignored)
    +

    Less than

    +

    This layer returns the truth value of \(x < y\) elementwise.

    - + +
    参数:
      -
    • x – (Tensor), The first input tensor of elementwise op. -Duplicable: False Optional: False
    • -
    • y – (Tensor), The second input tensor of elementwise op. -Duplicable: False Optional: False
    • -
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    • +
    • x (Variable) – First operand of less_than
    • +
    • y (Variable) – Second operand of less_than
    • +
    • cond (Variable|None) – Optional output variable to store the result of less_than
    返回:

    The output of elementwise op.

    +
    返回:

    The tensor variable storing the output of less_than.

    +
    返回类型:

    Variable

    +

    Examples

    +
    less = fluid.layers.less_than(x=label, y=limit)
    +
    +
    -
    -

    elementwise_div

    +
    +

    array_read

    -paddle.v2.fluid.layers.elementwise_div(**kwargs)
    -

    Limited Elementwise Div Operator.

    -

    The equation is:

    -

    $$Out = X / Y$$

    -

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be -smaller than or equal to the dimensions of $X$.

    -

    There are two cases for this operator: -1. The shape of $Y$ is same with $X$; -2. The shape of $Y$ is a subset of $X$.

    -

    For case 2: -$Y$ will be broadcasted to match the shape of $X$ and axis should be -set to index of the start dimension to broadcast $Y$ onto $X$.

    -
    -
    For example
    -
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    -shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    -shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    -
    -
    -
    -
    -

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) -information. However, the output only shares the LoD information with input $X$.

    +paddle.v2.fluid.layers.array_read(array, i) +

    This function performs the operation to read the data in as an +LOD_TENSOR_ARRAY. +:param array: The input tensor that will be written to an array. +:type array: Variable|list +:param i: The subscript index in tensor array, that points the

    +
    +
    place where data will be written to.
    - + - +
    参数:
      -
    • x – (Tensor), The first input tensor of elementwise op. -Duplicable: False Optional: False
    • -
    • y – (Tensor), The second input tensor of elementwise op. -Duplicable: False Optional: False
    • -
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    • -
    -
    返回:The tensor type variable that has the data written to it.
    返回:

    The output of elementwise op.

    -
    返回类型:Variable
    +

    Examples

    -
    -

    dropout

    +
    +

    shrink_memory

    -paddle.v2.fluid.layers.dropout(x, dropout_prob, is_test=False, seed=None, **kwargs)
    -

    Computes dropout.

    -

    Drop or keep each element of x independently. Dropout is a regularization -technique for reducing overfitting by preventing neuron co-adaption during -training. The dropout operator randomly set (according to the given dropout -probability) the outputs of some units to zero, while others are remain -unchanged.

    +paddle.v2.fluid.layers.shrink_memory(x, i, table) +

    This function creates an operator to shrink_rnn_memory using the RankTable +as mentioned in the input parameter.

    +
    + +
    +
    +

    array_length

    +
    +
    +paddle.v2.fluid.layers.array_length(array)
    +

    This function performs the operation to find the length of the input +LOD_TENSOR_ARRAY.

    - + - + - +
    参数:
      -
    • x (variable) – The input tensor.
    • -
    • dropout_prob (float) – Probability of setting units to zero.
    • -
    • is_test (bool) – A flag indicating whether it is in test phrase or not.
    • -
    • seed (int) – A Python integer used to create random seeds. If this -parameter is set to None, a random seed is used. -NOTE: If an integer seed is given, always the same output -units will be dropped. DO NOT use a fixed seed in training.
    • -
    -
    参数:array (LOD_TENSOR_ARRAY) – The input array that will be used +to compute the length.
    返回:

    A tensor variable.

    -
    返回:The length of the input LoDTensorArray.
    返回类型:

    Variable

    -
    返回类型:Variable

    Examples

    -
    x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
    -droped = fluid.layers.dropout(input=x, dropout_rate=0.5)
    -
    -
    -
    -

    reshape

    -
    +
    +

    IfElse

    +
    -paddle.v2.fluid.layers.reshape(**kwargs)
    -

    Reshape Operator.

    -

    Reshape Input(X) into the shape specified by Attr(shape).

    -

    An example: -Given a 2-D tensor X with 2 rows and 2 columns : [[1, 2], [3, 4]]

    -

    and target shape = [1, 4], the reshape operator will transform -the tensor X into a 2-D tensor: [[1, 2, 3, 4]]

    -

    One dimension in the target shape can be set -1, representing that its -size is unknown. In this case, the real dimension will be infered from -the original shape of Input(X) and other dimensions in the target shape.

    - +class paddle.v2.fluid.layers.IfElse(cond, name=None) +
    + + +
    +

    DynamicRNN

    +
    +
    +class paddle.v2.fluid.layers.DynamicRNN(name=None)
    +
    + +
    +
    +

    ConditionalBlock

    +
    +
    +class paddle.v2.fluid.layers.ConditionalBlock(inputs, name=None)
    +
    + +
    +
    +

    StaticRNN

    +
    +
    +class paddle.v2.fluid.layers.StaticRNN(name=None)
    +

    StaticRNN class.

    +

    StaticRNN class is used to create a StaticRNN. The RNN will have its +own parameters like inputs, outputs, memories, status and length.

    +
    +
    +memory(init=None, shape=None, batch_ref=None, init_value=0.0, init_batch_dim_idx=0, ref_batch_dim_idx=1)
    +
    - - -
    参数:
      -
    • x – The input tensor of reshape operator. -Duplicable: False Optional: False
    • -
    • shape (INTS) – (vector<int>) Target shape of reshape operator.
    • +
    参数:
      +
    • init – boot memory, if not set, a shape, batch_ref must be provided
    • +
    • shape – shape of the boot memory
    • +
    • batch_ref – batch size reference variable
    • +
    • init_value – the init value of boot memory
    • +
    • init_batch_dim_idx – the index of batch size in init’s dimension
    • +
    • ref_batch_dim_idx – the index of batch size in batch_ref’s dimension
    返回:

    The output tensor of reshape operator.

    -
    -
    -
    -

    sigmoid

    -
    -
    -paddle.v2.fluid.layers.sigmoid(**kwargs)
    -

    Sigmoid Activation Operator

    -

    $$out = frac{1}{1 + e^{-x}}$$

    - --- - - - - - -
    参数:x – Input of Sigmoid operator -Duplicable: False Optional: False
    返回:Output of Sigmoid operator
    -
    -

    scale

    +
    +

    reorder_lod_tensor_by_rank

    -paddle.v2.fluid.layers.scale(**kwargs)
    -

    Scale operator

    -

    $$Out = scale*X$$

    +paddle.v2.fluid.layers.reorder_lod_tensor_by_rank(x, rank_table) +

    ReorderLoDTensorByRankTable operator.

    +

    Input(X) is a batch of sequences. Input(RankTable) stores new orders of the +input sequence batch. The reorder_lod_tensor_by_rank operator reorders the +Input(X) according to the information provided by Input(RankTable).

    +

    For example:

    +

    If the indices stored in the Input(RankTable) are [3, 0, 2, 1], the +Input(X) will be reordered that the fourth sequence in Input(X) will become the +first one, and then followed by the original first, third, and the second one.

    +

    This is: +X = [Seq0, Seq1, Seq2, Seq3]. The indices in RankTable are [3, 0, 2, 1]. +Out = [Seq3, Seq0, Seq2, Seq1] with a new LoD information.

    +

    If the LoD information of Input(X) is empty, this means Input(X) is not sequence +data. This is also identical to a batch of sequences where each sequence has a +fixed length 1. In this case, the reorder_lod_tensor_by_rank operator reorders +each slice of Input(X) along the first axis according to Input(RankTable).

    +

    This is: +X = [Slice0, Slice1, Slice2, Slice3] and its LoD information is empty. The +indices in RankTable are [3, 0, 2, 1]. +Out = [Slice3, Slice0, Slice2, Slice1] with no LoD information is appended.

    +

    NOTE: This operator sorts Input(X) according to a given LoDRankTable which does +not need to be calculated according to Input(X). It can be calculated according +to another different sequence, and then this operator sorts Input(X) according +to the given LoDRankTable.

    - @@ -1111,26 +917,47 @@ Duplicable: False Optional: False -
    -

    transpose

    +
    +

    ParallelDo

    +
    +
    +class paddle.v2.fluid.layers.ParallelDo(places, name=None)
    +

    ParallelDo class.

    +

    ParallelDo class is used to create a ParallelDo.

    +
    + +
    +
    +

    Print

    -paddle.v2.fluid.layers.transpose(x, perm, name=None)
    -

    transpose Layer

    -

    Permute the dimensions of input according to perm.

    -

    The i-th dimension of the returned tensor will correspond to the -perm[i]-th dimension of input.

    +paddle.v2.fluid.layers.Print(input, first_n=-1, message=None, summarize=-1, print_tensor_name=True, print_tensor_type=True, print_tensor_shape=True, print_tensor_lod=True, print_phase='both') +

    Print operator

    +

    This creates a print op that will print when a tensor is accessed.

    +

    Wraps the tensor passed in so that whenever that a tensor is accessed, +the message message is printed, along with the current value of the +tensor t.

    参数:
      -
    • x – (Tensor) Input tensor of scale operator. +
    • x – (LoDTensor), the input lod tensor to be reordered according to Input(RankTable). +Duplicable: False Optional: False
    • +
    • rank_table – (LoDRankTable), the rank table according to which Input(X) is reordered. Duplicable: False Optional: False
    • -
    • scale (FLOAT) – (float, default 1.0)The scaling factor of the scale operator.
    返回:

    (Tensor) Output tensor of scale operator.

    +
    返回:

    (LoDTensor), the reordered lod tensor.

    -
    参数:
      -
    • input (Variable) – (Tensor), A Tensor.
    • -
    • perm (list) – A permutation of the dimensions of input.
    • +
    • input (Variable) – A Tensor to print.
    • +
    • summarize (int) – Print this number of elements in the tensor, will print +all if left is negative.
    • +
    • message (str) – A string message to print as a prefix.
    • +
    • first_n (int) – Only log first_n number of times.
    • +
    • print_tensor_name (bool) – Print the tensor name.
    • +
    • print_tensor_type (bool) – Print the tensor type.
    • +
    • print_tensor_shape (bool) – Print the tensor shape.
    • +
    • print_tensor_lod (bool) – Print the tensor lod.
    • +
    • print_phase (bool) – Which phase to displace, including ‘forward’, +‘backward’ and ‘both’. If set to ‘backward’ or ‘both’, will +print the gradients of input tensor.
    返回:

    A transposed Tensor.

    +
    返回:

    Output tensor, same data with input tensor.

    返回类型:

    Variable

    @@ -1139,210 +966,260 @@ perm[i]-th dimension of input.

    Examples

    -
    x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
    -x_transposed = layers.transpose(x, perm=[1, 0, 2])
    +
    
     
    +

    value = some_layer(...) +Print(value, summarize=10,

    +
    +
    message=”The content of some_layer: ”)
    -
    -

    sigmoid_cross_entropy_with_logits

    -
    -
    -

    cast

    -
    -
    -paddle.v2.fluid.layers.cast(x, dtype)
    -

    This function takes in the input with input_dtype -and casts it to the output_dtype as the output.

    -
    -
    -
    -

    concat

    +
    +

    device

    +
    +

    get_places

    -paddle.v2.fluid.layers.concat(input, axis=0)
    -

    Concat

    -

    This function concatenates the input along the axis mentioned -and returns that as the output.

    +paddle.v2.fluid.layers.get_places(device_count=None, device_type=None) +

    Returns a list of places based on flags. The list will be used for parallel +execution.

    - - -
    参数:
      -
    • input (list) – List of tensors to be concatenated
    • -
    • axis (int) – Integer axis along which the tensors will be concatenated
    • +
    • device_count (INT) – device count
    • +
    • device_type (STRING) – device type
    返回:

    Output variable of the concatenation

    -
    返回类型:

    Variable

    +
    返回:

    vector of Place

    -

    Examples

    -
    -

    sums

    +
    +
    +

    io

    +
    +

    data

    -paddle.v2.fluid.layers.sums(input, out=None)
    -

    This function performs the sum operation on the input and returns the -result as the output.

    +paddle.v2.fluid.layers.data(name, shape, append_batch_size=True, dtype='float32', lod_level=0, type=VarType.LOD_TENSOR, stop_gradient=True) +

    Data Layer

    +

    This function takes in the input and based on whether data has +to be returned back as a minibatch, it creates the global variable by using +the helper functions. The global variables can be accessed by all the +following operators in the graph.

    +

    All the input variables of this function are passed in as local variables +to the LayerHelper constructor.

    - + - - +
    参数:input (Variable|list) – The input tensor that has the elements -that need to be summed up.
    参数:
      +
    • name (str) – The name/alias of the function
    • +
    • shape (list) – Tuple declaring the shape.
    • +
    • append_batch_size (bool) – Whether or not to append the data as a batch.
    • +
    • dtype (int|float) – The type of data : float32, float_16, int etc
    • +
    • type (VarType) – The output type. By default it is LOD_TENSOR.
    • +
    • lod_level (int) – The LoD Level. 0 means the input data is not a sequence.
    • +
    • main_program (Program) – Name of the main program that calls this
    • +
    • startup_program (Program) – Name of the startup program
    • +
    • stop_gradient (bool) – A boolean that mentions whether gradient should flow.
    • +
    +
    返回:
    -
    The tensor type variable that has the sum of input
    -
    written to it.
    -
    +
    返回:

    The global variable that gives access to the data.

    返回类型:Variable
    返回类型:

    Variable

    +

    Examples

    +
    data = fluid.layers.data(name='x', shape=[784], dtype='float32')
    +
    +
    -
    -

    linear_chain_crf

    -
    +
    +

    BlockGuardServ

    +
    -paddle.v2.fluid.layers.linear_chain_crf(input, label, param_attr=None)
    -
    +class paddle.v2.fluid.layers.BlockGuardServ(server) +

    BlockGuardServ class.

    +

    BlockGuardServ class is used to create an op with a block in a program.

    +
    -
    -

    assign

    +
    +

    ListenAndServ

    +
    +
    +class paddle.v2.fluid.layers.ListenAndServ(endpoint, fan_in=1, optimizer_mode=True)
    +

    ListenAndServ class.

    +

    ListenAndServ class is used to wrap listen_and_serv op to create a server +which can receive variables from clients and run a block.

    +
    + +
    +
    +

    Send

    -paddle.v2.fluid.layers.embedding(input, size, is_sparse=False, padding_idx=None, param_attr=None, dtype='float32')
    -

    Embedding Layer

    -

    This layer is used to lookup embeddings of IDs, provided by input, in -a lookup table. The result of this lookup is the embedding of each ID in the -input.

    -

    All the input variables are passed in as local variables to the LayerHelper -constructor.

    +paddle.v2.fluid.layers.Send(endpoints, send_vars, get_vars) +

    Send layer

    - - - - -
    参数:
      -
    • input (Variable) – The tensor variable containing the IDs.
    • -
    • size (tuple|list) – The shape of the look up table parameter. It should -have two elements which indicate the size of the dictionary of -embeddings and the size of each embedding vector respectively.
    • -
    • is_sparse (bool) – The flag indicating whether to use sparse update.
    • -
    • padding_idx (int|long|None) – If None, it makes no effect to lookup. -Otherwise the given padding_idx indicates padding the output -with zeros whenever lookup encounters it in input. If -\(padding_idx < 0\), the padding_idx to use in lookup is -\(size[0] + dim\).
    • -
    • param_attr (ParamAttr) – Parameters for this layer
    • -
    • dtype (np.dtype|core.DataType|str) – The type of data : float32, float_16, int etc
    • +
    参数:
      +
    • endpoints – comma seperated IP:PORT pairs in the order +of send_vars to send
    • +
    • send_vars – vars to send
    • +
    • get_vars – vars to get from server after send completes.
    返回:

    The tensor variable storing the embeddings of the supplied inputs.

    -
    返回类型:

    Variable

    -
    -

    Examples

    -
    dict_size = len(dataset.ids)
    -data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
    -fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
    -
    -
    +

    Send variables to the server side, and get vars from server +side when server have finished running server side program.

    -
    -

    split_lod_tensor

    +
    +
    +

    nn

    +
    +

    fc

    -paddle.v2.fluid.layers.split_lod_tensor(input, mask, level=0)
    -

    split_lod_tensor

    -

    This function takes in an input that contains the complete lod information, -and takes in a mask which is used to mask certain parts of the input. -The output is the true branch and the false branch with the mask applied to -the input at a certain level in the tensor.

    +paddle.v2.fluid.layers.fc(input, size, num_flatten_dims=1, param_attr=None, bias_attr=None, act=None, name=None) +

    Fully Connected Layer

    +

    The fully connected layer can take multiple tensors as its inputs. It +creates a variable (one for each input tensor) called weights for each +input tensor, which represents a fully connected weight matrix from +each input unit to each output unit. The fully connected layer +multiplies each input tensor with its coresponding weight to produce +an output Tensor. If multiple input tensors are given, the results of +multiple multiplications will be sumed up. If bias_attr is not None, +a biases variable will be created and added to the output. Finally, +if activation is not None, it will be applied to the output as well.

    +

    This process can be formulated as follows:

    +
    +\[Out = Act({\sum_{i=0}^{N-1}W_iX_i + b})\]
    +

    In the above equation:

    +
      +
    • \(N\): Number of the input.
    • +
    • \(X_i\): The input tensor.
    • +
    • \(W\): The weights created by this layer.
    • +
    • \(b\): The bias parameter created by this layer (if needed).
    • +
    • \(Act\): The activation funtion.
    • +
    • \(Out\): The output tensor.
    • +
    - - + +
    参数:
      -
    • input (tuple|list|None) – The input tensor that contains complete -lod information needed to construct the output.
    • -
    • mask (list) – A bool column vector which masks the input.
    • -
    • level (int) – The specific lod level to rank.
    • +
    • input (Variable|list) – The input tensor(s) to the fully connected layer.
    • +
    • size (int) – The number of output units in the fully connected layer.
    • +
    • num_flatten_dims (int) – The fc layer can accept an input tensor with more +than two dimensions. If this happens, the +multidimensional tensor will first be flattened +into a 2-dimensional matrix. The parameter +num_flatten_dims determines how the input tensor +is flattened: the first num_flatten_dims +(inclusive, index starts from 1) dimensions will +be flatten to form the first dimension of the +final matrix (height of the matrix), and the rest +rank(X) - num_flatten_dims dimensions are +flattened to form the second dimension of the +final matrix (width of the matrix). For example, +suppose X is a 6-dimensional tensor with a shape +[2, 3, 4, 5, 6], and num_flatten_dims = 3. Then, +the flattened matrix will have a shape +[2 x 3 x 4, 5 x 6] = [24, 30]. By default, +num_flatten_dims is set to 1.
    • +
    • param_attr (ParamAttr|list) – The parameter attribute for learnable +parameters/weights of the fully connected +layer.
    • +
    • param_initializer (ParamAttr|list) – The initializer used for the +weight/parameter. If set None, +XavierInitializer() will be used.
    • +
    • bias_attr (ParamAttr|list) – The parameter attribute for the bias parameter +for this layer. If set None, no bias will be +added to the output units.
    • +
    • bias_initializer (ParamAttr|list) – The initializer used for the bias. +If set None, then ConstantInitializer() +will be used.
    • +
    • act (str) – Activation to be applied to the output of the fully connected +layer.
    • +
    • name (str) – Name/alias of the fully connected layer.
    返回:

    The true branch of tensor as per the mask applied to input. -Variable: The false branch of tensor as per the mask applied to input.

    +
    返回:

    The output tensor variable.

    返回类型:

    Variable

    +
    返回类型:

    Variable

    +
    Raises:

    ValueError – If rank of the input tensor is less than 2.

    Examples

    -
    x = layers.data(name='x', shape=[1])
    -x.persistable = True
    -
    -y = layers.data(name='y', shape=[1])
    -y.persistable = True
    -
    -out_true, out_false = layers.split_lod_tensor(
    -      input=x, mask=y, level=level)
    +
    data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
    +fc = fluid.layers.fc(input=data, size=1000, act="tanh")
     
    -
    -

    merge_lod_tensor

    +
    +

    embedding

    -paddle.v2.fluid.layers.merge_lod_tensor(in_true, in_false, x, mask, level=0)
    -

    merge_lod_tensor

    -

    This function takes in an input \(x\), the True branch, the False -branch and a binary \(mask\). Using this information, this function -merges the True and False branches of the tensor into a single Output -at a certain lod level indiacted by \(level\).

    +paddle.v2.fluid.layers.embedding(input, size, is_sparse=False, padding_idx=None, param_attr=None, dtype='float32') +

    Embedding Layer

    +

    This layer is used to lookup embeddings of IDs, provided by input, in +a lookup table. The result of this lookup is the embedding of each ID in the +input.

    +

    All the input variables are passed in as local variables to the LayerHelper +constructor.

    -
    参数:
      -
    • in_true (tuple|list|None) – The True branch to be merged.
    • -
    • in_false (tuple|list|None) – The False branch to be merged.
    • -
    • x (tuple|list|None) – The input tensor that contains complete -lod information needed to construct the output.
    • -
    • mask (list) – A bool column vector which masks the input.
    • -
    • level (int) – The specific lod level to rank.
    • +
    • input (Variable) – The tensor variable containing the IDs.
    • +
    • size (tuple|list) – The shape of the look up table parameter. It should +have two elements which indicate the size of the dictionary of +embeddings and the size of each embedding vector respectively.
    • +
    • is_sparse (bool) – The flag indicating whether to use sparse update.
    • +
    • padding_idx (int|long|None) – If None, it makes no effect to lookup. +Otherwise the given padding_idx indicates padding the output +with zeros whenever lookup encounters it in input. If +\(padding_idx < 0\), the padding_idx to use in lookup is +\(size[0] + dim\).
    • +
    • param_attr (ParamAttr) – Parameters for this layer
    • +
    • dtype (np.dtype|core.DataType|str) – The type of data : float32, float_16, int etc
    返回:

    The merged output tensor.

    +
    返回:

    The tensor variable storing the embeddings of the supplied inputs.

    返回类型:

    Variable

    @@ -1351,150 +1228,298 @@ lod information needed to construct the output.

    Examples

    -
    x = layers.data(
    -            name='x', shape=[1], dtype='float32', stop_gradient=False)
    -y = layers.data(
    -      name='y', shape=[1], dtype='bool', stop_gradient=False)
    -
    -level = 0
    -
    -out_true, out_false = layers.split_lod_tensor(
    -      input=x, mask=y, level=level)
    -out = layers.merge_lod_tensor(
    -      in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    +
    dict_size = len(dataset.ids)
    +data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
    +fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
     
    -
    -

    cos_sim

    -
    -
    -paddle.v2.fluid.layers.cos_sim(X, Y, **kwargs)
    -

    This function performs the cosine similarity between two tensors -X and Y and returns that as the output.

    -
    - -
    -
    -

    cross_entropy

    +
    +

    dynamic_lstm

    -paddle.v2.fluid.layers.cross_entropy(input, label, **kwargs)
    -

    Cross Entropy Layer

    -

    This layer computes the cross entropy between input and label. It -supports both standard cross-entropy and soft-label cross-entropy loss -computation.

    -
      -
    1. -
      One-hot cross-entropy:
      -

      soft_label = False, Label[i, 0] indicates the class index for sample i:

      -
      -\[Y[i] = -\log(X[i, Label[i]])\]
      -
      -
      -
    2. -
    3. -
      Soft-label cross-entropy:
      -

      soft_label = True, Label[i, j] indicates the soft label of class j -for sample i:

      -
      -\[Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}\]
      -
      -
      -

      Please make sure that in this case the summation of each row of label -equals one.

      -
    4. -
    5. -
      One-hot cross-entropy with vecterized label:
      -

      As a special case of 2), when each row of ‘label’ has only one -non-zero element which is equal to 1, soft-label cross-entropy degenerates -to a one-hot cross-entropy with one-hot label representation.

      -
      -
      -
    6. -
    +paddle.v2.fluid.layers.dynamic_lstm(input, size, param_attr=None, bias_attr=None, use_peepholes=True, is_reverse=False, gate_activation='sigmoid', cell_activation='tanh', candidate_activation='tanh', dtype='float32', name=None) +

    Dynamic LSTM Layer

    +

    The defalut implementation is diagonal/peephole connection +(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

    +
    +\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)\\f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)\\\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)\\o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)\\c_t & = f_t \odot c_{t-1} + i_t \odot \tilde{c_t}\\h_t & = o_t \odot act_h(c_t)\end{aligned}\end{align} \]
    +

    where the \(W\) terms denote weight matrices (e.g. \(W_{xi}\) is +the matrix of weights from the input gate to the input), \(W_{ic}, W_{fc}, W_{oc}\) are diagonal weight matrices for peephole connections. In +our implementation, we use vectors to reprenset these diagonal weight +matrices. The \(b\) terms denote bias vectors (\(b_i\) is the input +gate bias vector), \(\sigma\) is the non-linear activations, such as +logistic sigmoid function, and \(i, f, o\) and \(c\) are the input +gate, forget gate, output gate, and cell activation vectors, respectively, +all of which have the same size as the cell output activation vector \(h\).

    +

    The \(\odot\) is the element-wise product of the vectors. \(act_g\) +and \(act_h\) are the cell input and cell output activation functions +and tanh is usually used for them. \(\tilde{c_t}\) is also called +candidate hidden state, which is computed based on the current input and +the previous hidden state.

    +

    Set use_peepholes to False to disable peephole connection. The formula +is omitted here, please refer to the paper +http://www.bioinf.jku.at/publications/older/2604.pdf for details.

    +

    Note that these \(W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\) +operations on the input \(x_{t}\) are NOT included in this operator. +Users can choose to use fully-connect layer before LSTM layer.

    - - - - + + + +
    参数:
      -
    • input (Variable|list) – a 2-D tensor with shape [N x D], where N is the -batch size and D is the number of classes. This -input is a probability computed by the previous -operator, which is almost always the result of -a softmax operator.
    • -
    • label (Variable|list) – the ground truth which is a 2-D tensor. When -soft_label is set to False, label is a -tensor<int64> with shape [N x 1]. When -soft_label is set to True, label is a -tensor<float/double> with shape [N x D].
    • -
    • soft_label (bool, via **kwargs) – a flag indicating whether to -interpretate the given labels as soft -labels, default False.
    • +
    • input (Variable) – The input of dynamic_lstm layer, which supports +variable-time length input sequence. The underlying +tensor in this Variable is a matrix with shape +(T X 4D), where T is the total time steps in this +mini-batch, D is the hidden size.
    • +
    • size (int) – 4 * hidden size.
    • +
    • param_attr (ParamAttr|None) –

      The parameter attribute for the learnable +hidden-hidden weights.

      +
        +
      • Weights = {\(W_{ch}, W_{ih}, W_{fh}, W_{oh}\)}
      • +
      • The shape is (D x 4D), where D is the hidden +size.
      -
    返回:

    A 2-D tensor with shape [N x 1], the cross entropy loss.

    -
    Raises:

    ValueError – 1) the 1st dimension of input and label are not equal. -2) when soft_label == True, and the 2nd dimension of

    + +
  • bias_attr (ParamAttr|None) –

    The bias attribute for the learnable bias +weights, which contains two parts, input-hidden +bias weights and peephole connections weights if +setting use_peepholes to True.

    +
      +
    1. use_peepholes = False
    2. +
    -

    input and label are not equal.

    -
    -
      -
    1. when soft_label == False, and the 2nd dimension of -label is not 1.
    2. +
        +
      • Biases = {\(b_c, b_i, b_f, b_o\)}.
      • +
      • The shape is (1 x 4D).
      • +
      +
      +
        +
      1. use_peepholes = True
      +
      +
        +
      • Biases = { \(b_c, b_i, b_f, b_o, W_{ic}, W_{fc}, W_{oc}\)}.
      • +
      • The shape is (1 x 7D).
      • +
      +
      + +
    3. use_peepholes (bool) – Whether to enable diagonal/peephole connections, +default True.
    4. +
    5. is_reverse (bool) – Whether to compute reversed LSTM, default False.
    6. +
    7. gate_activation (str) – The activation for input gate, forget gate and +output gate. Choices = [“sigmoid”, “tanh”, “relu”, +“identity”], default “sigmoid”.
    8. +
    9. cell_activation (str) – The activation for cell output. Choices = [“sigmoid”, +“tanh”, “relu”, “identity”], default “tanh”.
    10. +
    11. candidate_activation (str) – The activation for candidate hidden state. +Choices = [“sigmoid”, “tanh”, “relu”, “identity”], +default “tanh”.
    12. +
    13. dtype (str) – Data type. Choices = [“float32”, “float64”], default “float32”.
    14. +
    15. name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    16. + +
  • 返回:

    The hidden state, and cell state of LSTM. The shape of both is (T x D), and lod is the same with the input.

    +
    返回类型:

    tuple

    Examples

    -
    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
    -cost = fluid.layers.cross_entropy(input=predict, label=label)
    +
    hidden_dim = 512
    +forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
    +                               act=None, bias_attr=None)
    +forward, _ = fluid.layers.dynamic_lstm(
    +    input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
     
    -
    -

    square_error_cost

    +
    +

    dynamic_lstmp

    -paddle.v2.fluid.layers.square_error_cost(input, label, **kwargs)
    -

    Square error cost layer

    -

    This layer accepts input predictions and target label and returns the -squared error cost.

    -

    For predictions, \(X\), and target labels, \(Y\), the equation is:

    +paddle.v2.fluid.layers.dynamic_lstmp(input, size, proj_size, param_attr=None, bias_attr=None, use_peepholes=True, is_reverse=False, gate_activation='sigmoid', cell_activation='tanh', candidate_activation='tanh', proj_activation='tanh', dtype='float32', name=None) +

    Dynamic LSTMP Layer

    +

    LSTMP (LSTM with recurrent projection) layer has a separate projection +layer after the LSTM layer, projecting the original hidden state to a +lower-dimensional one, which is proposed to reduce the number of total +parameters and furthermore computational complexity for the LSTM, +espeacially for the case that the size of output units is relative +large (https://research.google.com/pubs/archive/43905.pdf).

    +

    The formula is as follows:

    -\[Out = (X - Y)^2\]
    -

    In the above equation:

    +\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)\\f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)\\\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)\\o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)\\c_t & = f_t \odot c_{t-1} + i_t \odot \tilde{c_t}\\h_t & = o_t \odot act_h(c_t)\\r_t & = \overline{act_h}(W_{rh}h_t)\end{aligned}\end{align} \]
    +

    In the above formula:

    +
      +
    • \(W\): Denotes weight matrices (e.g. \(W_{xi}\) is the matrix of weights from the input gate to the input).
    • +
    • \(W_{ic}\), \(W_{fc}\), \(W_{oc}\): Diagonal weight matrices for peephole connections. In our implementation, we use vectors to reprenset these diagonal weight matrices.
    • +
    • \(b\): Denotes bias vectors (e.g. \(b_i\) is the input gate bias vector).
    • +
    • \(\sigma\): The activation, such as logistic sigmoid function.
    • +
    • \(i, f, o\) and \(c\): The input gate, forget gate, output gate, and cell activation vectors, respectively, all of which have the same size as the cell output activation vector \(h\).
    • +
    • \(h\): The hidden state.
    • +
    • \(r\): The recurrent projection of the hidden state.
    • +
    • \(\tilde{c_t}\): The candidate hidden state, whose computation is based on the current input and previous hidden state.
    • +
    • \(\odot\): The element-wise product of the vectors.
    • +
    • \(act_g\) and \(act_h\): The cell input and cell output activation functions and tanh is usually used for them.
    • +
    • \(\overline{act_h}\): The activation function for the projection output, usually using identity or same as \(act_h\).
    • +
    +

    Set use_peepholes to False to disable peephole connection. The formula +is omitted here, please refer to the paper +http://www.bioinf.jku.at/publications/older/2604.pdf for details.

    +

    Note that these \(W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\) +operations on the input \(x_{t}\) are NOT included in this operator. +Users can choose to use fully-connected layer before LSTMP layer.

    + +++ + + + + + + + +
    参数:
      +
    • input (Variable) – The input of dynamic_lstmp layer, which supports +variable-time length input sequence. The underlying +tensor in this Variable is a matrix with shape +(T X 4D), where T is the total time steps in this +mini-batch, D is the hidden size.
    • +
    • size (int) – 4 * hidden size.
    • +
    • proj_size (int) – The size of projection output.
    • +
    • param_attr (ParamAttr|None) –

      The parameter attribute for the learnable +hidden-hidden weight and projection weight.

      +
        +
      • Hidden-hidden weight = {\(W_{ch}, W_{ih}, W_{fh}, W_{oh}\)}.
      • +
      • The shape of hidden-hidden weight is (P x 4D), +where P is the projection size and D the hidden +size.
      • +
      • Projection weight = {\(W_{rh}\)}.
      • +
      • The shape of projection weight is (D x P).
      • +
      +
    • +
    • bias_attr (ParamAttr|None) –

      The bias attribute for the learnable bias +weights, which contains two parts, input-hidden +bias weights and peephole connections weights if +setting use_peepholes to True.

      +
        +
      1. use_peepholes = False
      2. +
      -
        -
      • \(X\): Input predictions, a tensor.
      • -
      • \(Y\): Input labels, a tensor.
      • -
      • \(Out\): Output value, same shape with \(X\).
      • +
          +
        • Biases = {\(b_c, b_i, b_f, b_o\)}.
        • +
        • The shape is (1 x 4D).
        • +
        +
      +
        +
      1. use_peepholes = True
      2. +
      +
      +
        +
      • Biases = { \(b_c, b_i, b_f, b_o, W_{ic}, W_{fc}, W_{oc}\)}.
      • +
      • The shape is (1 x 7D).
      +
    • +
    • use_peepholes (bool) – Whether to enable diagonal/peephole connections, +default True.
    • +
    • is_reverse (bool) – Whether to compute reversed LSTM, default False.
    • +
    • gate_activation (str) – The activation for input gate, forget gate and +output gate. Choices = [“sigmoid”, “tanh”, “relu”, +“identity”], default “sigmoid”.
    • +
    • cell_activation (str) – The activation for cell output. Choices = [“sigmoid”, +“tanh”, “relu”, “identity”], default “tanh”.
    • +
    • candidate_activation (str) – The activation for candidate hidden state. +Choices = [“sigmoid”, “tanh”, “relu”, “identity”], +default “tanh”.
    • +
    • proj_activation (str) – The activation for projection output. +Choices = [“sigmoid”, “tanh”, “relu”, “identity”], +default “tanh”.
    • +
    • dtype (str) – Data type. Choices = [“float32”, “float64”], default “float32”.
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    • +
    +
    返回:

    The projection of hidden state, and cell state of LSTMP. The shape of projection is (T x P), for the cell state which is (T x D), and both LoD is the same with the input.

    +
    返回类型:

    tuple

    +
    +

    Examples

    +
    hidden_dim, proj_dim = 512, 256
    +fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
    +                         act=None, bias_attr=None)
    +proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
    +                                         size=hidden_dim * 4,
    +                                         proj_size=proj_dim,
    +                                         use_peepholes=False,
    +                                         is_reverse=True,
    +                                         cell_activation="tanh",
    +                                         proj_activation="tanh")
    +
    +
    +
    + +
    +
    +

    dynamic_gru

    +
    +
    +paddle.v2.fluid.layers.dynamic_gru(input, size, param_attr=None, bias_attr=None, is_reverse=False, gate_activation='sigmoid', candidate_activation='tanh', h_0=None)
    +

    Dynamic GRU Layer

    +

    Refer to Empirical Evaluation of Gated Recurrent Neural Networks on +Sequence Modeling

    +

    The formula is as follows:

    +
    +\[ \begin{align}\begin{aligned}u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)\\r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)\\\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)\\h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \tilde{h_t}\end{aligned}\end{align} \]
    +

    The \(\odot\) is the element-wise product of the vectors. \(act_g\) +is the update gate and reset gate activation function and \(sigmoid\) +is usually used for it. \(act_c\) is the activation function for +candidate hidden state and \(tanh\) is usually used for it.

    +

    Note that these \(W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}\) operations on +the input \(x_{t}\) are NOT included in this operator. Users can choose +to use fully-connect layer before GRU layer.

    -
    参数:
      -
    • input (Variable) – Input tensor, has predictions.
    • -
    • label (Variable) – Label tensor, has target labels.
    • +
    • input (Variable) – The input of dynamic_gru layer, which supports +variable-time length input sequence. The underlying tensor in this +Variable is a matrix with shape \((T \times 3D)\), where +\(T\) is the total time steps in this mini-batch, \(D\) +is the hidden size.
    • +
    • size (int) – The dimension of the gru cell.
    • +
    • param_attr (ParamAttr|None) –

      The parameter attribute for the learnable +hidden-hidden weight matrix. Note:

      +
        +
      • The shape of the weight matrix is \((T \times 3D)\), where +\(D\) is the hidden size.
      • +
      • All elements in the weight matrix can be divided into two parts. +The first part are weights of the update gate and reset gate with +shape \((D \times 2D)\), and the second part are weights for +candidate hidden state with shape \((D \times D)\).
      • +
      +
    • +
    • bias_attr (ParamAttr) – The parameter attribute for learnable the +hidden-hidden bias.
    • +
    • is_reverse (bool) – Whether to compute reversed GRU, default +False.
    • +
    • gate_activation (str) – The activation for update gate and reset gate. +Choices = [“sigmoid”, “tanh”, “relu”, “identity”], default “sigmoid”.
    • +
    • activation (str) – The activation for candidate hidden state. +Choices = [“sigmoid”, “tanh”, “relu”, “identity”], default “tanh”.
    返回:

    -
    The tensor variable storing the element-wise squared error
    -

    difference of input and label.

    -
    -
    -

    +
    返回:

    The hidden state of GRU. The shape is (T times D), and lod is the same with the input.

    返回类型:

    Variable

    @@ -1503,199 +1528,884 @@ squared error cost.

    Examples

    -
    y = layers.data(name='y', shape=[1], dtype='float32')
    -y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
    -cost = layers.square_error_cost(input=y_predict, label=y)
    +
    hidden_dim = 512
    +x = fluid.layers.fc(input=data, size=hidden_dim * 3)
    +hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    +
    +
    +
    + +
    +
    +

    gru_unit

    +
    +
    +paddle.v2.fluid.layers.gru_unit(input, hidden, size, weight=None, bias=None, activation='tanh', gate_activation='sigmoid')
    +

    GRU unit layer. The equation of a gru step is:

    +
    +
    +\[ \begin{align}\begin{aligned}u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)\\r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)\\m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)\\h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})\end{aligned}\end{align} \]
    +
    +

    The inputs of gru unit includes \(z_t\), \(h_{t-1}\). In terms +of the equation above, the \(z_t\) is split into 3 parts - +\(xu_t\), \(xr_t\) and \(xm_t\). This means that in order to +implement a full GRU unit operator for an input, a fully +connected layer has to be applied, such that \(z_t = W_{fc}x_t\).

    +

    The terms \(u_t\) and \(r_t\) represent the update and reset gates +of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is +an intermediate candidate hidden output, which is denoted by \(m_t\). +This layer has three outputs \(h_t\), \(dot(r_t, h_{t-1})\) +and concatenation of \(u_t\), \(r_t\) and \(m_t\).

    + +++ + + + + + + + +
    参数:
      +
    • input (Variable) – The fc transformed input value of current step.
    • +
    • hidden (Variable) – The hidden value of lstm unit from previous step.
    • +
    • size (integer) – The input dimension value.
    • +
    • weight (ParamAttr) – The weight parameters for gru unit. Default: None
    • +
    • bias (ParamAttr) – The bias parameters for gru unit. Default: None
    • +
    • activation (string) – The activation type for cell (actNode). +Default: ‘tanh’
    • +
    • gate_activation (string) – The activation type for gates (actGate). +Default: ‘sigmoid’
    • +
    +
    返回:

    The hidden value, reset-hidden value and gate values.

    +
    返回类型:

    tuple

    +
    +

    Examples

    +
    # assuming we have x_t_data and prev_hidden of size=10
    +x_t = fluid.layers.fc(input=x_t_data, size=30)
    +hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
    +                                       hidden = prev_hidden)
    +
    +
    +
    + +
    +
    +

    linear_chain_crf

    +
    +
    +paddle.v2.fluid.layers.linear_chain_crf(input, label, param_attr=None)
    +
    + +
    +
    +

    crf_decoding

    +
    +
    +paddle.v2.fluid.layers.crf_decoding(input, param_attr, label=None)
    +
    + +
    +
    +

    cos_sim

    +
    +
    +paddle.v2.fluid.layers.cos_sim(X, Y, **kwargs)
    +

    This function performs the cosine similarity between two tensors +X and Y and returns that as the output.

    +
    + +
    +
    +

    cross_entropy

    +
    +
    +paddle.v2.fluid.layers.cross_entropy(input, label, **kwargs)
    +

    Cross Entropy Layer

    +

    This layer computes the cross entropy between input and label. It +supports both standard cross-entropy and soft-label cross-entropy loss +computation.

    +
      +
    1. +
      One-hot cross-entropy:
      +

      soft_label = False, Label[i, 0] indicates the class index for sample i:

      +
      +\[Y[i] = -\log(X[i, Label[i]])\]
      +
      +
      +
    2. +
    3. +
      Soft-label cross-entropy:
      +

      soft_label = True, Label[i, j] indicates the soft label of class j +for sample i:

      +
      +\[Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}\]
      +
      +
      +

      Please make sure that in this case the summation of each row of label +equals one.

      +
    4. +
    5. +
      One-hot cross-entropy with vecterized label:
      +

      As a special case of 2), when each row of ‘label’ has only one +non-zero element which is equal to 1, soft-label cross-entropy degenerates +to a one-hot cross-entropy with one-hot label representation.

      +
      +
      +
    6. +
    + +++ + + + + + + + +
    参数:
      +
    • input (Variable|list) – a 2-D tensor with shape [N x D], where N is the +batch size and D is the number of classes. This +input is a probability computed by the previous +operator, which is almost always the result of +a softmax operator.
    • +
    • label (Variable|list) – the ground truth which is a 2-D tensor. When +soft_label is set to False, label is a +tensor<int64> with shape [N x 1]. When +soft_label is set to True, label is a +tensor<float/double> with shape [N x D].
    • +
    • soft_label (bool, via **kwargs) – a flag indicating whether to +interpretate the given labels as soft +labels, default False.
    • +
    +
    返回:

    A 2-D tensor with shape [N x 1], the cross entropy loss.

    +
    Raises:

    ValueError – 1) the 1st dimension of input and label are not equal. +2) when soft_label == True, and the 2nd dimension of

    +
    +

    input and label are not equal.

    +
    +
      +
    1. when soft_label == False, and the 2nd dimension of +label is not 1.
    2. +
    +
    +

    Examples

    +
    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
    +cost = fluid.layers.cross_entropy(input=predict, label=label)
    +
    +
    +
    + +
    +
    +

    square_error_cost

    +
    +
    +paddle.v2.fluid.layers.square_error_cost(input, label, **kwargs)
    +

    Square error cost layer

    +

    This layer accepts input predictions and target label and returns the +squared error cost.

    +

    For predictions, \(X\), and target labels, \(Y\), the equation is:

    +
    +\[Out = (X - Y)^2\]
    +

    In the above equation:

    +
    +
      +
    • \(X\): Input predictions, a tensor.
    • +
    • \(Y\): Input labels, a tensor.
    • +
    • \(Out\): Output value, same shape with \(X\).
    • +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (Variable) – Input tensor, has predictions.
    • +
    • label (Variable) – Label tensor, has target labels.
    • +
    +
    返回:

    +
    The tensor variable storing the element-wise squared error
    +

    difference of input and label.

    +
    +
    +

    +
    返回类型:

    Variable

    +
    +

    Examples

    +
    y = layers.data(name='y', shape=[1], dtype='float32')
    +y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
    +cost = layers.square_error_cost(input=y_predict, label=y)
    +
    +
    +
    + +
    +
    +

    accuracy

    +
    +
    +paddle.v2.fluid.layers.accuracy(input, label, k=1, correct=None, total=None, **kwargs)
    +

    This function computes the accuracy using the input and label. +The output is the top_k inputs and their indices.

    +
    + +
    +
    +

    chunk_eval

    +
    +
    +paddle.v2.fluid.layers.chunk_eval(input, label, chunk_scheme, num_chunk_types, excluded_chunk_types=None, **kwargs)
    +

    This function computes and outputs the precision, recall and +F1-score of chunk detection.

    +
    + +
    +
    +

    sequence_conv

    +
    +
    +paddle.v2.fluid.layers.sequence_conv(input, num_filters, filter_size=3, filter_stride=1, padding=None, bias_attr=None, param_attr=None, act=None)
    +

    This function creates the op for sequence_conv, using the inputs and +other convolutional configurations for the filters and stride as given +in the input parameters to the function.

    +
    + +
    +
    +

    conv2d

    +
    +
    +paddle.v2.fluid.layers.conv2d(input, num_filters, filter_size, stride=None, padding=None, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None)
    +

    Convlution2D Layer

    +

    The convolution2D layer calculates the output based on the input, filter +and strides, paddings, dilations, groups parameters. Input(Input) and +Output(Output) are in NCHW format. Where N is batch size, C is the number of +channels, H is the height of the feature, and W is the width of the feature. +The details of convolution layer, please refer UFLDL’s convolution, . +If bias attribution and activation type are provided, bias is added to the +output of the convolution, and the corresponding activation function is +applied to the final result.

    +

    For each input \(X\), the equation is:

    +
    +\[Out = \sigma (W \ast X + b)\]
    +

    In the above equation:

    +
      +
    • \(X\): Input value, a tensor with NCHW format.
    • +
    • \(W\): Filter value, a tensor with MCHW format.
    • +
    • \(\ast\): Convolution operation.
    • +
    • \(b\): Bias value, a 2-D tensor with shape [M, 1].
    • +
    • \(\sigma\): Activation function.
    • +
    • +
      \(Out\): Output value, the shape of \(Out\) and \(X\) may be
      +
      different.
      +
      +
    • +
    +

    Example

    +
      +
    • Input:

      +

      Input shape: $(N, C_{in}, H_{in}, W_{in})$

      +

      Filter shape: $(C_{out}, C_{in}, H_f, W_f)$

      +
    • +
    • Output: +Output shape: $(N, C_{out}, H_{out}, W_{out})$

      +
    • +
    +

    Where

    +
    +\[\]
    +

    H_{out}&= frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \ +W_{out}&= frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    + +++ + + + + + + + + + +
    参数:
      +
    • input (Variable) – The input image with [N, C, H, W] format.
    • +
    • num_filters (int) – The number of filter. It is as same as the output +image channel.
    • +
    • filter_size (int|tuple|None) – The filter size. If filter_size is a tuple, +it must contain two integers, (filter_size_H, filter_size_W). +Otherwise, the filter will be a square.
    • +
    • stride (int|tuple) – The stride size. If stride is a tuple, it must +contain two integers, (stride_H, stride_W). Otherwise, the +stride_H = stride_W = stride. Default: stride = 1.
    • +
    • padding (int|tuple) – The padding size. If padding is a tuple, it must +contain two integers, (padding_H, padding_W). Otherwise, the +padding_H = padding_W = padding. Default: padding = 0.
    • +
    • groups (int) – The groups number of the Conv2d Layer. According to grouped +convolution in Alex Krizhevsky’s Deep CNN paper: when group=2, +the first half of the filters is only connected to the first half +of the input channels, while the second half of the filters is only +connected to the second half of the input channels. Default: groups=1
    • +
    • param_attr (ParamAttr) – The parameters to the Conv2d Layer. Default: None
    • +
    • bias_attr (ParamAttr) – Bias parameter for the Conv2d layer. Default: None
    • +
    • use_cudnn (bool) – Use cudnn kernel or not, it is valid only when the cudnn +library is installed. Default: True
    • +
    • act (str) – Activation type. Default: None
    • +
    +
    返回:

    +
    The tensor variable storing the convolution and
    +

    non-linearity activation result.

    +
    +
    +

    +
    返回类型:

    Variable

    +
    Raises:

    ValueError – If the shapes of input, filter_size, stride, padding and +groups mismatch.

    +
    +

    Examples

    +
    data = fluid.layers.data(
    +    name='data', shape=[3, 32, 32], dtype='float32')
    +conv2d = fluid.layers.conv2d(
    +    input=data, num_filters=2, filter_size=3, act="relu")
    +
    +
    +
    + +
    +
    +

    sequence_pool

    +
    +
    +paddle.v2.fluid.layers.sequence_pool(input, pool_type, **kwargs)
    +

    This function add the operator for sequence pooling. +It pools features of all time-steps of each instance, and is applied +on top of the input using pool_type mentioned in the parameters.

    +

    It supports four pool_type:

    +
      +
    • average: \(Out[i] = \frac{\sum_i X_i}{N}\)
    • +
    • sum: \(Out[i] = \sum_jX_{ij}\)
    • +
    • sqrt: \(Out[i] = \frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}\)
    • +
    • max: \(Out[i] = max(X_i)\)
    • +
    +
    x is a 1-level LoDTensor:
    +  x.lod = [[0, 2, 5, 7]]
    +  x.data = [1, 3, 2, 4, 6, 5, 1]
    +  x.dims = [7, 1]
    +
    +then output is a Tensor:
    +  out.dim = [3, 1]
    +  with condition len(x.lod[-1]) - 1 == out.dims[0]
    +
    +for different pool_type:
    +  average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
    +  sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
    +  sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
    +             6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
    +  max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
    +
    +
    + +++ + + + + + +
    参数:
      +
    • input (variable) – The input variable which is a LoDTensor.
    • +
    • pool_type (string) – The pooling type of sequence_pool. +It supports average, sum, sqrt and max.
    • +
    +
    返回:

    The sequence pooling variable which is a Tensor.

    +
    +

    Examples

    +
    x = fluid.layers.data(name='x', shape=[7, 1],
    +                 dtype='float32', lod_level=1)
    +avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
    +sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
    +sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
    +max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
    +
    +
    +
    + +
    +
    +

    pool2d

    +
    +
    +paddle.v2.fluid.layers.pool2d(input, pool_size, pool_type, pool_stride=None, pool_padding=None, global_pooling=False, use_cudnn=True, name=None)
    +

    This function adds the operator for pooling in 2 dimensions, using the +pooling configurations mentioned in input parameters.

    +
    + +
    +
    +

    batch_norm

    +
    +
    +paddle.v2.fluid.layers.batch_norm(input, act=None, is_test=False, momentum=0.9, epsilon=1e-05, param_attr=None, bias_attr=None, data_layout='NCHW', name=None)
    +

    This function helps create an operator to implement +the BatchNorm layer using the configurations from the input parameters.

    +
    + +
    +
    +

    beam_search_decode

    +
    +
    +paddle.v2.fluid.layers.beam_search_decode(ids, scores, name=None)
    +
    + +
    +
    +

    conv2d_transpose

    +
    +
    +paddle.v2.fluid.layers.conv2d_transpose(input, num_filters, output_size=None, filter_size=None, padding=None, stride=None, dilation=None, param_attr=None, use_cudnn=True, name=None)
    +

    Convlution2D transpose layer

    +

    The convolution2D transpose layer calculates the output based on the input, +filter, and dilations, strides, paddings. Input(Input) and output(Output) +are in NCHW format. Where N is batch size, C is the number of channels, +H is the height of the feature, and W is the width of the feature. +Parameters(dilations, strides, paddings) are two elements. These two elements +represent height and width, respectively. The details of convolution transpose +layer, please refer to the following explanation and references +therein.

    +

    For each input \(X\), the equation is:

    +
    +\[Out = W \ast X\]
    +

    In the above equation:

    +
      +
    • \(X\): Input value, a tensor with NCHW format.
    • +
    • \(W\): Filter value, a tensor with MCHW format.
    • +
    • \(\ast\) : Convolution transpose operation.
    • +
    • +
      \(Out\): Output value, the shape of \(Out\) and \(X\) may be
      +
      different.
      +
      +
    • +
    +

    Example

    +
      +
    • Input:

      +

      Input shape: $(N, C_{in}, H_{in}, W_{in})$

      +

      Filter shape: $(C_{in}, C_{out}, H_f, W_f)$

      +
    • +
    • Output:

      +

      Output shape: $(N, C_{out}, H_{out}, W_{out})$

      +
    • +
    +

    Where

    +
    +\[\begin{split}H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\ +W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1\end{split}\]
    + +++ + + + + + + + + + +
    参数:
      +
    • input (Variable) – The input image with [N, C, H, W] format.
    • +
    • num_filters (int) – The number of the filter. It is as same as the output +image channel.
    • +
    • output_size (int|tuple|None) – The output image size. If output size is a +tuple, it must contain two integers, (image_H, image_W). This +parameter only works when filter_size is None.
    • +
    • filter_size (int|tuple|None) – The filter size. If filter_size is a tuple, +it must contain two integers, (filter_size_H, filter_size_W). +Otherwise, the filter will be a square. None if use output size to +calculate filter_size.
    • +
    • padding (int|tuple) – The padding size. If padding is a tuple, it must +contain two integers, (padding_H, padding_W). Otherwise, the +padding_H = padding_W = padding. Default: padding = 0.
    • +
    • stride (int|tuple) – The stride size. If stride is a tuple, it must +contain two integers, (stride_H, stride_W). Otherwise, the +stride_H = stride_W = stride. Default: stride = 1.
    • +
    • dilation (int|tuple) – The dilation size. If dilation is a tuple, it must +contain two integers, (dilation_H, dilation_W). Otherwise, the +dilation_H = dilation_W = dilation. Default: dilation = 1.
    • +
    • param_attr (ParamAttr) – The parameters to the Conv2d_transpose Layer. +Default: None
    • +
    • use_cudnn (bool) – Use cudnn kernel or not, it is valid only when the cudnn +library is installed. Default: True
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    • +
    +
    返回:

    The tensor variable storing the convolution transpose result.

    +
    返回类型:

    Variable

    +
    Raises:

    ValueError – If the shapes of input, filter_size, stride, padding and +groups mismatch.

    +
    +

    Examples

    +
    data = fluid.layers.data(
    +    name='data', shape=[3, 32, 32], dtype='float32')
    +conv2d_transpose = fluid.layers.conv2d_transpose(
    +    input=data, num_filters=2, filter_size=3)
    +
    +
    +
    + +
    +
    +

    sequence_expand

    +
    +
    +paddle.v2.fluid.layers.sequence_expand(x, y, name=None)
    +

    Sequence Expand Layer. This layer will expand the input variable x +according to LoD information of y. And the following examples will +explain how sequence_expand works:

    +
    * Case 1
    +    x is a LoDTensor:
    +        x.lod = [[0,       2, 3],
    +                 [0, 1,    3, 4]]
    +        x.data = [a, b, c, d]
    +        x.dims = [4, 1]
    +
    +    y is a LoDTensor:
    +        y.lod = [[0,    2,    4],
    +                 [0, 3, 6, 7, 8]]
    +
    +    with condition len(y.lod[-1]) - 1 == x.dims[0]
    +
    +    then output is a 2-level LoDTensor:
    +        out.lod = [[0,                2,    4],
    +                   [0,       3,       6, 7, 8]]
    +        out.data = [a, a, a, b, b, b, c, d]
    +        out.dims = [8, 1]
    +
    +* Case 2
    +    x is a Tensor:
    +        x.data = [a, b, c]
    +        x.dims = [3, 1]
    +
    +    y is a LoDTensor:
    +        y.lod = [[0, 2, 3, 6]]
    +
    +    with condition len(y.lod[-1]) - 1 == x.dims[0]
    +
    +    then output is a 1-level LoDTensor:
    +        out.lod = [[0,    2, 3,      6]]
    +        out.data = [a, a, b, c, c, c]
    +        out.dims = [6, 1]
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • x (Variable) – The input variable which is a Tensor or LoDTensor.
    • +
    • y (Variable) – The input variable which is a LoDTensor.
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    • +
    +
    返回:

    The expanded variable which is a LoDTensor.

    +
    返回类型:

    Variable

    +
    +

    Examples

    +
    x = fluid.layers.data(name='x', shape=[10], dtype='float32')
    +y = fluid.layers.data(name='y', shape=[10, 20],
    +                 dtype='float32', lod_level=1)
    +out = layers.sequence_expand(x=x, y=y)
    +
    +
    +
    + +
    +
    +

    lstm_unit

    +
    +
    +paddle.v2.fluid.layers.lstm_unit(x_t, hidden_t_prev, cell_t_prev, forget_bias=0.0, param_attr=None, bias_attr=None, name=None)
    +

    Lstm unit layer. The equation of a lstm step is:

    +
    +
    +\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)\\f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)\\c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)\\o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)\\h_t & = o_t tanh(c_t)\end{aligned}\end{align} \]
    +
    +

    The inputs of lstm unit include \(x_t\), \(h_{t-1}\) and +\(c_{t-1}\). The 2nd dimensions of \(h_{t-1}\) and \(c_{t-1}\) +should be same. The implementation separates the linear transformation and +non-linear transformation apart. Here, we take \(i_t\) as an example. +The linear transformation is applied by calling a fc layer and the +equation is:

    +
    +
    +\[L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i\]
    +
    +

    The non-linear transformation is applied by calling lstm_unit_op and the +equation is:

    +
    +
    +\[i_t = \sigma(L_{i_t})\]
    +
    +

    This layer has two outputs including \(h_t\) and \(o_t\).

    + +++ + + + + + + + + + +
    参数:
      +
    • x_t (Variable) – The input value of current step, a 2-D tensor with shape +M x N, M for batch size and N for input size.
    • +
    • hidden_t_prev (Variable) – The hidden value of lstm unit, a 2-D tensor +with shape M x S, M for batch size and S for size of lstm unit.
    • +
    • cell_t_prev (Variable) – The cell value of lstm unit, a 2-D tensor with +shape M x S, M for batch size and S for size of lstm unit.
    • +
    • forget_bias (float) – The forget bias of lstm unit.
    • +
    • param_attr (ParamAttr) – The attributes of parameter weights, used to set +initializer, name etc.
    • +
    • bias_attr (ParamAttr) – The attributes of bias weights, if not False, +bias weights will be created and be set to default value.
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    • +
    +
    返回:

    The hidden value and cell value of lstm unit.

    +
    返回类型:

    tuple

    +
    Raises:

    ValueError – The ranks of x_t, hidden_t_prev and cell_t_prev +not be 2 or the 1st dimensions of x_t, hidden_t_prev +and cell_t_prev not be the same or the 2nd dimensions of +hidden_t_prev and cell_t_prev not be the same.

    +
    +

    Examples

    +
    x_t = fluid.layers.fc(input=x_t_data, size=10)
    +prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
    +prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
    +hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
    +                                       hidden_t_prev=prev_hidden,
    +                                       cell_t_prev=prev_cell)
    +
    +
    +
    + +
    +
    +

    reduce_sum

    +
    +
    +paddle.v2.fluid.layers.reduce_sum(input, dim=None, keep_dim=False, name=None)
    +

    Computes the sum of tensor elements over the given dimension.

    + +++ + + + + + + + +
    参数:
      +
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • +
    • dim (int|None) – The dimension along which the sum is performed. If +None, sum all elements of input and return a +Tensor variable with a single element, otherwise must be in the +range \([-rank(input), rank(input))\). If \(dim < 0\), +the dimension to reduce is \(rank + dim\).
    • +
    • keep_dim (bool) – Whether to reserve the reduced dimension in the +output Tensor. The result tensor will have one fewer dimension +than the input unless keep_dim is true.
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    • +
    +
    返回:

    The reduced Tensor variable.

    +
    返回类型:

    Variable

    +
    +

    Examples

    +
    # x is a Tensor variable with following elements:
    +#    [[0.2, 0.3, 0.5, 0.9]
    +#     [0.1, 0.2, 0.6, 0.7]]
    +# Each example is followed by the correspending output tensor.
    +fluid.layers.reduce_sum(x)  # [3.5]
    +fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
    +fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
    +fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
    +
    +
    +
    + +
    +
    +

    reduce_mean

    +
    +
    +paddle.v2.fluid.layers.reduce_mean(input, dim=None, keep_dim=False, name=None)
    +

    Computes the mean of tensor elements over the given dimension.

    + +++ + + + + + + + +
    参数:
      +
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • +
    • dim (int|None) – The dimension along which the mean is computed. If +None, compute the mean over all elements of input +and return a Tensor variable with a single element, otherwise +must be in the range \([-rank(input), rank(input))\). If +\(dim < 0\), the dimension to reduce is \(rank + dim\).
    • +
    • keep_dim (bool) – Whether to reserve the reduced dimension in the +output Tensor. The result tensor will have one fewer dimension +than the input unless keep_dim is true.
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    • +
    +
    返回:

    The reduced Tensor variable.

    +
    返回类型:

    Variable

    +
    +

    Examples

    +
    # x is a Tensor variable with following elements:
    +#    [[0.2, 0.3, 0.5, 0.9]
    +#     [0.1, 0.2, 0.6, 0.7]]
    +# Each example is followed by the correspending output tensor.
    +fluid.layers.reduce_mean(x)  # [0.4375]
    +fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
    +fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
    +fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
     
    -
    -

    accuracy

    -
    -
    -paddle.v2.fluid.layers.accuracy(input, label, k=1, correct=None, total=None, **kwargs)
    -

    This function computes the accuracy using the input and label. -The output is the top_k inputs and their indices.

    -
    - -
    -
    -

    sequence_conv

    -
    -
    -paddle.v2.fluid.layers.sequence_conv(input, num_filters, filter_size=3, filter_stride=1, padding=None, bias_attr=None, param_attr=None, act=None)
    -

    This function creates the op for sequence_conv, using the inputs and -other convolutional configurations for the filters and stride as given -in the input parameters to the function.

    -
    - -
    -
    -

    conv2d

    +
    +

    reduce_max

    -paddle.v2.fluid.layers.conv2d(input, num_filters, filter_size, stride=None, padding=None, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None)
    -

    Convlution2D Layer

    -

    The convolution2D layer calculates the output based on the input, filter -and strides, paddings, dilations, groups parameters. Input(Input) and -Output(Output) are in NCHW format. Where N is batch size, C is the number of -channels, H is the height of the feature, and W is the width of the feature. -The details of convolution layer, please refer UFLDL’s convolution, . -If bias attribution and activation type are provided, bias is added to the -output of the convolution, and the corresponding activation function is -applied to the final result.

    -

    For each input \(X\), the equation is:

    -
    -\[Out = \sigma (W \ast X + b)\]
    -

    In the above equation:

    -
      -
    • \(X\): Input value, a tensor with NCHW format.
    • -
    • \(W\): Filter value, a tensor with MCHW format.
    • -
    • \(\ast\): Convolution operation.
    • -
    • \(b\): Bias value, a 2-D tensor with shape [M, 1].
    • -
    • \(\sigma\): Activation function.
    • -
    • -
      \(Out\): Output value, the shape of \(Out\) and \(X\) may be
      -
      different.
      -
      -
    • -
    -

    Example

    -
      -
    • Input:

      -

      Input shape: $(N, C_{in}, H_{in}, W_{in})$

      -

      Filter shape: $(C_{out}, C_{in}, H_f, W_f)$

      -
    • -
    • Output: -Output shape: $(N, C_{out}, H_{out}, W_{out})$

      -
    • -
    -

    Where

    -
    -\[\]
    -

    H_{out}&= frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \ -W_{out}&= frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    +paddle.v2.fluid.layers.reduce_max(input, dim=None, keep_dim=False, name=None) +

    Computes the maximum of tensor elements over the given dimension.

    - - - -
    参数:
      -
    • input (Variable) – The input image with [N, C, H, W] format.
    • -
    • num_filters (int) – The number of filter. It is as same as the output -image channel.
    • -
    • filter_size (int|tuple|None) – The filter size. If filter_size is a tuple, -it must contain two integers, (filter_size_H, filter_size_W). -Otherwise, the filter will be a square.
    • -
    • stride (int|tuple) – The stride size. If stride is a tuple, it must -contain two integers, (stride_H, stride_W). Otherwise, the -stride_H = stride_W = stride. Default: stride = 1.
    • -
    • padding (int|tuple) – The padding size. If padding is a tuple, it must -contain two integers, (padding_H, padding_W). Otherwise, the -padding_H = padding_W = padding. Default: padding = 0.
    • -
    • groups (int) – The groups number of the Conv2d Layer. According to grouped -convolution in Alex Krizhevsky’s Deep CNN paper: when group=2, -the first half of the filters is only connected to the first half -of the input channels, while the second half of the filters is only -connected to the second half of the input channels. Default: groups=1
    • -
    • param_attr (ParamAttr) – The parameters to the Conv2d Layer. Default: None
    • -
    • bias_attr (ParamAttr) – Bias parameter for the Conv2d layer. Default: None
    • -
    • use_cudnn (bool) – Use cudnn kernel or not, it is valid only when the cudnn -library is installed. Default: True
    • -
    • act (str) – Activation type. Default: None
    • +
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • +
    • dim (int|None) – The dimension along which the maximum is computed. +If None, compute the maximum over all elements of +input and return a Tensor variable with a single element, +otherwise must be in the range \([-rank(input), rank(input))\). +If \(dim < 0\), the dimension to reduce is \(rank + dim\).
    • +
    • keep_dim (bool) – Whether to reserve the reduced dimension in the +output Tensor. The result tensor will have one fewer dimension +than the input unless keep_dim is true.
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    返回:

    -
    The tensor variable storing the convolution and
    -

    non-linearity activation result.

    -
    -
    -

    -
    返回类型:

    Variable

    +
    返回:

    The reduced Tensor variable.

    Raises:

    ValueError – If the shapes of input, filter_size, stride, padding and -groups mismatch.

    +
    返回类型:

    Variable

    Examples

    -
    data = fluid.layers.data(
    -    name='data', shape=[3, 32, 32], dtype='float32')
    -conv2d = fluid.layers.conv2d(
    -    input=data, num_filters=2, filter_size=3, act="relu")
    +
    # x is a Tensor variable with following elements:
    +#    [[0.2, 0.3, 0.5, 0.9]
    +#     [0.1, 0.2, 0.6, 0.7]]
    +# Each example is followed by the correspending output tensor.
    +fluid.layers.reduce_max(x)  # [0.9]
    +fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
    +fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
    +fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
     
    -
    -

    sequence_pool

    +
    +

    reduce_min

    -paddle.v2.fluid.layers.sequence_pool(input, pool_type, **kwargs)
    -

    This function add the operator for sequence pooling. -It pools features of all time-steps of each instance, and is applied -on top of the input using pool_type mentioned in the parameters.

    -

    It supports four pool_type:

    -
      -
    • average: \(Out[i] = \frac{\sum_i X_i}{N}\)
    • -
    • sum: \(Out[i] = \sum_jX_{ij}\)
    • -
    • sqrt: \(Out[i] = \frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}\)
    • -
    • max: \(Out[i] = max(X_i)\)
    • -
    -
    x is a 1-level LoDTensor:
    -  x.lod = [[0, 2, 5, 7]]
    -  x.data = [1, 3, 2, 4, 6, 5, 1]
    -  x.dims = [7, 1]
    -
    -then output is a Tensor:
    -  out.dim = [3, 1]
    -  with condition len(x.lod[-1]) - 1 == out.dims[0]
    -
    -for different pool_type:
    -  average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
    -  sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
    -  sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
    -             6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
    -  max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
    -
    -
    +paddle.v2.fluid.layers.reduce_min(input, dim=None, keep_dim=False, name=None) +

    Computes the minimum of tensor elements over the given dimension.

    - + +
    参数:
      -
    • input (variable) – The input variable which is a LoDTensor.
    • -
    • pool_type (string) – The pooling type of sequence_pool. -It supports average, sum, sqrt and max.
    • +
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • +
    • dim (int|None) – The dimension along which the minimum is computed. +If None, compute the minimum over all elements of +input and return a Tensor variable with a single element, +otherwise must be in the range \([-rank(input), rank(input))\). +If \(dim < 0\), the dimension to reduce is \(rank + dim\).
    • +
    • keep_dim (bool) – Whether to reserve the reduced dimension in the +output Tensor. The result tensor will have one fewer dimension +than the input unless keep_dim is true.
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    返回:

    The sequence pooling variable which is a Tensor.

    +
    返回:

    The reduced Tensor variable.

    +
    返回类型:

    Variable

    Examples

    -
    x = fluid.layers.data(name='x', shape=[7, 1],
    -                 dtype='float32', lod_level=1)
    -avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
    -sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
    -sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
    -max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
    +
    # x is a Tensor variable with following elements:
    +#    [[0.2, 0.3, 0.5, 0.9]
    +#     [0.1, 0.2, 0.6, 0.7]]
    +# Each example is followed by the correspending output tensor.
    +fluid.layers.reduce_min(x)  # [0.1]
    +fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
    +fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
    +fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
     
    -

    sequence_first_step

    +

    sequence_first_step

    paddle.v2.fluid.layers.sequence_first_step(input, **kwargs)
    @@ -1731,7 +2441,7 @@ then output is a Tensor:
    -

    sequence_last_step

    +

    sequence_last_step

    paddle.v2.fluid.layers.sequence_last_step(input, **kwargs)
    @@ -1752,95 +2462,47 @@ then output is a Tensor:
    参数:input (variable) – The input variable which is a LoDTensor.
    返回:The sequence’s last step variable which is a Tensor.
    -

    Examples

    -
    x = fluid.layers.data(name='x', shape=[7, 1],
    -                 dtype='float32', lod_level=1)
    -x_last_step = fluid.layers.sequence_last_step(input=x)
    -
    -
    -
    - -
    -
    -

    pool2d

    -
    -
    -paddle.v2.fluid.layers.pool2d(input, pool_size, pool_type, pool_stride=None, pool_padding=None, global_pooling=False, use_cudnn=True, name=None)
    -

    This function adds the operator for pooling in 2 dimensions, using the -pooling configurations mentioned in input parameters.

    -
    - -
    -
    -

    batch_norm

    -
    -
    -paddle.v2.fluid.layers.batch_norm(input, act=None, is_test=False, momentum=0.9, epsilon=1e-05, param_attr=None, bias_attr=None, data_layout='NCHW', name=None)
    -

    This function helps create an operator to implement -the BatchNorm layer using the configurations from the input parameters.

    -
    - -
    -
    -

    beam_search_decode

    -
    -
    -paddle.v2.fluid.layers.beam_search_decode(ids, scores, name=None)
    -
    - -
    -
    -

    lod_rank_table

    -
    -
    -paddle.v2.fluid.layers.lod_rank_table(x, level=0)
    -

    LoD Rank Table Operator. Given an input variable x and a level number -of LoD, this layer creates a LodRankTable object. A LoDRankTable object -contains a list of bi-element tuples. Each tuple consists of an index and -a length, both of which are int type. Refering to specified level of LoD, -the index is the sequence index number and the length representes the -sequence length. Please note that the list is ranked in descending order by -the length. The following is an example:

    -
    -
    x is a LoDTensor:
    -    x.lod = [[0,                2, 3],
    -             [0,             5, 6, 7]]
    -    x.data = [a, b, c, d, e, f, g]
    -
    -1. set level to 0:
    -    Create lod rank table:
    -        lod_rank_table_obj = lod_rank_table(x, level=0)
    -
    -    Get:
    -        lod_rank_table_obj.items() = [(0, 2), (1, 1)]
    -
    -2. set level to 1:
    -    Create lod rank table:
    -        lod_rank_table_obj = lod_rank_table(x, level=1)
    -
    -    Get:
    -        lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
    +
    +返回:The sequence’s last step variable which is a Tensor.
    +
    +
    +
    +

    Examples

    +
    x = fluid.layers.data(name='x', shape=[7, 1],
    +                 dtype='float32', lod_level=1)
    +x_last_step = fluid.layers.sequence_last_step(input=x)
     
    -
    +
    + +
    +
    +

    dropout

    +
    +
    +paddle.v2.fluid.layers.dropout(x, dropout_prob, is_test=False, seed=None, **kwargs)
    +

    Computes dropout.

    +

    Drop or keep each element of x independently. Dropout is a regularization +technique for reducing overfitting by preventing neuron co-adaption during +training. The dropout operator randomly set (according to the given dropout +probability) the outputs of some units to zero, while others are remain +unchanged.

    -
    参数:
      -
    • x (Variable) – Input variable, a LoDTensor based which to create the lod -rank table.
    • -
    • level (int) – Specify the LoD level, on which to create the lod rank -table.
    • +
    • x (variable) – The input tensor.
    • +
    • dropout_prob (float) – Probability of setting units to zero.
    • +
    • is_test (bool) – A flag indicating whether it is in test phrase or not.
    • +
    • seed (int) – A Python integer used to create random seeds. If this +parameter is set to None, a random seed is used. +NOTE: If an integer seed is given, always the same output +units will be dropped. DO NOT use a fixed seed in training.
    返回:

    The created LoDRankTable object.

    +
    返回:

    A tensor variable.

    返回类型:

    Variable

    @@ -1849,74 +2511,116 @@ table.

    Examples

    -
    x = fluid.layers.data(name='x', shape=[10],
    -                dtype='float32', lod_level=1)
    -out = layers.lod_rank_table(x=x, level=0)
    +
    x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
    +droped = fluid.layers.dropout(input=x, dropout_rate=0.5)
     
    -
    -

    max_sequence_len

    +
    +

    split

    -paddle.v2.fluid.layers.max_sequence_len(rank_table)
    -

    Max Sequence Len Operator. Given a LoDRankTable object, this layer -returns the max length of a batch of sequences. In fact, a LoDRankTable -object contains a list of tuples(<sequence index, sequence length>) and -the list is already sorted by sequence length in descending order, so the -operator just returns the sequence length of the first tuple element.

    +paddle.v2.fluid.layers.split(input, num_or_sections, dim=-1, name=None) +

    Split the input tensor into multiple sub-tensors.

    - + - + - +
    参数:rank_table (Variable) – Input variable which is a LoDRankTable object.
    参数:
      +
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • +
    • num_or_sections (int|list) – If num_or_sections is an integer, +then the integer indicates the number of equal sized sub-tensors +that the tensor will be divided into. If num_or_sections +is a list of integers, the length of list indicates the number of +sub-tensors and the integers indicate the sizes of sub-tensors’ +dim dimension orderly.
    • +
    • dim (int) – The dimension along which to split. If \(dim < 0\), the +dimension to split along is \(rank(input) + dim\).
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    • +
    +
    返回:The max length of sequence.
    返回:

    The list of segmented tensor variables.

    +
    返回类型:Variable
    返回类型:

    List

    +

    Examples

    -
    x = fluid.layers.data(name='x', shape=[10],
    -                dtype='float32', lod_level=1)
    -rank_table = layers.lod_rank_table(x=x, level=0)
    -max_seq_len = layers.max_sequence_len(rank_table)
    +
    # x is a Tensor variable with shape [3, 9, 5]:
    +x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
    +x0.shape  # [3, 3, 5]
    +x1.shape  # [3, 3, 5]
    +x2.shape  # [3, 3, 5]
    +x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
    +x0.shape  # [3, 2, 5]
    +x1.shape  # [3, 3, 5]
    +x2.shape  # [3, 4, 5]
     
    -
    -

    topk

    +
    +

    ctc_greedy_decoder

    -paddle.v2.fluid.layers.topk(input, k)
    -

    topk

    -

    This function performs the operation that selects the k entries in the input -vector and outputs their values and indices as vectors. Thus topk_out[j] is -the j-th largest entry in input, and its index is topk_indices[j]

    +paddle.v2.fluid.layers.ctc_greedy_decoder(input, blank, name=None) +

    This op is used to decode sequences by greedy policy by below steps: +1. Get the indexes of max value for each row in input. a.k.a.

    +
    +
    numpy.argmax(input, axis=0).
    +
      +
    1. For each sequence in result of step1, merge repeated tokens between two +blanks and delete all blanks.
    2. +
    +

    A simple example as below:

    +
    Given:
    +
    +input.data = [[0.6, 0.1, 0.3, 0.1],
    +              [0.3, 0.2, 0.4, 0.1],
    +              [0.1, 0.5, 0.1, 0.3],
    +              [0.5, 0.1, 0.3, 0.1],
    +
    +              [0.5, 0.1, 0.3, 0.1],
    +              [0.2, 0.2, 0.2, 0.4],
    +              [0.2, 0.2, 0.1, 0.5],
    +              [0.5, 0.1, 0.3, 0.1]]
    +
    +input.lod = [[0, 4, 8]]
    +
    +Then:
    +
    +output.data = [[2],
    +               [1],
    +               [3]]
    +
    +output.lod = [[0, 2, 3]]
    +
    +
    -
    参数:
      -
    • input (Variable|list) – The input tensor that has all the data.
    • -
    • k (int) – The number of top elements that the function will pick.
    • +
    • input (Variable) – (LoDTensor<float>), the probabilities of +variable-length sequences, which is a 2-D Tensor with +LoD information. It’s shape is [Lp, num_classes + 1], +where Lp is the sum of all input sequences’ length and +num_classes is the true number of classes. (not +including the blank label).
    • +
    • blank (int) – the blank label index of Connectionist Temporal +Classification (CTC) loss, which is in thehalf-opened +interval [0, num_classes + 1).
    返回:

    -
    The variable of type array that contains the k largest entries
    -

    from input.

    -
    -
    Variable: The variable of type array that contains the indices of k
    -

    largest entries from input.

    -
    -
    -

    +
    返回:

    CTC greedy decode result.

    返回类型:

    Variable

    @@ -1925,38 +2629,50 @@ the j-th largest entry in input, and its index is topk_indices[j]

    Examples

    -
    x = fluid.layers.data(name='x', shape=[10])
    -k = 5
    -array = fluid.layers.topk(x, k)
    +
    x = fluid.layers.data(name='x', shape=[8], dtype='float32')
    +
    +cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
     
    -
    -

    lod_tensor_to_array

    +
    +

    edit_distance

    -paddle.v2.fluid.layers.lod_tensor_to_array(x, table)
    -

    Convert a LOD_TENSOR to an LOD_TENSOR_ARRAY.

    +paddle.v2.fluid.layers.edit_distance(input, label, normalized=False, ignored_tokens=None, name=None) +

    EditDistance operator computes the edit distances between a batch of +hypothesis strings and their references. Edit distance, also called +Levenshtein distance, measures how dissimilar two strings are by counting +the minimum number of operations to transform one string into anthor. +Here the operations include insertion, deletion, and substitution.

    +

    For example, given hypothesis string A = “kitten” and reference +B = “sitting”, the edit distance is 3 for A will be transformed into B +at least after two substitutions and one insertion:

    +

    “kitten” -> “sitten” -> “sittin” -> “sitting”

    +

    Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with +the total number denoted by batch_size, and the separation is specified +by the LoD information. And the batch_size reference strings are arranged +in order in the same way in the LoDTensor Input(Refs).

    +

    Output(Out) contains the batch_size results and each stands for the edit +distance for a pair of strings respectively. If Attr(normalized) is true, +the edit distance will be divided by the length of reference string.

    -
    参数:
      -
    • x (Variable|list) – The LOD tensor to be converted to a LOD tensor array.
    • -
    • table (ParamAttr|list) – The variable that stores the level of lod -which is ordered by sequence length in -descending order.
    • +
    • input (Variable) – The indices for hypothesis strings.
    • +
    • label (Variable) – The indices for reference strings.
    • +
    • normalized (bool) – Indicated whether to normalize the edit distance by +the length of reference string.
    • +
    • ignored_tokens (list of int) – Tokens that should be removed before +calculating edit distance.
    返回:

    -
    The variable of type array that has been converted from a
    -

    tensor.

    -
    -
    -

    +
    返回:

    sequence-to-sequence edit distance in shape [batch_size, 1].

    返回类型:

    Variable

    @@ -1965,38 +2681,42 @@ descending order.

    Examples

    -
    x = fluid.layers.data(name='x', shape=[10])
    -table = fluid.layers.lod_rank_table(x, level=0)
    -array = fluid.layers.lod_tensor_to_array(x, table)
    +
    x = fluid.layers.data(name='x', shape=[8], dtype='float32')
    +y = fluid.layers.data(name='y', shape=[7], dtype='float32')
    +
    +cost = fluid.layers.edit_distance(input=x,label=y)
     
    -
    -

    array_to_lod_tensor

    +
    +

    l2_normalize

    -paddle.v2.fluid.layers.array_to_lod_tensor(x, table)
    -

    Convert a LoD_Tensor_Aarry to an LoDTensor.

    +paddle.v2.fluid.layers.l2_normalize(x, axis, epsilon=1e-12, name=None) +

    L2 normalize Layer

    +

    The l2 normalize layer normalizes x along dimension axis using an L2 +norm. For a 1-D tensor (dim is fixed to 0), this layer computes

    +

    output = x / sqrt(max(sum(x**2), epsilon))

    +

    For x with more dimensions, this layer independently normalizes each 1-D +slice along dimension axis.

    -
    参数:
      -
    • x (Variable|list) – The lod tensor array to be converted to a tensor.
    • -
    • table (ParamAttr|list) – The variable that stores the level of lod -which is ordered by sequence length in -descending order.
    • +
    • x (Variable|list) – The input tensor to l2_normalize layer.
    • +
    • axis (int) – Dimension along which to normalize the input.
    • +
    • epsilon (float) – A lower bound value for x‘s l2 norm. sqrt(epsilon) will +be used as the divisor if the l2 norm of x is less than +sqrt(epsilon).
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    返回:

    -
    The variable of type tensor that has been converted
    -

    from an array.

    -
    -
    -

    +
    返回:

    The output tensor variable.

    返回类型:

    Variable

    @@ -2005,37 +2725,59 @@ descending order.

    Examples

    -
    x = fluid.layers.data(name='x', shape=[10])
    -table = fluid.layers.lod_rank_table(x, level=0)
    -array = fluid.layers.lod_tensor_to_array(x, table)
    -lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
    +
    data = fluid.layers.data(name="data",
    +                         shape=(3, 17, 13),
    +                         dtype="float32")
    +normed = fluid.layers.l2_normalize(x=data, axis=1)
     
    -
    -

    fill_constant

    +
    +

    matmul

    -paddle.v2.fluid.layers.fill_constant(shape, dtype, value, force_cpu=False, out=None)
    -

    fill_constant

    -

    This function creates a tensor with specified shape and dtype, and -initializes it with a constant specifed by value.

    -

    The attribute stop_gradient of the created tensor is set to True.

    +paddle.v2.fluid.layers.matmul(x, y, transpose_x=False, transpose_y=False, name=None) +

    Applies matrix multiplication to two tensors.

    +

    Currently, the input tensors’ rank can be any, but when the rank of any +inputs is bigger than 3, this two inputs’ rank should be equal.

    +

    The actual behavior depends on the shapes of \(x\), \(y\) and the +flag values of transpose_x, transpose_y. Specifically:

    +
      +
    • If a transpose flag is specified, the last two dimensions of the tensor +are transposed. If the tensor is rank-1 of shape \([D]\), then for +\(x\) it is treated as \([1, D]\) in nontransposed form and as +\([D, 1]\) in transposed form, whereas for \(y\) it is the +opposite: It is treated as \([D, 1]\) in nontransposed form and as +\([1, D]\) in transposed form.
    • +
    • After transpose, the two tensors are 2-D or n-D and matrix multiplication +performs in the following way.
        +
      • If both are 2-D, they are multiplied like conventional matrices.
      • +
      • If either is n-D, it is treated as a stack of matrices residing in the +last two dimensions and a batched matrix multiply supporting broadcast +applies on the two tensors.
      • +
      +
    • +
    +

    Also note that if the raw tensor \(x\) or \(y\) is rank-1 and +nontransposed, the prepended or appended dimension \(1\) will be +removed after matrix multiplication.

    -
    参数:
      -
    • shape (tuple|list|None) – Shape of the output tensor.
    • -
    • dtype (np.dtype|core.DataType|str) – Data type of the output tensor.
    • -
    • value (float) – The constant value used to initialize the output tensor.
    • -
    • out (Variable) – The output tensor.
    • +
    • x (Variable) – The input variable which is a Tensor or LoDTensor.
    • +
    • y (Variable) – The input variable which is a Tensor or LoDTensor.
    • +
    • transpose_x (bool) – Whether to transpose \(x\) before multiplication.
    • +
    • transpose_y (bool) – Whether to transpose \(y\) before multiplication.
    • +
    • name (str|None) – A name for this layer(optional). If set None, the layer +will be named automatically.
    返回:

    The tensor variable storing the output.

    +
    返回:

    The product Tensor variable.

    返回类型:

    Variable

    @@ -2044,37 +2786,70 @@ initializes it with a constant specifed by value.

    Examples

    -
    data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
    +
    # Examples to clarify shapes of the inputs and output
    +# x: [B, ..., M, K], y: [B, ..., K, N]
    +fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
    +
    +# x: [B, M, K], y: [B, K, N]
    +fluid.layers.matmul(x, y)  # out: [B, M, N]
    +
    +# x: [B, M, K], y: [K, N]
    +fluid.layers.matmul(x, y)  # out: [B, M, N]
    +
    +# x: [M, K], y: [K, N]
    +fluid.layers.matmul(x, y)  # out: [M, N]
    +
    +# x: [B, M, K], y: [K]
    +fluid.layers.matmul(x, y)  # out: [B, M]
    +
    +# x: [K], y: [K]
    +fluid.layers.matmul(x, y)  # out: [1]
    +
    +# x: [M], y: [N]
    +fluid.layers.matmul(x, y, True, True)  # out: [M, N]
     
    -
    -

    fill_constant_batch_size_like

    +
    +

    warpctc

    -paddle.v2.fluid.layers.fill_constant_batch_size_like(input, shape, dtype, value, input_dim_idx=0, output_dim_idx=0)
    -

    fill_constant_batch_size_like

    -

    This function creates a tensor of specified shape, dtype and batch size, -and initializes this with a constant supplied in value. The batch size is -obtained from the input tensor.

    -

    It also sets stop_gradient to True.

    +paddle.v2.fluid.layers.warpctc(input, label, blank=0, norm_by_times=False, **kwargs) +

    An operator integrating the open source Warp-CTC library +(https://github.com/baidu-research/warp-ctc) +to compute Connectionist Temporal Classification (CTC) loss. +It can be aliased as softmax with CTC, since a native softmax activation is +interated to the Warp-CTC library, to to normlize values for each row of the +input tensor.

    -
    参数:
      -
    • input (Variable) – Tensor whose dimensions will be used to get batch size
    • -
    • shape (tuple|list|None) – Shape of output tensor
    • -
    • dtype (np.dtype|core.DataType|str) – Data type of output tensor
    • -
    • value (float) – Constant value to initialize the output tensor
    • -
    • input_dim_idx (int) – Index of input’s batch size dimension
    • -
    • output_dim_idx (int) – Index of output’s batch size dimension
    • +
    • input (Variable) – (LodTensor, default: LoDTensor<float>), +the unscaled probabilities of variable-length sequences, +which is a 2-D Tensor with LoD information. +It’s shape is [Lp, num_classes + 1], where Lp is the sum of all input +sequences’ length and num_classes is the true number of classes. +(not including the blank label).
    • +
    • label (Variable) – (LodTensor, default: LoDTensor<int>), the ground truth +of variable-length sequence, which is a 2-D Tensor with LoD +information. It is of the shape [Lg, 1], where Lg is th sum of +all labels’ length.
    • +
    • blank – (int, default: 0), the blank label index of Connectionist +Temporal Classification (CTC) loss, which is in the +half-opened interval [0, num_classes + 1).
    • +
    • norm_by_times – (bool, default: false), whether to normalize
    • +
    • gradients by the number of time-step, which is also the (the) –
    • +
    • length. There is no need to normalize the gradients (sequence's) –
    • +
    • warpctc layer was follewed by a mean_op. (if) –
    返回:

    The tensor variable storing the output

    +
    返回:

    The Connectionist Temporal Classification (CTC) loss, +which is a 2-D Tensor of the shape [batch_size, 1].

    返回类型:

    Variable

    @@ -2083,33 +2858,49 @@ obtained from the input tensor.

    Examples

    -
    data = fluid.layers.fill_constant_batch_size_like(
    -    input=like, shape=[1], value=0, dtype='int64')
    -
    -
    -
    -

    ones

    +
    +

    sequence_reshape

    -paddle.v2.fluid.layers.ones(shape, dtype)
    -

    ones

    -

    This function creates a tensor of specified shape and -dtype, and initializes this with 1.

    -

    It also sets stop_gradient to True.

    +paddle.v2.fluid.layers.sequence_reshape(input, new_dim) +

    Sequence Reshape Layer

    +

    This layer will rearrange the input sequences. The new dimension is set by +user. Length of each sequence is computed according to original length, +original dimension and new dimension. The following example will help to +illustrate the function of this layer:

    +
    x is a LoDTensor:
    +    x.lod  = [[0, 2, 6]]
    +    x.data = [[1, 2], [3, 4],
    +              [5, 6], [7, 8], [9, 10], [11, 12]]
    +    x.dims = [6, 2]
    +
    +set new_dim = 4
    +
    +then out is a LoDTensor:
    +    out.lod  = [[0, 1, 3]]
    +    out.data = [[1, 2, 3, 4],
    +                [5, 6, 7, 8], [9, 10, 11, 12]]
    +    out.dims = [3, 4]
    +
    +
    +

    Currently, only 1-level LoDTensor is supported and please make sure +(original length * original dimension) can be divided by new dimension with +no remainder for each sequence.

    -
    参数:
      -
    • shape (tuple|list|None) – Shape of output tensor
    • -
    • dtype (np.dtype|core.DataType|str) – Data type of output tensor
    • +
    • input (Variable) – (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor +with shape being [N, M] where M for dimension.
    • +
    • new_dim (int) – New dimension which the input LoDTensor is reshaped to.
    返回:

    The tensor variable storing the output

    +
    返回:

    Reshaped LoDTensor according to new dimension.

    返回类型:

    Variable

    @@ -2118,32 +2909,34 @@ obtained from the input tensor.

    Examples

    -
    data = fluid.layers.ones(shape=[1], dtype='int64')
    +
    x = fluid.layers.data(name='x', shape=[5, 20],
    +                  dtype='float32', lod_level=1)
    +x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
     
    -
    -

    zeros

    +
    +

    transpose

    -paddle.v2.fluid.layers.zeros(shape, dtype)
    -

    zeros

    -

    This function creates a tensor of specified shape and -dtype, and initializes this with 0.

    -

    It also sets stop_gradient to True.

    +paddle.v2.fluid.layers.transpose(x, perm, name=None) +

    transpose Layer

    +

    Permute the dimensions of input according to perm.

    +

    The i-th dimension of the returned tensor will correspond to the +perm[i]-th dimension of input.

    -
    参数:
      -
    • shape (tuple|list|None) – Shape of output tensor
    • -
    • dtype (np.dtype|core.DataType|str) – Data type of output tensor
    • +
    • input (Variable) – (Tensor), A Tensor.
    • +
    • perm (list) – A permutation of the dimensions of input.
    返回:

    The tensor variable storing the output

    +
    返回:

    A transposed Tensor.

    返回类型:

    Variable

    @@ -2152,134 +2945,249 @@ obtained from the input tensor.

    Examples

    -
    data = fluid.layers.zeros(shape=[1], dtype='int64')
    +
    x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
    +x_transposed = layers.transpose(x, perm=[1, 0, 2])
     
    -
    -

    increment

    +
    +

    im2sequence

    -paddle.v2.fluid.layers.increment(x, value=1.0, in_place=True)
    -

    This function performs an operation that increments each value in the -input \(x\) by an amount: \(value\) as mentioned in the input -parameter. This operation is performed in-place by default.

    +paddle.v2.fluid.layers.im2sequence(input, filter_size=1, stride=1, padding=0, name=None) +

    Extracts image patches from the input tensor to form a tensor of shape +{input.batch_size * output_height * output_width, filter_size_H * +filter_size_W * input.channels} which is similar with im2col. +This op use filter / kernel to scan images and convert these images to +sequences. After expanding, the number of time step are +output_height * output_width for an image, in which output_height and +output_width are calculated by below equation:

    +
    +\[output\_size = 1 + (2 * padding + img\_size - block\_size + stride - 1) / stride\]
    +

    And the dimension of each time step is block_y * block_x * input.channels.

    - -
    参数:
      -
    • x (Variable|list) – The tensor that has the input values.
    • -
    • value (float) – The amount by which the values should be incremented.
    • -
    • in_place (bool) – If the increment should be performed in-place.
    • +
    • input (Variable) – The input should be a tensor in NCHW format.
    • +
    • filter_size (int|tuple|None) – The filter size. If filter_size is a tuple, +it must contain two integers, (filter_size_H, filter_size_W). +Otherwise, the filter will be a square.
    • +
    • stride (int|tuple) – The stride size. If stride is a tuple, it must +contain two integers, (stride_H, stride_W). Otherwise, the +stride_H = stride_W = stride. Default: stride = 1.
    • +
    • padding (int|tuple) – The padding size. If padding is a tuple, it can +contain two integers like (padding_H, padding_W) which means +padding_up = padding_down = padding_H and +padding_left = padding_right = padding_W. Or it can use +(padding_up, padding_left, padding_down, padding_right) to indicate +paddings of four direction. Otherwise, a scalar padding means +padding_up = padding_down = padding_left = padding_right = padding +Default: padding = 0.
    • +
    • name (int) – The name of this layer. It is optional.
    返回:

    -
    The tensor variable storing the transformation of
    -

    element-wise increment of each value in the input.

    -
    -
    -

    +
    返回:

    The output is a LoDTensor with shape +{input.batch_size * output_height * output_width, +filter_size_H * filter_size_W * input.channels}. +If we regard output as a matrix, each row of this matrix is +a step of a sequence.

    返回类型:

    Variable

    +
    返回类型:

    output

    -

    Examples

    -
    data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
    -data = fluid.layers.increment(x=data, value=3.0, in_place=True)
    +

    Examples:

    +

    As an example:

    +
    +
    Given:
    +
    +x = [[[[ 6.  2.  1.]
    +       [ 8.  3.  5.]
    +       [ 0.  2.  6.]]
    +
    +      [[ 2.  4.  4.]
    +       [ 6.  3.  0.]
    +       [ 6.  4.  7.]]]
    +
    +     [[[ 6.  7.  1.]
    +       [ 5.  7.  9.]
    +       [ 2.  4.  8.]]
    +
    +      [[ 1.  2.  1.]
    +       [ 1.  3.  5.]
    +       [ 9.  0.  8.]]]]
    +
    +x.dims = {2, 2, 3, 3}
    +
    +And:
    +
    +filter = [2, 2]
    +stride = [1, 1]
    +padding = [0, 0]
    +
    +Then:
    +
    +output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
    +               [ 2.  1.  3.  5.  4.  4.  3.  0.]
    +               [ 8.  3.  0.  2.  6.  3.  6.  4.]
    +               [ 3.  5.  2.  6.  3.  0.  4.  7.]
    +               [ 6.  7.  5.  7.  1.  2.  1.  3.]
    +               [ 7.  1.  7.  9.  2.  1.  3.  5.]
    +               [ 5.  7.  2.  4.  1.  3.  9.  0.]
    +               [ 7.  9.  4.  8.  3.  5.  0.  8.]]
    +
    +output.dims = {8, 9}
    +
    +output.lod = [[0, 4, 8]]
    +
    +
    +

    The simple usage is:

    +
    output = fluid.layers.im2sequence(
    +    input=layer, stride=[1, 1], filter_size=[2, 2])
     
    +
    -
    -

    array_write

    +
    +

    nce

    -paddle.v2.fluid.layers.array_write(x, i, array=None)
    -

    This function writes the given input variable to the specified position -indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the -output LOD_TENSOR_ARRAY is not given(None), a new one will be created and -returned.

    +paddle.v2.fluid.layers.nce(input, label, num_total_classes, sample_weight=None, param_attr=None, bias_attr=None, num_neg_samples=None) +

    Compute and return the noise-contrastive estimation training loss. +See [Noise-contrastive estimation: A new estimation principle for unnormalized statistical models](http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf). +By default this operator uses a uniform distribution for sampling.

    - - -
    参数:
      -
    • x (Variable|list) – The input tensor from which the data will be read.
    • -
    • i (Variable|list) – The index of the output LOD_TENSOR_ARRAY, pointing to -the position to which the input tensor will be -written.
    • -
    • array (Variable|list) – The output LOD_TENSOR_ARRAY to which the input -tensor will be written. If this parameter is -NONE, a new LOD_TENSOR_ARRAY will be created and -returned.
    • +
    • input – (Tensor) A tensor of shape [batch_size, dim]. +Duplicable: False Optional: False
    • +
    • label – (Tensor) A tensor of shape [batch_size, num_true_class]. ‘num_true_class’ is the number of target classes in each sample.The number of target classes per sample should be same. If you have a variable number of target classes, you can pad them out to a constant number by either repeating them or by padding with an otherwise unused class.) +Duplicable: False Optional: False
    • +
    • weight – (Tensor) A tensor of shape [num_class, dim]. ‘num_class’ is the total number of class. +Duplicable: False Optional: False
    • +
    • bias – (Tensor) A tensor of shape [num_class, 1]. ‘num_class’ is the total number of class. It is a dispensable input. +Duplicable: False Optional: True
    • +
    • sample_weight – (Tensor) A tensor of shape [batch_size, 1] storing a weight for each sample. And it is a dispensable input. The default value of sample is 1. +Duplicable: False Optional: True
    • +
    • num_total_classes (INT) – Total number of classes in all samples.
    • +
    • num_neg_samples (INT) – The number of negative classes. The default value is 10.
    • +
    • custom_neg_classes (INTS) – This attribute only be used in unitest. Classes in this list wiil be used as negative classes for every samples. Under normal conditions, user should avoid setting this attribute.
    返回:

    The output LOD_TENSOR_ARRAY where the input tensor is written.

    -
    返回类型:

    Variable

    +
    返回:

    (Tensor) A tensor of shape [batch_size, 1]. Cost of samples.

    -

    Examples

    -
    -

    create_array

    + +
    +

    row_conv

    +
    +
    +paddle.v2.fluid.layers.row_conv(input, future_context_size, param_attr=None, act=None)
    +

    Row Conv Operator. This layer will apply lookahead convolution to +input. The input variable should be a 2D LoDTensor with shape [T, D]. +Parameters with shape [future_context_size + 1, D] will be created. The math +equation of row convolution is as follows:

    +
    +\[Out_{i} = \sum_{j = i} ^ {i + \tau} X_{j} \odot W_{i - j}\]
    +

    In the above equation:

    +
      +
    • \(Out_{i}\): The i-th row of output variable with shape [1, D].
    • +
    • \(\tau\): Future context size.
    • +
    • \(X_{j}\): The j-th row of input variable with shape [1, D].
    • +
    • \(W_{i-j}\): The (i-j)-th row of parameters with shape [1, D].
    • +
    +

    More details about row_conv please refer to the paper (http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf) and +the design document (https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645).

    - + - + - +
    参数:dtype (int|float) – The data type of the elements in the array.
    参数:
      +
    • input (Variable) – Input variable, a 2D LoDTensor with shape [T, D].
    • +
    • future_context_size (int) – Future context size. Please note, the shape +of convolution kernel is [future_context_size + 1, D].
    • +
    • param_attr (ParamAttr) – Attributes of parameters, including +name, initializer etc.
    • +
    • act (str) – Non-linear activation to be applied to output variable.
    • +
    +
    返回:The tensor variable storing the elements of data type.
    返回:

    The output tensor with same shape as input tensor.

    +
    返回类型:Variable
    返回类型:

    Variable

    +

    Examples

    -
    data = fluid.layers.create_array(dtype='float32')
    +
    x = fluid.layers.data(name='x', shape=[16],
    +                dtype='float32', lod_level=1)
    +out = fluid.layers.row_conv(input=x, future_context_size=2)
     
    -
    -

    less_than

    +
    +

    multiplex

    -paddle.v2.fluid.layers.less_than(x, y, cond=None, **ignored)
    -

    Less than

    -

    This layer returns the truth value of \(x < y\) elementwise.

    +paddle.v2.fluid.layers.multiplex(inputs, index) +

    Multiplex Layer

    +

    Referring to the given index variable, this layer selects rows from the +input variables to construct a multiplex variable. Assuming that there are +\(m\) input variables and \(I_i\) represents the i-th input +variable and \(i\) is in [0, \(m\)). All input variables are +tensors with same shape [\(d_0\), \(d_1\), ..., \(d_R\)]. +Please note that rank of the input tensor should be at least 2. Each input +variable will be treated as a 2-D matrix with shape [\(M\), \(N\)] +where \(M\) for \(d_0\) and \(N\) for \(d_1\) * \(d_2\) +* ... * \(d_R\). Let \(I_i[j]\) be the j-th row of the i-th input +variable. The given index variable should be a 2-D tensor with shape +[\(M\), 1]. Let ID[i] be the i-th index value of the index variable. +Then the output variable will be a tensor with shape [\(d_0\), +\(d_1\), ..., \(d_R\)]. If we treat the output tensor as a 2-D +matrix with shape [\(M\), \(N\)] and let \(O[i]\) be the i-th +row of the matrix, then O[i] is equal to \(I_{ID[i]}[i]\).

    -
    参数:
      -
    • x (Variable) – First operand of less_than
    • -
    • y (Variable) – Second operand of less_than
    • -
    • cond (Variable|None) – Optional output variable to store the result of less_than
    • +
    • inputs (list) – A list of variables to gather from. All variables have the +same shape and the rank is at least 2.
    • +
    • index (Variable) – Tensor<int32>, index variable which is a 2-D tensor +with shape [M, 1] where M is the batch size.
    返回:

    The tensor variable storing the output of less_than.

    +
    返回:

    Multiplex variable gathered from input variables.

    返回类型:

    Variable

    @@ -2288,721 +3196,664 @@ LayerHelper.

    Examples

    -
    less = fluid.layers.less_than(x=label, y=limit)
    +
    x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    +x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    +index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    +out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
     
    -
    -

    array_read

    +
    +
    +

    ops

    +
    +

    mean

    -paddle.v2.fluid.layers.array_read(array, i)
    -

    This function performs the operation to read the data in as an -LOD_TENSOR_ARRAY. -:param array: The input tensor that will be written to an array. -:type array: Variable|list -:param i: The subscript index in tensor array, that points the

    -
    -
    place where data will be written to.
    +paddle.v2.fluid.layers.mean(**kwargs) +

    Mean Operator.

    +

    Out is a scalar which is the mean of all elements in X.

    - + - +
    返回:The tensor type variable that has the data written to it.
    参数:x – The input of mean op +Duplicable: False Optional: False
    返回类型:Variable
    返回:The output of mean op
    -

    Examples

    -
    - -
    -
    -

    shrink_memory

    -
    -
    -paddle.v2.fluid.layers.shrink_memory(x, i, table)
    -

    This function creates an operator to shrink_rnn_memory using the RankTable -as mentioned in the input parameter.

    -
    -

    array_length

    +
    +

    mul

    -paddle.v2.fluid.layers.array_length(array)
    -

    This function performs the operation to find the length of the input -LOD_TENSOR_ARRAY.

    +paddle.v2.fluid.layers.mul(**kwargs) +

    Mul Operator.

    +

    This operator is used to perform matrix multiplication for input $X$ and $Y$.

    +

    The equation is:

    +

    $$Out = X * Y$$

    +

    Both the input $X$ and $Y$ can carry the LoD (Level of Details) information, +or not. But the output only shares the LoD information with input $X$.

    - - - + - +
    参数:array (LOD_TENSOR_ARRAY) – The input array that will be used -to compute the length.
    返回:The length of the input LoDTensorArray.
    参数:
      +
    • x – (Tensor), The first input tensor of mul op. +Duplicable: False Optional: False
    • +
    • y – (Tensor), The second input tensor of mul op. +Duplicable: False Optional: False
    • +
    • x_num_col_dims (INT) – (int, default 1), The mul_op can take tensors with more than two +dimensions as its inputs. If the input $X$ is a tensor with more +than two dimensions, $X$ will be flattened into a two-dimensional +matrix first. The flattening rule is: the first num_col_dims +will be flattened to form the first dimension of the final matrix +(the height of the matrix), and the rest rank(X) - num_col_dims +dimensions are flattened to form the second dimension of the final +matrix (the width of the matrix). As a result, height of the +flattened matrix is equal to the product of $X$’s first +x_num_col_dims dimensions’ sizes, and width of the flattened +matrix is equal to the product of $X$’s last rank(x) - num_col_dims +dimensions’ size. For example, suppose $X$ is a 6-dimensional +tensor with the shape [2, 3, 4, 5, 6], and x_num_col_dims = 3. +Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = +[24, 30].
    • +
    • y_num_col_dims (INT) – (int, default 1), The mul_op can take tensors with more than two, +dimensions as its inputs. If the input $Y$ is a tensor with more +than two dimensions, $Y$ will be flattened into a two-dimensional +matrix first. The attribute y_num_col_dims determines how $Y$ is +flattened. See comments of x_num_col_dims for more details.
    • +
    +
    返回类型:Variable
    返回:

    (Tensor), The output tensor of mul op.

    +
    -

    Examples

    -
    -

    conv2d_transpose

    +
    +

    reshape

    -paddle.v2.fluid.layers.conv2d_transpose(input, num_filters, output_size=None, filter_size=None, padding=None, stride=None, dilation=None, param_attr=None, use_cudnn=True, name=None)
    -

    Convlution2D transpose layer

    -

    The convolution2D transpose layer calculates the output based on the input, -filter, and dilations, strides, paddings. Input(Input) and output(Output) -are in NCHW format. Where N is batch size, C is the number of channels, -H is the height of the feature, and W is the width of the feature. -Parameters(dilations, strides, paddings) are two elements. These two elements -represent height and width, respectively. The details of convolution transpose -layer, please refer to the following explanation and references -therein.

    -

    For each input \(X\), the equation is:

    -
    -\[Out = W \ast X\]
    -

    In the above equation:

    -
      -
    • \(X\): Input value, a tensor with NCHW format.
    • -
    • \(W\): Filter value, a tensor with MCHW format.
    • -
    • \(\ast\) : Convolution transpose operation.
    • -
    • -
      \(Out\): Output value, the shape of \(Out\) and \(X\) may be
      -
      different.
      -
      -
    • -
    -

    Example

    -
      -
    • Input:

      -

      Input shape: $(N, C_{in}, H_{in}, W_{in})$

      -

      Filter shape: $(C_{in}, C_{out}, H_f, W_f)$

      -
    • -
    • Output:

      -

      Output shape: $(N, C_{out}, H_{out}, W_{out})$

      -
    • -
    -

    Where

    -
    -\[\begin{split}H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\ -W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1\end{split}\]
    +paddle.v2.fluid.layers.reshape(**kwargs) +

    Reshape Operator.

    +

    Reshape Input(X) into the shape specified by Attr(shape).

    +

    An example: +Given a 2-D tensor X with 2 rows and 2 columns : [[1, 2], [3, 4]]

    +

    and target shape = [1, 4], the reshape operator will transform +the tensor X into a 2-D tensor: [[1, 2, 3, 4]]

    +

    One dimension in the target shape can be set -1, representing that its +size is unknown. In this case, the real dimension will be infered from +the original shape of Input(X) and other dimensions in the target shape.

    - - - - -
    参数:
      -
    • input (Variable) – The input image with [N, C, H, W] format.
    • -
    • num_filters (int) – The number of the filter. It is as same as the output -image channel.
    • -
    • output_size (int|tuple|None) – The output image size. If output size is a -tuple, it must contain two integers, (image_H, image_W). This -parameter only works when filter_size is None.
    • -
    • filter_size (int|tuple|None) – The filter size. If filter_size is a tuple, -it must contain two integers, (filter_size_H, filter_size_W). -Otherwise, the filter will be a square. None if use output size to -calculate filter_size.
    • -
    • padding (int|tuple) – The padding size. If padding is a tuple, it must -contain two integers, (padding_H, padding_W). Otherwise, the -padding_H = padding_W = padding. Default: padding = 0.
    • -
    • stride (int|tuple) – The stride size. If stride is a tuple, it must -contain two integers, (stride_H, stride_W). Otherwise, the -stride_H = stride_W = stride. Default: stride = 1.
    • -
    • dilation (int|tuple) – The dilation size. If dilation is a tuple, it must -contain two integers, (dilation_H, dilation_W). Otherwise, the -dilation_H = dilation_W = dilation. Default: dilation = 1.
    • -
    • param_attr (ParamAttr) – The parameters to the Conv2d_transpose Layer. -Default: None
    • -
    • use_cudnn (bool) – Use cudnn kernel or not, it is valid only when the cudnn -library is installed. Default: True
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • x – The input tensor of reshape operator. +Duplicable: False Optional: False
    • +
    • shape (INTS) – (vector<int>) Target shape of reshape operator.
    返回:

    The tensor variable storing the convolution transpose result.

    -
    返回类型:

    Variable

    -
    Raises:

    ValueError – If the shapes of input, filter_size, stride, padding and -groups mismatch.

    +
    返回:

    The output tensor of reshape operator.

    -

    Examples

    -
    data = fluid.layers.data(
    -    name='data', shape=[3, 32, 32], dtype='float32')
    -conv2d_transpose = fluid.layers.conv2d_transpose(
    -    input=data, num_filters=2, filter_size=3)
    -
    -
    -
    - -
    -
    -

    sequence_expand

    -
    -
    -paddle.v2.fluid.layers.sequence_expand(x, y, name=None)
    -

    Sequence Expand Layer. This layer will expand the input variable x -according to LoD information of y. And the following examples will -explain how sequence_expand works:

    -
    * Case 1
    -    x is a LoDTensor:
    -        x.lod = [[0,       2, 3],
    -                 [0, 1,    3, 4]]
    -        x.data = [a, b, c, d]
    -        x.dims = [4, 1]
    -
    -    y is a LoDTensor:
    -        y.lod = [[0,    2,    4],
    -                 [0, 3, 6, 7, 8]]
    -
    -    with condition len(y.lod[-1]) - 1 == x.dims[0]
    -
    -    then output is a 2-level LoDTensor:
    -        out.lod = [[0,                2,    4],
    -                   [0,       3,       6, 7, 8]]
    -        out.data = [a, a, a, b, b, b, c, d]
    -        out.dims = [8, 1]
    -
    -* Case 2
    -    x is a Tensor:
    -        x.data = [a, b, c]
    -        x.dims = [3, 1]
    -
    -    y is a LoDTensor:
    -        y.lod = [[0, 2, 3, 6]]
    -
    -    with condition len(y.lod[-1]) - 1 == x.dims[0]
    +
    - then output is a 1-level LoDTensor: - out.lod = [[0, 2, 3, 6]] - out.data = [a, a, b, c, c, c] - out.dims = [6, 1] -
    +
    +

    scale

    +
    +
    +paddle.v2.fluid.layers.scale(**kwargs)
    +

    Scale operator

    +

    $$Out = scale*X$$

    - - -
    参数:
      -
    • x (Variable) – The input variable which is a Tensor or LoDTensor.
    • -
    • y (Variable) – The input variable which is a LoDTensor.
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • x – (Tensor) Input tensor of scale operator. +Duplicable: False Optional: False
    • +
    • scale (FLOAT) – (float, default 1.0)The scaling factor of the scale operator.
    返回:

    The expanded variable which is a LoDTensor.

    -
    返回类型:

    Variable

    +
    返回:

    (Tensor) Output tensor of scale operator.

    -

    Examples

    -
    x = fluid.layers.data(name='x', shape=[10], dtype='float32')
    -y = fluid.layers.data(name='y', shape=[10, 20],
    -                 dtype='float32', lod_level=1)
    -out = layers.sequence_expand(x=x, y=y)
    -
    -
    -
    -

    gru_unit

    +
    +

    sigmoid_cross_entropy_with_logits

    -paddle.v2.fluid.layers.gru_unit(input, hidden, size, weight=None, bias=None, activation='tanh', gate_activation='sigmoid')
    -

    GRU unit layer. The equation of a gru step is:

    +paddle.v2.fluid.layers.sigmoid_cross_entropy_with_logits(**kwargs) +

    SigmoidCrossEntropyWithLogits Operator.

    +

    This measures the element-wise probability error in classification tasks +in which each class is independent. This can be thought of as predicting labels +for a data-point, where labels are not mutually exclusive. +For example, a news article can be about politics, technology or sports +at the same time or none of these.

    +

    The logistic loss is given as follows:

    -
    -\[ \begin{align}\begin{aligned}u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)\\r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)\\m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)\\h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})\end{aligned}\end{align} \]
    -
    -

    The inputs of gru unit includes \(z_t\), \(h_{t-1}\). In terms -of the equation above, the \(z_t\) is split into 3 parts - -\(xu_t\), \(xr_t\) and \(xm_t\). This means that in order to -implement a full GRU unit operator for an input, a fully -connected layer has to be applied, such that \(z_t = W_{fc}x_t\).

    -

    The terms \(u_t\) and \(r_t\) represent the update and reset gates -of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is -an intermediate candidate hidden output, which is denoted by \(m_t\). -This layer has three outputs \(h_t\), \(dot(r_t, h_{t-1})\) -and concatenation of \(u_t\), \(r_t\) and \(m_t\).

    +
    $$loss = -Labels * log(sigma(X)) - (1 - Labels) * log(1 - sigma(X))$$
    +

    We know that $$sigma(X) = (1 / (1 + exp(-X)))$$. By substituting this we get:

    +
    +
    $$loss = X - X * Labels + log(1 + exp(-X))$$
    +

    For stability and to prevent overflow of $$exp(-X)$$ when X < 0, +we reformulate the loss as follows:

    +
    +
    $$loss = max(X, 0) - X * Labels + log(1 + exp(-|X|))$$
    +

    Both the input X and Labels can carry the LoD (Level of Details) information. +However the output only shares the LoD with input X.

    - - -
    参数:
      -
    • input (Variable) – The fc transformed input value of current step.
    • -
    • hidden (Variable) – The hidden value of lstm unit from previous step.
    • -
    • size (integer) – The input dimension value.
    • -
    • weight (ParamAttr) – The weight parameters for gru unit. Default: None
    • -
    • bias (ParamAttr) – The bias parameters for gru unit. Default: None
    • -
    • activation (string) – The activation type for cell (actNode). -Default: ‘tanh’
    • -
    • gate_activation (string) – The activation type for gates (actGate). -Default: ‘sigmoid’
    • +
    • x – (Tensor, default Tensor<float>), a 2-D tensor with shape N x D, where N is the batch size and D is the number of classes. This input is a tensor of logits computed by the previous operator. Logits are unscaled log probabilities given as log(p/(1-p)). +Duplicable: False Optional: False
    • +
    • label – (Tensor, default Tensor<float>), a 2-D tensor of the same type and shape as X. This input is a tensor of probabalistic labels for each logit +Duplicable: False Optional: False
    返回:

    The hidden value, reset-hidden value and gate values.

    -
    返回类型:

    tuple

    +
    返回:

    (Tensor, default Tensor<float>), a 2-D tensor with shape N x D of elementwise logistic losses.

    -

    Examples

    -
    # assuming we have x_t_data and prev_hidden of size=10
    -x_t = fluid.layers.fc(input=x_t_data, size=30)
    -hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
    -                                       hidden = prev_hidden)
    +
    + +
    +
    +

    elementwise_add

    +
    +
    +paddle.v2.fluid.layers.elementwise_add(**kwargs)
    +

    Limited Elementwise Add Operator.

    +

    The equation is:

    +

    $$Out = X + Y$$

    +

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be +smaller than or equal to the dimensions of $X$.

    +

    There are two cases for this operator: +1. The shape of $Y$ is same with $X$; +2. The shape of $Y$ is a subset of $X$.

    +

    For case 2: +$Y$ will be broadcasted to match the shape of $X$ and axis should be +set to index of the start dimension to broadcast $Y$ onto $X$.

    +
    +
    For example
    +
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    +shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
     
    +
    +
    +

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) +information. However, the output only shares the LoD information with input $X$.

    + +++ + + + + + +
    参数:
      +
    • x – (Tensor), The first input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • y – (Tensor), The second input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    • +
    +
    返回:

    The output of elementwise op.

    +
    -
    -

    lstm_unit

    +
    +

    elementwise_div

    -paddle.v2.fluid.layers.lstm_unit(x_t, hidden_t_prev, cell_t_prev, forget_bias=0.0, param_attr=None, bias_attr=None, name=None)
    -

    Lstm unit layer. The equation of a lstm step is:

    -
    -
    -\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)\\f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)\\c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)\\o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)\\h_t & = o_t tanh(c_t)\end{aligned}\end{align} \]
    -
    -

    The inputs of lstm unit include \(x_t\), \(h_{t-1}\) and -\(c_{t-1}\). The 2nd dimensions of \(h_{t-1}\) and \(c_{t-1}\) -should be same. The implementation separates the linear transformation and -non-linear transformation apart. Here, we take \(i_t\) as an example. -The linear transformation is applied by calling a fc layer and the -equation is:

    -
    -
    -\[L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i\]
    -
    -

    The non-linear transformation is applied by calling lstm_unit_op and the -equation is:

    -
    -
    -\[i_t = \sigma(L_{i_t})\]
    -
    -

    This layer has two outputs including \(h_t\) and \(o_t\).

    +paddle.v2.fluid.layers.elementwise_div(**kwargs) +

    Limited Elementwise Div Operator.

    +

    The equation is:

    +

    $$Out = X / Y$$

    +

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be +smaller than or equal to the dimensions of $X$.

    +

    There are two cases for this operator: +1. The shape of $Y$ is same with $X$; +2. The shape of $Y$ is a subset of $X$.

    +

    For case 2: +$Y$ will be broadcasted to match the shape of $X$ and axis should be +set to index of the start dimension to broadcast $Y$ onto $X$.

    +
    +
    For example
    +
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    +shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    +
    +
    +
    +
    +

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) +information. However, the output only shares the LoD information with input $X$.

    - - +
    参数:
      -
    • x_t (Variable) – The input value of current step, a 2-D tensor with shape -M x N, M for batch size and N for input size.
    • -
    • hidden_t_prev (Variable) – The hidden value of lstm unit, a 2-D tensor -with shape M x S, M for batch size and S for size of lstm unit.
    • -
    • cell_t_prev (Variable) – The cell value of lstm unit, a 2-D tensor with -shape M x S, M for batch size and S for size of lstm unit.
    • -
    • forget_bias (float) – The forget bias of lstm unit.
    • -
    • param_attr (ParamAttr) – The attributes of parameter weights, used to set -initializer, name etc.
    • -
    • bias_attr (ParamAttr) – The attributes of bias weights, if not False, -bias weights will be created and be set to default value.
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • x – (Tensor), The first input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • y – (Tensor), The second input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    返回:

    The hidden value and cell value of lstm unit.

    +
    返回:

    The output of elementwise op.

    返回类型:

    tuple

    +
    +
    + +
    +
    +

    elementwise_sub

    +
    +
    +paddle.v2.fluid.layers.elementwise_sub(**kwargs)
    +

    Limited Elementwise Sub Operator.

    +

    The equation is:

    +

    $$Out = X - Y$$

    +

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be +smaller than or equal to the dimensions of $X$.

    +

    There are two cases for this operator: +1. The shape of $Y$ is same with $X$; +2. The shape of $Y$ is a subset of $X$.

    +

    For case 2: +$Y$ will be broadcasted to match the shape of $X$ and axis should be +set to index of the start dimension to broadcast $Y$ onto $X$.

    +
    +
    For example
    +
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    +shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    +
    +
    +
    +
    +

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) +information. However, the output only shares the LoD information with input $X$.

    + +++ + -
    参数:
      +
    • x – (Tensor), The first input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • y – (Tensor), The second input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    • +
    Raises:

    ValueError – The ranks of x_t, hidden_t_prev and cell_t_prev -not be 2 or the 1st dimensions of x_t, hidden_t_prev -and cell_t_prev not be the same or the 2nd dimensions of -hidden_t_prev and cell_t_prev not be the same.

    +
    返回:

    The output of elementwise op.

    -

    Examples

    -
    x_t = fluid.layers.fc(input=x_t_data, size=10)
    -prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
    -prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
    -hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
    -                                       hidden_t_prev=prev_hidden,
    -                                       cell_t_prev=prev_cell)
    +
    + +
    +
    +

    elementwise_mul

    +
    +
    +paddle.v2.fluid.layers.elementwise_mul(**kwargs)
    +

    Limited Elementwise Mul Operator.

    +

    The equation is:

    +

    $$Out = X odotY$$

    +

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be +smaller than or equal to the dimensions of $X$.

    +

    There are two cases for this operator: +1. The shape of $Y$ is same with $X$; +2. The shape of $Y$ is a subset of $X$.

    +

    For case 2: +$Y$ will be broadcasted to match the shape of $X$ and axis should be +set to index of the start dimension to broadcast $Y$ onto $X$.

    +
    +
    For example
    +
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    +shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
     
    -
    - -
    -
    -

    sequence_softmax

    -
    -
    -paddle.v2.fluid.layers.sequence_softmax(**kwargs)
    -

    Sequence Softmax Operator.

    -

    SequenceSoftmaxOp computes the softmax activation among all time-steps for each -sequence. The dimension of each time-step should be 1. Thus, the shape of -input Tensor can be either [N, 1] or [N], where N is the sum of the length -of all sequences.

    -

    The algorithm works as follows:

    -
    -
    for i-th sequence in a mini-batch:
    -

    $$ -Out(X[lod[i]:lod[i+1]], :) = frac{exp(X[lod[i]:lod[i+1], :])} {sum(exp(X[lod[i]:lod[i+1], :]))} -$$

    -

    For example, for a mini-batch of 3 sequences with variable-length, -each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7], -then softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :] -and N turns out to be 7.

    +
    +
    +

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) +information. However, the output only shares the LoD information with input $X$.

    - + - +
    参数:x – (LoDTensor) 1-D or 2-D input LoDTensor with the 2-nd dimension of length 1. -Duplicable: False Optional: False
    参数:
      +
    • x – (Tensor), The first input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • y – (Tensor), The second input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    • +
    +
    返回:(LoDTensor) 1-D or 2-D output LoDTensor with the 2-nd dimension of length 1.
    返回:

    The output of elementwise op.

    +
    -
    -

    reduce_sum

    +
    +

    elementwise_max

    -paddle.v2.fluid.layers.reduce_sum(input, dim=None, keep_dim=False, name=None)
    -

    Computes the sum of tensor elements over the given dimension.

    +paddle.v2.fluid.layers.elementwise_max(**kwargs) +

    Limited Elementwise Max Operator.

    +

    The equation is:

    +

    $$Out = max(X, Y)$$

    +

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be +smaller than or equal to the dimensions of $X$.

    +

    There are two cases for this operator: +1. The shape of $Y$ is same with $X$; +2. The shape of $Y$ is a subset of $X$.

    +

    For case 2: +$Y$ will be broadcasted to match the shape of $X$ and axis should be +set to index of the start dimension to broadcast $Y$ onto $X$.

    +
    +
    For example
    +
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    +shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    +
    +
    +
    +
    +

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) +information. However, the output only shares the LoD information with input $X$.

    - - -
    参数:
      -
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • -
    • dim (int|None) – The dimension along which the sum is performed. If -None, sum all elements of input and return a -Tensor variable with a single element, otherwise must be in the -range \([-rank(input), rank(input))\). If \(dim < 0\), -the dimension to reduce is \(rank + dim\).
    • -
    • keep_dim (bool) – Whether to reserve the reduced dimension in the -output Tensor. The result tensor will have one fewer dimension -than the input unless keep_dim is true.
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • x – (Tensor), The first input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • y – (Tensor), The second input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    返回:

    The reduced Tensor variable.

    -
    返回类型:

    Variable

    +
    返回:

    The output of elementwise op.

    -

    Examples

    -
    # x is a Tensor variable with following elements:
    -#    [[0.2, 0.3, 0.5, 0.9]
    -#     [0.1, 0.2, 0.6, 0.7]]
    -# Each example is followed by the correspending output tensor.
    -fluid.layers.reduce_sum(x)  # [3.5]
    -fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
    -fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
    -fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
    -
    -
    -
    -

    reduce_mean

    +
    +

    elementwise_min

    -paddle.v2.fluid.layers.reduce_mean(input, dim=None, keep_dim=False, name=None)
    -

    Computes the mean of tensor elements over the given dimension.

    +paddle.v2.fluid.layers.elementwise_min(**kwargs) +

    Limited Elementwise Max Operator.

    +

    The equation is:

    +

    $$Out = min(X, Y)$$

    +

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be +smaller than or equal to the dimensions of $X$.

    +

    There are two cases for this operator: +1. The shape of $Y$ is same with $X$; +2. The shape of $Y$ is a subset of $X$.

    +

    For case 2: +$Y$ will be broadcasted to match the shape of $X$ and axis should be +set to index of the start dimension to broadcast $Y$ onto $X$.

    +
    +
    For example
    +
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    +shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    +
    +
    +
    +
    +

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) +information. However, the output only shares the LoD information with input $X$.

    - - -
    参数:
      -
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • -
    • dim (int|None) – The dimension along which the mean is computed. If -None, compute the mean over all elements of input -and return a Tensor variable with a single element, otherwise -must be in the range \([-rank(input), rank(input))\). If -\(dim < 0\), the dimension to reduce is \(rank + dim\).
    • -
    • keep_dim (bool) – Whether to reserve the reduced dimension in the -output Tensor. The result tensor will have one fewer dimension -than the input unless keep_dim is true.
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • x – (Tensor), The first input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • y – (Tensor), The second input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    返回:

    The reduced Tensor variable.

    -
    返回类型:

    Variable

    +
    返回:

    The output of elementwise op.

    -

    Examples

    -
    # x is a Tensor variable with following elements:
    -#    [[0.2, 0.3, 0.5, 0.9]
    -#     [0.1, 0.2, 0.6, 0.7]]
    -# Each example is followed by the correspending output tensor.
    -fluid.layers.reduce_mean(x)  # [0.4375]
    -fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
    -fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
    -fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
    -
    -
    -
    -

    reduce_max

    +
    +

    elementwise_pow

    -paddle.v2.fluid.layers.reduce_max(input, dim=None, keep_dim=False, name=None)
    -

    Computes the maximum of tensor elements over the given dimension.

    +paddle.v2.fluid.layers.elementwise_pow(**kwargs) +

    Limited Elementwise Pow Operator.

    +

    The equation is:

    +

    $$Out = X ^ Y$$

    +

    $X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be +smaller than or equal to the dimensions of $X$.

    +

    There are two cases for this operator: +1. The shape of $Y$ is same with $X$; +2. The shape of $Y$ is a subset of $X$.

    +

    For case 2: +$Y$ will be broadcasted to match the shape of $X$ and axis should be +set to index of the start dimension to broadcast $Y$ onto $X$.

    +
    +
    For example
    +
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    +shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    +shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    +
    +
    +
    +
    +

    Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details) +information. However, the output only shares the LoD information with input $X$.

    - - -
    参数:
      -
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • -
    • dim (int|None) – The dimension along which the maximum is computed. -If None, compute the maximum over all elements of -input and return a Tensor variable with a single element, -otherwise must be in the range \([-rank(input), rank(input))\). -If \(dim < 0\), the dimension to reduce is \(rank + dim\).
    • -
    • keep_dim (bool) – Whether to reserve the reduced dimension in the -output Tensor. The result tensor will have one fewer dimension -than the input unless keep_dim is true.
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • x – (Tensor), The first input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • y – (Tensor), The second input tensor of elementwise op. +Duplicable: False Optional: False
    • +
    • axis (INT) – (int, default -1). The start dimension index for broadcasting Y onto X.
    返回:

    The reduced Tensor variable.

    -
    返回类型:

    Variable

    +
    返回:

    The output of elementwise op.

    -

    Examples

    -
    # x is a Tensor variable with following elements:
    -#    [[0.2, 0.3, 0.5, 0.9]
    -#     [0.1, 0.2, 0.6, 0.7]]
    -# Each example is followed by the correspending output tensor.
    -fluid.layers.reduce_max(x)  # [0.9]
    -fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
    -fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
    -fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
    -
    -
    -
    -

    reduce_min

    +
    +

    clip

    -paddle.v2.fluid.layers.reduce_min(input, dim=None, keep_dim=False, name=None)
    -

    Computes the minimum of tensor elements over the given dimension.

    +paddle.v2.fluid.layers.clip(**kwargs) +

    Clip Operator.

    +

    The clip operator limits the value of given input within an interval. The +interval is specified with arguments ‘min’ and ‘max’:

    +

    $$ +Out = min(max(X, min), max) +$$

    - - -
    参数:
      -
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • -
    • dim (int|None) – The dimension along which the minimum is computed. -If None, compute the minimum over all elements of -input and return a Tensor variable with a single element, -otherwise must be in the range \([-rank(input), rank(input))\). -If \(dim < 0\), the dimension to reduce is \(rank + dim\).
    • -
    • keep_dim (bool) – Whether to reserve the reduced dimension in the -output Tensor. The result tensor will have one fewer dimension -than the input unless keep_dim is true.
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • x – (Tensor)The input of clip op.The number of dimensions must be between [1, 9]. +Duplicable: False Optional: False
    • +
    • min (FLOAT) – (float)Minimum value, under which element is replaced by min.
    • +
    • max (FLOAT) – (float)Maximum value, above which element is replaced by max
    返回:

    The reduced Tensor variable.

    -
    返回类型:

    Variable

    +
    返回:

    (Tensor)The output of clip op with shape as input(X)

    -

    Examples

    -
    # x is a Tensor variable with following elements:
    -#    [[0.2, 0.3, 0.5, 0.9]
    -#     [0.1, 0.2, 0.6, 0.7]]
    -# Each example is followed by the correspending output tensor.
    -fluid.layers.reduce_min(x)  # [0.1]
    -fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
    -fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
    -fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
    -
    -
    -
    -

    split

    +
    +

    clip_by_norm

    -paddle.v2.fluid.layers.split(input, num_or_sections, dim=-1, name=None)
    -

    Split the input tensor into multiple sub-tensors.

    +paddle.v2.fluid.layers.clip_by_norm(**kwargs) +

    ClipByNorm Operator.

    +

    This operator limits the L2 norm of the input $X$ within $max_norm$. +If the L2 norm of $X$ is less than or equal to $max_norm$, $Out$ will be +the same as $X$. If the L2 norm of $X$ is greater than $max_norm$, $X$ will +be linearly scaled to make the L2 norm of $Out$ equal to $max_norm$, as +shown in the following formula:

    +

    $$ +Out = frac{max_norm * X}{norm(X)}, +$$

    +

    where $norm(X)$ represents the L2 norm of $X$.

    - - -
    参数:
      -
    • input (Variable) – The input variable which is a Tensor or LoDTensor.
    • -
    • num_or_sections (int|list) – If num_or_sections is an integer, -then the integer indicates the number of equal sized sub-tensors -that the tensor will be divided into. If num_or_sections -is a list of integers, the length of list indicates the number of -sub-tensors and the integers indicate the sizes of sub-tensors’ -dim dimension orderly.
    • -
    • dim (int) – The dimension along which to split. If \(dim < 0\), the -dimension to split along is \(rank(input) + dim\).
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • x – (Tensor) The input of clip_by_norm op.The number of dimensions must be between [1, 9]. +Duplicable: False Optional: False
    • +
    • max_norm (FLOAT) – (float) The maximum norm value.
    返回:

    The list of segmented tensor variables.

    -
    返回类型:

    List

    +
    返回:

    (Tensor) The output of clip_by_norm op with shape as input(X)

    -

    Examples

    -
    # x is a Tensor variable with shape [3, 9, 5]:
    -x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
    -x0.shape  # [3, 3, 5]
    -x1.shape  # [3, 3, 5]
    -x2.shape  # [3, 3, 5]
    -x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
    -x0.shape  # [3, 2, 5]
    -x1.shape  # [3, 3, 5]
    -x2.shape  # [3, 4, 5]
    -
    -
    -
    -

    matmul

    +
    +

    sequence_softmax

    -paddle.v2.fluid.layers.matmul(x, y, transpose_x=False, transpose_y=False, name=None)
    -

    Applies matrix multiplication to two tensors.

    -

    Currently, the input tensors’ rank can be any, but when the rank of any -inputs is bigger than 3, this two inputs’ rank should be equal.

    -

    The actual behavior depends on the shapes of \(x\), \(y\) and the -flag values of transpose_x, transpose_y. Specifically:

    -
      -
    • If a transpose flag is specified, the last two dimensions of the tensor -are transposed. If the tensor is rank-1 of shape \([D]\), then for -\(x\) it is treated as \([1, D]\) in nontransposed form and as -\([D, 1]\) in transposed form, whereas for \(y\) it is the -opposite: It is treated as \([D, 1]\) in nontransposed form and as -\([1, D]\) in transposed form.
    • -
    • After transpose, the two tensors are 2-D or n-D and matrix multiplication -performs in the following way.
        -
      • If both are 2-D, they are multiplied like conventional matrices.
      • -
      • If either is n-D, it is treated as a stack of matrices residing in the -last two dimensions and a batched matrix multiply supporting broadcast -applies on the two tensors.
      • -
      -
    • -
    -

    Also note that if the raw tensor \(x\) or \(y\) is rank-1 and -nontransposed, the prepended or appended dimension \(1\) will be -removed after matrix multiplication.

    +paddle.v2.fluid.layers.sequence_softmax(**kwargs) +

    Sequence Softmax Operator.

    +

    SequenceSoftmaxOp computes the softmax activation among all time-steps for each +sequence. The dimension of each time-step should be 1. Thus, the shape of +input Tensor can be either [N, 1] or [N], where N is the sum of the length +of all sequences.

    +

    The algorithm works as follows:

    +
    +
    for i-th sequence in a mini-batch:
    +

    $$ +Out(X[lod[i]:lod[i+1]], :) = frac{exp(X[lod[i]:lod[i+1], :])} {sum(exp(X[lod[i]:lod[i+1], :]))} +$$

    +

    For example, for a mini-batch of 3 sequences with variable-length, +each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7], +then softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :] +and N turns out to be 7.

    - - - + - +
    参数:
      -
    • x (Variable) – The input variable which is a Tensor or LoDTensor.
    • -
    • y (Variable) – The input variable which is a Tensor or LoDTensor.
    • -
    • transpose_x (bool) – Whether to transpose \(x\) before multiplication.
    • -
    • transpose_y (bool) – Whether to transpose \(y\) before multiplication.
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • -
    -
    返回:

    The product Tensor variable.

    -
    参数:x – (LoDTensor) 1-D or 2-D input LoDTensor with the 2-nd dimension of length 1. +Duplicable: False Optional: False
    返回类型:

    Variable

    -
    返回:(LoDTensor) 1-D or 2-D output LoDTensor with the 2-nd dimension of length 1.
    -

    Examples

    -
    # Examples to clarify shapes of the inputs and output
    -# x: [B, ..., M, K], y: [B, ..., K, N]
    -fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
    -
    -# x: [B, M, K], y: [B, K, N]
    -fluid.layers.matmul(x, y)  # out: [B, M, N]
    -
    -# x: [B, M, K], y: [K, N]
    -fluid.layers.matmul(x, y)  # out: [B, M, N]
    -
    -# x: [M, K], y: [K, N]
    -fluid.layers.matmul(x, y)  # out: [M, N]
    -
    -# x: [B, M, K], y: [K]
    -fluid.layers.matmul(x, y)  # out: [B, M]
    -
    -# x: [K], y: [K]
    -fluid.layers.matmul(x, y)  # out: [1]
    +
    -# x: [M], y: [N] -fluid.layers.matmul(x, y, True, True) # out: [M, N] -
    +
    +

    sigmoid

    +
    +
    +paddle.v2.fluid.layers.sigmoid(**kwargs)
    +

    Sigmoid Activation Operator

    +

    $$out = frac{1}{1 + e^{-x}}$$

    + +++ + + + + + +
    参数:x – Input of Sigmoid operator +Duplicable: False Optional: False
    返回:Output of Sigmoid operator
    -

    logsigmoid

    +

    logsigmoid

    paddle.v2.fluid.layers.logsigmoid(**kwargs)
    @@ -3023,7 +3874,7 @@ Duplicable: False Optional: False
    -

    exp

    +

    exp

    paddle.v2.fluid.layers.exp(**kwargs)
    @@ -3044,7 +3895,7 @@ Duplicable: False Optional: False
    -

    relu

    +

    relu

    paddle.v2.fluid.layers.relu(**kwargs)
    @@ -3065,7 +3916,7 @@ Duplicable: False Optional: False
    -

    tanh

    +

    tanh

    paddle.v2.fluid.layers.tanh(**kwargs)
    @@ -3086,7 +3937,7 @@ Duplicable: False Optional: False
    -

    tanh_shrink

    +

    tanh_shrink

    paddle.v2.fluid.layers.tanh_shrink(**kwargs)
    @@ -3107,7 +3958,7 @@ Duplicable: False Optional: False
    -

    softshrink

    +

    softshrink

    paddle.v2.fluid.layers.softshrink(**kwargs)
    @@ -3140,7 +3991,7 @@ Duplicable: False Optional: False
    -

    sqrt

    +

    sqrt

    paddle.v2.fluid.layers.sqrt(**kwargs)
    @@ -3161,7 +4012,7 @@ Duplicable: False Optional: False
    -

    abs

    +

    abs

    paddle.v2.fluid.layers.abs(**kwargs)
    @@ -3182,7 +4033,7 @@ Duplicable: False Optional: False
    -

    ceil

    +

    ceil

    paddle.v2.fluid.layers.ceil(**kwargs)
    @@ -3203,7 +4054,7 @@ Duplicable: False Optional: False
    -

    floor

    +

    floor

    paddle.v2.fluid.layers.floor(**kwargs)
    @@ -3224,7 +4075,7 @@ Duplicable: False Optional: False
    -

    round

    +

    round

    paddle.v2.fluid.layers.round(**kwargs)
    @@ -3245,7 +4096,7 @@ Duplicable: False Optional: False
    -

    reciprocal

    +

    reciprocal

    paddle.v2.fluid.layers.reciprocal(**kwargs)
    @@ -3266,7 +4117,7 @@ Duplicable: False Optional: False
    -

    log

    +

    log

    paddle.v2.fluid.layers.log(**kwargs)
    @@ -3288,7 +4139,7 @@ Duplicable: False Optional: False
    -

    square

    +

    square

    paddle.v2.fluid.layers.square(**kwargs)
    @@ -3309,7 +4160,7 @@ Duplicable: False Optional: False
    -

    softplus

    +

    softplus

    paddle.v2.fluid.layers.softplus(**kwargs)
    @@ -3330,12 +4181,12 @@ Duplicable: False Optional: False
    -

    softsign

    +

    softsign

    paddle.v2.fluid.layers.softsign(**kwargs)

    Softsign Activation Operator.

    -

    $$out = frac{x}{1 + |x|}$$

    +

    $$out = frac{x}{1 + |x|}$$

    @@ -3351,7 +4202,7 @@ Duplicable: False Optional: False
    -

    brelu

    +

    brelu

    paddle.v2.fluid.layers.brelu(**kwargs)
    @@ -3378,7 +4229,7 @@ Duplicable: False Optional: False
    -

    leaky_relu

    +

    leaky_relu

    paddle.v2.fluid.layers.leaky_relu(**kwargs)
    @@ -3404,7 +4255,7 @@ Duplicable: False Optional: False
    -

    soft_relu

    +

    soft_relu

    paddle.v2.fluid.layers.soft_relu(**kwargs)
    @@ -3430,7 +4281,7 @@ Duplicable: False Optional: False
    -

    elu

    +

    elu

    paddle.v2.fluid.layers.elu(**kwargs)
    @@ -3458,7 +4309,7 @@ Duplicable: False Optional: False
    -

    relu6

    +

    relu6

    paddle.v2.fluid.layers.relu6(**kwargs)
    @@ -3484,7 +4335,7 @@ Duplicable: False Optional: False
    -

    pow

    +

    pow

    paddle.v2.fluid.layers.pow(**kwargs)
    @@ -3508,9 +4359,36 @@ Duplicable: False Optional: False
    +
    +
    +

    stanh

    +
    +
    +paddle.v2.fluid.layers.stanh(**kwargs)
    +

    STanh Activation Operator.

    +

    $$out = b * frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$

    + +++ + + + + + +
    参数:
      +
    • x – Input of STanh operator +Duplicable: False Optional: False
    • +
    • scale_a (FLOAT) – The scale parameter of a for the input
    • +
    • scale_b (FLOAT) – The scale parameter of b for the input
    • +
    +
    返回:

    Output of STanh operator

    +
    +
    +
    -

    hard_shrink

    +

    hard_shrink

    paddle.v2.fluid.layers.hard_shrink(**kwargs)
    @@ -3543,7 +4421,7 @@ Duplicable: False Optional: False
    -

    thresholded_relu

    +

    thresholded_relu

    paddle.v2.fluid.layers.thresholded_relu(**kwargs)
    @@ -3575,7 +4453,7 @@ Duplicable: False Optional: False
    -

    hard_sigmoid

    +

    hard_sigmoid

    paddle.v2.fluid.layers.hard_sigmoid(**kwargs)
    @@ -3607,7 +4485,7 @@ Duplicable: False Optional: False
    -

    swish

    +

    swish

    paddle.v2.fluid.layers.swish(**kwargs)
    @@ -3632,169 +4510,143 @@ Duplicable: False Optional: False
    -
    -

    im2sequence

    +
    +
    +

    tensor

    +
    +

    create_tensor

    -paddle.v2.fluid.layers.im2sequence(input, filter_size=1, stride=1, padding=0, name=None)
    -

    Extracts image patches from the input tensor to form a tensor of shape -{input.batch_size * output_height * output_width, filter_size_H * -filter_size_W * input.channels} which is similar with im2col. -This op use filter / kernel to scan images and convert these images to -sequences. After expanding, the number of time step are -output_height * output_width for an image, in which output_height and -output_width are calculated by below equation:

    -
    -\[output\_size = 1 + (2 * padding + img\_size - block\_size + stride - 1) / stride\]
    -

    And the dimension of each time step is block_y * block_x * input.channels.

    +paddle.v2.fluid.layers.create_tensor(dtype, name=None) +
    + +
    +
    +

    create_parameter

    +
    +
    +paddle.v2.fluid.layers.create_parameter(shape, dtype, attr=None, is_bias=False, default_initializer=None)
    +

    Create a parameter +:param shape: shape of the parameter +:type shape: list[int] +:param dtype: element type of the parameter +:type dtype: string +:param attr: attributes of the parameter +:type attr: ParamAttr +:param is_bias: This can affect which default initializer is chosen

    +
    +
    when default_initializer is None. If is_bias, +initializer.Constant(0.0) will be used. Otherwise, +Xavier() will be used.
    - + - + - +
    参数:
      -
    • input (Variable) – The input should be a tensor in NCHW format.
    • -
    • filter_size (int|tuple|None) – The filter size. If filter_size is a tuple, -it must contain two integers, (filter_size_H, filter_size_W). -Otherwise, the filter will be a square.
    • -
    • stride (int|tuple) – The stride size. If stride is a tuple, it must -contain two integers, (stride_H, stride_W). Otherwise, the -stride_H = stride_W = stride. Default: stride = 1.
    • -
    • padding (int|tuple) – The padding size. If padding is a tuple, it can -contain two integers like (padding_H, padding_W) which means -padding_up = padding_down = padding_H and -padding_left = padding_right = padding_W. Or it can use -(padding_up, padding_left, padding_down, padding_right) to indicate -paddings of four direction. Otherwise, a scalar padding means -padding_up = padding_down = padding_left = padding_right = padding -Default: padding = 0.
    • -
    • name (int) – The name of this layer. It is optional.
    • -
    -
    参数:default_initializer (Initializer) – initializer for the parameter
    返回:

    The output is a LoDTensor with shape -{input.batch_size * output_height * output_width, -filter_size_H * filter_size_W * input.channels}. -If we regard output as a matrix, each row of this matrix is -a step of a sequence.

    -
    返回:the created parameter
    返回类型:

    output

    -
    返回类型:Parameter
    -

    Examples:

    -

    As an example:

    -
    -
    Given:
    -
    -x = [[[[ 6.  2.  1.]
    -       [ 8.  3.  5.]
    -       [ 0.  2.  6.]]
    -
    -      [[ 2.  4.  4.]
    -       [ 6.  3.  0.]
    -       [ 6.  4.  7.]]]
    -
    -     [[[ 6.  7.  1.]
    -       [ 5.  7.  9.]
    -       [ 2.  4.  8.]]
    -
    -      [[ 1.  2.  1.]
    -       [ 1.  3.  5.]
    -       [ 9.  0.  8.]]]]
    -
    -x.dims = {2, 2, 3, 3}
    -
    -And:
    -
    -filter = [2, 2]
    -stride = [1, 1]
    -padding = [0, 0]
    -
    -Then:
    -
    -output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
    -               [ 2.  1.  3.  5.  4.  4.  3.  0.]
    -               [ 8.  3.  0.  2.  6.  3.  6.  4.]
    -               [ 3.  5.  2.  6.  3.  0.  4.  7.]
    -               [ 6.  7.  5.  7.  1.  2.  1.  3.]
    -               [ 7.  1.  7.  9.  2.  1.  3.  5.]
    -               [ 5.  7.  2.  4.  1.  3.  9.  0.]
    -               [ 7.  9.  4.  8.  3.  5.  0.  8.]]
    +
    -output.dims = {8, 9} +
    +
    +

    create_global_var

    +
    +
    +paddle.v2.fluid.layers.create_global_var(shape, value, dtype, persistable=False, name=None)
    +
    -output.lod = [[0, 4, 8]] -
    -

    The simple usage is:

    -
    output = fluid.layers.im2sequence(
    -    input=layer, stride=[1, 1], filter_size=[2, 2])
    -
    +
    +

    cast

    +
    +
    +paddle.v2.fluid.layers.cast(x, dtype)
    +

    This function takes in the input with input_dtype +and casts it to the output_dtype as the output.

    +
    +
    -
    +
    +

    concat

    +
    +
    +paddle.v2.fluid.layers.concat(input, axis=0)
    +

    Concat

    +

    This function concatenates the input along the axis mentioned +and returns that as the output.

    + +++ + + + + + + + +
    参数:
      +
    • input (list) – List of tensors to be concatenated
    • +
    • axis (int) – Integer axis along which the tensors will be concatenated
    • +
    +
    返回:

    Output variable of the concatenation

    +
    返回类型:

    Variable

    +
    +

    Examples

    -
    -

    edit_distance

    -
    -
    -

    ctc_greedy_decoder

    +
    +

    sums

    -paddle.v2.fluid.layers.ctc_greedy_decoder(input, blank, name=None)
    -

    This op is used to decode sequences by greedy policy by below steps: -1. Get the indexes of max value for each row in input. a.k.a.

    -
    -
    numpy.argmax(input, axis=0).
    -
      -
    1. For each sequence in result of step1, merge repeated tokens between two -blanks and delete all blanks.
    2. -
    -

    A simple example as below:

    -
    Given:
    -
    -input.data = [[0.6, 0.1, 0.3, 0.1],
    -              [0.3, 0.2, 0.4, 0.1],
    -              [0.1, 0.5, 0.1, 0.3],
    -              [0.5, 0.1, 0.3, 0.1],
    -
    -              [0.5, 0.1, 0.3, 0.1],
    -              [0.2, 0.2, 0.2, 0.4],
    -              [0.2, 0.2, 0.1, 0.5],
    -              [0.5, 0.1, 0.3, 0.1]]
    -
    -input.lod = [[0, 4, 8]]
    -
    -Then:
    -
    -output.data = [[2],
    -               [1],
    -               [3]]
    +paddle.v2.fluid.layers.sums(input, out=None)
    +

    This function performs the sum operation on the input and returns the +result as the output.

    + +++ + + + + + + + +
    参数:input (Variable|list) – The input tensor that has the elements +that need to be summed up.
    返回:
    +
    The tensor type variable that has the sum of input
    +
    written to it.
    +
    +
    返回类型:Variable
    +

    Examples

    +
    -output.lod = [[0, 2, 3]] -
    +
    +

    assign

    +
    +
    +paddle.v2.fluid.layers.assign(input, output)
    +

    Assign

    +

    This function copies the input Variable to the output Variable.

    -
    参数:
      -
    • input (Variable) – (LoDTensor<float>), the probabilities of -variable-length sequences, which is a 2-D Tensor with -LoD information. It’s shape is [Lp, num_classes + 1], -where Lp is the sum of all input sequences’ length and -num_classes is the true number of classes. (not -including the blank label).
    • -
    • blank (int) – the blank label index of Connectionist Temporal -Classification (CTC) loss, which is in thehalf-opened -interval [0, num_classes + 1).
    • +
    • input (Variable|numpy.ndarray) – The source variable
    • +
    • output (Variable) – The destination variable
    返回:

    CTC greedy decode result.

    +
    返回:

    The destination variable that was supplied as the output.

    返回类型:

    Variable

    @@ -3803,41 +4655,34 @@ interval [0, num_classes + 1).

    Examples

    -
    x = fluid.layers.data(name='x', shape=[8], dtype='float32')
    -
    -cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
    -
    -
    -
    -

    l2_normalize

    +
    +

    fill_constant_batch_size_like

    -paddle.v2.fluid.layers.l2_normalize(x, axis, epsilon=1e-12, name=None)
    -

    L2 normalize Layer

    -

    The l2 normalize layer normalizes x along dimension axis using an L2 -norm. For a 1-D tensor (dim is fixed to 0), this layer computes

    -

    output = x / sqrt(max(sum(x**2), epsilon))

    -

    For x with more dimensions, this layer independently normalizes each 1-D -slice along dimension axis.

    +paddle.v2.fluid.layers.fill_constant_batch_size_like(input, shape, dtype, value, input_dim_idx=0, output_dim_idx=0) +

    fill_constant_batch_size_like

    +

    This function creates a tensor of specified shape, dtype and batch size, +and initializes this with a constant supplied in value. The batch size is +obtained from the input tensor.

    +

    It also sets stop_gradient to True.

    -
    参数:
      -
    • x (Variable|list) – The input tensor to l2_normalize layer.
    • -
    • axis (int) – Dimension along which to normalize the input.
    • -
    • epsilon (float) – A lower bound value for x‘s l2 norm. sqrt(epsilon) will -be used as the divisor if the l2 norm of x is less than -sqrt(epsilon).
    • -
    • name (str|None) – A name for this layer(optional). If set None, the layer -will be named automatically.
    • +
    • input (Variable) – Tensor whose dimensions will be used to get batch size
    • +
    • shape (tuple|list|None) – Shape of output tensor
    • +
    • dtype (np.dtype|core.DataType|str) – Data type of output tensor
    • +
    • value (float) – Constant value to initialize the output tensor
    • +
    • input_dim_idx (int) – Index of input’s batch size dimension
    • +
    • output_dim_idx (int) – Index of output’s batch size dimension
    返回:

    The output tensor variable.

    +
    返回:

    The tensor variable storing the output

    返回类型:

    Variable

    @@ -3846,55 +4691,35 @@ will be named automatically.

    Examples

    -
    data = fluid.layers.data(name="data",
    -                         shape=(3, 17, 13),
    -                         dtype="float32")
    -normed = fluid.layers.l2_normalize(x=data, axis=1)
    +
    data = fluid.layers.fill_constant_batch_size_like(
    +    input=like, shape=[1], value=0, dtype='int64')
     
    -
    -

    sequence_reshape

    +
    +

    fill_constant

    -paddle.v2.fluid.layers.sequence_reshape(input, new_dim)
    -

    Sequence Reshape Layer

    -

    This layer will rearrange the input sequences. The new dimension is set by -user. Length of each sequence is computed according to original length, -original dimension and new dimension. The following example will help to -illustrate the function of this layer:

    -
    x is a LoDTensor:
    -    x.lod  = [[0, 2, 6]]
    -    x.data = [[1, 2], [3, 4],
    -              [5, 6], [7, 8], [9, 10], [11, 12]]
    -    x.dims = [6, 2]
    -
    -set new_dim = 4
    -
    -then out is a LoDTensor:
    -    out.lod  = [[0, 1, 3]]
    -    out.data = [[1, 2, 3, 4],
    -                [5, 6, 7, 8], [9, 10, 11, 12]]
    -    out.dims = [3, 4]
    -
    -
    -

    Currently, only 1-level LoDTensor is supported and please make sure -(original length * original dimension) can be divided by new dimension with -no remainder for each sequence.

    +paddle.v2.fluid.layers.fill_constant(shape, dtype, value, force_cpu=False, out=None) +

    fill_constant

    +

    This function creates a tensor with specified shape and dtype, and +initializes it with a constant specifed by value.

    +

    The attribute stop_gradient of the created tensor is set to True.

    -
    参数:
      -
    • input (Variable) – (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor -with shape being [N, M] where M for dimension.
    • -
    • new_dim (int) – New dimension which the input LoDTensor is reshaped to.
    • +
    • shape (tuple|list|None) – Shape of the output tensor.
    • +
    • dtype (np.dtype|core.DataType|str) – Data type of the output tensor.
    • +
    • value (float) – The constant value used to initialize the output tensor.
    • +
    • out (Variable) – The output tensor.
    返回:

    Reshaped LoDTensor according to new dimension.

    +
    返回:

    The tensor variable storing the output.

    返回类型:

    Variable

    @@ -3903,49 +4728,32 @@ with shape being [N, M] where M for dimension.

    Examples

    -
    x = fluid.layers.data(name='x', shape=[5, 20],
    -                  dtype='float32', lod_level=1)
    -x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
    +
    data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
     
    -
    -

    row_conv

    +
    +

    ones

    -paddle.v2.fluid.layers.row_conv(input, future_context_size, param_attr=None, act=None)
    -

    Row Conv Operator. This layer will apply lookahead convolution to -input. The input variable should be a 2D LoDTensor with shape [T, D]. -Parameters with shape [future_context_size + 1, D] will be created. The math -equation of row convolution is as follows:

    -
    -\[Out_{i} = \sum_{j = i} ^ {i + \tau} X_{j} \odot W_{i - j}\]
    -

    In the above equation:

    -
      -
    • \(Out_{i}\): The i-th row of output variable with shape [1, D].
    • -
    • \(\tau\): Future context size.
    • -
    • \(X_{j}\): The j-th row of input variable with shape [1, D].
    • -
    • \(W_{i-j}\): The (i-j)-th row of parameters with shape [1, D].
    • -
    -

    More details about row_conv please refer to the paper (http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf) and -the design document (https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645).

    +paddle.v2.fluid.layers.ones(shape, dtype) +

    ones

    +

    This function creates a tensor of specified shape and +dtype, and initializes this with 1.

    +

    It also sets stop_gradient to True.

    -
    参数:
      -
    • input (Variable) – Input variable, a 2D LoDTensor with shape [T, D].
    • -
    • future_context_size (int) – Future context size. Please note, the shape -of convolution kernel is [future_context_size + 1, D].
    • -
    • param_attr (ParamAttr) – Attributes of parameters, including -name, initializer etc.
    • -
    • act (str) – Non-linear activation to be applied to output variable.
    • +
    • shape (tuple|list|None) – Shape of output tensor
    • +
    • dtype (np.dtype|core.DataType|str) – Data type of output tensor
    返回:

    The output tensor with same shape as input tensor.

    +
    返回:

    The tensor variable storing the output

    返回类型:

    Variable

    @@ -3954,48 +4762,32 @@ name, initializer etc.

    Examples

    -
    x = fluid.layers.data(name='x', shape=[16],
    -                dtype='float32', lod_level=1)
    -out = fluid.layers.row_conv(input=x, future_context_size=2)
    +
    data = fluid.layers.ones(shape=[1], dtype='int64')
     
    -
    -

    multiplex

    +
    +

    zeros

    -paddle.v2.fluid.layers.multiplex(inputs, index)
    -

    Multiplex Layer

    -

    Referring to the given index variable, this layer selects rows from the -input variables to construct a multiplex variable. Assuming that there are -\(m\) input variables and \(I_i\) represents the i-th input -variable and \(i\) is in [0, \(m\)). All input variables are -tensors with same shape [\(d_0\), \(d_1\), ..., \(d_R\)]. -Please note that rank of the input tensor should be at least 2. Each input -variable will be treated as a 2-D matrix with shape [\(M\), \(N\)] -where \(M\) for \(d_0\) and \(N\) for \(d_1\) * \(d_2\) -* ... * \(d_R\). Let \(I_i[j]\) be the j-th row of the i-th input -variable. The given index variable should be a 2-D tensor with shape -[\(M\), 1]. Let ID[i] be the i-th index value of the index variable. -Then the output variable will be a tensor with shape [\(d_0\), -\(d_1\), ..., \(d_R\)]. If we treat the output tensor as a 2-D -matrix with shape [\(M\), \(N\)] and let \(O[i]\) be the i-th -row of the matrix, then O[i] is equal to \(I_{ID[i]}[i]\).

    +paddle.v2.fluid.layers.zeros(shape, dtype) +

    zeros

    +

    This function creates a tensor of specified shape and +dtype, and initializes this with 0.

    +

    It also sets stop_gradient to True.

    -
    参数:
      -
    • inputs (list) – A list of variables to gather from. All variables have the -same shape and the rank is at least 2.
    • -
    • index (Variable) – Tensor<int32>, index variable which is a 2-D tensor -with shape [M, 1] where M is the batch size.
    • +
    • shape (tuple|list|None) – Shape of output tensor
    • +
    • dtype (np.dtype|core.DataType|str) – Data type of output tensor
    返回:

    Multiplex variable gathered from input variables.

    +
    返回:

    The tensor variable storing the output

    返回类型:

    Variable

    @@ -4004,14 +4796,12 @@ with shape [M, 1] where M is the batch size.

    Examples

    -
    x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    -x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    -index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    -out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
    +
    data = fluid.layers.zeros(shape=[1], dtype='int64')
     
    +
    @@ -4022,7 +4812,7 @@ with shape [M, 1] where M is the batch size. @@ -236,7 +236,7 @@
    -

    Nets

    +

    nets

    simple_img_conv_pool

    @@ -244,15 +244,6 @@ paddle.v2.fluid.nets.simple_img_conv_pool(input, num_filters, filter_size, pool_size, pool_stride, act, param_attr=None, pool_type='max', use_cudnn=True)
    -
    -
    -

    img_conv_group

    -
    -
    -paddle.v2.fluid.nets.img_conv_group(input, conv_num_filter, pool_size, conv_padding=1, conv_filter_size=3, conv_act=None, param_attr=None, conv_with_batchnorm=False, conv_batchnorm_drop_rate=0.0, pool_stride=1, pool_type=None, use_cudnn=True)
    -

    Image Convolution Group, Used for vgg net.

    -
    -

    sequence_conv_pool

    @@ -380,10 +371,10 @@ parameters.

    diff --git a/develop/doc_cn/api/v2/fluid/optimizer.html b/develop/doc_cn/api/v2/fluid/optimizer.html index f3d46b5af6..14cc626456 100644 --- a/develop/doc_cn/api/v2/fluid/optimizer.html +++ b/develop/doc_cn/api/v2/fluid/optimizer.html @@ -8,7 +8,7 @@ - Optimizer — PaddlePaddle 文档 + optimizer — PaddlePaddle 文档 @@ -34,8 +34,8 @@ - - + + @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • @@ -226,7 +226,7 @@
  • Fluid >
  • -
  • Optimizer
  • +
  • optimizer
  • @@ -236,113 +236,58 @@
    -

    Optimizer

    -
    -

    Optimizer

    -
    -
    -class paddle.v2.fluid.optimizer.Optimizer(learning_rate, global_step=None, regularization=None)
    -

    Optimizer Base class.

    -

    Define the common interface of an optimizer. -User should not use this class directly, -but need to use one of it’s implementation.

    +

    optimizer

    +
    +

    SGD

    -global_learning_rate
    -

    get global decayed learning rate -:return:

    -
    - -
    -
    -create_optimization_pass(parameters_and_grads, loss, startup_program=None)
    -

    Add optimization operators to update gradients to variables.

    - --- - - - - - - - -
    参数:
      -
    • loss – the target that this optimization is for.
    • -
    • parameters_and_grads – a list of (variable, gradient) pair to update.
    • -
    -
    返回:

    a list of operators that will complete one step of -optimization. This will include parameter update ops, global step -update ops and any other custom ops required by subclasses to manage -their internal state. -:param startup_program:

    -
    返回类型:

    return_op_list

    -
    -
    - -
    -
    -minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)
    -

    Add operations to minimize loss by updating parameter_list.

    -

    This method combines interface append_backward() and -create_optimization_pass() into one.

    -
    - +paddle.v2.fluid.optimizer.SGD +

    SGDOptimizer 的别名

    -
    -

    SGDOptimizer

    -
    -
    -class paddle.v2.fluid.optimizer.SGDOptimizer(learning_rate, **kwargs)
    -

    Simple SGD optimizer without any state.

    -
    - -
    -
    -

    MomentumOptimizer

    -
    +
    +

    Momentum

    +
    -class paddle.v2.fluid.optimizer.MomentumOptimizer(learning_rate, momentum, use_nesterov=False, **kwargs)
    -

    Simple Momentum optimizer with velocity state

    +paddle.v2.fluid.optimizer.Momentum +

    MomentumOptimizer 的别名

    -
    -

    AdagradOptimizer

    -
    +
    +

    Adagrad

    +
    -class paddle.v2.fluid.optimizer.AdagradOptimizer(learning_rate, epsilon=1e-06, **kwargs)
    -

    Simple Adagrad optimizer with moment state

    +paddle.v2.fluid.optimizer.Adagrad +

    AdagradOptimizer 的别名

    -
    -

    AdamOptimizer

    -
    +
    +

    Adam

    +
    -class paddle.v2.fluid.optimizer.AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, **kwargs)
    -

    Implements the Adam Optimizer

    +paddle.v2.fluid.optimizer.Adam +

    AdamOptimizer 的别名

    -
    -

    AdamaxOptimizer

    -
    +
    +

    Adamax

    +
    -class paddle.v2.fluid.optimizer.AdamaxOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, **kwargs)
    -

    Implements the Adamax Optimizer

    +paddle.v2.fluid.optimizer.Adamax +

    AdamaxOptimizer 的别名

    -
    -

    DecayedAdagradOptimizer

    -
    +
    +

    DecayedAdagrad

    +
    -class paddle.v2.fluid.optimizer.DecayedAdagradOptimizer(learning_rate, decay=0.95, epsilon=1e-06, **kwargs)
    -

    Simple Decayed Adagrad optimizer with moment state

    +paddle.v2.fluid.optimizer.DecayedAdagrad +

    DecayedAdagradOptimizer 的别名

    @@ -355,10 +300,10 @@ their internal state. diff --git a/develop/doc_cn/api/v2/fluid/param_attr.html b/develop/doc_cn/api/v2/fluid/param_attr.html index 95cd8721cf..b6a04e9256 100644 --- a/develop/doc_cn/api/v2/fluid/param_attr.html +++ b/develop/doc_cn/api/v2/fluid/param_attr.html @@ -8,7 +8,7 @@ - ParamAttr — PaddlePaddle 文档 + param_attr — PaddlePaddle 文档 @@ -34,8 +34,8 @@ - - + + @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • @@ -226,7 +226,7 @@
  • Fluid >
  • -
  • ParamAttr
  • +
  • param_attr
  • @@ -235,10 +235,26 @@
    -
    -

    ParamAttr

    -
    -

    ParamAttr

    +
    +

    param_attr

    +
    +

    ParamAttr

    +
    +
    +class paddle.v2.fluid.param_attr.ParamAttr(name=None, initializer=None, learning_rate=1.0, regularizer=None, trainable=True, gradient_clip=None)
    +
    + +
    +
    +

    WeightNormParamAttr

    +
    +
    +class paddle.v2.fluid.param_attr.WeightNormParamAttr(dim=None, **kwargs)
    +

    Used for weight normalization. Any field in ParamAttr can also be set here. +Besides, an extra field dim can be set to indicate the dimension except +which to normalize.

    +
    +
    @@ -249,10 +265,10 @@ diff --git a/develop/doc_cn/api/v2/fluid/profiler.html b/develop/doc_cn/api/v2/fluid/profiler.html index 88a35e02d0..9a40198462 100644 --- a/develop/doc_cn/api/v2/fluid/profiler.html +++ b/develop/doc_cn/api/v2/fluid/profiler.html @@ -8,7 +8,7 @@ - Profiler — PaddlePaddle 文档 + profiler — PaddlePaddle 文档 @@ -34,8 +34,8 @@ - - + + @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • @@ -226,7 +226,7 @@
  • Fluid >
  • -
  • Profiler
  • +
  • profiler
  • @@ -236,9 +236,9 @@
    -

    Profiler

    -
    -

    Profiler

    +

    profiler

    +
    +

    cuda_profiler

    paddle.v2.fluid.profiler.cuda_profiler(*args, **kwds)
    @@ -268,6 +268,53 @@ to “Compute Command Line Profiler User Guide”.
    +
    +
    +

    reset_profiler

    +
    +
    +paddle.v2.fluid.profiler.reset_profiler()
    +

    The profiler clear interface. +reset_profiler will clear the previous time record.

    +
    + +
    +
    +

    profiler

    +
    +
    +paddle.v2.fluid.profiler.profiler(*args, **kwds)
    +

    The profiler interface. +Different from cuda_profiler, this profiler can be used to profile both CPU +and GPU program. By defalut, it records the CPU and GPU operator kernels, +if you want to profile other program, you can refer the profiling tutorial +to add more records.

    + +++ + + + +
    参数:
      +
    • state (string) – The profiling state, which should be ‘CPU’ or ‘GPU’, +telling the profiler to use CPU timer or GPU timer for profiling. +Although users may have already specified the execution place +(CPUPlace/CUDAPlace) in the begining, for flexibility the profiler +would not inherit this place.
    • +
    • sorted_key (string) – If None, the profiling results will be printed +in the order of first end time of events. Otherwise, the profiling +results will be sorted by the this flag. This flag should be one +of ‘calls’, ‘total’, ‘max’, ‘min’ or ‘ave’. +The calls means sorting by the number of calls. +The total means sorting by the total execution time. +The max means sorting by the maximum execution time. +The min means sorting by the minimum execution time. +The ave means sorting by the average execution time.
    • +
    +
    +
    +
    @@ -278,10 +325,10 @@ to “Compute Command Line Profiler User Guide”. diff --git a/develop/doc_cn/api/v2/fluid/regularizer.html b/develop/doc_cn/api/v2/fluid/regularizer.html index e88ceb3a4a..67cb333c7c 100644 --- a/develop/doc_cn/api/v2/fluid/regularizer.html +++ b/develop/doc_cn/api/v2/fluid/regularizer.html @@ -8,7 +8,7 @@ - Regularizer — PaddlePaddle 文档 + regularizer — PaddlePaddle 文档 @@ -34,8 +34,8 @@ - - + + @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • @@ -226,7 +226,7 @@
  • Fluid >
  • -
  • Regularizer
  • +
  • regularizer
  • @@ -236,37 +236,55 @@
    -

    Regularizer

    -
    -

    WeightDecayRegularizer

    -
    +

    regularizer

    +
    +

    append_regularization_ops

    +
    -class paddle.v2.fluid.regularizer.WeightDecayRegularizer
    -

    Base class for weight decay regularizers

    -

    Defines the common interface of weight-decay regularizers. -Weight-decay regularizers are added only during the backward -pass for faster regularization. They add operations to the network -that correspond to gradient of the regularization function. -Users should not use this class directly, but need to use one -of its implementations

    +paddle.v2.fluid.regularizer.append_regularization_ops(parameters_and_grads, regularization=None) +

    Create and add backward regularization Operators

    +

    Creates and adds backward regularization operators in the BlockDesc. +This will add gradients of the regularizer function to the gradients +of the parameters and return these modified gradients. This is the +same as implementing weight decay in optimizers for regularization.

    + +++ + + + + + + + +
    参数:
      +
    • parameters_and_grads – A list of (parameters, gradients) pairs +that need to be regularized.
    • +
    • regularization – A global regularizer. If the parameter is not +set. It will be applied with regularizer.
    • +
    +
    返回:

    list of (parameters, gradients) pair with the regularized gradient

    +
    Raises:

    Exception – Unknown regularization type

    +
    -
    -

    L2DecayRegularizer

    -
    +
    +

    L1Decay

    +
    -class paddle.v2.fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0)
    -

    Implements the L2 Weight Decay Regularization

    +paddle.v2.fluid.regularizer.L1Decay +

    L1DecayRegularizer 的别名

    -
    -

    L1DecayRegularizer

    -
    -
    -class paddle.v2.fluid.regularizer.L1DecayRegularizer(regularization_coeff=0.0)
    -

    Implements the L1 Weight Decay Regularization

    +
    +

    L2Decay

    +
    +
    +paddle.v2.fluid.regularizer.L2Decay
    +

    L2DecayRegularizer 的别名

    @@ -279,10 +297,10 @@ of its implementations

    diff --git a/develop/doc_cn/api/v2/model_configs.html b/develop/doc_cn/api/v2/model_configs.html index 1015d2b571..b3098284e7 100644 --- a/develop/doc_cn/api/v2/model_configs.html +++ b/develop/doc_cn/api/v2/model_configs.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/api/v2/run_logic.html b/develop/doc_cn/api/v2/run_logic.html index 0275e92123..8ee490f73d 100644 --- a/develop/doc_cn/api/v2/run_logic.html +++ b/develop/doc_cn/api/v2/run_logic.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/api.html b/develop/doc_cn/design/api.html index 14c3b5200b..972f060d56 100644 --- a/develop/doc_cn/design/api.html +++ b/develop/doc_cn/design/api.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/auto_gradient_check.html b/develop/doc_cn/design/auto_gradient_check.html index 4e8a03b67d..6535becfda 100644 --- a/develop/doc_cn/design/auto_gradient_check.html +++ b/develop/doc_cn/design/auto_gradient_check.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/backward.html b/develop/doc_cn/design/backward.html index 347fe44212..32c1d6307c 100644 --- a/develop/doc_cn/design/backward.html +++ b/develop/doc_cn/design/backward.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/block.html b/develop/doc_cn/design/block.html index b68d277827..0798b4f5bc 100644 --- a/develop/doc_cn/design/block.html +++ b/develop/doc_cn/design/block.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/build_system/README.html b/develop/doc_cn/design/build_system/README.html index 80b8f62ab7..b1cb7e1643 100644 --- a/develop/doc_cn/design/build_system/README.html +++ b/develop/doc_cn/design/build_system/README.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/cluster_train/README.html b/develop/doc_cn/design/cluster_train/README.html index 46936102ea..0b71e2317a 100644 --- a/develop/doc_cn/design/cluster_train/README.html +++ b/develop/doc_cn/design/cluster_train/README.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/cluster_train/checkpointing.html b/develop/doc_cn/design/cluster_train/checkpointing.html index 039b04bf1d..6574d4bd64 100644 --- a/develop/doc_cn/design/cluster_train/checkpointing.html +++ b/develop/doc_cn/design/cluster_train/checkpointing.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/cluster_train/data_dispatch.html b/develop/doc_cn/design/cluster_train/data_dispatch.html index c809c5b956..616b95f530 100644 --- a/develop/doc_cn/design/cluster_train/data_dispatch.html +++ b/develop/doc_cn/design/cluster_train/data_dispatch.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/cluster_train/large_model_dist_train.html b/develop/doc_cn/design/cluster_train/large_model_dist_train.html index a72d96af8d..dfbcf8a5cc 100644 --- a/develop/doc_cn/design/cluster_train/large_model_dist_train.html +++ b/develop/doc_cn/design/cluster_train/large_model_dist_train.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/cluster_train/master_server.html b/develop/doc_cn/design/cluster_train/master_server.html index a494118b8a..020325100b 100644 --- a/develop/doc_cn/design/cluster_train/master_server.html +++ b/develop/doc_cn/design/cluster_train/master_server.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/cluster_train/pserver_client.html b/develop/doc_cn/design/cluster_train/pserver_client.html index 4e1e8bfe1f..65c8f8a97e 100644 --- a/develop/doc_cn/design/cluster_train/pserver_client.html +++ b/develop/doc_cn/design/cluster_train/pserver_client.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/cluster_train/remote_parameter_updater.html b/develop/doc_cn/design/cluster_train/remote_parameter_updater.html index 47a4c08f88..d7a69d8be3 100644 --- a/develop/doc_cn/design/cluster_train/remote_parameter_updater.html +++ b/develop/doc_cn/design/cluster_train/remote_parameter_updater.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/cluster_train/save_model.html b/develop/doc_cn/design/cluster_train/save_model.html index 44113e509c..c9ac3f91a6 100644 --- a/develop/doc_cn/design/cluster_train/save_model.html +++ b/develop/doc_cn/design/cluster_train/save_model.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/cluster_train/submit-job.html b/develop/doc_cn/design/cluster_train/submit-job.html index ec23100034..3c4f0686c3 100644 --- a/develop/doc_cn/design/cluster_train/submit-job.html +++ b/develop/doc_cn/design/cluster_train/submit-job.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/concurrent_programming.html b/develop/doc_cn/design/concurrent_programming.html index 54ed422ac0..6c78b8c131 100644 --- a/develop/doc_cn/design/concurrent_programming.html +++ b/develop/doc_cn/design/concurrent_programming.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/csp.html b/develop/doc_cn/design/csp.html index 567244479c..6e473f2be9 100644 --- a/develop/doc_cn/design/csp.html +++ b/develop/doc_cn/design/csp.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/dist_refactor/distributed_architecture.html b/develop/doc_cn/design/dist_refactor/distributed_architecture.html index 2e1e00aa60..f1a611894d 100644 --- a/develop/doc_cn/design/dist_refactor/distributed_architecture.html +++ b/develop/doc_cn/design/dist_refactor/distributed_architecture.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/dist_refactor/multi_cpu.html b/develop/doc_cn/design/dist_refactor/multi_cpu.html index e735a12902..431f282e9b 100644 --- a/develop/doc_cn/design/dist_refactor/multi_cpu.html +++ b/develop/doc_cn/design/dist_refactor/multi_cpu.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/dist_refactor/parameter_server.html b/develop/doc_cn/design/dist_refactor/parameter_server.html index 18f1debdab..e84cfa96d9 100644 --- a/develop/doc_cn/design/dist_refactor/parameter_server.html +++ b/develop/doc_cn/design/dist_refactor/parameter_server.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/error_clip.html b/develop/doc_cn/design/error_clip.html index 60d8f9b2bc..e30a8cfca2 100644 --- a/develop/doc_cn/design/error_clip.html +++ b/develop/doc_cn/design/error_clip.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/evaluator.html b/develop/doc_cn/design/evaluator.html index f6887bae34..1e7985e611 100644 --- a/develop/doc_cn/design/evaluator.html +++ b/develop/doc_cn/design/evaluator.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/executor.html b/develop/doc_cn/design/executor.html index 0ab071dad8..f13fc254f9 100644 --- a/develop/doc_cn/design/executor.html +++ b/develop/doc_cn/design/executor.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/file_manager/README.html b/develop/doc_cn/design/file_manager/README.html index c9b7d8e344..6ca55133d9 100644 --- a/develop/doc_cn/design/file_manager/README.html +++ b/develop/doc_cn/design/file_manager/README.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/file_manager/pfs/pfsclient.html b/develop/doc_cn/design/file_manager/pfs/pfsclient.html index e6533e004e..9808038552 100644 --- a/develop/doc_cn/design/file_manager/pfs/pfsclient.html +++ b/develop/doc_cn/design/file_manager/pfs/pfsclient.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/float16.html b/develop/doc_cn/design/float16.html index a9730f22a2..a1214b79a1 100644 --- a/develop/doc_cn/design/float16.html +++ b/develop/doc_cn/design/float16.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/fluid.html b/develop/doc_cn/design/fluid.html index 7d20694f7f..3251c9316a 100644 --- a/develop/doc_cn/design/fluid.html +++ b/develop/doc_cn/design/fluid.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/fluid_compiler.html b/develop/doc_cn/design/fluid_compiler.html index f20d5e619f..51e67c480f 100644 --- a/develop/doc_cn/design/fluid_compiler.html +++ b/develop/doc_cn/design/fluid_compiler.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/functions_operators_layers.html b/develop/doc_cn/design/functions_operators_layers.html index f2b7bd96b5..0de902829b 100644 --- a/develop/doc_cn/design/functions_operators_layers.html +++ b/develop/doc_cn/design/functions_operators_layers.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/gan_api.html b/develop/doc_cn/design/gan_api.html index 24f84b4182..e8a2c973d1 100644 --- a/develop/doc_cn/design/gan_api.html +++ b/develop/doc_cn/design/gan_api.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/graph.html b/develop/doc_cn/design/graph.html index 0842099807..4710b2a3b9 100644 --- a/develop/doc_cn/design/graph.html +++ b/develop/doc_cn/design/graph.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/graph_survey.html b/develop/doc_cn/design/graph_survey.html index 61256d7060..760fef9079 100644 --- a/develop/doc_cn/design/graph_survey.html +++ b/develop/doc_cn/design/graph_survey.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/if_else_op.html b/develop/doc_cn/design/if_else_op.html index 29d55f3564..840d5ae131 100644 --- a/develop/doc_cn/design/if_else_op.html +++ b/develop/doc_cn/design/if_else_op.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/infer_var_type.html b/develop/doc_cn/design/infer_var_type.html index ca86e8393d..b7bd15d5b2 100644 --- a/develop/doc_cn/design/infer_var_type.html +++ b/develop/doc_cn/design/infer_var_type.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/kernel_hint_design.html b/develop/doc_cn/design/kernel_hint_design.html index ac1223858d..53c0c49093 100644 --- a/develop/doc_cn/design/kernel_hint_design.html +++ b/develop/doc_cn/design/kernel_hint_design.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/memory_optimization.html b/develop/doc_cn/design/memory_optimization.html index 14975be2ca..051c075634 100644 --- a/develop/doc_cn/design/memory_optimization.html +++ b/develop/doc_cn/design/memory_optimization.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/mkl/mkl_packed.html b/develop/doc_cn/design/mkl/mkl_packed.html index a0a0e10168..43affcf79c 100644 --- a/develop/doc_cn/design/mkl/mkl_packed.html +++ b/develop/doc_cn/design/mkl/mkl_packed.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/mkl/mkldnn.html b/develop/doc_cn/design/mkl/mkldnn.html index fee1624088..761b758bd6 100644 --- a/develop/doc_cn/design/mkl/mkldnn.html +++ b/develop/doc_cn/design/mkl/mkldnn.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/mkl/mkldnn_fluid.html b/develop/doc_cn/design/mkl/mkldnn_fluid.html index b29dc5711c..5d8fa98cbc 100644 --- a/develop/doc_cn/design/mkl/mkldnn_fluid.html +++ b/develop/doc_cn/design/mkl/mkldnn_fluid.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/model_format.html b/develop/doc_cn/design/model_format.html index 03b4113c2a..6544cec028 100644 --- a/develop/doc_cn/design/model_format.html +++ b/develop/doc_cn/design/model_format.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/multi_language_interface/00.why_plain_c.html b/develop/doc_cn/design/multi_language_interface/00.why_plain_c.html index 084efdce79..8d549fdde3 100644 --- a/develop/doc_cn/design/multi_language_interface/00.why_plain_c.html +++ b/develop/doc_cn/design/multi_language_interface/00.why_plain_c.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/multi_language_interface/01.inference_implementation.html b/develop/doc_cn/design/multi_language_interface/01.inference_implementation.html index 9b1a5e3812..adc7373fcf 100644 --- a/develop/doc_cn/design/multi_language_interface/01.inference_implementation.html +++ b/develop/doc_cn/design/multi_language_interface/01.inference_implementation.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/operator_kernel_type.html b/develop/doc_cn/design/operator_kernel_type.html index 47888f2b6d..a4984e37a6 100644 --- a/develop/doc_cn/design/operator_kernel_type.html +++ b/develop/doc_cn/design/operator_kernel_type.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/ops/rnn.html b/develop/doc_cn/design/ops/rnn.html index 27ec8c688f..970e7f8d6f 100644 --- a/develop/doc_cn/design/ops/rnn.html +++ b/develop/doc_cn/design/ops/rnn.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/ops/sequence_decoder.html b/develop/doc_cn/design/ops/sequence_decoder.html index e516c928fc..12be66e068 100644 --- a/develop/doc_cn/design/ops/sequence_decoder.html +++ b/develop/doc_cn/design/ops/sequence_decoder.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/optimizer.html b/develop/doc_cn/design/optimizer.html index dd4d0d6ed6..c2c4e72974 100644 --- a/develop/doc_cn/design/optimizer.html +++ b/develop/doc_cn/design/optimizer.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/paddle_nccl.html b/develop/doc_cn/design/paddle_nccl.html index 9c7e37924c..fbe81d5e40 100644 --- a/develop/doc_cn/design/paddle_nccl.html +++ b/develop/doc_cn/design/paddle_nccl.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/parameter_average.html b/develop/doc_cn/design/parameter_average.html index 8b6ec7e8df..844226723b 100644 --- a/develop/doc_cn/design/parameter_average.html +++ b/develop/doc_cn/design/parameter_average.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/parameters_in_cpp.html b/develop/doc_cn/design/parameters_in_cpp.html index 9024b6c058..6fe5f59917 100644 --- a/develop/doc_cn/design/parameters_in_cpp.html +++ b/develop/doc_cn/design/parameters_in_cpp.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/profiler.html b/develop/doc_cn/design/profiler.html index 6b1b5efcd5..cbbc52caa5 100644 --- a/develop/doc_cn/design/profiler.html +++ b/develop/doc_cn/design/profiler.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/program.html b/develop/doc_cn/design/program.html index 693ca967e2..e80f56c495 100644 --- a/develop/doc_cn/design/program.html +++ b/develop/doc_cn/design/program.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/prune.html b/develop/doc_cn/design/prune.html index 4aa12145f4..78ebae9c38 100644 --- a/develop/doc_cn/design/prune.html +++ b/develop/doc_cn/design/prune.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/python_api.html b/develop/doc_cn/design/python_api.html index 4b996960cd..dc5b37905a 100644 --- a/develop/doc_cn/design/python_api.html +++ b/develop/doc_cn/design/python_api.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/reader/README.html b/develop/doc_cn/design/reader/README.html index ec6a4c0d7f..21dec1d21b 100644 --- a/develop/doc_cn/design/reader/README.html +++ b/develop/doc_cn/design/reader/README.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/refactorization.html b/develop/doc_cn/design/refactorization.html index dc63de6bf9..215ce12784 100644 --- a/develop/doc_cn/design/refactorization.html +++ b/develop/doc_cn/design/refactorization.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/register_grad_op.html b/develop/doc_cn/design/register_grad_op.html index 7dc115483b..1c823a4b51 100644 --- a/develop/doc_cn/design/register_grad_op.html +++ b/develop/doc_cn/design/register_grad_op.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/regularization.html b/develop/doc_cn/design/regularization.html index ae8f3e06ef..a9c93bd715 100644 --- a/develop/doc_cn/design/regularization.html +++ b/develop/doc_cn/design/regularization.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/releasing_process.html b/develop/doc_cn/design/releasing_process.html index 0e10bd393c..a9ef030c99 100644 --- a/develop/doc_cn/design/releasing_process.html +++ b/develop/doc_cn/design/releasing_process.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/scope.html b/develop/doc_cn/design/scope.html index 4f74a54691..3865e6fe90 100644 --- a/develop/doc_cn/design/scope.html +++ b/develop/doc_cn/design/scope.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/selected_rows.html b/develop/doc_cn/design/selected_rows.html index 915458390b..1fbfc13d68 100644 --- a/develop/doc_cn/design/selected_rows.html +++ b/develop/doc_cn/design/selected_rows.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/simple_op_design.html b/develop/doc_cn/design/simple_op_design.html index f18cba7232..0d2f2da21e 100644 --- a/develop/doc_cn/design/simple_op_design.html +++ b/develop/doc_cn/design/simple_op_design.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/speech/deep_speech_2.html b/develop/doc_cn/design/speech/deep_speech_2.html index 1e1b946e8a..8879c5023e 100644 --- a/develop/doc_cn/design/speech/deep_speech_2.html +++ b/develop/doc_cn/design/speech/deep_speech_2.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/support_new_device.html b/develop/doc_cn/design/support_new_device.html index 892fdb8f2f..69ad2bd17c 100644 --- a/develop/doc_cn/design/support_new_device.html +++ b/develop/doc_cn/design/support_new_device.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/switch_kernel.html b/develop/doc_cn/design/switch_kernel.html index 99ddb7f1df..9f97f58159 100644 --- a/develop/doc_cn/design/switch_kernel.html +++ b/develop/doc_cn/design/switch_kernel.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/tensor_array.html b/develop/doc_cn/design/tensor_array.html index 1dee65a4f7..70e5c2184d 100644 --- a/develop/doc_cn/design/tensor_array.html +++ b/develop/doc_cn/design/tensor_array.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/design/var_desc.html b/develop/doc_cn/design/var_desc.html index 06c186d89b..f7cf7303bb 100644 --- a/develop/doc_cn/design/var_desc.html +++ b/develop/doc_cn/design/var_desc.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/faq/build_and_install/index_cn.html b/develop/doc_cn/faq/build_and_install/index_cn.html index 48d354e0af..f074319b6f 100644 --- a/develop/doc_cn/faq/build_and_install/index_cn.html +++ b/develop/doc_cn/faq/build_and_install/index_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/faq/cluster/index_cn.html b/develop/doc_cn/faq/cluster/index_cn.html index f933dd3402..be23de0164 100644 --- a/develop/doc_cn/faq/cluster/index_cn.html +++ b/develop/doc_cn/faq/cluster/index_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/faq/index_cn.html b/develop/doc_cn/faq/index_cn.html index b36a0df38e..c5c9bb0941 100644 --- a/develop/doc_cn/faq/index_cn.html +++ b/develop/doc_cn/faq/index_cn.html @@ -34,7 +34,7 @@ - + @@ -172,17 +172,17 @@
  • 训练与应用
  • Fluid
  • @@ -253,7 +253,7 @@ Next - Previous + Previous
    diff --git a/develop/doc_cn/faq/local/index_cn.html b/develop/doc_cn/faq/local/index_cn.html index eb85ee066b..8868e351ca 100644 --- a/develop/doc_cn/faq/local/index_cn.html +++ b/develop/doc_cn/faq/local/index_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/faq/model/index_cn.html b/develop/doc_cn/faq/model/index_cn.html index 9cd11bbb92..dcaa6f3534 100644 --- a/develop/doc_cn/faq/model/index_cn.html +++ b/develop/doc_cn/faq/model/index_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/faq/parameter/index_cn.html b/develop/doc_cn/faq/parameter/index_cn.html index e3a2bb2c1b..c1424526f6 100644 --- a/develop/doc_cn/faq/parameter/index_cn.html +++ b/develop/doc_cn/faq/parameter/index_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/genindex.html b/develop/doc_cn/genindex.html index 60c09dc632..26ee989320 100644 --- a/develop/doc_cn/genindex.html +++ b/develop/doc_cn/genindex.html @@ -171,17 +171,17 @@
  • 训练与应用
  • Fluid
  • @@ -236,7 +236,6 @@ B | C | L - | M | P | R | S @@ -262,14 +261,12 @@

    L

    - +
    -

    M

    - - -
    -

    P

    - - - -
    diff --git a/develop/doc_cn/getstarted/build_and_install/docker_install_cn.html b/develop/doc_cn/getstarted/build_and_install/docker_install_cn.html index 2a7f71bcef..a5fb5f721d 100644 --- a/develop/doc_cn/getstarted/build_and_install/docker_install_cn.html +++ b/develop/doc_cn/getstarted/build_and_install/docker_install_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/getstarted/build_and_install/index_cn.html b/develop/doc_cn/getstarted/build_and_install/index_cn.html index 2fcc5ec396..8b4c19b420 100644 --- a/develop/doc_cn/getstarted/build_and_install/index_cn.html +++ b/develop/doc_cn/getstarted/build_and_install/index_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/getstarted/build_and_install/pip_install_cn.html b/develop/doc_cn/getstarted/build_and_install/pip_install_cn.html index dbbc014864..480d58b842 100644 --- a/develop/doc_cn/getstarted/build_and_install/pip_install_cn.html +++ b/develop/doc_cn/getstarted/build_and_install/pip_install_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/getstarted/concepts/use_concepts_cn.html b/develop/doc_cn/getstarted/concepts/use_concepts_cn.html index 9329aa999d..94283c6685 100644 --- a/develop/doc_cn/getstarted/concepts/use_concepts_cn.html +++ b/develop/doc_cn/getstarted/concepts/use_concepts_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/getstarted/index_cn.html b/develop/doc_cn/getstarted/index_cn.html index 3fae20d2fc..75fac21e29 100644 --- a/develop/doc_cn/getstarted/index_cn.html +++ b/develop/doc_cn/getstarted/index_cn.html @@ -172,17 +172,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/deep_model/rnn/hierarchical_layer_cn.html b/develop/doc_cn/howto/deep_model/rnn/hierarchical_layer_cn.html index df47ab2075..6453415875 100644 --- a/develop/doc_cn/howto/deep_model/rnn/hierarchical_layer_cn.html +++ b/develop/doc_cn/howto/deep_model/rnn/hierarchical_layer_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html b/develop/doc_cn/howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html index 13d11e9bad..efb5ca1c76 100644 --- a/develop/doc_cn/howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html +++ b/develop/doc_cn/howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/deep_model/rnn/index_cn.html b/develop/doc_cn/howto/deep_model/rnn/index_cn.html index 8c1c12708d..b2cbf61925 100644 --- a/develop/doc_cn/howto/deep_model/rnn/index_cn.html +++ b/develop/doc_cn/howto/deep_model/rnn/index_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/deep_model/rnn/recurrent_group_cn.html b/develop/doc_cn/howto/deep_model/rnn/recurrent_group_cn.html index eb52b58607..e97d7e4425 100644 --- a/develop/doc_cn/howto/deep_model/rnn/recurrent_group_cn.html +++ b/develop/doc_cn/howto/deep_model/rnn/recurrent_group_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/deep_model/rnn/rnn_config_cn.html b/develop/doc_cn/howto/deep_model/rnn/rnn_config_cn.html index 471d013cc2..7e17ef54df 100644 --- a/develop/doc_cn/howto/deep_model/rnn/rnn_config_cn.html +++ b/develop/doc_cn/howto/deep_model/rnn/rnn_config_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/dev/build_cn.html b/develop/doc_cn/howto/dev/build_cn.html index 48b789a3b7..733dac3d4d 100644 --- a/develop/doc_cn/howto/dev/build_cn.html +++ b/develop/doc_cn/howto/dev/build_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/dev/contribute_to_paddle_cn.html b/develop/doc_cn/howto/dev/contribute_to_paddle_cn.html index ec5149dbdd..310998a91e 100644 --- a/develop/doc_cn/howto/dev/contribute_to_paddle_cn.html +++ b/develop/doc_cn/howto/dev/contribute_to_paddle_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/dev/new_layer_cn.html b/develop/doc_cn/howto/dev/new_layer_cn.html index 4c10fc48df..cdcaca103a 100644 --- a/develop/doc_cn/howto/dev/new_layer_cn.html +++ b/develop/doc_cn/howto/dev/new_layer_cn.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/dev/new_op_cn.html b/develop/doc_cn/howto/dev/new_op_cn.html index 88f526efb6..f07ecc4484 100644 --- a/develop/doc_cn/howto/dev/new_op_cn.html +++ b/develop/doc_cn/howto/dev/new_op_cn.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/dev/use_eigen_cn.html b/develop/doc_cn/howto/dev/use_eigen_cn.html index d9be7982f2..a6fc847aa0 100644 --- a/develop/doc_cn/howto/dev/use_eigen_cn.html +++ b/develop/doc_cn/howto/dev/use_eigen_cn.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/dev/write_docs_cn.html b/develop/doc_cn/howto/dev/write_docs_cn.html index 0e15519bff..b5305cc65d 100644 --- a/develop/doc_cn/howto/dev/write_docs_cn.html +++ b/develop/doc_cn/howto/dev/write_docs_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/index_cn.html b/develop/doc_cn/howto/index_cn.html index 09257a19bc..55c4a5a54e 100644 --- a/develop/doc_cn/howto/index_cn.html +++ b/develop/doc_cn/howto/index_cn.html @@ -172,17 +172,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/optimization/cpu_profiling.html b/develop/doc_cn/howto/optimization/cpu_profiling.html index 8bdebcd710..0a2e24100e 100644 --- a/develop/doc_cn/howto/optimization/cpu_profiling.html +++ b/develop/doc_cn/howto/optimization/cpu_profiling.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/optimization/cpu_profiling_cn.html b/develop/doc_cn/howto/optimization/cpu_profiling_cn.html index 62b78897a4..47c8ef5ab6 100644 --- a/develop/doc_cn/howto/optimization/cpu_profiling_cn.html +++ b/develop/doc_cn/howto/optimization/cpu_profiling_cn.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/optimization/gpu_profiling_cn.html b/develop/doc_cn/howto/optimization/gpu_profiling_cn.html index c77713fed3..be5264e58d 100644 --- a/develop/doc_cn/howto/optimization/gpu_profiling_cn.html +++ b/develop/doc_cn/howto/optimization/gpu_profiling_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/read_source.html b/develop/doc_cn/howto/read_source.html index f76136d607..b73374fdd8 100644 --- a/develop/doc_cn/howto/read_source.html +++ b/develop/doc_cn/howto/read_source.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/usage/capi/compile_paddle_lib_cn.html b/develop/doc_cn/howto/usage/capi/compile_paddle_lib_cn.html index df1ce61b8a..15877ddf85 100644 --- a/develop/doc_cn/howto/usage/capi/compile_paddle_lib_cn.html +++ b/develop/doc_cn/howto/usage/capi/compile_paddle_lib_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/usage/capi/index_cn.html b/develop/doc_cn/howto/usage/capi/index_cn.html index 55881461af..94013b56b7 100644 --- a/develop/doc_cn/howto/usage/capi/index_cn.html +++ b/develop/doc_cn/howto/usage/capi/index_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/usage/capi/organization_of_the_inputs_cn.html b/develop/doc_cn/howto/usage/capi/organization_of_the_inputs_cn.html index b65865724f..bc74850c1c 100644 --- a/develop/doc_cn/howto/usage/capi/organization_of_the_inputs_cn.html +++ b/develop/doc_cn/howto/usage/capi/organization_of_the_inputs_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/usage/capi/workflow_of_capi_cn.html b/develop/doc_cn/howto/usage/capi/workflow_of_capi_cn.html index a627a9a7b9..7f40ad8d66 100644 --- a/develop/doc_cn/howto/usage/capi/workflow_of_capi_cn.html +++ b/develop/doc_cn/howto/usage/capi/workflow_of_capi_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/usage/cluster/cluster_train_cn.html b/develop/doc_cn/howto/usage/cluster/cluster_train_cn.html index e7a9ae3b6e..dc22178d8e 100644 --- a/develop/doc_cn/howto/usage/cluster/cluster_train_cn.html +++ b/develop/doc_cn/howto/usage/cluster/cluster_train_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/usage/cluster/fabric_cn.html b/develop/doc_cn/howto/usage/cluster/fabric_cn.html index f703df3294..747d0aa124 100644 --- a/develop/doc_cn/howto/usage/cluster/fabric_cn.html +++ b/develop/doc_cn/howto/usage/cluster/fabric_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/usage/cluster/k8s_aws_cn.html b/develop/doc_cn/howto/usage/cluster/k8s_aws_cn.html index 7023d69209..126b7ea0a1 100644 --- a/develop/doc_cn/howto/usage/cluster/k8s_aws_cn.html +++ b/develop/doc_cn/howto/usage/cluster/k8s_aws_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/usage/cluster/k8s_cn.html b/develop/doc_cn/howto/usage/cluster/k8s_cn.html index 812dfe3fdd..b4a10e6f07 100644 --- a/develop/doc_cn/howto/usage/cluster/k8s_cn.html +++ b/develop/doc_cn/howto/usage/cluster/k8s_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/usage/cluster/k8s_distributed_cn.html b/develop/doc_cn/howto/usage/cluster/k8s_distributed_cn.html index 07d3c662b5..285eddcd93 100644 --- a/develop/doc_cn/howto/usage/cluster/k8s_distributed_cn.html +++ b/develop/doc_cn/howto/usage/cluster/k8s_distributed_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/usage/cluster/openmpi_cn.html b/develop/doc_cn/howto/usage/cluster/openmpi_cn.html index 6a53140de2..19e8e97647 100644 --- a/develop/doc_cn/howto/usage/cluster/openmpi_cn.html +++ b/develop/doc_cn/howto/usage/cluster/openmpi_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/usage/cluster/src/k8s_data/README.html b/develop/doc_cn/howto/usage/cluster/src/k8s_data/README.html index 1980209757..09621b111c 100644 --- a/develop/doc_cn/howto/usage/cluster/src/k8s_data/README.html +++ b/develop/doc_cn/howto/usage/cluster/src/k8s_data/README.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/usage/cluster/src/k8s_train/README.html b/develop/doc_cn/howto/usage/cluster/src/k8s_train/README.html index a98415e570..1d8cb0524a 100644 --- a/develop/doc_cn/howto/usage/cluster/src/k8s_train/README.html +++ b/develop/doc_cn/howto/usage/cluster/src/k8s_train/README.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/usage/cmd_parameter/arguments_cn.html b/develop/doc_cn/howto/usage/cmd_parameter/arguments_cn.html index 549d8dccd7..b30d734562 100644 --- a/develop/doc_cn/howto/usage/cmd_parameter/arguments_cn.html +++ b/develop/doc_cn/howto/usage/cmd_parameter/arguments_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/usage/cmd_parameter/detail_introduction_cn.html b/develop/doc_cn/howto/usage/cmd_parameter/detail_introduction_cn.html index 02bef7eb19..bb75ad6648 100644 --- a/develop/doc_cn/howto/usage/cmd_parameter/detail_introduction_cn.html +++ b/develop/doc_cn/howto/usage/cmd_parameter/detail_introduction_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/usage/cmd_parameter/index_cn.html b/develop/doc_cn/howto/usage/cmd_parameter/index_cn.html index d8d29aa723..375681d869 100644 --- a/develop/doc_cn/howto/usage/cmd_parameter/index_cn.html +++ b/develop/doc_cn/howto/usage/cmd_parameter/index_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/howto/usage/cmd_parameter/use_case_cn.html b/develop/doc_cn/howto/usage/cmd_parameter/use_case_cn.html index 967e0c4014..276dc463f4 100644 --- a/develop/doc_cn/howto/usage/cmd_parameter/use_case_cn.html +++ b/develop/doc_cn/howto/usage/cmd_parameter/use_case_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/index_cn.html b/develop/doc_cn/index_cn.html index 377db77b1b..f6adced01d 100644 --- a/develop/doc_cn/index_cn.html +++ b/develop/doc_cn/index_cn.html @@ -171,17 +171,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/mobile/cross_compiling_for_android_cn.html b/develop/doc_cn/mobile/cross_compiling_for_android_cn.html index ebea90b3d4..c8d5c1e4cc 100644 --- a/develop/doc_cn/mobile/cross_compiling_for_android_cn.html +++ b/develop/doc_cn/mobile/cross_compiling_for_android_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/mobile/cross_compiling_for_ios_cn.html b/develop/doc_cn/mobile/cross_compiling_for_ios_cn.html index 90e7230c57..856ddd313d 100644 --- a/develop/doc_cn/mobile/cross_compiling_for_ios_cn.html +++ b/develop/doc_cn/mobile/cross_compiling_for_ios_cn.html @@ -173,17 +173,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/mobile/cross_compiling_for_raspberry_cn.html b/develop/doc_cn/mobile/cross_compiling_for_raspberry_cn.html index 40a128effa..2eb9fd0dc7 100644 --- a/develop/doc_cn/mobile/cross_compiling_for_raspberry_cn.html +++ b/develop/doc_cn/mobile/cross_compiling_for_raspberry_cn.html @@ -172,17 +172,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/mobile/index_cn.html b/develop/doc_cn/mobile/index_cn.html index fabe10c4c4..1b7e56a867 100644 --- a/develop/doc_cn/mobile/index_cn.html +++ b/develop/doc_cn/mobile/index_cn.html @@ -172,17 +172,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/objects.inv b/develop/doc_cn/objects.inv index 2616634f44503729edb647bd29cba20f98a3849b..1039d19a39f9b6053a291df864a2ce8bf46b790a 100644 GIT binary patch delta 4265 zcmV;a5LWNWB8noAiGMF^s8lLNrBWp%K`DSx5KbPadS`l9V`is^o*4<{2@qE!5ZDMX zmhA|Pp(;Tlg>e8OsLF5A?5>{t7jpVC_nz66P#zGPKIeSjnV!C!bGqds)3ova*@OG7 z4r*h~oj=qeW?*COGYz>`WAHZnNWA794`fs&*&40~W?{6aCn9=#~p5CIQ zqx*<5%vRtSzC|4EKpCnE&cKe3scul>?jFR(EnlZrd&bvWw)HVU1erQ=Ox>r*@mhp- zJ`yYL@sGvOoAW;Qc8>(_W5T!kxPGSCv;K~CZ-!8R_b8s#ac#U8UF;Lxn3)^i9@%Z8 z&rrwF**{R!4S&*c5yhJ4n}=-F#I{yHpv{mupEOL2T^%L@wi}?`P?_n5BfuGOooUqB zKhUU0z~Rm1aA`68_r+6_liJACM7aK@yMA|T<3?}eW{tUOIVL^_K->kB7|elmJ11b4 zHThx&aavZpf#7{-5r5~LrAkMl#Lsy!-=`HYAQb>ph<~CEh6$^UK%3PJe4InVv&asR zPpDUpm*@!8@%T9hW}|sr;TIPRh~w{lUzI6;GlT4BbPStrw3o8Wo{A6j-`nF@2>E-a6*Uo-mRJzE&7 zyP}{Ya8eCfw0L-zV#OK)DSpi1oWn*?2_qFGihRm~SdQge$SxVa1swsEYRI9Hau6bI zN!Elfs{Pw zpeSisc7;cgf`pMzSrCfbfsJV8o27IFRH`9D<2#!!)*V$3XXFCq1Z&bpc~d|$`v?sj z-6n0zP$0!JfpVH67+>TF@ae~U^y%r(L=AD{F8Pku7!l!sX+?%V9a zD#F|b%qhVlyAK1#{$v9#K}xn@2~rm($$lKeFb}z>Fs{GAMjW~947n~*>M4{WaGuy> zV`q149vc;!gec(3#cAiLU^ogtl^qrD^nW{q<#y~x77lls*fgWKV~3cDar|2j{hZ4t z@@}Ao?7)9vmvxtN^LpNX4|rbSAPyX z5>O+_qPV0UA@<(g>#yJ0K7W0C^^GL+eC+Na6NeKt-Ft7kFPCdZ$JF8FV6|u2mntg^ zJcv6ROwWySp=_$Q4`g+QQ5P8fwfDWvweZg7*2a(h)x~h>Vt4sPjiraMx9cW$_onY8 zV4VYsciMXYUH{d+nh8mJ+iAeJOn>jqNo$nZvD8}p)W*0_8zV++4UwhZrpUCg1AEO3 zHqNNfidr)91c7!`3bausfK5WsL=;VAoS8$^RNzJ;0d_c2Jj{B74aG>!CQ7$>yG%La zH#?*q=IU$-nl^}wV-zve=3#Vn8mGob#!if@FpFA(;S@d_SQKX8=m~TNYkx;%VIo2| z?7(9MFTTTiPaZ!l(gG7C53uu4tDzlBRI$Is=TgS7>1_t|Rr{S7gCyN}Oze|XZn z_~zGl*GAK-zrMS!rsuhmX?ZRy9uB0>XbbxO+VkGV0^`29)_ZsTtF}!vq zT)Lwsg@Ct>MFoeU`J#CsyMNkDj$<3y^Pc5tq@{5^jq7P<>O=TZd<$G+KB?X7ApYQC zI-3pU2WuBc!U-Q^Q=>n0#TJK6nBV^ zlND4CT=?cg^g@|o(Y;e#Gv&|clA;9(^{4<9b4Kl=hi2s<80b`@T7Pt78e}4GDxnFQ z9m}tOL7IbUVpTyi&7U=-Tm`g0lV;3F93!BVEy)le!}8qelq>>D#o|ki#(LUR3UJQy zXJmCH0`y!Jjpr&br>Bw$Be$Up7N3d~w~zq|N+UJlbVQ9A%ZI=}pjbgSoZ)bbt2UA{ zQG3=2Y~RuiHyG$jtbbYL9_O_jtobm>WEYF>J;7|W(W%eXL ztApwjCqh}_WzTH6aAR{-kt{FEm4|ZygQ`B36G?zbu^88|0*l^34g__yd^c8T$yy=^ zPKb7h^ZIM6-FsKNtB;lFZp&l;N|)bqWf`FznHKA9jBXR;AAk703Q9ISGVVn1$2`!I7%zmlGRWyh|YRYI>_&wvDrU}Qy|Y#O|YzjJb%$}d~E-BO*?VyI7|(0NU|H^ zA;khFkxa)arvYJsqCPe`xifsdY_-U%6u;z%X);bmd5nJ>w$<|)Ul=ta?q#hx3yKbnshOmw)oI+;MO&fDzXjbjL7MNk&Rq?AOWB z(c_vIxGuYi5y#EhO*x6}APJ$lW7RSpndkBc_TowSmy6B|ES}D0gX>nYL^>tuwJ_Ely8JN4OPmWg*XX=Xx74W2}RrD`7Emt zs>6%CN|7WkBF14E@G>Ks*@5E&&+@lPD@3Kcj8Vyer`X2GgSo+yWCMGi5C4u zl(^+FS6(FvI4BaQbWQBfVeIf(&H`yMEMp26V`D~Kx)Q(Z2URo*wdf_VJIz}T4ineN zwNrQS9C$oy8OnYyC@DHj=&-dC)Ih}48nPr7vqAC>u8OTvMU<8&Rqi$=ffKLiK7ZeU zbVMmq1^8)kA?pyE*9enEa4hhKUsaJ$Br1ABSm9oG1KZxgsfDzXkMWU(Xs&ax{;mIn zOZU0rgDC&Otsb`yXz@1gLgH^*x3%ke??S|HHhpYq`65->g~sWkDhwNb|C@0POl+ zBk-^uJ(Tm6smu5K;Vn!I!GG5M>0ge6K)_kx09K{lI!N4e>qF~oq~`@d}8{~30$@Y?-^4^mQGyif5F zd@-Ql>pp*ykclhsd(eNDdEj?ie4)Ok2CyLJWal)nJnQnNR%UPwZ+|7n+}-u=;swDf zx^ZiBW$X3Z{`;?CAVQ$RYr?giyv<;DDte*%j|!A8ZVK`Ei&3BWDN7w zqKI2EIb&kXE-8xRM1S2Ux-9OLF_kFGum97rlEeJSDA=4TXbwvil5T^?U zv7L-FtrYegwV=}g&?^Pcs1&=jvGrlCd-shjiVCyx>64u={eKVNZa?^?yLdIcd0(2Q z4-OiJ8|b23l{ha*Z?(ghl-q3tR6VNJ3WOk}+cuJ|!$WWYngGE$g?WMwPkU$1X%hH}vG> zv#qA`eFj;i(|??-Ga@$#-+o=>E+1|RCB=L4LVppK&^B^p-|M8M!ytl?&<%WV5Lcz8 z9Qu4SY_R{XzLgiXHZJuxt`_}Zci3AtnPW%>-`}d)75eD|4H;Lyx{&M@(pV;knR_%< zWF`7?jktCte7z99Tat;e%Cd!;)G~&kh!xX;xM&oae}6iKRZ^Y#gQuf8ZwRhLQ~yNfWkECEreMQ!PE1XR56G%YOSiY)M#TsgH$GHydeji!vp;kzmiLD=5nlY!A)0Ub zHvUs3Re#wX)M0I^$ud`@5p4(TG_rEAlv<>V7?3~qKfI`*GO>>=o1Kfs=RiY~s%_;O zzHz1h<;CvOQZ@a+wY&W4c*$Mya%-M!BM%Qvmoi8%Jl)l6TkmhwRIXR-GBQGniV7_E z+sR$_?5%m(S{Epy9wC?X4r#)++At_2lky4?3x5|{tk~_Clvw$NVJHK6&?%n7H!s7b z7xGU5MD$hxVi9k6MxiYKHuB{3&X_3jTv)gugC3eMZ6Xt$s70Hy%IQ@fKPQs+UQQmK zI6e+$rlN}I&etPBQpEi3zAPuQ8kC7)eKfIS%Ta*VklS8;wf)_rnz-{8M|Dj?d?I#S?7D2q_=MP*W75IeGWL{r$TJF>&;Qhu LL)88Uw=E1LfWTcN delta 4328 zcmVYeFbjWs(x%td1J1c<8<2y6rx z%XS3Ds478H3gdu;penybv%7loU&!gp+aCwKm_S3vUJsRkmWXr)A~rPXv9AjL#?;PJUti^JdY0V>f^@Q z!7fZK)tw=ZcW@NfXxSz{j3M@js?E#~E|1J6QD+>>Qt2Nssv2q8$ia&1>Bmh}$EH#} zs?3mikJNOGZ50**Hfz9LlZmOC#lb0Xm2y<+A8=Gd;D6xGaF<#8WQ6q2cX249;#wB(!GKUzaU$f#C_U4H* zTVhGb!GA#}#Z?A|*q+g1ZnqF8V&On%!^;ekO^9h&&0-wEAO@RXR1y+IE-JYdTO=JXXJw4> zBmto`KAQ*_-1LV;kSdppjw_B4p2|Mc5j33&l8DwuU(!7HF|BB}OYZBUrX*GaLnL zmUG$E)0n|EF68ypkK7CMB;t*oHs$=_b#!diM86bbA-S^-1UO%kpP_j3z8obM7Y>w}SDGM#E`KL0KnMr<6R@Tt~@+0m+KmCrvsgJL+7cnUX8JB|cd-ax3@>BLKf$QsiW*#x(ki(k_AYEK85iqdg4WR zVSWp`_*|cRs)<6ba_dJI6Q^_Ixf>G@zay;h=oY$W3(7oR|cC zjfz?GW=sQ(*G&a#{Cdmqs$YD*+S2NA76(scn%AZL+(nu`LcO2@HAwvfD+-em# z0V!ktp++J;TBAmQ^M8gnBYG<#pli$2xV8jydMaKpA`GRl*iv+G18Gp8)DjC$MUFOO zc#!z}4wk4JOmHygsthMY|`S4Cq8D(VZbGh<( zVHCQRa)G=lMJpOR4q@Iw_KIVoXid>;>Mra^T-GDY(lXt#On<^4Yma3}>Bg8Oub~YV zwS_E5>YUk_ZZ**3lNzv_wOaBVpZ!xpT&`wQre;c8j1bIh) zFN5Ng{L2)C7$MUuP2QJHg`&mD1XPiOIz@;PgCyl-a1d1p&Foz8Y9pLiPq~{x)%9VKwu?XoISe3-l~`#UqoHEc#V|+`l$a=* zdElVN8YkgaG)@r?ZSARZ2;x`UmO17$L;iVLZ}6|kIe*`dlXEB=EXd1dAm3E^EeUX* zDQc+JP238xT96_*ZB=xEa~o;JT%sGw2w~S4C6oNttV#bMPk}l|w!qR1Vb9&e=6~0f zi8JG{G?*Ys2gKtN2PTko%PLj_#GH!i=;Y-7@YN!3k!8uh$zffmI;qMt?A_2%&sKbH z*6_TWZhs0RnUhSCC0Q`b*G@5N1jwSSDI5n>(qg};_St7c^D}MLHX*dDnoQSVl1XP4 z{P?7|@v^sesdM*vu=Ffg|Gs;7v%e)rhm5cfuCi`(3*3C+gggKYw{fI8JT)dNxz63S z&cm17z;w_Gouew2QNik!vB|51Gq}wPrtnpVbAKSYu8Hl^J$9)cMiIsJ4$){J2hzjEpO;Z`<@7MwBnD$8f?2v zOMl2yP)>gG3FL_MP*bEe8gAL%S%wt(IEUzds_7!C8M!Q_^vQKZ3X(9!x1^&U7T}eS>lAlL4234j=gz|Ew;*OBF(2|q{7Bno8d>U_;>Y~On;4p zEqn-UPqRD62FYuL?^G>34;IfEnsnTAOp*cPJk(bL8;~elO|--!ZBV>}sXSE56ea0# zm%Hf@--`UX#{!Uw90$n~{3JP7b@1RdOlct;O}yc&Eb|FTc}oaw+^e>4n)}$b5K`hY z+Opucs|>7n_dmhX!{kfrKDj!|7=QMbSAvD5P&K&KL(@#Lf|WI{X7|m@&aD@)B$Gz) zwsUvwcCeMSK&=xpdzfZa8Q|{DhwcMmPH=A{_;M{3g-!rZXZahjCTU7jbeay!5{j2J zgb&K;sn7XXR2t}l1Xp&3v7D37ExuC~tl#QAySDr0EuX@3$e&_ety zoulr3d%gSqM{Y2n?mfKFKrp1yE z3lwfZQZL;Lz_#bsd>5A5r1Ik(Jy%4p(E8_>?4`KWa{pjzM=s0~v4q!meN%v{MJ*(oRR%&t$ zE+yvNgN@GOWv-PE$alLZZTY!j=6zO@DJrMxp#C1yVTK8Y^Xt`YqjW z-vrlQ@mM6sc5t|BNPn|Ldk`&ok+1>_Hx^IR`y$(sL%`UGlb3@iOmauhCSq$SF(=%n z951Gd5E+IEk;8no$n%y|%@_;QLyCMmQT2!_nma|B3Yf*)|LMx^&T{YP)$Zc@?)Ec? zlnFJoR4JSDX^t@b@GjscOy%y*{qFV(Osxziu}cAooiQ)C{(lVzj2gVL0F4pYfP|wE zGRYxOS41)lc{Y*3bPK^#Ecqd=?S5GAJa{XbqFk(a`J~rN@58ry zkALYb-U#kI5~9hCgPLahDsNY1cHsN*CQpP@QMNJ6`#K{q$@}V(+Fr_@>>cr01~0R7 z=|yj0C%AdN^MCz4na<|^bT*|rq1H(1fwZW%xv=~0u~0}mTq0-8!zYMEn~cgdm!;zt z_oz~*`{;ql@PwXNe5O&CK2JZ1WSNsThSvtc*4KI6#nVl~BzaEO=+DCvr->{v_9|(p zFo_@~w0+O*r>j&_Onnv%YxLiZEpbq5`)YUlM&1s3hJU?bl6i`xvG`W5UBaK-&=7g$ z>&tPh5W=E3Or4`CQ&zw)e8kP`!JCEP-I6GTWs(h4cMNR+6%k`H5$88~<)18JrK)EC z;Hqfe9Y9yiDcVAbgDt6P6PY^Ajg${5tJQdDty9V=xm!^)Vo%F`bpIKF^pu zurrvVw0}fS=>V^h*w|{7&&wQV6s92HSrb!Z`~}jk($c-%t*{wE^TsDqovx#C>*>$j z^6mWrMYt7zw20yvo{9fds;cM=>Yy^^%2G$9k<;|)Ze;0XDU?VyF`$0zeb_8frDG2n zCfyf}_JIagDwh>LeEWLu%PXCwrE>LseRuKE@qdD|;>FUe*hVfMSY1LO>3BM;H+SFP zuEz^uYR(BBIaO+xtFsi#>P*Am@ere+U;sch?|(-JreCi+Jn+D_(vUET6-UJMbf-F0{5y3 zFy5x?-rWeEE{I<~P^kvGa0q%R3ZIj|3EsTvy|}#hXnpVLW2pIhFP;V0Ux}ZOB*YIv zX^52V(p~TkZMLtT^zvdd5n}M+pL>^nNMXS-v3-GY2?6!)Qt;w-h3-c{i1iNT7cF!% zf`RcJh}71Ai)pJSt%lzdv+mvsOu4<)*L&YRt?)B%QC3$c#G~8AwoR9eM~Io)ChgBH Wa!+xFJjI}R?5Ca#qVhkSx`_U{q
  • 训练与应用
  • Fluid
  • @@ -248,11 +248,6 @@
    paddle
        - paddle.v2.fluid.regularizer -
        diff --git a/develop/doc_cn/search.html b/develop/doc_cn/search.html index 9e99de6224..123bb4fde8 100644 --- a/develop/doc_cn/search.html +++ b/develop/doc_cn/search.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • diff --git a/develop/doc_cn/searchindex.js b/develop/doc_cn/searchindex.js index e0d523254a..58fd849624 100644 --- a/develop/doc_cn/searchindex.js +++ b/develop/doc_cn/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["api/index_cn","api/v2/config/activation","api/v2/config/attr","api/v2/config/evaluators","api/v2/config/layer","api/v2/config/networks","api/v2/config/optimizer","api/v2/config/pooling","api/v2/data","api/v2/data/data_reader","api/v2/data/dataset","api/v2/data/image","api/v2/fluid","api/v2/fluid/data_feeder","api/v2/fluid/evaluator","api/v2/fluid/executor","api/v2/fluid/initializer","api/v2/fluid/io","api/v2/fluid/layers","api/v2/fluid/nets","api/v2/fluid/optimizer","api/v2/fluid/param_attr","api/v2/fluid/profiler","api/v2/fluid/regularizer","api/v2/model_configs","api/v2/run_logic","design/api","design/auto_gradient_check","design/backward","design/block","design/build_system/README","design/cluster_train/README","design/cluster_train/checkpointing","design/cluster_train/data_dispatch","design/cluster_train/large_model_dist_train","design/cluster_train/master_server","design/cluster_train/pserver_client","design/cluster_train/remote_parameter_updater","design/cluster_train/save_model","design/cluster_train/submit-job","design/concurrent_programming","design/csp","design/dist_refactor/distributed_architecture","design/dist_refactor/multi_cpu","design/dist_refactor/parameter_server","design/error_clip","design/evaluator","design/executor","design/file_manager/README","design/file_manager/pfs/pfsclient","design/float16","design/fluid","design/fluid_compiler","design/functions_operators_layers","design/gan_api","design/graph","design/graph_survey","design/if_else_op","design/infer_var_type","design/kernel_hint_design","design/memory_optimization","design/mkl/mkl_packed","design/mkl/mkldnn","design/mkl/mkldnn_fluid","design/model_format","design/multi_language_interface/00.why_plain_c","design/multi_language_interface/01.inference_implementation","design/operator_kernel_type","design/ops/rnn","design/ops/sequence_decoder","design/optimizer","design/paddle_nccl","design/parameter_average","design/parameters_in_cpp","design/profiler","design/program","design/prune","design/python_api","design/reader/README","design/refactorization","design/register_grad_op","design/regularization","design/releasing_process","design/scope","design/selected_rows","design/simple_op_design","design/speech/deep_speech_2","design/support_new_device","design/switch_kernel","design/tensor_array","design/var_desc","faq/build_and_install/index_cn","faq/cluster/index_cn","faq/index_cn","faq/local/index_cn","faq/model/index_cn","faq/parameter/index_cn","getstarted/build_and_install/build_from_source_cn","getstarted/build_and_install/docker_install_cn","getstarted/build_and_install/index_cn","getstarted/build_and_install/pip_install_cn","getstarted/concepts/use_concepts_cn","getstarted/index_cn","howto/deep_model/rnn/hierarchical_layer_cn","howto/deep_model/rnn/hrnn_rnn_api_compare_cn","howto/deep_model/rnn/index_cn","howto/deep_model/rnn/recurrent_group_cn","howto/deep_model/rnn/rnn_config_cn","howto/dev/build_cn","howto/dev/contribute_to_paddle_cn","howto/dev/new_layer_cn","howto/dev/new_op_cn","howto/dev/use_eigen_cn","howto/dev/write_docs_cn","howto/index_cn","howto/optimization/cpu_profiling","howto/optimization/cpu_profiling_cn","howto/optimization/gpu_profiling_cn","howto/read_source","howto/usage/capi/compile_paddle_lib_cn","howto/usage/capi/index_cn","howto/usage/capi/organization_of_the_inputs_cn","howto/usage/capi/workflow_of_capi_cn","howto/usage/cluster/cluster_train_cn","howto/usage/cluster/fabric_cn","howto/usage/cluster/k8s_aws_cn","howto/usage/cluster/k8s_cn","howto/usage/cluster/k8s_distributed_cn","howto/usage/cluster/openmpi_cn","howto/usage/cluster/src/k8s_data/README","howto/usage/cluster/src/k8s_train/README","howto/usage/cmd_parameter/arguments_cn","howto/usage/cmd_parameter/detail_introduction_cn","howto/usage/cmd_parameter/index_cn","howto/usage/cmd_parameter/use_case_cn","index_cn","mobile/cross_compiling_for_android_cn","mobile/cross_compiling_for_ios_cn","mobile/cross_compiling_for_raspberry_cn","mobile/index_cn","survey/cluster_bootstrapping_tools"],envversion:50,filenames:["api/index_cn.rst","api/v2/config/activation.rst","api/v2/config/attr.rst","api/v2/config/evaluators.rst","api/v2/config/layer.rst","api/v2/config/networks.rst","api/v2/config/optimizer.rst","api/v2/config/pooling.rst","api/v2/data.rst","api/v2/data/data_reader.rst","api/v2/data/dataset.rst","api/v2/data/image.rst","api/v2/fluid.rst","api/v2/fluid/data_feeder.rst","api/v2/fluid/evaluator.rst","api/v2/fluid/executor.rst","api/v2/fluid/initializer.rst","api/v2/fluid/io.rst","api/v2/fluid/layers.rst","api/v2/fluid/nets.rst","api/v2/fluid/optimizer.rst","api/v2/fluid/param_attr.rst","api/v2/fluid/profiler.rst","api/v2/fluid/regularizer.rst","api/v2/model_configs.rst","api/v2/run_logic.rst","design/api.md","design/auto_gradient_check.md","design/backward.md","design/block.md","design/build_system/README.md","design/cluster_train/README.md","design/cluster_train/checkpointing.md","design/cluster_train/data_dispatch.md","design/cluster_train/large_model_dist_train.md","design/cluster_train/master_server.md","design/cluster_train/pserver_client.md","design/cluster_train/remote_parameter_updater.md","design/cluster_train/save_model.md","design/cluster_train/submit-job.md","design/concurrent_programming.md","design/csp.md","design/dist_refactor/distributed_architecture.md","design/dist_refactor/multi_cpu.md","design/dist_refactor/parameter_server.md","design/error_clip.md","design/evaluator.md","design/executor.md","design/file_manager/README.md","design/file_manager/pfs/pfsclient.md","design/float16.md","design/fluid.md","design/fluid_compiler.md","design/functions_operators_layers.md","design/gan_api.md","design/graph.md","design/graph_survey.md","design/if_else_op.md","design/infer_var_type.md","design/kernel_hint_design.md","design/memory_optimization.md","design/mkl/mkl_packed.md","design/mkl/mkldnn.md","design/mkl/mkldnn_fluid.md","design/model_format.md","design/multi_language_interface/00.why_plain_c.md","design/multi_language_interface/01.inference_implementation.md","design/operator_kernel_type.md","design/ops/rnn.md","design/ops/sequence_decoder.md","design/optimizer.md","design/paddle_nccl.md","design/parameter_average.md","design/parameters_in_cpp.md","design/profiler.md","design/program.md","design/prune.md","design/python_api.md","design/reader/README.md","design/refactorization.md","design/register_grad_op.md","design/regularization.md","design/releasing_process.md","design/scope.md","design/selected_rows.md","design/simple_op_design.md","design/speech/deep_speech_2.md","design/support_new_device.md","design/switch_kernel.md","design/tensor_array.md","design/var_desc.md","faq/build_and_install/index_cn.rst","faq/cluster/index_cn.rst","faq/index_cn.rst","faq/local/index_cn.rst","faq/model/index_cn.rst","faq/parameter/index_cn.rst","getstarted/build_and_install/build_from_source_cn.rst","getstarted/build_and_install/docker_install_cn.rst","getstarted/build_and_install/index_cn.rst","getstarted/build_and_install/pip_install_cn.rst","getstarted/concepts/use_concepts_cn.rst","getstarted/index_cn.rst","howto/deep_model/rnn/hierarchical_layer_cn.rst","howto/deep_model/rnn/hrnn_rnn_api_compare_cn.rst","howto/deep_model/rnn/index_cn.rst","howto/deep_model/rnn/recurrent_group_cn.md","howto/deep_model/rnn/rnn_config_cn.rst","howto/dev/build_cn.md","howto/dev/contribute_to_paddle_cn.md","howto/dev/new_layer_cn.rst","howto/dev/new_op_cn.md","howto/dev/use_eigen_cn.md","howto/dev/write_docs_cn.rst","howto/index_cn.rst","howto/optimization/cpu_profiling.md","howto/optimization/cpu_profiling_cn.md","howto/optimization/gpu_profiling_cn.rst","howto/read_source.md","howto/usage/capi/compile_paddle_lib_cn.md","howto/usage/capi/index_cn.rst","howto/usage/capi/organization_of_the_inputs_cn.md","howto/usage/capi/workflow_of_capi_cn.md","howto/usage/cluster/cluster_train_cn.md","howto/usage/cluster/fabric_cn.md","howto/usage/cluster/k8s_aws_cn.md","howto/usage/cluster/k8s_cn.md","howto/usage/cluster/k8s_distributed_cn.md","howto/usage/cluster/openmpi_cn.md","howto/usage/cluster/src/k8s_data/README.md","howto/usage/cluster/src/k8s_train/README.md","howto/usage/cmd_parameter/arguments_cn.md","howto/usage/cmd_parameter/detail_introduction_cn.md","howto/usage/cmd_parameter/index_cn.rst","howto/usage/cmd_parameter/use_case_cn.md","index_cn.rst","mobile/cross_compiling_for_android_cn.md","mobile/cross_compiling_for_ios_cn.md","mobile/cross_compiling_for_raspberry_cn.md","mobile/index_cn.rst","survey/cluster_bootstrapping_tools.md"],objects:{"paddle.v2":{image:[11,1,0,"-"]},"paddle.v2.fluid":{regularizer:[23,1,0,"-"]},"paddle.v2.fluid.evaluator.Evaluator":{metrics:[14,0,1,""],states:[14,0,1,""]},"paddle.v2.fluid.regularizer":{L1DecayRegularizer:[23,2,1,""]},"paddle.v2.image":{batch_images_from_tar:[11,3,1,""],center_crop:[11,3,1,""],left_right_flip:[11,3,1,""],load_and_transform:[11,3,1,""],load_image:[11,3,1,""],load_image_bytes:[11,3,1,""],random_crop:[11,3,1,""],resize_short:[11,3,1,""],simple_transform:[11,3,1,""],to_chw:[11,3,1,""]}},objnames:{"0":["py","attribute","Python \u5c5e\u6027"],"1":["py","module","Python \u6a21\u5757"],"2":["py","class","Python \u7c7b"],"3":["py","function","Python \u51fd\u6570"]},objtypes:{"0":"py:attribute","1":"py:module","2":"py:class","3":"py:function"},terms:{"00m":117,"01org":91,"03m":117,"0424m":117,"0473v3":5,"04\u4ee5\u4e0a":100,"04\u4ee5\u53camaco":102,"055ee37d":125,"0630u":117,"06u":117,"0810u":117,"0957m":117,"0\u53f7\u8bad\u7ec3\u8282\u70b9\u662f\u4e3b\u8bad\u7ec3\u8282\u70b9":132,"0\u5c42\u5e8f\u5217":103,"0_cudnn5":97,"0_cudnn5_avx_mkl":[98,100],"0_cudnn7_avx_mkl":100,"0ab":4,"0rc1":82,"0rc2":82,"0x10f256d50":56,"0x7ffe4de00110":56,"100gi":125,"100m":94,"10g":39,"1150u":117,"11\u5b9e\u73b0\u4e86c":66,"11e6":126,"124n":117,"12\u4ee5\u4e0a":100,"12\u64cd\u4f5c\u7cfb\u7edf":91,"12gb":60,"13m":126,"1490u":117,"14\u7248\u672c\u4ee5\u4e0a\u7684":138,"14\u8fd9\u79cd\u5199\u6cd5\u5c06\u4f1a\u6d4b\u8bd5\u6a21\u578b":134,"1550u":117,"15\u884c":104,"16\u5b57\u8282\u8868\u793a\u4fdd\u5b58\u7684\u53c2\u6570\u603b\u4e2a\u6570":96,"16u":117,"173n":117,"1770u":117,"18ad":125,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":126,"197u":117,"1\u4e4b\u540e\u7684\u4efb\u4f55\u4e00\u4e2a\u7248\u672c\u6765\u7f16\u8bd1\u8fd0\u884c":97,"1\u7684\u5c42\u4e4b\u5916":134,"1\u7a00\u758f\u6570\u636e":110,"1\u8f6e\u5b58\u50a8\u7684\u6240\u6709\u6a21\u578b":134,"1st":18,"210u":117,"211839e770f7b538e2d8":5,"215n":117,"228u":117,"2520u":117,"2680u":117,"26\u884c":104,"279n":117,"27m":117,"285m":117,"2863m":117,"28m":117,"2977m":117,"2\u4e09\u7c7b\u7684\u6bd4\u4f8b\u4e3a":96,"2\u4e2a\u5b50\u5e8f\u5217":121,"2\u5206\u522b\u4ee3\u88683\u4e2a\u8282\u70b9\u7684trainer":127,"2\u610f\u5473\u77400\u53f7\u548c1\u53f7gpu\u5c06\u4f1a\u4f7f\u7528\u6570\u636e\u5e76\u884c\u6765\u8ba1\u7b97fc1\u548cfc2\u5c42":134,"2\u8fd9\u51e0\u4e2a\u76ee\u5f55\u8868\u793apaddlepaddle\u8282\u70b9\u4e0etrain":127,"2cbf7385":125,"2nd":18,"302n":117,"30u":117,"328n":117,"32u":117,"32x32":10,"331n":117,"3320u":117,"365e":125,"36u":117,"3710m":117,"3768m":117,"387u":117,"38u":117,"3920u":117,"39u":117,"3\u4ee5\u4e0a\u7684\u7b26\u53f7":100,"3\u53f7gpu":94,"4035m":117,"4090u":117,"4096mb":132,"4279m":117,"43u":117,"448a5b355b84":126,"4560u":117,"4563m":117,"45u":117,"4650u":117,"4726m":117,"473m":126,"4\u4e2a\u5e8f\u5217\u7684\u957f\u5ea6\u5206\u522b\u4e3a":121,"4\u5b57\u8282\u8868\u793apaddlepaddle\u7248\u672c\u4fe1\u606f":96,"4gb":132,"500m":94,"50bd":125,"50gi":125,"514u":117,"525n":117,"526u":117,"536u":117,"5460u":117,"5470u":117,"54u":117,"5690m":117,"573u":117,"578n":117,"5798m":117,"586u":117,"58s":126,"5969m":117,"5\u4f5c\u4e3a\u7f16\u8bd1\u73af\u5883":100,"5\u5373\u5c06\u505c\u6b62\u7ef4\u62a4":100,"5_cudnn5_avx_mkl":100,"5_cudnn5_avx_openbla":[100,102],"6080u":117,"6140u":117,"6305m":117,"639u":117,"64\u5e73\u53f0\u4e3a\u4f8b":136,"64m":64,"655u":117,"6780u":117,"6810u":117,"682u":117,"6970u":117,"6\u4e07\u4ebf\u6b21\u6d6e\u70b9\u8fd0\u7b97\u6bcf\u79d2":117,"6\u4ee5\u4e0a":[100,102],"6\u4f5c\u4e3a\u6807\u51c6\u7f16\u8bd1\u73af\u5883":100,"6ce9":125,"704u":117,"7090u":117,"72u":117,"73u":117,"75u":117,"760u":117,"767u":117,"783n":117,"784u":117,"78m":117,"7\u4ee5\u4e0a":136,"7\u4ee5\u4e0a\u7684\u7b26\u53f7":100,"7\u4ee5\u4e0b":136,"7\u548cpip":91,"7\u7248\u672c\u5f00\u59cb":136,"7\u7cfb\u5217":100,"7eamaa":10,"7kb":126,"8000\u5c31\u53ef\u4ee5\u5728\u7f51\u9875\u4e0a\u751f\u6210\u9700\u8981\u7684\u6587\u6863":113,"8250u":117,"8300u":117,"830n":117,"849m":117,"861u":117,"8661m":117,"892m":117,"8\u5b57\u8282\u8868\u793a\u6bcf\u4e2a\u53c2\u6570\u5360\u7528\u7684\u5b57\u8282\u6570":96,"901n":117,"90u":117,"918u":117,"9247m":117,"924n":117,"9261m":117,"9330m":117,"94u":117,"9530m":117,"983m":117,"988u":117,"997u":117,"99u":117,"9a235":137,"9f18":126,"\u4e00":104,"\u4e00\u4e2a":121,"\u4e00\u4e2a0\u5c42\u5e8f\u5217":103,"\u4e00\u4e2a0\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u6269\u5c55\u6210\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":103,"\u4e00\u4e2a\u4e0d\u5171\u4eab\u7684\u4f8b\u5b50\u662f":111,"\u4e00\u4e2a\u5178\u578b\u7684chunk\u5982\u4e0b\u6240\u793a":48,"\u4e00\u4e2a\u5206\u5e03\u5f0fpaddlepaddle\u8bad\u7ec3\u4efb\u52a1\u4e2d":126,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":103,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u6216\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":103,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u6269\u5c55\u6210\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":103,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u8fdb\u5165":106,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":103,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":103,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":103,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":103,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u8fdb\u5165":106,"\u4e00\u4e2a\u53cc\u5c42rnn\u7531\u591a\u4e2a\u5355\u5c42rnn\u7ec4\u6210":106,"\u4e00\u4e2a\u53ef\u8c03\u7528\u7684\u51fd\u6570":106,"\u4e00\u4e2a\u5e38\u7528\u7684cmake\u914d\u7f6e\u5982\u4e0b":138,"\u4e00\u4e2a\u6570\u636e\u96c6\u5927\u90e8\u5206\u5e8f\u5217\u957f\u5ea6\u662f100":94,"\u4e00\u4e2a\u662f\u6d6e\u70b9\u8ba1\u7b97\u91cf":117,"\u4e00\u4e2a\u72ec\u7acb\u7684\u5143\u7d20":103,"\u4e00\u4e2a\u72ec\u7acb\u7684\u8bcd\u8bed":103,"\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u7684\u6a21\u578b\u7531\u5927\u91cf\u7684\u53c2\u6570\u7ec4\u6210":32,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684\u524d\u5411\u4f20\u64ad\u90e8\u5206\u628a\u8f93\u5165\u8f6c\u5316\u4e3a\u76f8\u5e94\u7684\u8f93\u51fa":110,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684\u53c2\u6570\u662f\u5728":110,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684c":110,"\u4e00\u4e2a\u8f93\u51fa\u6570\u636e\u540c\u6837\u88ab\u7ec4\u7ec7\u4e3a\u4e00\u4e2a":121,"\u4e00\u4e2a\u8f93\u51fa\u7ec4\u6210":111,"\u4e00\u4e2a\u91cd\u8981\u7684\u95ee\u9898\u662f\u9009\u62e9\u6b63\u786e\u7684learning_r":96,"\u4e00\u4e2achunk\u7531\u6240\u5728\u7684\u6587\u4ef6\u504f\u79fb":48,"\u4e00\u4e2agpu\u8bbe\u5907\u4e0a\u4e0d\u5141\u8bb8\u914d\u7f6e\u591a\u4e2a\u6a21\u578b":132,"\u4e00\u4e2agradientmachine\u7c7b\u7684\u5bf9\u8c61\u7ba1\u7406\u7740\u4e00\u7ec4\u8ba1\u7b97\u5c42":122,"\u4e00\u4e2alabel":104,"\u4e00\u4e2amemory\u5305\u542b":107,"\u4e00\u4e2aposix\u517c\u5bb9\u7684\u6587\u4ef6\u7cfb\u7edf":48,"\u4e00\u4e9b\u60c5\u51b5\u4e3a\u4e86\u4fbf\u4e8e\u53d1\u5e03":122,"\u4e00\u4eba":104,"\u4e00\u53e5\u8bdd\u662f\u7531\u8bcd\u8bed\u6784\u6210\u7684\u5e8f\u5217":106,"\u4e00\u53f0\u7535\u8111":108,"\u4e00\u65e9":104,"\u4e00\u662fbatch":94,"\u4e00\u6837\u7684\u65b9\u5f0f":108,"\u4e00\u6b21\u6027\u676f\u5b50":104,"\u4e00\u7ef4\u6570\u7ec4":[121,122],"\u4e00\u7ef4\u6574\u578b\u6570\u7ec4":121,"\u4e00\u81f4":[103,104],"\u4e00\u822c\u4e0d\u5141\u8bb8\u518d\u4ece":82,"\u4e00\u822c\u4ece":109,"\u4e00\u822c\u5728paddlepaddle\u4e2d":104,"\u4e00\u822c\u662f\u7531\u4e8e\u76f4\u63a5\u4f20\u9012\u5927\u5b57\u5178\u5bfc\u81f4\u7684":96,"\u4e00\u822c\u6765\u8bf4":107,"\u4e00\u822c\u7531mkl":62,"\u4e00\u822c\u8868\u793a":104,"\u4e00\u822c\u8bbe\u7f6e":96,"\u4e00\u8282":122,"\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f":101,"\u4e0a":109,"\u4e0a\u4ea4\u53c9\u7f16\u8bd1raspberri":138,"\u4e0a\u4f20\u5230cloud\u6216\u8005\u4e0b\u8f7d\u5230\u672c\u5730\u7684\u65f6\u95f4\u53ef\u80fd\u6bd4\u8f83\u957f":48,"\u4e0a\u4f20\u65b9\u6cd5":82,"\u4e0a\u4f20\u8ba1\u7b97\u5f97\u51fa\u7684\u68af\u5ea6":123,"\u4e0a\u56fe\u4e2d\u7684":121,"\u4e0a\u56fe\u4e2d\u865a\u7ebf\u7684\u8fde\u63a5":104,"\u4e0a\u56fe\u63cf\u8ff0\u4e86\u4e00\u4e2a3\u8282\u70b9\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3\u573a\u666f":127,"\u4e0a\u6ce8\u518c\u4e00\u4e0b":48,"\u4e0a\u7f16\u8bd1\u5f88\u6162":108,"\u4e0a\u7f51":104,"\u4e0a\u8fd0\u884c":136,"\u4e0a\u8ff0\u4ee3\u7801\u5c06bias\u5168\u90e8\u521d\u59cb\u5316\u4e3a1":96,"\u4e0a\u8ff0\u547d\u4ee4\u4e2d":98,"\u4e0a\u8ff0\u547d\u4ee4\u7f16\u8bd1\u51fa\u4e00\u4e2a":108,"\u4e0a\u8ff0\u7684":95,"\u4e0a\u8ff0\u7684\u4ee3\u7801\u7247\u6bb5\u5305\u542b\u4e86\u4e24\u79cd\u65b9\u6cd5":117,"\u4e0a\u8ff0paddlepaddl":82,"\u4e0a\u9762\u7684\u4ee3\u7801\u5728":111,"\u4e0a\u9762\u7684\u4ee3\u7801\u9996\u5148\u5bfc\u5165\u4f9d\u8d56\u7684\u5305":111,"\u4e0b":[111,113],"\u4e0b\u4e00\u4e2awheel\u5305\u9700\u8981\u66f4\u65b0\u7248\u672c\u53f7\u624d\u53ef\u4ee5\u4e0a\u4f20":82,"\u4e0b\u4f1a\u770b\u5230\u5982\u4e0b\u76ee\u5f55\u7ed3\u6784":119,"\u4e0b\u540c":96,"\u4e0b\u56fe\u4e2d\u5c31\u5c55\u793a\u4e86\u4e00\u4e9b\u5173\u4e8e\u5185\u5b58\u6570\u636e\u8fc1\u5f99\u548c\u8ba1\u7b97\u8d44\u6e90\u5229\u7528\u7387\u7684\u5efa\u8bae":117,"\u4e0b\u56fe\u662f\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7684\u793a\u610f\u56fe":110,"\u4e0b\u56fe\u662fcsr\u5b58\u50a8\u7a00\u758f\u77e9\u9635\u7684\u793a\u610f\u56fe":121,"\u4e0b\u5b58\u653e\u516c\u5171\u6570\u636e\u96c6\u5408":33,"\u4e0b\u627e\u5230":119,"\u4e0b\u62c9\u6846\u4e2d\u627e\u5230\u751f\u6210\u76843\u4e2a\u4e8c\u8fdb\u5236\u6587\u4ef6":82,"\u4e0b\u6587\u4ee5nlp\u4efb\u52a1\u4e3a\u4f8b":106,"\u4e0b\u6587\u4f1a\u8be6\u7ec6\u8fdb\u884c\u4ecb\u7ecd":121,"\u4e0b\u6587\u4f7f\u7528":127,"\u4e0b\u6587\u5c31\u662f\u7528job\u7c7b\u578b\u7684\u8d44\u6e90\u6765\u8fdb\u884c\u8bad\u7ec3":126,"\u4e0b\u6587\u8be6\u7ec6\u89e3\u91ca":121,"\u4e0b\u6b21":104,"\u4e0b\u7684":[122,127],"\u4e0b\u8868\u5217\u51fa\u4e86python\u7aef\u8bad\u7ec3\u63a5\u53e3\u66b4\u9732\u7684\u6570\u636e\u7c7b\u578b":121,"\u4e0b\u8f7d":48,"\u4e0b\u8f7d\u5230\u672c\u5730":48,"\u4e0b\u8f7d\u5b8c\u6570\u636e\u540e":126,"\u4e0b\u8f7d\u5f97\u5230":82,"\u4e0b\u8f7d\u6307\u5b9a\u7248\u672c\u7684docker\u955c\u50cf":98,"\u4e0b\u8f7dgpu\u7248\u672c":98,"\u4e0b\u9762":122,"\u4e0b\u9762\u4e3e\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50":117,"\u4e0b\u9762\u4ecb\u7ecd\u4ecb\u7ecd":111,"\u4e0b\u9762\u4ee5":123,"\u4e0b\u9762\u4ee5\u77e9\u9635\u4e58\u64cd\u4f5c":111,"\u4e0b\u9762\u4ee5addop\u4e3a\u4f8b\u8bf4\u660etensor\u7684\u4f7f\u7528\u8fc7\u7a0b":112,"\u4e0b\u9762\u5206\u522b\u4ecb\u7ecd\u67d0\u4e00\u7c7b\u6587\u4ef6\u7684\u5b9e\u73b0\u65b9\u5f0f":66,"\u4e0b\u9762\u5217\u51fa\u4e86":107,"\u4e0b\u9762\u5217\u51fa\u4e86\u5168\u8fde\u63a5\u5c42\u7684\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5":110,"\u4e0b\u9762\u5c31\u6839\u636e\u8fd9\u51e0\u4e2a\u6b65\u9aa4\u5206\u522b\u4ecb\u7ecd":127,"\u4e0b\u9762\u6211\u4eec\u4f7f\u7528\u8fd9\u4e2a\u955c\u50cf\u6765\u4e0b\u8f7d\u6570\u636e\u5230docker":126,"\u4e0b\u9762\u662f":111,"\u4e0b\u9762\u662f\u5bf9":111,"\u4e0b\u9762\u662fc":122,"\u4e0b\u9762\u7684\u4ee3\u7801\u5c06\u968f\u673a\u751f\u6210\u7684\u77e9\u9635\u8f6c\u5316\u4e3a\u53ef\u4ee5\u88abpaddlepaddle\u52a0\u8f7d\u7684\u6a21\u578b\u53c2\u6570":96,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u4ecegithub\u62c9\u53d6\u6700\u65b0\u4ee3\u7801":119,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u521b\u5efa\u4e86\u4e00\u4e2a\u9ad8\u5ea6\u4e3a1":121,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u521b\u5efa\u4e86\u4e00\u4e2acpu\u4e0a\u7684\u4e8c\u503c\u7a00\u758f\u77e9\u9635":121,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u521b\u5efa\u4e86\u542b\u6709\u4e09\u4e2a\u5143\u7d20":121,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u5728\u521b\u5efa\u4e86\u4e00\u4e2acpu\u4e0a\u7684\u5e26\u5143\u7d20\u503c\u7684\u7a00\u758f\u77e9\u9635":121,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u5b9e\u73b0\u4e86":110,"\u4e0b\u9762\u7684\u70b9\u5b9e\u73b0\u4e86mulop\u7684\u5b9a\u4e49":111,"\u4e0b\u9762\u7ed9\u51fa\u4e86\u4e00\u4e2a\u4f8b\u5b50":110,"\u4e0b\u9762\u7ed9\u51fa\u5728\u4e09\u7ef4\u7a7a\u95f4\u4e2d\u4f7f\u7528\u7ebf\u6027\u56de\u5f52\u62df\u5408\u4e00\u6761\u76f4\u7ebf\u7684\u4f8b\u5b50":101,"\u4e0b\u9762\u8be6\u7ec6\u89e3\u91ca\u4ec0\u4e48\u662f":121,"\u4e0b\u9762\u8fd9\u4e9blayer\u80fd\u591f\u63a5\u53d7\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165":103,"\u4e0d":104,"\u4e0d\u4e00\u81f4\u7684\u7531pfsclient\u4e0b\u8f7d\u6216\u8005\u4f20\u8f93chunk\u5b8c\u6210":48,"\u4e0d\u4ec5\u8981\u63d0\u4f9b\u6bcf\u4e00\u4e2a\u5916\u5c42\u5e8f\u5217\u5728\u6574\u4e2a":121,"\u4e0d\u4f1a\u4fdd\u7559\u5728\u78c1\u76d8\u4e0a":108,"\u4e0d\u4f1a\u518d\u4ece":94,"\u4e0d\u4f1a\u865a\u62df\u4efb\u4f55\u786c\u4ef6":108,"\u4e0d\u4f7f\u7528\u9759\u6001\u5e93":65,"\u4e0d\u4f7f\u7528\u989d\u5916\u7a7a\u95f4":110,"\u4e0d\u4f7f\u7528c":65,"\u4e0d\u4f7f\u7528swig":65,"\u4e0d\u5141\u8bb8\u4e00\u4e2a\u6587\u4ef6\u4e2d\u5305\u542b\u591a\u4e2aop":111,"\u4e0d\u5171\u4eab\u5219\u4e0d\u52a0":111,"\u4e0d\u5171\u4eab\u7684\u4f8b\u5b50\u53ef\u4ee5\u53c2\u8003":111,"\u4e0d\u53ef\u4ee5\u66f4\u6539":82,"\u4e0d\u53ef\u518d\u8fdb\u884c\u62c6\u5206":121,"\u4e0d\u540c":62,"\u4e0d\u540c\u4e8e\u4e0a\u8ff0\u4ecb\u7ecd\u7684recurr":95,"\u4e0d\u540c\u4e8eop\u7684\u7f16\u8bd1\u6d4b\u8bd5":111,"\u4e0d\u540c\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u6570\u636e\u5927\u5c0f\u7684\u6700\u5927\u503c\u4e0e\u6700\u5c0f\u503c\u7684\u6bd4\u7387":132,"\u4e0d\u540c\u5e8f\u5217\u53ef\u80fd\u4f1a\u542b\u6709\u4e0d\u540c\u6570\u76ee\u4e2a\u5143\u7d20":121,"\u4e0d\u540c\u65f6\u95f4\u6b65\u7684\u8f93\u5165\u662f\u4e0d\u540c\u7684":107,"\u4e0d\u540c\u7248\u672c\u7684\u7f16\u8bd1\u5668\u4e4b\u95f4":65,"\u4e0d\u540c\u7684\u4f18\u5316\u7b97\u6cd5\u9700\u8981\u4f7f\u7528\u4e0d\u540c\u5927\u5c0f\u7684\u5185\u5b58":94,"\u4e0d\u540c\u7684\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf":127,"\u4e0d\u540c\u7684\u6570\u636e\u7c7b\u578b\u548c\u5e8f\u5217\u6a21\u5f0f\u8fd4\u56de\u7684\u683c\u5f0f\u4e0d\u540c":101,"\u4e0d\u540c\u8ba1\u7b97\u5c42\u5bf9\u7a7a\u8f93\u5165\u7684\u5904\u7406\u7b56\u7565\u6709\u53ef\u80fd\u4e0d\u540c":121,"\u4e0d\u540c\u8bbe\u5907":111,"\u4e0d\u540c\u8bed\u8a00\u7684\u63a5\u53e3\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u7279\u6027":65,"\u4e0d\u540c\u8f93\u5165\u542b\u6709\u7684\u5b50\u53e5":106,"\u4e0d\u540c\u8f93\u5165\u5e8f\u5217\u542b\u6709\u7684\u8bcd\u8bed\u6570\u5fc5\u987b\u4e25\u683c\u76f8\u7b49":106,"\u4e0d\u540cdataprovider\u5bf9\u6bd4\u5982\u4e0b":104,"\u4e0d\u540crank\u7684tensor\u662f\u4e0d\u540c\u7c7b\u578b":112,"\u4e0d\u5728":66,"\u4e0d\u5bb9\u6613\u51fa\u9519":48,"\u4e0d\u5c11":104,"\u4e0d\u5d4c\u5165\u5176\u4ed6\u8bed\u8a00\u89e3\u91ca\u5668":65,"\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":65,"\u4e0d\u5e94\u8be5\u88ab\u62c6\u89e3":106,"\u4e0d\u6307\u5b9a\u65f6":106,"\u4e0d\u652f\u6301":121,"\u4e0d\u652f\u6301\u5e8f\u5217\u957f\u5ea6\u4e3a":121,"\u4e0d\u662f\u4e00\u6761\u5e8f\u5217":101,"\u4e0d\u662f\u771f\u6b63\u7684layer":95,"\u4e0d\u662f\u901a\u8fc7\u4e00\u822c\u7684\u65b9\u5f0f\u6765\u5b9e\u73b0\u5bf9\u8f93\u51fa\u7684\u6fc0\u6d3b":95,"\u4e0d\u663e\u793a\u7684\u5199\u6bcf\u4e2a\u7c7b\u5177\u4f53\u5305\u542b\u4ec0\u4e48":65,"\u4e0d\u6ee1\u8db3\u94a9\u5b50\u7684":109,"\u4e0d\u7528mount\u7684\u65b9\u5f0f\u6765\u8bbf\u95ee\u6570\u636e":33,"\u4e0d\u80fd\u4fee\u6539op\u7684\u6210\u5458\u53d8\u91cf":111,"\u4e0d\u80fd\u592a\u968f\u610f":109,"\u4e0d\u80fd\u88ab\u63d0\u4ea4\u5230":109,"\u4e0d\u8981\u5728\u6ce8\u91cd\u6027\u80fd\u7684\u8bad\u7ec3\u573a\u666f\u4e0b\u4f7f\u7528":94,"\u4e0d\u8bba\u5e8f\u5217\u4e2d\u7684\u5143\u7d20\u5728\u5185\u5b58\u4e2d\u5360\u7528\u591a\u5c11\u5b9e\u9645\u5b58\u50a8\u7a7a\u95f4":121,"\u4e0d\u8bba\u6570\u636e\u57df\u662f":121,"\u4e0d\u8bba\u662f\u4e00\u7ef4\u6574\u578b\u6570\u7ec4\u8fd8\u662f\u4e8c\u7ef4\u6d6e\u70b9\u6570\u77e9\u9635":121,"\u4e0d\u8bba\u662f\u5355\u5c42\u5e8f\u5217\u8fd8\u662f\u53cc\u5c42\u5e8f\u5217\u7684\u5e8f\u5217\u4fe1\u606f":121,"\u4e0d\u8fc7":104,"\u4e0d\u8fc7\u5b9e\u9645\u4e0a\u662f\u8fd0\u884c\u5728\u4e00\u4e2a":108,"\u4e0d\u8fdc":104,"\u4e0d\u9519":104,"\u4e0d\u9700\u5728\u4f7f\u7528c":122,"\u4e0d\u9700\u8981\u4f9d\u8d56\u5176\u4ed6\u4efb\u4f55\u8f6f\u4ef6\u4e86":108,"\u4e0d\u9700\u8981\u63d0\u4f9b\u5143\u7d20\u503c":121,"\u4e0d\u9700\u8981\u8bbe\u7f6e":136,"\u4e0e":[62,111,116,127],"\u4e0e\u4e4b\u76f8\u5bf9\u7684\u662flocal":48,"\u4e0e\u5176\u4ed6\u7b2c\u4e09\u65b9\u5e93\u4e00\u6837":62,"\u4e0e\u5176\u5b83":122,"\u4e0e\u529f\u80fd\u5206\u652f\u4e0d\u540c\u7684\u662f":82,"\u4e0e\u5355\u5c42rnn\u7684\u914d\u7f6e\u7c7b\u4f3c":104,"\u4e0e\u53ef\u80fd\u6709\u7684":82,"\u4e0e\u540c\u6b65sgd\u76f8\u6bd4":123,"\u4e0e\u5bfb\u627epython\u4ee3\u7801\u7684\u6027\u80fd\u74f6\u9888\u7c7b\u4f3c":116,"\u4e0e\u5f53\u524d\u7684\u8870\u51cf\u56e0\u5b50\u7684\u4e58\u79ef":96,"\u4e0e\u672c\u5730\u8bad\u7ec3\u76f8\u540c":124,"\u4e0e\u6b64\u4e0d\u540c\u7684\u662f":127,"\u4e0e\u8c03\u4f18":116,"\u4e0e\u8f93\u5165\u4e0d\u540c\u7684\u662f":122,"\u4e0e\u8fd9\u4e2a\u8bad\u7ec3\u6570\u636e\u4ea4\u4e92\u7684layer":94,"\u4e0ebatch":61,"\u4e0ejob":127,"\u4e0eoperator\u524d\u5411\u8ba1\u7b97\u7684\u8f93\u51fa\u8fdb\u884c\u5bf9\u6bd4":111,"\u4e0eoperator\u6ce8\u518c\u65f6\u6ce8\u518c\u7684\u7c7b\u578b\u4e00\u81f4":111,"\u4e0epython\u4e0d\u540c":116,"\u4e14":104,"\u4e14\u4e0d\u6392\u9664commit\u4e4b\u95f4\u7684\u4fee\u6539\u5b58\u5728\u76f8\u4e92\u8986\u76d6\u7684\u60c5\u51b5":109,"\u4e14\u4f7f\u7528":119,"\u4e14\u589e\u52a0\u4e00\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00":65,"\u4e14\u5c55\u793a\u6548\u679c\u66f4\u597d":116,"\u4e14\u5e8f\u5217\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20\u8fd8\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":101,"\u4e14\u6bcf\u4e2a\u53e5\u5b50\u8868\u793a\u4e3a\u5bf9\u5e94\u7684\u8bcd\u8868\u7d22\u5f15\u6570\u7ec4":104,"\u4e14\u8c03\u7528\u65f6\u4e0d\u80fd\u629b\u51fa\u5f02\u5e38\u6216\u51fa\u73b0\u8fd0\u884c\u65f6\u9519\u8bef":66,"\u4e14c99\u652f\u6301bool\u7c7b\u578b\u548c\u5b9a\u957f\u6574\u6570":65,"\u4e14c99\u76f8\u5bf9\u4e8ec11\u4f7f\u7528\u66f4\u52a0\u5e7f\u6cdb":65,"\u4e24":104,"\u4e24\u4e2a\u5b50\u76ee\u5f55\u4e0b":113,"\u4e24\u4e2a\u5d4c\u5957\u7684":106,"\u4e24\u4e2a\u64cd\u4f5c":117,"\u4e24\u4e2a\u8f93\u5165\u7684\u5b50\u5e8f\u5217\u957f\u5ea6\u4e5f\u5e76\u4e0d\u76f8\u540c":104,"\u4e24\u4e2a\u90e8\u5206":113,"\u4e24\u4e2a\u9690\u5c42\u7684\u7b80\u5355\u5168\u8fde\u63a5\u7f51\u7edc":122,"\u4e24\u6b21":121,"\u4e24\u79cd\u5e38\u7528\u7684\u6a21\u578b\u52a0\u8f7d\u65b9\u5f0f":122,"\u4e24\u79cd\u65b9\u6cd5\u7684\u533a\u522b":94,"\u4e24\u79cdblas\u5e93":97,"\u4e24\u8005\u90fd\u662f\u5bf9\u68af\u5ea6\u7684\u622a\u65ad":94,"\u4e25\u683c\u7684\u547d\u540d\u89c4\u8303pep":82,"\u4e2a\u5185\u5b58\u6c60\u5b9e\u9645\u4e0a\u51b3\u5b9a\u4e86shuffle\u7684\u7c92\u5ea6":94,"\u4e2a\u6027\u5316\u63a8\u8350":82,"\u4e2a\u6279\u6b21\u7684\u53c2\u6570\u5e73\u5747\u503c\u8fdb\u884c\u6d4b\u8bd5":132,"\u4e2a\u6a21\u578b\u6d4b\u8bd5\u6570\u636e":132,"\u4e2d":[61,62,65,66,94,110,111,112,116,121,127],"\u4e2d\u4e0d\u8981\u6dfb\u52a0\u5927\u6587\u4ef6\u7b49":109,"\u4e2d\u4f1a\u4f7f\u7528\u5230\u7684\u5b57\u5178\u6570\u636e\u6587\u4ef6":123,"\u4e2d\u4f1a\u63d0\u4f9b\u4e00\u4e9b\u5fc5\u8981\u7684\u63a5\u53e3\u548c\u51fd\u6570":62,"\u4e2d\u4f20\u5165\u53c2\u6570":123,"\u4e2d\u4f20\u5165\u7684\u53c2\u6570":123,"\u4e2d\u5143\u7d20\u4e2a\u6570\u603b\u662f\u7b49\u4e8e\u884c\u6570":121,"\u4e2d\u5143\u7d20\u7684\u4e2a\u6570\u7b49\u4e8e\u7f51\u7edc\u4e2d\u8f93\u51fa\u5c42\u7684\u4e2a\u6570":94,"\u4e2d\u5173\u4e8e\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc\u7684\u4ecb\u7ecd":104,"\u4e2d\u5199\u5165json\u5185\u5bb9":32,"\u4e2d\u5305\u542b\u4e00\u4e2araspberri":138,"\u4e2d\u5305\u542b\u6240\u4f9d\u8d56\u7684\u6240\u6709\u7b2c\u4e09\u65b9\u5e93":136,"\u4e2d\u5305\u542b\u82e5\u5e72\u4e2a\u4e0d\u540candroid":136,"\u4e2d\u5305\u542bc":[136,138],"\u4e2d\u5355\u5143\u6d4b\u8bd5\u7684\u4e00\u90e8\u5206":109,"\u4e2d\u5355\u5143\u6d4b\u8bd5\u80fd\u987a\u5229\u901a\u8fc7":109,"\u4e2d\u542b\u6709\u591a\u4e2a\u5e8f\u5217":121,"\u4e2d\u5b8c\u5168\u4e00\u81f4":65,"\u4e2d\u5b9a\u4e49":107,"\u4e2d\u5b9a\u4e49\u548c\u4f7f\u7528":106,"\u4e2d\u5b9e\u73b0\u4e86\u4e00\u4e2amerge\u7684\u65b9\u6cd5":62,"\u4e2d\u5b9e\u73b0\u7684\u7ed3\u6784\u4f53":66,"\u4e2d\u5bf9\u5e94\u7684layer\u5904":61,"\u4e2d\u5f15\u5165\u7684":61,"\u4e2d\u6253\u5370\u5176\u503c":94,"\u4e2d\u6307\u5b9a":132,"\u4e2d\u6307\u5b9a\u7684\u540d\u5b57":134,"\u4e2d\u63d0\u4f9b\u4e00\u4e2a\u4e0emkl\u6709\u5173\u7684\u603b\u5f00\u5173":62,"\u4e2d\u63d0\u4f9b\u4e86\u4e00\u4e9b\u5168\u5c40\u51fd\u6570\u7528\u6765\u5b9e\u73b0paddl":112,"\u4e2d\u641c\u7d22\u8fd9\u51e0\u4e2a\u5e93":97,"\u4e2d\u64cd\u4f5c":121,"\u4e2d\u6587\u6587\u6863":113,"\u4e2d\u6587\u6587\u6863\u76ee\u5f55":113,"\u4e2d\u6587\u7ef4\u57fa\u767e\u79d1\u9875\u9762":104,"\u4e2d\u6839\u636e":61,"\u4e2d\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2alayer\u7684\u8f93\u51fa\u7ed3\u679c\u77e9\u9635":94,"\u4e2d\u6bcf\u4e2apod\u7684ip\u5730\u5740":127,"\u4e2d\u6bcf\u5c42\u7684\u6570\u503c\u7edf\u8ba1":132,"\u4e2d\u6dfb\u52a0":61,"\u4e2d\u6dfb\u52a0\u4e00\u4e2a":62,"\u4e2d\u6dfb\u52a0\u4e24\u4e2a\u8f93\u5165":111,"\u4e2d\u7528\u4e8e\u5b58\u50a8\u6570\u636e\u7684":122,"\u4e2d\u7684":[112,122],"\u4e2d\u7684\u4e00\u884c":109,"\u4e2d\u7684\u4ee3\u7801\u4f5c\u4e3a\u5b9e\u4f8b":123,"\u4e2d\u7684\u504f\u79fb":121,"\u4e2d\u7684\u5bf9\u5e94\u5206\u652f\u5373\u53ef":109,"\u4e2d\u7684\u7248\u672c\u4fe1\u606f":82,"\u4e2d\u7684\u76f8\u5173\u811a\u672c":122,"\u4e2d\u7684\u8d77\u59cb\u504f\u79fb":121,"\u4e2d\u83b7\u53d6":127,"\u4e2d\u8bbe\u7f6e\u7684\u6240\u6709\u8282\u70b9":124,"\u4e2d\u8be6\u7ec6\u4ecb\u7ecd":110,"\u4e2d\u8c03\u7528":111,"\u4e2d\u8fd0\u884c\u4efb\u52a1\u7684\u89d2\u5ea6":33,"\u4e2d\u914d\u7f6e\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":107,"\u4e34\u65f6\u53d8\u91cf\u7b49\u7b49":94,"\u4e3a":[61,62,107,111,121,136,137,138],"\u4e3a\u4e86\u4f7f":111,"\u4e3a\u4e86\u4f7f\u8bc4\u5ba1\u4eba\u5728\u8bc4\u5ba1\u4ee3\u7801\u65f6\u66f4\u597d\u5730\u4e13\u6ce8\u4e8e\u4ee3\u7801\u672c\u8eab":109,"\u4e3a\u4e86\u4fdd\u8bc1\u6548\u7387":110,"\u4e3a\u4e86\u4fdd\u8bc1gpu\u9a71\u52a8\u80fd\u591f\u5728\u955c\u50cf\u91cc\u9762\u6b63\u5e38\u8fd0\u884c":98,"\u4e3a\u4e86\u51cf\u5c11\u751f\u6210\u94fe\u63a5\u5e93\u7684\u5927\u5c0f\u628a":119,"\u4e3a\u4e86\u5c01\u88c5\u80fd\u591f\u6b63\u786e\u5de5\u4f5c":110,"\u4e3a\u4e86\u5c3d\u53ef\u80fd\u5c11\u7684\u5728\u7236\u7c7blayer\u4e2d\u6dfb\u52a0\u53d8\u91cf\u6216\u8005\u51fd\u6570":62,"\u4e3a\u4e86\u5e94\u5bf9\u4ee5\u4e0a\u7684\u95ee\u9898":48,"\u4e3a\u4e86\u5f00\u53d1paddlepaddl":108,"\u4e3a\u4e86\u63cf\u8ff0\u65b9\u4fbf":106,"\u4e3a\u4e86\u65b9\u4fbf\u5927\u5bb6":109,"\u4e3a\u4e86\u66b4\u9732\u7684\u63a5\u53e3\u5c3d\u91cf\u7b80\u5355":66,"\u4e3a\u4e86\u66f4\u597d\u7684\u7b26\u5408paddlepaddle\u7684\u4ee3\u7801\u98ce\u683c":62,"\u4e3a\u4e86\u6700\u5927\u7a0b\u5ea6\u51cf\u5c11\u591a\u6b21\u8c03\u7528":61,"\u4e3a\u4e86\u751f\u6210\u66f4\u53ef\u8bfb\u7684\u6027\u80fd\u5206\u6790\u7ed3\u679c":116,"\u4e3a\u4e86\u7b80\u5316cmake\u914d\u7f6e":136,"\u4e3a\u4e86\u8fbe\u5230\u6027\u80fd\u6700\u4f18":117,"\u4e3a\u4e86\u8fbe\u5230\u6700\u5feb\u7684\u8ba1\u7b97\u901f\u5ea6":[136,137],"\u4e3a\u4e86\u8fdb\u4e00\u6b65\u63d0\u5347paddlepaddle\u5728\u57fa\u672c\u6570\u5b66\u8fd0\u7b97\u7684\u8ba1\u7b97\u901f\u5ea6":62,"\u4e3a\u4ec0\u4e48\u7528":108,"\u4e3a\u4f7f\u7528c":122,"\u4e3a\u4f8b":[95,111],"\u4e3a\u4f8b\u6765\u4ecb\u7ecd\u5982\u4f55\u5199\u5e26kernel\u7684oper":111,"\u4e3a\u53c2\u6570\u77e9\u9635\u7684\u5bbd\u5ea6":96,"\u4e3a\u5b83\u4eec\u9644\u52a0\u4e0a\u5e8f\u5217\u4fe1\u606f\u5c06\u53d8\u6210\u5e8f\u5217\u8f93\u5165":121,"\u4e3a\u5bb9\u5668\u5185\u6267\u884c\u7684\u547d\u4ee4":98,"\u4e3a\u60a8\u505a\u6027\u80fd\u8c03\u4f18\u63d0\u4f9b\u4e86\u65b9\u5411":117,"\u4e3a\u65b9\u4fbf\u4f5c\u4e1a\u542f\u52a8\u63d0\u4f9b\u4e86\u4e24\u4e2a\u72ec\u7279\u7684\u547d\u4ee4\u9009\u9879":124,"\u4e3a\u6b64":126,"\u4e3a\u6bcf\u4e00\u4e2a":[121,122],"\u4e3a\u6bcf\u4e00\u4e2a\u8f93\u5165":[121,122],"\u4e3a\u6bcf\u4e2aop\u521b\u5efa\u5355\u72ec\u7684":111,"\u4e3a\u8f93\u51fa\u5206\u914d\u5185\u5b58":110,"\u4e3aconst\u51fd\u6570":111,"\u4e3aoutput_\u7533\u8bf7\u5185\u5b58":110,"\u4e3b\u8981\u4e3a\u5f00\u53d1\u8005\u4f7f\u7528":132,"\u4e3b\u8981\u529f\u80fd\u5305\u62ec":48,"\u4e3b\u8981\u5305\u62ec":62,"\u4e3b\u8981\u5305\u62ec\u4e86\u6df1\u5ea6\u5b66\u4e60\u76f8\u5173\u7684\u6570\u5b66\u539f\u8bed\u4e0e\u64cd\u4f5c":62,"\u4e3b\u8981\u5305\u62ec\u56db\u79cd\u7c7b\u578b":101,"\u4e3b\u8981\u539f\u56e0":104,"\u4e3b\u8981\u539f\u56e0\u5305\u62ec\u4e24\u4e2a\u65b9\u9762":94,"\u4e3b\u8981\u7528\u4e8epython":111,"\u4e3b\u8981\u9488\u5bf9paddlepaddle\u5728\u91cd\u6784\u4e4b\u524d\u7684\u4ee3\u7801\u6846\u67b6\u4ee5\u53cav1\u7684api":62,"\u4e3e\u4e00\u4e2a\u4f8b\u5b50":96,"\u4e3e\u4f8b":94,"\u4e3e\u4f8b\u8bf4\u660e":104,"\u4e4b\u524d":109,"\u4e4b\u540e":[101,110],"\u4e4b\u540e\u4f7f\u7528":110,"\u4e4b\u540e\u4f7f\u7528\u77e9\u9635\u8fd0\u7b97\u51fd\u6570\u6765\u8ba1\u7b97":110,"\u4e4b\u540e\u518d\u7528\u7f51\u9875\u8fde\u5230http":113,"\u4e4b\u540e\u521d\u59cb\u5316\u6240\u6709\u7684\u6743\u91cd\u77e9\u9635":110,"\u4e4b\u540e\u624d\u80fd\u5f00\u59cb\u7f16\u8bd1\u7684\u6b65\u9aa4":97,"\u4e4b\u5916\u7684\u6240\u6709\u5934\u6587\u4ef6":66,"\u4e4b\u7c7b\u7684\u7a0b\u5e8f\u6765\u7f16\u8bd1\u6e90\u7801":108,"\u4e4b\u95f4\u7684\u8fd0\u7b97\u662f\u72ec\u7acb\u7684":106,"\u4e58\u4e0a\u8f93\u51fa\u7684\u68af\u5ea6":110,"\u4e58\u6cd5\u548c\u4e58\u6cd5\u68af\u5ea6\u7684\u8ba1\u7b97\u5360\u75282":116,"\u4e58\u9664\u7b49\u65f6\u5019":94,"\u4e5f":104,"\u4e5f\u4e0d\u4f7f\u7528\u5176\u4ed6\u52a8\u6001\u5e93":65,"\u4e5f\u4e0d\u5b58\u5728\u4e00\u4e2asubseq\u76f4\u63a5\u751f\u6210\u4e0b\u4e00\u4e2asubseq\u7684\u60c5\u51b5":106,"\u4e5f\u4e0d\u5e94\u8be5\u62a5\u9519":66,"\u4e5f\u4e0d\u751f\u6210":66,"\u4e5f\u4e0d\u80fd\u63a5\u6536\u5e8f\u5217\u6570\u636e\u4f5c\u4e3a\u8f93\u5165":95,"\u4e5f\u4f1a\u5360\u7528\u78c1\u76d8":108,"\u4e5f\u53ef\u4ee5\u4f7f\u7528":109,"\u4e5f\u53ef\u4ee5\u4f7f\u7528\u8fd9\u4e9b\u955c\u50cf":82,"\u4e5f\u53ef\u4ee5\u5229\u7528paddlepaddl":113,"\u4e5f\u53ef\u4ee5\u662f\u4e00\u4e2a\u8bcd\u8bed":106,"\u4e5f\u53ef\u4ee5\u662f\u5728\u4efb\u52a1\u542f\u52a8\u524d\u4e0b\u8f7d\u5230\u672c\u5730\u7684":123,"\u4e5f\u53ef\u4ee5\u76f4\u63a5\u5728\u7f51\u9875\u9884\u89c8\u6587\u6863":113,"\u4e5f\u53ef\u4ee5\u8bf4\u662f\u67d0\u4e9b\u7279\u5b9a\u6307\u4ee4\u7684\u4f7f\u7528\u60c5\u51b5":117,"\u4e5f\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539":127,"\u4e5f\u53ef\u5199\u6210":111,"\u4e5f\u53ef\u81ea\u884c\u524d\u5f80\u5b98\u7f51\u4e0b\u8f7d":137,"\u4e5f\u53ef\u901a\u8fc7\u4ee5\u4e0b\u547d\u4ee4\u83b7\u53d6":136,"\u4e5f\u5c31\u662f":109,"\u4e5f\u5c31\u662f\u672c\u5730\u7684\u6e90\u7801\u6811\u6839\u76ee\u5f55\u91cc\u7684":108,"\u4e5f\u5c31\u662f\u7a7a\u8f93\u5165":121,"\u4e5f\u5c31\u662f\u81ea\u5df1\u7528\u6237\u540d\u4e0b\u7684":109,"\u4e5f\u5c31\u662f\u8bf4":[121,132,134],"\u4e5f\u5c31\u662f\u8bf4\u8f93\u51fa\u7684\u7ed3\u679c\u4e0d\u4f1a\u5728\u539f\u6765\u7684\u6570\u636e\u4e0a\u7d2f\u52a0":62,"\u4e5f\u5c31\u662fpaddlepaddle\u4e2d\u7684\u4e00\u7ef4\u6574\u578b\u6570\u7ec4":121,"\u4e5f\u63cf\u8ff0\u4e86\u5bb9\u5668\u9700\u8981\u4f7f\u7528\u7684\u5b58\u50a8\u5377\u6302\u8f7d\u7684\u60c5\u51b5":127,"\u4e5f\u652f\u6301cpu\u7684\u6027\u80fd\u5206\u6790":117,"\u4e5f\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":104,"\u4e5f\u662fdecoder\u5faa\u73af\u5c55\u5f00\u7684\u4f9d\u636e":106,"\u4e5f\u6ca1\u7528":91,"\u4e66\u5199":65,"\u4e7e":104,"\u4e86":[104,108],"\u4e86\u89e3\u5176\u8c03\u7528\u5173\u7cfb":116,"\u4e86\u89e3\u60a8\u7684\u786c\u4ef6":117,"\u4e86\u89e3\u66f4\u591a\u7ec6\u8282":107,"\u4e86\u89e3\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f":107,"\u4e8c\u7ef4\u6d6e\u70b9\u578b\u77e9\u9635":121,"\u4e8c\u7ef4\u6d6e\u70b9\u6570\u77e9\u9635":121,"\u4e8c\u7ef4\u77e9\u9635":122,"\u4e8c\u7ef4\u77e9\u9635\u53ef\u4ee5\u8868\u793a\u884c\u5411\u91cf\u548c\u5217\u5411\u91cf":121,"\u4e8c\u8005\u8bed\u610f\u4e0a\u5b8c\u5168\u4e00\u81f4":104,"\u4e8e\u662f":121,"\u4e8e\u662f\u6211\u4eec\u53ef\u4ee5\u70b9\u51fb":116,"\u4e8e\u662f\u8fd9\u91cc\u4f7f\u7528":116,"\u4e94\u661f\u7ea7":104,"\u4ea4\u4e92\u7684\u65b9\u6cd5":116,"\u4ea4\u53c9\u7f16\u8bd1\u5de5\u5177\u94fe\u4e3a":136,"\u4ea4\u53c9\u7f16\u8bd1android\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":136,"\u4ea4\u53c9\u7f16\u8bd1android\u7248\u672c\u7684paddlepaddle\u5e93\u65f6":136,"\u4ea4\u53c9\u7f16\u8bd1ios\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":137,"\u4ea4\u53c9\u7f16\u8bd1ios\u7248\u672c\u7684paddlepaddle\u5e93\u65f6":137,"\u4ea4\u53c9\u7f16\u8bd1raspberri":138,"\u4ea4\u7531cmake\u7cfb\u7edf\u672c\u8eab\u6765\u5904\u7406":136,"\u4ea4\u901a":104,"\u4ea4\u901a\u4fbf\u5229":104,"\u4ea6\u53ef\u4ee5\u901a\u8fc7\u624b\u52a8\u8bbe\u7f6e":[136,137],"\u4eab\u53d7\u60a8\u7684\u65c5\u7a0b":98,"\u4eba\u8138\u8bc6\u522b":33,"\u4ec0\u4e48\u662f":108,"\u4ec5\u4ec5\u4f7f\u7528":65,"\u4ec5\u4f1a\u5728\u652f\u6301avx2\u6307\u4ee4\u96c6\u53ca\u4ee5\u4e0a\u7684\u673a\u5668\u624d\u4f7f\u7528mkl":62,"\u4ec5\u5728\u8fdc\u7a0b\u7a00\u758f\u8bad\u7ec3\u65f6\u6709\u6548":110,"\u4ec5\u5bf9\u7a00\u758f\u6570\u636e\u6709\u6548":110,"\u4ec5\u652f\u6301\u6574\u578b\u503c":121,"\u4ec5\u7528\u4e8e\u5b58\u50a8\u6574\u578b\u503c":122,"\u4ecb\u7ecd\u4e86\u4e00\u79cd\u901a\u8fc7ssh\u8fdc\u7a0b\u5206\u53d1\u4efb\u52a1":127,"\u4ecb\u7ecd\u4ea4\u53c9\u7f16\u8bd1android\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93\u7684\u65b9\u6cd5\u548c\u6b65\u9aa4":136,"\u4ecb\u7ecd\u4f7f\u7528paddlepaddl":123,"\u4ece":[82,92,117],"\u4ece0\u5230num":132,"\u4ece0\u5f00\u59cb\u7684\u6574\u6570":123,"\u4ece\u4e00\u4e2aword\u751f\u6210\u4e0b\u4e00\u4e2aword":106,"\u4ece\u5185\u6838\u51fd\u6570\u7684\u89d2\u5ea6":117,"\u4ece\u6a21\u578b\u6587\u4ef6\u5c06\u9884\u8bad\u7ec3\u53c2\u6570\u8f7d\u5165":96,"\u4ece\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u6765\u770b":104,"\u4ece\u6e90\u7801\u4ea4\u53c9\u7f16\u8bd1ios\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":137,"\u4ece\u6e90\u7801\u4ea4\u53c9\u7f16\u8bd1paddlepaddl":136,"\u4ece\u6e90\u7801\u7f16\u8bd1":99,"\u4ece\u78c1\u76d8\u52a0\u8f7d\u9884\u6d4b\u6a21\u578b":122,"\u4ece\u78c1\u76d8\u6587\u4ef6\u4e2d\u52a0\u8f7duuid\u6587\u4ef6\u540d\u7684\u68c0\u67e5\u70b9\u5feb\u7167\u6587\u4ef6":32,"\u4ece\u800c\u53ef\u4ee5\u505a\u4e00\u4e9b\u4e0e\u8ba1\u7b97\u91cd\u53e0\u7684\u5de5\u4f5c":110,"\u4ece\u800c\u5f15\u53d1\u5176\u4ed6\u8282\u70b9\u65e0\u6cd5\u8fde\u63a5\u5bfc\u81f4":92,"\u4ece\u800c\u907f\u514d\u4e86packing\u5197\u4f59":61,"\u4ece\u8bed\u4e49\u4e0a\u770b":106,"\u4ece\u8d77\u59cb\u7aef\u53e3\u76d1\u542c\u591a\u4e2a\u7aef\u53e3\u7528\u4e8e\u901a\u4fe1":123,"\u4ece\u8f93\u5165\u6570\u636e\u4e0a\u770b":104,"\u4ececmake":136,"\u4eceetcd\u4e2d\u8bfb\u53d6\u8282\u70b9":32,"\u4ecestart":132,"\u4ed3\u5e93\u7684\u8fdc\u7a0b\u4e3b\u673a":109,"\u4ed6\u4e3b\u8981\u5305\u542b\u4e86\u5b9e\u9645\u66b4\u9732\u7684\u7c7b\u578b\u7ed3\u6784":66,"\u4ed6\u4eec\u5206\u522b\u662f":104,"\u4ed6\u4eec\u5728\u81ea\u5df1\u7684":108,"\u4ed6\u4eec\u5728paddle\u7684\u6587\u6863\u548capi\u4e2d\u662f\u4e00\u4e2a\u6982\u5ff5":104,"\u4ed6\u662f\u5c06":66,"\u4ed6\u7684\u76ee\u6807\u662f\u4f7f\u7528c":65,"\u4ee3\u66ff":127,"\u4ee3\u7801\u4e2d9":104,"\u4ee3\u7801\u53c2\u8003":123,"\u4ee3\u7801\u5982\u4e0b":[94,95,96,107],"\u4ee3\u7801\u6ce8\u91ca\u8bf7\u9075\u5b88":109,"\u4ee3\u7801\u7247\u6bb5\u5982\u4e0b":121,"\u4ee3\u7801\u751f\u6210\u7684\u7b26\u53f7\u53ef\u80fd\u4e0d\u4e00\u81f4":65,"\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790":116,"\u4ee3\u7801\u793a\u4f8b\u5982\u4e0b":[111,122],"\u4ee3\u8868\u5bbf\u4e3b\u673a\u76ee\u5f55":127,"\u4ee3\u8868\u8fd9\u4e2alayer\u662f\u7528\u4e8e\u8dd1\u5728mkl":62,"\u4ee3\u8868\u8fd9\u4e2ashard\u7684\u6700\u5927index":33,"\u4ee3\u8868shard\u7684index":33,"\u4ee5":95,"\u4ee5\u4e0a":[109,136],"\u4ee5\u4e0a\u4e24\u79cd\u65b9\u5f0f\u53ea\u9700\u9009\u62e9\u5176\u4e00\u5373\u53ef":122,"\u4ee5\u4e0a\u4ee3\u7801\u7684reader\u8f93\u51fa\u7684data":33,"\u4ee5\u4e0a\u547d\u4ee4\u4f1a\u5728\u5f53\u524d\u76ee\u5f55\u4e0b\u751f\u6210100\u4e2a\u6587\u4ef6":33,"\u4ee5\u4e0b":33,"\u4ee5\u4e0b\u4ee3\u7801\u7247\u6bb5\u5b9a\u4e49":107,"\u4ee5\u4e0b\u547d\u4ee4\u542f\u52a8\u4e00\u4e2a":108,"\u4ee5\u4e0b\u6307\u4ee4\u80fd\u68c0\u67e5linux\u7535\u8111\u662f\u5426\u652f\u6301avx":98,"\u4ee5\u4e0b\u64cd\u4f5c\u5747\u5728head\u8282\u70b9\u4e2d\u6267\u884c":128,"\u4ee5\u4e0b\u6559\u7a0b\u5c06\u6307\u5bfc\u60a8\u63d0\u4ea4\u4ee3\u7801":109,"\u4ee5\u4e0b\u7b80\u79f0rnn":61,"\u4ee5\u4ea4\u4e92\u5f0f\u7684\u65b9\u5f0f\u6267\u884c\u6216\u8c03\u8bd5\u60a8\u7684\u4ee3\u7801":98,"\u4ee5\u4f7f\u7528":136,"\u4ee5\u4f7f\u7528adam\u7b97\u6cd5\u4e3a\u4f8b":96,"\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u628a\u66f4\u591a\u7684\u7cbe\u529b\u653e\u5230\u903b\u8f91\u672c\u8eab\u4e0a":48,"\u4ee5\u4fbf\u83b7\u5f97\u8bad\u7ec3\u6570\u636e\u7684\u4f4d\u7f6e\u548c\u83b7\u53d6\u73af\u5883\u53d8\u91cf\u914d\u7f6e":123,"\u4ee5\u4fdd\u8bc1\u68af\u5ea6\u7684\u6b63\u786e\u8ba1\u7b97":110,"\u4ee5\u4fdd\u8bc1\u68af\u5ea6\u8ba1\u7b97\u7684\u6b63\u786e\u6027":110,"\u4ee5\u4fdd\u8bc1\u7f16\u8bd1\u9ad8\u6548":108,"\u4ee5\u53ca":[61,108,110,121],"\u4ee5\u53ca\u4f7f\u7528\u5b50\u5e8f\u5217\u6765\u5b9a\u4e49\u5206\u7ea7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":107,"\u4ee5\u53ca\u5207\u6362\u673a\u5668\u65f6\u9700\u8981\u65b0\u5b89\u88c5\u7684\u8f9b\u82e6":108,"\u4ee5\u53ca\u53cc\u5c42\u5e8f\u5217":103,"\u4ee5\u53ca\u5982\u4f55\u89e3\u6790\u795e\u7ecf\u7f51\u7edc\u524d\u5411\u8ba1\u7b97\u7684\u8f93\u51fa\u7ed3\u679c":121,"\u4ee5\u53ca\u76ee\u6807\u673a\u7248openblas\u5e93":138,"\u4ee5\u53ca\u76f8\u5173\u7684\u5c5e\u6027\u53c2\u6570":111,"\u4ee5\u53ca\u7b2c\u4e09\u65b9\u4f9d\u8d56\u94fe\u63a5\u5e93\u548c\u5934\u6587\u4ef6":119,"\u4ee5\u53ca\u8ba1\u7b97\u903b\u8f91\u5728\u5e8f\u5217\u4e0a\u7684\u5faa\u73af\u5c55\u5f00":106,"\u4ee5\u53ca\u8f93\u5165\u7684\u68af\u5ea6":110,"\u4ee5\u53caandroid":136,"\u4ee5\u53cagcc":97,"\u4ee5\u53canumpi":33,"\u4ee5\u53carelu":110,"\u4ee5\u63d0\u4f9b\u4e00\u4e9b\u9ed8\u8ba4\u7684\u7f16\u8bd1\u5668\u548c\u7f16\u8bd1\u53c2\u6570\u76f8\u5173\u914d\u7f6e":136,"\u4ee5\u63d0\u4f9b\u4e00\u4e9b\u9ed8\u8ba4\u7684\u7f16\u8bd1\u5668\u548c\u7f16\u8bd1\u53c2\u6570\u914d\u7f6e":137,"\u4ee5\u6b64\u8fbe\u5230\u6700\u597d\u7684\u6027\u80fd":62,"\u4ee5\u786e\u4fdd\u6240\u6709\u7684\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93\u548cpaddlepaddle\u4ee3\u7801\u90fd\u662f\u9488\u5bf9\u65b0\u7684cmake\u914d\u7f6e\u91cd\u65b0\u7f16\u8bd1\u7684":[136,137,138],"\u4ee5\u793a\u533a\u5206":[61,62],"\u4ee5\u8f93\u51fa":94,"\u4ee5\u9017\u53f7\u95f4\u9694":132,"\u4ee5\u907f\u514d\u94fe\u63a5\u4e0d\u5fc5\u8981\u7684\u5e93":119,"\u4ee5eigentensor\u4e3a\u4f8b":112,"\u4ee5embedding\u5c42\u4e3a\u4f8b":96,"\u4ee5lstm\u4e3a\u4f8b":95,"\u4ef7\u683c":104,"\u4efb\u4f55\u65f6\u5019\u5982\u679c\u9700\u8981\u6d6e\u70b9\u578b\u6570\u7ec4":121,"\u4efb\u52a1\u6765\u7ec8\u6b62\u96c6\u7fa4\u4f5c\u4e1a":124,"\u4efb\u52a1\u88ab\u8c03\u5ea6\u5728\u96c6\u7fa4\u4e2d\u65f6":123,"\u4efb\u610f\u5c06\u4e00\u4e9b\u6570\u636e\u7ec4\u5408\u6210\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":104,"\u4efb\u610f\u65f6\u523b\u53ea\u53ef\u80fd\u540c\u65f6\u6709\u4e00\u53f0\u670d\u52a1\u5668\u6545\u969c":32,"\u4f18\u5316\u524d":61,"\u4f18\u5316\u540e":61,"\u4f18\u5316\u5668\u5219\u7528\u94fe\u5f0f\u6cd5\u5219\u6765\u5bf9\u6bcf\u4e2a\u53c2\u6570\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u7684\u68af\u5ea6":110,"\u4f1a\u4ea7\u751f\u5f53\u524dpython\u4e8c\u8fdb\u5236\u7684\u5b8c\u6574\u8def\u5f84":116,"\u4f1a\u4ee5":[61,62],"\u4f1a\u4f7f\u7528":122,"\u4f1a\u4f7f\u7528\u76f8\u540c\u7684\u539f\u6570\u636e":61,"\u4f1a\u5148\u4e34\u65f6\u4fdd\u5b58\u5728":62,"\u4f1a\u5148\u8fdb\u884c\u53c2\u6570\u7684\u521d\u59cb\u5316\u4e0e\u89e3\u6790":127,"\u4f1a\u5171\u4eab\u53c2\u6570":96,"\u4f1a\u5173\u8054\u53c2\u6570":95,"\u4f1a\u5206\u522b\u4ecb\u7ecd\u96c6\u7fa4\u4f5c\u4e1a\u7684\u542f\u52a8\u548c\u505c\u6b62\u65b9\u6cd5":123,"\u4f1a\u52a0\u8f7d\u4e0a\u4e00\u8f6e\u7684\u53c2\u6570":132,"\u4f1a\u53d8\u6210\u8bcd\u8868\u4e2d\u7684\u4f4d\u7f6e":104,"\u4f1a\u542f\u52a8pserver\u4e0etrainer\u8fdb\u7a0b":127,"\u4f1a\u5728":[62,113],"\u4f1a\u5728\u5f53\u524d\u76ee\u5f55\u751f\u6210\u4e24\u4e2a\u5b50\u76ee\u5f55":113,"\u4f1a\u5728\u7f16\u8bd1paddlepaddle\u7684\u65f6\u5019\u4e0b\u8f7d\u5e76\u7f16\u8bd1mkl":62,"\u4f1a\u5927\u4e0d\u76f8\u540c":123,"\u4f1a\u5bf9\u6bcf\u4e00\u4e2a\u6fc0\u6d3b\u6682\u5b58\u4e00\u4e9b\u6570\u636e":94,"\u4f1a\u5bf9\u8bad\u7ec3\u6027\u80fd\u9020\u6210\u5f71\u54cd":94,"\u4f1a\u5bf9\u8fd9\u7c7b\u8f93\u5165\u8fdb\u884c\u62c6\u89e3":106,"\u4f1a\u5bfc\u81f4\u4e0d\u540c\u7248\u672cpython\u5728\u4e00\u4e2a\u8fdb\u7a0b\u91cc\u7684bug":65,"\u4f1a\u5c06\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u62fc\u63a5":106,"\u4f1a\u5c06\u7b2c\u4e00\u4e2a":94,"\u4f1a\u5f15\u5165":62,"\u4f1a\u6210\u4e3astep\u51fd\u6570\u7684\u8f93\u5165":106,"\u4f1a\u6253\u5370\u5230\u6807\u51c6\u8f93\u51fa":116,"\u4f1a\u628a\u8bad\u7ec3\u96c6\u548c\u6d4b\u8bd5\u96c6\u5206\u522b\u5206\u5272\u6210\u591a\u4e2a\u6587\u4ef6":123,"\u4f1a\u628acpu\u7684buffer\u5bf9\u9f50\u4e3a4096":62,"\u4f1a\u62a5\u5982\u4e0b\u7684\u9519\u8bef":94,"\u4f1a\u62a5\u9519":106,"\u4f1a\u6dfb\u52a0\u76f8\u5e94\u7684\u811a\u672c\u5728":62,"\u4f1a\u6dfb\u52a0\u76f8\u5e94\u7684\u811a\u672c\u7528\u4e8e\u6d4b\u8bd5\u548c\u5bf9\u6bd4\u5728\u4f7f\u7528mkl":61,"\u4f1a\u72ec\u7acb\u62e5\u6709\u4e00\u4efd\u8bad\u7ec3\u597d\u7684\u6a21\u578b":122,"\u4f1a\u751f\u6210\u6027\u80fd\u5206\u6790\u7ed3\u679c\u6587\u4ef6":116,"\u4f1a\u76f4\u63a5\u62a5\u9519\u9000\u51fa":65,"\u4f1a\u76f8\u5e94\u5730\u6539\u53d8\u8f93\u51fa\u7684\u5c3a\u5bf8":110,"\u4f1a\u81ea\u52a8\u4f7f\u7528mklml\u5e93\u4f5c\u4e3apaddlepaddle\u7684cblas\u548clapack\u5e93":62,"\u4f1a\u81ea\u52a8\u5173\u95ed\u5bf9\u5e94\u7684issu":109,"\u4f1a\u81ea\u52a8\u5728\u7f16\u8bd1\u65f6\u4e0b\u8f7d":97,"\u4f1a\u81ea\u52a8\u6839\u636e\u786c\u4ef6\u914d\u7f6e":62,"\u4f1a\u83b7\u53d6\u5f53\u524dnamespace\u4e0b\u7684\u6240\u6709pod":127,"\u4f1a\u88ab":123,"\u4f1a\u88ab\u62c6\u89e3\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":106,"\u4f1a\u88ab\u62c6\u89e3\u4e3a\u975e\u5e8f\u5217":106,"\u4f1a\u88abpickle\u5e8f\u5217\u5316\u6210\u5b57\u7b26\u4e32":33,"\u4f1a\u901a\u8fc7\u5224\u6570\u636e\u662f\u5426\u9644\u5e26\u6709\u5e8f\u5217\u4fe1\u606f\u6765\u5224\u65ad\u4e00\u4e2a\u5411\u91cf":121,"\u4f1a\u9020\u6210\u90ae\u4ef6\u707e\u96be":109,"\u4f20\u5165":33,"\u4f20\u7ed9dataprovider\u7684\u67d0\u4e00\u4e2aargs\u8fc7\u5927":96,"\u4f20\u9012\u7ed9\u914d\u7f6e\u6587\u4ef6\u7684\u53c2\u6570":132,"\u4f46":66,"\u4f46\u4e0d\u66b4\u9732":66,"\u4f46\u4e0d\u7528\u4e8e\u8ba1\u7b97\u68af\u5ea6":110,"\u4f46\u4e0d\u9700\u8981\u63d0\u524d\u521b\u5efa":132,"\u4f46\u4e8e\u53cc\u5c42\u5e8f\u5217\u7684lstm\u6765\u8bf4":104,"\u4f46\u53ef\u4ee5\u83b7\u53d6":94,"\u4f46\u548c\u5355\u5c42rnn\u4e0d\u540c":104,"\u4f46\u5b50\u53e5\u542b\u6709\u7684\u8bcd\u8bed\u6570\u53ef\u4ee5\u4e0d\u76f8\u7b49":106,"\u4f46\u5c3d\u91cf\u8bf7\u4fdd\u6301\u7f16\u8bd1\u548c\u8fd0\u884c\u4f7f\u7528\u7684cudnn\u662f\u540c\u4e00\u4e2a\u7248\u672c":97,"\u4f46\u5e76\u6ca1\u6709\u7ecf\u8fc7\u56de\u5f52\u6d4b\u8bd5":82,"\u4f46\u5e8f\u5217\u8f93\u51fa\u65f6":104,"\u4f46\u622a\u65ad\u65f6\u673a\u4e0d\u540c":94,"\u4f46\u6240\u6709fork\u7684\u7248\u672c\u5e93\u7684\u6240\u6709\u5206\u652f\u90fd\u76f8\u5f53\u4e8e\u7279\u6027\u5206\u652f":82,"\u4f46\u662f":[94,104],"\u4f46\u662f\u53c8\u8fc7\u4e8e\u7410\u788e":66,"\u4f46\u662f\u5728mkl":62,"\u4f46\u662f\u5728paddlepaddle\u4e2d":62,"\u4f46\u662f\u5927\u90e8\u5206\u53c2\u6570\u662f\u4e3a\u5f00\u53d1\u8005\u63d0\u4f9b\u7684":131,"\u4f46\u662f\u5b50\u5e8f\u5217\u7684\u6570\u76ee\u5fc5\u987b\u4e00\u6837":104,"\u4f46\u662f\u5e76\u4e0d\u80fd\u4fdd\u8bc1\u53c2\u6570\u540c\u6b65\u66f4\u65b0":123,"\u4f46\u662f\u652f\u6301avx\u6307\u4ee4\u96c6":109,"\u4f46\u662f\u6574\u4e2a\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4e0d\u9700\u8981\u4efb\u4f55\u8f6c\u6362":62,"\u4f46\u662f\u6bcf\u4e2a\u6837\u672c\u4ec5\u5305\u542b\u51e0\u4e2a\u8bcd":134,"\u4f46\u662f\u6ce8\u610f\u7684\u662f":62,"\u4f46\u662f\u7a81\u7136\u6709\u4e00\u4e2a10000\u957f\u7684\u5e8f\u5217":94,"\u4f46\u662f\u865a\u62df\u7684\u4e0d\u4ec5\u4ec5\u662f":108,"\u4f46\u662f\u89e3\u91ca\u6027\u8bed\u8a00":65,"\u4f46\u662f\u8c03\u8bd5python\u4e2d\u4f7f\u7528\u7684\u52a8\u6001\u94fe\u63a5\u5e93\u4e0e\u76f4\u63a5\u8c03\u8bd5\u539f\u59cb\u4e8c\u8fdb\u5236\u76f8\u6bd4\u589e\u52a0\u4e86\u5f88\u591a\u590d\u6742\u5ea6":116,"\u4f46\u662fbatch":94,"\u4f46\u6709\u503c\u7684\u5730\u65b9\u5fc5\u987b\u4e3a1":101,"\u4f46\u6709\u503c\u7684\u90e8\u5206\u53ef\u4ee5\u662f\u4efb\u4f55\u6d6e\u70b9\u6570":101,"\u4f46\u7531\u4e8ecuda\u5e93\u901a\u5e38\u9700\u8981cento":100,"\u4f46\u9700\u6ce8\u610f\u53cd\u5411op\u6ca1\u6709":111,"\u4f46eigen":112,"\u4f4d\u7f6e":104,"\u4f4f":104,"\u4f5c\u4e3a\u4e0b\u4e00\u4e2a\u5b50\u53e5memory\u7684\u521d\u59cb\u72b6\u6001":104,"\u4f5c\u4e3a\u4f8b\u5b50\u6f14\u793a\u5982\u4f55\u914d\u7f6e\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b":107,"\u4f5c\u4e3a\u53c2\u6570\u5c5e\u6027":111,"\u4f5c\u4e3a\u53c2\u6570\u7684id":96,"\u4f5c\u4e3a\u53e6\u4e00\u4e2a\u7b2c\u4e09\u65b9\u5e93\u96c6\u6210\u8fdbpaddlepaddl":62,"\u4f5c\u4e3a\u5b58\u50a8\u7cfb\u7edf":33,"\u4f5c\u4e3a\u5f53\u524d\u65f6\u523b\u8f93\u5165":106,"\u4f5c\u4e3a\u7c7b\u53e5\u67c4":65,"\u4f5c\u4e3a\u7edf\u8ba1\u7684\u57fa\u672c\u5355\u4f4d":121,"\u4f5c\u4e3a\u7f16\u8bd1\u5de5\u5177":97,"\u4f5c\u4e3a\u8c03\u7528":122,"\u4f5c\u4e3a\u8f93\u5165":121,"\u4f5c\u4e3a\u8f93\u51fa":107,"\u4f5c\u4e3aboot_layer\u4f20\u7ed9\u4e0b\u4e00\u4e2a\u5b50\u53e5\u7684memori":104,"\u4f5c\u7528":103,"\u4f60\u53ef\u4ee5\u5c06\u7f51\u7edc\u914d\u7f6e\u6210\u67d0\u4e9b\u5c42\u4f7f\u7528gpu\u8ba1\u7b97":134,"\u4f60\u8fd8\u53ef\u4ee5\u901a\u8fc7\u8fd0\u884cdjango\u6846\u67b6\u76f4\u63a5\u6fc0\u6d3b\u5de5\u5177\u7684\u670d\u52a1\u5668":113,"\u4f60\u9700\u8981\u4e00\u4e9b\u66f4\u590d\u6742\u7684\u5355\u5143\u6d4b\u8bd5\u6765\u4fdd\u8bc1\u4f60\u5b9e\u73b0\u7684\u7f51\u7edc\u5c42\u662f\u6b63\u786e\u7684":110,"\u4f60\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a\u8bbe\u5907\u7684id\u53f7":134,"\u4f60\u9700\u8981\u5728\u914d\u7f6ecmake\u65f6\u5c06":110,"\u4f60\u9700\u8981\u628a\u8be5\u6587\u4ef6\u52a0\u5165":110,"\u4f7f\u4e4b\u53d8\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u8f93\u5165":121,"\u4f7f\u4e4b\u53d8\u4e3a\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u8f93\u5165":121,"\u4f7f\u5f97\u5355\u5143\u6d4b\u8bd5\u6709\u4e00\u4e2a\u5e72\u51c0\u7684\u73af\u5883":91,"\u4f7f\u5f97\u642d\u6a21\u578b\u65f6\u66f4\u65b9\u4fbf":110,"\u4f7f\u68af\u5ea6\u7684\u63d0\u4ea4\u548c\u53c2\u6570\u7684\u66f4\u65b0\u6309\u7167\u987a\u5e8f\u65b9\u5f0f\u6267\u884c":123,"\u4f7f\u7528":[62,66,82,94,95,96,104,106,107,110,116,117,119,121,122,132,136],"\u4f7f\u75280\u53f7\u548c1\u53f7gpu\u8ba1\u7b97fc2\u5c42":134,"\u4f7f\u75280\u53f7gpu\u8ba1\u7b97fc2\u5c42":134,"\u4f7f\u75281\u53f7gpu\u8ba1\u7b97fc3\u5c42":134,"\u4f7f\u75282\u53f7\u548c3\u53f7gpu\u8ba1\u7b97fc3\u5c42":134,"\u4f7f\u7528\u4e00\u4e2a\u5c3a\u5ea6\u4e3a":110,"\u4f7f\u7528\u4e00\u4e2a\u8bcd\u524d\u4e24\u4e2a\u8bcd\u548c\u540e\u4e24\u4e2a\u8bcd":94,"\u4f7f\u7528\u4e0a\u6587\u521b\u5efa\u7684yaml\u6587\u4ef6\u521b\u5efakubernet":126,"\u4f7f\u7528\u4e0b\u9762\u547d\u4ee4":33,"\u4f7f\u7528\u4e0b\u9762\u7684\u547d\u4ee4\u6765\u8fd0\u884c\u5b83":113,"\u4f7f\u7528\u4e86\u540c\u6837\u7684parameter\u548cbia":96,"\u4f7f\u7528\u4ee5\u4e0a\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u8fdb\u884c\u9884\u6d4b":101,"\u4f7f\u7528\u52a8\u6001\u5e93":65,"\u4f7f\u7528\u53c2\u6570":[97,123],"\u4f7f\u7528\u540c\u6837\u7684\u8bad\u7ec3\u6570\u636eblock":32,"\u4f7f\u7528\u57fa\u4e8edocker\u5bb9\u5668\u7684\u7f16\u8bd1\u65b9\u5f0f":136,"\u4f7f\u7528\u591a\u5757\u663e\u5361\u8bad\u7ec3":94,"\u4f7f\u7528\u591a\u7ebf\u7a0b\u8bad\u7ec3":94,"\u4f7f\u7528\u5b66\u4e60\u5b8c\u6210\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u751f\u6210\u5e8f\u5217":107,"\u4f7f\u7528\u5b83\u4f1a\u5f00\u542f\u4e00\u4e2ahttp\u670d\u52a1":116,"\u4f7f\u7528\u5bb9\u5668\u65b9\u5f0f\u8fd0\u884c\u8bad\u7ec3\u4efb\u52a1\u7684kubernet":127,"\u4f7f\u7528\u6211\u4eec\u4e4b\u524d\u6784\u9020\u7684\u955c\u50cf":126,"\u4f7f\u7528\u6570\u503c\u6cd5\u68c0\u6d4b\u68af\u5ea6\u6b63\u786e\u6027\u548c\u7a33\u5b9a\u6027":111,"\u4f7f\u7528\u6587\u6863":111,"\u4f7f\u7528\u663e\u5361\u8bad\u7ec3":94,"\u4f7f\u7528\u667a\u80fd\u6307\u9488\u7684\u539f\u56e0\u662f":66,"\u4f7f\u7528\u6848\u4f8b":133,"\u4f7f\u7528\u6d41\u7a0b":120,"\u4f7f\u7528\u73af\u5883\u53d8\u91cf":123,"\u4f7f\u7528\u7684\u53c2\u6570\u4e0epaddlepaddle\u7533\u8bf7\u7684buffer\u5171\u7528\u4e00\u5757\u5185\u5b58":62,"\u4f7f\u7528\u76f8\u5bf9\u8def\u5f84\u7684\u5f15\u7528\u65b9\u5f0f":66,"\u4f7f\u7528\u8005\u4e0d\u9700\u8981\u5173\u5fc3":132,"\u4f7f\u7528\u8005\u53ea\u9700\u8981\u5173\u6ce8\u4e8e\u8bbe\u8ba1rnn\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u5b8c\u6210\u7684\u8ba1\u7b97":106,"\u4f7f\u7528\u8005\u65e0\u9700\u5173\u5fc3\u8fd9\u4e2a\u53c2\u6570":132,"\u4f7f\u7528\u8005\u901a\u5e38\u65e0\u9700\u5173\u5fc3":132,"\u4f7f\u7528\u8be5learning_rate_schedule\u65f6":96,"\u4f7f\u7528\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u5b8c\u6210\u5bf9\u65b0\u6570\u636e\u7684\u9884\u6d4b":32,"\u4f7f\u7528\u8fd9\u79cd\u65b9\u5f0f":[104,122],"\u4f7f\u7528\u8fdc\u7a0b\u7a00\u758f\u65b9\u5f0f\u8bad\u7ec3\u65f6":110,"\u4f7f\u7528\u9759\u6001\u5e93\u548c\u52a8\u6001\u5e93\u96be\u5ea6\u5dee\u4e0d\u591a":65,"\u4f7f\u7528c":[66,119],"\u4f7f\u7528c99\u505a\u63a5\u53e3":65,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c11\u7684\u539f\u56e0\u662f":65,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c89":65,"\u4f7f\u7528checkgrad\u6a21\u5f0f\u65f6\u7684\u53c2\u6570\u53d8\u5316\u5927\u5c0f":132,"\u4f7f\u7528cmake\u7684\u8bdd":116,"\u4f7f\u7528cpu\u4e24\u7ebf\u7a0b\u8ba1\u7b97fc4\u5c42":134,"\u4f7f\u7528cpu\u8ba1\u7b97fc4\u5c42":134,"\u4f7f\u7528docker":98,"\u4f7f\u7528docker\u5b89\u88c5\u548c\u8fd0\u884cpaddlepaddle\u53ef\u4ee5\u65e0\u9700\u8003\u8651":98,"\u4f7f\u7528docker\u5b89\u88c5\u8fd0\u884c":99,"\u4f7f\u7528docker\u5c31\u4e0d\u7528\u914d\u7f6e\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883\u4e86":108,"\u4f7f\u7528docker\u6784\u5efapaddlepaddle\u7684\u6587\u6863":113,"\u4f7f\u7528docker\u7684\u60c5\u51b5\u4e0b":97,"\u4f7f\u7528eigen\u8fdb\u884c\u77e9\u9635\u8ba1\u7b97":136,"\u4f7f\u7528init":134,"\u4f7f\u7528lstm\u4f5c\u4e3aencod":104,"\u4f7f\u7528memory\u7684rnn\u5b9e\u73b0\u4fbf\u5982\u4e0b\u56fe\u6240\u793a":104,"\u4f7f\u7528model":134,"\u4f7f\u7528openblas\u7684\u955c\u50cf":98,"\u4f7f\u7528openblas\u8fdb\u884c\u77e9\u9635\u8ba1\u7b97":136,"\u4f7f\u7528paddlepaddl":[119,122],"\u4f7f\u7528pip\u5b89\u88c5":99,"\u4f7f\u7528rdma\u8fd8\u662ftcp\u4f20\u8f93\u534f\u8bae":132,"\u4f7f\u7528regress":82,"\u4f7f\u7528swig\u53ea\u652f\u6301cpython\u89e3\u91ca\u5668":65,"\u4f7f\u7528swig\u9700\u8981\u591a\u8bed\u8a00\u7ed1\u5b9a\u7684\u5f00\u53d1\u4eba\u5458\u719f\u7ec3\u638c\u63e1swig\u914d\u7f6e":65,"\u4f7f\u7528void":65,"\u4f7f\u8be5\u5c42\u7684\u53c2\u6570\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4fdd\u6301\u4e0d\u53d8":96,"\u4f86":104,"\u4f8b\u5982":[33,65,66,82,94,95,97,101,104,107,110,117,121,127,131,132,134],"\u4f8b\u5982\u4e0b\u56fe\u4e2d":116,"\u4f8b\u5982\u4e0b\u9762\u4ee3\u7801":94,"\u4f8b\u5982\u4e5f\u53ef\u5728\u7a0b\u5e8f\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u518d\u52a0\u8f7d\u53e6\u5916\u4e00\u4e2a\u6a21\u578b":122,"\u4f8b\u5982\u4f7f\u7528":94,"\u4f8b\u5982\u542b\u6709\u591a\u4e2a\u901a\u9053\u7684\u56fe\u7247":121,"\u4f8b\u5982\u5728deepspeech2":61,"\u4f8b\u5982\u5bf9\u4e8ejava\u6216\u8005python":65,"\u4f8b\u5982\u5bf9\u4e8ejava\u6765\u8bf4":65,"\u4f8b\u5982\u5bf9\u4e8epython":65,"\u4f8b\u5982\u5c06\u7b2c\u4e00\u6761\u6570\u636e\u8f6c\u5316\u4e3a":104,"\u4f8b\u5982\u6587\u672c\u5206\u7c7b\u4e2d":104,"\u4f8b\u5982\u672c\u4f8b\u4e2d\u7684\u4e24\u4e2a\u7279\u5f81":104,"\u4f8b\u5982\u673a\u5668\u4e0a\u67094\u5757gpu":94,"\u4f8b\u5982c":65,"\u4f8b\u5982java\u4e0epython\u7684\u9519\u8bef\u5904\u7406\u662f\u76f4\u63a5\u6254\u51fa\u6765except":65,"\u4f8b\u5982output\u76ee\u5f55\u4e0b\u5c31\u5b58\u653e\u4e86\u8f93\u51fa\u7ed3\u679c":127,"\u4f8b\u5982python\u53ef\u4ee5\u4f7f\u7528":65,"\u4f8b\u5982python\u7684":65,"\u4f8b\u5982rnn":61,"\u4f8b\u5982sigmoid":110,"\u4f8b\u5b50\u4e2d\u4e3a3\u4e2a":123,"\u4f8b\u5b50\u4e2d\u662f":110,"\u4f8b\u5b50\u4e2d\u662f0":110,"\u4f8b\u5b50\u4e2d\u662f100":110,"\u4f8b\u5b50\u4e2d\u662f4096":110,"\u4f8b\u5b50\u4e2d\u662f8192":110,"\u4f8b\u5b50\u4e2d\u662ffc":110,"\u4f8b\u5b50\u4e2d\u662fsoftmax":110,"\u4f9bpaddlepaddle\u52a0\u8f7d":132,"\u4f9d\u636e\u662f\u5426\u5305\u542bkernel":111,"\u4f9d\u6b21\u7c7b\u63a8":82,"\u4f9d\u8d56":[97,100],"\u4f9d\u8d56\u73af\u5883\u5373\u53ef\u8fd0\u884c":98,"\u4f9d\u8d56libpython2":97,"\u4fbf\u5229":104,"\u4fbf\u548c\u5355\u5c42rnn\u914d\u7f6e\u4e2d\u7684":104,"\u4fbf\u5b9c":104,"\u4fbf\u662f\u5c06\u9759\u6001\u5e93\u52a0\u5165jvm\u4e2d":65,"\u4fdd\u5b58\u6a21\u578b\u53c2\u6570\u7684\u76ee\u5f55":132,"\u4fdd\u5b58\u7684\u53c2\u6570\u4e5f\u662ffloat\u7c7b\u578b":96,"\u4fdd\u5b58\u7f51\u7edc\u5c42\u8f93\u51fa\u7ed3\u679c\u7684\u76ee\u5f55":132,"\u4fdd\u5b58\u9884\u6d4b\u7ed3\u679c\u7684\u6587\u4ef6\u540d":132,"\u4fdd\u6301\u5c3d\u91cf\u5c11\u7684commit":109,"\u4fdd\u8bc1\u4f7f\u7528gpu\u8bad\u7ec3\u65f6\u4e5f\u53ef\u4ee5\u83b7\u5f97":94,"\u4fe1\u53f7\u6765\u81ea\u52a8\u7ec8\u6b62\u5b83\u542f\u52a8\u7684\u6240\u6709\u8fdb\u7a0b":124,"\u4fe1\u606f":121,"\u4fee\u590d\u6240\u6709bug\u540e":82,"\u4fee\u590ddocker\u7f16\u8bd1\u955c\u50cf\u95ee\u9898":82,"\u4fee\u6539":[62,82,126],"\u4fee\u6539\u542f\u52a8\u811a\u672c\u540e":126,"\u4fee\u6539\u6210":82,"\u4fee\u6539\u6210\u66f4\u5feb\u7684\u7248\u672c":117,"\u4fee\u6539\u6587\u6863":114,"\u503c\u5f97\u6ce8\u610f\u7684\u662f":[104,109],"\u503c\u5f97\u6df1\u5165\u5206\u6790":117,"\u503c\u7c7b\u578b":134,"\u5047\u5982\u6211\u4eec\u662f\u4e09\u5206\u7c7b\u95ee\u9898":96,"\u5047\u8bbe":110,"\u5047\u8bbe\u60a8\u5df2\u7ecf\u5728\u5f53\u524d\u76ee\u5f55":98,"\u5047\u8bbe\u635f\u5931\u51fd\u6570\u662f":110,"\u5047\u8bbe\u7b2c\u4e00\u4e2alayer\u7684\u8f93\u51faa\u662f\u4e00\u4e2a":94,"\u504f\u7f6e\u53c2\u6570\u7684\u5927\u5c0f":110,"\u505a\u4e00\u4e2a\u4ecb\u7ecd":112,"\u505a\u53ea\u8bfb\u6302\u8f7d":33,"\u505a\u5982\u4e0b\u51e0\u4e2a\u64cd\u4f5c":82,"\u505a\u63a5\u53e3":65,"\u505a\u68af\u5ea6\u68c0\u6d4b":111,"\u505a\u68c0\u67e5":111,"\u505c\u6b62\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":32,"\u505c\u6b62\u52a0\u8f7d\u6570\u636e":132,"\u505c\u7535":104,"\u5141\u8bb8\u5916\u7f51\u8bbf\u95ee\u8fd9\u4e2ahttp\u670d\u52a1":116,"\u5143\u7d20":103,"\u5143\u7d20\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u5e8f\u5217\u6240\u643a\u5e26\u7684\u91cd\u8981\u4fe1\u606f":121,"\u5143\u7d20\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u91cd\u8981\u7684\u8f93\u5165\u4fe1\u606f":103,"\u5145\u5206\u53d1\u6325\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u4f18\u52bf":61,"\u5145\u5206\u5c55\u73b0\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u4f18\u52bf":62,"\u5148\u4ece\u5355\u7ebf\u7a0b\u5f00\u59cb":116,"\u5148\u5378\u8f7d\u4e4b\u524d\u7684\u7248\u672c":97,"\u5148\u5b8c\u6210\u5bf9\u6743\u91cd\u7684packing\u64cd\u4f5c":61,"\u5148\u5b9e\u73b0\u6a21\u578b\u63a8\u65ad\u7684api":66,"\u5148\u627e\u51fa\u53c2\u6570":95,"\u5148\u67e5\u770b\u4e00\u4e0b\u662f\u5426\u66fe\u7ecf\u5b89\u88c5\u8fc7paddl":91,"\u5148\u68c0\u67e5\u5173\u952e\u8def\u5f84\u7684\u6027\u80fd\u95ee\u9898":116,"\u514b\u9686\u4e0b\u9762":138,"\u5168\u5bb6":104,"\u5168\u8fde\u63a5\u5c42\u4ee5\u4e00\u4e2a\u7ef4\u5ea6\u4e3a":110,"\u5168\u8fde\u63a5\u5c42\u6ca1\u6709\u7f51\u7edc\u5c42\u914d\u7f6e\u7684\u8d85\u53c2\u6570":110,"\u5168\u8fde\u63a5\u5c42\u7684\u5b9e\u73b0\u4f4d\u4e8e":110,"\u5168\u8fde\u63a5\u5c42\u7684\u6bcf\u4e2a\u8f93\u51fa\u90fd\u8fde\u63a5\u5230\u4e0a\u4e00\u5c42\u7684\u6240\u6709\u7684\u795e\u7ecf\u5143\u4e0a":110,"\u5168\u8fde\u63a5\u5c42python\u5c01\u88c5\u7684\u4f8b\u5b50\u4e2d\u5305\u542b\u4e0b\u9762\u51e0\u6b65":110,"\u516c\u5f0f":98,"\u5171\u4eab\u4e00\u4e2aop\u5b9a\u4e49":111,"\u5171\u4eab\u5185\u5b58":62,"\u5171\u4eab\u540c\u4e00\u4e2a\u6743\u91cd":61,"\u5171\u4eab\u540c\u4e00\u4e2akernel\u65f6":111,"\u5171\u4eab\u5b58\u50a8\u6302\u5728\u7684\u8def\u5f84":127,"\u5173\u4e8e\u4ec0\u4e48\u662f":121,"\u5173\u4e8e\u5728paddlepaddle\u4e2d\u5982\u4f55\u4f7f\u7528eigen\u5e93":111,"\u5173\u4e8e\u65f6\u95f4\u5e8f\u5217":104,"\u5173\u4e8e\u6784\u5efa\u548c\u6d4b\u8bd5\u7684\u66f4\u591a\u4fe1\u606f":109,"\u5173\u4e8eavx":98,"\u5173\u4e8eeigen":112,"\u5173\u4e8elstm":95,"\u5173\u4e8epaddlepaddle\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3":127,"\u5173\u4e8epaddlepaddle\u7684\u66f4\u591a\u4f7f\u7528\u65b9\u6cd5\u8bf7\u53c2\u8003":101,"\u5173\u4e8eunbound":106,"\u5173\u952e\u8bcd\u5305\u62ec":109,"\u5176\u4e2d":[65,82,94,96,101,107,110,116,136,138],"\u5176\u4e2d\u5305\u542b\u4e86\u7528\u6237\u7684\u8bad\u7ec3\u7a0b\u5e8f":123,"\u5176\u4e2d\u5305\u542b\u6240\u4f9d\u8d56\u7684\u6240\u6709\u7b2c\u4e09\u65b9\u5e93":137,"\u5176\u4e2d\u5305\u542b\u6240\u6709c":137,"\u5176\u4e2d\u5305\u542bpaddlepaddle\u7684c":137,"\u5176\u4e2d\u6bcf\u4e2a\u5143\u7d20\u662f\u53cc\u5c42\u5e8f\u5217\u4e2d\u6bcf\u4e2asubseq\u6700\u540e\u4e00\u4e2a":103,"\u5176\u4e2dcheckgrad\u4e3b\u8981\u4e3a\u5f00\u53d1\u8005\u4f7f\u7528":132,"\u5176\u4e2dmean\u548cstd\u662f\u8bad\u7ec3\u914d\u7f6e\u4e2d\u7684\u53c2\u6570":132,"\u5176\u4e2dx\u8868\u793a\u8f93\u5165\u6570\u636e\u662f\u4e00\u4e2a\u7ef4\u5ea6\u4e3a2\u7684\u7a20\u5bc6\u5411\u91cf":101,"\u5176\u4e3b\u8981\u63a5\u53e3\u5982\u4e0b":112,"\u5176\u4ed6\u4eba\u53ef\u4ee5\u590d\u73b0\u95ee\u9898\u4ee5\u4fbf\u5e2e\u52a9":108,"\u5176\u4ed6\u5185\u5b58\u6742\u9879":94,"\u5176\u4ed6\u5185\u5b58\u6742\u9879\u662f\u6307paddlepaddle\u672c\u8eab\u6240\u7528\u7684\u4e00\u4e9b\u5185\u5b58":94,"\u5176\u4ed6\u51fd\u6570\u5747\u8fd4\u56de":66,"\u5176\u4ed6\u6240\u6709\u5c42\u90fd\u4f1a\u4f7f\u7528gpu\u8ba1\u7b97":134,"\u5176\u4ed6\u7528\u6237\u7684fork\u7248\u672c\u5e93\u5e76\u4e0d\u9700\u8981\u4e25\u683c\u9075\u5b88":82,"\u5176\u4ed6\u7684\u4f9d\u8d56\u8f6f\u4ef6":97,"\u5176\u4ed6\u914d\u7f6e\u53c2\u6570":[136,137],"\u5176\u4ed6\u9ad8\u7ea7\u529f\u80fd\u5305\u62ec\u5b9a\u4e49\u591a\u4e2amemori":107,"\u5176\u4f1a\u81ea\u52a8\u88ab\u52a0\u5165\u7f16\u8bd1\u5217\u8868":110,"\u5176\u547d\u4ee4\u5982\u4e0b":116,"\u5176\u5b83\u53ef\u9009\u7f16\u8bd1\u9009\u9879\u6309\u9700\u8fdb\u884c\u8bbe\u5b9a":119,"\u5176\u5b83layer\u7684\u8f93\u51fa":106,"\u5176\u5b9e\u4e5f\u662f\u548c\u6bcf\u4e2amini":94,"\u5176\u6b21":104,"\u5176\u8bf4\u660e\u5982\u4e0b":104,"\u5176\u8f6c\u6362\u6b21\u6570\u51cf\u5c11\u81f3":61,"\u5176\u8f93\u51fa\u88ab\u7528\u4f5cmemory\u7684\u521d\u59cb\u503c":107,"\u5176name\u7531\u53c2\u6570":95,"\u5177\u4f53\u4f7f\u7528\u65b9\u6cd5\u4e3a":[66,94],"\u5177\u4f53\u505a\u6cd5\u8bf7\u53c2\u8003":108,"\u5177\u4f53\u539f\u56e0\u53c2\u8003":66,"\u5177\u4f53\u53ef\u4ee5\u53c2\u8003":[94,110],"\u5177\u4f53\u53ef\u4ee5\u53c2\u8003mkl":62,"\u5177\u4f53\u53ef\u53c2\u8003\u6587\u6863":106,"\u5177\u4f53\u5b9e\u73b0\u65b9\u5f0f\u6bd4\u5982":[61,62],"\u5177\u4f53\u60c5\u51b5\u56e0\u4eba\u800c\u5f02":117,"\u5177\u4f53\u64cd\u4f5c\u5982\u4e0b":91,"\u5177\u4f53\u6b65\u9aa4\u5982\u4e0b":91,"\u5177\u4f53\u7684\u5b8c\u6210\u72b6\u6001\u53ef\u4ee5\u53c2\u89c1":62,"\u5177\u4f53\u7684\u89e3\u51b3\u65b9\u6cd5\u662f":91,"\u5177\u4f53\u8bf7\u53c2\u8003":[66,109],"\u5177\u4f53\u8bf7\u89c1":109,"\u5177\u6709\u76f8\u540c\u7684\u7ed3\u679c\u4e86":104,"\u5185":107,"\u5185\u5b58":117,"\u5185\u5b58\u4e0d\u8db3":92,"\u5185\u5b58\u5bb9\u9650\u9608\u503c":132,"\u5185\u5bb9":111,"\u5185\u5bb9\u5982\u4e0b":126,"\u5185\u5c42\u5e8f\u5217\u5728":121,"\u5185\u5c42inner_step\u7684recurrent_group\u548c\u5355\u5c42\u5e8f\u5217\u7684\u51e0\u4e4e\u4e00\u6837":104,"\u5185\u5df2\u7ecf\u5305\u542bpaddlepaddle\u7684\u6267\u884c\u7a0b\u5e8f\u4f46\u662f\u8fd8\u6ca1\u4e0a\u8ff0\u529f\u80fd":127,"\u5185\u7f6e\u7684":122,"\u5185\u90e8":[122,127],"\u5185\u90e8\u5b58\u50a8":62,"\u5185\u90e8\u7531":[121,122],"\u5185\u90e8\u9a71\u52a8python\u89e3\u91ca\u5668\u8fdb\u884c\u6a21\u578b\u914d\u7f6e\u89e3\u6790\u548c\u6570\u636e\u8bfb\u53d6":65,"\u518d\u4ee5":111,"\u518d\u505a\u4e00\u5b9a\u7684reshap":95,"\u518d\u5199\u5165\u7f51\u7edc\u53c2\u6570":96,"\u518d\u5728\u6bcf\u4e00\u4e2aapi\u4e2d\u81ea\u5df1\u68c0\u67e5\u7c7b\u578b":65,"\u518d\u57fa\u4e8e":82,"\u518d\u5b89\u88c5":[91,100],"\u518d\u5bf9\u6bcf\u4e00\u4e2a\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u8fdb\u884c\u5904\u7406":104,"\u518d\u5bf9\u6bcf\u4e00\u53e5\u8bdd\u7684\u7f16\u7801\u5411\u91cf\u7528lstm\u7f16\u7801\u6210\u4e00\u4e2a\u6bb5\u843d\u7684\u5411\u91cf":104,"\u518d\u5bf9\u8fd9\u4e2a\u6bb5\u843d\u5411\u91cf\u8fdb\u884c\u5206\u7c7b":104,"\u518d\u5c06\u66f4\u65b0\u540e\u7684\u53c2\u6570\u4e0b\u53d1\u5230\u6bcf\u4e2a\u8ba1\u7b97\u8282\u70b9":123,"\u518d\u5f00\u542f\u591a\u7ebf\u7a0b":116,"\u518d\u628a\u5df2\u8f6c\u6362\u4e3apacked\u683c\u5f0f\u7684\u6570\u636e\u4f20\u9012\u7ed9\u90a3\u4e9b\u590d\u7528\u540c\u4e00\u6570\u636e\u7684gemm":61,"\u518d\u6307\u5b9a":97,"\u518d\u68c0\u67e5\u5176\u4ed6\u90e8\u5206\u7684\u6027\u80fd\u95ee\u9898":116,"\u518d\u6b21\u5bf9\u4ee3\u7801\u8fdb\u884c\u6027\u80fd\u5206\u6790":117,"\u518d\u6b21\u8fdb\u884c\u6027\u80fd\u5206\u6790":116,"\u518d\u7528\u8fd9\u4e2a\u68af\u5ea6\u53bb\u548c":110,"\u518d\u901a\u8fc7\u51fd\u6570":127,"\u518d\u91cd\u65b0\u5b89\u88c5":97,"\u5199\u4ee3\u7801":65,"\u5199\u5165\u5feb\u7167\u6570\u636e":32,"\u5199\u5165\u6587\u4ef6\u4e2d":122,"\u5199\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5\u662f\u4e00\u4e2a\u9a8c\u8bc1\u65b0\u5b9e\u73b0\u7684\u5c42\u662f\u5426\u6b63\u786e\u7684\u76f8\u5bf9\u7b80\u5355\u7684\u529e\u6cd5":110,"\u5199\u7684":116,"\u51c6\u5907":104,"\u51c6\u5907\u60a8\u7684\u8ba1\u7b97\u96c6\u7fa4":123,"\u51c6\u5907\u8bad\u7ec3\u6570\u636e":128,"\u51c6\u5907\u8bad\u7ec3\u6570\u636e\u548c\u9a8c\u8bc1\u6570\u636e\u96c6":123,"\u51c6\u5907\u9884\u6d4b\u6a21\u578b\u548c":122,"\u51c6\u5907\u9884\u6d4b\u6a21\u578b\u90e8\u5206":122,"\u51cf\u5c0f\u5e8f\u5217\u7684\u957f\u5ea6":94,"\u51cf\u5c0f\u8fd9\u4e2a\u5185\u5b58\u6c60\u5373\u53ef\u51cf\u5c0f\u5185\u5b58\u5360\u7528":94,"\u51cf\u5c0fbatch":94,"\u51e0\u53f0\u5230\u51e0\u5343\u53f0\u89c4\u6a21":123,"\u51fa\u53bb\u73a9":104,"\u51fa\u5dee":104,"\u51fa\u6765":104,"\u51fa\u73b0":91,"\u51fa\u73b0\u4ee5\u4e0b\u9519\u8bef":96,"\u51fa\u73b0\u8be5\u9519\u8bef\u7684\u539f\u56e0\u4e00\u822c\u662f\u7528\u6237\u5bf9\u4e0d\u540clayer\u7684\u53c2\u6570":95,"\u51fa\u73b0\u8fd9\u4e2a\u95ee\u9898\u7684\u4e3b\u8981\u539f\u56e0\u662f":[91,100],"\u51fd\u6570":[61,62,107,110,116,117,121],"\u51fd\u6570\u4e2d\u64cd\u4f5c\u7684\u91cd\u8981\u53d8\u91cf\u7684\u8be6\u7ec6\u89e3\u91ca":111,"\u51fd\u6570\u5047\u8bbe":107,"\u51fd\u6570\u52a0\u5230\u4ee3\u7801\u4e2d":117,"\u51fd\u6570\u5373\u53ef\u5b8c\u6210\u8f6c\u6362":33,"\u51fd\u6570\u53ea\u5173\u6ce8\u4e8ernn\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u7684\u8ba1\u7b97":106,"\u51fd\u6570\u540d":116,"\u51fd\u6570\u540d\u4e3a":66,"\u51fd\u6570\u547d\u540d":65,"\u51fd\u6570\u5b9a\u4e49\u8f93\u5165":111,"\u51fd\u6570\u5b9e\u9645\u4f7f\u7528\u7684\u603b\u65f6\u95f4":116,"\u51fd\u6570\u5f97\u5230\u7684\u68af\u5ea6\u53bb\u5bf9\u6bd4":110,"\u51fd\u6570\u5fc5\u987b\u5148\u8c03\u7528\u57fa\u7c7b\u4e2d\u7684\u51fd\u6570":110,"\u51fd\u6570\u5fc5\u987b\u8fd4\u56de\u4e00\u4e2a\u6216\u591a\u4e2alayer\u7684\u8f93\u51fa":106,"\u51fd\u6570\u603b\u65f6\u95f4":116,"\u51fd\u6570\u6307\u51fa\u4e86\u5728\u8bad\u7ec3\u65f6\u9700\u8981\u4ece\u53c2\u6570\u670d\u52a1\u5668\u53d6\u51fa\u7684\u884c":110,"\u51fd\u6570\u6765\u5c06\u4fe1\u606f\u8f93\u51fa\u5230\u754c\u9762\u4e2d":117,"\u51fd\u6570\u7684\u5b9e\u73b0\u662f\u6b63\u786e\u7684":110,"\u51fd\u6570\u7684\u5f00\u5934\u5fc5\u987b\u8c03\u7528":110,"\u51fd\u6570\u7684\u603b\u5171\u8017\u65f6\u5f88\u957f":116,"\u51fd\u6570\u7684\u8c03\u7528\u6b21\u6570":116,"\u51fd\u6570\u80fd\u591f\u5c06\u4f7f\u7528":122,"\u51fd\u6570\u91cc\u5b9e\u73b0":111,"\u5206\u4e3a":122,"\u5206\u522b\u4e3a\u6570\u636e\u8f93\u5165\u6dfb\u52a0\u5916\u5c42\u5e8f\u5217\u548c\u5185\u5c42\u5e8f\u5217\u7684\u5e8f\u5217\u4fe1\u606f":121,"\u5206\u522b\u4ece\u8bcd\u8bed\u548c\u53e5\u5b50\u7ea7\u522b\u7f16\u7801\u8f93\u5165\u6570\u636e":106,"\u5206\u522b\u4ee3\u8868\u8f93\u5165\u6570\u636e":62,"\u5206\u522b\u4f7f\u7528\u5355\u53cc\u5c42rnn\u4f5c\u4e3a\u7f51\u7edc\u914d\u7f6e\u7684\u6a21\u578b":104,"\u5206\u522b\u5b9a\u4e49\u5b50\u53e5\u7ea7\u522b\u548c\u8bcd\u8bed\u7ea7\u522b\u4e0a\u9700\u8981\u5b8c\u6210\u7684\u8fd0\u7b97":106,"\u5206\u522b\u5bf9\u5e94capi":82,"\u5206\u522b\u662f":103,"\u5206\u522b\u662frnn\u72b6\u6001\u548c\u8f93\u5165\u7684\u53d8\u6362\u77e9\u9635":107,"\u5206\u522b\u662fsentences\u548clabel":104,"\u5206\u522b\u662fwords\u548clabel":104,"\u5206\u522b\u8ba1\u7b97\u6bcf\u4e2a\u53c2\u6570\u7684\u68af\u5ea6":110,"\u5206\u522b\u8fdb\u884c\u5e8f\u5217\u64cd\u4f5c":104,"\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1":32,"\u5206\u5e03\u5f0f\u8ba1\u7b97\u5e73\u53f0\u901a\u5e38\u4f1a\u901a\u8fc7api\u6216\u8005\u73af\u5883\u53d8\u91cf\u63d0\u4f9b\u4efb\u52a1\u8fd0\u884c\u9700\u8981\u7684\u53c2\u6570":123,"\u5206\u5e03\u5f0f\u8bad\u7ec3":114,"\u5206\u5e03\u5f0f\u8bad\u7ec3\u67b6\u6784\u5982\u4e0b\u56fe\u6240\u793a":123,"\u5206\u652f":[82,109],"\u5206\u652f\u4e00\u65e6\u5efa\u7acb":82,"\u5206\u652f\u4e0a":109,"\u5206\u652f\u4e0a\u521b\u5efa\u65b0\u5206\u652f":109,"\u5206\u652f\u4e2d":82,"\u5206\u652f\u4e3a\u5f00\u53d1":82,"\u5206\u652f\u4e3a\u6bcf\u4e00\u6b21release\u65f6\u5efa\u7acb\u7684\u4e34\u65f6\u5206\u652f":82,"\u5206\u652f\u4e3a\u7a33\u5b9a":82,"\u5206\u652f\u529f\u80fd\u7684\u5c01\u95ed":82,"\u5206\u652f\u5408\u5165":82,"\u5206\u652f\u5408\u5165master\u5206\u652f":82,"\u5206\u652f\u540c\u6b65\u4e3b\u7248\u672c\u5e93\u7684":82,"\u5206\u652f\u540d":109,"\u5206\u652f\u540d\u4e3a":82,"\u5206\u652f\u5b58\u5728\u7684\u65f6\u5019":82,"\u5206\u652f\u6d3e\u751f\u51fa\u65b0\u7684\u5206\u652f":82,"\u5206\u652f\u7528\u6765\u6d4b\u8bd5\u53ea\u9700\u8981\u8ba1\u7b97\u4e00\u4e2a\u8f93\u5165\u68af\u5ea6\u7684\u60c5\u51b5":111,"\u5206\u652f\u7684\u7248\u672c\u90fd\u662f\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5\u548c\u56de\u5f52\u6d4b\u8bd5\u7684\u7248\u672c":82,"\u5206\u652f\u7684\u7248\u672c\u90fd\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5":82,"\u5206\u652f\u89c4\u8303":109,"\u5206\u6790\u5f97\u5230\u7684\u4fe1\u606f\u7528\u4e8e\u534f\u52a9\u8fdb\u884c\u7a0b\u5e8f\u7684\u4f18\u5316":117,"\u5206\u7247":32,"\u5206\u7c7b\u4efb\u52a1\u4e2d\u7c7b\u522b\u6807\u7b7e":121,"\u5206\u914d\u5230\u5f53\u524d\u6570\u636e\u5757\u6837\u672c\u6570\u7684\u56db\u5206\u4e4b\u4e00":132,"\u5207\u6362\u5230":109,"\u5207\u6362\u5230\u6240\u5efa\u5206\u652f":109,"\u5217\u5143\u7d20\u6392\u5217\u6210\u7684\u77e9\u5f62\u9635\u5217":121,"\u5217\u540d":116,"\u5217\u8868\u5982\u4e0b":101,"\u5219\u4e0d\u9700\u8981\u91cd\u5199\u8be5\u51fd\u6570":110,"\u5219\u4f1a\u4f7f\u7528openblas\u4f5c\u4e3ablas\u5e93":97,"\u5219\u4f7f\u7528":137,"\u5219\u4f7f\u7528\u540c\u6b65\u8bad\u7ec3":132,"\u5219\u4f7f\u7528\u542f\u52a8\u53c2\u6570\u5b9a\u4e49\u7684\u521d\u59cb\u5316\u65b9\u6cd5\u521d\u59cb\u5316\u53c2\u6570":32,"\u5219\u4f7f\u7528\u8be5\u53c2\u6570\u4f5c\u4e3a\u9ed8\u8ba4\u503c":132,"\u5219\u53ef\u8bbe\u7f6e":[136,137,138],"\u5219\u5e76\u4e0d\u4f1a\u7b49\u5f85\u6240\u6709trainer\u63d0\u4ea4\u68af\u5ea6\u624d\u66f4\u65b0\u53c2\u6570":123,"\u5219\u5ffd\u7565":32,"\u5219\u603b\u4f1a\u663e\u793a\u963b\u9694\u6458\u8981\u4fe1\u606f":132,"\u5219\u628a\u53e6\u4e00\u4e2a\u6162\u901f\u7684kill\u6389":32,"\u5219\u662f\u5e26gui\u7684nvidia\u53ef\u89c6\u5316\u6027\u80fd\u5206\u6790\u5de5\u5177":117,"\u5219\u663e\u793a\u963b\u9694\u6027\u80fd\u7684\u6458\u8981\u4fe1\u606f":132,"\u5219\u76f4\u63a5\u5f15\u5165\u53e6\u4e00\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":66,"\u5219\u8bbe\u7f6e\u6210":[136,138],"\u5219\u9700\u8981\u4f7f\u7528\u7b49\u4e8e\u6743\u91cd\u53c2\u6570\u89c4\u6a21\u5927\u7ea65\u500d\u7684\u5185\u5b58":94,"\u5219\u9700\u8981\u5206\u522b\u7f16\u8bd1\u771f\u673a\u548c\u6a21\u62df\u5668\u7248\u672c":137,"\u5219\u9700\u8981\u56de\u6eda\u5230\u4e0a\u4e00\u4e2a\u68c0\u67e5\u70b9":32,"\u5219\u9700\u8981\u5728\u672c\u673a\u5b89\u88c5\u4e0b\u9762\u7ae0\u8282\u5217\u51fa\u7684":97,"\u5219\u9700\u8981\u624b\u52a8\u62f7\u8d1d\u5c5e\u4e8e\u6bcf\u4e2atrainer\u8282\u70b9\u7684\u8bad\u7ec3\u6570\u636e\u5230\u5bf9\u5e94\u7684\u8282\u70b9\u4e0a":123,"\u521b\u5efa":[62,121,122],"\u521b\u5efa\u4e00\u4e2a":102,"\u521b\u5efa\u4e00\u4e2akubernet":127,"\u521b\u5efa\u5e76\u5207\u6362\u5230\u65b0\u5206\u652f":109,"\u521b\u5efa\u6210\u529f\u540e":127,"\u521b\u5efa\u65e5\u5fd7\u76ee\u5f55":128,"\u521b\u5efa\u7a00\u758f\u77e9\u9635\u65f6\u9700\u8981\u663e\u793a\u5730\u6307\u5b9a\u77e9\u9635\u7684":121,"\u521d\u59cb\u5316\u504f\u7f6e\u5411\u91cf":110,"\u521d\u59cb\u5316\u6743\u91cd\u8868":110,"\u521d\u59cb\u5316\u6a21\u578b\u7684\u8def\u5f84":132,"\u521d\u59cb\u5316\u7236\u7c7b":110,"\u521d\u59cb\u5316biases_":110,"\u521d\u59cb\u72b6\u6001":106,"\u5220\u9664":109,"\u5220\u9664\u78c1\u76d8\u76ee\u5f55\u4e2d\u4e0d\u662f\u5f53\u524duuid\u7684\u5feb\u7167\u6587\u4ef6":32,"\u5224\u65ad\u662f\u5426\u5b89\u88c5\u6210\u529f":137,"\u5229\u7528\u5206\u5e03\u5f0f\u8bad\u7ec3\u9a7e\u9a6d\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90":94,"\u5229\u7528\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90\u53ef\u4ee5\u5206\u4e3a\u4ee5\u4e0b\u51e0\u4e2a\u65b9\u5f0f\u6765\u8fdb\u884c":94,"\u5229\u7528\u8fd9\u79cd\u7279\u6027":106,"\u5229\u843d":104,"\u522b\u4eba\u5e2e\u4e86\u5fd9":109,"\u522b\u5fd8\u4e86":108,"\u5230":[32,91,107],"\u5230\u6307\u5b9a\u6587\u4ef6\u4e2d":122,"\u5230\u672c\u5730":109,"\u5230\u6b64":111,"\u5230\u7b2c\u4e8c\u6b65":82,"\u5236\u4f5c\u65b0\u955c\u50cf\u6765\u5b8c\u6210\u4ee5\u4e0a\u7684\u5de5\u4f5c":127,"\u5236\u4f5cpaddlepaddle\u955c\u50cf":127,"\u5237\u7259":104,"\u524d\u4e00\u7bc7\u6587\u7ae0\u4ecb\u7ecd\u4e86\u5982\u4f55\u5728kubernetes\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2a\u5355\u673apaddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":127,"\u524d\u53f0":104,"\u524d\u540e\u7684\u7f51\u7edc\u6027\u80fd":61,"\u524d\u5411\u4f20\u64ad":110,"\u524d\u5411\u4f20\u64ad\u7ed9\u5b9a\u8f93\u5165":110,"\u524d\u5411\u548c\u540e\u5411":110,"\u524d\u5411\u8ba1\u7b97\u4e4b\u540epaddlepaddle\u5185\u90e8\u5df2\u7ecf\u5206\u914d":122,"\u524d\u5411op\u5b9e\u73b0\u5b8c\u6210":111,"\u524d\u8005\u5728":94,"\u524d\u8005\u5b58\u50a8op\u7684\u8f93\u5165\u8f93\u51fa\u548c\u53c2\u6570\u5c5e\u6027":111,"\u524d\u8005\u622a\u65ad\u53ef\u5b66\u4e60\u53c2\u6570\u7684\u68af\u5ea6":94,"\u524d\u8005op\u7684\u5b9a\u4e49\u7ee7\u627f\u81ea":111,"\u524d\u81ea\u52a8\u68c0\u67e5\u4e00\u4e9b\u57fa\u672c\u4e8b\u5b9c":109,"\u524d\u9700\u8981\u5b89\u88c5":116,"\u524d\u9988":123,"\u529f\u80fd":48,"\u529f\u80fd\u7684\u6b63\u786e\u6027\u5305\u62ec\u9a8c\u8bc1paddlepaddle\u76ee\u524d\u7684":82,"\u52a0\u4e0a\u504f\u7f6e\u5411\u91cf":110,"\u52a0\u5165":117,"\u52a0\u6743\u548c\u7528\u6765\u751f\u6210":107,"\u52a0\u6743\u7f16\u7801\u5411\u91cf":107,"\u52a0\u8f7d\u5177\u4f53\u7f51\u7edc\u53c2\u6570":96,"\u52a0\u8f7d\u6a21\u578b\u53ef\u5176\u5b83\u591a\u79cd\u65b9\u5f0f":122,"\u52a0\u8f7d\u6a21\u578b\u9700\u540c\u65f6\u6307\u5b9a":122,"\u52a0\u8f7d\u9884\u6d4b\u6a21\u578b":122,"\u52a0\u8f7d\u9884\u8bad\u7ec3\u53c2\u6570":96,"\u52a0\u8f7dtest":132,"\u52a0\u901f\u7f16\u8bd1":97,"\u52a0\u901fpaddlepaddle\u8bad\u7ec3\u53ef\u4ee5\u8003\u8651\u4ece\u4ee5\u4e0b\u51e0\u4e2a\u65b9\u9762":94,"\u52a8\u6001\u5e93":[65,119],"\u52a9\u624b":110,"\u5305":116,"\u5305\u542b\u4e86\u67d0\u79cd\u7c7b\u578b\u7684\u7c7b\u578b\u5b9a\u4e49\u548c\u66b4\u9732\u7684\u5168\u90e8\u51fd\u6570":66,"\u5305\u542b\u4f46\u4e0d\u9650\u4e8e":97,"\u5305\u542b\u6d4b\u8bd5\u6570\u636e\u96c6\u7684\u76ee\u5f55":123,"\u5305\u542b\u8bad\u7ec3\u6570\u636e\u7684\u76ee\u5f55":123,"\u5305\u542b\u8fd9\u4e2a\u51fd\u6570\u8c03\u7528\u5176\u4ed6\u51fd\u6570\u7684\u65f6\u95f4":116,"\u5305\u542bkernel\u7684op\u548c\u4e0d\u5305\u542bkernel\u7684op":111,"\u5305\u62ec":[33,61,62,119,123,132],"\u5305\u62ec\u4e86\u7f16\u8bd1\u51fa\u7684paddlepaddle\u5934\u6587\u4ef6\u548c\u94fe\u63a5\u5e93":119,"\u5305\u62ec\u5b57\u7b26\u4e32\u5206\u914d":94,"\u5305\u62ec\u6743\u91cdw\u548c\u504f\u7f6eb":32,"\u5305\u62ec\u751f\u6210cpu":97,"\u5305\u62ec\u795e\u7ecf\u7f51\u7edc\u62d3\u6251\u7ed3\u6784":101,"\u5305\u62ecbool":134,"\u5305\u62eclinux":136,"\u5305\u62ecmkl":62,"\u5305\u7684\u65b9\u6cd5\u662f":91,"\u533a\u522b\u662f\u540c\u65f6\u5904\u7406\u4e86\u4e24\u4e2a\u8f93\u5165":104,"\u533a\u522b\u662frnn\u4f7f\u7528\u4e24\u5c42\u5e8f\u5217\u6a21\u578b":104,"\u5341\u4e00":104,"\u534e\u6da6\u4e07\u5bb6":104,"\u534f\u540c\u5b8c\u6210releas":82,"\u5355\u4e2a\u503c":33,"\u5355\u4f4d\u662fmb":132,"\u5355\u5143\u6d4b\u8bd5":[108,112],"\u5355\u5143\u6d4b\u8bd5\u4f1a\u5f15\u7528site":91,"\u5355\u5143\u6d4b\u8bd5\u4f1a\u88ab\u81ea\u52a8\u52a0\u5165\u5de5\u7a0b\u8fdb\u884c\u7f16\u8bd1":111,"\u5355\u5143\u6d4b\u8bd5\u5728\u5185\u7684\u6240\u6709\u5355\u5143\u6d4b\u8bd5":108,"\u5355\u5143\u6d4b\u8bd5checkgrad_ep":131,"\u5355\u53cc\u5c42\u5e8f\u5217\u7684\u53e5\u5b50\u662f\u4e00\u6837\u7684":104,"\u5355\u53cc\u5c42rnn":105,"\u5355\u5c42":106,"\u5355\u5c42\u4e0d\u7b49\u957frnn":104,"\u5355\u5c42\u548c\u53cc\u5c42\u5e8f\u5217\u7684\u4f7f\u7528\u548c\u793a\u4f8b2\u4e2d\u7684\u793a\u4f8b\u7c7b\u4f3c":104,"\u5355\u5c42\u5e8f\u5217":[103,121],"\u5355\u5c42\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20":103,"\u5355\u5c42\u5e8f\u5217\u7b2ci\u4e2a\u5143\u7d20":103,"\u5355\u5c42\u6216\u53cc\u5c42":103,"\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":104,"\u5355\u5c42rnn":[104,106],"\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u7684\u7f51\u7edc\u914d\u7f6e":104,"\u5355\u673acpu\u8bad\u7ec3":94,"\u5355\u673agpu\u8bad\u7ec3":94,"\u5355\u6b65\u51fd\u6570":107,"\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570\u5728":107,"\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570\u90fd\u975e\u5e38\u7b80\u5355":107,"\u5355\u6b65\u51fd\u6570\u7684\u5b9e\u73b0\u5982\u4e0b\u6240\u793a":107,"\u5355\u6d4b\u5305\u62ec\u5bf9\u6bd4\u524d\u5411op\u4e0d\u540c\u8bbe\u5907":111,"\u5355\u70b9\u6545\u969c":32,"\u5355\u7eaf\u7684":116,"\u5355\u8fdb\u5355\u51fa":106,"\u5360\u7528\u4e8617":116,"\u536b\u751f":104,"\u5373":[66,94,95,111,113,127],"\u5373\u4e0a\u8ff0\u4ee3\u7801\u4e2d\u7684\u7b2c19\u884c":104,"\u5373\u4e0b\u8f7d\u5931\u8d25":91,"\u5373\u4e0d\u5141\u8bb8\u5728":111,"\u5373\u4e0d\u9700\u8981\u4f7f\u7528memori":104,"\u5373\u4e3a\u4e00\u4e2a\u65f6\u95f4\u6b65":104,"\u5373\u4e3a\u5355\u5c42rnn\u5e8f\u5217\u7684\u4f7f\u7528\u4ee3\u7801":104,"\u5373\u4e3a\u65f6\u95f4\u5e8f\u5217\u7684\u8f93\u5165":104,"\u5373\u4e3a\u8fd9\u4e2a\u53cc\u5c42rnn\u7684\u7f51\u7edc\u7ed3\u6784":104,"\u5373\u4e8c\u7ef4\u6570\u7ec4":104,"\u5373\u4f7f\u7528":[66,95],"\u5373\u4f7f\u7528\u6237\u76f4\u63a5\u5f15\u7528\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":66,"\u5373\u4f7f\u95f4\u9694\u5f88\u5c0f":132,"\u5373\u4f7fc":66,"\u5373\u4f8b\u5982":66,"\u5373\u4fbf\u662f":108,"\u5373\u4fbf\u8bbe\u7f6e":91,"\u5373\u4fbfpaddl":66,"\u5373\u521d\u59cb\u72b6\u6001\u4e3a0":106,"\u5373\u5355\u65f6\u95f4\u6b65\u6267\u884c\u7684\u51fd\u6570":107,"\u5373\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":104,"\u5373\u53cc\u5c42rnn\u7684\u6bcf\u4e2a\u72b6\u6001":106,"\u5373\u53ef":109,"\u5373\u53ef\u4ee5\u6781\u5927\u7684\u52a0\u901f\u6570\u636e\u8f7d\u5165\u6d41\u7a0b":94,"\u5373\u53ef\u4f7f\u7528\u5f00\u53d1\u955c\u50cf\u6765\u7f16\u8bd1android\u7248paddlepaddl":136,"\u5373\u53ef\u5728":138,"\u5373\u53ef\u5f00\u59cb\u4e0b\u8f7d":100,"\u5373\u53ef\u5f00\u59cb\u4e0b\u9762\u7684\u6b65\u9aa4":98,"\u5373\u53ef\u663e\u793a\u6027\u80fd\u5206\u6790\u7684\u7ed3\u679c":116,"\u5373\u53ef\u68c0\u67e5\u6211\u4eec\u8c03\u4f18\u540e\u7684\u4fee\u6b63\u662f\u5426\u80fd\u591f\u6539\u5584\u7a0b\u5e8f\u7684\u6027\u80fd":116,"\u5373\u5728\u53cc\u5c42\u5e8f\u5217\u7684\u539f\u59cb\u6570\u636e\u4e2d":104,"\u5373\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d":94,"\u5373\u5927\u90e8\u5206\u503c\u4e3a0":101,"\u5373\u5b8c\u6210\u67d0\u4e00\u4e2a\u4efb\u52a1\u7684\u6700\u5c11\u51fd\u6570":66,"\u5373\u5c06\u4e00\u6bb5\u8bdd\u8fdb\u884c\u5206\u7c7b":104,"\u5373\u5c06nchw\u8f6c\u6362\u6210nhwc":95,"\u5373\u5f53\u524d\u65f6\u95f4\u6b65\u4e0b\u7684\u795e\u7ecf\u7f51\u7edc\u4f9d\u8d56\u524d\u4e00\u4e2a\u65f6\u95f4\u6b65\u795e\u7ecf\u7f51\u7edc\u4e2d\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u8f93\u51fa":104,"\u5373\u6211\u4eec\u53ef\u4ee5\u5148\u5b9a\u4e49\u4e00\u4e2atensor":112,"\u5373\u628a\u5355\u5c42rnn\u751f\u6210\u540e\u7684subseq\u7ed9\u62fc\u63a5\u6210\u4e00\u4e2a\u65b0\u7684\u53cc\u5c42seq":106,"\u5373\u6574\u4e2a\u53cc\u5c42group\u662f\u5c06\u524d\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":104,"\u5373\u6574\u4e2a\u8f93\u5165\u5e8f\u5217":103,"\u5373\u6574\u6570\u6570\u7ec4":104,"\u5373\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":104,"\u5373\u662f\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684\u7f51\u7edc\u8fde\u63a5":104,"\u5373\u66b4\u9732":66,"\u5373\u7279\u5f81\u7684\u6570\u7ec4":104,"\u5373\u7f51\u5361\u540d":127,"\u5373\u8868\u793a\u4e0d\u9700\u8981\u8f6c\u6362":62,"\u5373\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u51fa\u73b0nan\u6216\u8005inf":94,"\u5373\u8bbe\u7f6e":94,"\u5373\u8fd0\u884c\u8bad\u7ec3\u7a0b\u5e8f":98,"\u5373\u8fd9\u4e2a\u52a8\u6001\u5e93\u662f\u4e0d\u4f9d\u8d56\u4e8e\u5176\u4ed6\u4efb\u4f55\u6587\u4ef6\u7684":65,"\u5373define_py_data_sources2\u5e94\u6539\u4e3a":96,"\u5373input":106,"\u5373rnn\u4e4b\u95f4\u6709\u4e00\u6b21\u5d4c\u5957\u5173\u7cfb":104,"\u5378\u8f7dpaddlepaddle\u5305":91,"\u538b\u6241\u6210\u4e3aeigen\u7684\u4e00\u7ef4tensor":112,"\u538b\u7f29\u6210\u4e00\u4e2a\u5411\u91cf":104,"\u539f\u56e0":[91,109],"\u539f\u56e0\u5728\u4e8e\u6ca1\u6709\u628a\u673a\u5668\u4e0acuda\u76f8\u5173\u7684\u9a71\u52a8\u548c\u5e93\u6620\u5c04\u5230\u5bb9\u5668\u5185\u90e8":91,"\u539f\u56e0\u662f\u6bcf\u4e2a\u56de\u590d\u90fd\u4f1a\u53d1\u9001\u4e00\u5c01\u90ae\u4ef6":109,"\u539f\u6765\u7684\u65b9\u6848":62,"\u53bb\u8fc7":104,"\u53c2\u6570":[2,3,4,5,6,7,9,10,11,14,17,18,19,20,22,25,65,94,108,110,122,127,131],"\u53c2\u6570\u4e3a":111,"\u53c2\u6570\u5171\u4eab\u7684\u914d\u7f6e\u793a\u4f8b\u4e3a":96,"\u53c2\u6570\u548c\u73af\u5883\u53d8\u91cf":123,"\u53c2\u6570\u670d\u52a1\u5668":[123,131],"\u53c2\u6570\u670d\u52a1\u5668\u4e4b\u95f4\u4e0d\u76f8\u4e92\u4f9d\u8d56":123,"\u53c2\u6570\u670d\u52a1\u5668\u4e5f\u4e0d\u4f1a\u7b49\u5f85\u8ba1\u7b97\u8282\u70b9\u5168\u90e8\u90fd\u63d0\u4ea4\u68af\u5ea6\u4e4b\u540e\u624d\u5f00\u59cb\u4e0b\u4e00\u6b65":123,"\u53c2\u6570\u670d\u52a1\u5668\u63a5\u6536\u4ece\u8ba1\u7b97\u8282\u70b9\u4e0a\u4f20\u7684\u68af\u5ea6":123,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u53c2\u6570\u5206\u5757\u5927\u5c0f":132,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u76d1\u542c\u7aef\u53e3":132,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u7f51\u7edc\u8bbe\u5907\u540d\u79f0":132,"\u53c2\u6570\u670d\u52a1\u5668\u7684ip\u5730\u5740":132,"\u53c2\u6570\u670d\u52a1\u5668\u7a00\u758f\u66f4\u65b0\u7684\u53c2\u6570\u5206\u5757\u5927\u5c0f":132,"\u53c2\u6570\u6765\u63a7\u5236\u7f13\u5b58\u65b9\u6cd5":94,"\u53c2\u6570\u6982\u8ff0":133,"\u53c2\u6570\u7684\u4e2a\u6570\u548c\u53c2\u6570\u5217\u8868":122,"\u53c2\u6570\u7684\u89e3\u6790":127,"\u53c2\u6570\u8bbe\u7f6e":93,"\u53c2\u6570\u8bbe\u7f6e\u4e86\u5916\u5c42":104,"\u53c2\u6570\u8bf4\u660e":123,"\u53c2\u6570\u8bf4\u660e\u5bb9\u5668\u5df2\u4ea4\u4e92\u5f0f\u8fd0\u884c":98,"\u53c2\u6570\u8f93\u5165":94,"\u53c2\u6570\u9700\u8981\u5b9e\u73b0":107,"\u53c2\u7167\u4e0a\u8ff0\u6b65\u9aa4\u66f4\u65b0":109,"\u53c2\u8003":[48,65,98],"\u53c2\u8003\u4e0b\u56fe":82,"\u53c2\u8003\u5f3a\u8c03\u90e8\u5206":117,"\u53c2\u8003\u65f6\u95f4\u5e8f\u5217":104,"\u53c2\u8003\u6837\u4f8b\u6570\u636e\u51c6\u5907\u811a\u672c":123,"\u53c2\u8003\u955c\u50cf\u7684":127,"\u53c8":104,"\u53c8\u53ef\u4ee5\u907f\u514d\u4e0d\u5fc5\u8981\u7684\u8f6c\u6362":62,"\u53c8\u662f\u4e00\u4e2a\u5355\u5c42\u7684\u5e8f\u5217":103,"\u53c8\u8981\u4fdd\u8bc1\u6570\u636e\u662f\u968f\u673a\u7684":94,"\u53ca":110,"\u53cc\u5411\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u9690\u85cf\u72b6\u6001":107,"\u53cc\u5411\u9a8c\u8bc1":48,"\u53cc\u5c42":106,"\u53cc\u5c42\u4e0d\u7b49\u957frnn":104,"\u53cc\u5c42\u5e8f\u5217":[103,121],"\u53cc\u5c42\u5e8f\u5217\u5728\u5904\u7406\u957f\u5e8f\u5217\u7684\u4efb\u52a1\u6216\u662f\u6784\u5efa\u5c42\u7ea7\u6a21\u578b\u65f6\u4f1a\u53d1\u6325\u4f5c\u7528":121,"\u53cc\u5c42\u5e8f\u5217\u6216\u5355\u5c42\u5e8f\u5217":103,"\u53cc\u5c42\u5e8f\u5217\u6570\u636e\u4e00\u5171\u67094\u4e2a\u6837\u672c":104,"\u53cc\u5c42\u5e8f\u5217\u662f\u4e00\u4e2a\u5d4c\u5957\u7684\u5e8f\u5217":103,"\u53cc\u5c42\u5e8f\u5217\u662fpaddlepaddle\u652f\u6301\u7684\u4e00\u79cd\u975e\u5e38\u7075\u6d3b\u7684\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f":106,"\u53cc\u5c42\u5e8f\u5217\u6bcf\u4e2asubseq\u4e2d\u6bcf\u4e2a\u5143\u7d20":103,"\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":103,"\u53cc\u5c42\u5e8f\u5217\u9700\u8981\u8bbe\u7f6e\u5206\u522b\u4e3a\u5916\u5c42\u5e8f\u5217\u548c\u5185\u5c42\u5e8f\u5217\u5206\u522b\u8bbe\u7f6e":121,"\u53cc\u5c42\u6216\u8005\u5355\u5c42":103,"\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u7684dataprovider\u7684\u4ee3\u7801":104,"\u53cc\u5c42rnn":106,"\u53cc\u5c42rnn\u6570\u636e\u968f\u610f\u52a0\u4e86\u4e00\u4e9b\u9694\u65ad":104,"\u53cc\u5c42rnn\u987e\u540d\u601d\u4e49":104,"\u53cc\u8fdb\u5355\u51fa":106,"\u53cc\u8fdb\u53cc\u51fa":106,"\u53cd\u5411\u4f20\u64ad":110,"\u53cd\u5411\u4f20\u64ad\u6839\u636e\u8f93\u51fa\u7684\u68af\u5ea6":110,"\u53cd\u5411\u8ba1\u7b97\u5df2\u7ecf\u81ea\u52a8\u96c6\u6210\u8fdb\u6d4b\u8bd5\u6846\u67b6":111,"\u53cd\u5411op\u7684\u68af\u5ea6\u6d4b\u8bd5":111,"\u53cd\u5411op\u7c7b":111,"\u53cd\u5411op\u7c7b\u7684\u5b9a\u4e49":111,"\u53cd\u5411opkernel\u7684\u5b9a\u4e49\u4e0e\u524d\u5411op\u7c7b\u4f3c":111,"\u53d1\u578b\u7248":82,"\u53d1\u5e03\u5230dockerhub":82,"\u53d1\u5e03docker\u955c\u50cf\u53ea\u9700\u8981\u5bf9\u81ea\u52a8push\u7684\u955c\u50cf\u6253\u4e0a":82,"\u53d1\u6563\u5230\u4e86\u4e00\u4e2a\u6570\u503c\u7279\u522b\u5927\u7684\u5730\u65b9":94,"\u53d1\u884c\u548c\u7ef4\u62a4":109,"\u53d1\u9001\u53c2\u6570\u7684\u7aef\u53e3\u53f7":132,"\u53d6\u503c\u76f8\u540c\u7684layer":95,"\u53d6\u5176\u4e2d\u4e00\u4e2a\u6a21\u578bparams_pass_90":101,"\u53d6\u51b3\u4e8e":111,"\u53d8\u6362\u77e9\u9635":110,"\u53d8\u91cf\u6765\u533a\u5206layer\u7684\u5c5e\u6027":62,"\u53e3\u5934":104,"\u53e5\u5b50\u662f\u7531\u8bcd\u8bed\u6784\u6210\u7684\u5e8f\u5217":121,"\u53e6\u4e00\u4e2a\u65b9\u6cd5\u662f\u4ea4\u53c9\u7f16\u8bd1":138,"\u53e6\u4e00\u4e2a\u662f\u5185\u5b58\u64cd\u4f5c\u91cf":117,"\u53e6\u4e00\u4e2a\u662f\u6bcf\u6761\u5e8f\u5217":94,"\u53e6\u4e00\u79cd\u65b9\u5f0f\u662f\u5c06\u7f51\u7edc\u5c42\u5212\u5206\u5230\u4e0d\u540c\u7684gpu\u4e0a\u53bb\u8ba1\u7b97":134,"\u53e6\u5916":[104,108],"\u53e6\u5916\u6700\u65b0\u7684pip\u5b98\u65b9\u6e90\u4e2d\u7684\u5b89\u88c5\u5305\u9ed8\u8ba4\u662fmanylinux1\u6807\u51c6":100,"\u53ea\u4f5c\u4e3aread":106,"\u53ea\u4fdd\u5b58\u6700\u540e\u4e00\u8f6e\u7684\u53c2\u6570":132,"\u53ea\u5728\u7b2c\u4e00\u6b21cmake\u7684\u65f6\u5019\u6709\u6548":97,"\u53ea\u5bf9\u7279\u6b8a\u5728\u7ebf\u7cfb\u7edf\u8003\u8651\u4e24\u53f0\u4ee5\u4e0a\u540c\u65f6\u6545\u969c\u7684\u5bb9\u707e":32,"\u53ea\u5bf9\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u8fdb\u884c\u5e8f\u5217\u5316":122,"\u53ea\u5c06\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u8fdb\u884c\u5e8f\u5217\u5316":122,"\u53ea\u662f\u53cc\u5c42\u5e8f\u5217\u5c06\u5176\u53c8\u505a\u4e86\u5b50\u5e8f\u5217\u5212\u5206":104,"\u53ea\u66b4\u9732\u6982\u5ff5\u7684\u63a5\u53e3":66,"\u53ea\u6709":104,"\u53ea\u6709\u5728\u9047\u5230\u9700\u8981":99,"\u53ea\u6709\u5f53\u8bbe\u7f6e\u4e86spars":132,"\u53ea\u7528\u4e8e\u5728\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u4e2d\u6307\u5b9a\u8f93\u5165\u6570\u636e":106,"\u53ea\u7559\u4e0b\u6838\u5fc3\u8ba1\u7b97\u5c42":122,"\u53ea\u80fd\u5728recurrent_group\u4e2d\u4f5c\u4e3astep":95,"\u53ea\u80fd\u6309\u884c\u8ba1\u7b97":95,"\u53ea\u80fd\u6d4b\u8bd5\u5355\u4e2a\u6a21\u578b":134,"\u53ea\u80fd\u8bbf\u95ee\u5b83\u4eec\u7684\u8f93\u51fa\u503c":95,"\u53ea\u80fd\u8c03\u7528paddle\u7684\u52a8\u6001\u5e93":65,"\u53ea\u8981\u4e00\u7cfb\u5217\u7279\u5f81\u6570\u636e\u4e2d\u7684":104,"\u53ea\u8981\u51fa\u73b0\u6d6e\u70b9\u6570\u5f02\u5e38":94,"\u53ea\u8bfbmemory\u8f93\u5165":106,"\u53ea\u9488\u5bf9\u5185\u5b58":94,"\u53ea\u9700\u4e2d\u65ad":124,"\u53ea\u9700\u5728\u7f16\u8bd1\u65f6\u9700\u914d\u5236\u4e0b\u9762\u8fd9\u4e9b\u7f16\u8bd1\u9009\u9879":119,"\u53ea\u9700\u7528\u60a8\u5b9a\u4e49\u7684\u76ee\u5f55\u4fee\u6539":124,"\u53ea\u9700\u8981":107,"\u53ea\u9700\u8981\u6062\u590d\u8fd9\u53f0\u8282\u70b9":32,"\u53ea\u9700\u8981\u8bbe\u7f6e\u884c\u504f\u79fb":121,"\u53ea\u9700\u8981\u94fe\u63a5":119,"\u53ea\u9700\u8fdb\u884c\u524d\u5411\u8ba1\u7b97\u800c\u65e0\u9700\u8c03\u7528\u53cd\u5411\u8ba1\u7b97":122,"\u53ef\u4ee5":[82,98,104,109,113],"\u53ef\u4ee5\u4ece":98,"\u53ef\u4ee5\u4ece\u6211\u4eec\u7684ci\u7cfb\u7edf\u4e2d\u4e0b\u8f7d\u6700\u65b0\u7684whl\u5b89\u88c5\u5305\u548cc":100,"\u53ef\u4ee5\u4f30\u8ba1\u51fa\u5982\u679c\u6a21\u578b\u91c7\u7528\u4e0d\u53d8\u7684\u8f93\u51fa\u6700\u5c0f\u7684cost0\u662f\u591a\u5c11":96,"\u53ef\u4ee5\u4f7f\u7528":[96,122,123],"\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684\u547d\u4ee4\u66f4\u65b0\u60a8\u7684pip":100,"\u53ef\u4ee5\u4f7f\u7528\u5982\u4e0b\u4ee3\u7801":96,"\u53ef\u4ee5\u4f7f\u7528\u76f8\u5e94\u6570\u636e\u7c7b\u578b\u7684":96,"\u53ef\u4ee5\u4f7f\u7528\u8be5\u53c2\u6570":132,"\u53ef\u4ee5\u4f7f\u7528kubernetes\u7684\u547d\u4ee4\u884c\u5de5\u5177\u521b\u5efajob":127,"\u53ef\u4ee5\u5148\u4f7f\u7528":95,"\u53ef\u4ee5\u51cf\u5c0f\u7cfb\u7edf\u590d\u6742\u6027":32,"\u53ef\u4ee5\u51cf\u5c11\u7f13\u5b58\u6c60\u7684\u5927\u5c0f":94,"\u53ef\u4ee5\u521b\u5efa\u4e00\u4e2a":126,"\u53ef\u4ee5\u521b\u5efa\u975e":111,"\u53ef\u4ee5\u52a0\u901fpaddlepaddle\u7684\u8ba1\u7b97":98,"\u53ef\u4ee5\u53c2\u8003":[98,104,107,108,109],"\u53ef\u4ee5\u53c2\u8003\u4e0b\u9762\u7684\u6b65\u9aa4\u6392\u67e5":92,"\u53ef\u4ee5\u53c2\u8003paddlepaddl":101,"\u53ef\u4ee5\u540c\u65f6\u5728cpu":112,"\u53ef\u4ee5\u542b\u6709\u4e00\u6761\u6216\u591a\u6761\u6837\u672c":121,"\u53ef\u4ee5\u544a\u8bc9\u60a8\u67d0\u4e2a\u64cd\u4f5c\u5230\u5e95\u82b1\u4e86\u591a\u957f\u65f6\u95f4":117,"\u53ef\u4ee5\u5728":[97,124],"\u53ef\u4ee5\u5728\u4efb\u4f55\u673a\u5668\u4e0a\u6267\u884c\u7684":65,"\u53ef\u4ee5\u5728\u5171\u4eab\u5b58\u50a8\u4e0a\u67e5\u770b\u8f93\u51fa\u7684\u65e5\u5fd7\u548c\u6a21\u578b":127,"\u53ef\u4ee5\u5728\u6b64\u9875\u9762\u7684":82,"\u53ef\u4ee5\u5728\u8fd9\u4e2a":109,"\u53ef\u4ee5\u5728event_handler\u4e2d":94,"\u53ef\u4ee5\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684sgd\u65b9\u6cd5\u7684\u8bad\u7ec3":123,"\u53ef\u4ee5\u5b9e\u73b0\u4ecepaddl":112,"\u53ef\u4ee5\u5c06cmake":116,"\u53ef\u4ee5\u5c06memory\u7406\u89e3\u4e3a\u4e00\u4e2a\u65f6\u5ef6\u64cd\u4f5c":106,"\u53ef\u4ee5\u5c06op\u5206\u4e3a\u4e24\u79cd":111,"\u53ef\u4ee5\u5c1d\u8bd5\u4ee5\u4e0b\u7684\u65b9\u6cd5":98,"\u53ef\u4ee5\u5e2e\u60a8\u63d0\u4f9b\u4e00\u4e9b\u5b9a\u4f4d\u6027\u80fd\u74f6\u9888\u7684\u5efa\u8bae":117,"\u53ef\u4ee5\u5e76\u884c\u7f16\u8bd1\u5417":108,"\u53ef\u4ee5\u5feb\u901f\u5728\u672c\u5730\u542f\u52a8\u4e00\u4e2a\u5305\u542b\u4e86paddlepaddle\u5b98\u65b9book\u6559\u7a0b\u7684jupyt":98,"\u53ef\u4ee5\u6267\u884c":[91,100],"\u53ef\u4ee5\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4\u7f16\u8bd1\u751f\u6210\u6587\u6863":113,"\u53ef\u4ee5\u6267\u884cctest\u547d\u4ee4\u5373\u53ef":97,"\u53ef\u4ee5\u628a\u5b83\u60f3\u8c61\u4e3a\u4e00\u4e2a\u7c7b\u4f3c":108,"\u53ef\u4ee5\u628a\u672c\u5730\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5b58\u50a8\u96c6\u7fa4\u4e2d":33,"\u53ef\u4ee5\u6307\u5b9a\u540c\u65f6\u6267\u884cgpu\u4e0a\u7684\u5355\u5143\u6d4b\u8bd5":97,"\u53ef\u4ee5\u6307\u5b9a\u54ea\u4e00\u4e2a\u8f93\u5165\u548c\u8f93\u51fa\u5e8f\u5217\u4fe1\u606f\u4e00\u81f4":104,"\u53ef\u4ee5\u6307\u5b9a\u5f00\u542f\u81ea\u52a8\u68c0\u6d4bsm\u67b6\u6784":97,"\u53ef\u4ee5\u6309\u7167\u4e0b\u9762\u7684\u65b9\u6cd5":97,"\u53ef\u4ee5\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":[103,106],"\u53ef\u4ee5\u662f\u4e00\u4e2a\u975e\u5e8f\u5217":106,"\u53ef\u4ee5\u662f\u4ece\u5206\u5e03\u5f0f\u5b58\u50a8\u6302\u8f7d\u8fc7\u6765\u7684":123,"\u53ef\u4ee5\u662f\u4ee5\u4e0b\u51e0\u79cd":110,"\u53ef\u4ee5\u662f\u6574\u578b":121,"\u53ef\u4ee5\u663e\u793a\u5730\u6307\u5b9a\u4e00\u4e2alayer\u7684\u8f93\u51fa\u7528\u4e8e\u521d\u59cb\u5316memori":106,"\u53ef\u4ee5\u66f4\u6709\u6b21\u5e8f\u7684\u5b8c\u6210\u6027\u80fd\u7684\u4f18\u5316":116,"\u53ef\u4ee5\u6709\u4ee5\u4e0b\u4e24\u79cd":106,"\u53ef\u4ee5\u6709\u6548\u51cf\u5c0f\u7f51\u7edc\u7684\u963b\u585e":132,"\u53ef\u4ee5\u6709\u6548\u7684\u907f\u514dparamet":32,"\u53ef\u4ee5\u67e5\u770b":127,"\u53ef\u4ee5\u67e5\u770b\u6b64pod\u8fd0\u884c\u7684\u5bbf\u4e3b\u673a":126,"\u53ef\u4ee5\u6d4b\u8bd5\u591a\u4e2a\u6a21\u578b":134,"\u53ef\u4ee5\u7528":[48,108],"\u53ef\u4ee5\u7528\u4ee5\u4e0b\u6307\u4ee4":33,"\u53ef\u4ee5\u7528\u5982\u4e0b\u547d\u4ee4":109,"\u53ef\u4ee5\u7528\u6765\u8ba1\u7b97cpu\u51fd\u6570\u6216cuda\u5185\u6838\u7684\u65f6\u95f4\u6d88\u8017":117,"\u53ef\u4ee5\u76f4\u63a5\u8fd0\u884c":122,"\u53ef\u4ee5\u770b\u4f5c\u662f\u4e00\u4e2a\u975e\u5e8f\u5217\u8f93\u5165":103,"\u53ef\u4ee5\u770b\u51fa":123,"\u53ef\u4ee5\u770b\u5230\u6700\u8017\u65f6\u7684\u51fd\u6570\u662fc":116,"\u53ef\u4ee5\u7cbe\u786e\u8bf4\u660e\u4e00\u4e2a\u957f\u8017\u65f6\u64cd\u4f5c\u7684\u5177\u4f53\u539f\u56e0":117,"\u53ef\u4ee5\u7ee7\u7eed\u5728\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f\u63d0\u4ea4\u4ee3\u7801":82,"\u53ef\u4ee5\u8003\u8651\u4f7f\u7528\u4e00\u4e9b\u4f18\u5316\u7b97\u6cd5":94,"\u53ef\u4ee5\u8054\u7cfbop":92,"\u53ef\u4ee5\u8054\u7cfbop\u662f\u5426\u53ef\u4ee5\u66f4\u6362\u96c6\u7fa4\u6216\u5347\u7ea7\u5f53\u524d\u96c6\u7fa4":92,"\u53ef\u4ee5\u83b7\u53d6\u7f51\u7edc\u4e2d\u5b9a\u4e49\u7684\u4efb\u610f\u591a\u4e2a":122,"\u53ef\u4ee5\u88c5\u7684\u662f":108,"\u53ef\u4ee5\u8bbe\u7f6e":[116,136,137,138],"\u53ef\u4ee5\u8bbf\u95ee\u7531recurr":95,"\u53ef\u4ee5\u8c03\u7528resize\u63a5\u53e3\u8fdb\u884c\u6539\u53d8":112,"\u53ef\u4ee5\u8f7b\u677e\u5730\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":101,"\u53ef\u4ee5\u8fd0\u884c":123,"\u53ef\u4ee5\u9009\u5728\u5728\u5f53\u524d\u673a\u5668\u5b89\u88c5\u4e5f\u53ef\u4ee5\u62f7\u8d1d\u5230\u76ee\u6807\u673a\u5668\u5b89\u88c5":97,"\u53ef\u4ee5\u9009\u62e9\u662f\u5426\u4f7f\u7528\u53c2\u6570":134,"\u53ef\u4ee5\u901a\u8fc7":109,"\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539\u8fd9\u4e24\u4e2a\u51fd\u6570\u6765\u5b9e\u73b0\u590d\u6742\u7684\u7f51\u7edc\u914d\u7f6e":107,"\u53ef\u4ee5\u901a\u8fc7\u5728":94,"\u53ef\u4ee5\u901a\u8fc7\u7f51\u9875\u6d4f\u89c8":98,"\u53ef\u4ee5\u901a\u8fc7\u8fd9\u4e2a\u8f93\u51fa\u6765\u5b8c\u6210\u81ea\u5b9a\u4e49\u7684\u8bc4\u4f30\u6307\u6807\u8ba1\u7b97\u7b49\u529f\u80fd":94,"\u53ef\u4ee5\u901a\u8fc7\u9636\u6bb5\u6027\u7684\u4fdd\u5b58\u6bcf\u4e2aparamet":32,"\u53ef\u4ee5\u91c7\u53d6\u4e0b\u9762\u51e0\u70b9\u63aa\u65bd":116,"\u53ef\u4ee5\u91cd\u547d\u540d\u8fd9\u4e2awhl\u5305\u4e3a":[91,100],"\u53ef\u53c2\u8003":122,"\u53ef\u5728":119,"\u53ef\u5728\u547d\u4ee4\u884c\u6267\u884c":137,"\u53ef\u663e\u5f0f\u6307\u5b9a\u4e3a":137,"\u53ef\u7528\u4e8e\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u89e3\u6790\u8fd9\u4e9b\u53c2\u6570":134,"\u53ef\u76f4\u63a5\u8fd0\u884c":122,"\u53ef\u80fd\u4f1a\u5bfc\u81f4\u51fa\u9519":127,"\u53ef\u80fd\u4f1a\u9020\u6210\u7f51\u7edc\u62e5\u585e":32,"\u53ef\u80fd\u7684\u4ee3\u7801\u4e3a":94,"\u53ef\u80fd\u7684\u539f\u56e0\u662f":96,"\u53ef\u80fd\u7684\u60c5\u51b5\u4e0b":117,"\u53ef\u80fd\u9700\u8981\u6ce8\u610f\u7ed9\u8fd9\u4e2a\u865a\u62df\u673a\u591a\u5206\u914d\u4e00\u4e9b":108,"\u53ef\u89c1\u8be5\u8ba1\u7b97\u7531\u4e24\u4e2a\u8f93\u5165":111,"\u53ef\u8bbe\u7f6e":[136,137],"\u53ef\u8bbe\u7f6e\u4e3a":137,"\u53ef\u8bbe\u7f6e\u7684\u76ee\u6807\u67b6\u6784\u5982\u4e0b\u8868\u6240\u793a":137,"\u53ef\u9009":[97,110,122,123],"\u53ef\u9009\u7684\u4e0d\u540c\u7f16\u8bd1\u73af\u5883docker\u955c\u50cf":97,"\u53ef\u9009\u914d\u7f6e\u9009\u9879":119,"\u53ef\u914d\u7f6e\u4e3a":119,"\u53ef\u91c7\u7528\u7b2c\u4e8c\u79cd\u65b9\u5f0f":95,"\u53f3\u4fa7\u7684":82,"\u5403":104,"\u5403\u996d":104,"\u5404\u65b9\u9762":104,"\u5404\u6b21\u524d\u5411\u4e4b\u95f4\u4e5f\u90fd\u4f7f\u7528\u4e86\u76f8\u540c\u7684\u6743\u91cd":61,"\u5404\u9879\u66f4\u52a0\u5177\u4f53\u7684\u5355\u5143\u6d4b\u8bd5\u5728":111,"\u5408":104,"\u5408\u5e76\u5165\u4e00\u4e2a\u6587\u4ef6":122,"\u5408\u5e76\u6a21\u578b\u6587\u4ef6":122,"\u5408\u7406":104,"\u540c\u4e00\u6b21\u524d\u5411":61,"\u540c\u65f6":[61,62,91,94,117],"\u540c\u65f6\u4e5f\u4f1a\u8bfb\u53d6\u76f8\u5173\u8def\u5f84\u53d8\u91cf\u6765\u8fdb\u884c\u641c\u7d22":97,"\u540c\u65f6\u4e5f\u53ef\u4ee5\u52a0\u901f\u5f00\u59cb\u8bad\u7ec3\u524d\u6570\u636e\u8f7d\u5165\u7684\u8fc7\u7a0b":94,"\u540c\u65f6\u4e5f\u53ef\u4ee5\u901a\u8fc7":109,"\u540c\u65f6\u4e5f\u80fd\u591f\u5f15\u5165\u66f4\u52a0\u590d\u6742\u7684\u8bb0\u5fc6\u673a\u5236":106,"\u540c\u65f6\u4f1a\u5f00\u542fintel":62,"\u540c\u65f6\u5176\u5185\u90e8\u5b9e\u73b0\u53ef\u4ee5\u907f\u514d\u7eafcpu\u7248\u672cpaddlepaddle\u5728\u6267\u884c\u672c\u8bed\u53e5\u65f6\u53d1\u751f\u5d29\u6e83":117,"\u540c\u65f6\u518d\u5c06":82,"\u540c\u65f6\u53c8\u5c3d\u53ef\u80fd\u5c11\u7684\u727a\u7272mkl":62,"\u540c\u65f6\u5728\u5185\u5b58\u91cc\u76f4\u63a5\u968f\u5373\u9009\u53d6\u6570\u636e\u6765\u505ashuffl":94,"\u540c\u65f6\u5c06\u53c2\u6570\u521d\u59cb\u5316\u4e3a":96,"\u540c\u65f6\u628a\u5f53\u524d\u76ee\u5f55":108,"\u540c\u65f6\u63d0\u8d77":82,"\u540c\u65f6\u6570\u636e\u683c\u5f0f\u5c31\u662f":62,"\u540c\u65f6\u7528\u6237\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a":134,"\u540c\u65f6\u8bbe\u7f6e\u5185\u5b58\u7f13\u5b58\u529f\u80fd":94,"\u540c\u65f6\u8f93\u51fa\u5e8f\u5217\u5c42\u548c\u975e\u5e8f\u5217\u5c42":94,"\u540c\u6837":101,"\u540c\u6837\u4e5f\u53ef\u4ee5\u5728\u6d4b\u8bd5\u6a21\u5f0f\u4e2d\u6307\u5b9a\u6a21\u578b\u8def\u5f84":132,"\u540c\u6837\u53ef\u4ee5\u6269\u5c55\u5230\u53cc\u5c42\u5e8f\u5217\u7684\u5904\u7406\u4e0a":106,"\u540c\u6837\u53ef\u83b7\u53d6\u5230\u8f93\u5165\u8f93\u51fa\u548c\u5c5e\u6027\u53c2\u6570":111,"\u540c\u6b65\u6267\u884c\u64cd\u4f5c\u7684\u7ebf\u7a0b\u6570":132,"\u540c\u7406":111,"\u540d\u5b57\u4fee\u9970":65,"\u540e":[96,97,109,127,136,137,138],"\u540e\u5411":61,"\u540e\u5411\u4f20\u64ad":110,"\u540e\u5411\u4f20\u64ad\u7ed9\u5b9a\u8f93\u51fa\u7684\u68af\u5ea6":110,"\u540e\u5411\u65f6\u590d\u7528\u5df2\u7ecf\u8f6c\u6362\u8fc7\u7684\u6743\u91cd":61,"\u540e\u7f00\u4e3a":123,"\u540e\u8005\u5728\u6fc0\u6d3b\u51fd\u6570\u53cd\u5411\u8ba1\u7b97\u65f6\u88ab\u8c03\u7528":94,"\u540e\u8005\u622a\u65ad\u56de\u4f20\u7ed9\u524d\u5c42\u7684\u68af\u5ea6":94,"\u540e\u8005\u7528\u4e8e\u68c0\u67e5\u53c2\u6570\u5c5e\u6027\u7684\u5408\u6cd5\u6027":111,"\u540e\u8005\u7ee7\u627f\u81ea":111,"\u540e\u9988":123,"\u5411\u6307\u5b9a\u7684\u76ee\u5f55\u4e2d\u4e00\u4e2a\u65b0\u7684\u6587\u4ef6":32,"\u5411\u91cf":121,"\u5411\u91cfenable_parallel_vector":131,"\u5411paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u63d0\u4ea4":82,"\u5417":108,"\u5426\u5219":[111,136,138],"\u5426\u5219\u4f1a\u628a":109,"\u5426\u5219\u4f7f\u7528\u591a\u673a\u8bad\u7ec3":132,"\u5426\u5219\u4f7f\u7528cpu\u6a21\u5f0f":132,"\u5426\u5219\u4f7f\u7528gpu":134,"\u5426\u5219\u5b83\u4ee5\u4e00\u4e2a\u5e8f\u5217\u8f93\u5165":107,"\u5426\u5219\u5f97\u628apaddle\u9759\u6001\u5e93\u94fe\u63a5\u5230\u89e3\u91ca\u5668\u91cc":65,"\u5426\u5219\u9891\u7e41\u7684\u591a\u8282\u70b9\u5de5\u4f5c\u7a7a\u95f4\u90e8\u7f72\u53ef\u80fd\u4f1a\u5f88\u9ebb\u70e6":124,"\u542b\u4e49":116,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u548c\u5b50\u5e8f\u5217\u4fe1\u606f\u7684\u7a20\u5bc6\u5411\u91cf":110,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u7684\u6574\u6570":110,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u7684\u7a20\u5bc6\u5411\u91cf":110,"\u542f\u52a8\u4e00\u4e2a\u65b0\u7684\u7ebf\u7a0b\u5f00\u59cb\u4fdd\u5b58\u68c0\u67e5\u70b9":32,"\u542f\u52a8\u4e00\u4e2a\u6d4b\u8bd5\u96c6\u7fa4":124,"\u542f\u52a8\u5bb9\u5668\u5f00\u59cb\u8bad\u7ec3":127,"\u542f\u52a8\u5e76\u884c\u5411\u91cf\u7684\u9608\u503c":132,"\u542f\u52a8\u5feb\u901f\u5e94\u7b54":132,"\u542f\u52a8\u8bad\u7ec3\u4efb\u52a1":128,"\u542f\u7528\u68af\u5ea6\u53c2\u6570\u7684\u9608\u503c":132,"\u5440":104,"\u5468\u56f4":104,"\u547d\u4ee4\u4e3a":[91,126],"\u547d\u4ee4\u521b\u5efa\u65b0\u955c\u50cf":126,"\u547d\u4ee4\u5220\u9664":[136,137,138],"\u547d\u4ee4\u53ef\u4ee5\u8bbe\u7f6e":97,"\u547d\u4ee4\u65f6":136,"\u547d\u4ee4\u6709\u65f6\u5019\u4f1a\u4ea7\u751f\u4e00\u4e9b\u4e2d\u95f4\u7ed3\u679c":108,"\u547d\u4ee4\u770b\u5230\u505c\u6b62\u540e\u4f46\u662f\u6ca1\u6709\u5220\u9664\u7684":108,"\u547d\u4ee4\u7f16\u8bd1\u6e90\u7801\u5373\u53ef":108,"\u547d\u4ee4\u884c\u4e2d\u7684":116,"\u547d\u4ee4\u8bbe\u7f6e\u8be5\u7c7b\u7f16\u8bd1\u9009\u9879":97,"\u547d\u4ee4\u9009\u9879\u5e76\u4e14":124,"\u547d\u4ee4\u91cc\u90fd\u7528\u4e86":108,"\u547d\u540d\u4e3a":109,"\u547d\u540d\u89c4\u8303":111,"\u547d\u540d\u8bf7\u9075\u5b88":111,"\u548c":[33,61,62,65,66,82,94,95,96,97,104,107,108,109,110,111,112,113,116,117,119,121,123,124,134,136,138],"\u548c\u4e00\u4e2a\u5df2\u7ecf\u5206\u8bcd\u540e\u7684\u53e5\u5b50":104,"\u548c\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f":101,"\u548c\u4e0b\u9762\u5c06\u8981\u4ecb\u7ecd\u7684\u6ce8\u518c\u51fd\u6570\u4e00\u8d77\u653e\u5728":111,"\u548c\u4e2d\u6587\u6587\u6863":113,"\u548c\u4e4b\u524d\u51cf\u5c0f\u901a\u8fc7\u51cf\u5c0f\u7f13\u5b58\u6c60\u6765\u51cf\u5c0f\u5185\u5b58\u5360\u7528\u7684\u539f\u7406\u4e00\u81f4":94,"\u548c\u504f\u7f6e\u5411\u91cf":110,"\u548c\u5185\u5b58":108,"\u548c\u5217\u53f7":121,"\u548c\u53cc\u5c42\u5e8f\u5217\u542b\u6709subseq":103,"\u548c\u5bf9\u5e94\u884c\u7684\u4ee3\u7801":116,"\u548c\u5e8f\u5217\u4e2d\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee\u540c":103,"\u548c\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":123,"\u548c\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165":107,"\u548c\u64cd\u4f5c\u7cfb\u7edf\u4e0a\u76f4\u63a5\u8fd0\u884c\u7684":108,"\u548c\u672a\u6765\u53ef\u80fd\u8fd8\u4f1a\u7528\u5230":62,"\u548c\u793a\u4f8b2\u4e2d\u7684\u914d\u7f6e\u7c7b\u4f3c":104,"\u548c\u79bb\u7ebf\u6570\u636e\u7684\u65b9\u5f0f":33,"\u548c\u90e8\u5206layer":106,"\u548cpool":103,"\u548cpserver\u4e4b\u95f4\u7528\u4e8e\u7a00\u758f\u7c7b\u578b\u53c2\u6570\u901a\u4fe1\u7684\u7aef\u53e3\u4e2a\u6570":123,"\u54c1\u8d28":104,"\u54ea\u4e2atrainer\u5148\u5b8c\u6210block\u7684\u8bad\u7ec3":32,"\u54ea\u4e9b\u4e0d\u662f":104,"\u5546\u52a1":104,"\u554a":104,"\u56db\u79cd\u6570\u636e\u7c7b\u578b":101,"\u56e0\u4e3a\u5168\u8fde\u63a5\u5c42\u7684\u6fc0\u6d3b\u53ef\u4ee5\u662fsoftmax":110,"\u56e0\u4e3a\u53c2\u6570":134,"\u56e0\u4e3a\u5b83\u4eec\u7684\u8ba1\u7b97\u6548\u7387\u6bd4":107,"\u56e0\u4e3a\u5b83\u6bd4":107,"\u56e0\u4e3a\u5b98\u65b9\u955c\u50cf":127,"\u56e0\u4e3a\u6211\u4eec\u4f1a\u628a\u6240\u6709\u7f16\u8bd1\u5de5\u5177\u90fd\u5b89\u88c5\u8fdb\u4e00\u4e2a":108,"\u56e0\u4e3a\u6e90\u7801\u5c31\u5728\u672c\u673a\u4e0a":108,"\u56e0\u4e3a\u8fd9\u4e2a\u5de5\u5177\u5177\u6709web\u670d\u52a1\u754c\u9762":116,"\u56e0\u4e3a\u8fd9\u6837\u505a\u4e5f\u6ca1\u6cd5\u4fdd\u8bc1\u6d88\u9664\u968f\u673a\u6027":32,"\u56e0\u4e3ac":116,"\u56e0\u4e3apython\u7684\u641c\u7d22\u8def\u5f84\u662f\u4f18\u5148\u5df2\u7ecf\u5b89\u88c5\u7684python\u5305":91,"\u56e0\u4e3aswig\u5728\u7b2c\u4e09\u65b9\u8bed\u8a00\u4e2d\u66b4\u9732\u7684\u51fd\u6570\u540d":65,"\u56e0\u6b64":[61,104,106,110,136],"\u56e0\u6b64\u53cc\u5c42\u5e8f\u5217\u7684\u914d\u7f6e\u4e2d":104,"\u56e0\u6b64\u53ef\u80fd\u6d4b\u8bd5\u4e0d\u591f\u5b8c\u5907":112,"\u56e0\u6b64\u5728\u8f6c\u6362\u65f6\u9700\u8981\u663e\u793a\u7684\u6307\u5b9a":112,"\u56e0\u6b64\u5b83\u662finteger_value_sub_sequ":104,"\u56e0\u6b64\u5f53":136,"\u56e0\u6b64\u6211\u4eec\u91c7\u7528\u8f93\u51fa\u7684\u52a0\u6743\u548c":110,"\u56e0\u6b64\u7528\u6237\u5e76\u4e0d\u9700\u8981\u5173\u5fc3\u5b83\u4eec":131,"\u56e0\u6b64\u9519\u8bef\u7684\u4f7f\u7528\u4e8c\u8fdb\u5236\u53d1\u884c\u7248\u53ef\u80fd\u4f1a\u5bfc\u81f4\u8fd9\u79cd\u9519\u8bef":91,"\u56fd\u5185\u7528\u6237\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684\u955c\u50cf\u6e90\u6765\u52a0\u901f\u8bbf\u95ee":98,"\u56fe1":[121,122],"\u56fe2":121,"\u56fe\u50cf\u5206\u7c7b":82,"\u56fe\u8868":98,"\u5728":[61,62,66,82,103,104,107,108,109,111,116,121,122,123,137],"\u5728\u4e00\u4e2a\u4e0d\u53ef\u4e2d\u65ad\u5e76\u7f3a\u5c11\u5907\u4efd\u7684\u8bad\u7ec3\u4efb\u52a1\u4e2d":32,"\u5728\u4e00\u4e2a\u529f\u80fd\u9f50\u5168\u7684kubernetes\u673a\u7fa4\u91cc":126,"\u5728\u4e00\u4e2a\u53c2\u6570\u7684\u68af\u5ea6\u88ab\u66f4\u65b0\u540e":110,"\u5728\u4e00\u4e9b\u5206\u5e03\u5f0f\u7cfb\u7edf\u4e2d":123,"\u5728\u4e00\u6b21\u8bad\u7ec3\u4e2d":116,"\u5728\u4e00\u8f6e\u4e2d\u6bcfsave":132,"\u5728\u4e0a\u56fe\u4e2d\u663e\u793a\u4e86\u5728\u4e00\u4e2a\u5b9e\u9645\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u5e94\u7528":33,"\u5728\u4e0a\u9762\u4ee3\u7801\u4e2d":104,"\u5728\u4e0a\u9762\u7684\u4ee3\u7801\u4e2d":111,"\u5728\u4e0b\u4e00\u7bc7\u4e2d":126,"\u5728\u4e4b\u540e\u7684":94,"\u5728\u4e86\u89e3docker\u7684\u57fa\u672c\u4f7f\u7528\u65b9\u6cd5\u4e4b\u540e":98,"\u5728\u4efb\u610f\u65f6\u95f4\u67d0\u4e00\u53f0\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u4fdd\u5b58\u7684\u53c2\u6570\u53ef\u80fd\u6bd4\u53e6\u4e00\u53f0\u8981\u66f4\u65b0":123,"\u5728\u4f7f\u7528\u4e0d\u540c\u7684\u5206\u5e03\u5f0f\u8ba1\u7b97\u5e73\u53f0\u65f6":123,"\u5728\u4f7f\u7528\u5206\u5e03\u5f0f\u8ba1\u7b97\u5e73\u53f0\u8fdb\u884c\u8bad\u7ec3\u65f6":123,"\u5728\u4f7f\u7528\u540c\u6b65sgd\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u65f6":123,"\u5728\u4f7f\u7528\u65f6":95,"\u5728\u4f7f\u7528\u8be5\u6587\u6863\u4e4b\u524d":101,"\u5728\u4f7f\u7528c":119,"\u5728\u4f7f\u7528paddlepaddl":119,"\u5728\u4f7f\u7528twine\u4e0a\u4f20\u4e4b\u524d":82,"\u5728\u5168\u8fde\u63a5\u5c42\u4e2d":110,"\u5728\u5177\u4f53\u7684\u8ba1\u7b97\u4e2d":112,"\u5728\u51c6\u5907\u53d1\u8d77":109,"\u5728\u51fa\u73b0\u5355\u70b9\u6545\u969c\u65f6":32,"\u5728\u51fd\u6570":127,"\u5728\u5206\u5e03\u5f0f\u73af\u5883\u4e2d\u6d4b\u8bd5":132,"\u5728\u5206\u5e03\u5f0f\u8bad\u7ec3\u4e2d":132,"\u5728\u521b\u5efaparameters\u540e":96,"\u5728\u5355\u5c42\u6570\u636e\u7684\u57fa\u7840\u4e0a":104,"\u5728\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u52a0\u8f7d\u548c\u4fdd\u5b58\u53c2\u6570":132,"\u5728\u53c2\u6570\u670d\u52a1\u5668\u7ec8\u7aef\u6bcflog":132,"\u5728\u53cc\u5c42rnn\u4e2d\u7684\u7ecf\u5178\u60c5\u51b5\u662f\u5c06\u5185\u5c42\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217\u6570\u636e":104,"\u5728\u53cd\u5411\u4f20\u9012\u7684\u65f6\u5019":94,"\u5728\u53d8\u6362\u65f6\u9700\u8981\u5c06\u8f93\u5165\u5e8f\u5217\u4f20\u5165":104,"\u5728\u542f\u52a8job\u4e4b\u524d":127,"\u5728\u547d\u4ee4\u884c\u663e\u793a\u5206\u6790\u7ed3\u679c":116,"\u5728\u56de\u590d\u8bc4\u5ba1\u4eba\u610f\u89c1\u65f6":109,"\u5728\u56fe\u50cf\u4efb\u52a1\u4e2d":95,"\u5728\u591acpu\u8bad\u7ec3\u65f6\u5171\u4eab\u8be5\u53c2\u6570":132,"\u5728\u5b8c\u6210\u4e00\u5b9a\u91cf\u6570\u636e\u7684\u8bad\u7ec3\u540e":123,"\u5728\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684\u642d\u5efa\u4e4b\u540e":101,"\u5728\u5b9a\u4e49\u8f93\u5165layer\u4e4b\u540e":101,"\u5728\u5b9e\u73b0\u6bcf\u4e2a\u5b50\u7c7b\u7684\u65f6\u5019\u5c31\u4e0d\u9700\u8981\u5173\u5fc3\u5206\u652f\u7684\u4e8b\u60c5\u4e86":62,"\u5728\u5b9e\u73b0\u8fc7\u7a0b\u4e2d":66,"\u5728\u5b9e\u9645\u5e94\u7528\u4e2d":95,"\u5728\u5bb9\u5668\u4e2d\u7f16\u8f91\u4ee3\u7801":98,"\u5728\u5bb9\u5668\u521b\u5efa\u540e":127,"\u5728\u5bf9\u5bb9\u5668\u7684\u63cf\u8ff0":127,"\u5728\u5bf9\u5e94\u7684":61,"\u5728\u5c42\u4e2d\u6307\u5b9a":134,"\u5728\u5c42\u521d\u59cb\u5316\u7684\u65f6\u5019":61,"\u5728\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u4e2d":106,"\u5728\u5f00\u59cb\u8bad\u7ec3\u4e4b\u524d":33,"\u5728\u5f02\u6784\u96c6\u7fa4\u4e2d":32,"\u5728\u5f02\u6b65sgd\u4e2d":123,"\u5728\u5f15\u5165\u5176\u4ed6\u7c7b\u578b\u7684\u5934\u6587\u4ef6\u65f6":66,"\u5728\u5f53\u524d":94,"\u5728\u5f53\u524d\u7684\u5b9e\u73b0\u65b9\u5f0f\u4e0b":110,"\u5728\u5f97\u5230":127,"\u5728\u5feb\u7167\u5199\u5165\u5b8c\u6210\u540e":32,"\u5728\u60a8\u7684\u5b9e\u9645\u73af\u5883\u4e2d":32,"\u5728\u6211\u4eec\u7684\u4f8b\u5b50\u4e2d":107,"\u5728\u6267\u884c\u65f6":112,"\u5728\u63d0\u4ea4":109,"\u5728\u642d\u5efa\u795e\u7ecf\u7f51\u7edc\u7684\u8fc7\u7a0b\u4e2d":101,"\u5728\u65e0\u7279\u6b8a\u9700\u6c42\u60c5\u51b5\u4e0b":119,"\u5728\u6709\u666e\u901a\u7684cpu":62,"\u5728\u672c\u4f8b\u4e2d":[104,109,134],"\u5728\u672c\u6559\u7a0b\u4e2d":107,"\u5728\u672c\u6587\u6863\u4e2d":48,"\u5728\u672c\u793a\u4f8b\u4e2d":104,"\u5728\u672c\u8282\u4e2d":107,"\u5728\u673a\u7fa4\u4e0a\u8fd0\u884c\u8f6c\u6362\u7a0b\u5e8f":33,"\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b":94,"\u5728\u6811\u7684\u6bcf\u4e00\u5c42\u4e0a":132,"\u5728\u6837\u4f8b\u4e2d":66,"\u5728\u6b64":[131,134],"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e2d":107,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u5b50\u5e8f\u5217\u957f\u5ea6\u53ef\u4ee5\u4e0d\u76f8\u7b49":104,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u957f":107,"\u5728\u6bcf\u4e2apod\u4e0a\u90fd\u901a\u8fc7volume\u65b9\u5f0f\u6302\u8f7d\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u7684\u4e00\u4e2a\u76ee\u5f55\u7528\u4e8e\u4fdd\u5b58\u8bad\u7ec3\u6570\u636e\u548c\u8f93\u51fa\u7ed3\u679c":127,"\u5728\u6d4b\u8bd5\u9636\u6bb5":132,"\u5728\u6e90\u7801\u76ee\u5f55\u6811\u7684\u6839\u76ee\u5f55\u4e2d\u8fd0\u884c":109,"\u5728\u751f\u6210\u65f6":107,"\u5728\u7528\u6237\u4f7f\u7528c":66,"\u5728\u76f8\u5e94\u7684\u4f18\u5316\u7b97\u6cd5\u91cc\u8bbe\u7f6elearning_rate_schedule\u53ca\u76f8\u5173\u53c2\u6570":96,"\u5728\u76f8\u5e94layer\u7684":95,"\u5728\u795e\u7ecf\u7f51\u7edc\u4e2d\u7b49\u4e8e\u4e00\u6b21\u9884\u6d4b\u5904\u7406\u7684\u6837\u672c\u6570":121,"\u5728\u7a0b\u5e8f\u5b9e\u73b0\u4e2d\u90fd\u4f1a\u8f6c\u5316\u4e3a\u4e8c\u7ef4\u77e9\u9635":121,"\u5728\u7b2c\u4e8c\u4e2atab":82,"\u5728\u7ebf\u4e0a\u7cfb\u7edf\u4e2d":123,"\u5728\u7ebf\u6a21\u578b\u9884\u6d4b\u670d\u52a1":33,"\u5728\u7ec4\u5408\u65f6":101,"\u5728\u7ec4\u7ec7\u795e\u7ecf\u7f51\u7edc\u8f93\u5165":122,"\u5728\u7ec4\u7ec7\u795e\u7ecf\u7f51\u7edc\u8f93\u5165\u65f6":121,"\u5728\u7ec8\u7aef\u6267\u884c":122,"\u5728\u7f16\u8bd1\u5bbf\u4e3b\u673a\u7248protoc\u53ef\u6267\u884c\u6587\u4ef6\u548c\u76ee\u6807\u673a\u7248openblas\u5e93\u65f6\u9700\u8981\u7528\u5230":[136,138],"\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d":110,"\u5728\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u4e2d":103,"\u5728\u8bad\u7ec3\u4e2d":107,"\u5728\u8bad\u7ec3\u4e4b\u524d":127,"\u5728\u8bad\u7ec3\u65f6":126,"\u5728\u8bad\u7ec3\u7ed3\u675f\u7684\u65f6\u5019\u518d\u4fdd\u5b58\u4e3apaddlepaddle\u7684\u683c\u5f0f":62,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d":127,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u6bcfshow":132,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u83b7\u5f97\u53c2\u6570\u7684\u6743\u91cd\u548c\u68af\u5ea6":94,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u83b7\u5f97\u67d0\u4e00\u4e2alayer\u7684output":94,"\u5728\u8bbe\u7f6e":[136,137,138],"\u5728\u8bc4\u5ba1\u8fc7\u7a0b\u4e2d":82,"\u5728\u8be5\u793a\u4f8b\u4e2d":96,"\u5728\u8be5\u914d\u7f6e\u76847":104,"\u5728\u8c03\u7528":122,"\u5728\u8c03\u7528c":122,"\u5728\u8f6f\u4ef6\u5de5\u7a0b\u7684\u8303\u7574\u91cc":117,"\u5728\u8f93\u51fa\u7684\u8fc7\u7a0b\u4e2d":106,"\u5728\u8fd0\u884c\u5b8c\u6027\u80fd\u5206\u6790\u540e":116,"\u5728\u8fd0\u884c\u65f6\u5c06\u795e\u7ecf\u7f51\u7edc\u7684\u591a\u4e2a\u53ef\u5b66\u4e60\u53c2\u6570\u653e\u5728\u540c\u4e00\u4e2a\u76ee\u5f55\u4e2d":122,"\u5728\u8fd0\u884c\u795e\u7ecf\u7f51\u7edc\u8ba1\u7b97\u56fe\u65f6":112,"\u5728\u8fd9\u4e2a":82,"\u5728\u8fd9\u4e2a\u4f8b\u5b50\u91cc":[110,126],"\u5728\u8fd9\u4e2a\u51fd\u6570\u4e2d":104,"\u5728\u8fd9\u4e2a\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":65,"\u5728\u8fd9\u4e2a\u6559\u7a0b\u4e2d":117,"\u5728\u8fd9\u4e2a\u6a21\u578b\u4e2d":107,"\u5728\u8fd9\u4e2a\u9636\u6bb5\u7684\u4ee3\u7801\u6b63\u5728\u7ecf\u5386\u56de\u5f52\u6d4b\u8bd5":82,"\u5728\u8fd9\u4e9b\u5934\u6587\u4ef6\u4e2d":66,"\u5728\u8fd9\u4e9b\u6587\u4ef6\u4e2d":66,"\u5728\u8fd9\u4e9blayer\u4e2d":104,"\u5728\u8fd9\u65f6\u771f\u6b63\u7684\u5206\u914d\u5185\u5b58":112,"\u5728\u8fd9\u6bb5\u4ee3\u7801\u4e2d":112,"\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b":[107,110],"\u5728\u8fd9\u79cd\u7ed3\u6784\u4e2d":106,"\u5728\u8fd9\u7bc7\u6587\u6863\u91cc":126,"\u5728\u8fd9\u7bc7\u6587\u7ae0\u91cc":127,"\u5728\u8fd9\u91cc":106,"\u5728\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528\u5168\u8fde\u63a5\u5c42\u4f5c\u4e3a\u4f8b\u5b50\u6765\u5c55\u793a\u5b9e\u73b0\u65b0\u7f51\u7edc\u5c42\u6240\u9700\u8981\u7684\u56db\u4e2a\u6b65\u9aa4":110,"\u5728\u8fd9\u91cc\u7528eigenvector\u6765\u8868\u793a":112,"\u5728\u8fd9\u91cc\u9700\u8981\u6ce8\u610f\u7684\u662f":112,"\u5728\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u65f6":123,"\u5728\u8fdb\u884c\u7f51\u7edc\u914d\u7f6e\u4e4b\u524d":101,"\u5728\u91c7\u7528sgd":96,"\u5728\u91cd\u6784\u524d\u7684paddlepaddle\u4e2d":62,"\u5728\u95ee\u9898\u672c\u8eab\u7684\u8ba1\u7b97\u91cf\u6bd4\u8f83\u5c0f\u7684\u65f6\u5019":61,"\u5728\u96c6\u7fa4\u4e0a\u8bad\u7ec3\u4e00\u4e2a\u7a00\u758f\u6a21\u578b\u9700\u8981\u52a0\u4e0a\u4e0b\u9762\u7684\u53c2\u6570":134,"\u5728\u975e\u5e8f\u5217\u8f93\u5165\u65f6":94,"\u5728android\u5e73\u53f0\u4e0a\u4e0d\u652f\u6301\u901a\u8fc7swig\u8c03\u7528\u6765\u8bad\u7ec3\u6216\u8005\u9884\u6d4b":136,"\u5728android\u5e73\u53f0\u4e0a\u53ea\u652f\u6301\u4f7f\u7528c":136,"\u5728batch":61,"\u5728build\u76ee\u5f55\u4e0b\u6267\u884c":91,"\u5728c":[65,121],"\u5728c\u7684\u5934\u6587\u4ef6":65,"\u5728cmake\u53c2\u6570\u914d\u7f6e\u4e0a":[136,137],"\u5728cmake\u7684\u547d\u4ee4\u884c\u4e2d":97,"\u5728eigen\u4e2d":112,"\u5728ios\u5e73\u53f0\u4e0a\u4e0d\u652f\u6301\u901a\u8fc7swig\u8c03\u7528\u6765\u8bad\u7ec3\u6216\u8005\u9884\u6d4b":137,"\u5728ios\u5e73\u53f0\u4e0a\u53ea\u652f\u6301\u4f7f\u7528c":137,"\u5728main":116,"\u5728packing\u4e0a\u7684\u8017\u65f6":61,"\u5728paddl":127,"\u5728paddle\u4e2d":134,"\u5728paddle\u4e4b\u4e0a\u8fd0\u884c\u7684\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u8f93\u51fa\u7684\u6a21\u578b\u4f1a\u63d0\u4f9b\u7ed9\u5728\u7ebf\u4eba\u8138\u8bc6\u522b\u7684\u5e94\u7528\u4f7f\u7528":33,"\u5728paddlepaddl":121,"\u5728paddlepaddle\u4e2d":[101,106],"\u5728paddlepaddle\u4e2d\u4f7f\u7528dropout\u6709\u4e24\u79cd\u65b9\u5f0f":95,"\u5728paddlepaddle\u4e2d\u5305\u542b\u4ee5\u4e0b":95,"\u5728paddlepaddle\u5185\u90e8":[121,122],"\u5728paddlepaddle\u7684\u6587\u6863\u4e2d":104,"\u5728paramet":32,"\u5728python\u811a\u672c\u4e2d\u5b9e\u73b0\u4e0e\u524d\u5411operator\u76f8\u540c\u7684\u8ba1\u7b97\u903b\u8f91":111,"\u5728rnn\u7684\u60c5\u51b5\u4e0b":61,"\u5728step\u51fd\u6570\u4e2d\u5b9a\u4e49":106,"\u5728step\u51fd\u6570\u4e2d\u5b9a\u4e49memori":106,"\u5728trainer":134,"\u5728trainer\u4e2d\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u53d6\u6a21\u7684\u65b9\u6cd5\u4e3a\u6bcf\u4e2atrainer\u5206\u914d\u8bad\u7ec3\u6570\u636e\u6587\u4ef6":123,"\u5730\u6bb5":104,"\u5730\u7406\u4f4d\u7f6e":104,"\u5730\u94c1\u7ad9":104,"\u5747\u4f1a\u5b58\u653e\u4e8e":119,"\u5747\u4f1a\u88ab\u5b89\u88c5\u5230includ":66,"\u5747\u5300\u5206\u5e03":96,"\u5747\u5300\u5206\u5e03\u7684\u8303\u56f4\u662f":132,"\u5747\u662f\u5728":66,"\u5747\u6709\u4e09\u4e2a\u5b50\u5e8f\u5217":104,"\u5747\u6709\u4e24\u7ec4\u7279\u5f81":104,"\u57fa\u4e8e\u53cc\u5c42\u5e8f\u5217\u8f93\u5165":106,"\u57fa\u4e8e\u7c98\u6027\u4f1a\u8bdd\u7684\u8d1f\u8f7d\u5747\u8861\u529f\u80fd":48,"\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":[102,122],"\u57fa\u7840\u4e0a":121,"\u57fa\u7c7b":111,"\u586b\u5199":109,"\u589e\u52a0":111,"\u589e\u52a0\u4e86\u4e00\u6761cd\u547d\u4ee4":126,"\u589e\u52a0\u4e86\u8bbe\u5907\u7c7b\u578b":111,"\u589e\u52a0\u5982\u4e0b\u53c2\u6570":134,"\u589e\u52a0\u68af\u5ea6\u68c0\u6d4b\u7684\u5355\u5143\u6d4b\u8bd5":110,"\u5904\u7406\u5668\u6709\u4e24\u4e2a\u5173\u952e\u6027\u80fd\u9650\u5236":117,"\u5904\u7406\u7684\u8f93\u5165\u5e8f\u5217\u4e3b\u8981\u5206\u4e3a\u4ee5\u4e0b\u4e09\u79cd\u7c7b\u578b":106,"\u5907\u6ce8":117,"\u590d\u6742\u5ea6\u6216\u65f6\u95f4\u590d\u6742\u5ea6":117,"\u5916\u5c42\u5e8f\u5217\u5728":121,"\u5916\u5c42memory\u662f\u4e00\u4e2a\u5143\u7d20":104,"\u5916\u5c42outer_step\u4e2d":104,"\u5916\u90e8\u5b58\u50a8":62,"\u591a\u4e2a":122,"\u591a\u4e2a\u503c":33,"\u591a\u4e2a\u5c42\u7684\u8f93\u51fa\u77e9\u9635\u7684\u9ad8\u5ea6\u4e0d\u4e00\u81f4\u5bfc\u81f4\u62fc\u63a5\u5931\u8d25":94,"\u591a\u4e2a\u6392\u6210\u4e00\u5217\u7684\u5143\u7d20":121,"\u591a\u4e2a\u8f93\u51fa\u5c42\u5904\u7406\u591a\u4e2a\u4e0d\u540c\u957f\u5ea6\u7684\u5e8f\u5217":94,"\u591a\u4e2aip\u4f7f\u7528":123,"\u591a\u4e2aparamet":32,"\u591a\u53e5\u8bdd\u8fdb\u4e00\u6b65\u6784\u6210\u4e86\u6bb5\u843d":106,"\u591a\u673a\u8bad\u7ec3":94,"\u591a\u6b21\u8c03\u7528":61,"\u591a\u7528\u4e8e\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1":122,"\u591a\u8f6e\u5bf9\u8bdd\u7b49\u66f4\u4e3a\u590d\u6742\u7684\u8bed\u8a00\u6570\u636e":106,"\u5927\u4e8e\u7b49\u4e8e\u4e00\u4e2a":122,"\u5927\u591a\u6570\u5c42\u4e0d\u9700\u8981\u8fdc\u7a0b\u7a00\u758f\u8bad\u7ec3\u51fd\u6570":110,"\u5927\u591a\u6570\u5c42\u9700\u8981\u8bbe\u7f6e\u4e3a":110,"\u5927\u591a\u6570\u7f51\u7edc\u5c42\u4e0d\u9700\u8981\u652f\u6301\u8fdc\u7a0b\u7a00\u758f\u66f4\u65b0":110,"\u5927\u591a\u6570\u8bed\u8a00\u90fd\u652f\u6301\u4f7f\u7528c\u8bed\u8a00api":65,"\u5927\u5bb6\u53ef\u4ee5\u7528\u628a\u5f00\u53d1\u5de5\u5177\u5b89\u88c5\u8fdb\u5165":108,"\u5927\u5bb6\u53ef\u4ee5\u901a\u8fc7\u5b83\u9605\u8bfb\u6559\u7a0b":98,"\u5927\u5c0f\u4e0d\u4e00\u6837\u65f6":94,"\u5927\u6982\u82b1\u5341\u5206\u949f\u770b\u4e00\u4e0b":108,"\u5927\u90e8\u5206":116,"\u5929":104,"\u5929\u4e00\u5e7f\u573a":104,"\u5929\u4e00\u9601":104,"\u5934\u4fe1\u606f\u4e2d":96,"\u5934\u6587\u4ef6\u4e2d\u628a\u53c2\u6570\u5b9a\u4e49\u4e3a\u7c7b\u7684\u6210\u5458\u53d8\u91cf":110,"\u5934\u6587\u4ef6\u5982\u4e0b":110,"\u597d":104,"\u597d\u5403":104,"\u5982":[107,109,111,134],"\u5982\u4e0a\u4e00\u5c0f\u8282\u6240\u793a":112,"\u5982\u4e0b":123,"\u5982\u4e0b\u56fe\u6240\u793a":[104,117],"\u5982\u4e0b\u6240\u793a":134,"\u5982\u4f55\u8d21\u732e":114,"\u5982\u4f55\u8d21\u732e\u4ee3\u7801":114,"\u5982\u56fe\u4e2dtrainer":32,"\u5982\u6709":111,"\u5982\u679c\u4e00\u4e2a\u7f51\u7edc\u5c42\u9700\u8981\u914d\u7f6e\u7684\u8bdd":110,"\u5982\u679c\u4e0a\u9762\u4e24\u6b65\u51fa\u73b0\u9519\u8bef":32,"\u5982\u679c\u4e0d\u4e3a0":132,"\u5982\u679c\u4e0d\u4f7f\u7528\u5206\u5e03\u5f0f\u5b58\u50a8":123,"\u5982\u679c\u4e0d\u4f7f\u7528docker":97,"\u5982\u679c\u4e0d\u4f7f\u7528docker\u7f16\u8bd1\u73af\u5883":97,"\u5982\u679c\u4e0d\u60f3\u4f7f\u7528":113,"\u5982\u679c\u4e0d\u6307\u5b9a\u8fd9\u4e2a\u6587\u4ef6":116,"\u5982\u679c\u4e0d\u6536\u655b":96,"\u5982\u679c\u4e0d\u9700\u8981\u5916\u90e8\u5b58\u50a8\u7528\u4e8e\u8f6c\u6362":62,"\u5982\u679c\u4e3a0":132,"\u5982\u679c\u4e3a\u5426\u5219\u662f\u7528openbla":97,"\u5982\u679c\u4e3afals":132,"\u5982\u679c\u4e3atrue":132,"\u5982\u679c\u4e4b\u540e\u60f3\u8981\u91cd\u65b0\u8bbe\u7f6e":97,"\u5982\u679c\u4ec5\u4ec5\u4fee\u6539\u4e00\u4e2a\u6587\u4ef6\u4f46\u63d0\u4ea4\u4e86\u5341\u51e0\u4e2acommit":109,"\u5982\u679c\u4ecd\u7136\u5b58\u5728\u95ee\u9898":100,"\u5982\u679c\u4ed4\u7ec6\u8bbe\u7f6e\u7684\u8bdd":132,"\u5982\u679c\u4f60\u53ea\u9700\u8981\u4f7f\u7528\u7b80\u5355\u7684rnn":107,"\u5982\u679c\u4f60\u60f3\u4f7f\u7528\u8fd9\u4e9b\u7279\u6027":134,"\u5982\u679c\u4f60\u60f3\u8981\u4fdd\u5b58\u67d0\u4e9b\u5c42\u7684\u7279\u5f81\u56fe":132,"\u5982\u679c\u4f60\u66fe\u5728\u6e90\u7801\u76ee\u5f55\u4e0b\u7f16\u8bd1\u8fc7\u5176\u4ed6\u5e73\u53f0\u7684paddlepaddle\u5e93":137,"\u5982\u679c\u4f60\u66fe\u7ecf\u5728\u6e90\u7801\u76ee\u5f55\u4e0b\u7f16\u8bd1\u8fc7\u5176\u4ed6\u5e73\u53f0\u7684paddlepaddle\u5e93":[136,138],"\u5982\u679c\u4f60\u6b63\u5728\u5904\u7406\u5e8f\u5217\u6807\u8bb0\u4efb\u52a1":107,"\u5982\u679c\u4f60\u8981\u4e3a\u4e86\u6d4b\u8bd5\u800c\u589e\u52a0\u65b0\u7684\u6587\u4ef6":110,"\u5982\u679c\u4f7f\u7528":122,"\u5982\u679c\u4f7f\u7528docker\u7f16\u8bd1\u73af\u5883":97,"\u5982\u679c\u4f7f\u7528mkl\u5e76\u4e14\u673a\u5668\u542b\u6709avx2\u6307\u4ee4\u96c6":97,"\u5982\u679c\u4f7f\u7528swig\u6211\u4eec\u9700\u8981\u5c06\u5728interface\u6587\u4ef6\u91cc":65,"\u5982\u679c\u5173\u95edmkl":97,"\u5982\u679c\u51fa\u73b0\u4ee5\u4e0bpython\u76f8\u5173\u7684\u5355\u5143\u6d4b\u8bd5\u90fd\u8fc7\u4e0d\u4e86\u7684\u60c5\u51b5":91,"\u5982\u679c\u53c2\u6570\u4fdd\u5b58\u4e0b\u6765\u7684\u6a21\u578b\u76ee\u5f55":94,"\u5982\u679c\u53d1\u73b0\u6700\u65e9\u7684\u62a5\u9519\u5c31\u662f\u7f51\u7edc\u901a\u4fe1\u7684\u95ee\u9898":92,"\u5982\u679c\u540c\u65f6\u4f7f\u7528":123,"\u5982\u679c\u5728\u4f7f\u7528mkl":62,"\u5982\u679c\u5728\u70b9\u51fb\u4e0b\u9762\u94fe\u63a5\u65f6\u51fa\u73b0\u5982\u4e0b\u767b\u9646\u754c\u9762":100,"\u5982\u679c\u5728\u7f16\u8bd1":119,"\u5982\u679c\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u672a\u8bbe\u7f6easync":132,"\u5982\u679c\u5728\u8bad\u7ec3\u671f\u95f4\u540c\u65f6\u53d1\u8d77\u53e6\u5916\u4e00\u4e2a\u8fdb\u7a0b\u8fdb\u884c\u6d4b\u8bd5":132,"\u5982\u679c\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u8bbe\u7f6ebatch":132,"\u5982\u679c\u5728\u8bad\u7ec3nlp\u76f8\u5173\u6a21\u578b\u65f6":96,"\u5982\u679c\u591a\u4e2aop\u4f9d\u8d56\u4e00\u4e9b\u5171\u7528\u7684\u51fd\u6570":111,"\u5982\u679c\u5931\u8d25":82,"\u5982\u679c\u5b58\u5728\u6570\u636e\u6392\u5217\u683c\u5f0f\u4e0d\u4e00\u6837\u7684\u60c5\u51b5\u65f6":62,"\u5982\u679c\u5b58\u5728\u67d0\u4e9btrainer\u6267\u884c\u901f\u5ea6\u8fc7\u6162\u4f1a\u5f71\u54cd\u6574\u4f53\u96c6\u7fa4\u7684\u901f\u5ea6":32,"\u5982\u679c\u5c06\u8fd9\u4e2a\u5185\u5b58\u6c60\u51cf\u5c0f":94,"\u5982\u679c\u5c0f\u4e8e75m":91,"\u5982\u679c\u5df2\u7ecf\u6709pod\u8fd0\u884c":127,"\u5982\u679c\u5df2\u7ecf\u6b63\u5728\u6267\u884c\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":32,"\u5982\u679c\u5e0c\u671b\u53ef\u4ee5\u5728\u540e\u53f0\u8fd0\u884cpserver\u7a0b\u5e8f":123,"\u5982\u679c\u5f53\u524dmpi\u96c6\u7fa4\u5e76\u4e0d\u652f\u6301\u4efb\u52a1\u72ec\u5360\u6a21\u5f0f":92,"\u5982\u679c\u60a8\u5728\u4f7f\u7528window":98,"\u5982\u679c\u60a8\u60f3\u8981\u66f4\u6df1\u5165\u4e86\u89e3deep":98,"\u5982\u679c\u60a8\u671f\u671b\u5728\u7f16\u8bd1\u5b8c\u6210\u540e\u7acb\u5373\u6267\u884c\u6240\u6709\u7684\u5355\u5143\u6d4b\u8bd5":97,"\u5982\u679c\u60a8\u6ca1\u6709\u542c\u8bf4":108,"\u5982\u679c\u60a8\u7684\u7535\u8111\u4e0d\u652f\u6301avx":98,"\u5982\u679c\u60a8\u7684gpu\u7406\u8bba\u53ef\u4ee5\u8fbe\u52306":117,"\u5982\u679c\u60a8\u9009\u62e9\u4e0d\u4f7f\u7528docker\u955c\u50cf":97,"\u5982\u679c\u60f3\u4f7f\u7528\u53ef\u89c6\u5316\u7684\u5206\u6790\u5668":117,"\u5982\u679c\u60f3\u5f88\u597d\u7684\u7406\u89e3\u7a0b\u5e8f\u7684\u884c\u4e3a":117,"\u5982\u679c\u60f3\u6539\u53d8\u539f\u6709tensor\u7684shape\u4fe1\u606f":112,"\u5982\u679c\u60f3\u8981\u4e86\u89e3\u53cc\u5c42rnn\u5728\u5177\u4f53\u95ee\u9898\u4e2d\u7684\u4f7f\u7528":104,"\u5982\u679c\u60f3\u8981\u542f\u7528paddlepaddle\u7684\u5185\u7f6e\u5b9a\u65f6\u5668":117,"\u5982\u679c\u6211\u4eec\u53ea\u9700\u8981\u7f16\u8bd1\u4e00\u4e2a\u53ea\u652f\u6301":108,"\u5982\u679c\u6211\u77e5\u9053\u5185\u6838\u82b1\u4e8610ms\u6765\u79fb\u52a81gb\u6570\u636e":117,"\u5982\u679c\u6307\u5b9a\u4e862\u4e2alayer\u4f5c\u4e3a\u8f93\u51fa\u5c42":94,"\u5982\u679c\u63d0\u793a\u6b63\u786e":113,"\u5982\u679c\u652f\u6301\u589e\u52a0\u6b64\u53c2\u6570\u63d0\u4ea4":92,"\u5982\u679c\u662f\u4e00\u4e2a\u5e8f\u5217\u8f93\u5165":121,"\u5982\u679c\u662f\u5176\u5b83\u7c7b\u578b":33,"\u5982\u679c\u662f\u7528\u7f16\u8bd1\u65f6\u6307\u5b9acpu\u7248\u672c":119,"\u5982\u679c\u6709\u591a\u4e2a\u8f93\u5165":106,"\u5982\u679c\u6709\u591a\u4e2a\u8f93\u5165\u5e8f\u5217":106,"\u5982\u679c\u6709\u9700\u8981\u4fee\u6539\u7684\u5730\u65b9":109,"\u5982\u679c\u6709bugfix\u7684\u884c\u4e3a":82,"\u5982\u679c\u672a\u8bbe\u7f6e":132,"\u5982\u679c\u672a\u8bbe\u7f6egpu":134,"\u5982\u679c\u673a\u5668\u4e2d\u5df2\u7ecf\u5b89\u88c5\u8fc7paddlepaddl":97,"\u5982\u679c\u67d0\u4e00\u4e2a\u7c7b\u578b\u9700\u8981\u5f15\u7528\u53e6\u4e00\u4e2a\u7c7b\u578b":66,"\u5982\u679c\u67d0\u4e00\u4e2apaddl":66,"\u5982\u679c\u67d0\u4e00\u4e2apaddle\u6982\u5ff5\u5fc5\u987b\u8981\u66b4\u9732":66,"\u5982\u679c\u67d0\u4e00\u5757\u6839\u672c\u5c31\u4e0d\u600e\u4e48\u8017\u65f6":117,"\u5982\u679c\u68c0\u67e5\u5230\u5206\u914d\u5728\u4e0d\u540c\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u53c2\u6570\u7684\u5206\u5e03\u4e0d\u5747\u5300\u6b21\u6570\u5927\u4e8echeck":132,"\u5982\u679c\u6ca1\u6709\u5b89\u88c5nvidia":98,"\u5982\u679c\u6ca1\u6709\u5b9a\u4e49memori":106,"\u5982\u679c\u6ca1\u8fc7":109,"\u5982\u679c\u6d88\u606f\u6570\u636e\u592a\u5c0f":132,"\u5982\u679c\u6ee1\u8db3\u6761\u4ef6":32,"\u5982\u679c\u7528\u516c\u7528\u7684\u7535\u8111\u5f00\u53d1":108,"\u5982\u679c\u7528\u6237\u4e0d\u9700\u8981\u8bbf\u95eelstm\u7684\u4e2d\u95f4\u53d8\u91cf":95,"\u5982\u679c\u7528\u6237\u60f3\u8981\u81ea\u5b9a\u4e49\u521d\u59cb\u5316\u65b9\u5f0f":96,"\u5982\u679c\u7528\u6237\u8981\u628apaddle\u7684\u9759\u6001\u5e93":65,"\u5982\u679c\u7528\u81ea\u5df1\u7684\u7535\u8111\u5f00\u53d1":108,"\u5982\u679c\u771f\u60f3\u6316\u6398\u5185\u6838\u6df1\u5904\u7684\u67d0\u4e2a\u79d8\u5bc6":117,"\u5982\u679c\u795e\u7ecf\u7f51\u7edc\u6709\u591a\u4e2a\u8f93\u5165\u6216\u8005\u591a\u4e2a\u8f93\u51fa":[121,122],"\u5982\u679c\u7a0b\u5e8f\u5d29\u6e83\u4f60\u4e5f\u53ef\u4ee5\u624b\u52a8\u7ec8\u6b62":124,"\u5982\u679c\u7cfb\u7edf\u5b89\u88c5\u4e86\u591a\u4e2apython\u7248\u672c":91,"\u5982\u679c\u7cfb\u7edf\u652f\u6301":[91,100],"\u5982\u679c\u7cfb\u7edf\u652f\u6301\u7684\u662f":[91,100],"\u5982\u679c\u7f16\u8bd1\u65f6\u6307\u5b9a\u7f16\u8bd1cpu\u7248\u672c":119,"\u5982\u679c\u7f16\u8bd1\u65f6\u6307\u5b9a\u7f16\u8bd1gpu\u7248\u672c":119,"\u5982\u679c\u7f16\u8bd1\u7684\u65f6\u5019\u6211\u4eec\u7528\u4e86":108,"\u5982\u679c\u7f51\u7edc\u5c42\u4e0d\u9700\u8981\u8fdc\u7a0b\u7a00\u758f\u66f4\u65b0":110,"\u5982\u679c\u7f51\u7edc\u67b6\u6784\u7b80\u5355":107,"\u5982\u679c\u8981\u4e0a\u4f20gpu\u7248\u672c\u7684\u5305":82,"\u5982\u679c\u8981\u542f\u7528gpu":123,"\u5982\u679c\u8981\u8fd0\u884c\u6240\u6709\u7684\u5355\u5143\u6d4b\u8bd5":109,"\u5982\u679c\u89e3\u51b3\u4e86\u67d0\u4e2aissue\u7684\u95ee\u9898":109,"\u5982\u679c\u8bad\u7ec3\u4e00\u4e2apass":96,"\u5982\u679c\u8bad\u7ec3\u8fc7\u7a0b\u7684\u7684cost\u660e\u663e\u9ad8\u4e8e\u8fd9\u4e2a\u5e38\u6570\u8f93\u51fa\u7684cost":96,"\u5982\u679c\u8bbe\u7f6e\u8be5\u53c2\u6570":132,"\u5982\u679c\u8bc4\u5ba1\u610f\u89c1\u6bd4\u8f83\u591a":109,"\u5982\u679c\u8c03\u7528\u9759\u6001\u5e93\u53ea\u80fd\u5c06\u9759\u6001\u5e93\u4e0e\u89e3\u91ca\u5668\u94fe\u63a5":65,"\u5982\u679c\u8f93\u5165\u662f\u5e8f\u5217\u6570\u636e":121,"\u5982\u679c\u8f93\u51fa\u662f\u4e00\u4e2a\u5e8f\u5217":121,"\u5982\u679c\u8f93\u51fa\u662fno":98,"\u5982\u679c\u8fd0\u884c":91,"\u5982\u679c\u8fd8\u4e0d\u884c":91,"\u5982\u679c\u9700\u8981":119,"\u5982\u679c\u9700\u8981\u5728c\u7ef4\u5ea6\u8ba1\u7b97softmax":95,"\u5982\u679c\u9700\u8981\u5b89\u88c5\u652f\u6301gpu\u7684\u7248\u672c":[100,102],"\u5982\u679c\u9700\u8981\u624b\u52a8\u7f16\u8bd1":82,"\u5982\u679c\u9700\u8981\u6269\u5927\u77e9\u9635":110,"\u5982\u679c\u9700\u8981\u7f29\u51cf\u77e9\u9635":110,"\u5982\u679c\u9700\u8981\u83b7\u53d6":100,"\u5982\u679ccuda":111,"\u5982\u679clearning_rate\u592a\u5927":96,"\u5982\u679clearning_rate\u592a\u5c0f":96,"\u5982\u679cmkl":62,"\u5982\u679cop\u6ca1\u6709\u5b9e\u73b0cuda":111,"\u5982\u679cop\u7684\u67d0\u4e2a\u8f93\u5165\u4e0d\u53c2\u4e0e\u53cd\u5411\u68af\u5ea6\u7684\u8ba1\u7b97":111,"\u5982\u679cpaddlepaddle\u5305\u5df2\u7ecf\u5728python\u7684sit":91,"\u5982\u679cpaddlepaddle\u5e93\u9700\u8981\u540c\u65f6\u652f\u6301\u771f\u673a\u548c\u6a21\u62df\u5668":137,"\u5982\u679cparamet":32,"\u5982\u6bcf\u4e2a\u6587\u4ef6\u53ea\u6709\u4e00\u4e2a":109,"\u5982\u795e\u7ecf\u5143\u6fc0\u6d3b\u503c\u7b49":94,"\u5982\u8981build\u8fd9\u4e2a\u5f00\u53d1\u955c\u50cf":109,"\u5982\u9ad8\u4eae\u90e8\u5206":117,"\u5982train":123,"\u5b50":104,"\u5b50\u53e5":106,"\u5b50\u53e5\u7684\u5355\u8bcd\u6570\u548c\u6307\u5b9a\u7684\u4e00\u4e2a\u8f93\u5165\u5e8f\u5217\u4e00\u81f4":106,"\u5b50\u76ee\u5f55":108,"\u5b50\u7c7b\u53ea\u9700\u8981\u4f7f\u7528\u5b9a\u4e49\u597d\u7684\u63a5\u53e3":62,"\u5b57\u6bb5\u4e2d":127,"\u5b57\u6bb5\u4e3a\u4f8b":94,"\u5b57\u6bb5\u7684\u53d6\u503c":121,"\u5b57\u6bb5\u8868\u793a\u5bb9\u5668\u7684\u73af\u5883\u53d8\u91cf":127,"\u5b57\u6bb5\u8868\u793a\u8fd9\u4e2ajob\u4f1a\u540c\u65f6\u5f00\u542f3\u4e2apaddlepaddle\u8282\u70b9":127,"\u5b57\u6bb5\u8bbe\u4e3a":82,"\u5b57\u7b26\u4e32":33,"\u5b58\u50a8":[33,121,122],"\u5b58\u50a8\u6d6e\u70b9\u7c7b\u578b\u8f93\u5165":122,"\u5b58\u50a8\u7684\u538b\u7f29\u6587\u4ef6":122,"\u5b58\u6570\u6570\u636e":121,"\u5b66\u4e60":108,"\u5b66\u4e60\u6210\u672c\u9ad8":65,"\u5b66\u4e60\u7387\u4e3a":96,"\u5b81\u6ce2":104,"\u5b83\u4eec\u4e3b\u8981\u662f\u7528\u4e8e":62,"\u5b83\u4eec\u7684\u6587\u4ef6\u540d\u662f":33,"\u5b83\u5305\u542b\u4ee5\u4e0b\u51e0\u6b65":110,"\u5b83\u5305\u542b\u4ee5\u4e0b\u53c2\u6570":110,"\u5b83\u53ea\u4f1a\u5305\u62ec\u751f\u6210\u597d\u7684\u52a8\u6001\u5e93\u548c\u5934\u6587\u4ef6":62,"\u5b83\u53eb\u505a":107,"\u5b83\u53ef\u4ee5\u5e2e\u52a9\u51cf\u5c11\u5206\u53d1\u5ef6\u8fdf":124,"\u5b83\u53ef\u4ee5\u5e2e\u52a9\u6211\u4eec\u683c\u5f0f\u5316\u6e90\u4ee3\u7801":109,"\u5b83\u53ef\u4ee5\u6307\u6d4b\u91cf\u4e00\u4e2a\u7a0b\u5e8f\u7684\u7a7a\u95f4":117,"\u5b83\u53ef\u80fd\u6709\u4e0d\u6b62\u4e00\u4e2a\u6743\u91cd":110,"\u5b83\u5b9a\u4e49\u4e86":107,"\u5b83\u5b9a\u4e49\u89e3\u7801\u7f51\u7edc\u7684":107,"\u5b83\u5c06\u88ab\u5206\u53d1\u5230":124,"\u5b83\u5e76\u4e0d\u662f\u4e00\u4e2a\u5b8c\u6574\u7684recurr":95,"\u5b83\u5e94\u8be5\u6253\u5370\u51fa\u9884\u6d4b\u4f4f\u623f\u6570\u636e\u7684\u6e05\u5355":102,"\u5b83\u652f\u6301\u591a\u7ebf\u7a0b\u66f4\u65b0":110,"\u5b83\u662finteger_value\u7c7b\u578b\u7684":104,"\u5b83\u662finteger_value_sequence\u7c7b\u578b\u7684":104,"\u5b83\u6709\u52a9\u4e8e\u5e2e\u52a9\u9891\u7e41\u4fee\u6539\u548c\u8bbf\u95ee\u5de5\u4f5c\u533a\u6587\u4ef6\u7684\u7528\u6237\u51cf\u5c11\u8d1f\u62c5":124,"\u5b83\u7684":107,"\u5b83\u7684\u529f\u80fd\u662f":111,"\u5b83\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20":103,"\u5b83\u7684\u8f93\u5165\u4e0e\u7ecf\u8fc7\u5b66\u4e60\u7684\u53c2\u6570\u505a\u5185\u79ef\u5e76\u52a0\u4e0a\u504f\u7f6e":110,"\u5b83\u8868\u793a":108,"\u5b83\u8d1f\u8d23\u51b3\u5b9a\u7f16\u8bd1\u65f6\u662f\u5426\u4f7f\u7528mklml\u548cmkl":62,"\u5b83\u9996\u5148\u8c03\u7528\u57fa\u6784\u9020\u51fd\u6570":110,"\u5b89\u6392":104,"\u5b89\u88c5":116,"\u5b89\u88c5\u4e0e\u7f16\u8bd1":102,"\u5b89\u88c5\u540e":98,"\u5b89\u88c5\u540e\u7684\u76ee\u5f55\u7ed3\u6784\u4e3a":66,"\u5b89\u88c5\u597ddocker\u4e4b\u540e\u53ca\u53ef\u7528\u4ee5\u4e0b\u547d\u4ee4\u542f\u52a8\u5de5\u5177":113,"\u5b89\u88c5\u597ddocker\u4e4b\u540e\u53ef\u4ee5\u4f7f\u7528\u6e90\u7801\u76ee\u5f55\u4e0b\u7684\u811a\u672c\u6784\u5efa\u6587\u6863":113,"\u5b89\u88c5\u5b8c\u6210\u4e4b\u540e":[123,137],"\u5b89\u88c5\u5b8c\u6bd5\u540e":116,"\u5b89\u88c5\u5f00\u53d1\u5de5\u5177\u5230":108,"\u5b89\u88c5\u6587\u6863":101,"\u5b89\u88c5\u65b9\u5f0f\u6765\u5feb\u901f\u5b89\u88c5paddlepaddl":123,"\u5b89\u9759":104,"\u5b8c\u6210":109,"\u5b8c\u6210\u4e00\u4e2a\u4f20\u8f93\u52a8\u4f5c\u5b8c\u6210\u7684\u65f6\u95f4\u4e5f\u6bd4\u8f83\u77ed":48,"\u5b8c\u6210\u4e0a\u8ff0\u51c6\u5907\u4e4b\u540e":122,"\u5b8c\u6210\u4efb\u610f\u7684\u8fd0\u7b97\u903b\u8f91":106,"\u5b8c\u6210\u540evolume\u4e2d\u7684\u6587\u4ef6\u5185\u5bb9\u5927\u81f4\u5982\u4e0b":127,"\u5b8c\u6210\u5728windows\u4e0a\u5b89\u88c5\u548c\u4f7f\u7528dock":98,"\u5b8c\u6210\u5b89\u88c5":100,"\u5b8c\u6210\u5e38\u7528layer\u7684mkl":62,"\u5b8c\u6210\u5e38\u89c1\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edcvgg":62,"\u5b8c\u6210\u6570\u636e\u7684\u9884\u5904\u7406":33,"\u5b8c\u6210\u76f8\u5e94\u7684\u8ba1\u7b97":103,"\u5b8c\u6210\u81ea\u52a8\u5316\u4e8c\u8fdb\u5236\u7f16\u8bd1":82,"\u5b8c\u6210paddlepaddle\u7684\u5b89\u88c5":101,"\u5b8c\u6574\u4ee3\u7801\u53ef\u4ee5\u53c2\u8003\u793a\u4f8b":94,"\u5b8c\u6574\u4ee3\u7801\u53ef\u4ee5\u67e5\u770b":122,"\u5b8c\u6574\u6e90\u7801\u53ef\u53c2\u8003":96,"\u5b8c\u6574\u7684\u53c2\u6570\u77e9\u9635\u88ab\u5206\u5e03\u5728\u4e0d\u540c\u7684\u53c2\u6570\u670d\u52a1\u5668\u4e0a":110,"\u5b8c\u6574\u7684\u914d\u7f6e\u6587\u4ef6\u5728":107,"\u5b98\u65b9\u6587\u6863":97,"\u5b9a\u4e49":62,"\u5b9a\u4e49\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185rnn\u5355\u5143\u5b8c\u6210\u7684\u8ba1\u7b97":106,"\u5b9a\u4e49\u4e00\u4e9b\u9664\u4e86layer\u548cmemory\u76f8\u5173\u7684\u7c7b\u548c\u51fd\u6570":62,"\u5b9a\u4e49\u4e86\u4e00\u4e2a\u53ea\u8bfb\u7684memori":106,"\u5b9a\u4e49\u4e86lstm\u5355\u5143\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u7684\u8ba1\u7b97\u8fc7\u7a0b":95,"\u5b9a\u4e49\u4f4d\u7f6e":111,"\u5b9a\u4e49\u5728\u5916\u5c42":106,"\u5b9a\u4e49\u5f02\u6b65\u8bad\u7ec3\u7684\u957f\u5ea6":132,"\u5b9a\u4e49\u6e90\u8bed\u53e5\u7684\u6570\u636e\u5c42":107,"\u5b9a\u4e49\u7684\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784":122,"\u5b9a\u4e49\u7c7b\u578b":111,"\u5b9a\u4e49\u89e3\u7801\u5668\u7684memori":107,"\u5b9a\u4e49\u8f93\u5165":111,"\u5b9a\u4e49\u8f93\u51fa":111,"\u5b9a\u4e49\u8f93\u51fa\u51fd\u6570":107,"\u5b9a\u4e49\u95e8\u63a7\u5faa\u73af\u5355\u5143\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5355\u6b65\u51fd\u6570":107,"\u5b9d\u5854\u7684\u5e95\u7aef\u9700\u8981\u575a\u5b9e\u7684\u57fa\u5ea7\u6765\u652f\u6491":101,"\u5b9e\u73b0\u4e24\u4e2a\u5b8c\u5168\u7b49\u4ef7\u7684\u5168\u8fde\u63a5rnn":104,"\u5b9e\u73b0\u5177\u4f53\u7684\u51fd\u6570\u529f\u80fd\u5373\u53ef":62,"\u5b9e\u73b0\u524d\u5411\u4f20\u64ad\u7684\u90e8\u5206\u6709\u4e0b\u9762\u51e0\u4e2a\u6b65\u9aa4":110,"\u5b9e\u73b0\u5355\u6b65\u51fd\u6570":107,"\u5b9e\u73b0\u540e\u5411\u4f20\u64ad\u7684\u90e8\u5206\u6709\u4e0b\u9762\u51e0\u4e2a\u6b65\u9aa4":110,"\u5b9e\u73b0\u5728":111,"\u5b9e\u73b0\u5bf9":112,"\u5b9e\u73b0\u65b0\u7684op\u90fd\u6dfb\u52a0\u81f3\u76ee\u5f55":111,"\u5b9e\u73b0\u6784\u9020\u51fd\u6570":110,"\u5b9e\u73b0\u7684":95,"\u5b9e\u73b0\u7b80\u5355":65,"\u5b9e\u73b0\u7ec6\u8282":110,"\u5b9e\u73b0\u7f51\u7edc\u5c42\u7684\u524d\u5411\u4f20\u64ad":110,"\u5b9e\u73b0\u7f51\u7edc\u5c42\u7684\u540e\u5411\u4f20\u64ad":110,"\u5b9e\u73b0\u8bcd\u8bed\u548c\u53e5\u5b50\u4e24\u4e2a\u7ea7\u522b\u7684\u53cc\u5c42rnn\u7ed3\u6784":106,"\u5b9e\u73b0\u8be5\u5c42\u7684c":110,"\u5b9e\u9645\u4e0a\u4f7f\u7528\u4e86":95,"\u5b9e\u9645\u4e0a\u9700\u8981\u7684\u8f93\u51fa\u7ed3\u679c\u662f\u4e24\u4e2a\u77e9\u9635":94,"\u5ba2\u6237":104,"\u5bb6":104,"\u5bb9\u5668\u8fd0\u884c\u90fd\u8fd0\u884c":127,"\u5bb9\u5668\u9ed8\u8ba4\u6267\u884c":136,"\u5bbd\u5ea6":121,"\u5bbd\u5ea6\u4e3a":121,"\u5bbd\u5ea6\u7b49\u4e8e\u914d\u7f6e\u4e2dlayer\u7684s":94,"\u5bbf\u4e3b\u673a\u7684c":[136,137,138],"\u5bc4\u5b58\u5668\u4f7f\u7528\u60c5\u51b5\u548c\u5171\u4eab\u5185\u5b58\u4f7f\u7528\u60c5\u51b5\u80fd\u8ba9\u6211\u4eec\u5bf9gpu\u7684\u6574\u4f53\u4f7f\u7528\u6709\u66f4\u597d\u7684\u7406\u89e3":117,"\u5bf9":[104,122],"\u5bf9\u4e00\u4e2a5\u7ef4\u975e\u5e8f\u5217\u7684\u7a00\u758f01\u5411\u91cf":101,"\u5bf9\u4e00\u4e2a5\u7ef4\u975e\u5e8f\u5217\u7684\u7a00\u758f\u6d6e\u70b9\u5411\u91cf":101,"\u5bf9\u4e8e":107,"\u5bf9\u4e8e\u4e0d\u540c\u7684\u8bad\u7ec3\u4efb\u52a1":123,"\u5bf9\u4e8e\u4e0d\u540c\u7684\u96c6\u7fa4\u5e73\u53f0":123,"\u5bf9\u4e8e\u4e0d\u540c\u8bed\u8a00":65,"\u5bf9\u4e8e\u4e24\u79cd\u4e0d\u540c\u7684\u8f93\u5165\u6570\u636e\u7c7b\u578b":104,"\u5bf9\u4e8e\u4e60\u60ef\u4f7f\u7528windows\u548cmacos\u7684\u5f00\u53d1\u8005\u6765\u8bf4":108,"\u5bf9\u4e8e\u5355\u5c42rnn":104,"\u5bf9\u4e8e\u5355\u5c42rnn\u7684\u6570\u636e\u4e00\u5171\u6709\u4e24\u4e2a\u6837\u672c":104,"\u5bf9\u4e8e\u53cc\u5c42rnn":104,"\u5bf9\u4e8e\u540c\u4e00\u6bb5c":65,"\u5bf9\u4e8e\u540c\u6837\u7684\u6570\u636e":104,"\u5bf9\u4e8e\u540c\u6837\u8bbe\u7f6e\u7684\u7f51\u7edc\u6a21\u578b":61,"\u5bf9\u4e8e\u56fd\u5185\u7528\u6237":98,"\u5bf9\u4e8e\u591a\u8bed\u8a00\u63a5\u53e3":65,"\u5bf9\u4e8e\u5927\u591a\u6570\u8bed\u8a00":65,"\u5bf9\u4e8e\u5e8f\u5217\u957f\u5ea6":61,"\u5bf9\u4e8e\u6027\u80fd\u7684\u5173\u952e\u8def\u5f84\u90fd\u505a\u51fa\u4e86\u7ea2\u8272\u6807\u8bb0":116,"\u5bf9\u4e8e\u6211\u4eec\u652f\u6301\u7684\u5168\u90e8\u77e9\u9635\u64cd\u4f5c":110,"\u5bf9\u4e8e\u6709\u53c2\u6570\u7684\u5c42":62,"\u5bf9\u4e8e\u672c\u6837\u4f8b\u4ee3\u7801":123,"\u5bf9\u4e8e\u6bb5\u843d\u7684\u6587\u672c\u5206\u7c7b":104,"\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u5355\u5c42rnn\u7684\u6570\u636e":104,"\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u65b0\u52a0\u7684rnn":61,"\u5bf9\u4e8e\u6bcf\u79cd\u7c7b\u578b":66,"\u5bf9\u4e8e\u6bcf\u79cdc":66,"\u5bf9\u4e8e\u8fd9\u6837\u7684\u9700\u6c42":122,"\u5bf9\u4e8e\u914d\u5907\u6709\u6ce8\u610f\u529b\u673a\u5236\u7684\u89e3\u7801\u5668":107,"\u5bf9\u4e8enchw":95,"\u5bf9\u4ee3\u7801\u8fdb\u884c\u6027\u80fd\u5206\u6790":117,"\u5bf9\u4f7f\u7528\u7684\u4e2d\u95f4\u53d8\u91cf\u548c\u8d44\u6e90\u8fdb\u884c\u6e05\u7406\u548c\u91ca\u653e":122,"\u5bf9\u5168\u8fde\u63a5\u5c42\u6765\u8bf4":110,"\u5bf9\u52a0\u8f7d\u9884\u8bad\u7ec3\u53c2\u6570\u7684\u5c42":96,"\u5bf9\u53cc\u5c42\u5e8f\u5217\u6765\u8bb2":121,"\u5bf9\u5df2\u7ecfpush\u5230\u8fdc\u7a0b\u4ed3\u5e93\u7684\u591a\u4e2acommit":109,"\u5bf9\u5e94":137,"\u5bf9\u5e94\u4e00\u4e2a\u5b50\u53e5":106,"\u5bf9\u5e94\u4e00\u4e2a\u8bcd":106,"\u5bf9\u5e94\u4e8e\u8c03\u7528c":121,"\u5bf9\u5e94\u7684\u68af\u5ea6op\u8ba1\u7b97\u4e4b\u4e2d":111,"\u5bf9\u5e94\u7740\u4e0a\u6587\u63d0\u5230\u7684\u4e00\u7ef4\u6574\u578b\u6570\u7ec4":121,"\u5bf9\u5e94\u7740\u4e0a\u6587\u63d0\u5230\u7684\u4e8c\u7ef4\u6d6e\u70b9\u578b\u77e9\u9635":121,"\u5bf9\u63a8\u8350\u914d\u7f6e\u4e2d\u7684\u9009\u9879\u5efa\u8bae\u6309\u7167\u8bbe\u7f6e":119,"\u5bf9\u65b0\u7684\u6743\u91cd\u8fdb\u884c\u8f6c\u6362\u7528\u4e8e\u4e0b\u6b21\u8fed\u4ee3":61,"\u5bf9\u6bcf\u4e2a\u8f93\u5165":110,"\u5bf9\u6bcf\u4e2a\u8f93\u5165\u4e58\u4e0a\u53d8\u6362\u77e9\u9635":110,"\u5bf9\u6bd4":65,"\u5bf9\u6bd4\u4f18\u5316\u540elayer\u4e0e\u76f8\u5bf9\u5e94\u7684paddlepaddle\u539f\u6709lay":61,"\u5bf9\u6bd4\u4f18\u5316\u540elayer\u81ea\u8eab":61,"\u5bf9\u6bd4\u53cd\u5411op\u4e0d\u540c\u8bbe\u5907":111,"\u5bf9\u6fc0\u6d3b\u6c42\u5bfc":110,"\u5bf9\u795e\u7ecf\u7f51\u7edc\u6765\u8bf4":121,"\u5bf9\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u8fdb\u884c\u5e8f\u5217\u5316":122,"\u5bf9\u8bc4\u5ba1\u610f\u89c1\u4e0d\u540c\u610f\u7684":109,"\u5bf9\u8bc4\u5ba1\u610f\u89c1\u540c\u610f\u4e14\u6309\u5176\u4fee\u6539\u5b8c\u7684":109,"\u5bf9\u8c61":96,"\u5bf9\u8c61\u5206\u914d\u7a7a\u95f4":122,"\u5bf9\u8f93\u5165\u53c2\u6570\u7684\u5b89\u5168\u6027\u8fdb\u884c\u4e86\u5fc5\u8981\u7684\u5224\u65ad":66,"\u5bf9\u8f93\u51fa\u7684\u5408\u5e76":106,"\u5bf9\u8fd9\u4e2a\u7248\u672c\u7684\u63d0\u4ea4":82,"\u5bf9\u9762":104,"\u5bf9sparse_binary_vector\u548csparse_float_vector":101,"\u5bfb\u627e\u6709\u6ca1\u6709\u5176\u4ed6\u53ef\u4ee5\u4f18\u5316\u7684\u53ef\u80fd":62,"\u5bfb\u627epython\u4e0ec":116,"\u5bfc\u51fa\u8fd9\u4e9b\u63a5\u53e3":66,"\u5bfc\u81f4\u4e86\u6d6e\u70b9\u6570\u6ea2\u51fa":94,"\u5bfc\u81f4\u53c2\u6570\u6536\u655b\u5230\u4e86\u4e00\u4e9b\u5947\u5f02\u7684\u60c5\u51b5":94,"\u5bfc\u81f4\u53c2\u6570\u7d2f\u52a0":94,"\u5bfc\u81f4\u7f16\u8bd1paddlepaddle\u5931\u8d25":91,"\u5bfc\u81f4\u8bad\u7ec3\u65f6\u95f4\u8fc7\u957f":96,"\u5bfc\u81f4mklml\u5e93\u4e0b\u8f7d\u4e0d\u6210\u529f":91,"\u5c01\u88c5\u4e86":117,"\u5c01\u88c5\u8be5\u5c42\u7684python\u63a5\u53e3":110,"\u5c06":[82,96,117],"\u5c06\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u53c2\u6570\u62c6\u5206\u6210\u591a\u4efd":32,"\u5c06\u4e0a\u4e00\u65f6\u95f4\u6b65\u6240\u751f\u6210\u7684\u8bcd\u7684\u5411\u91cf\u6765\u4f5c\u4e3a\u5f53\u524d\u65f6\u95f4\u6b65\u7684\u8f93\u5165":107,"\u5c06\u4f1a\u4f18\u5148\u4f7f\u7528":123,"\u5c06\u4f1a\u59cb\u7ec8\u4f7f\u7528":136,"\u5c06\u4f1a\u5c06\u7528\u6237\u4f20\u8fdb\u6765\u7684\u914d\u7f6e\u53c2\u6570\u4f20\u9012cmake\u7cfb\u7edf":136,"\u5c06\u4f1a\u81ea\u52a8\u8ba1\u7b97\u51fa\u4e00\u4e2a\u5408\u9002\u7684\u503c":132,"\u5c06\u5176\u8bbe\u7f6e\u6210":94,"\u5c06\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u6570\u636e\u5148\u53d8\u6362\u6210\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u6570\u636e":104,"\u5c06\u542b\u6709\u5b50\u53e5":106,"\u5c06\u542b\u6709\u8bcd\u8bed\u7684\u53e5\u5b50\u5b9a\u4e49\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":106,"\u5c06\u56fe\u7247\u5206\u7c7b\u5230":122,"\u5c06\u591a\u53e5\u8bdd\u770b\u6210\u4e00\u4e2a\u6574\u4f53\u540c\u65f6\u4f7f\u7528encoder\u538b\u7f29":104,"\u5c06\u591a\u53f0\u673a\u5668\u7684\u6d4b\u8bd5\u7ed3\u679c\u5408\u5e76":132,"\u5c06\u5927\u91cf\u7684":65,"\u5c06\u5b57\u5178\u7684\u5730\u5740\u4f5c\u4e3aargs\u4f20\u7ed9dataprovid":96,"\u5c06\u5b83\u4eec\u653e\u5728\u540c\u4e00\u76ee\u5f55\u4e2d":122,"\u5c06\u5bf9\u5e94\u6570\u636e\u5c42\u7684\u7ef4\u6570\u8bbe\u7f6e\u6210\u4e00\u4e2a\u5927\u4e8e\u8f93\u5165\u6570\u636e\u7ef4\u6570\u7684\u503c\u7528\u4e8e\u5360\u4f4d\u5373\u53ef":95,"\u5c06\u5e8f\u5217\u5316\u7ed3\u679c\u5199\u5165\u4e00\u4e2a\u6587\u4ef6\u5185":122,"\u5c06\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u524d\u5411\u548c\u53cd\u5411\u90e8\u5206\u6df7\u5408\u5728\u4e00\u8d77":107,"\u5c06\u6027\u80fd\u5206\u6790\u7ed3\u679c\u4ee5\u7f51\u9875\u7684\u5f62\u5f0f\u5c55\u793a\u51fa\u6765":116,"\u5c06\u6027\u80fd\u5206\u6790\u7ed3\u679c\u6309\u7167tottime\u6392\u5e8f":116,"\u5c06\u6570\u636e\u5207\u5206\u6210\u591a\u4efd":123,"\u5c06\u65b0\u5206\u652f\u7684\u7248\u672c\u6253\u4e0atag":82,"\u5c06\u65b0\u5efa\u7684\u6743\u91cd\u52a0\u5165\u6743\u91cd\u8868":110,"\u5c06\u660e\u6587\u53c2\u6570\u8f6c\u5316\u4e3apaddlepaddle\u53ef\u52a0\u8f7d\u7684\u6a21\u578b\u53c2\u6570\u65f6":96,"\u5c06\u672c\u5730\u7684\u4fee\u6539\u63a8\u9001\u5230":109,"\u5c06\u6b64\u76ee\u5f55\u6302\u8f7d\u4e3a\u5bb9\u5668\u7684":127,"\u5c06\u73af\u5883\u53d8\u91cf\u8f6c\u6362\u6210paddle\u7684\u547d\u4ee4\u884c\u53c2\u6570":127,"\u5c06\u7528\u4e8epython":111,"\u5c06\u7ed3\u679c\u4fdd\u5b58\u5230\u6b64\u76ee\u5f55\u91cc":127,"\u5c06\u7f51\u7edc\u7ed3\u6784\u5b9a\u4e49\u548c\u8bad\u7ec3\u7ed3\u675f\u5b58\u50a8\u4e0b\u6765\u7684\u6a21\u578b\u53c2\u6570\u6587\u4ef6":122,"\u5c06\u8bad\u7ec3\u6587\u4ef6\u4e0e\u5207\u5206\u597d\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5171\u4eab\u5b58\u50a8":127,"\u5c06\u8df3\u8fc7\u5206\u53d1\u9636\u6bb5\u76f4\u63a5\u542f\u52a8\u6240\u6709\u8282\u70b9\u7684\u96c6\u7fa4\u4f5c\u4e1a":124,"\u5c06\u8fd9\u79cd\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684\u8fde\u63a5\u7528\u4e00\u4e2a\u7279\u6b8a\u7684\u795e\u7ecf\u7f51\u7edc\u5355\u5143\u5b9e\u73b0":104,"\u5c06\u8fdc\u7a0b\u4ed3\u5e93":109,"\u5c06\u900f\u660e":124,"\u5c06\u9700\u8981\u8f93\u51fa\u7684\u5c42\u4f5c\u4e3a":94,"\u5c06cuda\u5e93\u548clinux\u8bbe\u5907\u6302\u8f7d\u5230docker\u5bb9\u5668\u5185":98,"\u5c06ip\u6392\u5e8f\u751f\u6210\u7684\u5e8f\u53f7\u4f5c\u4e3atrain":127,"\u5c06master\u5206\u652f\u7684\u5408\u5165commit\u6253\u4e0atag":82,"\u5c06node\u8282\u70b9\u7684ip\u5730\u5740\u4fdd\u5b58\u5230machines\u6587\u4ef6\u4e2d":128,"\u5c06paddlepaddle\u4fdd\u5b58\u7684\u6a21\u578b\u53c2\u6570\u8fd8\u539f\u56de\u660e\u6587\u65f6":96,"\u5c06recurr":95,"\u5c0f\u4e8e\u67d0\u4e2a\u6bd4\u8f83\u5c0f\u7684\u9608\u503c\u8ba4\u4e3a\u901a\u8fc7":62,"\u5c1a\u53ef":104,"\u5c31":104,"\u5c31\u4f1a\u5728\u5b8c\u6210\u7f16\u8bd1\u4e4b\u540e":97,"\u5c31\u53ef\u4ee5\u4e86\u89e3\u5230\u95ee\u9898\u4ee3\u7801\u5728\u54ea\u91cc":116,"\u5c31\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684\u547d\u4ee4\u5f00\u59cb\u6267\u884c\u8bad\u7ec3":98,"\u5c31\u53ef\u4ee5\u6309":108,"\u5c31\u5c06\u8fd9\u4e9b\u5c42\u52a0\u5165\u4e00\u4e2apython":122,"\u5c31\u5f88\u5bb9\u6613\u5bfc\u81f4\u5185\u5b58\u8d85\u9650":94,"\u5c31\u662f":104,"\u5c31\u662f\u7528\u4e8e\u5c55\u793a\u4e0a\u8ff0\u5206\u6790\u5de5\u5177\u7684\u7528\u6cd5":117,"\u5c31\u662fpaddlepaddle\u4e2d\u6240\u6307\u7684":121,"\u5c31\u8fd9\u4e48\u7b80\u5355":98,"\u5c31\u901a\u5e38\u7684gpu\u6027\u80fd\u5206\u6790\u6765\u8bf4":117,"\u5c31\u9700\u8981\u5bf9\u8fd9\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00\u589e\u52a0\u4e00\u4e9b\u5b9a\u4e49":65,"\u5c31\u9700\u8981\u9009\u62e9\u4f7f\u7528no":98,"\u5c3d\u65e9\u62a5\u9519":111,"\u5c42\u524d\u5411\u8ba1\u7b97\u7684\u7ed3\u679c":122,"\u5c42\u548c\u8f93\u5165\u7684\u914d\u7f6e":110,"\u5c42\u6b21\u5316\u7684rnn":106,"\u5c42\u7684\u540d\u79f0\u4e0e":107,"\u5c42\u7684\u5927\u5c0f":110,"\u5c42\u7684\u7c7b\u578b":110,"\u5c42\u7684\u8f93\u51fa\u88ab\u7528\u4f5c\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684":107,"\u5c45\u7136":104,"\u5c55\u793a\u4e86\u4e00\u4e2a\u542b\u67094\u4e2a\u5e8f\u5217\u7684":121,"\u5c55\u793a\u7684\u8c03\u7528\u56fe\u4e5f\u53ef\u4ee5\u5e2e\u52a9\u6211\u4eec\u53d1\u73b0\u6027\u80fd\u4e2d\u7684\u95ee\u9898":116,"\u5c5e\u4e8e\u8fd9\u4e00\u7c7b\u7684\u5b9e\u73b0":95,"\u5c5e\u6027":111,"\u5de5\u4f5c\u6a21\u5f0f":132,"\u5de5\u4f5c\u7a7a\u95f4\u4e2d\u7684":124,"\u5de5\u4f5c\u7a7a\u95f4\u5e94\u5982\u4e0b\u6240\u793a":123,"\u5de5\u5177\u4e0a\u4f20\u5373\u53ef":82,"\u5de5\u5177\u5408\u5e76fat\u5e93":137,"\u5de5\u5177\u670d\u52a1\u5668\u5c06\u8bfb\u53d6\u73af\u5883\u53d8\u91cf":113,"\u5de5\u5177\u6765\u7ba1\u7406":109,"\u5de5\u5177\u6765\u7f16\u8bd1\u6587\u6863":113,"\u5de5\u5177\u94fe":136,"\u5de5\u5177\u94fe\u7684android":136,"\u5de6\u53f3\u7684\u8ba1\u7b97\u65f6\u95f4":116,"\u5df2\u6253\u5f00":109,"\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u5b8c\u6210\u8bbe\u7f6e":132,"\u5e02\u9762\u4e0a\u5df2\u7ecf\u6709nvidia\u6216\u7b2c\u4e09\u65b9\u63d0\u4f9b\u7684\u4f17\u591a\u5de5\u5177":117,"\u5e0c\u671b\u80fd\u591f\u5c06\u5e8f\u5217\u5316\u540e\u7684\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u548c\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u53c2\u6570\u6253\u5305\u8fdb\u4e00\u4e2a\u6587\u4ef6":122,"\u5e26\u6709\u4e0b\u9762\u4e24\u4e2a\u6a21\u677f\u53c2\u6570":111,"\u5e2e\u52a9\u6211\u4eec\u5b8c\u6210\u5bf9\u8f93\u5165\u5e8f\u5217\u7684\u62c6\u5206":106,"\u5e2e\u52a9\u6211\u4eec\u66f4\u597d\u5730\u63cf\u8ff0\u6bb5\u843d":106,"\u5e2e\u52a9\u6211\u4eec\u6784\u9020\u4e00\u4e9b\u590d\u6742\u7684\u8f93\u5165\u4fe1\u606f":103,"\u5e38\u5e38\u51fa\u73b0":91,"\u5e38\u7528\u4e8e\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1":121,"\u5e38\u7528\u7684cmake\u914d\u7f6e\u5982\u4e0b":[136,137],"\u5e38\u89c1\u7684\u5305\u62ec":116,"\u5e72\u51c0":104,"\u5e73\u5747\u6545\u969c\u4fee\u590d\u65f6\u95f4":32,"\u5e73\u5747\u6545\u969c\u7387":32,"\u5e76\u4e0d\u4fdd\u8bc1":110,"\u5e76\u4e0d\u662f\u4f7f\u7528\u53cc\u5c42rnn\u89e3\u51b3\u5b9e\u9645\u7684\u95ee\u9898":104,"\u5e76\u4e0d\u662fkubernetes\u4e2d\u7684node\u6982\u5ff5":127,"\u5e76\u4e0d\u771f\u6b63":[121,122],"\u5e76\u4e0d\u771f\u6b63\u7684\u548c":104,"\u5e76\u4e0d\u96be":108,"\u5e76\u4e14":107,"\u5e76\u4e14\u4e5f\u53ef\u4ee5\u5728windows\u7684docker\u4e2d\u8fd0\u884c":98,"\u5e76\u4e14\u4e66\u5199\u4e00\u4efd\u4ee3\u7801":112,"\u5e76\u4e14\u4f1a\u5199\u597d":62,"\u5e76\u4e14\u4f1a\u6839\u636e":136,"\u5e76\u4e14\u4f7f\u7528":66,"\u5e76\u4e14\u5185\u5c42\u7684\u5e8f\u5217\u64cd\u4f5c\u4e4b\u95f4\u72ec\u7acb\u65e0\u4f9d\u8d56":104,"\u5e76\u4e14\u52a0\u4e0a\u4e0b\u9762\u7684\u547d\u4ee4\u884c\u53c2\u6570":134,"\u5e76\u4e14\u5305\u62ecunit":109,"\u5e76\u4e14\u53ea\u9700\u8981\u5728\u5fc5\u8981\u7684\u65f6\u5019\u8f6c\u6362\u8fd9\u79cd\u683c\u5f0f":62,"\u5e76\u4e14\u53ef\u80fd\u4f1a\u52a0\u901f\u8bad\u7ec3\u8fc7\u7a0b":94,"\u5e76\u4e14\u542f\u52a8\u8bad\u7ec3":127,"\u5e76\u4e14\u5728\u5e38\u89c1\u7684\u5e73\u53f0\u4e0a":65,"\u5e76\u4e14\u5c55\u793a\u4e86\u5982\u4f55\u5229\u7528paddlepaddle\u6765\u89e3\u51b3\u4e00\u4e2a\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u95ee\u9898":101,"\u5e76\u4e14\u5f3a\u5236\u8bbe\u7f6e\u4e00\u4e9bpaddlepaddle\u53c2\u6570\u7684\u503c":137,"\u5e76\u4e14\u5f53\u7f16\u8bd1\u65f6":61,"\u5e76\u4e14\u628a\u5404\u79cd\u5f00\u53d1\u5de5\u5177\u5b89\u88c5\u8fdb\u53bb":108,"\u5e76\u4e14\u628a\u7cfb\u7edf\u751f\u6210\u7684ca":48,"\u5e76\u4e14\u628a\u7ed3\u679c\u8fd4\u56depfsclient\u7aef":48,"\u5e76\u4e14\u67e5\u8be2paddlepaddle\u5355\u5143\u6d4b\u8bd5\u7684\u65e5\u5fd7":91,"\u5e76\u4e14\u7f16\u8bd1\u65f6\u9700\u8981\u6253\u5f00":111,"\u5e76\u4e14\u7f16\u8bd1\u80fd\u901a\u8fc7\u4ee3\u7801\u6837\u5f0f\u68c0\u67e5":109,"\u5e76\u4e14\u8ba9\u63a5\u53e3\u8131\u79bb\u5b9e\u73b0\u7ec6\u8282":65,"\u5e76\u4e14\u8bbe\u7f6e\u9ed8\u8ba4\u503c\u4e3a1":111,"\u5e76\u4e14\u8f93\u5165\u8f93\u51fa\u90fd\u662f\u5171\u7528\u4e00\u5757\u5185\u5b58":62,"\u5e76\u4e14\u8f93\u51fa\u4e00\u4e2a":109,"\u5e76\u4e14\u8fd0\u884c":108,"\u5e76\u4e14\u9700\u8981\u91cd\u5199\u57fa\u7c7b\u4e2d\u7684\u4ee5\u4e0b\u51e0\u4e2a\u865a\u51fd\u6570":110,"\u5e76\u4e14cpu":111,"\u5e76\u4e14softmax\u5c42\u7684\u4e24\u4e2a\u8f93\u5165\u4e5f\u4f7f\u7528\u4e86\u540c\u6837\u7684\u53c2\u6570":96,"\u5e76\u4f7f\u7528":124,"\u5e76\u4fdd\u5b58\u8f93\u51fa\u5230\u4e00\u4e2a\u65e5\u5fd7\u6587\u4ef6":123,"\u5e76\u521b\u5efa\u4e86\u4e00\u4e2a\u65b0\u6587\u4ef6":109,"\u5e76\u521b\u5efaoptim":101,"\u5e76\u521d\u59cb\u5316":111,"\u5e76\u5220\u9664":82,"\u5e76\u5220\u9664\u66f4\u65e9\u7684\u5feb\u7167":32,"\u5e76\u52a0\u8f7d\u5176\u4e2d\u7684\u53c2\u6570":32,"\u5e76\u53d1\u5e03\u5230pypi":82,"\u5e76\u53ef\u4ee5\u5728\u5927\u591a\u6570\u4e3b\u6d41\u7684linux\u64cd\u4f5c\u7cfb\u7edf\u4ee5\u53camacos\u4e0a\u6267\u884c":100,"\u5e76\u548c\u53c2\u6570\u670d\u52a1\u5668\u901a\u4fe1":123,"\u5e76\u5728\u4e58\u79ef\u7ed3\u679c\u4e0a\u518d\u52a0\u4e0a\u7ef4\u5ea6\u4e3a":110,"\u5e76\u5728\u6700\u5f00\u59cb\u521d\u59cb\u5316\u4e3a\u8d77\u59cb\u8bcd":107,"\u5e76\u5728\u6bcf\u6b21\u6743\u91cd\u66f4\u65b0\u540e":61,"\u5e76\u5728\u7c7b\u6784\u5efa\u51fd\u6570\u4e2d\u628a\u5b83\u653e\u5165\u4e00\u4e2a\u7c7b\u6210\u5458\u53d8\u91cf\u91cc":110,"\u5e76\u5728\u8be5layer\u91cc\u91c7\u7528\u7b2c\u4e00\u79cd\u65b9\u5f0f\u8bbe\u7f6e":95,"\u5e76\u5728\u96c6\u7fa4\u4e2d\u8fd0\u884c\u591a\u4e2a\u5206\u5e03\u5f0f\u6570\u636e\u5904\u7406\u4efb\u52a1":33,"\u5e76\u5728python\u811a\u672c\u4e2d\u5b8c\u6210\u4e0eoperator\u540c\u6837\u7684\u8ba1\u7b97\u903b\u8f91":111,"\u5e76\u5904\u7406\u4e0e\u4e4b\u76f8\u5173\u7684\u6240\u6709\u7ec6\u8282":122,"\u5e76\u5b89\u88c5\u4e86python":91,"\u5e76\u5b89\u88c5\u6700\u65b0":100,"\u5e76\u5b89\u88c5\u6709python2":102,"\u5e76\u5b8c\u6210\u53c2\u6570\u4f18\u5316\u66f4\u65b0":123,"\u5e76\u5bf9\u6bd4\u662f\u5426\u548c\u6b63\u5728\u5b89\u88c5\u7684\u540e\u7f00\u4e00\u81f4":91,"\u5e76\u5bf9\u76f8\u5e94\u7684\u53c2\u6570\u8c03\u7528":110,"\u5e76\u5c06":82,"\u5e76\u5c06\u5176\u6295\u5c04\u5230":107,"\u5e76\u5c06\u8be5layer\u4e0a\u4e00\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u4f5c\u4e3a\u81ea\u8eab\u5f53\u524d\u65f6\u95f4\u6b65\u7684\u8f93\u51fa":95,"\u5e76\u5c06c":66,"\u5e76\u624b\u52a8\u751f\u6210download\u6210\u529f\u6807\u7b7e":91,"\u5e76\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4":98,"\u5e76\u628a\u5feb\u7167\u4fdd\u5b58\u5230\u8fd9\u4e2a\u76ee\u5f55\u4e0b":32,"\u5e76\u628a\u7ed3\u679c\u653e\u5230\u5f53\u524d\u5c42\u7684":62,"\u5e76\u628a\u8fd9\u4e2a\u5305\u542b\u4e86\u8bad\u7ec3\u6570\u636e\u7684container\u4fdd\u5b58\u4e3a\u4e00\u4e2a\u65b0\u7684\u955c\u50cf":126,"\u5e76\u66f4\u6362job":92,"\u5e76\u6839\u636e\u5206\u5e03\u5f0f\u8bad\u7ec3\u5e76\u53d1\u6570":123,"\u5e76\u68c0\u67e5\u548c\u9700\u5b89\u88c5\u7684\u5305\u662f\u5426\u5339\u914d":100,"\u5e76\u6ca1\u6709paddle\u7279\u522b\u9700\u8981\u7684\u7279\u6027":65,"\u5e76\u6dfb\u52a0\u5934\u6587\u4ef6":61,"\u5e76\u6dfb\u52a0\u6ce8\u91ca":111,"\u5e76\u7279\u5316\u6a21\u677f\u53c2\u6570\u4e3a":111,"\u5e76\u7c98\u8d34\u6b64python\u4ee3\u7801":102,"\u5e76\u81ea\u52a8\u4e0b\u8f7d\u5b89\u88c5\u4f9d\u8d56\u8f6f\u4ef6":100,"\u5e76\u81ea\u52a8\u7f16\u8bd1\u5bbf\u4e3b\u673a\u7248protoc\u53ef\u6267\u884c\u6587\u4ef6":138,"\u5e76\u81ea\u52a8\u7f16\u8bd1paddlepaddle\u6240\u9700\u7684\u6240\u6709\u7b2c\u4e09\u65b9\u5e93":136,"\u5e76\u884c\u5730\u6267\u884c\u6a21\u578b\u7684\u8bad\u7ec3":123,"\u5e76\u884c\u5730\u63a5\u6536\u68af\u5ea6\u548c\u66f4\u65b0\u53c2\u6570":123,"\u5e76\u88ab\u5b58\u50a8\u5728\u8bf8\u5982hadoop":33,"\u5e76\u89c2\u5bdf\u7ed3\u679c":117,"\u5e76\u89e3\u91ca\u4e86\u5404\u81ea\u542b\u4e49":111,"\u5e76\u8bb0\u5f55\u5b83\u7684\u7f16\u53f7":109,"\u5e76\u8fdb\u884c\u521d\u59cb\u5316\u64cd\u4f5c":101,"\u5e76\u9002\u5e94github\u7684\u7279\u6027\u505a\u4e86\u4e00\u4e9b\u533a\u522b":82,"\u5e76\u91cd\u65b0\u6253\u5305wheel\u5305":82,"\u5e76\u94fe\u63a5\u5230\u751f\u6210\u7684lib\u5e93\u4e2d":111,"\u5e78\u800cpython\u7684\u4e00\u4e2a\u7b2c\u4e09\u65b9\u5e93":116,"\u5e8a\u4e0a\u7528\u54c1":104,"\u5e8a\u57ab":104,"\u5e8f\u5217\u4e2d\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee\u540c":103,"\u5e8f\u5217\u4e2d\u7684\u4e00\u4e2a\u5143\u7d20":121,"\u5e8f\u5217\u4e2d\u7684\u5143\u7d20\u662f\u8bcd\u8bed":121,"\u5e8f\u5217\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20\u53c8\u662f\u4e00\u4e2a\u5e8f\u5217":121,"\u5e8f\u5217\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20\u662f\u975e\u5e8f\u5217":121,"\u5e8f\u5217\u4fe1\u606f":121,"\u5e8f\u5217\u5316\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u914d\u7f6e":122,"\u5e8f\u5217\u5316\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u65f6":122,"\u5e8f\u5217\u5316\u7ed3\u679c\u4f1a\u5199\u5165\u5f53\u524d\u8fd0\u884c\u76ee\u5f55\u4e0b\u7684":122,"\u5e8f\u5217\u6570\u636e\u662f\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u9762\u5bf9\u7684\u4e00\u79cd\u4e3b\u8981\u8f93\u5165\u6570\u636e\u7c7b\u578b":106,"\u5e8f\u5217\u662f\u4e00\u79cd\u5e38\u89c1\u7684\u6570\u636e\u7c7b\u578b":103,"\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u5927\u591a\u9075\u5faaencod":106,"\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u7684\u8f93\u5165":106,"\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20\u662f\u539f\u6765\u53cc\u5c42\u5e8f\u5217\u6bcf\u4e2asubseq\u5143\u7d20\u7684\u5e73\u5747\u503c":103,"\u5e8f\u5217\u8f93\u5165":121,"\u5e8f\u5217\u8f93\u5165\u65f6\u7b49\u4e8e":94,"\u5e8f\u5217\u8f93\u5165\u793a\u610f\u56fe":121,"\u5e93\u6709\u81ea\u5df1\u72ec\u7acb\u7684\u52a8\u6001\u5e93\u6587\u4ef6":119,"\u5e94\u7528\u524d\u5411\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":107,"\u5e94\u7528\u53cd\u5411\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":107,"\u5e94\u80fd\u53cd\u6620\u5f53\u524dcommit\u7684\u5185\u5bb9":109,"\u5e94\u8be5":104,"\u5e94\u8be5\u4e0e\u5b83\u7684memory\u540d\u5b57\u76f8\u540c":107,"\u5e94\u8be5\u8bf4\u8c22\u8c22":109,"\u5e94\u8be5\u8bfb\u53d6\u5f53\u524d\u76ee\u5f55\u4e0b\u7684":108,"\u5e94\u8be5\u964d\u4f4e\u5b66\u4e60\u7387":96,"\u5e95\u5c42\u8fdb\u7a0b":124,"\u5efa\u7acb\u4e00\u4e2a":109,"\u5efa\u8bae":[82,99,109],"\u5efa\u8bae\u5c06\u8be5\u53c2\u6570\u8bbe\u4e3atrue":132,"\u5f00\u53d1\u4e86\u6a21\u578b\u9884\u6d4b\u7684\u6837\u4f8b\u4ee3\u7801":66,"\u5f00\u53d1\u4eba\u5458\u4f7f\u7528":109,"\u5f00\u53d1\u5206\u652f":100,"\u5f00\u53d1\u8005\u4f7f\u7528":108,"\u5f00\u53d1\u8005\u4fee\u6539\u81ea\u5df1\u7684\u4ee3\u7801":82,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4e2d":82,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4f7f\u7528":82,"\u5f00\u53d1\u955c\u50cf":109,"\u5f00\u53d1\u9884\u6d4b\u5e8f":122,"\u5f00\u53d1\u9884\u6d4b\u7a0b\u5e8f\u94fe\u63a5":119,"\u5f00\u542f":97,"\u5f00\u5934":[61,62],"\u5f00\u5934\u7684\u90e8\u5206":123,"\u5f00\u5934\u90e8\u5206\u6307\u5b9a":123,"\u5f00\u59cb\u63d0\u4f9b\u670d\u52a1":32,"\u5f00\u59cb\u6807\u8bb0":107,"\u5f00\u59cb\u795e\u7ecf\u7f51\u7edc\u7684":123,"\u5f00\u59cb\u9636\u6bb5":117,"\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":131,"\u5f15\u5165\u4e86\u4ee5\u4e0b\u56db\u4e2aapi":61,"\u5f15\u5165\u4e86\u7c7b\u578b\u7684\u5934\u6587\u4ef6":66,"\u5f15\u53d1":9,"\u5f15\u5bfc\u5c42":107,"\u5f15\u7528memory\u5f97\u5230\u8fd9layer\u4e0a\u4e00\u65f6\u523b\u8f93\u51fa":106,"\u5f39\u51fa\u4e0b\u9762\u7684\u9009\u62e9\u6846":82,"\u5f3a\u70c8\u63a8\u8350":104,"\u5f52\u4e00\u5316\u6982\u7387\u5411\u91cf":107,"\u5f53":134,"\u5f53\u4e00\u4e2a":121,"\u5f53\u4e0a\u8ff0\u63a5\u53e3\u7b2c4\u4e2a\u53c2\u6570":121,"\u5f53\u4f60\u6267\u884c\u547d\u4ee4":110,"\u5f53\u4fdd\u5b58\u7684\u7f51\u7edc\u53c2\u6570\u4e3afloat\u7c7b\u578b\u65f6\u4e3a4":96,"\u5f53\u524d\u65f6\u95f4\u6b65\u5904\u7684memory\u7684\u8f93\u51fa\u4f5c\u4e3a\u4e0b\u4e00\u65f6\u95f4\u6b65memory\u7684\u8f93\u5165":107,"\u5f53\u524d\u7684\u5b66\u4e60\u7387\u4e3a\u6240\u8bbe\u7f6e":96,"\u5f53\u524d\u7684\u5b9e\u73b0\u65b9\u5f0f\u4e0b":110,"\u5f53\u524d\u7684\u8f93\u5165y\u548c\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51farnn_state\u505a\u4e86\u4e00\u4e2a\u5168\u94fe\u63a5":104,"\u5f53\u524d\u8bad\u7ec3\u4efb\u52a1\u542f\u52a8\u7684pserver\u7684ip\u5217\u8868":123,"\u5f53\u524d\u8bad\u7ec3\u4efb\u52a1pserver\u603b\u6570":123,"\u5f53\u524d\u8bad\u7ec3\u4efb\u52a1trainer\u603b\u4e2a\u6570":123,"\u5f53\u529f\u80fd\u5206\u652f\u5f00\u53d1\u5b8c\u6bd5\u540e":82,"\u5f53\u53ea\u505a\u63a8\u65ad":61,"\u5f53\u5728\u7f51\u7edc\u5c42\u914d\u7f6e\u4e2d\u8bbe\u7f6e":132,"\u5f53\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u8bbe\u7f6e":132,"\u5f53\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5927\u4e8e1000\u5c0f\u4e8e\u7b49\u4e8e2000\u65f6":96,"\u5f53\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5927\u4e8e2000\u65f6":96,"\u5f53\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5c0f\u4e8e\u7b49\u4e8e1000\u65f6":96,"\u5f53\u5df2\u8bad\u7ec3pass\u6570\u5927\u4e8e1\u5c0f\u4e8e\u7b49\u4e8e2\u65f6":96,"\u5f53\u5df2\u8bad\u7ec3pass\u6570\u5927\u4e8e2\u65f6":96,"\u5f53\u5df2\u8bad\u7ec3pass\u6570\u5c0f\u4e8e\u7b49\u4e8e1\u65f6":96,"\u5f53\u5f00\u542f":62,"\u5f53\u6211\u4eec\u505a\u51fa\u6027\u80fd\u4fee\u6b63\u540e":116,"\u5f53\u6240\u6709pod\u90fd\u5904\u4e8erunning\u72b6\u6001":127,"\u5f53\u6253\u5f00":62,"\u5f53\u6570\u636e\u683c\u5f0f\u4e0epaddlepaddle\u9ed8\u8ba4\u7684":62,"\u5f53\u6a21\u578b\u53c2\u6570\u4e0d\u5b58\u5728\u65f6":132,"\u5f53\u6a21\u5f0f\u4e3a":132,"\u5f53\u7136":[98,117],"\u5f53\u7136\u53ef\u4ee5":108,"\u5f53\u7136\u8fd9\u4e24\u8005\u4e5f\u53ef\u4ee5\u76f8\u7b49":62,"\u5f53\u7528\u6237\u4f7f\u7528\u5b8c\u8fd9\u4e2a\u53c2\u6570\u540e":66,"\u5f53\u7528\u6237\u6ca1\u6709\u663e\u5f0f\u8bbe\u5b9a\u65f6":95,"\u5f53\u7f51\u7edc\u51fa\u73b0\u5206\u652f\u4e14\u5728":62,"\u5f53\u7f51\u7edc\u5c42\u7528\u4e00\u4e2a\u6279\u6b21\u505a\u8bad\u7ec3\u65f6":110,"\u5f53\u89e3\u8bfb\u6bcf\u4e00\u4e2a":107,"\u5f53\u8d85\u8fc7\u8be5\u9608\u503c\u65f6":132,"\u5f53\u8f93\u5165\u662f\u7ef4\u5ea6\u5f88\u9ad8\u7684\u7a00\u758f\u6570\u636e\u65f6":134,"\u5f53\u9700\u8981\u5b8c\u6210\u8ba1\u7b97\u65f6":112,"\u5f53\u975e\u5e8f\u5217\u8f93\u5165\u65f6":121,"\u5f53destination\u6587\u4ef6\u4e0d\u5b58\u5728\u6216\u8005\u5927\u5c0f\u548csource\u6587\u4ef6\u4e0d\u4e00\u81f4\u65f6":48,"\u5f53n1":94,"\u5f62\u6210recurr":106,"\u5f62\u6210recurrent\u8fde\u63a5":106,"\u5f88":104,"\u5f88\u591a":[104,108],"\u5f88\u5b89\u9759":104,"\u5f88\u5e72\u51c0":104,"\u5f88\u65b9\u4fbf":104,"\u5f88\u6709\u53ef\u80fd\u5b9e\u9645\u5e94\u7528\u5c31\u662f\u6ca1\u6709\u6309\u7167\u60a8\u7684\u9884\u671f\u60c5\u51b5\u8fd0\u884c":117,"\u5f88\u6709\u53ef\u80fd\u662f\u975e\u72ec\u5360\u65b9\u5f0f\u6267\u884c\u5bfc\u81f4\u7684\u7aef\u53e3\u51b2\u7a81":92,"\u5f88\u96be\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":65,"\u5f97":104,"\u5f97\u4f7f\u7528":65,"\u5f97\u5230\u8f93\u51fa\u503c":111,"\u5faa\u73af\u5c55\u5f00\u7684\u6bcf\u4e2a\u65f6\u95f4\u6b65\u603b\u662f\u80fd\u591f\u5f15\u7528\u6240\u6709\u8f93\u5165":106,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u4e2d":107,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u4f5c\u4e3a\u4f7f\u7528":107,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u548c":107,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u9aa4\u987a\u5e8f\u5730\u5904\u7406\u5e8f\u5217":107,"\u5faa\u73af\u7f51\u7edc\u4ece":107,"\u5fc5\u8981":66,"\u5fc5\u9009":123,"\u5fc5\u987b":110,"\u5fc5\u987b\u5206\u522b\u4e0e":62,"\u5fc5\u987b\u5c06\u524d\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5143\u7d20":104,"\u5fc5\u987b\u6307\u5411\u4e00\u4e2apaddlepaddle\u5b9a\u4e49\u7684lay":106,"\u5fc5\u987b\u6307\u5b9a\u4e3a":122,"\u5fc5\u987b\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":106,"\u5fc5\u987b\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":103,"\u5fc5\u987b\u7531\u53ea\u8bfbmemory\u7684":107,"\u5fc5\u987b\u8bbe\u7f6e\u4e3a":[136,137],"\u5fc5\u987b\u8bbe\u7f6e\u4e3aon":137,"\u5fc5\u987b\u914d\u7f6e\u4e3a":[119,138],"\u5fc5\u987b\u914d\u7f6e\u9009\u9879":119,"\u5feb":104,"\u6027\u4ef7\u6bd4":104,"\u6027\u80fd\u4f18\u5316\u7684\u8fc7\u7a0b\u901a\u5e38\u662f\u4e0d\u65ad\u91cd\u590d\u5730":116,"\u6027\u80fd\u5206\u6790":117,"\u6027\u80fd\u5206\u6790\u5de5\u5177\u662f\u7528\u4e8e\u7ed9\u5e94\u7528\u7a0b\u5e8f\u7684\u6027\u80fd\u505a\u5b9a\u91cf\u5206\u6790\u7684":117,"\u6027\u80fd\u5206\u6790\u662f\u6027\u80fd\u4f18\u5316\u7684\u5173\u952e\u4e00\u6b65":117,"\u6027\u80fd\u548c\u628a\u7f16\u8bd1\u5de5\u5177\u5b89\u88c5\u5728\u672c\u673a\u8fd0\u884c\u4e00\u6837":108,"\u6027\u80fd\u8c03\u4f18":131,"\u6027\u80fdtip":[136,137],"\u603b\u4f53\u6765\u8bf4":104,"\u60a8\u4e5f\u53ef\u4ee5\u8fdb\u5165\u5230docker\u5bb9\u5668\u4e2d":98,"\u60a8\u4f1a\u5728\u63a5\u4e0b\u6765\u7684\u90e8\u5206\u4e2d\u83b7\u5f97\u66f4\u591a\u7684\u7ec6\u8282\u4ecb\u7ecd":117,"\u60a8\u53ef\u4ee5\u4ece\u4e0b\u9762\u7684\u8868\u683c\u4e2d\u627e\u5230\u9700\u8981\u7684\u7248\u672c":100,"\u60a8\u53ef\u4ee5\u4efb\u610f\u4f7f\u7528\u4e00\u4e2a\u6216\u4e24\u4e2a\u6765\u5bf9\u611f\u5174\u8da3\u7684\u4ee3\u7801\u6bb5\u505a\u6027\u80fd\u5206\u6790":117,"\u60a8\u53ef\u4ee5\u5728":98,"\u60a8\u53ef\u4ee5\u5728\u5bb9\u5668\u4e2d\u6267\u884c":98,"\u60a8\u53ef\u4ee5\u5bfc\u5165":117,"\u60a8\u53ef\u4ee5\u6309\u7167\u4e0b\u9762\u7684\u6b65\u9aa4\u5728openmpi\u96c6\u7fa4\u4e2d\u63d0\u4ea4paddle\u8bad\u7ec3\u4efb\u52a1":128,"\u60a8\u53ef\u4ee5\u91c7\u7528\u4e0b\u9762\u4e94\u4e2a\u6b65\u9aa4":117,"\u60a8\u53ef\u80fd\u9700\u8981\u4fee\u6539":123,"\u60a8\u5c06\u4e86\u89e3\u5982\u4f55":107,"\u60a8\u5c31\u80fd\u83b7\u5f97\u5982\u4e0b\u7684\u5206\u6790\u7ed3\u679c":117,"\u60a8\u6309\u5982\u4e0b\u6b65\u9aa4\u64cd\u4f5c\u5373\u53ef":117,"\u60a8\u6700\u597d\u5148\u786e\u8ba4":117,"\u60a8\u9996\u5148\u9700\u8981\u5728\u76f8\u5173\u4ee3\u7801\u6bb5\u4e2d\u52a0\u5165":117,"\u60c5\u611f\u5206\u6790":82,"\u60f3\u4e86\u89e3\u66f4\u591apaddlepaddl":113,"\u610f\u5473\u7740\u4e0d\u540c\u65f6\u95f4\u6b65\u7684\u8f93\u5165\u90fd\u662f\u76f8\u540c\u7684\u503c":107,"\u610f\u601d\u662f\u4e0d\u4f7f\u7528\u5e73\u5747\u53c2\u6570\u6267\u884c\u6d4b\u8bd5":132,"\u610f\u601d\u662f\u4e0d\u4fdd\u5b58\u7ed3\u679c":132,"\u610f\u601d\u662f\u4f7f\u7528\u7b2ctest":132,"\u610f\u601d\u662f\u5728gpu\u6a21\u5f0f\u4e0b\u4f7f\u75284\u4e2agpu":132,"\u611f\u89c9":104,"\u6210\u529f\u7f16\u8bd1\u540e":119,"\u6210\u529f\u8bad\u7ec3\u4e14\u9000\u51fa\u7684pod\u6570\u76ee\u4e3a3\u65f6":127,"\u6210\u5458":111,"\u6210\u719f\u7684\u9ad8\u6027\u80fd\u5e76\u884c\u8ba1\u7b97\u6846\u67b6":123,"\u6211\u4eec\u4e0d\u80fd\u901a\u8fc7\u5e38\u89c4\u7684\u68af\u5ea6\u68c0\u67e5\u7684\u65b9\u5f0f\u6765\u8ba1\u7b97\u68af\u5ea6":110,"\u6211\u4eec\u4e3b\u8981\u4f1a\u4ecb\u7ecdnvprof\u548cnvvp":117,"\u6211\u4eec\u4e5f\u53ef\u4ee5\u786e\u5b9a\u6bcf\u4e00\u4e2a\u53c2\u6570\u7684\u7c7b\u578b":66,"\u6211\u4eec\u4e5f\u5c06mklml\u5373":62,"\u6211\u4eec\u4ec5\u4ec5\u5bf9\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165\u8fdb\u884c\u4e86\u63cf\u8ff0":101,"\u6211\u4eec\u4ec5\u6709\u4e00\u4e2a\u8f93\u5165":110,"\u6211\u4eec\u4ecb\u7ecd\u5982\u4f55\u5728":126,"\u6211\u4eec\u4ecb\u7ecd\u5982\u4f55\u5728kubernetes\u96c6\u7fa4\u4e0a\u8fdb\u884c\u5206\u5e03\u5f0fpaddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":127,"\u6211\u4eec\u4ee5\u624b\u5199\u6570\u5b57\u8bc6\u522b\u4efb\u52a1\u4e3a\u4f8b\u8fdb\u884c\u4ecb\u7ecd":122,"\u6211\u4eec\u4f1a\u4fdd\u8bc1":62,"\u6211\u4eec\u4f1a\u5728\u7f51\u7edc\u8bad\u7ec3\u4e4b\u524d\u628a\u683c\u5f0f\u8f6c\u6362\u4e3amkl":62,"\u6211\u4eec\u4f1a\u5bf9\u6bcf\u4e2a\u8bad\u7ec3\u4efb\u52a1\u90fd\u4f1a\u5728\u6bcf\u4e2a\u8282\u70b9\u4e0a\u521b\u5efa\u4e00\u4e2a\u5de5\u4f5c\u7a7a\u95f4":123,"\u6211\u4eec\u4f1a\u5bf9\u6bd4\u5982\u4e0b2\u4e2a\u65b9\u9762":61,"\u6211\u4eec\u4f1a\u628amkl":62,"\u6211\u4eec\u4f1a\u6dfb\u52a0":[61,62],"\u6211\u4eec\u4f1a\u7ee7\u7eed\u4f7f\u7528\u73b0\u6709\u7684\u5185\u5b58\u5757":110,"\u6211\u4eec\u4f1a\u91cd\u65b0\u5206\u914d\u5185\u5b58":110,"\u6211\u4eec\u4f7f\u7528":110,"\u6211\u4eec\u4f7f\u7528\u4e0d\u540c\u7684layer\u8fdb\u884c\u7ec4\u5408":101,"\u6211\u4eec\u4f7f\u7528\u4e86":104,"\u6211\u4eec\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":65,"\u6211\u4eec\u4f7f\u7528paddl":123,"\u6211\u4eec\u5047\u8bbe\u4e00\u53f0\u673a\u5668\u4e0a\u67094\u4e2agpu":134,"\u6211\u4eec\u5148\u8c03\u7528\u6bcf\u4e2a":112,"\u6211\u4eec\u51b3\u5b9a\u4f7f\u7528\u5df2\u6709\u7684":62,"\u6211\u4eec\u5373\u53ef\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684\u642d\u5efa":101,"\u6211\u4eec\u53ea\u6f14\u793a\u4e00\u4e2a\u5355\u673a\u4f5c\u4e1a":126,"\u6211\u4eec\u53ea\u9700\u8981":108,"\u6211\u4eec\u53ea\u9700\u8981\u4f7f\u7528lstm":104,"\u6211\u4eec\u53ea\u9700\u8981\u8fd0\u884c\u4e0b\u9762\u547d\u4ee4\u628a\u7f16\u8bd1\u597d\u7684paddlepaddle\u6253\u5305\u6210\u4e00\u4e2a":109,"\u6211\u4eec\u53ea\u9700\u8981\u914d\u7f6e":108,"\u6211\u4eec\u53ef\u4ee5":108,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528":116,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5176\u4ed6layer\u8fdb\u884c\u7ec4\u5408":101,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u751f\u6210\u5e8f\u5217":107,"\u6211\u4eec\u53ef\u4ee5\u5148\u5b8c\u6210\u5bf9\u539f\u6570\u636e\u7684packing\u64cd\u4f5c":61,"\u6211\u4eec\u53ef\u4ee5\u521b\u5efatrainer\u6765\u5bf9\u7f51\u7edc\u8fdb\u884c\u8bad\u7ec3":101,"\u6211\u4eec\u53ef\u4ee5\u53c2\u8003tensorflow\u7684":112,"\u6211\u4eec\u53ef\u4ee5\u5728":109,"\u6211\u4eec\u53ef\u4ee5\u5728\u547d\u4ee4\u884c\u4e2d\u7b80\u5355\u7684\u770b\u4e00\u4e0b\u751f\u6210\u6548\u679c":116,"\u6211\u4eec\u53ef\u4ee5\u5b9a\u4e49\u5982\u4e0b\u7684layer\u7ec4\u5408":101,"\u6211\u4eec\u53ef\u4ee5\u5b9a\u4e49\u5982\u4e0blayer\u6765\u63cf\u8ff0\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165":101,"\u6211\u4eec\u53ef\u4ee5\u6309\u7167\u5982\u4e0b\u5c42\u6b21\u5b9a\u4e49\u975e\u5e8f\u5217":103,"\u6211\u4eec\u53ef\u4ee5\u67e5\u770b\u6027\u80fd\u5206\u6790\u7684\u7ed3\u679c":116,"\u6211\u4eec\u53ef\u4ee5\u8bbe\u8ba1\u642d\u5efa\u4e00\u4e2a\u7075\u6d3b\u7684":106,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7":116,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u65e5\u5fd7\u67e5\u770b\u5bb9\u5668\u8bad\u7ec3\u7684\u60c5\u51b5":127,"\u6211\u4eec\u5728":112,"\u6211\u4eec\u5728\u51fd\u6570\u7684\u7ed3\u5c3e\u8fd4\u56de":107,"\u6211\u4eec\u5bf9\u6a21\u578b\u8fdb\u884c\u4e86\u4ee5\u4e0b\u66f4\u6539":107,"\u6211\u4eec\u5c06":127,"\u6211\u4eec\u5c06\u4e00\u6bb5\u8bdd\u770b\u6210\u53e5\u5b50\u7684\u6570\u7ec4":104,"\u6211\u4eec\u5c06\u4ecb\u7ecd\u5982\u4f55\u542f\u52a8\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f5c\u4e1a":126,"\u6211\u4eec\u5c06\u4f7f\u7528":107,"\u6211\u4eec\u5c06\u4f7f\u7528\u7b80\u5355\u7684":107,"\u6211\u4eec\u5c06\u539f\u59cb\u6570\u636e\u7684\u6bcf\u4e00\u7ec4":104,"\u6211\u4eec\u5c06\u5b83\u4eec\u5212\u5206\u4e3a\u4e0d\u540c\u7684\u7c7b\u522b":131,"\u6211\u4eec\u5c06\u795e\u7ecf\u7f51\u7edc\u4e00\u6b21\u8ba1\u7b97\u63a5\u53d7\u7684\u6240\u6709\u8f93\u5165\u6837\u672c\u79f0\u4e4b\u4e3a\u4e00\u4e2a":121,"\u6211\u4eec\u5c06\u8bad\u7ec3\u7ed3\u675f\u540e\u5b58\u50a8\u4e0b\u6765\u7684\u6a21\u578b\u8f6c\u6362\u6210\u9884\u6d4b\u6a21\u578b":122,"\u6211\u4eec\u5c31\u5b8c\u6210\u4e86\u4e00\u6b21\u4ee3\u7801\u8d21\u732e\u7684\u8fc7\u7a0b":109,"\u6211\u4eec\u5df2\u7ecf\u5b9e\u73b0\u4e86\u5927\u591a\u6570\u5e38\u7528\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":107,"\u6211\u4eec\u5efa\u8bae\u4f60\u4e3a\u4f60\u7684python\u5c01\u88c5\u5b9e\u73b0\u4e00\u4e2a":110,"\u6211\u4eec\u5efa\u8bae\u4f60\u5728\u5199\u65b0\u7f51\u7edc\u5c42\u65f6\u628a\u6d4b\u8bd5\u4ee3\u7801\u653e\u5165\u65b0\u7684\u6587\u4ef6\u4e2d":110,"\u6211\u4eec\u5efa\u8bae\u4f7f\u7528\u7b2c\u4e8c\u7c7b\u5b9e\u73b0":95,"\u6211\u4eec\u603b\u7ed3\u51fa\u4e00\u4e9b\u7279\u522b\u9700\u8981\u6ce8\u610f\u7684\u70b9":62,"\u6211\u4eec\u628apaddlepaddle\u7684\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883\u6253\u5305\u6210\u4e00\u4e2a\u955c\u50cf":136,"\u6211\u4eec\u63a8\u8350\u4f7f\u7528":[98,123],"\u6211\u4eec\u63a8\u8350\u4f7f\u7528\u6700\u65b0\u7248\u672c\u7684cudnn":97,"\u6211\u4eec\u63a8\u8350\u60a8\u4f7f\u7528paddlepaddl":97,"\u6211\u4eec\u63d0\u4f9b\u4e24\u4e2a\u8f6c\u6362\u65b9\u5f0f":33,"\u6211\u4eec\u63d0\u4f9b\u4e86\u52a0\u901f\u8bbf\u95ee\u7684\u955c\u50cf\u6e90":98,"\u6211\u4eec\u63d0\u4f9b\u53ef\u4ee5\u76f4\u63a5\u8fd0\u884cpaddlepaddl":98,"\u6211\u4eec\u63d0\u51fa\u4e86chunk\u7684\u6982\u5ff5":48,"\u6211\u4eec\u662f\u5bf9\u6bcf\u4e00\u4e2a\u5b50\u5e8f\u5217\u53d6\u6700\u540e\u4e00\u4e2a\u5143\u7d20":104,"\u6211\u4eec\u6700\u7ec8\u7684\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165python\u6216\u8005\u5176\u4ed6\u4efb\u4f55\u8bed\u8a00\u7684\u89e3\u91ca\u5668":65,"\u6211\u4eec\u6709\u4e00\u4e2a\u5e8f\u5217\u4f5c\u4e3a\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u72b6\u6001":107,"\u6211\u4eec\u7684":108,"\u6211\u4eec\u7684\u6807\u51c6\u5f00\u53d1\u6d41\u7a0b\u662f\u628a\u8fd9\u4e9b\u5de5\u5177\u90fd\u88c5\u8fdb\u4e00\u4e2adocker":109,"\u6211\u4eec\u770b\u4e00\u4e0b\u5355\u5c42rnn\u7684\u914d\u7f6e":104,"\u6211\u4eec\u770b\u4e00\u4e0b\u8bed\u4e49\u76f8\u540c\u7684\u53cc\u5c42rnn\u7684\u7f51\u7edc\u914d\u7f6e":104,"\u6211\u4eec\u771f\u8bda\u5730\u611f\u8c22\u60a8\u7684\u8d21\u732e":109,"\u6211\u4eec\u79f0\u4e4b\u4e3a\u4e00\u4e2a0\u5c42\u7684\u5e8f\u5217":103,"\u6211\u4eec\u8ba1\u5212\u5c06":61,"\u6211\u4eec\u8ba1\u5212\u5c06\u82f1\u7279\u5c14\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edc\u6570\u5b66\u5e93":62,"\u6211\u4eec\u8bbe\u8ba1\u8bf4\u660e\u4e86\u540d\u4e3afilemanager\u7cfb\u7edf":48,"\u6211\u4eec\u8c03\u7528\u4e86eigenvector\u7684flatten\u63a5\u53e3":112,"\u6211\u4eec\u8fd8\u53ef\u4ee5\u767b\u5f55\u5230\u5bbf\u4e3b\u673a\u4e0a\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c":126,"\u6211\u4eec\u8fd8\u5c06\u7f16\u7801\u5411\u91cf\u6295\u5c04\u5230":107,"\u6211\u4eec\u9009\u53d6\u5355\u53cc\u5c42\u5e8f\u5217\u914d\u7f6e\u4e2d\u7684\u4e0d\u540c\u90e8\u5206":104,"\u6211\u4eec\u9009\u62e9":33,"\u6211\u4eec\u901a\u5e38\u501f\u52a9":111,"\u6211\u4eec\u901a\u5e38\u5c06\u4e00\u53e5\u8bdd\u7406\u89e3\u6210\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":104,"\u6211\u4eec\u901a\u8fc7\u4f7f\u7528\u65b0\u5f15\u5165\u7684gemm":61,"\u6211\u4eec\u901a\u8fc7\u8bfb\u53d6":127,"\u6211\u4eec\u90fd\u63d0\u4f9bpython\u7684\u8f6c\u6362\u5e93":33,"\u6211\u4eec\u9700\u8981":108,"\u6211\u4eec\u9700\u8981\u5148\u628a\u8f93\u5165tensor\u548c\u8f93\u51fatensor\u8f6c\u6362\u4e3aeigen\u652f\u6301\u7684\u683c\u5f0f":112,"\u6211\u4eec\u9700\u8981\u5236\u4f5c\u4e00\u4e2a\u5305\u542b\u8bad\u7ec3\u6570\u636e\u7684paddlepaddle\u955c\u50cf":126,"\u6211\u4eec\u9700\u8981\u5728\u96c6\u7fa4\u7684\u6240\u6709\u8282\u70b9\u4e0a\u5b89\u88c5":123,"\u6211\u4eec\u9700\u8981\u7b49\u5f0f\u5de6\u8fb9\u7684eigentensor\u8c03\u7528device\u63a5\u53e3":112,"\u6211\u4eec\u9700\u8981\u8ba1\u7b97":110,"\u6211\u4eec\u9996\u5148\u9700\u8981\u6839\u636e\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u6765\u521b\u5efa\u6240\u9700\u8981\u4f18\u5316\u7684paramet":101,"\u6211\u5220\u9664\u4e86":109,"\u6211\u53ef\u4ee5\u7528":108,"\u6211\u53ef\u4ee5\u9009\u62e9\u4e0d\u7528docker\u5417":108,"\u6216":[117,121,137],"\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":103,"\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":103,"\u6216\u4e00\u4e2a\u5411\u91cf":106,"\u6216\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":103,"\u6216\u662f\u5728\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u4e2d\u8868\u793a\u8bcd\u8bed\u5728\u5b57\u5178\u4e2d\u7684\u5e8f\u53f7":121,"\u6216\u6700\u5927\u503c":103,"\u6216\u79f0\u4f5cweight":94,"\u6216\u7b2c\u4e00\u4e2a":103,"\u6216\u7b2c\u4e00\u4e2a\u5143\u7d20":103,"\u6216\u7f16\u5199\u7a0b\u5e8f\u65f6":123,"\u6216\u8005":[62,65,66,94,103,104,108,109,111,116,117,121],"\u6216\u8005\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":106,"\u6216\u8005\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":[103,106],"\u6216\u8005\u4ece\u5de5\u5177\u7684\u754c\u9762\u91cc\u8fd0\u884c\u60a8\u7684\u5e94\u7528":117,"\u6216\u8005\u5236\u4f5c\u548c\u5206\u4eab\u5e26\u6709\u4ee3\u7801":98,"\u6216\u8005\u53cd\u5411\u5730\u4ece":107,"\u6216\u8005\u53ef\u88abdns\u89e3\u6790\u7684\u4e3b\u673a\u540d":123,"\u6216\u8005\u5728cpu\u6a21\u5f0f\u4e0b\u4f7f\u75284\u4e2a\u7ebf\u7a0b":132,"\u6216\u8005\u5c06\u8fd9\u53f0\u8282\u70b9\u8fc1\u79fb\u5230\u53e6\u4e00\u4e2a\u8282\u70b9\u5e76\u542f\u52a8\u5373\u53ef\u6062\u590d\u8bad\u7ec3\u4efb\u52a1":32,"\u6216\u8005\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u81ea\u52a8\u8bbe\u7f6e":131,"\u6216\u8005\u5f15\u8d77\u884c\u65f6\u9519\u8bef":121,"\u6216\u8005\u6570\u7ec4\u7684\u6570\u7ec4\u8fd9\u4e2a\u6982\u5ff5":104,"\u6216\u8005\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":103,"\u6216\u8005\u662f\u51fd\u6570\u8c03\u7528\u7684\u9891\u7387\u548c\u8017\u65f6\u7b49":117,"\u6216\u8005\u66f4\u65e9":96,"\u6216\u8005\u6bcf\u4e00\u4e2a\u7cfb\u5217\u91cc\u7684\u7279\u5f81\u6570\u636e":104,"\u6216\u8005\u7528tuple\u8868\u793a\u7684\u591a\u4e2a\u503c":33,"\u6216\u8005\u7531\u5b83\u4eec\u7ec4\u6210\u7684list":33,"\u6216\u8005\u76f4\u63a5\u6254\u6389\u975e\u5e38\u957f\u7684\u5e8f\u5217":94,"\u6216\u8005\u76f8\u5bf9\u4e8e\u6784\u5efa\u76ee\u5f55\u7684\u76f8\u5bf9\u8def\u5f84":[136,138],"\u6216\u8005\u8f93\u5165\u6570\u636e\u5c3a\u5ea6\u8fc7\u5927":94,"\u6216\u8005\u8fd0\u884c":91,"\u6216\u8005\u91c7\u7528\u5e76\u884c\u8ba1\u7b97\u6765\u52a0\u901f\u67d0\u4e9b\u5c42\u7684\u66f4\u65b0":134,"\u6216activ":62,"\u6216gpu":132,"\u622a\u65ad\u5bf9\u8c61\u4e0d\u540c":94,"\u623f":104,"\u623f\u95f4":104,"\u6240\u4ee5":[62,82,94,98,116],"\u6240\u4ee5\u4e00\u4e2a\u7248\u672c\u53f7\u7684wheel\u5305\u53d1\u5e03\u4e4b\u540e":82,"\u6240\u4ee5\u4e0d\u5b58\u5728\u8fd9\u4e2a\u95ee\u9898":62,"\u6240\u4ee5\u4e0d\u80fd\u91c7\u7528\u7b2c\u4e00\u79cd\u65b9\u5f0f\u5728\u8fd9\u51e0\u4e2alayer\u91cc\u8bbe\u7f6e":95,"\u6240\u4ee5\u505a\u6cd5\u53ef\u4ee5\u6709\u4e24\u79cd":94,"\u6240\u4ee5\u53ef\u4ee5\u7b80\u5316\u5bf9\u73af\u5883\u7684\u8981\u6c42":126,"\u6240\u4ee5\u5728":62,"\u6240\u4ee5\u5728\u5199\u5165\u5feb\u7167\u7684\u8fc7\u7a0b\u4e2d":32,"\u6240\u4ee5\u5916\u5c42\u8f93\u51fa\u7684\u5e8f\u5217\u5f62\u72b6":104,"\u6240\u4ee5\u5bf9":104,"\u6240\u4ee5\u5f00\u53d1\u8005\u9700\u8981\u6839\u636e\u81ea\u5df1\u8bad\u7ec3\u4efb\u52a1\u7684\u5b9e\u9645\u573a\u666f\u5b8c\u6210\u8bad\u7ec3\u6570\u636e\u7684\u5206\u5272\u548c":123,"\u6240\u4ee5\u6027\u80fd\u4e5f\u5c31\u9010\u6b65\u53d8\u6210\u4e86\u6df1\u5ea6\u5b66\u4e60\u9886\u57df\u6700\u91cd\u8981\u7684\u6307\u6807":117,"\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u5728\u8fd9\u4e2a\u57fa\u7840\u4e0a":127,"\u6240\u4ee5\u6211\u4eec\u5b9a\u4e49\u4e86\u4e00\u4e2a":62,"\u6240\u4ee5\u6211\u4eec\u786e\u4fdd\u53d1\u5e03\u7684\u4e8c\u8fdb\u5236\u5305\u53ef\u4ee5\u652f\u6301\u4e3b\u6d41\u7684linux\u64cd\u4f5c\u7cfb\u7edf":100,"\u6240\u4ee5\u6211\u4eec\u9700\u8981\u5c06\u8f93\u5165\u6570\u636e\u6807\u8bb0\u6210":104,"\u6240\u4ee5\u6211\u4eec\u9ed8\u8ba4\u4f7f\u7528cento":100,"\u6240\u4ee5\u6574\u4f53\u4e0a":62,"\u6240\u4ee5\u6dfb\u52a0\u4e86\u5bf9\u5e94\u7684":62,"\u6240\u4ee5\u7528\u6237\u9700\u8981\u9996\u5148\u5728":48,"\u6240\u4ee5\u76f8\u6bd4\u4e8erecurr":95,"\u6240\u4ee5\u8fd9\u4e00\u6b65\u662f\u5fc5\u8981\u7684":110,"\u6240\u4ee5\u9700\u8981\u5f15\u5165\u4e00\u4e2a\u8f6c\u6362\u65b9\u6cd5":62,"\u6240\u4f7f\u7528":137,"\u6240\u4f9d\u8d56\u7684\u7b2c\u4e09\u65b9\u5e93\u540c\u65f6\u4e5f\u88ab\u5b89\u88c5\u5230":136,"\u6240\u5bf9\u5e94\u7684\u8bcd\u8868index\u6570\u7ec4":104,"\u6240\u6709\u4e0e\u7c7b\u578b\u76f8\u5173\u7684\u51fd\u6570":66,"\u6240\u6709\u4ee3\u7801\u5fc5\u987b\u5177\u6709\u5355\u5143\u6d4b\u8bd5":109,"\u6240\u6709\u53c2\u6570\u7f6e\u4e3a\u96f6":132,"\u6240\u6709\u547d\u4ee4\u884c\u9009\u9879\u53ef\u4ee5\u8bbe\u7f6e\u4e3a":124,"\u6240\u6709\u5916\u90e8\u7684\u8f6c\u6362\u5de5\u4f5c\u90fd\u4f1a\u5728reset\u7cfb\u5217\u51fd\u6570\u4e2d\u90fd\u51c6\u5907\u597d":62,"\u6240\u6709\u67b6\u6784":136,"\u6240\u6709\u7684":[61,109,110],"\u6240\u6709\u7684\u5355\u6d4b\u90fd\u4f1a\u88ab\u6267\u884c\u4e00\u6b21":110,"\u6240\u6709\u7684\u63a5\u53e3\u5747\u4e3ac\u63a5\u53e3":66,"\u6240\u6709\u7684\u64cd\u4f5c\u90fd\u662f\u9488\u5bf9\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u6765\u8fdb\u884c\u7684":104,"\u6240\u6709\u7684python\u5c01\u88c5\u90fd\u4f7f\u7528":110,"\u6240\u6709\u7684python\u5c01\u88c5\u90fd\u5728":110,"\u6240\u6709\u76f8\u5173\u7684":61,"\u6240\u6709\u7c7b\u578b\u540d\u4e3a":66,"\u6240\u6709\u7f51\u7edc\u5c42\u7684\u68af\u5ea6\u68c0\u67e5\u5355\u6d4b\u90fd\u4f4d\u4e8e":110,"\u6240\u6709\u8f93\u5165\u5e8f\u5217\u5e94\u8be5\u6709\u76f8\u540c\u7684\u957f\u5ea6":107,"\u6240\u6709mkl":62,"\u6240\u9700\u652f\u6301\u7684\u6700\u4f4eandroid":136,"\u6240\u9700\u7684\u5f00\u53d1\u5de5\u5177\u548c\u7b2c\u4e09\u65b9\u5e93\u53ef\u4ee5\u53c2\u8003":138,"\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":65,"\u624b\u5199\u6570\u5b57\u8bc6\u522b":122,"\u624b\u5199\u6570\u5b57\u8bc6\u522b\u4efb\u52a1\u5b9a\u4e49\u4e86\u4e00\u4e2a\u542b\u6709":122,"\u624b\u52a8\u4e0b\u8f7d\u4e14\u89e3\u538b\u7f29":91,"\u624b\u52a8\u4e0b\u8f7d\u5e76\u5b89\u88c5":91,"\u624d\u53ef\u4ee5\u5b89\u88c5":100,"\u624d\u80fd\u4fdd\u8bc1\u548c\u5355\u5c42\u5e8f\u5217\u7684\u914d\u7f6e\u4e2d":104,"\u624d\u80fd\u53d1\u6325\u5176\u5168\u90e8\u80fd\u529b":117,"\u624d\u80fd\u66f4\u597d\u7684\u53d1\u6325mkl":62,"\u6253\u5f00":117,"\u6253\u5f00\u6d4f\u89c8\u5668\u8bbf\u95ee\u5bf9\u5e94\u76ee\u5f55\u4e0b\u7684index":113,"\u6253\u5f00\u8fd9\u4e2a\u7f16\u8bd1\u9009\u9879":66,"\u6267\u884c":[82,102,119,124],"\u6267\u884c\u4e0a\u8ff0":136,"\u6267\u884c\u4e0a\u8ff0\u4ee3\u7801\u751f\u6210makefile\u6587\u4ef6\u540e":119,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4":97,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u4ee5\u542f\u52a83\u4e2a\u8282\u70b9\u7684openmpi\u96c6\u7fa4\u548c\u4e00\u4e2a":128,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u5373\u53ef\u5728\u5f53\u524d\u673a\u5668\u4e0a\u5b89\u88c5paddlepaddle\u7684\u8fd0\u884c\u65f6\u73af\u5883":100,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u53ef\u4ee5\u67e5\u770b\u5df2\u7ecf\u5b89\u88c5\u7684\u7248\u672c":123,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u5b8c\u6210\u5feb\u901f\u5b89\u88c5":102,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u6765\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5":111,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u7f16\u8bd1cpu":97,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u83b7\u53d6\u6700\u65b0\u7684paddlepaddl":98,"\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4":[136,137,138],"\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4\u542f\u52a8\u4f7f\u7528python\u7f16\u5199\u7684trainer\u7a0b\u5e8f":123,"\u6267\u884c\u4ee5\u4e0b\u64cd\u4f5c":107,"\u6267\u884c\u4ee5\u4e0b\u7684\u547d\u4ee4\u542f\u52a8\u4e00\u4e2a\u53c2\u6570\u670d\u52a1\u5668\u5e76\u7b49\u5f85\u548c\u8ba1\u7b97\u8282\u70b9\u7684\u6570\u636e\u4ea4\u4e92":123,"\u6267\u884c\u5b8c\u5b89\u88c5\u547d\u4ee4\u540e":[136,137,138],"\u6267\u884c\u60a8\u7684\u4ee3\u7801":117,"\u627e\u5230":[97,107,123],"\u627e\u5230\u6700\u65e9\u62a5\u9519\u7684\u5730\u65b9":92,"\u627e\u5230\u8fd0\u884c\u6162\u7684\u539f\u56e0":117,"\u627e\u5230\u8fd0\u884c\u6162\u7684\u90e8\u5206":117,"\u628a":[33,110],"\u628a\u4e4b\u524d\u793a\u4f8b\u4e2d\u8f6c\u6362\u5b8c\u6bd5\u7684random":33,"\u628a\u4efb\u610f\u7ef4\u5ea6\u7684tensor\u8f6c\u4e3a\u4e86\u4e00\u7ef4\u7684eigenvector":112,"\u628a\u5de5\u5177\u548c\u914d\u7f6e\u90fd\u5b89\u88c5\u5728\u4e00\u4e2a":108,"\u628a\u8bad\u7ec3\u6570\u636e\u76f4\u63a5\u653e\u5728":126,"\u628a\u8fd9\u4e9b\u5de5\u5177\u5b89\u88c5\u5230\u672c\u673a":108,"\u6295\u5c04\u53cd\u5411rnn\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b\u5230":107,"\u6295\u5c04\u7f16\u7801\u5411\u91cf\u5230":107,"\u62c6\u6210\u4ee5\u4e0a\u4e24\u4e2a\u9759\u6001\u94fe\u63a5\u5e93":119,"\u62c6\u89e3":106,"\u62c6\u89e3\u6210\u7684\u6bcf\u4e00\u53e5\u8bdd\u518d\u901a\u8fc7\u4e00\u4e2alstm\u7f51\u7edc":104,"\u62f7\u8d1d\u5230numpi":94,"\u62f7\u8d1d\u5fc5\u8981\u7684\u6587\u4ef6\u5230head\u8282\u70b9":128,"\u62f7\u8d1d\u8bad\u7ec3\u6570\u636e\u5230\u5404\u81ea\u7684\u8282\u70b9":128,"\u62f7\u8d1d\u8bad\u7ec3\u6587\u4ef6\u5230\u5bb9\u5668\u5185":127,"\u62f7\u8d1d\u8bad\u7ec3\u7a0b\u5e8f\u548c\u5b57\u5178\u6587\u4ef6\u5230\u6bcf\u53f0mpi\u8282\u70b9":128,"\u62fc\u63a5":94,"\u6302\u8f7d\u5230\u5bb9\u5668\u5185\u90e8\u7684":98,"\u6302\u8f7d\u6216\u4e0b\u8f7d\u7684\u8bad\u7ec3\u6570\u636e\u5206\u7247":123,"\u6307\u53d1\u73b0\u6027\u80fd\u74f6\u9888":116,"\u6307\u5411\u4e00\u4e2alayer":106,"\u6307\u5b9a":[94,95,106,107],"\u6307\u5b9a\u4e00\u53f0\u673a\u5668\u4e0a\u4f7f\u7528\u7684\u7ebf\u7a0b\u6570":132,"\u6307\u5b9a\u4e3a":121,"\u6307\u5b9a\u4f7f\u75282":94,"\u6307\u5b9a\u524d\u5411\u7f51\u7edc\u6700\u7ec8\u7684\u8f93\u51fa\u76ee\u6807\u53d8\u91cf":111,"\u6307\u5b9a\u52a0\u8f7d\u7684\u65b9\u5f0f":132,"\u6307\u5b9a\u5728\u751f\u6210\u6027\u80fd\u5206\u6790\u6587\u4ef6\u4e4b\u540e":116,"\u6307\u5b9a\u5bf9\u8f93\u5165\u53d8\u91cf":111,"\u6307\u5b9a\u5c06\u5f53\u524d\u8def\u5f84":98,"\u6307\u5b9a\u6267\u884c\u5176\u4e2d\u4e00\u4e2a\u5355\u5143\u6d4b\u8bd5":97,"\u6307\u5b9a\u68c0\u6d4b\u68af\u5ea6\u65f6\u80fd\u5bb9\u5fcd\u7684\u6700\u5927\u9519\u8bef\u503c":111,"\u6307\u5b9a\u7684\u5185\u5bb9\u5b58\u50a8\u5e93\u8fd0\u884c\u547d\u4ee4":113,"\u6307\u5b9a\u7684\u8f93\u5165\u4e0d\u4f1a\u88ab":106,"\u6307\u5b9a\u8981\u8f93\u51fa\u7684\u5b57\u6bb5\u8fdb\u884c\u8f93\u51fa":94,"\u6307\u5b9a\u9700\u8981\u4f7f\u7528\u7684\u5bb9\u5668":98,"\u6307\u5b9acudnn\u7684\u6700\u5927\u5de5\u4f5c\u7a7a\u95f4\u5bb9\u9650":132,"\u6307\u5bf9\u4e8e\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217\u8f93\u5165\u6570\u636e":104,"\u6307\u5f00\u542fhttp\u670d\u52a1":116,"\u6307\u6d88\u9664\u74f6\u9888":116,"\u6307\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u4e4b\u540e\u5f97\u5230\u7684\u6240\u6709\u53c2\u6570":32,"\u6307\u793a\u4f7f\u7528\u54ea\u4e2agpu\u6838":132,"\u6307\u793a\u5728\u7b80\u5355\u7684recurrentlayer\u5c42\u7684\u8ba1\u7b97\u4e2d\u662f\u5426\u4f7f\u7528\u6279\u5904\u7406\u65b9\u6cd5":132,"\u6307\u793a\u5f53\u6307\u5b9a\u8f6e\u7684\u6d4b\u8bd5\u6a21\u578b\u4e0d\u5b58\u5728\u65f6":132,"\u6307\u793a\u662f\u5426\u4f7f\u7528\u591a\u7ebf\u7a0b\u6765\u8ba1\u7b97\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc":132,"\u6307\u793a\u662f\u5426\u5f00\u542f\u53c2\u6570\u670d\u52a1\u5668":132,"\u6307\u793a\u662f\u5426\u663e\u793a\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u7a00\u758f\u53c2\u6570\u5206\u5e03\u7684\u65e5\u5fd7\u7ec6\u8282":132,"\u6307\u793a\u662f\u5426\u68c0\u67e5\u6240\u6709\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u7a00\u758f\u53c2\u6570\u7684\u5206\u5e03\u662f\u5747\u5300\u7684":132,"\u6309\u542f\u53d1\u5f0f\u635f\u5931\u7684\u5927\u5c0f\u9012\u589e\u6392\u5e8f":132,"\u6309\u7167\u4e0b\u9762\u6b65\u9aa4\u5373\u53ef":127,"\u6309\u7167\u5176\u5185\u5bb9\u521b\u5efa\u4e00\u4e2a\u540d\u4e3a":108,"\u6309\u7167\u5177\u4f53\u5b9e\u73b0\u65b9\u5f0f\u53ef\u4ee5\u5f52\u7eb3\u4e3a2\u7c7b":95,"\u6309\u7167\u57fa\u672c\u6570\u636e\u7c7b\u578b\u5728paddlepaddle\u5185\u90e8\u7684\u5b9a\u4e49\u548c\u5b9e\u73b0":121,"\u6309\u94ae":[82,109],"\u633a":104,"\u633a\u597d":104,"\u635f\u5931\u51fd\u6570\u5c42":122,"\u6362":104,"\u6392\u6210\u4e00\u5217\u7684\u591a\u4e2a\u5143\u7d20":103,"\u63a5\u4e0a\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42":101,"\u63a5\u4e0a\u5e73\u65b9\u8bef\u5dee\u5c42":101,"\u63a5\u4e0b\u6765":111,"\u63a5\u4e0b\u6765\u53ef\u4ee5\u8003\u8651\u4e0b\u65f6\u95f4\u7ebf\u7684\u5206\u6790":117,"\u63a5\u4e0b\u6765\u5c31\u53ef\u4ee5\u4f7f\u7528":117,"\u63a5\u4e0b\u6765\u6211\u4eec\u521b\u5efa\u4e00\u4e2a\u539f\u59cb":109,"\u63a5\u4e0b\u6765\u6211\u4eec\u53d6\u6d88\u5bf9":109,"\u63a5\u4e0b\u6765\u7b49\u5f85":109,"\u63a5\u53d7\u4e00\u4e2a\u8f93\u5165\u53c2\u6570":111,"\u63a5\u53e3":[65,66,111,112,122],"\u63a5\u53e3\u4f1a\u88ab\u8c03\u7528":112,"\u63a5\u53e3\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684\u524d\u5411\u8ba1\u7b97":122,"\u63a5\u53e3\u5bf9\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u548c\u8bad\u7ec3\u597d\u7684\u53c2\u6570\u8fdb\u884c\u5e8f\u5217\u5316":122,"\u63a5\u53e3\u5c42\u505a\u8fc7\u591a\u5c01\u88c5":66,"\u63a5\u53e3\u662f":33,"\u63a5\u53e3\u6700\u7ec8\u4f1a\u8c03\u7528\u5bf9\u5e94":112,"\u63a5\u53e3\u6709\u4e00\u4e2a":94,"\u63a5\u53e3\u7684":94,"\u63a5\u53e3\u8bf4\u660e\u8bf7\u67e5\u770b":121,"\u63a5\u6536\u5904\u7406pfsclient\u7aef\u7684\u6587\u4ef6\u7ba1\u7406\u8bf7\u6c42":48,"\u63a5\u7740\u7f16\u8bd1\u5373\u53ef":91,"\u63a7\u5236":132,"\u63a7\u5236\u662f\u5426\u4f7f\u7528mkl":62,"\u63a7\u5236\u662f\u5426\u4f7f\u7528mklml\u5e93":62,"\u63a7\u5236\u7528\u6237\u6743\u9650":33,"\u63a8\u5bfc\u8be5\u5c42\u524d\u5411\u548c\u540e\u5411\u4f20\u9012\u7684\u65b9\u7a0b":110,"\u63a8\u8350":104,"\u63a8\u8350\u4f7f\u7528\u6b64\u65b9\u5f0f":119,"\u63a8\u8350\u4f7f\u7528centos\u7684devtools2":97,"\u63a8\u8350\u6e05\u7406\u6574\u4e2a\u7f16\u8bd1\u76ee\u5f55":97,"\u63a8\u8350\u8bbe\u7f6e\u4e3a":119,"\u63a8\u8350\u914d\u7f6e\u4e3a":119,"\u63a8\u8350\u914d\u7f6e\u9009\u9879":119,"\u63a8\u9001\u5230\u8fdc\u7a0b\u4ed3\u5e93":109,"\u63cf\u8ff0\u7684\u9ed8\u8ba4\u5165\u53e3\u7a0b\u5e8f":108,"\u63cf\u8ff0\u8be5op\u7684\u8f93\u5165":111,"\u63cf\u8ff0\u95ee\u9898":109,"\u63d0\u4ea4\u65b9\u5f0f\u53c2\u89c1":113,"\u63d0\u4ea4pull":109,"\u63d0\u4f9b":124,"\u63d0\u4f9b\u4e03\u5c42\u534f\u8bae\u7684\u53cd\u5411\u4ee3\u7406":48,"\u63d0\u4f9b\u4e86\u4e00\u4e2a\u542f\u52a8\u811a\u672c":127,"\u63d0\u4f9b\u4e86\u547d\u4ee4\u6837\u4f8b\u6765\u8fd0\u884c":124,"\u63d0\u4f9b\u4e86\u65b9\u4fbf\u7684\u548c":116,"\u63d0\u4f9b\u4e86\u81ea\u52a8\u5316\u811a\u672c\u6765\u542f\u52a8\u4e0d\u540c\u8282\u70b9\u4e2d\u7684\u6240\u6709":124,"\u63d0\u4f9b\u51e0\u4e4e\u6240\u6709\u8bad\u7ec3\u7684\u5185\u90e8\u8f93\u51fa\u65e5\u5fd7":124,"\u63d0\u4f9b\u5e38\u7528\u7684\u547d\u4ee4\u884c\u7ba1\u7406\u547d\u4ee4\u7ba1\u7406\u6587\u4ef6\u548c\u76ee\u5f55":48,"\u63d0\u4f9b\u6269\u5c55\u7684\u957f\u5ea6\u4fe1\u606f":103,"\u63d0\u4f9b\u7528\u6237\u7ba1\u7406\u6587\u4ef6\u7684\u547d\u4ee4":48,"\u63d0\u4f9b\u7ed9paddle\u4f5c\u4e3a\u8bad\u7ec3\u6570\u636e":33,"\u63d0\u4f9b\u8bad\u7ec3\u8fc7\u7a0b\u7684":124,"\u63d0\u793a":91,"\u641c\u7d22\u4ee3\u7801\u5e93":113,"\u642d\u5efa\u795e\u7ecf\u7f51\u7edc\u5c31\u50cf\u4f7f\u7528\u79ef\u6728\u642d\u5efa\u5b9d\u5854\u4e00\u6837":101,"\u64cd\u4f5c":104,"\u64cd\u4f5c\u7cfb\u7edf":[100,108],"\u652f\u6301\u4e24\u79cd\u5e8f\u5217\u7c7b\u578b":121,"\u652f\u6301\u4ea4\u53c9\u7f16\u8bd1":138,"\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684layer":[105,106],"\u652f\u6301\u5927\u6587\u4ef6\u7684\u65ad\u70b9\u4e0a\u4f20":48,"\u652f\u6301\u5927\u89c4\u6a21\u96c6\u7fa4\u751f\u4ea7\u73af\u5883\u7684\u5b8c\u6574\u96c6\u7fa4\u65b9\u6848":123,"\u652f\u6301\u7684\u6700\u5c0f\u7684android":136,"\u652f\u6301\u7684\u6700\u5c0fandroid":136,"\u652f\u6301\u7ef4\u6570\u53ef\u53d8\u7684\u6570\u636e\u8f93\u5165":95,"\u652f\u6301\u7f16\u8bd1\u5668":136,"\u6539\u53d8\u7ef4\u5ea6\u987a\u5e8f":95,"\u653e\u5728\u8fd9\u4e2a\u76ee\u5f55\u91cc\u7684\u6587\u4ef6\u5176\u5b9e\u662f\u4fdd\u5b58\u5230\u4e86mfs\u4e0a":127,"\u653e\u5fc3":104,"\u6545\u800c\u662f\u4e00\u4e2a\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":104,"\u6548\u679c\u5982\u4e0b":116,"\u6559\u7a0b":98,"\u6570":106,"\u6570\u5b66\u5e93":119,"\u6570\u5fc5\u987b\u4e25\u683c\u76f8\u7b49":106,"\u6570\u636e":[48,121,122],"\u6570\u636e\u4e2d0":96,"\u6570\u636e\u5206\u7247":123,"\u6570\u636e\u63d0\u4f9b\u5668":131,"\u6570\u636e\u8bbf\u95ee":0,"\u6570\u636e\u8bfb\u53d6\u5747\u4ea4\u7531\u5176\u4ed6\u8bed\u8a00\u5b8c\u6210":65,"\u6570\u636e\u8f93\u5165":[106,121],"\u6570\u636e\u957f\u5ea6\u53ca\u6821\u9a8c\u503c\u7ec4\u6210":48,"\u6570\u636e\u96c6":122,"\u6570\u636e\u96c6\u9700\u8981\u9884\u5148\u88ab\u8f6c\u6362\u6210paddlepaddle\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f7f\u7528\u7684\u5b58\u50a8\u683c":33,"\u6570\u636e\u9884\u5904\u7406\u4efb\u52a1":33,"\u6570\u76ee":134,"\u6574\u4f53":104,"\u6574\u4f53\u4f7f\u7528\u6d41\u7a0b":122,"\u6574\u4f53\u6570\u636e\u548c\u539f\u59cb\u6570\u636e\u5b8c\u5168\u4e00\u6837":104,"\u6574\u4f53\u7684\u7ed3\u6784\u56fe\u5982\u4e0b":127,"\u6574\u578b\u6570\u7ec4":121,"\u6574\u6570":110,"\u6574\u6570\u6807\u7b7e":101,"\u6574\u6d01":104,"\u6587\u4ef6":[65,108,109,111,121,126],"\u6587\u4ef6\u4e2d":[111,122,127],"\u6587\u4ef6\u4e2d\u6ce8\u518c\u524d\u5411":111,"\u6587\u4ef6\u4e2d\u6ce8\u518c\u8be5op\u548ckernel":111,"\u6587\u4ef6\u4e2d\u6ce8\u518ccuda":111,"\u6587\u4ef6\u4e3a":94,"\u6587\u4ef6\u4e4b\u5916":109,"\u6587\u4ef6\u4f20\u8f93\u7684\u7684\u5173\u952e\u5728\u4e8e\u9700\u8981pfsclient\u7aef\u5bf9\u6bd4source\u548cdestination\u7684\u6587\u4ef6chunks\u7684checksum\u662f\u5426\u4fdd\u6301\u4e00\u81f4":48,"\u6587\u4ef6\u5185\u5bb9\u4e3a":65,"\u6587\u4ef6\u540d":116,"\u6587\u4ef6\u540d\u4e3a\u4efb\u610f\u6587\u4ef6\u540d":123,"\u6587\u4ef6\u540d\u4e3a\u6b64uuid":32,"\u6587\u4ef6\u547d\u540d\u4ee5":111,"\u6587\u4ef6\u59390":127,"\u6587\u4ef6\u5bf9\u5e94\u7684data":33,"\u6587\u4ef6\u5de5\u5177\u662f\u4f7f\u7528docker":113,"\u6587\u4ef6\u7684\u4e0a\u4f20\u548c\u4e0b\u8f7d\u90fd\u662f\u901a\u8fc7\u5bf9chunk\u7684\u64cd\u4f5c\u6765\u5b9e\u73b0\u7684":48,"\u6587\u4ef6\u7684\u6539\u53d8":109,"\u6587\u4ef6\u7684\u8def\u5f84\u6765\u52a0\u8f7d\u9884\u6d4b\u6a21\u578b":122,"\u6587\u4ef6model":134,"\u6587\u5b57\u7684\u4ea4\u4e92\u5f0f\u6587\u6863":98,"\u6587\u6863":91,"\u6587\u68631":112,"\u6587\u68632":112,"\u6587\u6863\u8f83\u5c11":112,"\u6587\u6863\u90fd\u662f\u901a\u8fc7":113,"\u6587\u7ae0":127,"\u65b0":104,"\u65b0\u5efa\u4e00\u4e2a\u6743\u91cd":110,"\u65b0\u624b\u5165\u95e8":135,"\u65b0\u624b\u5165\u95e8\u7ae0\u8282":82,"\u65b0\u7248\u672c":62,"\u65b9\u4fbf":104,"\u65b9\u4fbf\u5feb\u901f\u5b89\u88c5":99,"\u65b9\u4fbf\u6392\u67e5\u4ee5\u53ca\u5feb\u901f\u5b9a\u4f4d\u95ee\u9898":94,"\u65b9\u4fbf\u6d4b\u8bd5\u4eba\u5458\u6d4b\u8bd5paddlepaddle\u7684\u884c\u4e3a":82,"\u65b9\u4fbf\u7528\u6237\u4e0a\u4f20\u81ea\u5df1\u7684\u8bad\u7ec3\u6570\u636e\u4ee5\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":48,"\u65b9\u4fbf\u7528\u6237\u5728python\u7aef\u9009\u62e9\u662f\u5426\u542f\u7528\u8fd9\u4e2a\u529f\u80fd":61,"\u65b9\u4fbf\u7528\u6237\u9009\u62e9\u4f7f\u7528mkl":62,"\u65b9\u5f0f1":94,"\u65b9\u5f0f2":94,"\u65b9\u5f0f\u5c06\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u548c\u8bad\u7ec3\u597d\u7684\u53c2\u6570\u5e8f\u5217\u5316\u5230\u4e00\u4e2a\u6587\u4ef6":122,"\u65b9\u5f0f\u7c7b\u4f3c\u4e8e":62,"\u65b9\u6cd5\u4e00":134,"\u65b9\u6cd5\u4e09":134,"\u65b9\u6cd5\u4e8c":134,"\u65c1\u8fb9":104,"\u65e0":104,"\u65e0\u5ef6\u8fdf":132,"\u65e0\u6cd5\u505a\u5230\u5bf9\u4e8e\u5404\u79cd\u8bed\u8a00\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u7684\u9002\u914d":65,"\u65e0\u8bba\u5728\u672c\u5730\u8fd8\u662f\u5728\u4e91\u7aef":33,"\u65e0\u8bba\u662f\u4ece":33,"\u65e0\u8bba\u662f\u5728\u672c\u5730\u6216\u662f\u4e91\u7aef\u8f6c\u6362":33,"\u65e0\u8bba\u662f\u91cd\u6784\u524d\u7684layer\u8fd8\u662f\u91cd\u6784\u540e\u7684op":62,"\u65e0\u9700\u5173\u5fc3\u548c\u5904\u7406\u5e8f\u5217\u4fe1\u606f":121,"\u65e0\u9700\u63d0\u4f9b\u975e\u96f6\u5143\u7684\u503c":121,"\u65e0\u9700\u9644\u52a0\u5e8f\u5217\u4fe1\u606f":121,"\u65e0\u9ed8\u8ba4\u503c":[136,138],"\u65e5\u5fd7\u62a5\u9519\u4e3a\u7f51\u7edc\u901a\u4fe1\u7c7b\u9519\u8bef":92,"\u65e9\u9910":104,"\u65f6":[32,61,62,94,96,103,107,110,119,121,127,132,136],"\u65f6\u4e00\u8d77\u66f4\u65b0":62,"\u65f6\u4f7f\u7528openblas\u6570\u5b66\u5e93":119,"\u65f6\u5019":104,"\u65f6\u5982\u4f55\u7ec4\u7ec7\u8f93\u5165\u6570\u636e":121,"\u65f6\u6709\u6548":137,"\u65f6\u88ab\u8bad\u7ec3\u7684":110,"\u65f6\u8bbe\u5907id\u53f7\u7684\u5206\u914d":134,"\u65f6\u95f4":104,"\u65f6\u95f4\u6b65\u7684\u6982\u5ff5":104,"\u65f6\u987b\u4ece\u7b2c17\u5b57\u8282\u5f00\u59cb":96,"\u6620\u5c04\u4e3a":108,"\u6620\u5c04\u5230\u4e00\u4e2a\u7ef4\u5ea6\u4e3a":110,"\u662f":[48,62,91,100,104],"\u662f\u4e00\u4e2a\u51681\u7684\u5411\u91cf":110,"\u662f\u4e00\u4e2a\u5185\u7f6e\u7684\u5b9a\u65f6\u5668\u5c01\u88c5":117,"\u662f\u4e00\u4e2a\u52a8\u6001\u7a0b\u5e8f\u5206\u6790\u7684\u672f\u8bed":117,"\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":103,"\u662f\u4e00\u4e2a\u53cc\u5c42\u7684\u5e8f\u5217":103,"\u662f\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3\u7684\u4ee3\u7801\u751f\u6210\u5668":65,"\u662f\u4e00\u4e2a\u5c01\u88c5\u5bf9\u8c61":117,"\u662f\u4e00\u4e2a\u5f88\u6709\u7528\u7684\u53c2\u6570":134,"\u662f\u4e00\u4e2a\u7c7b\u578b\u7684\u6807\u5fd7":66,"\u662f\u4e00\u4e2a\u975e\u7ebf\u6027\u7684":110,"\u662f\u4e00\u4e2apython\u7684\u7b2c\u4e09\u65b9\u5e93":116,"\u662f\u4e00\u4e2aunbound":106,"\u662f\u4e00\u6761\u65f6\u95f4\u5e8f\u5217":101,"\u662f\u4e00\u6b21\u9884\u6d4b\u63a5\u53d7\u7684\u6837\u672c\u6570\u76ee":121,"\u662f\u4e00\u79cd\u4efb\u610f\u590d\u6742\u7684rnn\u5355\u5143":106,"\u662f\u4e0d\u5305\u62ec\u6e90\u7801\u7684":126,"\u662f\u4e0d\u5e38\u89c1\u7684\u505a\u6cd5":65,"\u662f\u4f7f\u5f97\u8981\u5171\u4eab\u7684\u53c2\u6570\u4f7f\u7528\u540c\u6837\u7684":96,"\u662f\u4f7f\u7528mkl\u6570\u5b66\u5e93":119,"\u662f\u504f\u5dee":107,"\u662f\u5404\u4e2a\u5b9e\u73b0\u4e2d\u5171\u4eab\u7684\u5934\u6587\u4ef6":66,"\u662f\u5411\u91cf":110,"\u662f\u5426\u4ec5\u7f16\u8bd1capi":97,"\u662f\u5426\u4ee5\u9006\u5e8f\u5904\u7406\u8f93\u5165\u5e8f\u5217":106,"\u662f\u5426\u4f7f\u7528":137,"\u662f\u5426\u4f7f\u7528\u53cc\u7cbe\u5ea6\u6d6e\u70b9\u6570":97,"\u662f\u5426\u4f7f\u7528\u65e7\u7684remoteparameterupdat":132,"\u662f\u5426\u4f7f\u7528\u6743\u91cd":110,"\u662f\u5426\u4f7f\u7528arm\u6a21\u5f0f":136,"\u662f\u5426\u4f7f\u7528eigen\u5e93\u8fdb\u884c\u77e9\u9635\u8ba1\u7b97":[136,137],"\u662f\u5426\u4f7f\u7528mkl\u6570\u5b66\u5e93":97,"\u662f\u5426\u4f7f\u7528neon\u6307\u4ee4":[136,138],"\u662f\u5426\u4f7f\u80fd":137,"\u662f\u5426\u5185\u5d4cpython\u89e3\u91ca\u5668":97,"\u662f\u5426\u5219\u5171\u4eab\u540c\u4e00\u4e2a":111,"\u662f\u5426\u542f\u7528gpu\u8bad\u7ec3":123,"\u662f\u5426\u5c06\u5168\u5c40\u79cd\u5b50\u5e94\u7528\u4e8e\u672c\u5730\u7ebf\u7a0b\u7684\u968f\u673a\u6570":132,"\u662f\u5426\u5f00\u542f\u5355\u5143\u6d4b\u8bd5":97,"\u662f\u5426\u6253\u5370\u7248\u672c\u4fe1\u606f":132,"\u662f\u5426\u6253\u5f00":61,"\u662f\u5426\u652f\u6301gpu":97,"\u662f\u5426\u663e\u793a":132,"\u662f\u5426\u7a00\u758f":110,"\u662f\u5426\u7f16\u8bd1\u4e2d\u82f1\u6587\u6587\u6863":97,"\u662f\u5426\u7f16\u8bd1\u542b\u6709avx\u6307\u4ee4\u96c6\u7684paddlepaddle\u4e8c\u8fdb\u5236\u6587\u4ef6":97,"\u662f\u5426\u7f16\u8bd1\u65f6\u8fdb\u884c\u4ee3\u7801\u98ce\u683c\u68c0\u67e5":97,"\u662f\u5426\u7f16\u8bd1c":137,"\u662f\u5426\u7f16\u8bd1go\u8bed\u8a00\u7684\u53ef\u5bb9\u9519paramet":97,"\u662f\u5426\u7f16\u8bd1python\u7684swig\u63a5\u53e3":97,"\u662f\u5426\u8fd0\u884c\u65f6\u52a8\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":97,"\u662f\u5426\u9700\u8981\u7b49\u5f85\u8be5\u8f6e\u6a21\u578b\u53c2\u6570":132,"\u662f\u56e0\u4e3a\u8fd9\u4e2a\u6d41\u7a0b\u6bd4\u5176\u4ed6\u65b9\u6cd5\u90fd\u66f4\u7b80\u4fbf":108,"\u662f\u56e0\u4e3ac99\u652f\u6301":65,"\u662f\u5728paddlepaddle\u4e2d\u6784\u9020\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u65f6\u6700\u91cd\u8981\u7684\u6982\u5ff5":107,"\u662f\u5b58\u6709\u4e00\u7cfb\u5217\u53d8\u6362\u77e9\u9635\u7684\u6743\u91cd":110,"\u662f\u5b58\u6709\u504f\u7f6e\u5411\u91cf\u7684\u6743\u91cd":110,"\u662f\u5bf9\u7528\u6237\u6587\u4ef6\u5b58\u50a8\u7a7a\u95f4\u7684\u62bd\u8c61":48,"\u662f\u5bfb\u627e\u74f6\u9888\u7684\u5173\u952e\u6307\u6807":116,"\u662f\u5f00\u542favx\u7f16\u8bd1\u7684":98,"\u662f\u5f85\u6269\u5c55\u7684\u6570\u636e":103,"\u662f\u6211\u4eec":109,"\u662f\u6211\u4eec\u8981\u5206\u6790\u7684\u7a0b\u5e8f":116,"\u662f\u6307":66,"\u662f\u6307\u4e00\u7cfb\u5217\u7684\u7279\u5f81\u6570\u636e":104,"\u662f\u6307recurrent_group\u7684\u591a\u4e2a\u8f93\u5165\u5e8f\u5217":104,"\u662f\u6570\u636e\u8f93\u5165":107,"\u662f\u6709\u610f\u4e49\u7684":104,"\u662f\u6784\u5efa\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u6700\u91cd\u8981\u7684\u5de5\u5177":107,"\u662f\u6ca1\u6709\u540d\u5b57\u7684":108,"\u662f\u7528\u6237\u4f7f\u7528c":66,"\u662f\u7684":108,"\u662f\u77e9\u9635":110,"\u662f\u795e\u7ecf\u7f51\u7edc\u5b9a\u4e49\u65f6":121,"\u662f\u7f51\u7edc\u5c42\u5b9e\u4f8b\u7684\u540d\u5b57\u6807\u8bc6\u7b26":110,"\u662f\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26":110,"\u662f\u7f51\u7edc\u5c42\u7684\u7c7b\u578b":110,"\u662f\u7f51\u7edc\u5c42\u8f93\u51fa\u7684\u5927\u5c0f":110,"\u662f\u8be5\u5c42\u7684\u6807\u8bc6\u7b26":110,"\u662f\u8be5\u5c42\u7684\u7c7b\u540d":110,"\u662f\u8be5\u7f51\u7edc\u5c42\u7684":110,"\u662f\u8f93\u5165":107,"\u662f\u8fd9\u4e00\u7c7b\u7684":95,"\u662f\u8fdb\u884c\u8ba1\u7b97\u7684\u57fa\u672c\u5355\u4f4d":121,"\u662f\u9700\u8981\u4e86\u89e3\u54ea\u4e9b\u6b65\u9aa4\u62d6\u6162\u4e86\u6574\u4f53":117,"\u662fc":66,"\u662fdecoder\u7684\u6570\u636e\u8f93\u5165":106,"\u662fnvidia\u6027\u80fd\u5206\u6790\u5de5\u5177":117,"\u662fpaddlepaddle\u4e2d\u5355\u5c42\u5e8f\u5217\u548c\u53cc\u5c42\u5e8f\u5217\u5b58\u50a8\u793a\u610f\u56fe":121,"\u662fpaddlepaddle\u652f\u6301\u7684\u4e00\u79cd\u4efb\u610f\u590d\u6742\u7684rnn\u5355\u5143":106,"\u662fpython\u5c01\u88c5\u7684\u7c7b\u540d":110,"\u662frnn\u72b6\u6001":107,"\u663e\u5f97\u76f8\u5bf9\u6765\u8bf4\u8f83\u4e3a\u8017\u65f6":61,"\u663e\u7136":116,"\u665a":104,"\u6682\u4e0d\u8003\u8651\u5728\u5185":94,"\u6682\u65e0":100,"\u6682\u65f6\u4e0d\u652f\u6301python3":100,"\u6682\u65f6\u4e0d\u8003\u8651\u591a\u4e2aparamet":32,"\u66b4\u9732\u8fd9\u4e2a\u6982\u5ff5\u5fc5\u8981\u51fd\u6570":66,"\u66f4\u522b\u63d0\u7b80\u5316\u95ee\u9898\u590d\u73b0\u5e26\u6765\u7684\u597d\u5904\u4e86":108,"\u66f4\u591a\u5173\u4e8edocker\u7684\u5b89\u88c5\u4e0e\u4f7f\u7528":91,"\u66f4\u591a\u7684\u8f6c\u6362\u65b9\u6cd5\u8bf7\u53c2\u8003eigen":112,"\u66f4\u597d\u5730\u5b8c\u6210\u4e00\u4e9b\u590d\u6742\u7684\u8bed\u8a00\u7406\u89e3\u4efb\u52a1":106,"\u66f4\u5feb":107,"\u66f4\u65b0":91,"\u66f4\u65b0\u53ef\u80fd\u5bfc\u81f4\u9700\u8981\u65b0\u7684\u5f00\u53d1\u5de5\u5177":108,"\u66f4\u65b0\u6a21\u5f0f":94,"\u66f4\u65b0\u7684\u6587\u6863\u4ee5pr\u7684\u5f62\u5f0f\u63d0\u4ea4\u5230github\u4e2d":113,"\u66f4\u65b0\u7f51\u7edc\u53c2\u6570\u65f6\u5e94\u7528":94,"\u66f4\u65b9\u4fbf\u7684\u8bbe\u7f6e\u65b9\u5f0f":96,"\u66f4\u8be6\u7ec6\u7684\u5b89\u88c5\u548c\u7f16\u8bd1\u65b9\u6cd5\u53c2\u8003":102,"\u66f4\u8fdb\u4e00\u6b65":106,"\u66f4\u9ad8":107,"\u66ff\u6211\u4eec\u5b8c\u6210\u4e86\u539f\u59cb\u8f93\u5165\u6570\u636e\u7684\u62c6\u5206":106,"\u6700":104,"\u6700\u4e3b\u8981\u7684\u5de5\u4f5c\u5c31\u662f\u89e3\u6790\u51fa":127,"\u6700\u540e":[98,109,110,123],"\u6700\u540e\u4e00\u4e2a":103,"\u6700\u540e\u4e00\u5c42cost\u4e2d\u8bb0\u5f55\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u6240\u6709\u62d3\u6251\u7ed3\u6784":101,"\u6700\u540e\u518d\u8c03\u7528mutabl":112,"\u6700\u540e\u5220\u9664":82,"\u6700\u540e\u6211\u4eec\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219\u8ba1\u7b97":110,"\u6700\u540e\u8ba1\u7b97softmax":95,"\u6700\u5c0f\u7684ios\u90e8\u7f72\u7248\u672c":137,"\u6700\u5c11\u663e\u793a\u591a\u5c11\u4e2a\u8282\u70b9":132,"\u6700\u5e38\u89c1\u7684\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662fexcept":65,"\u6700\u65b0\u7684\u4ee3\u7801":109,"\u6700\u65b0\u7684paddlepaddl":[91,98],"\u6700\u7ec8":110,"\u6700\u7ec8\u5b9e\u73b0\u4e00\u4e2a\u5c42\u6b21\u5316\u7684\u590d\u6742rnn":106,"\u6700\u7ec8\u6211\u4eec\u53ef\u4ee5\u8c03\u7528trainer\u7684train\u65b9\u6cd5\u542f\u52a8\u8bad\u7ec3":101,"\u6700\u7ec8\u7684\u8f93\u51fa\u7ed3\u679c":106,"\u6708\u6e56":104,"\u6709":104,"\u6709\u4e00\u4e9b\u5fc5\u987b\u914d\u7f6e\u7684\u53c2\u6570":[136,137,138],"\u6709\u4e24\u79cd\u65b9\u6cd5":97,"\u6709\u4e9b\u5c42\u53ef\u80fd\u9700\u8981\u9ad8\u7cbe\u5ea6\u6765\u4fdd\u8bc1\u68af\u5ea6\u68c0\u67e5\u5355\u6d4b\u6b63\u786e\u6267\u884c":110,"\u6709\u4e9b\u5c42\u6216\u8005\u6fc0\u6d3b\u9700\u8981\u505a\u5f52\u4e00\u5316\u4ee5\u4fdd\u8bc1\u5b83\u4eec\u7684\u8f93\u51fa\u7684\u548c\u662f\u4e00\u4e2a\u5e38\u6570":110,"\u6709\u4e9b\u7279\u5f81\u7684\u53d6\u503c\u8fbe\u5230\u6570\u767e\u4e07":94,"\u6709\u4eba\u7528\u865a\u62df\u673a\u6765\u7c7b\u6bd4":108,"\u6709\u4ee5\u4e0b\u5efa\u8bae":[136,137],"\u6709\u5173":104,"\u6709\u5173\u53c2\u6570\u914d\u7f6e\u7684\u8be6\u7ec6\u8bf4\u660e\u89c1":136,"\u6709\u5173\u7ebf\u6027\u56de\u5f52\u7684\u5b9e\u9645\u5e94\u7528":101,"\u6709\u52a9\u4e8e\u5728\u8bad\u7ec3\u65f6\u89c2\u5bdf\u5177\u4f53\u6570\u503c":94,"\u6709\u52a9\u4e8e\u8bca\u65ad\u5206\u5e03\u5f0f\u9519\u8bef":124,"\u6709\u591a\u96be":108,"\u6709\u6548\u63d0\u5347paddlepaddle\u5728\u82f1\u7279\u5c14\u67b6\u6784\u4e0a\u7684\u6027\u80fd":[61,62],"\u6709\u65f6\u5019\u6211\u4eec\u4f1a\u5e0c\u671b\u6e05\u7406\u6389\u5df2\u7ecf\u4e0b\u8f7d\u7684\u7b2c\u4e09\u65b9\u4f9d\u8d56\u4ee5\u53ca\u5df2\u7ecf\u7f16\u8bd1\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6":108,"\u6709\u65f6\u5019\u6211\u4eec\u53ea\u60f3\u8fd0\u884c\u4e00\u4e2a\u7279\u5b9a\u7684\u5355\u5143\u6d4b\u8bd5":108,"\u6709\u6807\u51c6\u7684":65,"\u6709\u7684\u65f6\u5019":65,"\u6709\u7684\u65f6\u5019\u7b80\u7b80\u5355\u5355\u7684\u6539\u53d8\u5c31\u80fd\u5728\u6027\u80fd\u4e0a\u4ea7\u751f\u660e\u663e\u7684\u4f18\u5316\u6548\u679c":117,"\u6709\u7684\u8bdd\u9700\u8981\u5148\u5378\u8f7d":91,"\u6709\u975e\u5e38\u5927\u7684\u5dee\u522b":116,"\u670d\u52a1":104,"\u670d\u52a1\u5458":104,"\u670d\u52a1\u5668\u4e4b\u95f4\u53ef\u4ee5\u901a\u8fc7\u5c40\u57df\u7f51":123,"\u672a\u6307\u5b9a\u6309\u7167double\u7cbe\u5ea6\u7f16\u8bd1":96,"\u672a\u8bbe\u7f6e":137,"\u672c\u4f8b\u4e2d\u7684\u539f\u59cb\u6570\u636e\u4e00\u5171\u670910\u4e2a\u6837\u672c":104,"\u672c\u5217\u8868\u8bf4\u660epaddlepaddle\u53d1\u7248\u4e4b\u524d\u9700\u8981\u6d4b\u8bd5\u7684\u529f\u80fd\u70b9":82,"\u672c\u5730":[91,100],"\u672c\u5730\u6d4b\u8bd5":131,"\u672c\u5730\u8bad\u7ec3":[121,131],"\u672c\u5730\u8bad\u7ec3\u4e0e\u9884\u6d4b":93,"\u672c\u5730\u8bad\u7ec3\u7684\u5b9e\u9a8c":134,"\u672c\u6559\u7a0b\u4e3b\u8981\u4ecb\u7ecd\u5e26kernel\u7684op\u5982\u4f55\u5199":111,"\u672c\u6559\u7a0b\u5c06\u6307\u5bfc\u4f60\u5982\u4f55\u5728":107,"\u672c\u6587\u4e2d\u6240\u6709\u7684\u4f8b\u5b50":104,"\u672c\u6587\u4e2d\u7684\u4f8b\u5b50\u91cc":108,"\u672c\u6587\u4e2d\u793a\u4f8b\u6240\u4f7f\u7528\u7684\u5355\u5143\u6d4b\u8bd5\u6587\u4ef6\u662f":104,"\u672c\u6587\u4ee5paddlepaddle\u7684\u53cc\u5c42rnn\u5355\u5143\u6d4b\u8bd5\u4e3a\u793a\u4f8b":104,"\u672c\u6587\u5c06\u4ecb\u7ecd\u5728kubernetes\u5bb9\u5668\u7ba1\u7406\u5e73\u53f0\u4e0a\u5feb\u901f\u6784\u5efapaddlepaddle\u5bb9\u5668\u96c6\u7fa4":127,"\u672c\u6587\u5c06\u4ecb\u7ecd\u5982\u4f55\u4f7f\u7528paddlepaddle\u5728\u4e0d\u540c\u7684\u96c6\u7fa4\u6846\u67b6\u4e0b\u5b8c\u6210\u5206\u5e03\u5f0f\u8bad\u7ec3":123,"\u672c\u6587\u6863\u5c06\u4ee5linux":136,"\u672c\u6587\u6863\u63cf\u8ff0paddl":66,"\u672c\u6587\u7684\u5c06\u4ecb\u7ecd\u5728macos\u4e0a":137,"\u672c\u6765":104,"\u672c\u6b21\u8bad\u7ec3\u6587\u4ef6\u6240\u5728\u76ee\u5f55":127,"\u672c\u6b21\u8bad\u7ec3\u7684yaml\u6587\u4ef6\u53ef\u4ee5\u5199\u6210":127,"\u672c\u6b21\u8bad\u7ec3\u8981\u6c42\u67093\u4e2apaddlepaddle\u8282\u70b9":127,"\u672c\u793a\u4f8b\u4e2d\u4f7f\u7528\u7684\u539f\u59cb\u6570\u636e\u5982\u4e0b":104,"\u672c\u793a\u4f8b\u610f\u56fe\u4f7f\u7528\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u5b9e\u73b0\u4e24\u4e2a\u5b8c\u5168\u7b49\u4ef7\u7684\u5168\u8fde\u63a5rnn":104,"\u673a\u5668\u4e0a\u4ee5\u53ca":138,"\u673a\u5668\u7684\u8bbe\u5907":134,"\u673a\u5668\u7ffb\u8bd1":82,"\u6743\u91cd\u66f4\u65b0\u7684\u68af\u5ea6":132,"\u6765":104,"\u6765\u4e3a\u4e00\u4e2a":121,"\u6765\u4ee3\u66ff":109,"\u6765\u4f20\u8f93\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6\u4e2d\u5b9a\u4e49\u7684\u7f51\u7edc\u7ed3\u6784\u548c\u76f8\u5173\u53c2\u6570":122,"\u6765\u4f7f\u7528dropout":95,"\u6765\u4f7f\u7528dropout\u7684":95,"\u6765\u4fdd\u8bc1\u8bad\u7ec3\u8fc7\u7a0b\u53ef\u4ee5\u4ece\u4e2d\u95f4\u72b6\u6001\u91cd\u65b0\u542f\u52a8":32,"\u6765\u505a\u68af\u5ea6\u68c0\u67e5":110,"\u6765\u51b3\u5b9a\u662f\u5426\u5f00\u542fmkl":61,"\u6765\u5206\u6790\u6267\u884c\u6587\u4ef6":117,"\u6765\u521d\u59cb\u5316\u53c2\u6570":96,"\u6765\u542f\u52a8\u548c":108,"\u6765\u5b58\u50a8":121,"\u6765\u5b58\u50a8\u6570\u636e":[121,122],"\u6765\u5b8c\u6210\u524d\u5411\u548c\u53cd\u5411\u8ba1\u7b97":122,"\u6765\u5b8c\u6210\u7f51\u7edc\u7684\u8bad\u7ec3":101,"\u6765\u5b9a\u4e49\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":107,"\u6765\u5b9e\u73b0":62,"\u6765\u5b9e\u9645\u5b58\u50a8\u6570\u636e":[121,122],"\u6765\u5bf9\u6bd4\u5206\u6790\u4e24\u8005\u8bed\u4e49\u76f8\u540c\u7684\u539f\u56e0":104,"\u6765\u5f71\u54cdpaddlepaddle\u7684\u7f16\u8bd1\u8fc7\u7a0b":[136,137],"\u6765\u5f97\u5230\u67d0\u4e2a\u7279\u5b9a\u53c2\u6570\u7684\u68af\u5ea6\u77e9\u9635":110,"\u6765\u6267\u884c":108,"\u6765\u63cf\u8ff0\u7684":112,"\u6765\u63cf\u8ff0\u8be5op\u7684\u8f93\u5165":111,"\u6765\u63cf\u8ff0\u8f93\u5165":121,"\u6765\u642d\u5efa\u795e\u7ecf\u7f51\u7edc":101,"\u6765\u663e\u793a\u6027\u80fd\u5206\u6790\u7ed3\u679c":116,"\u6765\u67e5\u770b\u6027\u80fd\u5206\u6790\u7ed3\u679c":116,"\u6765\u6ce8\u518c\u8be5\u5c42":110,"\u6765\u6df7\u5408\u4f7f\u7528gpu\u548ccpu\u8ba1\u7b97\u7f51\u7edc\u5c42\u7684\u53c2\u6570":134,"\u6765\u6e05\u7406\u8fd9\u4e9b\u5185\u5bb9":108,"\u6765\u7279\u6307":121,"\u6765\u7279\u6307\u8c03\u7528paddlepaddl":122,"\u6765\u7279\u6307paddlepaddl":122,"\u6765\u7279\u6307paddlepaddle\u4e2d\u7684\u4e00\u7ef4\u6574\u578b\u6570\u7ec4":121,"\u6765\u7279\u6307paddlepaddle\u4e2d\u7684\u4e8c\u7ef4\u6d6e\u70b9\u578b\u77e9\u9635":121,"\u6765\u7279\u6307paddlepaddle\u4e2d\u795e\u7ecf\u7f51\u7edc\u8ba1\u7b97\u5c42\u4e00\u4e2a\u8f93\u5165":121,"\u6765\u786e\u4fdd\u628a":65,"\u6765\u786e\u5b9a\u7a00\u758f\u77e9\u9635\u7684\u5185\u5bb9":121,"\u6765\u7f16\u8bd1":108,"\u6765\u83b7\u5f97\u8f93\u51fa\u7684\u68af\u5ea6":110,"\u6765\u8868\u793a":107,"\u6765\u8868\u793a\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":107,"\u6765\u8868\u793apaddle\u5185\u90e8\u7c7b":65,"\u6765\u89e3\u51b3\u4e0a\u9762\u7684\u95ee\u9898":94,"\u6765\u8ba1\u7b97\u68af\u5ea6":110,"\u6765\u8bb0\u5f55\u8f93\u5165":121,"\u6765\u8bb2\u89e3\u5982\u4f55\u4f7f\u7528\u53cc\u5c42rnn":104,"\u6765\u8bbe\u7f6e":96,"\u6765\u8bbf\u95ee\u7528\u6237\u81ea\u5df1\u7684\u6570\u636e":33,"\u6765\u8bfb\u53d6\u4e00\u4e2a":121,"\u6765\u8c03\u6574":109,"\u6765\u8c03\u7528":108,"\u6765\u8fd0\u884c\u5305\u62ec":108,"\u6765\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5\u4e86":108,"\u6765\u8fd0\u884c\u6027\u80fd\u5206\u6790\u548c\u8c03\u4f18":117,"\u6765\u8fd0\u884c\u955c\u50cf":98,"\u6765\u8fdb\u884c\u8ba8\u8bba":66,"\u6765\u9884\u6d4b\u8fd9\u4e2a\u4e2d\u95f4\u7684\u8bcd":94,"\u676f\u5b50":104,"\u6784\u5efa":136,"\u6784\u5efa\u597d\u5f00\u53d1\u955c\u50cf\u540e":136,"\u6784\u5efa\u76ee\u6807\u4e3a":137,"\u6784\u6210\u4e00\u4e2a\u5e8f\u5217":121,"\u6784\u6210\u4e86\u8f93\u51fa\u53cc\u5c42\u5e8f\u5217\u7684\u7b2ci\u4e2a":103,"\u6784\u9020":127,"\u6784\u9020\u51fd\u6570\u542b\u67092\u4e2a\u53c2\u6570":111,"\u6784\u9020\u51fd\u6570\u91cc\u901a\u8fc7":111,"\u67b6\u6784\u7684\u6a21\u62df\u5668\u5e73\u53f0":137,"\u67b6\u6784\u7684iphone\u6216\u8005ipad\u7b49\u7269\u7406\u8bbe\u5907":137,"\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u4e00\u4e2a\u8f93\u5165\u4e3a\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7f51\u7edc\u4e2d\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u8f93\u51fa":104,"\u67d0\u4e9b\u53c2\u6570\u53ea\u53ef\u7528\u4e8e\u7279\u5b9a\u7684\u5c42\u4e2d":131,"\u67e5\u770b":109,"\u67e5\u770b\u5305\u7684\u5927\u5c0f":91,"\u67e5\u770b\u5f53\u524d\u72b6\u6001":109,"\u67e5\u770b\u5f53\u524d\u8fdc\u7a0b\u4ed3\u5e93\u7684\u540d\u5b57":109,"\u67e5\u770b\u6587\u4ef6\u5177\u4f53\u88ab\u4fee\u6539\u7684\u5185\u5bb9":109,"\u67e5\u770b\u662f\u5426\u662f\u5176\u4ed6\u9519\u8bef\u5f15\u53d1\u7684\u62a5\u9519":92,"\u67e5\u770bjob\u7684\u8be6\u7ec6\u60c5\u51b5":126,"\u67e5\u770blatest":82,"\u6807\u51c6":100,"\u6807\u51c6\u5dee\u4e3a":96,"\u6807\u51c6\u8868\u793apaddlepaddle\u7248\u672c\u53f7":82,"\u6807\u8bc6\u4e86\u4e00\u4e2a\u8f93\u51fa\u7684\u6587\u4ef6\u540d":116,"\u6807\u8bc6\u6027\u80fd\u5206\u6790\u7684\u7ed3\u679c\u6587\u4ef6":116,"\u6807\u8bc6\u662f\u5426\u4e3a\u8fde\u7eed\u7684batch\u8ba1\u7b97":132,"\u6807\u8bc6\u88ab\u6027\u80fd\u5206\u6790\u7684\u6e90\u6587\u4ef6":116,"\u6807\u8bc6http\u670d\u52a1\u7684\u7aef\u53e3":116,"\u6807\u8bc6http\u670d\u52a1\u7ed1\u5b9a\u7684ip":116,"\u6838\u4e00\u6837\u591a\u7684\u8fdb\u7a0b\u6765\u5e76\u884c\u7f16\u8bd1":108,"\u6838\u5fc3\u4ee3\u7801\u7f16\u8bd1\u6210\u94fe\u63a5\u5e93":119,"\u6839\u636e\u4e2a\u4eba\u7684\u9700\u6c42\u4fee\u6539\u5b9a\u5236docker\u5bb9\u5668\u6240\u6267\u884c\u7684\u811a\u672c":136,"\u6839\u636e\u4f60\u7684\u4efb\u52a1":134,"\u6839\u636e\u524d\u6587\u7684\u63cf\u8ff0":127,"\u6839\u636e\u7f51\u7edc\u914d\u7f6e\u4e2d\u7684":132,"\u6839\u636e\u8f93\u5165tensor\u7684\u5927\u5c0f\u6765\u8bbe\u7f6e\u8f93\u51fatensor\u7684\u5927\u5c0f":112,"\u6839\u636e\u8fd9\u4e9b\u53c2\u6570\u7684\u4f7f\u7528\u573a\u5408":131,"\u6839\u636e\u9ed8\u8ba4\u503c\u9012\u589e":132,"\u6839\u636e\u9ed8\u8ba4\u7aef\u53e3\u53f7\u9012\u589e":132,"\u6839\u636ejob\u5bf9\u5e94\u7684pod\u4fe1\u606f":126,"\u6839\u636eport":123,"\u683c\u5f0f":132,"\u683c\u5f0f\u4e0d\u5339\u914d\u65f6":62,"\u683c\u5f0f\u5b58\u50a8":121,"\u683c\u5f0f\u7684\u6587\u4ef6\u6765\u5b58\u653e":111,"\u6846\u67b6\u63d0\u4f9b\u7684blas\u51fd\u6570\u8fdb\u884c\u77e9\u9635\u8ba1\u7b97":137,"\u6846\u67b6\u8fdb\u884cblas\u77e9\u9635\u8ba1\u7b97":137,"\u68af\u5ea6\u4f1a\u5c31\u5730":110,"\u68af\u5ea6\u4f1a\u6709\u566a\u58f0":123,"\u68af\u5ea6\u53c2\u6570\u7684\u5206\u5757\u6570\u76ee":132,"\u68af\u5ea6\u5c31\u53ef\u4ee5\u901a\u8fc7\u8fd9\u4e2a\u65b9\u7a0b\u8ba1\u7b97\u5f97\u5230":110,"\u68af\u5ea6\u670d\u52a1\u5668\u7684\u6570\u91cf":132,"\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5\u901a\u8fc7\u6709\u9650\u5dee\u5206\u6cd5\u6765\u9a8c\u8bc1\u4e00\u4e2a\u5c42\u7684\u68af\u5ea6":110,"\u68af\u5ea6\u68c0\u67e5\u7684\u8f93\u5165\u6570\u636e\u7684\u6279\u6b21\u5927\u5c0f":110,"\u68c0\u67e5\u70b9\u4fdd\u5b58\u7a0b\u5e8f\u6d41\u7a0b":32,"\u68c0\u67e5\u8f93\u5165\u6570\u636e\u7ef4\u5ea6":111,"\u697c\u5c42":104,"\u6982\u5ff5\u4e0a":122,"\u6982\u5ff5\u4e0a\u53ef\u4ee5\u5c06":121,"\u6a21\u5757\u4e0b\u7684\u76f8\u5173":112,"\u6a21\u578b\u4e00\u76f4\u4e0d\u6536\u655b":94,"\u6a21\u578b\u4e2d\u6240\u6709\u53ef\u5b66\u4e60\u53c2\u6570\u4f1a\u88ab\u5b58\u4e3a\u4e00\u4e2a\u538b\u7f29\u6587\u4ef6":122,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\u901a\u8fc7\u5b9a\u671f\u5411\u78c1\u76d8\u4e0a\u4fdd\u5b58\u4e00\u4efd\u5b58\u50a8\u5728paramet":32,"\u6a21\u578b\u6570\u636e\u68c0\u67e5\u70b9\u7684\u5b9e\u73b0":32,"\u6a21\u578b\u6587\u4ef6\u5c06\u88ab\u5199\u5165\u8282\u70b9":124,"\u6a21\u578b\u6765\u6307\u5bfc\u4f60\u5b8c\u6210\u8fd9\u4e9b\u6b65\u9aa4":107,"\u6a21\u578b\u6f14\u793a\u5982\u4f55\u914d\u7f6e\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b":107,"\u6a21\u578b\u7684\u4ee3\u7801\u53ef\u4ee5\u5728":107,"\u6a21\u578b\u7684\u7f16\u7801\u5668\u90e8\u5206\u5982\u4e0b\u6240\u793a":107,"\u6a21\u578b\u8bad\u7ec3\u7b49\u4efb\u52a1":101,"\u6a21\u578b\u914d\u7f6e":[0,93],"\u6a21\u578b\u914d\u7f6e\u89e3\u6790":65,"\u6a21\u5f0f\u4e0b\u7684\u6027\u80fd\u6d4b\u8bd5\u662f\u6ca1\u6709\u610f\u4e49\u7684":116,"\u6a2a\u5411\u62fc\u63a5":94,"\u6b21":104,"\u6b21\u8fed\u4ee3\u6267\u884c\u7684\u8f6c\u6362\u6b21\u6570\u4e3a":61,"\u6b22\u8fce\u901a\u8fc7":109,"\u6b63\u5728\u7b49\u5f85\u672a\u5b8c\u6210\u7684\u4efb\u52a1":91,"\u6b63\u5e38\u60c5\u51b5\u4e0b\u662f75m":91,"\u6b63\u786e\u7684\u89e3\u51b3\u65b9\u6cd5\u662f":91,"\u6b63\u8d1f\u5bf9\u9a8c\u8bc1":131,"\u6b64\u547d\u4ee4\u5c06\u5728":136,"\u6b64\u5904\u90fd\u4e3a2":104,"\u6b64\u5916":[95,108,109,136],"\u6b64\u6559\u7a0b\u4f1a\u4ecb\u7ecd\u5982\u4f55\u4f7f\u7528python\u7684cprofile\u5305":116,"\u6b64\u6559\u7a0b\u5c06\u5411\u60a8\u5206\u6b65\u4ecb\u7ecd\u5982\u4f55\u4f7f\u7528\u5185\u7f6e\u7684\u5b9a\u65f6\u5de5\u5177":117,"\u6b64\u65b9\u6cd5\u4e0d\u80fd\u83b7\u53d6":94,"\u6b64\u65f6\u53ea\u9700\u8981":108,"\u6b64\u65f6\u53ef\u4ee5\u5728\u8c03\u7528infer\u63a5\u53e3\u65f6\u901a\u8fc7\u8bbe\u7f6e":94,"\u6b64\u65f6\u53ef\u4ee5\u8df3\u8fc7paddlepaddle\u6a21\u578b\u53c2\u6570\u6587\u4ef6\u7684\u5934\u4fe1\u606f":96,"\u6b64\u65f6\u6bcf\u4e2a\u5c0f\u5206\u652f\u7684":62,"\u6b64\u65f6master\u5c06\u8d1f\u8d23\u542f\u52a8\u4e00\u4e2a\u65b0\u7684train":32,"\u6b64\u76ee\u5f55":122,"\u6b64\u793a\u4f8b":122,"\u6b64\u7c7b\u62a5\u9519\u901a\u5e38\u662f\u7531\u4e8e\u67d0\u4e00\u4e2a\u8282\u70b9\u7684\u9519\u8bef\u5bfc\u81f4\u8fd9\u4e2a\u8282\u70b9\u7684\u8bad\u7ec3\u8fdb\u7a0b\u9000\u51fa":92,"\u6b65\u9aa4":94,"\u6bb5\u843d\u53ef\u4ee5\u770b\u4f5c\u662f\u4e00\u4e2a\u5d4c\u5957\u7684\u53cc\u5c42\u7684\u5e8f\u5217":106,"\u6bb5\u843d\u662f\u7531\u53e5\u5b50\u6784\u6210\u7684\u5e8f\u5217":121,"\u6bcf\u4e00\u4e2a":[82,122],"\u6bcf\u4e00\u4e2a\u5916\u5c42\u5e8f\u5217\u53c8\u542b\u6709\u82e5\u5e72\u4e2a\u5185\u5c42\u5e8f\u5217":121,"\u6bcf\u4e00\u4e2a\u5e8f\u5217\u5728\u6574\u4e2a":121,"\u6bcf\u4e00\u4e2a\u6587\u4ef6\u662f\u6570\u636e\u96c6\u7684\u4e00\u4e2ashard":33,"\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65":104,"\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u95f4\u7684\u795e\u7ecf\u7f51\u7edc\u5177\u6709\u4e00\u5b9a\u7684\u76f8\u5173\u6027":104,"\u6bcf\u4e00\u4e2a\u8282\u70b9\u90fd\u6709\u76f8\u540c\u7684\u65e5\u5fd7\u7ed3\u6784":124,"\u6bcf\u4e00\u4e2a\u8f93\u5165":[121,122],"\u6bcf\u4e00\u4e2alayer\u8f93\u51fa\u77e9\u9635\u7684\u9ad8\u5ea6":94,"\u6bcf\u4e00\u5217\u7684\u542b\u4e49\u662f":116,"\u6bcf\u4e00\u7ec4\u5185\u7684\u6240\u6709\u53e5\u5b50\u548clabel":104,"\u6bcf\u4e00\u884c\u5143\u7d20\u5728":121,"\u6bcf\u4e2a":62,"\u6bcf\u4e2a\u503c\u7684\u7c7b\u578b\u53ef\u4ee5\u662f\u6574\u5f62":33,"\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":103,"\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":103,"\u6bcf\u4e2a\u5355\u5c42rnn":106,"\u6bcf\u4e2a\u53c2\u6570\u670d\u52a1\u5668\u53ea\u4fdd\u5b58\u6574\u4e2a\u795e\u7ecf\u7f51\u7edc\u6240\u6709\u53c2\u6570\u7684\u4e00\u90e8\u5206":123,"\u6bcf\u4e2a\u53e5\u5b50\u53c8\u662f\u5355\u8bcd\u7684\u6570\u7ec4":104,"\u6bcf\u4e2a\u53e5\u5b50\u90fd\u4ee5\u5f00\u59cb\u6807\u8bb0\u5f00\u5934":107,"\u6bcf\u4e2a\u53e5\u5b50\u90fd\u4ee5\u7ed3\u675f\u6807\u8bb0\u7ed3\u5c3e":107,"\u6bcf\u4e2a\u5b50\u5e8f\u5217\u957f\u5ea6\u53ef\u4ee5\u4e0d\u4e00\u81f4":104,"\u6bcf\u4e2a\u5c42\u5728\u5176":110,"\u6bcf\u4e2a\u6279\u6b21\u6570\u636e":132,"\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u7684\u8fd0\u7b97\u662f\u72ec\u7acb\u7684":106,"\u6bcf\u4e2a\u65f6\u95f4\u6b65\u90fd\u7528\u4e86\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u7ed3\u679c":104,"\u6bcf\u4e2a\u6743\u91cd\u5bf9\u5e94\u4e00\u4e2a\u8f93\u5165":110,"\u6bcf\u4e2a\u6837\u672c\u7531\u4e24\u90e8\u5206\u7ec4\u6210":104,"\u6bcf\u4e2a\u6837\u672c\u95f4\u7528\u7a7a\u884c\u5206\u5f00":104,"\u6bcf\u4e2a\u6d4b\u8bd5\u4f1a\u5bf9\u6bd4paddlepaddle\u4e2dcpu\u7b97\u51fa\u7684\u7ed3\u679c\u4e0emkl":62,"\u6bcf\u4e2a\u72b6\u6001":106,"\u6bcf\u4e2a\u7ebf\u7a0b":132,"\u6bcf\u4e2a\u7ebf\u7a0b\u5206\u914d\u5230128\u4e2a\u6837\u672c\u7528\u4e8e\u8bad\u7ec3":132,"\u6bcf\u4e2a\u8bad\u7ec3\u8282\u70b9\u5fc5\u987b\u6307\u5b9a\u4e00\u4e2a\u552f\u4e00\u7684id\u53f7":132,"\u6bcf\u4e2a\u8f93\u5165\u90fd\u662f\u4e00\u4e2a":110,"\u6bcf\u4e2a\u8f93\u51fa\u8282\u70b9\u90fd\u8fde\u63a5\u5230\u6240\u6709\u7684\u8f93\u5165\u8282\u70b9\u4e0a":110,"\u6bcf\u4e2a\u90e8\u5206\u5206\u522b\u7ed9\u6bcf\u4e2atrainer\u4f7f\u7528":123,"\u6bcf\u4e2acommit\u53ea\u505a\u4e86\u5c11\u91cf\u7684\u4fee\u6539":109,"\u6bcf\u4e2adata":33,"\u6bcf\u4e2amkldnnlayer\u90fd\u5305\u542b\u7528\u4e8e\u5185\u90e8\u5b58\u50a8\u548c\u5916\u90e8\u5b58\u50a8\u7684\u4e00\u7cfb\u5217mkldnnmatrix":62,"\u6bcf\u4e2aparamet":32,"\u6bcf\u4e2apod\u5305\u542b\u4e00\u4e2apaddlepaddle\u5bb9\u5668":127,"\u6bcf\u4e2ashard\u5206\u522b\u5b58\u50a8\u5728\u5176\u4e2d\u4e00\u53f0paramet":32,"\u6bcf\u4e2atrainer\u542f\u52a8\u540e\u8bfb\u53d6\u5207\u5206\u597d\u7684\u4e00\u90e8\u5206\u6570\u636e":123,"\u6bcf\u4e2atrainer\u7684\u552f\u4e00id":123,"\u6bcf\u4e2atrainer\u8fdb\u7a0b\u9700\u8981\u80fd\u591f\u8bfb\u53d6\u5c5e\u4e8e\u81ea\u5df1\u7684\u4e00\u4efd\u6570\u636e":123,"\u6bcf\u53f0\u670d\u52a1\u5668\u5177\u6709\u96c6\u7fa4\u4e2d\u552f\u4e00\u7684ip\u5730\u5740":123,"\u6bcf\u5c42\u4e0a\u53ea\u80fd\u4fdd\u5b58\u56fa\u5b9a\u6570\u76ee\u4e2a\u6700\u597d\u7684\u72b6\u6001":132,"\u6bcf\u5c42\u4f7f\u7528\u7684gpu\u53f7\u4f9d\u8d56\u4e8e\u53c2\u6570train":134,"\u6bcf\u6279\u6b21":132,"\u6bcf\u6b21\u63d0\u4ea4\u4ee3\u7801":109,"\u6bcf\u6b21\u63d0\u4ea4\u65f6":109,"\u6bcf\u6b21\u8c03\u7528\u65f6\u5bf9\u539f\u6570\u636e\u7684\u91cd\u590dpacking\u4fbf\u6210\u4e3a\u4e86\u5197\u4f59":61,"\u6bcf\u6b21\u8c03\u7528\u7684\u8017\u65f6\u4e5f\u5f88\u957f":116,"\u6bcf\u6b21\u8f93\u51fa\u4e00\u4e2adata":33,"\u6bcf\u884c\u8868\u793a\u4e00\u4e2a\u6279\u6b21\u4e2d\u7684\u5355\u4e2a\u8f93\u5165":110,"\u6bcf\u8f6e\u4f1a\u5c06\u6570\u636e\u96c6\u4e2d\u7684\u6240\u6709\u8bad\u7ec3\u6837\u672c\u4f7f\u7528\u4e00\u6b21":132,"\u6bcf\u8f6e\u7ed3\u675f\u65f6\u5bf9\u6240\u6709\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5":132,"\u6bcf\u8f6e\u90fd\u4f1a\u4fdd\u5b58\u9884\u6d4b\u7ed3\u679c":132,"\u6bcf\u8fd0\u884c\u591a\u5c11\u4e2a\u6279\u6b21\u6267\u884c\u4e00\u6b21\u7a00\u758f\u53c2\u6570\u5206\u5e03\u7684\u68c0\u67e5":132,"\u6bcf\u969410\u5206\u949f":32,"\u6bcfdot":132,"\u6bcflog":132,"\u6bcfsave":132,"\u6bcftest":132,"\u6bd4\u5982":[33,62,92,94,98,108,109],"\u6bd4\u5982\u4e00\u53e5\u8bdd\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5355\u8bcd":104,"\u6bd4\u5982\u53ef\u80fd\u4f1a\u7528openmp\u6539\u8fdbsgd\u7684\u66f4\u65b0\u6027\u80fd":62,"\u6bd4\u5982\u5728":98,"\u6bd4\u5982\u5982\u679c\u8981build\u4e00\u4e2a\u4e0d\u4f9d\u8d56gpu":109,"\u6bd4\u5982\u5c06":82,"\u6bd4\u5982\u5e0c\u671b\u6700\u5c0f\u5316\u751f\u6210\u5e93\u7684\u5927\u5c0f":137,"\u6bd4\u5982\u5e0c\u671b\u6700\u5c0f\u5316\u751f\u6210\u7684\u5e93\u7684\u5927\u5c0f":[136,138],"\u6bd4\u5982\u6bcf\u969410\u5206\u949f\u6700\u65b0\u7684\u5feb\u7167":32,"\u6bd4\u5982\u6d41\u5f0f\u6570\u636e\u5904\u7406":33,"\u6bd4\u5982\u8282\u70b9\u7684id":123,"\u6bd4\u5982\u8bbe\u7f6e\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7684\u53c2\u6570\u521d\u59cb\u5316\u65b9\u5f0f\u548cbias\u521d\u59cb\u5316\u65b9\u5f0f":96,"\u6bd4\u5982cento":100,"\u6bd4\u5982fpe":92,"\u6bd4\u5982ide\u914d\u7f6e\u91cc":109,"\u6bd4\u5982imagenet\u8fd9\u4e2a\u6570\u636e\u96c6\u53ef\u80fd\u88ab\u5206\u62101000\u4e2ashard":33,"\u6bd4\u5982pil\u5e93\u7b49":123,"\u6bd5\u7adf\u5355\u7ebf\u7a0b\u8c03\u8bd5\u66f4\u5bb9\u6613":116,"\u6c34\u6e29":104,"\u6c49\u5ead":104,"\u6ca1":104,"\u6ca1\u6709\u5fc5\u8981\u5728\u6bcf\u6b21\u524d\u5411\u4e2d\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u8ba1\u7b97\u65f6\u5bf9\u6743\u91cd\u8fdb\u884c\u91cd\u590d\u7684packing\u64cd\u4f5c":61,"\u6ca1\u6709\u627e\u5230\u548c\u5f53\u524d\u7cfb\u7edf\u5339\u914d\u7684paddlepaddle\u5b89\u88c5\u5305":[91,100],"\u6ca1\u6709\u8bbe\u7f6e":[136,138],"\u6ce8":[32,82,98,121],"\u6ce8\u518c":111,"\u6ce8\u518ccpu":111,"\u6ce8\u518clayer\u7684\u65f6\u5019\u4fdd\u8bc1":[61,62],"\u6ce8\u518cop":111,"\u6ce8\u518cop\u65f6\u7684\u7c7b\u578b\u540d":111,"\u6ce8\u610f":[62,94,97,101,107,110,113,116,122,123,127,136,137,138],"\u6ce8\u610f\u4e0a\u8ff0\u547d\u4ee4\u4e2d":127,"\u6ce8\u610f\u4e8b\u9879":121,"\u6ce8\u610f\u5230\u6211\u4eec\u5df2\u7ecf\u5047\u8bbe\u673a\u5668\u4e0a\u67094\u4e2agpu":134,"\u6ce8\u610fnode":127,"\u6ce8\u91ca":111,"\u6cf3\u6c60":104,"\u6d41":104,"\u6d41\u7a0b\u6765\u63d0\u4ea4\u4ee3\u7801":109,"\u6d44":104,"\u6d4b\u8bd5":109,"\u6d4b\u8bd5\u5206\u4e3a\u6bcf\u4e2alayer":62,"\u6d4b\u8bd5\u65f6\u6307\u5b9a\u7684\u5b58\u50a8\u6a21\u578b\u5217\u8868\u7684\u6587\u4ef6":132,"\u6d4b\u8bd5\u662f":109,"\u6d4b\u8bd5\u672c\u6b21release\u7684\u6b63\u786e\u6027":82,"\u6d4b\u8bd5\u7684\u6027\u80fd\u5bf9\u6bd4\u7ed3\u679c\u4f1a\u5728":62,"\u6d4b\u8bd5\u7684\u6a21\u578b\u5305\u62ec\u4ece\u7b2cm\u8f6e\u5230\u7b2cn":134,"\u6d4b\u8bd5model_list":131,"\u6d4b\u8bd5oper":111,"\u6d4b\u8bd5save_dir":131,"\u6d6e\u70b9\u578b\u6570\u636e":33,"\u6d6e\u70b9\u578b\u7a00\u758f\u77e9\u9635":121,"\u6d6e\u70b9\u578b\u7a20\u5bc6\u77e9\u9635":121,"\u6d6e\u70b9\u5f02\u5e38\u901a\u5e38\u7684\u539f\u56e0\u662f\u6d6e\u70b9\u6570\u6ea2\u51fa":94,"\u6d6e\u70b9\u6570":121,"\u6d6e\u70b9\u6570\u5411\u91cf\u7b49":121,"\u6d6e\u70b9\u7a00\u758f\u6570\u636e":110,"\u6df1\u5165paddlepaddl":62,"\u6df7\u5408\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790\u6765\u8fdb\u884c\u8c03\u4f18":116,"\u6df7\u5408\u4ee3\u7801\u7684\u6027\u80fd\u74f6\u9888\u4e5f\u662f\u8981\u770b":116,"\u6df7\u5408\u5f53\u524d\u8bcd\u5411\u91cf\u548cattention\u52a0\u6743\u7f16\u7801\u5411\u91cf":107,"\u6dfb\u52a0":61,"\u6dfb\u52a0\u4e86\u4e00\u4e2a\u8f93\u51fa":111,"\u6dfb\u52a0\u542f\u52a8\u811a\u672c":127,"\u6dfb\u52a0\u5e8f\u5217\u4fe1\u606f":121,"\u6dfb\u52a0\u7684\u76f8\u5173\u6587\u4ef6\u548c\u76ee\u5f55\u7ed3\u6784\u5982\u4e0b":[61,62],"\u6dfb\u52a0\u8f93\u5165\u53c2\u6570":111,"\u6dfb\u52a0\u8f93\u51fa\u53c2\u6570":111,"\u6dfb\u52a0op\u7684\u6ce8\u91ca":111,"\u6e05\u7406":108,"\u6e05\u7406\u548c\u7ed3\u675f":122,"\u6e05\u7406\u6389\u8001\u65e7\u7684paddlepaddle\u5b89\u88c5\u5305":91,"\u6e29\u99a8":104,"\u6e90\u4ee3\u7801\u683c\u5f0f":109,"\u6e90\u5e8f\u5217":107,"\u6e90\u7801\u6811\u6839\u76ee\u5f55":108,"\u6f5c\u5728\u4f1a\u5f15\u8d77\u672a\u5b9a\u4e49\u884c\u4e3a":121,"\u6fc0\u6d3b":110,"\u6fc0\u6d3b\u51fd\u6570\u662f\u72ec\u7acb\u4e8e":62,"\u6fc0\u6d3b\u65b9\u7a0b":110,"\u6fc0\u6d3b\u7684\u7c7b\u578b":110,"\u70b9\u51fb":[82,100],"\u70b9\u51fb\u8fd9\u91cc":113,"\u70ed\u60c5":104,"\u7136\u540e":[117,124],"\u7136\u540e\u4e0b\u8f7d\u4f18\u5316\u66f4\u65b0\u540e\u7684\u795e\u7ecf\u7f51\u7edc\u53c2\u6570":123,"\u7136\u540e\u4ea4\u7ed9step\u51fd\u6570":106,"\u7136\u540e\u4f7f\u7528":137,"\u7136\u540e\u4f7f\u7528resize\u63a5\u53e3\u8bbe\u7f6etensor\u7684\u5927\u5c0f":112,"\u7136\u540e\u5355\u51fb":109,"\u7136\u540e\u53ef\u4ee5\u4ecehead\u8282\u70b9ssh\u65e0\u5bc6\u7801\u767b\u5f55\u5230openmpi\u7684\u6bcf\u4e2a\u8282\u70b9\u4e0a":128,"\u7136\u540e\u53ef\u4ee5\u4f7f\u7528\u547d\u4ee4\u884c\u5de5\u5177\u521b\u5efajob":127,"\u7136\u540e\u5728\u4e0b\u4e00\u4e2a\u65f6\u95f4\u6b65\u8f93\u5165\u7ed9\u53e6\u4e00\u4e2a\u795e\u7ecf\u5143":104,"\u7136\u540e\u5728\u524d\u5411":61,"\u7136\u540e\u5728\u6d4f\u89c8\u5668\u4e2d\u8f93\u5165\u4ee5\u4e0b\u7f51\u5740":98,"\u7136\u540e\u5728dataprovider\u91cc\u9762\u6839\u636e\u8be5\u5730\u5740\u52a0\u8f7d\u5b57\u5178":96,"\u7136\u540e\u5728etcd\u7684":32,"\u7136\u540e\u5b89\u88c5paddle\u7684python\u73af\u5883":91,"\u7136\u540e\u5b9a\u4e49":107,"\u7136\u540e\u5c06\u6784\u5efa\u6210\u529f\u7684\u955c\u50cf\u4e0a\u4f20\u5230\u955c\u50cf\u4ed3\u5e93":127,"\u7136\u540e\u5c06\u8fd9\u4e9blayer\u7684\u53c2\u6570":95,"\u7136\u540e\u5c31\u53ef\u4ee5\u5e76\u53d1\u5199\u5165\u591a\u4e2achunk":48,"\u7136\u540e\u6240\u6709\u7528":109,"\u7136\u540e\u624d\u80fd\u4f7f\u7528pfsclient":48,"\u7136\u540e\u6253\u5370\u8f93\u51fa":101,"\u7136\u540e\u6309\u7167\u4e0a\u8ff0\u7684\u65b9\u6cd5":82,"\u7136\u540e\u63d0\u4ea4\u65b0\u6dfb\u52a0\u7684":109,"\u7136\u540e\u70b9\u51fb":[82,109],"\u7136\u540e\u7533\u660e\u4e00\u4e2a\u5b58\u50a8\u5377":127,"\u7136\u540e\u89c2\u5bdf\u5230\u8f93\u51fa\u7684\u53d8\u5316\u4e3a":110,"\u7136\u540e\u901a\u8fc7\u51fd\u6570":127,"\u7136\u540e\u901a\u8fc7\u81ea\u8eab\u7684ip\u5730\u5740\u5728":127,"\u7136\u540e\u91cd\u65b0cmake\u5373\u53ef":91,"\u7136\u800c":[107,132],"\u7248\u672c":[97,100,108,137],"\u7248\u672c\u4e3acpu_avx_mkl":98,"\u7248\u672c\u4e3acpu_avx_openbla":[100,102],"\u7248\u672c\u5206\u652f":82,"\u7248\u672c\u53f7":82,"\u7248\u672c\u53f7\u5bf9\u5e94\u7684tag\u5373\u53ef":82,"\u7248\u672c\u53f7rc":82,"\u7248\u672c\u5728":109,"\u7248\u672c\u8bf4\u660e":100,"\u7248\u672cfork\u51fa\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f":82,"\u7279\u522b\u662f\u5728lstm\u7b49rnn\u4e2d":94,"\u7279\u6307":122,"\u7279\u6709\u7684\u8bbe\u5907id":62,"\u72ec\u7acb\u5b9a\u5236\u7684\u4e8c\u8fdb\u5236\u65f6\u624d\u9700\u8981\u7f16\u8bd1":99,"\u72ec\u7acb\u5de5\u5177\u94fe":136,"\u72ec\u7acb\u5de5\u5177\u94fe\u6240\u5728\u7684\u7edd\u5bf9\u8def\u5f84":136,"\u73af\u5883\u53d8\u91cf":123,"\u73af\u5883\u53d8\u91cf\u4e2d":119,"\u73af\u5883\u53d8\u91cf\u6765\u6307\u5b9a\u7279\u5b9a\u7684gpu":94,"\u73b0\u9636\u6bb5\u7684\u4f18\u5316\u4e3b\u8981\u9488\u5bf9":61,"\u73b0\u9636\u6bb5paddle\u6709\u4e00\u4e2a\u95ee\u9898\u662f":65,"\u7406\u89e3":108,"\u7406\u89e3\u4e3a\u4e00\u4e2a\u4e00\u7ef4\u7684\u6574\u578b\u6570\u7ec4":121,"\u751a\u81f3\u80fd\u89e3\u91ca\u4e3a\u4ec0\u4e48\u67d0\u4e2a\u64cd\u4f5c\u82b1\u4e86\u5f88\u957f\u65f6\u95f4":117,"\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u8bad\u7ec3\u6570\u636e\u96c6\u901a\u5e38\u4f53\u79ef\u5f88\u5927":33,"\u751f\u4ea7\u73af\u5883\u7684\u65e5\u5fd7\u6570\u636e\u4f1a\u901a\u8fc7\u5b9e\u65f6\u6d41\u7684\u65b9\u5f0f":33,"\u751f\u4ea7\u955c\u50cf":109,"\u751f\u6210":127,"\u751f\u6210\u5404\u79cd\u8bed\u8a00\u7684\u7ed1\u5b9a\u4ee3\u7801":65,"\u751f\u6210\u540e\u7684\u6587\u6863\u5206\u522b\u5b58\u50a8\u5728\u7f16\u8bd1\u76ee\u5f55\u7684":113,"\u751f\u6210\u5e8f\u5217\u7684\u6700\u5927\u957f\u5ea6":107,"\u751f\u6210\u6587\u6863":65,"\u751f\u6210\u7684":33,"\u751f\u6210\u7684\u6027\u80fd\u5206\u6790\u6587\u4ef6\u4e3a":116,"\u751f\u6210\u7684\u6570\u636e\u5c06\u4f1a\u5b58\u50a8\u5728\u8fd9\u4e2avolume\u4e0b":127,"\u751f\u6210\u7684\u6570\u636e\u7f13\u5b58\u5728\u5185\u5b58\u91cc":94,"\u751f\u6210\u7ed9\u5b9a":33,"\u751f\u6210\u7f51\u7edc\u5c42\u914d\u7f6e":110,"\u751f\u6210\u81ea\u5df1\u76ee\u5f55\u4e0b\u7684\u4ed3\u5e93":109,"\u751f\u6210\u8c03\u8bd5\u4fe1\u606f":116,"\u751f\u6210\u968f\u673a\u7684\u8f93\u5165\u6570\u636e":111,"\u751f\u6210api\u6587\u6863":65,"\u751f\u6210pfsclient\u548cpfsserver\u7684\u6846\u67b6\u90e8\u5206":48,"\u751f\u6210python\u6027\u80fd\u5206\u6790\u7684\u547d\u4ee4\u5982\u4e0b":116,"\u7528":48,"\u7528\u4e8e\u521d\u59cb\u5316\u53c2\u6570\u548c\u8bbe\u7f6e":110,"\u7528\u4e8e\u5c06\u53c2\u6570\u4f20\u9012\u7ed9\u7f51\u7edc\u914d\u7f6e":134,"\u7528\u4e8e\u6307\u5b9a\u5176\u8981\u5173\u8054\u7684layer":95,"\u7528\u4e8e\u6307\u5b9a\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":132,"\u7528\u4e8e\u6ce8\u518c\u6ca1\u6709\u53cd\u5411\u7684op":111,"\u7528\u4e8e\u6d4b\u8bd5\u548c\u5bf9\u6bd4\u5728\u4f7f\u7528mkl":62,"\u7528\u4e8e\u7a00\u758f\u7c7b\u578b\u53c2\u6570\u901a\u4fe1\u7684\u7aef\u53e3\u4e2a\u6570":123,"\u7528\u4e8e\u7a00\u758f\u8bad\u7ec3\u4e2d":132,"\u7528\u4e8e\u7ba1\u7406mkl":62,"\u7528\u4e8e\u83b7\u53d6\u7279\u5b9alayer\u4e0a\u4e00\u65f6\u95f4\u6b65\u7684\u8f93\u51fa":95,"\u7528\u4e8e\u8ba1\u7b97\u7f16\u7801\u5411\u91cf\u7684\u52a0\u6743\u548c":107,"\u7528\u4e8e\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u7684\u6570\u636e":123,"\u7528\u4e8e\u9009\u62e9\u662f\u5426\u4f7f\u7528\u76f8\u5173\u529f\u80fd":61,"\u7528\u4e8e\u9009\u62e9\u662f\u5426\u4f7f\u7528mkl":62,"\u7528\u4e8emkl":[61,62],"\u7528\u53cc\u5411\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7f16\u7801":107,"\u7528\u591a\u5bf9\u6548\u679c\u5b8c\u5168\u76f8\u540c\u7684":104,"\u7528\u6237\u4e00\u822c\u901a\u8fc7\u8c03\u7528":116,"\u7528\u6237\u4e0a\u4f20\u6570\u636e\u540e":33,"\u7528\u6237\u4e5f\u53ef\u4ee5\u4e0a\u4f20label":33,"\u7528\u6237\u4e5f\u53ef\u4ee5\u4f7f\u7528paddlepaddle\u63d0\u4f9b\u7684\u5b98\u65b9\u5f00\u53d1\u955c\u50cf":136,"\u7528\u6237\u4eceapp":137,"\u7528\u6237\u53ea\u9700\u5b9a\u4e49rnn\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u5b8c\u6210\u7684\u8ba1\u7b97":106,"\u7528\u6237\u53ef\u4ee5\u5206\u522b\u67e5\u770b\u6700\u65b0\u7684":113,"\u7528\u6237\u53ef\u4ee5\u53c2\u8003\u4e0b\u6587":136,"\u7528\u6237\u53ef\u4ee5\u53c2\u8003sphinx\u6559\u7a0b\u8fdb\u884c\u4e66\u5199":113,"\u7528\u6237\u53ef\u4ee5\u5b89\u5168\u7684\u91ca\u653e\u67d0\u4e2ac":66,"\u7528\u6237\u53ef\u4ee5\u628a\u81ea\u5df1\u7684\u6570\u636e\u5206\u4eab\u7ed9\u522b\u4eba":33,"\u7528\u6237\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u8fd9\u4e2a\u52a8\u6001\u5e93\u6765\u5f15\u5165paddl":66,"\u7528\u6237\u53ef\u4ee5\u81ea\u5b9a\u4e49beam":132,"\u7528\u6237\u53ef\u4ee5\u8bbe\u7f6e":134,"\u7528\u6237\u53ef\u5728\u81ea\u5df1\u719f\u6089\u7684\u5f00\u53d1\u5e73\u53f0\u4e0a\u7f16\u8bd1android\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":136,"\u7528\u6237\u53ef\u5728\u8c03\u7528cmake\u7684\u65f6\u5019\u8bbe\u7f6e\u5b83\u4eec":97,"\u7528\u6237\u53ef\u5c06":136,"\u7528\u6237\u53ef\u5c06\u5408\u6210\u7684fat\u5e93\u7528\u4e8e\u6df1\u5ea6\u5b66\u4e60\u76f8\u5173\u7684io":137,"\u7528\u6237\u53ef\u6839\u636e\u81ea\u5df1\u7684\u7f16\u8bd1\u76ee\u6807\u67b6\u6784":136,"\u7528\u6237\u53ef\u81ea\u884c\u524d\u5f80\u4e0b\u8f7d\u9884\u7f16\u8bd1\u597d\u7684\u7248\u672c":136,"\u7528\u6237\u53ef\u901a\u8fc7\u5982\u4e0b\u4e24\u79cd\u65b9\u5f0f":136,"\u7528\u6237\u5728\u4f7f\u7528\u8fd9\u4e00\u7c7brecurr":95,"\u7528\u6237\u5728\u4f7f\u7528paddlepaddl":91,"\u7528\u6237\u5728\u672c\u5730\u8f6c\u6362\u597d\u518d\u4e0a\u4f20":33,"\u7528\u6237\u5c06\u53c2\u6570\u8f7d\u5165":96,"\u7528\u6237\u5c06\u914d\u7f6e\u4e0e\u8bad\u7ec3\u6570\u636e\u5207\u5206\u597d\u653e\u5728\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u9884\u5148\u5206\u914d\u597d\u7684\u76ee\u5f55\u4e2d":127,"\u7528\u6237\u5f3a\u5236\u6307\u5b9a\u7279\u5b9a\u7684python\u7248\u672c":91,"\u7528\u6237\u6587\u4ef6\u53ef\u80fd\u662f\u6bd4\u8f83\u5927\u7684":48,"\u7528\u6237\u8fd8\u53ef\u6839\u636e\u81ea\u5df1\u7684\u9700\u6c42\u8bbe\u7f6e\u5176\u4ed6\u7f16\u8bd1\u53c2\u6570":[136,137,138],"\u7528\u6237\u901a\u8fc7\u53c2\u6570":[95,96],"\u7528\u6237\u901a\u8fc7c":66,"\u7528\u6237\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a":134,"\u7528\u6237\u9700\u8981\u5728cmake\u65f6\u624b\u52a8\u8bbe\u7f6e\u8fd9\u4e9b\u503c":[136,138],"\u7528\u6237\u9700\u8981\u6307\u5b9a\u672c\u673a\u4e0apython\u7684\u8def\u5f84":91,"\u7528\u6237\u9700\u8981\u63d0\u524d\u51c6\u5907\u597d\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883":136,"\u7528\u672c\u673a\u7684\u7b2c\u4e00\u4e2a":108,"\u7528\u6765\u4ece\u53c2\u6570\u670d\u52a1\u5668\u9884\u53d6\u53c2\u6570\u77e9\u9635\u76f8\u5e94\u7684\u884c":110,"\u7528\u6765\u5b58\u50a8\u672c\u6b21\u6027\u80fd\u5206\u6790\u7684\u7ed3\u679c":116,"\u7528\u8fd9\u4e2a\u955c\u50cf\u521b\u5efa\u7684\u5bb9\u5668\u9700\u8981\u6709\u4ee5\u4e0b\u4e24\u4e2a\u529f\u80fd":127,"\u7528docker\u7f16\u8bd1\u548c\u6d4b\u8bd5paddlepaddl":99,"\u7528web\u6d4f\u89c8\u5668\u8bbf\u95ee\u5bf9\u5e94\u7f51\u5740":116,"\u7531":[95,106,121],"\u7531\u4e8e":119,"\u7531\u4e8e\u5728\u73b0\u6709\u7684\u67d0\u4e9b\u60c5\u51b5\u4e0b":61,"\u7531\u4e8e\u5b83\u5185\u90e8\u5305\u542b\u4e86\u6bcf\u7ec4\u6570\u636e\u4e2d\u7684\u6240\u6709\u53e5\u5b50":104,"\u7531\u4e8e\u5bf9parameters\u7684\u66f4\u65b0\u9700\u8981\u83b7\u53d6parameters\u5185\u5b58\u7684":32,"\u7531\u4e8e\u6211\u4eec\u60f3\u8981\u7684\u53d8\u6362\u662f\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":104,"\u7531\u4e8e\u6211\u4eec\u652f\u6301\u8bad\u7ec3\u6570\u636e\u6709\u4e0d\u540c\u7684\u6279\u6b21\u5927\u5c0f":110,"\u7531\u4e8e\u96c6\u7fa4\u4e2d\u540c\u65f6\u5b58\u5728\u4e24\u53f0\u673a\u5668\u6545\u969c\u7684\u6982\u7387\u6781\u4f4e":32,"\u7531\u4e8earm64\u67b6\u6784\u8981\u6c42android":136,"\u7531\u4e8ec":65,"\u7531\u4e8echunk\u6bd4\u8f83\u5c0f":48,"\u7531\u4e8eeigen":112,"\u7531\u4e8emkl":62,"\u7531\u4e8epypi":82,"\u7531\u4e8estep":106,"\u7531\u4e8etensor\u7684rank\u662f\u6a21\u677f\u53c2\u6570":112,"\u7531\u5206\u652f\u5904\u7684layer\u8d1f\u8d23\u6c42\u548c":62,"\u7531\u8bcd\u8bed\u6784\u6210\u7684\u53e5\u5b50":103,"\u7531\u94fe\u63a5\u65b9\u5f0f\u51b3\u5b9a":119,"\u7533\u8bf7\u7528\u6237\u7a7a\u95f4":48,"\u7535\u8111":104,"\u767b\u5f55\u5230head\u8282\u70b9":128,"\u7684":[100,104,108,109,112,121,122,124,127,137],"\u7684\u4e00\u4e2a\u5b50\u96c6":62,"\u7684\u4e00\u4e2a\u7b80\u5355\u8c03\u7528\u5982\u4e0b":106,"\u7684\u4e3a0":132,"\u7684\u4efb\u4e00\u4e00\u79cd":94,"\u7684\u4f5c\u7528\u662f\u5ef6\u8fdf\u5206\u914d\u5185\u5b58":112,"\u7684\u4f7f\u7528\u793a\u4f8b\u5982\u4e0b":103,"\u7684\u4fe1\u606f":62,"\u7684\u503c":[136,137,138],"\u7684\u503c\u81ea\u52a8\u63a8\u5bfc\u5f97\u5230":136,"\u7684\u504f\u7f6e\u5411\u91cf":110,"\u7684\u5171\u4eab\u5df2\u7ecf\u52a0\u8f7d\u7684\u9884\u6d4b\u6a21\u578b":122,"\u7684\u5177\u4f53\u8ba1\u7b97\u903b\u8f91":111,"\u7684\u5185\u5b58":94,"\u7684\u5185\u5bb9\u6765\u5b9a\u5236imag":127,"\u7684\u5185\u6838block\u4f7f\u7528\u60c5\u51b5":117,"\u7684\u522b\u540d":[1,2,4],"\u7684\u5355\u5143\u6d4b\u8bd5":111,"\u7684\u5355\u5143\u6d4b\u8bd5\u548c\u7b80\u5355\u7f51\u7edc\u7684\u6574\u4f53\u6d4b\u8bd5":62,"\u7684\u53cd\u5411\u4f20\u64ad\u5c06\u4f1a\u6253\u5370\u65e5\u5fd7\u4fe1\u606f":132,"\u7684\u53d8\u6362\u77e9\u9635":110,"\u7684\u540d\u79f0\u76f8\u540c":107,"\u7684\u5411\u91cf":110,"\u7684\u542f\u52a8\u53c2\u6570":127,"\u7684\u542f\u52a8\u53c2\u6570\u5e76\u6267\u884c\u8fdb\u7a0b":127,"\u7684\u547d\u4ee4\u548c\u4e00\u822c\u7684":116,"\u7684\u547d\u540d\u98ce\u683c\u5e76\u4e0d\u80fd\u9002\u5e94\u5176\u4ed6\u7b2c\u4e09\u65b9\u8bed\u8a00":65,"\u7684\u5730\u65b9":109,"\u7684\u5747\u5300\u5206\u5e03":96,"\u7684\u57fa\u672c\u903b\u8f91":62,"\u7684\u591a\u79cd\u5b89\u88c5\u65b9\u5f0f":123,"\u7684\u5934\u6587\u4ef6":65,"\u7684\u5b50\u7c7b\u53ea\u9700\u8981\u4f7f\u7528\u5185\u90e8\u5b58\u50a8\u5c31\u53ef\u4ee5\u4e86":62,"\u7684\u5b9e\u73b0":111,"\u7684\u5de5\u4f5c\u6d41\u7a0b\u5982\u56fe1\u6240\u793a":122,"\u7684\u5e73\u5747\u503c":103,"\u7684\u5e8f\u5217":121,"\u7684\u5e8f\u5217\u5f62\u72b6\u4e00\u81f4":104,"\u7684\u5f00\u53d1\u5de5\u4f5c\u90fd\u5e94\u8be5\u5728\u4e00\u4e2a\u65b0\u7684\u5206\u652f\u4e0a\u5b8c\u6210":109,"\u7684\u5f00\u53d1\u6d41\u7a0b":108,"\u7684\u5f00\u59cb\u8bf7\u52a0\u4e0a\u5b8f\u5b9a\u4e49":111,"\u7684\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18\u5206\u4e3a\u4e24\u4e2a\u90e8\u5206":116,"\u7684\u6027\u80fd\u5206\u6790\u5de5\u5177\u975e\u5e38\u591a":116,"\u7684\u6027\u80fd\u6709\u95ee\u9898":116,"\u7684\u60c5\u51b5\u4e0b":61,"\u7684\u63a5\u53e3\u6837\u5f0f":65,"\u7684\u63a5\u53e3\u8bf7\u67e5\u770b":121,"\u7684\u63cf\u8ff0\u8bf4\u660e\u4e2d":109,"\u7684\u64cd\u4f5c":112,"\u7684\u6570\u636e\u6d41\u56fe":33,"\u7684\u6570\u76ee\u4e00\u81f4":103,"\u7684\u6587\u4ef6\u4e5f\u5e26\u5230\u65b0\u5206\u652f\u4e0a":109,"\u7684\u65b9\u7a0b":110,"\u7684\u65f6\u5019":62,"\u7684\u65f6\u95f4\u6b65\u4fe1\u606f\u6210\u6b63\u6bd4":94,"\u7684\u66f4\u8be6\u7ec6\u51c6\u786e\u7684\u5b9a\u4e49":104,"\u7684\u6700\u5c0f\u503c":132,"\u7684\u6700\u65b0\u4ee3\u7801\u5e76\u66f4\u65b0\u5f53\u524d\u5206\u652f":109,"\u7684\u6784\u9020\u51fd\u6570":111,"\u7684\u67b6\u6784\u7684\u793a\u4f8b":107,"\u7684\u6837\u5f0f":109,"\u7684\u6838\u5fc3\u662f\u8bbe\u8ba1step\u51fd\u6570\u7684\u8ba1\u7b97\u903b\u8f91":106,"\u7684\u6839\u76ee\u5f55":137,"\u7684\u683c\u5f0f\u59cb\u7ec8\u662f":62,"\u7684\u683c\u5f0f\u5b58\u50a8":62,"\u7684\u6982\u5ff5":62,"\u7684\u6bb5\u843d\u5b9a\u4e49\u4e3a\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":106,"\u7684\u6bcf\u4e2a\u8fdb\u7a0b\u90fd\u53ef\u4ee5\u4ececeph\u8bfb\u53d6\u6570\u636e":126,"\u7684\u6e90\u7801\u4ee5\u53ca\u751f\u6210\u6587\u6863\u9700\u8981\u591a\u79cd\u5f00\u53d1\u5de5\u5177":109,"\u7684\u6e90\u7801\u91cc\u4f7f\u7528\u4e86":65,"\u7684\u7248\u672c":[82,108,138],"\u7684\u72b6\u6001":106,"\u7684\u72ec\u7acb\u5de5\u5177\u94fe":136,"\u7684\u77e9\u9635":[94,110],"\u7684\u7a20\u5bc6\u5411\u91cf\u4f5c\u4e3a\u8f93\u5165":110,"\u7684\u7a20\u5bc6\u77e9\u9635":121,"\u7684\u7a20\u5bc6\u77e9\u9635\u662f\u4e00\u4e2a\u7531":121,"\u7684\u7b2c\u4e00\u4e2a\u53c2\u6570":122,"\u7684\u7b2ci\u4e2a\u503c":110,"\u7684\u7b2cj\u4e2a\u503c":110,"\u7684\u7cfb\u7edf":108,"\u7684\u7ed3\u679c":61,"\u7684\u7f16\u5199":123,"\u7684\u7f16\u8bd1\u5de5\u5177\u94fe":136,"\u7684\u7f29\u5199":48,"\u7684\u7f51\u7edc\u6a21\u578b":61,"\u7684\u89c4\u8303":65,"\u7684\u89d2\u5ea6":33,"\u7684\u8ba1\u7b97\u4ee3\u7801":112,"\u7684\u8ba1\u7b97\u8fc7\u7a0b\u4e66\u5199\u66f4\u52a0\u7b80\u5355":111,"\u7684\u8bdd":94,"\u7684\u8be6\u7ec6\u4fe1\u606f":116,"\u7684\u8f93\u5165":106,"\u7684\u8f93\u51fa":[94,117],"\u7684\u8f93\u51fa\u4fe1\u606f\u5165\u624b\u662f\u4e2a\u4e0d\u9519\u7684\u9009\u62e9":117,"\u7684\u8f93\u51fa\u51fd\u6570\u8fd4\u56de\u7684\u662f\u4e0b\u4e00\u4e2a\u65f6\u523b\u8f93\u51fa\u8bcd\u7684":107,"\u7684\u8f93\u51fa\u683c\u5f0f":104,"\u7684\u8f93\u51fa\u88ab\u7528\u4f5c":107,"\u7684\u8f93\u51fab\u662f\u4e00\u4e2a":94,"\u7684\u8fd0\u884c\u73af\u5883":108,"\u7684\u8fdc\u7a0b\u4ed3\u5e93\u7684\u540d\u5b57":109,"\u7684\u914d\u7f6e\u5199\u5230\u914d\u7f6e\u6587\u4ef6\u4e2d":33,"\u7684\u96c6\u88c5\u7bb1\u6280\u672f":108,"\u7684\u9875\u9762\u5220\u9664\u8fdc\u7a0b\u4ed3\u5e93\u7684\u5206\u652f":109,"\u7684cpu":111,"\u7684docker\u955c\u50cf":98,"\u7684flag":[61,62],"\u7684linux\u670d\u52a1\u5668\u7ec4\u6210":123,"\u7684paddlepaddle\u5e93":136,"\u7684vanilla":61,"\u76d1\u542c\u7684\u7aef\u53e3\u4e2a\u6570":123,"\u76ee\u524d":106,"\u76ee\u524d\u4f7f\u7528":109,"\u76ee\u524d\u53ea\u8003\u8651":62,"\u76ee\u524d\u53ea\u8003\u8651\u52a8\u6001\u6269\u5bb9trainer\u6570\u91cf":32,"\u76ee\u524d\u5728paddlepaddle\u4e2d":62,"\u76ee\u524d\u5728paddlepaddle\u4e2d\u6570\u636e\u90fd\u662f\u4ee5":62,"\u76ee\u524d\u5d4c\u5165python\u89e3\u91ca\u5668":65,"\u76ee\u524d\u5fc5\u987b\u8bbe\u7f6e\u6210":138,"\u76ee\u524d\u6211\u4eec\u7528cephfs\u6765\u642d\u5efa":48,"\u76ee\u524d\u63d0\u4f9b\u4e09\u79cd\u94fe\u63a5\u65b9\u5f0f":119,"\u76ee\u524d\u652f\u6301":136,"\u76ee\u524d\u652f\u6301\u4e24\u79cd":103,"\u76ee\u524d\u652f\u6301cento":102,"\u76ee\u524d\u652f\u6301fail":132,"\u76ee\u524d\u7684\u4f18\u5316":62,"\u76ee\u524d\u8be5\u53c2\u6570\u4ec5\u7528\u4e8eaucvalidationlayer\u548cpnpairvalidationlayer\u5c42":132,"\u76ee\u524d\u8fd8\u672a\u652f\u6301":106,"\u76ee\u524dpaddle\u7684\u8fdb\u7a0b\u6a21\u578b\u662fc":65,"\u76ee\u524dpaddlepaddle\u7684develop\u5206\u652f\u7684\u6587\u6863\u662f\u81ea\u52a8\u89e6\u53d1\u66f4\u65b0\u7684":113,"\u76ee\u524dpaddlepaddle\u91c7\u7528\u4e86":61,"\u76ee\u5f55":[98,108,124,126,127,136,137,138],"\u76ee\u5f55\u4e0b":[66,110,124],"\u76ee\u5f55\u4e0b\u5bf9\u5e94\u7684\u5730\u65b9":62,"\u76ee\u5f55\u4e0b\u65b0\u589e\u7684":111,"\u76ee\u5f55\u4e0b\u6700\u65b0\u7684":137,"\u76ee\u5f55\u4e0b\u7684\u4ee3\u7801\u793a\u4f8b":122,"\u76ee\u5f55\u4e0b\u7684\u751f\u6210\u6587\u4ef6\u7528\u4e8e\u6df1\u5ea6\u5b66\u4e60\u76f8\u5173android":136,"\u76ee\u5f55\u4e0b\u7684python\u5305":91,"\u76ee\u5f55\u4e2d":[119,122,124],"\u76ee\u5f55\u4e2d\u4f1a\u5305\u542b":[136,138],"\u76ee\u5f55\u4e2d\u4f1a\u5305\u542b\u4ee5\u4e0b\u5185\u5bb9":137,"\u76ee\u5f55\u4e2d\u7684":117,"\u76ee\u5f55\u4e2dpaddl":127,"\u76ee\u5f55\u548c":[136,137,138],"\u76ee\u5f55\u5c31\u6210\u4e3a\u4e86\u5171\u4eab\u5b58\u50a8":127,"\u76ee\u5f55\u751f\u6210\u4e00\u5957\u72ec\u7acb\u7f16\u8bd1\u5de5\u5177\u94fe":136,"\u76ee\u5f55\u91cc\u627e\u5230\u4ea4\u53c9\u7f16\u8bd1\u5668":138,"\u76ee\u6807\u5411\u91cf":107,"\u76ee\u6807\u5de5\u5177\u94fe":136,"\u76ee\u6807\u673a\u7248protobuf\u5e93":138,"\u76ee\u6807\u67b6\u6784":137,"\u76ee\u6807\u67b6\u6784abi":136,"\u76f4\u5230\u8bad\u7ec3\u6536\u655b\u4e3a\u6b62":96,"\u76f4\u63a5\u4f7f\u7528\u4e0a\u8ff0\u5b89\u88c5\u6d41\u7a0b":99,"\u76f4\u63a5\u4f7f\u7528c\u8bed\u8a00\u7684":65,"\u76f4\u63a5\u5220\u9664\u8fd9\u4e2a\u53c2\u6570\u5373\u53ef":66,"\u76f4\u63a5\u5347\u7ea7\u5230\u66f4\u65b0\u7684\u7248\u672c":97,"\u76f4\u63a5\u5bfc\u51fa\u5230c\u7684\u63a5\u53e3\u6bd4\u8f83\u56f0\u96be":65,"\u76f4\u63a5\u8c03\u7528\u76f8\u5e94\u63a5\u53e3\u5373\u53ef":111,"\u76f4\u63a5\u8fd0\u884c":98,"\u76f8\u5173\u5c42":61,"\u76f8\u540c\u540d\u5b57\u7684\u53c2\u6570":96,"\u76f8\u5bf9":104,"\u76f8\u5f53":104,"\u76f8\u6bd4":111,"\u770b\u5f53\u524dmpi\u96c6\u7fa4\u662f\u5426\u652f\u6301resourc":92,"\u77a7":102,"\u77e9\u9635":131,"\u77e9\u9635\u4e2d\u6bcf\u4e2a\u5143\u7d20\u7684\u503c\u968f\u673a\u751f\u6210":121,"\u77e9\u9635\u4e58\u6cd5\u7684\u516c\u5f0f":111,"\u77e9\u9635\u5927\u5c0f\u662f":61,"\u77e9\u9635\u662f\u5426\u662f\u4e00\u4e2a\u5e8f\u5217":121,"\u77e9\u9635\u7684\u9ad8\u5ea6":121,"\u77e9\u9635\u91cc\u7684\u5143\u7d20\u662f\u6d6e\u70b9\u6570":121,"\u786e\u4fdd\u7f16\u8bd1\u5668\u9009\u9879":109,"\u78c1\u76d8\u4e0d\u591f":108,"\u78c1\u76d8\u7a7a\u95f4\u4e0d\u8db3\u7b49":92,"\u793a\u4f8b":[94,96,122],"\u793a\u4f8b3\u5bf9\u4e8e\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u6570\u636e\u5b8c\u5168\u76f8\u540c":104,"\u793a\u4f8b3\u7684\u914d\u7f6e\u4f7f\u7528\u4e86\u5355\u5c42rnn\u548c\u53cc\u5c42rnn":104,"\u793a\u4f8b3\u7684\u914d\u7f6e\u5206\u522b\u4e3a":104,"\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b":[94,122],"\u793a\u4f8b\u5982\u4e0b":96,"\u793a\u4f8b\u7a0b\u5e8f":123,"\u793e\u533a\u53c2\u4e0e\u56f0\u96be":65,"\u793e\u533a\u8d21\u732e\u4ee3\u7801\u5b66\u4e60\u6210\u672c\u9ad8":65,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u4e00\u4e2a\u8ba1\u7b97\u5c42\u7684\u8f93\u5165":121,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u4e00\u4e2a\u8ba1\u7b97\u5c42\u7684\u8f93\u5165\u8f93\u51fa\u88ab\u7ec4\u7ec7\u4e3a\u4e00\u4e2a":122,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u53c2\u6570":32,"\u795e\u7ecf\u7f51\u7edc\u4e5f\u9700\u8981\u4e00\u4e9b\u7279\u5b9a\u7684layer\u4f5c\u4e3a\u8f93\u5165\u63a5\u53e3":101,"\u795e\u7ecf\u7f51\u7edc\u53c2\u6570\u4ee5\u53ca\u8fed\u4ee3\u65b9\u7a0b":101,"\u795e\u7ecf\u7f51\u7edc\u5728\u8bad\u7ec3\u7684\u65f6\u5019":94,"\u795e\u7ecf\u7f51\u7edc\u672c\u8d28\u4e0a\u662f\u4e00\u4e2a\u8ba1\u7b97\u56fe":112,"\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u7ed3\u6784\u548c\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u5c06\u88ab\u5e8f\u5217\u5316\u5408\u5e76\u5165\u4e00\u4e2a\u6587\u4ef6":122,"\u795e\u7ecf\u7f51\u7edc\u7684\u7f51\u7edc\u7ed3\u6784\u4e2d\u5177\u6709\u6709\u5411\u73af\u7ed3\u6784":104,"\u795e\u7ecf\u7f51\u7edc\u7684\u8bad\u7ec3\u672c\u8eab\u662f\u4e00\u4e2a\u975e\u5e38\u6d88\u8017\u5185\u5b58\u548c\u663e\u5b58\u7684\u5de5\u4f5c":94,"\u79bb":104,"\u79bb\u7ebf\u6279\u5904\u7406":33,"\u79f0\u4e3a":[107,109],"\u79f0\u4e3a\u5f00\u53d1\u955c\u50cf":136,"\u79f0\u4e4b\u4e3a":121,"\u79f0\u4e4b\u4e3a\u53cc\u5c42\u5e8f\u5217\u7684\u4e00\u4e2a\u5b50\u5e8f\u5217":103,"\u79f0\u4e4b\u4e3a\u96c6\u675f\u5927\u5c0f":132,"\u79f0\u4f5c\u6709kernel":111,"\u79f0\u4f5ckernel":111,"\u79fb\u52a8\u7aef\u9884\u6d4b":121,"\u7a00\u758f\u6570\u636e\u7684\u683c\u5f0f":110,"\u7a00\u758f\u66f4\u65b0\u7684\u7aef\u53e3\u6570\u91cf":127,"\u7a00\u758f\u768401\u5411\u91cf":101,"\u7a00\u758f\u7684\u5411\u91cf":101,"\u7a00\u758f\u77e9\u9635":121,"\u7a00\u758f\u77e9\u9635\u4f7f\u7528":121,"\u7a00\u758f\u77e9\u9635\u53ca\u76f8\u5173\u7684\u63a5\u53e3":121,"\u7a00\u758f\u77e9\u9635\u5b58\u50a8\u793a\u610f\u56fe":121,"\u7a00\u758f\u77e9\u9635\u7684\u4e58\u79ef\u5e94\u7528\u4e8e\u524d\u5411\u4f20\u64ad\u8fc7\u7a0b":134,"\u7a0b\u5e8f\u4ece\u6b64\u76ee\u5f55\u62f7\u8d1d\u6587\u4ef6\u5230\u5bb9\u5668\u5185\u8fdb\u884c\u8bad\u7ec3":127,"\u7a0b\u5e8f\u4f9d\u8d56":123,"\u7a0b\u5e8f\u505c\u6b62":132,"\u7a0b\u5e8f\u662f\u4e00\u6837\u7684":116,"\u7a0b\u5e8f\u76f4\u63a5\u9000\u51fa":132,"\u7a20\u5bc6\u5411\u91cf":110,"\u7a20\u5bc6\u66f4\u65b0\u7684\u7aef\u53e3\u6570\u91cf":127,"\u7a20\u5bc6\u7684\u6d6e\u70b9\u6570\u5411\u91cf":101,"\u7a20\u5bc6\u77e9\u9635":121,"\u7a97\u6237":104,"\u7acb\u523b\u9000\u51fa":94,"\u7acb\u5373\u6267\u884c\u5355\u5143\u6d4b\u8bd5":97,"\u7ae0\u8282":136,"\u7aef\u53e3":92,"\u7aef\u6570\u636e\u7c7b\u578b":121,"\u7aef\u7684":116,"\u7aef\u8bfb\u53d6\u6570\u636e":94,"\u7b2c":104,"\u7b2c\u4e00\u4e2a":109,"\u7b2c\u4e00\u4e2a\u53c2\u6570":111,"\u7b2c\u4e00\u4e2a\u6837\u672c\u540c\u65f6encode\u4e24\u6761\u6570\u636e\u6210\u4e24\u4e2a\u5411\u91cf":104,"\u7b2c\u4e00\u4e2atag\u4e3a":82,"\u7b2c\u4e00\u5929":104,"\u7b2c\u4e00\u6b65\u9700\u8c03\u7528":122,"\u7b2c\u4e00\u7ae0\u8282":101,"\u7b2c\u4e09\u4e2a\u53c2\u6570":111,"\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93\u9700\u8981\u6309\u7167\u4e0e\u65b9\u5f0f2\u540c\u6837\u65b9\u6cd5\u663e\u793a\u5730\u8fdb\u884c\u94fe\u63a5":119,"\u7b2c\u4e09\u65b9\u94fe\u63a5\u5e93\u548c\u5934\u6587\u4ef6":119,"\u7b2c\u4e09\u6b65\u5b8c\u6210\u540e":82,"\u7b2c\u4e8c\u4e2a":94,"\u7b2c\u4e8c\u4e2a\u4e3a":82,"\u7b2c\u4e8c\u4e2a\u53c2\u6570":111,"\u7b2c\u4e8c\u7c7b":95,"\u7b2ci\u884c\u7b2cj\u5217\u7684\u6570\u503c":110,"\u7b49":[62,66,92,111,122],"\u7b49\u4e8e\u6837\u672c\u6570":94,"\u7b49\u5168\u90e8\u9759\u6001\u5e93\u4e2d\u7684\u76ee\u6807\u6587\u4ef6\u5168\u90e8\u6253\u5305\u540e\u4ea7\u751f\u7684\u6587\u4ef6":66,"\u7b49\u53c2\u6570":127,"\u7b49\u5f85\u7f16\u8bd1\u5b8c\u6210\u540e":82,"\u7b49\u6587\u4ef6":66,"\u7b49\u7b2c\u4e09\u65b9\u5e93":119,"\u7b80\u5199":111,"\u7b80\u5355\u4ecb\u7ecd\u9700\u8981\u7528\u5230\u57fa\u7c7b":111,"\u7b80\u5355\u603b\u7ed3op\u9700\u8981\u5305\u542b\u7684\u5185\u5bb9\u5982\u4e0b":111,"\u7b80\u5355\u6765\u8bf4":117,"\u7b80\u5355\u7684\u5168\u8fde\u63a5\u7f51\u7edc":96,"\u7b80\u5355\u7684\u6027\u80fd\u5206\u6790":117,"\u7b80\u5355\u7684yaml\u6587\u4ef6\u5982\u4e0b":126,"\u7b80\u76f4":104,"\u7b97\u6cd5":[94,107],"\u7b97\u6cd5\u4e2d\u7684beam\u5927\u5c0f":107,"\u7ba1\u7406\u4e86\u6bcf\u4e2a\u8ba1\u7b97\u5c42\u8f93\u51fa\u7684\u5b58\u50a8\u7a7a\u95f4":122,"\u7c7b\u4f3c":[66,103],"\u7c7b\u4f5c\u4e3a\u53c2\u6570\u7684\u62bd\u8c61":110,"\u7c7b\u522b\u4e2d\u7684\u53c2\u6570\u53ef\u7528\u4e8e\u6240\u6709\u573a\u5408":131,"\u7c7b\u522b\u6807\u7b7e\u4e4b\u4e00":122,"\u7c7b\u522b\u6807\u7b7e\u5c42":122,"\u7c7b\u540d\u548cc":65,"\u7c7b\u578b":[65,111,121,132],"\u7c7b\u578b\u4e3a":111,"\u7c7b\u578b\u4ecd\u7136\u4e3aeigenvector":112,"\u7c7b\u578b\u53ef\u4ee5\u662fpaddlepaddle\u652f\u6301\u7684\u4efb\u610f\u8f93\u5165\u6570\u636e\u7c7b\u578b":103,"\u7c7b\u578b\u540d\u4e3a":111,"\u7c7b\u578b\u662fnumpy\u7684ndarrai":94,"\u7c7b\u578b\u662fsparse_binary_vector":101,"\u7c7b\u578b\u662fsparse_float_vector":101,"\u7c7b\u578b\u7684":104,"\u7c7b\u578b\u7b49\u662f\u5426\u5408\u6cd5":111,"\u7c7b\u578b\u8fd8\u662f":121,"\u7c7b\u7684\u5b9a\u4e49\u5199\u5728":111,"\u7c7b\u7684\u5bf9\u8c61":122,"\u7c7b\u7684\u6784\u9020\u51fd\u6570\u548c\u6790\u6784\u51fd\u6570":110,"\u7c7b\u91cd\u5199":111,"\u7c7b\u9700\u8981\u5b9e\u73b0\u521d\u59cb\u5316":110,"\u7cfb\u6570":111,"\u7cfb\u7edf\u4e2d\u7684\u74f6\u9888\u53ef\u80fd\u548c\u7a0b\u5e8f\u5458\u5f00\u53d1\u8fc7\u7a0b\u4e2d\u60f3\u8c61\u7684\u74f6\u9888\u76f8\u53bb\u751a\u8fdc":116,"\u7cfb\u7edf\u4f1a\u5bf9\u65b0\u589e\u7684op\u81ea\u52a8\u7ed1\u5b9apython":111,"\u7cfb\u7edf\u4f1a\u63d0\u4f9b\u4e00\u4e2a\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1":123,"\u7cfb\u7edf\u4f1a\u6839\u636e\u6587\u4ef6\u540d\u81ea\u52a8\u6784\u5efaop\u548c\u5176\u5bf9\u5e94\u7684python\u6269\u5c55":111,"\u7ebf\u7a0bid\u53f7":134,"\u7ec6\u8282\u63cf\u8ff0":133,"\u7ecf\u5e38\u4f1a\u6d88\u8017\u657010gb\u7684\u5185\u5b58\u548c\u6570gb\u7684\u663e\u5b58":94,"\u7ed3\u5c3e":111,"\u7ed3\u675f\u6807\u8bb0":107,"\u7ed3\u675f\u9884\u6d4b\u4e4b\u540e":122,"\u7ed3\u6784\u4f53":[121,122],"\u7ed3\u679c\u4f1a\u5199\u5165\u5f53\u524d\u8fd0\u884c\u76ee\u5f55\u4e0b\u7684":122,"\u7ed3\u679c\u5982\u4e0b\u56fe\u6240\u793a":116,"\u7ed3\u679c\u8f93\u51fa\u5230":108,"\u7ed3\u8bba":65,"\u7ed9":104,"\u7ed9\u4e2a\u7b80\u5355\u7684":109,"\u7ed9\u5b9aencoder\u8f93\u51fa\u548c\u5f53\u524d\u8bcd":106,"\u7edf\u4e00\u7528":33,"\u7ee7\u627f\u81ea":111,"\u7ee7\u627f\u81eaoperatorbas":111,"\u7ef4\u57fa\u767e\u79d1\u4e2d\u6587\u9875\u9762":104,"\u7ef4\u57fa\u767e\u79d1\u9875\u9762":104,"\u7ef4\u7a7a\u95f4":107,"\u7ef4\u7a7a\u95f4\u5b8c\u6210":107,"\u7f13\u5b58\u6c60\u7684\u51cf\u5c0f":94,"\u7f16\u5199":98,"\u7f16\u5199\u4e86\u4e00\u4e2apaddlepaddle\u7684\u7a0b\u5e8f":98,"\u7f16\u5199\u5b8cyaml\u6587\u4ef6\u540e":127,"\u7f16\u5199\u672c\u6b21\u8bad\u7ec3\u7684yaml\u6587\u4ef6":127,"\u7f16\u5199\u6df1\u5ea6\u5b66\u4e60\u7a0b\u5e8f":116,"\u7f16\u5199\u7684\u90e8\u5206":100,"\u7f16\u5199\u96c6\u7fa4\u4efb\u52a1\u63d0\u4ea4\u548c\u7ba1\u7406\u811a\u672c":123,"\u7f16\u53f7\u4ece0\u5f00\u59cb":94,"\u7f16\u7801\u5411\u91cf":107,"\u7f16\u7801\u5668\u8f93\u51fa":107,"\u7f16\u7801\u6e90\u5e8f\u5217":107,"\u7f16\u8bd1":[98,108,109,120,136],"\u7f16\u8bd1\u51fa\u7684paddlepaddle\u9884\u6d4b\u5e93\u548c\u5934\u6587\u4ef6":119,"\u7f16\u8bd1\u540e\u7684\u6587\u4ef6\u5c06\u88ab\u5b58\u50a8\u5728\u5de5\u4f5c\u76ee\u5f55":113,"\u7f16\u8bd1\u548c\u5b89\u88c5paddlepaddl":138,"\u7f16\u8bd1\u548c\u5b89\u88c5paddlepaddle\u9884\u6d4b\u5e93":[136,137],"\u7f16\u8bd1\u5668":[136,137,138],"\u7f16\u8bd1\u5668\u6ca1\u6709":65,"\u7f16\u8bd1\u5668\u8981\u6c42\u7cfb\u7edf\u652f\u6301":136,"\u7f16\u8bd1\u578b\u8bed\u8a00":65,"\u7f16\u8bd1\u5b89\u88c5\u4e0e\u5355\u5143\u6d4b\u8bd5":93,"\u7f16\u8bd1\u5b89\u88c5\u7ed3\u675f\u4e4b\u540e":136,"\u7f16\u8bd1\u5b8c\u6210\u4e4b\u540e":113,"\u7f16\u8bd1\u5b8c\u6210\u540e\u4f1a\u5728build":97,"\u7f16\u8bd1\u5de5\u5177\u94fe":136,"\u7f16\u8bd1\u5de5\u5177\u94fe\u6240\u5728\u7684\u7edd\u5bf9\u8def\u5f84":138,"\u7f16\u8bd1\u6027\u80fd\u4f1a\u548c":116,"\u7f16\u8bd1\u6210\u529f\u540e":111,"\u7f16\u8bd1\u6210\u529f\u540e\u5728":119,"\u7f16\u8bd1\u6210\u52a8\u6001\u5e93":132,"\u7f16\u8bd1\u65f6\u4e00\u5b9a\u8981\u5f00\u542f\u4f18\u5316":116,"\u7f16\u8bd1\u65f6\u4f1a\u628a\u5bf9\u5e94\u7684\u5934\u6587\u4ef6\u548c\u5e93\u653e\u5728":62,"\u7f16\u8bd1\u65f6\u53ef\u80fd\u4f1a\u53bb\u6389\u8c03\u8bd5\u4fe1\u606f":116,"\u7f16\u8bd1\u65f6\u6307\u5b9a":116,"\u7f16\u8bd1\u751f\u6210":113,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684docker\u53d1\u884c\u955c\u50cf":82,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684python":82,"\u7f16\u8bd1c":66,"\u7f16\u8bd1paddlepaddl":97,"\u7f51\u7edc\u5c42\u53ef\u4ee5\u6709\u591a\u4e2a\u8f93\u5165":110,"\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26\u4e3a":110,"\u7f51\u7edc\u5c42\u7684\u7c7b\u578b":110,"\u7f51\u7edc\u5c42\u7684\u7ec6\u8282\u53ef\u4ee5\u901a\u8fc7\u4e0b\u9762\u8fd9\u4e9b\u4ee3\u7801\u7247\u6bb5\u6765\u6307\u5b9a":110,"\u7f51\u7edc\u5c42\u7684\u8f93\u51fa\u662f\u7ecf\u8fc7\u6fc0\u6d3b\u51fd\u6570\u4e4b\u540e\u7684\u503c":132,"\u7f51\u7edc\u5c42\u914d\u7f6e\u5305\u542b\u4ee5\u4e0b\u51e0\u9879":110,"\u7f51\u7edc\u63a5\u53d7\u4e00\u5e45\u56fe\u7247\u4f5c\u4e3a\u8f93\u5165":122,"\u7f51\u7edc\u7ed3\u6784\u7684\u5e8f\u5217\u5316\u7ed3\u679c\u548c\u6a21\u578b\u53c2\u6570\u5b58\u50a8\u76ee\u5f55":122,"\u7f51\u7edc\u901a\u4fe1":110,"\u7f51\u901f\u6216ssl\u94fe\u63a5\u539f\u56e0":91,"\u800c":[95,107,116],"\u800c\u4e0d\u4f1a\u6539\u53d8\u539f\u6709tensor\u7684shape\u4fe1\u606f":112,"\u800c\u4e0d\u5fc5\u5728\u610fpaddl":66,"\u800c\u4e0d\u652f\u6301pypy\u89e3\u91ca\u5668":65,"\u800c\u4e0d\u662f\u5728layer\u91cc\u5b9e\u73b0":95,"\u800c\u4e0d\u662f\u6e90\u7801\u76ee\u5f55\u91cc":91,"\u800c\u4e0d\u662f\u7279\u5f81\u7684\u96c6\u5408":104,"\u800c\u4e0d\u662f\u76f8\u5bf9":121,"\u800c\u4e0d\u662fc":121,"\u800c\u4e0d\u66b4\u9732\u6982\u5ff5\u7684\u5b9e\u73b0":66,"\u800c\u4e14\u4e2a\u6570\u5e76\u4e0d\u786e\u5b9a":123,"\u800c\u4e14\u5305\u542b\u4e86c":100,"\u800c\u4e14\u5728\u4f20\u8f93\u7684\u8fc7\u7a0b\u4e2d\u4e5f\u53ef\u80fd\u51fa\u73b0\u7f51\u7edc\u4e0d\u7a33\u5b9a\u7684\u60c5\u51b5":48,"\u800c\u4e14cento":100,"\u800c\u4e4b\u524d\u7684\u53c2\u6570\u5c06\u4f1a\u88ab\u5220\u9664":132,"\u800c\u4ece\u5e94\u7528\u7684\u89d2\u5ea6":117,"\u800c\u4f18\u5316\u6027\u80fd\u7684\u9996\u8981\u4efb\u52a1":117,"\u800c\u5176\u4ed6\u5c42\u4f7f\u7528cpu\u8ba1\u7b97":134,"\u800c\u51fa\u73b0\u9636\u6bb5\u6027\u7684\u8fd0\u884c\u505c\u6ede":32,"\u800c\u53cc\u5c42rnn\u662f\u53ef\u4ee5\u5904\u7406\u8fd9\u79cd\u8f93\u5165\u6570\u636e\u7684\u7f51\u7edc\u7ed3\u6784":104,"\u800c\u53cd\u5411\u6d4b\u8bd5\u4e2d":111,"\u800c\u53ea\u9700\u8981\u83b7\u5f97recurr":95,"\u800c\u5728\u8ba1\u7b97\u7ed3\u675f\u4e4b\u540e":112,"\u800c\u5728cpp\u91cc\u9762\u5b9e\u73b0\u8fd9\u4e2ac\u7684\u63a5\u53e3":65,"\u800c\u591a\u8bed\u8a00\u63a5\u53e3\u9700\u8981\u76f4\u63a5\u8bfb\u53d6\u751f\u6210\u7684\u4e8c\u8fdb\u5236":65,"\u800c\u5b89\u88c5\u5305":[91,100],"\u800c\u5b89\u88c5\u5305\u662f":[91,100],"\u800c\u5bf9\u4e8e\u53cc\u5c42\u5e8f\u5217":104,"\u800c\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u5185\u5c42\u7279\u5f81\u6570\u636e\u800c\u8a00":104,"\u800c\u5bf9\u4e8egolang":65,"\u800c\u5bf9\u4e8egolang\u9519\u8bef\u5904\u7406\u5e94\u8be5\u4f7f\u7528\u8fd4\u56de\u503c":65,"\u800c\u5c06\u8fd9\u4e2a\u6bb5\u843d\u7684\u6bcf\u4e00\u53e5\u8bdd\u7528lstm\u7f16\u7801\u6210\u4e00\u4e2a\u5411\u91cf":104,"\u800c\u5f53\u524d\u5df2\u7ecf\u67095":117,"\u800c\u662f\u5c06\u8f93\u5165":[121,122],"\u800c\u662f\u76f4\u63a5\u4ece\u5185\u5b58\u7684\u7f13\u5b58\u91cc\u8bfb\u53d6\u6570\u636e":94,"\u800c\u662f\u76f4\u63a5\u4fee\u6539paddl":66,"\u800c\u662f\u76f4\u63a5\u7528api\u7684\u63a5\u53e3\u8fdc\u7a0b\u8bbf\u95ee":33,"\u800c\u66f4\u6df1\u5165\u7684\u5206\u6790":117,"\u800c\u6709\u4e9b\u53c2\u6570\u9700\u8981\u5728\u96c6\u7fa4\u591a\u673a\u8bad\u7ec3\u4e2d\u4f7f\u7528\u7b49":131,"\u800c\u6e90\u5e8f\u5217\u7684\u7f16\u7801\u5411\u91cf\u53ef\u4ee5\u88ab\u65e0\u8fb9\u754c\u7684memory\u8bbf\u95ee":107,"\u800c\u795e\u7ecf\u7f51\u7edc\u662f\u6211\u4eec\u8981\u642d\u5efa\u7684\u5b9d\u5854":101,"\u800c\u7a00\u758f\u66f4\u65b0\u5728\u53cd\u5411\u4f20\u64ad\u4e4b\u540e\u7684\u6743\u91cd\u66f4\u65b0\u65f6\u8fdb\u884c":134,"\u800c\u8ba1\u7b97\u8fc7\u7a0b\u662f\u7531":112,"\u800c\u8fd9\u4e00\u53e5\u8bdd\u5c31\u53ef\u4ee5\u8868\u793a\u6210\u8fd9\u4e9b\u4f4d\u7f6e\u7684\u6570\u7ec4":104,"\u800c\u8fd9\u6bcf\u4e00\u4e2a\u6570\u7ec4\u5143\u7d20":104,"\u800c\u975e\u76f4\u63a5\u56de\u590d\u7684\u65b9\u5f0f":109,"\u800c\u975e\u9759\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":97,"\u800ceigenvector":112,"\u800crnn\u662f\u6700\u6d41\u884c\u7684\u9009\u62e9":106,"\u800cswig\u53ea\u80fd\u7b80\u5355\u7684\u66b4\u9732c":65,"\u800ctrainer\u9700\u8981\u8bfb\u53d6\u8bad\u7ec3\u6570\u636e\u8fdb\u884c\u8bad\u7ec3":101,"\u800cy_predict\u662f\u63a5\u6536x\u4f5c\u4e3a\u8f93\u5165":101,"\u8054\u901a":123,"\u80fd\u591f\u5904\u7406\u53cc\u5c42\u5e8f\u5217":106,"\u80fd\u591f\u5bf9\u53cc\u5411\u5e8f\u5217\u8fdb\u884c\u5904\u7406\u7684\u6709":106,"\u80fd\u591f\u8bb0\u5f55\u4e0a\u4e00\u4e2asubseq":106,"\u80fd\u591f\u9488\u5bf9cpu\u548cgpu\u7684\u8ba1\u7b97\u505a\u66f4\u591a\u4f18\u5316":95,"\u80fd\u83b7\u53d6":124,"\u811a\u672c":[108,122,136],"\u811a\u672c\u5f00\u59cb\u65f6":127,"\u811a\u672c\u96c6\u6210\u4e86\u5e8f\u5217\u5316\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u7684\u8fc7\u7a0b":122,"\u81ea\u52a8\u5173\u95ed\u5bf9\u5e94\u7684":109,"\u81ea\u52a8\u5730\u5c06\u8fd9\u4e9b\u9009\u9879\u5e94\u7528\u5230":124,"\u81ea\u52a8\u5b8c\u6210\u8fd9\u4e00\u8fc7\u7a0b":106,"\u81ea\u52a8\u6302\u8f7d\u5206\u5e03\u5f0f\u5b58\u50a8\u76ee\u5f55":32,"\u81ea\u52a8\u6784\u5efa\u72ec\u7acb\u5de5\u5177\u94fe":136,"\u81ea\u52a8\u751f\u6210":113,"\u81ea\u52a8\u83b7\u53d6\u4e0a\u4e00\u4e2a\u751f\u6210\u7684\u8bcd":107,"\u81ea\u52a8\u9009\u62e9":137,"\u81ea\u6b64":[136,137],"\u81ea\u7136\u4e5f\u5c31\u6709\u7ba1\u7406\u5458\u6743\u9650":108,"\u81ea\u7136\u8bed\u8a00\u4e2d\u7684\u53e5\u5b50\u662f\u4e00\u4e2a\u5e8f\u5217":121,"\u81ea\u7136\u8bed\u8a00\u4e2d\u7684\u6bb5\u843d\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":121,"\u81ea\u7136\u8bed\u8a00\u5904\u7406\u7b49":134,"\u81f3\u4e8e\u4e3a\u4ec0\u4e48\u9700\u8981c":66,"\u81f3\u5c11\u5305\u542bgcc_3":100,"\u81f3\u5c11\u5305\u542bglibcxx_3":100,"\u81f3\u6b64":[104,109],"\u8212\u9002":104,"\u826f\u597d\u7684\u6587\u6863":65,"\u8282\u70b9":[123,128],"\u8282\u7701\u4e86\u4e0d\u5fc5\u8981\u7684\u64cd\u4f5c":62,"\u82e5":110,"\u82e5\u5728paddlepaddle\u7f16\u8bd1\u65f6":96,"\u82e5\u5e0c\u671b\u5f97\u5230\u6700\u5feb\u7684\u6267\u884c\u901f\u5ea6":137,"\u82e5\u5e0c\u671b\u6700\u5feb\u7684\u6267\u884c\u901f\u5ea6":[136,138],"\u82e5\u5e72\u4e2a\u53e5\u5b50\u6784\u6210\u4e00\u4e2a\u6bb5\u843d":103,"\u82e5\u6709\u4e0d\u4e00\u81f4\u4e4b\u5904":117,"\u82e5\u6709\u5fc5\u8981":110,"\u82e5\u672a\u663e\u5f0f\u6307\u5b9a":137,"\u82e5\u6ca1\u6709\u663e\u5f0f\u8bbe\u7f6e":136,"\u82e5\u73af\u5883\u53d8\u91cf":[136,137,138],"\u82e5\u8981\u5bf9\u8fd9\u51e0\u4e2alayer\u4f7f\u7528dropout":95,"\u82e5\u8f93\u51fa\u662f\u5355\u5c42\u5e8f\u5217":103,"\u82e5\u8f93\u51fa\u662f\u53cc\u5c42\u5e8f\u5217":103,"\u82f1\u6587\u6587\u6863":113,"\u82f1\u6587\u6587\u6863\u76ee\u5f55":113,"\u8303\u56f4":134,"\u83b7\u53d6":109,"\u83b7\u53d6\u53ef\u9009\u7684tag":98,"\u83b7\u53d6\u5f53\u524d\u7cfb\u7edf\u652f\u6301\u7684\u5b89\u88c5\u5305\u683c\u5f0f":100,"\u83b7\u53d6\u5f53\u524d\u7cfb\u7edf\u652f\u6301\u7684python\u5305\u7684\u540e\u7f00":91,"\u83b7\u53d6\u6700\u65b0\u7684\u68c0\u67e5\u70b9\u7684\u6587\u4ef6uuid":32,"\u83b7\u53d6\u6e90\u7801":108,"\u83b7\u53d6\u8f93\u51fa\u65f6":122,"\u83b7\u53d6trainer":127,"\u83b7\u5f97\u53c2\u6570\u5c3a\u5bf8":110,"\u83b7\u5f97\u5728\u6a21\u578b\u914d\u7f6e\u4e2d\u67d0\u4e00\u5c42\u7684name":94,"\u83b7\u5f97\u57fa\u672c\u7684docker\u5b89\u88c5\u548c\u4f7f\u7528\u65b9\u6cd5":98,"\u83b7\u5f97\u5f53\u524dmini":94,"\u83b7\u5f97\u7684\u503c\u7c7b\u578b\u5747\u4e3a":94,"\u83b7\u5f97\u8ba1\u7b97\u7ed3\u679c":122,"\u83b7\u5f97\u8fd9\u4e9b\u8282\u70b9\u7684ip\u5730\u5740":124,"\u83b7\u5f97head\u548cnode\u8282\u70b9\u7684ip\u5730\u5740":128,"\u865a\u62df\u673a\u4e0a":108,"\u867d\u7136\u4e0d\u9f13\u52b1\u8fd9\u6837":66,"\u867d\u7136\u5f02\u6b65sgd\u65b9\u5f0f\u4f1a\u63d0\u9ad8\u53c2\u6570\u66f4\u65b0\u5e76\u884c\u5ea6":123,"\u867d\u7136paddle\u770b\u8d77\u6765\u5305\u542b\u4e86\u4f17\u591a\u53c2\u6570":131,"\u884c":121,"\u884c\u504f\u79fb":121,"\u884c\u53f7":116,"\u8865\u5145\u4e0a\u6b21\u7684commit":109,"\u8868\u660e\u4e86\u8fd9\u4e9b\u884c\u7684\u6807\u53f7":110,"\u8868\u660e\u8fd9\u4e2a\u5c42\u7684\u4e00\u4e2a\u5b9e\u4f8b\u662f\u5426\u9700\u8981\u504f\u7f6e":110,"\u8868\u793a":111,"\u8868\u793a\u4e3adeviceid":134,"\u8868\u793a\u5bf9\u8f93\u5165\u6570\u636e":62,"\u8868\u793a\u5c06\u5916\u5c42\u7684outer_mem\u4f5c\u4e3a\u5185\u5c42memory\u7684\u521d\u59cb\u72b6\u6001":104,"\u8868\u793a\u5f53\u524d\u96c6\u7fa4\u4f5c\u4e1a\u7684\u8282\u70b9":124,"\u8868\u793a\u6570\u636e\u7c7b\u578b":111,"\u8868\u793a\u7684\u504f\u79fb\u662f\u4ee5":121,"\u8868\u793a\u8bbe\u5907\u7c7b\u578b":111,"\u8868\u793a\u8bcd\u8bed\u5728\u8bcd\u5178\u4e2d\u7684\u5e8f\u53f7":121,"\u8868\u793a\u8bfb\u8005\u6240\u4f7f\u7528\u7684docker\u955c\u50cf\u4ed3\u5e93\u5730\u5740":127,"\u8868\u793a\u8fd9\u4e2ajob\u7684\u540d\u5b57":127,"\u8868\u793a\u9700\u8981\u6784\u5efa\u63a8\u7406\u5e93":138,"\u88ab":109,"\u88ab\u5207\u5206\u6210\u591a\u4e2a\u90e8\u5206":123,"\u88ab\u6269\u5c55\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":103,"\u88ab\u653e\u5728":110,"\u88ab\u79f0\u4e3a":107,"\u8981\u4f7f\u7528\u547d\u4ee4\u884c\u5206\u6790\u5de5\u5177":117,"\u8981\u5728\u5df2\u6709\u7684kubernetes\u96c6\u7fa4\u4e0a\u8fdb\u884cpaddlepaddle\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3":127,"\u8981\u6c42\u5355\u5c42\u5e8f\u5217\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee":103,"\u8981\u751f\u6210\u7684\u76ee\u6807\u5e8f\u5217":106,"\u8981\u8c03\u7528":110,"\u89c6\u9891\u7b49":121,"\u89e3\u51b3\u529e\u6cd5\u662f":91,"\u89e3\u51b3\u65b9\u6848\u662f":96,"\u89e3\u6790\u73af\u5883\u53d8\u91cf\u5f97\u5230":127,"\u89e3\u7801\u5668\u4f7f\u7528":107,"\u89e3\u7801\u5668\u57fa\u4e8e\u7f16\u7801\u6e90\u5e8f\u5217\u548c\u6700\u540e\u751f\u6210\u7684\u76ee\u6807\u8bcd\u9884\u6d4b\u4e0b\u4e00\u76ee\u6807\u8bcd":107,"\u89e3\u7801\u5668\u662f\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":107,"\u89e3\u91ca\u578b\u8bed\u8a00\u53ea\u80fd\u8c03\u7528\u52a8\u6001\u5e93":65,"\u89e3\u91ca\u6027\u8bed\u8a00\u5b9e\u9645\u8fd0\u884c\u7684\u4e8c\u8fdb\u5236\u662f\u89e3\u91ca\u5668\u672c\u8eab":65,"\u8ba1\u5212\u5728":[61,62],"\u8ba1\u7b97":[107,123],"\u8ba1\u7b97\u504f\u7f6e\u7684\u68af\u5ea6":110,"\u8ba1\u7b97\u53cd\u5411rnn\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b":107,"\u8ba1\u7b97\u53d8\u6362\u77e9\u9635\u7684\u5927\u5c0f\u548c\u683c\u5f0f":110,"\u8ba1\u7b97\u5f53\u524d\u5c42\u6743\u91cd\u7684\u68af\u5ea6":110,"\u8ba1\u7b97\u6548\u7387\u66f4\u9ad8":95,"\u8ba1\u7b97\u6bcf\u4e2a\u8bcd\u7684\u8bcd\u5411\u91cf":107,"\u8ba1\u7b97\u6fc0\u6d3b\u51fd\u6570\u7684\u68af\u5ea6":110,"\u8ba1\u7b97\u7684\u7ec6\u8282\u5c06\u5728\u4e0b\u9762\u7684\u5c0f\u8282\u7ed9\u51fa":110,"\u8ba1\u7b97\u8282\u70b9":123,"\u8ba1\u7b97\u8282\u70b9\u4e4b\u95f4\u4e5f\u4e0d\u4f1a\u76f8\u4e92\u4f9d\u8d56":123,"\u8ba1\u7b97\u8f6c\u6362\u77e9\u9635\u548c\u8f93\u5165\u7684\u68af\u5ea6":110,"\u8ba1\u7b97\u8f93\u5165\u548c\u53c2\u6570\u7684\u68af\u5ea6":110,"\u8ba1\u7b97\u8f93\u5165\u5c42\u7684\u504f\u5dee":110,"\u8ba1\u7b97\u8f93\u51fa":110,"\u8ba1\u7b97\u8fd9\u4e2a\u6587\u4ef6\u7684md5":32,"\u8ba1\u7b97\u96c6\u7fa4\u901a\u5e38\u7531\u4e00\u7ec4":123,"\u8ba1\u7b97\u9700\u8981\u7684\u6570\u636e\u5b58\u653e\u5728":112,"\u8ba9paddle\u6838\u5fc3\u4e2d":66,"\u8bad\u7ec3":131,"\u8bad\u7ec3\u4e0e\u5e94\u7528":0,"\u8bad\u7ec3\u4efb\u52a1\u7684\u8fd0\u884c\u53ef\u80fd\u4f1a\u5360\u6ee1trainer\u548cparamet":32,"\u8bad\u7ec3\u548c\u7eaf\u4f7f\u7528":82,"\u8bad\u7ec3\u5931\u8d25\u65f6\u53ef\u4ee5\u68c0\u67e5\u9519\u8bef\u65e5\u5fd7":124,"\u8bad\u7ec3\u597d\u4e00\u4e2a\u6df1\u5c42\u795e\u7ecf\u7f51\u7edc\u901a\u5e38\u8981\u8017\u8d39\u975e\u5e38\u957f\u7684\u65f6\u95f4":117,"\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u9ed8\u8ba4\u4fdd\u5b58\u5728\u5f53\u524d\u8fd0\u884c\u76ee\u5f55\u4e0b\u7684":122,"\u8bad\u7ec3\u6570\u636e\u6709\u95ee\u9898":94,"\u8bad\u7ec3\u6570\u636e\u683c\u5f0f\u548c\u8bad\u7ec3\u7a0b\u5e8f\u7684":123,"\u8bad\u7ec3\u65f6":127,"\u8bad\u7ec3\u6a21\u578b\u540e":107,"\u8bad\u7ec3\u6a21\u578b\u6b63\u786e\u6027":82,"\u8bad\u7ec3\u7a0b\u5e8f":123,"\u8bad\u7ec3\u7ed3\u675f\u540e\u67e5\u770b\u8f93\u51fa\u7ed3\u679c":127,"\u8bad\u7ec3\u8282\u70b9\u6570\u91cf":127,"\u8bad\u7ec3\u8bed\u8a00\u6a21\u578b\u8ddd\u79bb":94,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u53c2\u6570\u6216\u8005\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u7684\u68af\u5ea6\u5c3a\u5ea6\u8fc7\u5927":94,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u6d4b\u8bd5test_period":131,"\u8bad\u7ec3\u8fc7\u7a0b\u662f\u5426\u4e3a\u672c\u5730\u6a21\u5f0f":132,"\u8bad\u7ec3\u8fc7\u7a0b\u662f\u5426\u4f7f\u7528gpu":132,"\u8bad\u7ec3\u914d\u7f6e\u4e2d\u7684\u8bbe\u5907\u5c5e\u6027\u5c06\u4f1a\u65e0\u6548":132,"\u8bad\u7ec3dot_period":131,"\u8bb0\u5f55\u4e0b\u6240\u6709\u5931\u8d25\u7684\u4f8b\u5b50":82,"\u8bb0\u5fc6\u6a21\u5757":107,"\u8bbe\u4e3a\u5df2\u90e8\u7f72\u7684\u5de5\u4f5c\u7a7a\u95f4\u76ee\u5f55":124,"\u8bbe\u4e3a\u672c\u5730":124,"\u8bbe\u5b9a":95,"\u8bbe\u7f6e":[66,94,95,97,136,137],"\u8bbe\u7f6e\u4e3a":110,"\u8bbe\u7f6e\u4e3a\u4e0d\u540c\u7684\u503c":95,"\u8bbe\u7f6e\u4e3atrue\u4f7f\u7528\u672c\u5730\u8bad\u7ec3\u6216\u8005\u4f7f\u7528\u96c6\u7fa4\u4e0a\u7684\u4e00\u4e2a\u8282\u70b9":132,"\u8bbe\u7f6e\u4e3atrue\u4f7f\u7528gpu\u6a21\u5f0f":132,"\u8bbe\u7f6e\u4e86\u76f8\u540c\u7684\u53d6\u503c":95,"\u8bbe\u7f6e\u5176\u53c2\u6570\u5c5e\u6027":96,"\u8bbe\u7f6e\u53c2\u6570\u7684\u540d\u5b57":96,"\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570":[94,114],"\u8bbe\u7f6e\u5b66\u4e60\u7387\u8870\u51cf\u56e0\u5b50\u5206\u6bb5\u51fd\u6570":96,"\u8bbe\u7f6e\u5e8f\u5217\u4fe1\u606f\u7684\u63a5\u53e3":121,"\u8bbe\u7f6e\u6210":96,"\u8bbe\u7f6e\u6210\u4e00\u4e2a\u5c0f\u4e00\u4e9b\u7684\u503c":94,"\u8bbe\u7f6e\u8f93\u51fa\u7684\u5c3a\u5bf8":110,"\u8bbe\u7f6e\u8f93\u51fatensor\u7684\u5f62\u72b6":111,"\u8bbe\u7f6e\u9ed8\u8ba4\u8bbe\u5907\u53f7\u4e3a0":134,"\u8bbe\u7f6egpu":132,"\u8bbf\u95ee\u5bf9\u5e94\u7684\u7f51\u5740":116,"\u8bbf\u95eekubernetes\u7684\u63a5\u53e3\u6765\u67e5\u8be2\u6b64job\u5bf9\u5e94\u7684\u6240\u6709pod\u4fe1\u606f":127,"\u8bc4\u5ba1\u4eba\u4e00\u822c\u4e0d\u505a\u8bc4\u5ba1":109,"\u8bc4\u5ba1\u4eba\u7684\u6bcf\u4e2a\u610f\u89c1\u90fd\u5fc5\u987b\u56de\u590d":109,"\u8bc4\u5ba1\u4eba\u9700\u8981\u9010\u4e00\u67e5\u770b\u6bcf\u4e2acommit\u624d\u80fd\u77e5\u9053\u505a\u4e86\u54ea\u4e9b\u4fee\u6539":109,"\u8bc4\u8bba\u6846\u4e2d\u52a0\u4e0a":109,"\u8bc6\u522b\u6570\u5b57":82,"\u8bcd\u5411\u91cf":82,"\u8bd5\u7740\u8ba9\u8f93\u51fa\u7684\u5206\u6790\u6570\u636e\u548c\u7406\u8bba\u503c\u5bf9\u5e94":117,"\u8be5\u53c2\u6570\u5728\u7f51\u7edc\u914d\u7f6e\u7684output":132,"\u8be5\u53c2\u6570\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u81ea\u52a8\u8bbe\u7f6e":132,"\u8be5\u53c2\u6570\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u5b8c\u6210\u8bbe\u7f6e":132,"\u8be5\u53c2\u6570\u5fc5\u987b\u80fd\u88abflag":132,"\u8be5\u53c2\u6570\u6307\u793a\u662f\u5426\u6253\u5370\u65e5\u5fd7\u622a\u65ad\u4fe1\u606f":132,"\u8be5\u53c2\u6570\u6307\u793a\u662f\u5426\u6253\u5370\u9519\u8bef\u622a\u65ad\u65e5\u5fd7":132,"\u8be5\u53c2\u6570\u7528\u4e8e\u6307\u5b9a\u52a8\u6001\u5e93\u8def\u5f84":132,"\u8be5\u53c2\u6570\u7684\u610f\u601d\u662f\u8bad\u7ec3num":132,"\u8be5\u53c2\u6570\u9ed8\u8ba4\u4e3anull":132,"\u8be5\u5c42\u4ec5\u9700\u8981\u8fd9\u4e9b\u975e\u96f6\u6837\u672c\u4f4d\u7f6e\u6240\u5bf9\u5e94\u7684\u53d8\u6362\u77e9\u9635\u7684\u90a3\u4e9b\u884c":110,"\u8be5\u622a\u65ad\u4f1a\u5f71\u54cd":132,"\u8be5\u6279\u6b21\u7684\u8f93\u5165\u4e2d\u4ec5\u6709\u4e00\u4e2a\u5b50\u96c6\u662f\u975e\u96f6\u7684":110,"\u8be5\u63a5\u53e3\u53ef\u7528\u4e8e\u9884\u6d4b\u548c\u5b9a\u5236\u5316\u8bad\u7ec3":97,"\u8be5\u63a5\u53e3\u63a5\u53d7\u4e24\u4e2a\u53c2\u6570":122,"\u8be5\u6570\u76ee\u662f\u63d0\u524d\u5b9a\u4e49\u597d\u7684":132,"\u8be5\u6587\u4ef6\u5bf9\u76f8\u5173gemm":61,"\u8be5\u65f6\u95f4\u53bb\u9664\u6389\u672c\u51fd\u6570\u8c03\u7528\u5176\u4ed6\u51fd\u6570\u7684\u65f6\u95f4":116,"\u8be5\u6a21\u578b\u7684\u8bf4\u660e\u5982\u4e0b\u56fe\u6240\u793a":107,"\u8be5\u7c7b\u7684":111,"\u8be5\u7c7b\u7684\u5b9e\u73b0\u7ec6\u8282\u5728":110,"\u8be5\u7c7b\u7ee7\u627f\u4e8epaddlepaddle\u7684\u57fa\u7c7b":62,"\u8be5\u811a\u672c\u4e2d\u8bb0\u5f55\u4e86\u4ea4\u53c9\u7f16\u8bd1android\u7248paddlepaddle\u5e93\u5e38\u7528\u7684cmake\u914d\u7f6e":136,"\u8be5\u8bed\u53e5\u4f1a\u4e3a\u6bcf\u4e2a\u5c42\u521d\u59cb\u5316\u5176\u6240\u9700\u8981\u7684\u53d8\u91cf\u548c\u8fde\u63a5":110,"\u8be5layer\u662f\u901a\u8fc7\u53c2\u6570":95,"\u8be6\u7ec6\u4ecb\u7ecd\u53ef\u4ee5\u53c2\u8003":104,"\u8be6\u7ec6\u4ecb\u7ecd\u8bf7\u53c2\u8003\u8bbe\u8ba1\u6587\u6863":111,"\u8be6\u7ec6\u4fe1\u606f\u8bf7\u68c0\u67e5":124,"\u8be6\u7ec6\u53c2\u8003":97,"\u8be6\u7ec6\u53ef\u53c2\u8003":109,"\u8be6\u7ec6\u6587\u6863\u53c2\u8003":94,"\u8be6\u7ec6\u7684cmake\u4f7f\u7528\u65b9\u6cd5\u53ef\u4ee5\u53c2\u8003":97,"\u8be6\u7ec6\u89c1":103,"\u8be6\u7ec6\u8bbe\u8ba1":48,"\u8bed\u610f\u89d2\u8272\u6807\u6ce8":82,"\u8bed\u8a00\u91cd\u6784\u540e\u7684":116,"\u8bf4\u660e":[32,97,100,121],"\u8bf4\u660e\u63d0\u4ea4\u7684\u4ee3\u7801\u5b58\u5728\u95ee\u9898":109,"\u8bf4\u660e\u8fd9\u4e2a\u5c42\u7684\u8f93\u5165":110,"\u8bf7\u4e0d\u8981\u521b\u5efa\u7a7a\u7684":111,"\u8bf7\u4e0d\u8981\u5fd8\u8bb0\u63d0\u524d\u5728\u7269\u7406\u673a\u4e0a\u5b89\u88c5gpu\u6700\u65b0\u9a71\u52a8":98,"\u8bf7\u4fdd\u8bc1travi":109,"\u8bf7\u5148\u4f7f\u7528":[136,137,138],"\u8bf7\u53c2\u7167\u7f51\u7edc\u914d\u7f6e\u7684\u6587\u6863\u4e86\u89e3\u66f4\u8be6\u7ec6\u7684\u4fe1\u606f":134,"\u8bf7\u53c2\u8003":[66,91,94,101,104,110,111,122],"\u8bf7\u53c2\u8003\u6b64":122,"\u8bf7\u53c2\u89c1":109,"\u8bf7\u53c2\u9605":107,"\u8bf7\u5728\u8be5pull":109,"\u8bf7\u5728\u8f93\u5165\u65f6\u8fdb\u884c\u5408\u6cd5\u6027\u68c0\u67e5":121,"\u8bf7\u60a8\u6bcf\u6b21\u63d0\u4ea4\u4ee3\u7801\u65f6":109,"\u8bf7\u60a8\u9075\u5b88\u4ee5\u4e0b\u7ea6\u5b9a":109,"\u8bf7\u6307\u5b9a\u7684paddlepaddle\u5de5\u4f5c\u76ee\u5f55\u7ed9\u73af\u5883\u53d8\u91cf":113,"\u8bf7\u6307\u5b9a\u8be5\u76ee\u5f55":132,"\u8bf7\u663e\u793a\u5730\u8c03\u7528":111,"\u8bf7\u68c0\u67e5python\u7248\u672c\u662f\u5426\u4e3a2":100,"\u8bf7\u6ce8\u610f":[107,111,126],"\u8bf7\u6ce8\u610f\u662f\u5426\u9700\u8981\u4fee\u6539\u7f51\u7edc\u7ed3\u6784":122,"\u8bf7\u6ce8\u610f\u6bcf\u4e2acommit\u7684\u540d\u79f0":109,"\u8bf7\u6ce8\u610f\u8fd9\u4e2a\u547d\u4ee4\u7ed3\u5c3e\u5904\u7684":108,"\u8bf7\u6ce8\u610fcommit\u7684\u6570\u91cf":109,"\u8bf7\u76f4\u63a5\u586b\u51450":96,"\u8bf7\u770b\u4e0b\u9762\u7684\u4f8b\u5b50":134,"\u8bf7\u786e\u4fdd":109,"\u8bf7\u7ed9\u51fa\u603b\u4f53\u7684\u4fee\u6539\u60c5\u51b5":109,"\u8bf7\u7ed9\u51fa\u60a8\u81ea\u5df1\u7684\u53cd\u9a73\u7406\u7531":109,"\u8bf7\u9009\u62e9\u5408\u9002\u7684\u8bcd\u6c47":109,"\u8bf7\u9009\u62e9\u6b63\u786e\u7684\u7248\u672c":91,"\u8bf7\u9075\u5b88":109,"\u8bf7\u91c7\u7528":109,"\u8bf8\u5982\u56fe\u50cf\u5206\u7c7b":134,"\u8bfb\u53d6\u9700\u8981\u7684\u7ed3\u679c\u5373\u53ef":121,"\u8bfb\u53d6volume\u4e2d\u7684\u6570\u636e\u8fdb\u884c\u8fd9\u6b21\u5206\u5e03\u5f0f\u8bad\u7ec3":127,"\u8bfb\u8005\u53ef\u4ee5\u67e5\u770b":127,"\u8bfb\u8005\u9700\u8981\u66ff\u6362\u6210\u81ea\u5df1\u4f7f\u7528\u7684\u4ed3\u5e93\u5730\u5740":127,"\u8c03\u7528":[110,122,137],"\u8c03\u7528\u5bf9\u5e94":112,"\u8c03\u7528\u65b9\u6cd5\u89c1c":[136,137],"\u8c03\u7528\u7528":116,"\u8c03\u7528\u7684\u4e00\u4e9b\u7528\u6237\u5b9a\u4e49\u7684\u5e93\u51fd\u6570":123,"\u8c03\u7528\u7684\u51fd\u6570\u662f\u5426\u652f\u6301\u4e0d\u540c\u8bbe\u5907":111,"\u8c03\u7528\u8be5\u51fd\u6570\u540e":110,"\u8c03\u7528c":[121,122],"\u8d21\u732e\u6587\u6863":113,"\u8d77":104,"\u8d77\u59cb\u5b58\u50a8\u5730\u5740\u4ee5\u6570\u636e\u7684\u5b58\u50a8\u5927\u5c0f\u4e3a\u5355\u4f4d\u7684\u504f\u79fb":121,"\u8df3\u8f6c\u5230":109,"\u8df3\u8fc7":94,"\u8f6c\u5316\u65b9\u6cd5\u5728\u76f8\u5e94\u7684\u9886\u57df\u90fd\u6709\u901a\u7528\u89e3\u51b3\u65b9\u6848":121,"\u8f6c\u6362\u5185\u5b58\u7684\u5de5\u4f5c":62,"\u8f6c\u6362\u5197\u4f59":61,"\u8f6c\u6362\u51fd\u6570":62,"\u8f6c\u6362\u751f\u6210\u7684\u6587\u4ef6\u540d\u4f1a\u662f\u4ee5\u4e0b\u683c\u5f0f":33,"\u8f6c\u6362\u8017\u65f6":61,"\u8f83":104,"\u8f93\u5165":[103,107,120,122],"\u8f93\u5165\u4e86\u6027\u80fd\u5206\u6790\u7ed3\u679c":116,"\u8f93\u5165\u548c\u8f93\u51fa\u90fd\u662f\u5355\u5c42\u5e8f\u5217":106,"\u8f93\u5165\u548c\u8f93\u51fa\u90fd\u662f\u53cc\u5c42\u5e8f\u5217":106,"\u8f93\u5165\u5e8f\u5217\u4e2d\u5143\u7d20\u7684\u603b\u6570":94,"\u8f93\u5165\u6570\u636e\u4e3a\u4e00\u4e2a\u5b8c\u6574\u7684\u65f6\u95f4\u5e8f\u5217":104,"\u8f93\u5165\u6570\u636e\u4e3a\u5728\u5355\u5c42rnn\u6570\u636e\u91cc\u9762":104,"\u8f93\u5165\u6570\u636e\u53ef\u5206\u4e3a":121,"\u8f93\u5165\u6570\u636e\u6574\u4f53\u4e0a\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":104,"\u8f93\u5165\u6570\u636e\u7684\u5b57\u5178\u7ef4\u6570\u662f1\u767e\u4e07":134,"\u8f93\u5165\u6570\u636e\u7c7b\u578b":121,"\u8f93\u5165\u662f\u5426\u662f\u8f6c\u7f6e\u7684":110,"\u8f93\u5165\u662f\u7531\u4e00\u4e2alist\u4e2d\u7684\u7f51\u7edc\u5c42\u5b9e\u4f8b\u7684\u540d\u5b57\u7ec4\u6210\u7684":110,"\u8f93\u5165\u68af\u5ea6":62,"\u8f93\u5165\u7684\u540d\u5b57":110,"\u8f93\u5165\u7684\u5927\u5c0f":110,"\u8f93\u5165\u7684\u7c7b\u578b":110,"\u8f93\u5165\u9700\u8981\u9884\u6d4b\u7684\u5411\u91cf\u7ec4":101,"\u8f93\u51fa":[103,107,111,122],"\u8f93\u51fa\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":106,"\u8f93\u51fa\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":106,"\u8f93\u51fa\u4fe1\u606f\u6709\u673a\u5730\u7ec4\u7ec7\u5728\u4e00\u8d77":121,"\u8f93\u51fa\u51fd\u6570":107,"\u8f93\u51fa\u521b\u5efa":[121,122],"\u8f93\u51fa\u5e8f\u5217\u7684\u7c7b\u578b":103,"\u8f93\u51fa\u5e8f\u5217\u7684\u8bcd\u8bed\u6570\u548c\u8f93\u5165\u5e8f\u5217\u4e00\u81f4":106,"\u8f93\u51fa\u6240\u643a\u5e26\u7684\u5e8f\u5217\u4fe1\u606f":121,"\u8f93\u51fa\u6570\u636e\u548c\u8f93\u51fa\u68af\u5ea6":62,"\u8f93\u51fa\u6570\u636e\u548c\u8f93\u51fa\u68af\u5ea6\u7684\u8f6c\u6362":62,"\u8f93\u51fa\u6570\u636e\u662f\u5728\u4e0a\u6587\u4ecb\u7ecd\u7684":121,"\u8f93\u51fa\u6570\u636e\u6709\u673a\u5730\u7ec4\u7ec7\u5728\u4e00\u8d77":122,"\u8f93\u51fa\u6570\u636e\u7ec4\u7ec7":[120,122],"\u8f93\u51fa\u7531":121,"\u8f93\u51fa\u7684\u5e8f\u5217\u4fe1\u606f":121,"\u8f93\u51fa\u7684\u68af\u5ea6":132,"\u8f93\u51fa\u7ed3\u679c\u53ef\u80fd\u4f1a\u968f\u7740\u5bb9\u5668\u7684\u6d88\u8017\u800c\u88ab\u5220\u9664":126,"\u8f93\u51fa\u88ab\u7ec4\u7ec7\u4e3a":121,"\u8f93\u51fa\u88ab\u7ec4\u7ec7\u4e3a\u4e00\u4e2a":121,"\u8f93\u51fa\u90fd\u4f1a\u5bf9\u5e94\u6709\u81ea\u5df1\u7684":[121,122],"\u8fbe\u5230\u5bb9\u707e\u7684\u76ee\u7684":32,"\u8fc7\u4e86\u4e00\u4e2a\u5f88\u7b80\u5355\u7684recurrent_group":104,"\u8fc7\u5b8c\u6240\u6709\u8bad\u7ec3\u6570\u636e\u5373\u4e3a\u4e00\u4e2apass":94,"\u8fc7\u7a0b\u4e2d\u6240\u6709\u65f6\u95f4\u6b65":61,"\u8fd0\u884c":122,"\u8fd0\u884c\u4e00\u4e2a":108,"\u8fd0\u884c\u4e0b\u9762\u547d\u4ee4\u53ef\u4ee5\u8fdb\u884c\u7f16\u8bd1":111,"\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5":108,"\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5\u6d4b\u65f6\u9700\u8981\u7f16\u8bd1\u6574\u4e2a\u5de5\u7a0b":111,"\u8fd0\u884c\u5931\u8d25":134,"\u8fd0\u884c\u5b8c\u6210\u540e":124,"\u8fd0\u884c\u5b8c\u6bd5\u540e\u8f93\u51fa":116,"\u8fd0\u884c\u6027\u80fd\u5206\u6790\u7684\u65f6\u5019":116,"\u8fd0\u884c\u65e5\u5fd7":124,"\u8fd0\u884c\u65f6\u4e5f\u53ef\u80fd\u56e0\u4e3a\u591a\u7ebf\u7a0b\u4ea7\u751f\u6df7\u4e71\u4e0d\u53ef\u8bfb\u7684\u6027\u80fd\u5206\u6790\u7ed3\u679c":116,"\u8fd0\u884c\u65f6\u4f1a\u81ea\u52a8\u627e\u5230\u7cfb\u7edf\u4e2d\u5b89\u88c5\u7684cuda\u548ccudnn\u5e93\u8fdb\u884c\u7f16\u8bd1\u548c\u6267\u884c":97,"\u8fd0\u884c\u65f6c":122,"\u8fd0\u884c\u7684\u4e00\u4e9b\u53c2\u6570\u901a\u8fc7\u8fd9\u79cd\u65b9\u5f0f\u4f20\u9012\u5230\u5bb9\u5668\u5185":127,"\u8fd0\u884c\u8be5\u7f16\u8bd1\u5de5\u5177\u94fe\u9700\u8981\u4e00\u53f0":138,"\u8fd1":104,"\u8fd1\u671f\u76ee\u6807":62,"\u8fd4\u56de":[3,4,5,9,10,11,17,18,19,20,25],"\u8fd4\u56de\u7684\u662f":101,"\u8fd4\u56de\u7b2c\u4e8c\u6b65":82,"\u8fd4\u56de\u7b2ci\u4e2a\u8f93\u5165\u77e9\u9635":110,"\u8fd4\u56de\u7c7b\u578b":[3,4,5,9,10,11,18,19,20,25],"\u8fd4\u56depython\u7aef\u7684\u8ba1\u7b97\u7ed3\u679c":111,"\u8fd8\u4f1a":104,"\u8fd8\u4f1a\u4e0b\u8f7dmkl":97,"\u8fd8\u4f1a\u5f3a\u5236\u8bbe\u7f6e\u4e00\u4e9bpaddlepaddle\u53c2\u6570\u7684\u503c":136,"\u8fd8\u4f1a\u8f93\u51fa\u4e00\u4e2a":109,"\u8fd8\u53ef\u4ee5\u901a\u8fc7\u51cf\u5c0f\u5b66\u4e60\u7387\u6216\u8005\u5bf9\u6570\u636e\u8fdb\u884c\u5f52\u4e00\u5316\u5904\u7406\u6765\u89e3\u51b3\u8fd9\u7c7b\u95ee\u9898":94,"\u8fd8\u662f":104,"\u8fd8\u662f\u4ece":33,"\u8fd8\u662f\u865a\u62df\u673a":108,"\u8fd8\u6709":104,"\u8fd8\u9700\u8981\u5728\u8282\u70b9\u4e0a\u5b89\u88c5\u5bf9\u5e94\u7684gpu\u9a71\u52a8\u4ee5\u53cacuda":123,"\u8fd8\u9700\u8981\u91cd\u5199":111,"\u8fd9":[94,104],"\u8fd98\u79cdlearning_rate_schedule\u53ca\u5176\u5bf9\u5e94\u5b66\u4e60\u7387\u8ba1\u7b97\u65b9\u5f0f\u5982\u4e0b":96,"\u8fd9\u4e00\u4e2a\u5e93":119,"\u8fd9\u4e00\u5757\u7684\u8017\u65f6\u6bd4\u4f8b\u771f\u7684\u592a\u9ad8":117,"\u8fd9\u4e00\u5c42\u8fdb\u884c\u5c01\u88c5":66,"\u8fd9\u4e00\u6570\u636e\u683c\u5f0f\u7684\u8f6c\u6362\u64cd\u4f5c":61,"\u8fd9\u4e00\u6982\u5ff5\u4e0d\u518d\u7410\u788e":66,"\u8fd9\u4e00\u8282\u5bf9\u56fe1\u4e2d\u9884\u6d4b\u4ee3\u7801\u7f16\u5199\u76845\u4e2a\u6b65\u9aa4\u8fdb\u884c\u4ecb\u7ecd\u548c\u8bf4\u660e":122,"\u8fd9\u4e00\u8ba1\u7b97\u5355\u5143":95,"\u8fd9\u4e00\u8fc7\u7a0b\u5bf9\u7528\u6237\u662f\u5b8c\u5168\u900f\u660e\u7684":106,"\u8fd9\u4e09\u4e2a\u5206\u652f":82,"\u8fd9\u4e24\u4e2a\u6307\u6807\u4ee3\u8868\u4e86\u67d0\u4e00\u4e2a\u51fd\u6570\u771f\u5b9e\u7684\u8fd0\u884c\u65f6\u95f4":116,"\u8fd9\u4e2a":[100,104,108],"\u8fd9\u4e2a\u4efb\u52a1\u7684\u914d\u7f6e\u4e3a":94,"\u8fd9\u4e2a\u4efb\u52a1\u7684dataprovider\u4e3a":94,"\u8fd9\u4e2a\u4f8b\u5b50\u6709\u4e24\u5904\u4e0d\u540c":111,"\u8fd9\u4e2a\u51fd\u6570\u672c\u8eab\u4f1a\u5728\u8ba1\u7b97\u524d\u5c06\u539f\u6570\u636e\u8f6c\u6362\u4e3a\u66f4\u9002\u5408\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u5185\u90e8\u683c\u5f0f":61,"\u8fd9\u4e2a\u51fd\u6570\u7684":107,"\u8fd9\u4e2a\u51fd\u6570\u8fdb\u884c\u53d8\u6362":104,"\u8fd9\u4e2a\u51fd\u6570\u9700\u8981\u8bbe\u7f6e":107,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u7684\u8fde\u63a5\u53c2\u6570\u4e0epaddle\u7684\u5176\u4ed6\u4e8c\u8fdb\u5236":66,"\u8fd9\u4e2a\u53c2\u6570\u4e5f\u4e0d\u4f1a\u4e00\u5e76\u5220\u9664":66,"\u8fd9\u4e2a\u5730\u5740\u6765\u8868\u793a\u6b64\u6b65\u9aa4\u6240\u6784\u5efa\u51fa\u7684\u955c\u50cf":127,"\u8fd9\u4e2a\u57fa\u7c7b":110,"\u8fd9\u4e2a\u5934\u6587\u4ef6\u4e0d\u5047\u8bbe\u5176\u4ed6\u6587\u4ef6\u7684\u5f15\u7528\u987a\u5e8f":66,"\u8fd9\u4e2a\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20\u53c8\u662f\u4e00\u4e2a\u5e8f\u5217":106,"\u8fd9\u4e2a\u60c5\u51b5\u4e0b\u6240\u6709\u7684\u6587\u4ef6\u4f1a\u5b58\u5728\u6574\u7406\u8fc7\u7684\u7684\u6587\u4ef6\u76ee\u5f55":113,"\u8fd9\u4e2a\u63a5\u53e3\u9700\u8981\u505a\u5230":65,"\u8fd9\u4e2a\u6570\u636e\u4e5f\u88ab\u5355\u5c42rnn\u7f51\u7edc\u76f4\u63a5\u4f7f\u7528":104,"\u8fd9\u4e2a\u6587\u4ef6\u5177\u6709\u72ec\u7279\u7684\u8bed\u6cd5":65,"\u8fd9\u4e2a\u662f\u76ee\u524d\u63a8\u8350\u7684\u4f7f\u7528\u65b9\u6cd5":113,"\u8fd9\u4e2a\u73af\u5883\u53d8\u91cf\u5173\u95edopenmp\u4f18\u5316":116,"\u8fd9\u4e2a\u76ee\u5f55\u4e2d\u9664\u4e86":66,"\u8fd9\u4e2a\u793a\u4f8b":122,"\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u5355\u5143\u5c31\u53ebmemori":104,"\u8fd9\u4e2a\u7c7b\u7684\u53c2\u6570\u5305\u62ec":110,"\u8fd9\u4e2a\u7c7b\u9700\u8981\u7ee7\u627f":110,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u4e2d\u7684\u53e6\u4e00\u4e2a\u9879\u76ee\u662f":66,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u5305\u542b\u4e24\u4e2a\u9879\u76ee":66,"\u8fd9\u4e2a\u811a\u672c\u8c03\u7528":108,"\u8fd9\u4e2a\u8f93\u5165\u4e0d\u53c2\u4e0e":111,"\u8fd9\u4e2a\u8fc7\u7a0b\u5bf9\u7528\u6237\u4e5f\u662f\u900f\u660e\u7684":106,"\u8fd9\u4e2a\u8fc7\u7a0b\u9664\u4e86\u7f16\u8bd1paddlepaddle\u4e3a":109,"\u8fd9\u4e2a\u9009\u62e9":[61,62],"\u8fd9\u4e2a\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u751f\u6210\u4e00\u7cfb\u5217\u6743\u91cd":107,"\u8fd9\u4e2a\u9759\u6001\u5e93\u5305\u542b\u4e86paddle\u7684\u5168\u90e8\u7b26\u53f7":66,"\u8fd9\u4e2ainstance\u53ef\u4ee5\u662f\u5355\u4e2a\u503c":33,"\u8fd9\u4e2aissu":108,"\u8fd9\u4e2ajob\u624d\u7b97\u6210\u529f\u7ed3\u675f":127,"\u8fd9\u4e2alayer\u7684\u8f93\u51fa\u4f1a\u4f5c\u4e3a\u6574\u4e2a":106,"\u8fd9\u4e5f\u4f1a\u6781\u5927\u51cf\u5c11\u6570\u636e\u8bfb\u5165\u7684\u8017\u65f6":94,"\u8fd9\u4e9b\u4f1a\u5728":[61,62],"\u8fd9\u4e9b\u4f8b\u5b50\u90fd\u53ef\u4ee5\u5728":123,"\u8fd9\u4e9b\u51fd\u6570\u4f1a\u5c06\u5bf9\u5e94\u5185\u5bb9\u6dfb\u52a0\u5230":111,"\u8fd9\u4e9b\u51fd\u6570\u4f1a\u6839\u636e\u8f93\u5165\u53c2\u6570\u91cd\u65b0\u8bbe\u7f6e\u5185\u90e8\u548c\u5916\u90e8\u5b58\u50a8":62,"\u8fd9\u4e9b\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1\u901a\u5e38\u4f1a\u628a\u6570\u636e\u5207\u5272\u6210\u591a\u4e2a\u5206\u7247\u5206\u5e03\u5f0f\u7684\u5b58\u50a8\u5728\u591a\u4e2a\u8282\u70b9\u4e4b\u4e0a":33,"\u8fd9\u4e9b\u53c2\u6570\u53ef\u4ee5\u901a\u8fc7":123,"\u8fd9\u4e9b\u53c2\u6570\u7684\u5177\u4f53\u63cf\u8ff0":127,"\u8fd9\u4e9b\u540d\u5b57\u5fc5\u987b\u8981\u5199\u5bf9":110,"\u8fd9\u4e9b\u6570\u636e\u4f1a\u88ab\u7528\u6765\u66f4\u65b0\u53c2\u6570":94,"\u8fd9\u4e9b\u6570\u636e\u4f7f\u7528\u7684\u5185\u5b58\u4e3b\u8981\u548c\u4e24\u4e2a\u53c2\u6570\u6709\u5173\u7cfb":94,"\u8fd9\u4e9b\u7279\u5f81\u6570\u636e\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u6709\u610f\u4e49\u7684":104,"\u8fd9\u4e9b\u955c\u50cf\u4e5f\u53ef\u4ee5\u4ece":82,"\u8fd9\u4efd\u6559\u7a0b\u5c55\u793a\u4e86\u5982\u4f55\u5728paddlepaddle\u4e2d\u5b9e\u73b0\u4e00\u4e2a\u81ea\u5b9a\u4e49\u7684\u7f51\u7edc\u5c42":110,"\u8fd9\u4f1a\u63d0\u793a\u5f53\u524d\u76ee\u5f55\u7684\u4e00\u4e9b\u53d8\u5316":109,"\u8fd9\u4f1a\u7ed9\u8bc4\u5ba1\u4eba\u5e26\u6765\u5f88\u5927\u56f0\u6270":109,"\u8fd9\u4f1a\u81ea\u52a8\u8fdb\u884c\u7f51\u7edc\u914d\u7f6e\u4e2d\u58f0\u660e\u7684\u6fc0\u6d3b\u64cd\u4f5c":110,"\u8fd9\u4fbf\u662f\u4e00\u79cd\u53cc\u5c42rnn\u7684\u8f93\u5165\u6570\u636e":104,"\u8fd9\u51e0\u4e2a\u7f16\u8bd1\u9009\u9879\u7684\u8bbe\u7f6e":97,"\u8fd9\u53e5\u8868\u793a\u4f7f\u7528\u57fa\u7c7b":111,"\u8fd9\u53ef\u4ee5\u5e2e\u60a8\u7701\u6389\u82b1\u4e00\u5c0f\u65f6\u5b89\u88c5\u548c\u914d\u7f6e\u5404\u79cd\u5f00\u53d1\u5de5\u5177":108,"\u8fd9\u53ef\u4ee5\u8ba9\u5176\u4ed6\u4eba\u77e5\u9053\u8fd9\u6b21\u63d0\u4ea4\u505a\u4e86\u54ea\u4e9b\u6539\u53d8":109,"\u8fd9\u53ef\u4ee5\u901a\u8fc7":109,"\u8fd9\u548c\u5355\u5c42rnn\u7684\u914d\u7f6e\u662f\u7b49\u4ef7\u7684":104,"\u8fd9\u56db\u4e2a\u5e8f\u5217\u53c8\u5206\u522b\u542b\u67093":121,"\u8fd9\u56db\u6761\u6570\u636e\u540c\u65f6\u5904\u7406\u7684\u53e5\u5b50\u6570\u91cf\u4e3a":104,"\u8fd9\u5728\u6784\u9020\u975e\u5e38\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u65f6\u662f\u6709\u7528\u7684":107,"\u8fd9\u5bf9\u4e8e\u901a\u5e38\u7684java\u7684\u5f00\u53d1\u8005\u6765\u8bf4":65,"\u8fd9\u5c06\u4f1a\u5bfc\u81f4\u5355\u5143\u6d4b\u8bd5\u51fa\u9519":111,"\u8fd9\u5c06\u4f1a\u5bfc\u81f4\u7f16\u8bd1\u51fa\u9519":111,"\u8fd9\u610f\u5473\u7740":107,"\u8fd9\u610f\u5473\u7740\u9664\u4e86\u6307\u5b9adevic":134,"\u8fd9\u65f6":[94,122],"\u8fd9\u65f6\u5728\u4f7f\u7528":96,"\u8fd9\u65f6\u7684":121,"\u8fd9\u65f6\u7684\u9700\u8981\u540c\u65f6\u63d0\u4f9b":121,"\u8fd9\u65f6\u884c\u504f\u79fb\u548c\u5217\u53f7\u6307\u5b9a\u7684\u5143\u7d20\u9ed8\u8ba4\u5176\u503c\u4e3a1":121,"\u8fd9\u65f6\u8fdb\u884c\u77e9\u9635\u4e58\u6cd5\u8fd0\u7b97\u5c31\u53ef\u80fd\u5bfc\u81f4\u6d6e\u70b9\u6570\u6ea2\u51fa":94,"\u8fd9\u65f6\u9700\u8981\u8c03\u7528\u521b\u5efa\u5e8f\u5217\u4fe1\u606f\u548c\u4e3a":121,"\u8fd9\u662f\u4e00\u79cd\u6309\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5206\u6bb5\u53d6\u503c\u7684\u5b66\u4e60\u7387\u9000\u706b\u65b9\u6cd5":96,"\u8fd9\u662f\u4e00\u79cd\u6309\u5df2\u8bad\u7ec3pass\u6570\u5206\u6bb5\u53d6\u503c\u7684\u5b66\u4e60\u7387\u9000\u706b\u65b9\u6cd5":96,"\u8fd9\u662f\u4e00\u79cd\u975e\u5e38\u7075\u6d3b\u7684\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f":103,"\u8fd9\u662f\u56e0\u4e3a":65,"\u8fd9\u662f\u5f00\u6e90\u793e\u533a\u7684\u57fa\u672c\u793c\u8c8c":109,"\u8fd9\u662f\u666e\u901a\u7684\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u7684dataprovider\u4ee3\u7801":104,"\u8fd9\u662f\u76ee\u524dcmake\u5bfb\u627epython\u7684\u903b\u8f91\u5b58\u5728\u7f3a\u9677":91,"\u8fd9\u6837":[66,123],"\u8fd9\u6837\u4e0b\u4e00\u4e2acpu":62,"\u8fd9\u6837\u4fdd\u5b58\u5728\u5206\u5e03\u5f0f\u5b58\u50a8\u4e2d\u7684\u6570\u636e\u53ef\u4ee5\u88ab\u96c6\u7fa4\u4e2d\u7684\u6bcf\u4e2a\u8282\u70b9\u8bfb\u53d6\u5230":123,"\u8fd9\u6837\u4fdd\u8bc1":82,"\u8fd9\u6837\u4fdd\u8bc1\u8fd0\u884c\u7ed3\u675f\u4e4b\u540e\u7684":108,"\u8fd9\u6837\u505a\u53ef\u4ee5\u6781\u5927\u7684\u51cf\u5c11\u5185\u5b58\u5360\u7528":94,"\u8fd9\u6837\u53ef\u4ee5\u514d\u53bb\u5355\u72ec\u5b89\u88c5\u7f16\u8bd1\u4f9d\u8d56\u7684\u6b65\u9aa4":97,"\u8fd9\u6837\u53ef\u4ee5\u51cf\u5c0fgpu\u5185\u5b58":134,"\u8fd9\u6837\u5982\u679c\u9047\u5230\u95ee\u9898":108,"\u8fd9\u6837\u5bb9\u5668\u7684":127,"\u8fd9\u6837\u5c31\u53ef\u4ee5\u5728\u4e91\u7aef\u6267\u884c\u591a\u79cd\u6570\u636e\u7c7b\u8ba1\u7b97\u4efb\u52a1":33,"\u8fd9\u6837\u5df2\u7ecf\u4f20\u8f93\u6210\u529f\u7684\u90e8\u5206\u5c31\u4e0d\u7528\u91cd\u65b0\u4f20\u8f93\u4e86":48,"\u8fd9\u6837\u5e26\u6765\u7684\u597d\u5904\u5c31\u662f\u4e0d\u9700\u8981\u4e00\u76f4\u6e05\u7a7amemori":62,"\u8fd9\u6837\u5f53\u8be5pull":109,"\u8fd9\u6837\u65e2\u4f7f\u5f97\u6700\u7ec8\u4fdd\u5b58\u7684\u53c2\u6570\u683c\u5f0f\u4e0epaddlepaddle\u4e00\u81f4":62,"\u8fd9\u6837\u6781\u5927\u5730\u63d0\u9ad8\u4e86\u8ba1\u7b97\u7684\u5e76\u884c\u6027":123,"\u8fd9\u6837\u7684\u88c5\u9970\u5668":110,"\u8fd9\u6837\u7684\u8bdd":126,"\u8fd9\u6837\u8bad\u7ec3\u6587\u4ef6\u7684\u4e2a\u6570\u4f1a\u6bd4\u8f83\u591a":123,"\u8fd9\u6b63\u662f\u5b83\u4eec\u901f\u5ea6\u5feb\u7684\u539f\u56e0":117,"\u8fd9\u7528\u4e8e\u5728\u591a\u7ebf\u7a0b\u548c\u591a\u673a\u4e0a\u66f4\u65b0\u53c2\u6570":110,"\u8fd9\u79cd\u521d\u59cb\u5316\u65b9\u5f0f\u5728\u4e00\u822c\u60c5\u51b5\u4e0b\u4e0d\u4f1a\u4ea7\u751f\u5f88\u5dee\u7684\u7ed3\u679c":96,"\u8fd9\u79cd\u60c5\u51b5\u4e0b\u4e0d\u9700\u8981\u91cd\u5199\u8be5\u51fd\u6570":110,"\u8fd9\u79cd\u60c5\u51b5\u591a\u51fa\u73b0\u5728\u4f7f\u7528\u591a\u7ebf\u7a0b\u9884\u6d4b\u65f6":122,"\u8fd9\u79cd\u60c5\u51b5\u5e38\u5e38\u53d1\u751f\u5728":94,"\u8fd9\u79cd\u65b9\u5f0f\u5bf9\u5185\u5b58\u6d88\u8017\u8f83\u5927":95,"\u8fd9\u79cd\u65b9\u5f0f\u5fc5\u987b\u4f7f\u7528paddle\u5b58\u50a8\u7684\u6a21\u578b\u8def\u5f84\u683c\u5f0f":134,"\u8fd9\u79cd\u65b9\u5f0f\u6700\u4e3a\u7b80\u4fbf":119,"\u8fd9\u79cd\u751f\u6210\u6280\u672f\u53ea\u7528\u4e8e\u7c7b\u4f3c\u89e3\u7801\u5668\u7684\u751f\u6210\u8fc7\u7a0b":107,"\u8fd9\u79cd\u7c7b\u578b\u7684\u8f93\u5165\u5fc5\u987b\u901a\u8fc7":106,"\u8fd9\u79cd\u94fe\u63a5\u65b9\u5f0f\u4e3b\u8981\u7528\u4e8e\u79fb\u52a8\u7aef\u9884\u6d4b":119,"\u8fd9\u79cd\u96c6\u7fa4\u8282\u70b9\u7ba1\u7406\u65b9\u5f0f\u4f1a\u5728\u5c06\u6765\u4f7f\u7528":127,"\u8fd9\u7bc7":98,"\u8fd9\u7bc7\u6587\u6863":109,"\u8fd9\u7bc7\u6587\u6863\u4e4b\u540e\u90e8\u5206\u4f1a\u4f7f\u7528":122,"\u8fd9\u7bc7\u6587\u6863\u4e4b\u540e\u90e8\u5206\u4f1a\u7edf\u4e00\u4f7f\u7528":121,"\u8fd9\u7bc7\u6587\u6863\u4e4b\u540e\u90e8\u5206\u5c06\u4f1a\u7edf\u4e00\u4f7f\u7528":121,"\u8fd9\u7bc7\u6587\u6863\u4ecb\u7ecd":122,"\u8fd9\u7bc7\u6587\u6863\u4ecb\u7ecd\u5728":138,"\u8fd9\u7bc7\u6587\u6863\u4ecb\u7ecd\u5728\u4f7f\u7528":121,"\u8fd9\u7bc7\u6587\u6863\u4ecb\u7ecd\u57fa\u4e8e":108,"\u8fd9\u7bc7\u6587\u6863\u7684\u4e4b\u540e\u90e8\u5206\u4f1a\u4f7f\u7528":122,"\u8fd9\u7bc7\u6587\u7ae0":108,"\u8fd9\u7ec4\u8bed\u4e49\u76f8\u540c\u7684\u793a\u4f8b\u914d\u7f6e\u5982\u4e0b":104,"\u8fd9\u884c\u547d\u4ee4\u4e2d":116,"\u8fd9\u901a\u8fc7\u83b7\u5f97\u53cd\u5411\u5faa\u73af\u7f51\u7edc\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b":107,"\u8fd9\u90fd\u9700\u8981\u8fd9\u4e2a\u63a5\u53e3\u6309\u7167\u7ea6\u5b9a\u4fd7\u6210\u7684\u89c4\u5219\u6765\u6ce8\u91ca\u5b8c\u5907":65,"\u8fd9\u91cc":[62,96,97,107,109,127],"\u8fd9\u91cc\u4e0d\u518d\u8d58\u8ff0":111,"\u8fd9\u91cc\u4ecb\u7ecdc":122,"\u8fd9\u91cc\u4f7f\u7528\u4e86\u7528":116,"\u8fd9\u91cc\u4f7f\u7528\u4e86paddlepaddle\u9884\u5b9a\u4e49\u597d\u7684rnn\u5904\u7406\u51fd\u6570":104,"\u8fd9\u91cc\u4f7f\u7528\u7b80\u5355\u7684":94,"\u8fd9\u91cc\u5c06\u4ecb\u7ecdpaddlepaddle\u7684\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":101,"\u8fd9\u91cc\u6211\u4eec\u5c55\u793a\u4e00\u4efd\u7b80\u5316\u8fc7\u7684\u4ee3\u7801":110,"\u8fd9\u91cc\u6211\u4eec\u901a\u8fc7\u5728kubernetes\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2ajob\u6765\u4e0b\u8f7d\u5e76\u5207\u5272\u6570\u636e":127,"\u8fd9\u91cc\u6709\u4e24\u79cd\u6709\u6548\u7684\u89e3\u51b3\u65b9\u6cd5":94,"\u8fd9\u91cc\u68c0\u9a8c\u8fd0\u884c\u65f6\u95f4\u6a21\u578b\u7684\u6536\u655b":124,"\u8fd9\u91cc\u7684dockerimage\u4f5c\u4e3a\u7f16\u8bd1\u73af\u5883\u4ee5\u652f\u6301\u66f4\u591a\u7684linux":82,"\u8fd9\u91cc\u7684eigentensor\u4e4b\u95f4\u7684\u8fd0\u7b97\u53ea\u662f\u6539\u53d8\u4e86\u539f\u6709tensor\u4e2d\u7684\u6570\u636e":112,"\u8fd9\u91cc\u9009\u62e90":82,"\u8fd9\u91cc\u9700\u8981\u7528\u6237\u989d\u5916\u6ce8\u610f":32,"\u8fd9\u9700\u8981\u8054\u5408\u6211\u4eec\u7b2c\u4e8c\u8282":116,"\u8fdb\u4e00\u6b65\u4f18\u5316":62,"\u8fdb\u4e3b\u4ed3\u5e93\u540e":109,"\u8fdb\u5165":82,"\u8fdb\u5165\u5bb9\u5668":126,"\u8fdb\u5165\u5bf9\u5e94\u7684\u76ee\u5f55":91,"\u8fdb\u7a0b\u542f\u52a8\u7684\u5fc5\u8981\u53c2\u6570":127,"\u8fdb\u7a0b\u7684":124,"\u8fdb\u7a0b\u7684\u542f\u52a8\u53c2\u6570":127,"\u8fdb\u7a0b\u7684\u8fd0\u884c\u73af\u5883":127,"\u8fdb\u7a0b\u9700\u8981\u7684":127,"\u8fdb\u800c\u591a\u673a":116,"\u8fdb\u800c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5982\u4e0b\u547d\u4ee4\u5f00\u542f\u4e00\u4e2ahttp\u670d\u52a1":116,"\u8fdb\u800c\u6307\u5b9a\u4e86python\u53ef\u6267\u884c\u6587\u4ef6\u7684\u8def\u5f84":116,"\u8fdb\u800c\u8fdb\u884c\u4ee3\u7801\u8bc4\u5ba1":82,"\u8fdb\u884c\u4e86":104,"\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u7684\u65b9\u6848":127,"\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u7684\u65b9\u6cd5":127,"\u8fdb\u884c\u524d\u5411\u8ba1\u7b97":122,"\u8fdb\u884c\u56de\u590d":109,"\u8fdb\u884c\u5e8f\u5217\u5316":122,"\u8fdb\u884c\u5f00\u53d1":109,"\u8fdb\u884c\u62c6\u89e3":104,"\u8fdb\u884c\u6fc0\u6d3b\u64cd\u4f5c":110,"\u8fdb\u884c\u7f16\u8bd1\u548c\u5b89\u88c5":136,"\u8fdb\u884c\u8bad\u7ec3":122,"\u8fdb\u884c\u8bbe\u7f6e":111,"\u8fdb\u884c\u94fe\u63a5":119,"\u8fdb\u884c\u9884\u6d4b\u4f9d\u8d56\u4e8e\u5c06":119,"\u8fdb\u884c\u9884\u6d4b\u65f6":122,"\u8fdb\u884cpython\u4e0ec":116,"\u8fdb\u9636\u6307\u5357":[101,135],"\u8fde\u63a5":106,"\u8fde\u63a5\u5230pserver\u7684\u7aef\u53e3":123,"\u8fde\u63a5\u5230pserver\u7684\u7aef\u53e3\u4e2a\u6570":123,"\u9000\u51fa\u5bb9\u5668":126,"\u9002\u4e2d":104,"\u9009":104,"\u9009\u62e9":104,"\u9009\u62e9\u4e0b\u8f7d\u4f7f\u7528\u4e0d\u540c\u7684blas\u5e93\u7684docker\u955c\u50cf":98,"\u9009\u62e9\u662f\u5426\u7f16\u8bd1mkl":62,"\u9009\u62e9\u76ee\u6807\u5206\u652f":109,"\u9009\u62e9\u8def\u5f84\u6765\u52a8\u6001\u52a0\u8f7dnvidia":132,"\u9009\u62e9\u9700\u8981\u53d1\u5e03\u7684\u7248\u672c":82,"\u9009\u9879":[97,108],"\u900f\u4f20\u7528\u6237\u8eab\u4efd\u7684\u529e\u6cd5":48,"\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":131,"\u901a\u5e38":[66,111,116],"\u901a\u5e38\u4f1a\u4f7f\u7528\u73af\u5883\u53d8\u91cf\u914d\u7f6ejob\u7684\u914d\u7f6e\u4fe1\u606f":127,"\u901a\u5e38\u4f1a\u4f7f\u7528mapreduce\u4efb\u52a1\u7684\u8f93\u51fa\u7ed3\u679c\u4f5c\u4e3a\u8bad\u7ec3\u7ed3\u679c":123,"\u901a\u5e38\u4f7f\u7528\u7a00\u758f\u8bad\u7ec3\u6765\u52a0\u901f\u8ba1\u7b97\u8fc7\u7a0b":134,"\u901a\u5e38\u4f7f\u7528cento":100,"\u901a\u5e38\u505a\u6cd5\u662f\u4ece\u4e00\u4e2a\u6bd4\u8f83\u5927\u7684learning_rate\u5f00\u59cb\u8bd5":96,"\u901a\u5e38\u5305\u542b\u4e00\u4e2acpu\u7248\u672c\u548c\u4e00\u4e2agpu\u7248\u672c":82,"\u901a\u5e38\u540d\u5b57\u662f":109,"\u901a\u5e38\u60c5\u51b5\u4e0b":117,"\u901a\u5e38\u6211\u4eec\u4f1a\u5b89\u88c5ceph\u7b49\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u6765\u5b58\u50a8\u8bad\u7ec3\u6570\u636e":126,"\u901a\u5e38\u6307\u5c06\u4e00\u4e2a\u6574\u4f53\u62c6\u5206\u6210\u591a\u4efd\u7684\u5176\u4e2d\u7684\u4e00\u4efd":32,"\u901a\u5e38\u6709\u4e24\u4e2a\u65b9\u6cd5\u6765\u6784\u5efa\u57fa\u4e8e":138,"\u901a\u5e38\u7528\u4e8e\u8868\u793a\u79bb\u6563\u7684\u7c7b\u522b\u6807\u7b7e":121,"\u901a\u5e38\u7684\u505a\u6cd5\u662f\u4f7f\u7528":107,"\u901a\u5e38\u7684\u505a\u6cd5\u662f\u5c06\u914d\u7f6e\u5b58\u4e8e":110,"\u901a\u5e38\u8981\u6c42\u65f6\u95f4\u6b65\u4e4b\u95f4\u5177\u6709\u4e00\u4e9b\u4f9d\u8d56\u6027":104,"\u901a\u5e38\u89c2\u5bdf\u70ed\u70b9\u51fd\u6570\u95f4\u7684\u8c03\u7528\u5173\u7cfb":116,"\u901a\u5e38\u90fd\u4f1a\u4f7f\u7528\u4e0b\u9762\u8fd9\u4e9b\u547d\u4ee4\u884c\u53c2\u6570":134,"\u901a\u5e38\u9700\u8981\u53bb\u6389\u7f51\u7edc\u4e2d\u7684":122,"\u901a\u7528":131,"\u901a\u77e5":104,"\u901a\u8fc7":[94,104,109,110,111,121],"\u901a\u8fc7\u4e24\u4e2a\u5d4c\u5957\u7684":106,"\u901a\u8fc7\u4f7f\u7528":97,"\u901a\u8fc7\u4f7f\u7528\u8fd9\u4e9bapi":61,"\u901a\u8fc7\u51fd\u6570":127,"\u901a\u8fc7\u547d\u4ee4\u884c\u53c2\u6570":94,"\u901a\u8fc7\u591a\u4e2a\u7ebf\u7a0b\u5171\u4eab\u540c\u4e00\u4e2a\u6a21\u578b\u6765\u51cf\u5c11\u5185\u5b58\u5f00\u9500":122,"\u901a\u8fc7\u5f15\u7528memory\u5f97\u5230\u8fd9\u4e2alayer\u4e0a\u4e00\u4e2a\u65f6\u523b\u7684\u8f93\u51fa":106,"\u901a\u8fc7\u5f15\u7528memory\u5f97\u5230\u8fd9\u4e2alayer\u4e0a\u4e00\u4e2a\u65f6\u523b\u8f93\u51fa":106,"\u901a\u8fc7\u6240\u6709\u5355\u5143\u6d4b\u8bd5":109,"\u901a\u8fc7\u6a21\u578b\u63a8\u65adapi\u7684\u5b9e\u73b0\u4f5c\u4e3a\u4e00\u4e2a\u6837\u4f8b":66,"\u901a\u8fc7\u7075\u6d3b\u4f7f\u7528\u4ee5\u4e0a\u4e24\u4e2a\u63a5\u53e3":122,"\u901a\u8fc7\u7ec4\u5408\u4e0d\u540c\u7684layer":101,"\u901a\u8fc7\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26\u6765\u6307\u5b9a":110,"\u901a\u8fc7\u8ba1\u7b97\u8282\u70b9\u548c\u53c2\u6570\u670d\u52a1\u5668\u7684\u5206\u5e03\u5f0f\u534f\u4f5c":123,"\u901a\u8fc7\u8be5\u53c2\u6570\u53ef\u83b7\u53d6\u5230\u8f93\u5165\u8f93\u51fa\u4ee5\u53ca\u5c5e\u6027":111,"\u901a\u8fc7\u8c03\u7528":[121,122],"\u901a\u8fc7\u8c03\u7528\u4ee5\u4e0b\u63a5\u53e3\u521b\u5efa\u7a00\u758f\u77e9\u9635":121,"\u901a\u8fc7data":106,"\u901a\u8fc7ssh\u7b49\u65b9\u5f0f\u767b\u5f55\u5230raspberri":138,"\u903b\u8f91\u4e0a\u9ad8\u4e8e\u4e8c\u7ef4\u7684\u6570\u636e":121,"\u903b\u8f91\u5212\u4e0a\u6587\u4ef6\u5206\u5757\u7684\u5355\u4f4d":48,"\u9047\u5230\u8be5\u9519\u8bef\u65f6":95,"\u9053\u6b49":104,"\u9069":104,"\u9075\u5b88\u4ee5\u4e0b\u7ea6\u5b9a":109,"\u9075\u5faa\u4ee5\u4e0b\u6d41\u7a0b":82,"\u90a3\u4e48":[66,106,110],"\u90a3\u4e480\u5c42\u5e8f\u5217\u5373\u4e3a\u4e00\u4e2a\u8bcd\u8bed":106,"\u90a3\u4e48\u4f1a\u643a\u5e26\u6709":121,"\u90a3\u4e48\u53ef\u4ee5\u8ba4\u4e3a\u8bad\u7ec3\u4e0d\u6536\u655b":96,"\u90a3\u4e48\u5728":111,"\u90a3\u4e48\u5982\u4f55\u5224\u65ad\u8bad\u7ec3\u4e0d\u6536\u655b\u5462":96,"\u90a3\u4e48\u5bf9\u5e94\u7684\u5185\u90e8\u5b58\u50a8\u4e5f\u4f1a\u4e0e\u5b83\u4eec\u5171\u4eab\u5185\u5b58":62,"\u90a3\u4e48\u5c31\u4f1a\u4f7f":62,"\u90a3\u4e48\u5e38\u6570\u8f93\u51fa\u6240\u80fd\u8fbe\u5230\u7684\u6700\u5c0fcost\u662f":96,"\u90a3\u4e48\u6211\u4eec\u4e5f\u5c31\u4e0d\u9700\u8981":108,"\u90a3\u4e48\u6211\u4eec\u53ef\u4ee5\u5224\u65ad\u4e3a\u8bad\u7ec3\u4e0d\u6536\u655b":96,"\u90a3\u4e48\u63a8\u8350\u4f7f\u7528":107,"\u90a3\u4e48\u63a8\u8350\u4f7f\u7528\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u65b9\u6cd5":107,"\u90a3\u4e48\u6536\u655b\u53ef\u80fd\u5f88\u6162":96,"\u90a3\u4e48\u6700\u597d\u5c06\u6570\u636e\u6587\u4ef6\u5728\u6bcf\u6b21\u8bfb\u53d6\u4e4b\u524d\u505a\u4e00\u6b21shuffl":94,"\u90a3\u4e48\u7528\u6237\u9700\u8981\u62c9\u53d6\u6240\u6709\u7684\u8fdc\u7a0b\u5206\u652f\u5230\u672c\u673a":91,"\u90a3\u4e48\u7f16\u8bd1\u8fc7\u7a0b\u53ea\u4f1a\u4ea7\u751f":108,"\u90a3\u4e48\u8bad\u7ec3\u6709\u53ef\u80fd\u4e0d\u6536\u655b":96,"\u90a3\u4e48\u8be5\u4f18\u5316\u7b97\u6cd5\u81f3\u5c11\u9700\u8981":94,"\u90a3\u4e48fc1\u548cfc2\u5c42\u5c06\u4f1a\u4f7f\u7528\u7b2c1\u4e2agpu\u6765\u8ba1\u7b97":134,"\u90a3\u4e5f\u5c31\u4e0d\u9700\u8981\u6025\u7740\u4f18\u5316\u6027\u80fd\u5566":117,"\u90a3\u4f30\u8ba1\u8fd9\u91cc\u7684\u6f5c\u529b\u5c31\u6ca1\u5565\u597d\u6316\u7684\u4e86":117,"\u90a3\u51cf\u5c11\u5b66\u4e60\u738710\u500d\u7ee7\u7eed\u8bd5\u9a8c":96,"\u90a3\u6211\u4f1a\u671f\u671b\u5206\u6790\u5de5\u5177\u7edf\u8ba1\u5230\u901f\u5ea6\u662f100gb":117,"\u90a3\u7a0b\u5e8f\u5206\u6790\u5de5\u5177\u662f\u5fc5\u4e0d\u53ef\u5c11\u7684\u5229\u5668":117,"\u90fd":104,"\u90fd\u4e0d\u4f1a\u60f3\u8981\u77e5\u9053next":62,"\u90fd\u4e0d\u9700\u8981":108,"\u90fd\u4f1a\u4ea7\u751f\u5f53\u524d\u5c42\u72b6\u6001\u7684\u6240\u6709\u7ee7\u627f\u7ed3\u679c":132,"\u90fd\u4f1a\u7ba1\u7406\u7ef4\u62a4\u4e00\u4efd\u8bad\u7ec3\u597d\u7684\u6a21\u578b":122,"\u90fd\u4f1a\u9020\u6210\u8bad\u7ec3\u4e2d\u7684\u6570\u636e\u4ecec":94,"\u90fd\u4f7f\u7528":121,"\u90fd\u53ea\u662f\u4ecb\u7ecd\u53cc\u5c42rnn\u7684api\u63a5\u53e3":104,"\u90fd\u53ef\u4ee5\u8fd0\u884c":108,"\u90fd\u53ef\u4ee5\u901a\u8fc7\u8c03\u7528\u4e0b\u9762\u7684\u63a5\u53e3\u4e3a\u539f\u6709\u7684\u6570\u636e\u8f93\u5165\u9644\u52a0\u4e0a\u5e8f\u5217\u4fe1\u606f":121,"\u90fd\u5e94\u4f7f\u7528c":121,"\u90fd\u662f\u4e94\u4f4d\u7684\u6570\u5b57":33,"\u90fd\u662f\u4ee5ext\u5f00\u5934":62,"\u90fd\u662f\u5bf9layer1\u5143\u7d20\u7684\u62f7\u8d1d":103,"\u90fd\u662f\u5c06\u6bcf\u4e00\u53e5\u5206\u597d\u8bcd\u540e\u7684\u53e5\u5b50":104,"\u90fd\u662fabi\u8c03\u7528\u6807\u51c6\u7684":65,"\u90fd\u7528":109,"\u90fd\u7ee7\u627f\u4e8epaddlepaddle\u7684\u57fa\u7c7b":61,"\u90fd\u9700\u8981\u5199\u63d0\u4ea4\u8bf4\u660e":109,"\u90fd\u9700\u8981\u8c03\u7528\u4e00\u6b21":110,"\u914d\u5236\u7f16\u8bd1\u9009\u9879":119,"\u914d\u7f6e\u6253\u5f00":117,"\u914d\u7f6e\u6587\u4ef6\u63a5\u53e3\u662ffc_layer":110,"\u914d\u7f6e\u6587\u4ef6\u91cc\u52a0\u4e24\u884c":108,"\u914d\u7f6e\u7684\u65b9\u6cd5\u53c2\u8003":48,"\u914d\u7f6e\u7b80\u5355\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u4f8b\u5b50":107,"\u914d\u7f6e\u7f51\u7edc\u5c42\u7684\u8f93\u5165":110,"\u914d\u7f6eapi":103,"\u9152\u5e97":104,"\u91c7\u7528\u5747\u5300\u5206\u5e03\u6216\u8005\u9ad8\u65af\u5206\u5e03\u521d\u59cb\u5316":132,"\u91c7\u7528multi":96,"\u91ca\u653e\u5bf9paramters\u5185\u5b58\u7684\u9501\u5b9a":32,"\u91cc":108,"\u91cc\u53ef\u4ee5\u6807\u51c6\u5316\u7f16\u8bd1\u73af\u5883":108,"\u91cc\u5b8c\u6210":111,"\u91cc\u6240\u6709\u7684\u7b26\u53f7\u90fd\u5199\u5165\u81ea\u5df1\u7684\u7a0b\u5e8f\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u91cc":65,"\u91cc\u7684":108,"\u91cc\u7684\u65e5\u5fd7":124,"\u91cc\u7684\u6e90\u7801":108,"\u91cc\u8fd0\u884c\u7684\u7f16\u8bd1\u5de5\u5177\u5b9e\u9645\u4e0a\u90fd\u662f\u5728\u672c\u673a\u7684":108,"\u91cc\u9009\u62e9\u9700\u8981\u53d1\u5e03\u7684\u5206\u652f":82,"\u91cc\u9762":111,"\u91cc\u9762\u6db5\u76d6\u4e86\u4ea4\u53c9\u7f16\u8bd1android\u7248paddlepaddle\u5e93\u9700\u8981\u7684\u6240\u6709\u7f16\u8bd1\u5de5\u5177":136,"\u91cc\u9762\u6dfb\u52a0":62,"\u91ccstep\u7684\u5185\u5bb9":94,"\u91cd\u5199\u7236\u7c7blayer\u7684":62,"\u91cd\u547d\u540d\u6210":65,"\u91cd\u65b0\u7f16\u8bd1paddlepaddl":117,"\u9488\u5bf9\u4e0d\u540c\u7684":137,"\u9488\u5bf9\u4efb\u52a1\u8fd0\u884c\u5b8c\u6210\u540e\u5bb9\u5668\u81ea\u52a8\u9000\u51fa\u7684\u573a\u666f":126,"\u9488\u5bf9\u5185\u5b58\u548c\u663e\u5b58":94,"\u94fe\u63a5":119,"\u94fe\u63a5\u4e2d\u627e\u5230":100,"\u94fe\u63a5\u4f55\u79cdblas\u5e93\u7b49":97,"\u94fe\u63a5\u5230\u81ea\u5df1\u7684\u7a0b\u5e8f\u91cc":65,"\u94fe\u63a5\u76f8\u5bf9\u5bb9\u6613":119,"\u94fe\u63a5\u9009\u9879":119,"\u94fe\u63a5\u9759\u6001\u5e93":119,"\u9519\u8bef":91,"\u9519\u8bef\u5904\u7406":65,"\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662f\u8fd4\u56de\u503c":65,"\u9519\u8bef\u5904\u7406\u7684\u65b9\u5f0f\u4e5f\u4e0d\u5c3d\u76f8\u540c":65,"\u9519\u8bef\u7684define_py_data_sources2\u7c7b\u4f3c":96,"\u952e\u6765\u542f\u52a8\u7f16\u8bd1\u4e86":108,"\u955c\u50cf\u91cc\u6709paddlepaddle\u7684\u6e90\u7801\u4e0edemo":126,"\u957f\u5ea6":94,"\u95e8\u63a7\u5faa\u73af\u5355\u5143\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570":107,"\u95e8\u63a7\u5faa\u73af\u5355\u5143\u7684\u8f93\u51fa\u88ab\u7528\u4f5c\u8f93\u51famemori":107,"\u9644\u52a0\u4e0a\u5e8f\u5217\u4fe1\u606f":121,"\u9650\u5236\u5957\u63a5\u5b57\u53d1\u9001\u7f13\u51b2\u533a\u7684\u5927\u5c0f":132,"\u9650\u5236\u5957\u63a5\u5b57\u63a5\u6536\u7f13\u51b2\u533a\u7684\u5927\u5c0f":132,"\u9664\u4e86\u53ef\u4ee5\u81ea\u52a8\u7f16\u8bd1\u6587\u6863":113,"\u9664\u4e86boot_lay":104,"\u9664\u6784\u9020\u67d0\u79cd\u7c7b\u578b\u7684\u51fd\u6570":66,"\u9664\u6b64\u4e4b\u5916":94,"\u9664\u96f6\u7b49\u95ee\u9898":94,"\u968f\u540e\u53ef\u4ee5\u7528\u8fd9\u4e2a\u5f00\u53d1\u955c\u50cf\u5f00\u59cbbuild":109,"\u968f\u673a\u6570\u7684\u79cd\u5b50":132,"\u968f\u673a\u6570seed":131,"\u9694\u5f00":123,"\u96c6\u6210\u5230":61,"\u96c6\u6210\u5230paddlepaddl":62,"\u96c6\u675f\u641c\u7d22\u4f7f\u7528\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u7684\u65b9\u5f0f\u6784\u5efa\u67e5\u627e\u6811":132,"\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2a\u5355\u673a\u4f7f\u7528cpu\u7684paddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":126,"\u96c6\u7fa4\u4e2d\u7684\u6bcf\u53f0\u8ba1\u7b97\u673a\u901a\u5e38\u88ab\u6210\u4e3a\u4e00\u4e2a":123,"\u96c6\u7fa4\u4efb\u52a1":124,"\u96c6\u7fa4\u4f5c\u4e1a\u5c06\u4f1a\u5728\u51e0\u79d2\u540e\u542f\u52a8":124,"\u96c6\u7fa4\u6d4b\u8bd5":131,"\u96c6\u7fa4\u7ba1\u7406\u5de5\u5177":123,"\u96c6\u7fa4\u8bad\u7ec3":131,"\u96c6\u7fa4\u8bad\u7ec3\u4e0e\u9884\u6d4b":93,"\u96c6\u7fa4\u8fdb\u7a0b":124,"\u9700\u52a0\u8be5\u6a21\u677f\u53c2\u6570":111,"\u9700\u5728nvvp\u754c\u9762\u4e2d\u9009\u4e0a\u624d\u80fd\u5f00\u542f":117,"\u9700\u6307\u5b9a":119,"\u9700\u63d0\u4f9b\u975e\u96f6\u5143\u7684\u503c":121,"\u9700\u6ce8\u610f":119,"\u9700\u8981":[33,108,111,122],"\u9700\u8981\u4e3a":111,"\u9700\u8981\u4f7f\u7528":94,"\u9700\u8981\u4f7f\u7528\u5176\u5236\u5b9a\u7684\u65b9\u5f0f\u6302\u8f7d\u540e\u5e76\u5bfc\u5165\u6570\u636e":127,"\u9700\u8981\u4f7f\u7528\u6700\u65b0\u7684pip":100,"\u9700\u8981\u4f7f\u7528\u8005\u81ea\u5df1\u4e86\u89e3\u5e76\u5b8c\u6210\u8f6c\u5316":121,"\u9700\u8981\u4fdd\u6301\u5f53\u524d\u5206\u652f\u76ee\u5f55":109,"\u9700\u8981\u4fee\u6539build":82,"\u9700\u8981\u521b\u5efa\u5e76\u586b\u5199":121,"\u9700\u8981\u5347\u7ea7pip\u7248\u672c\u5230\u6700\u65b0":[91,100],"\u9700\u8981\u5355\u72ec":98,"\u9700\u8981\u53ef\u4ee5\u8de8\u5e73\u53f0\u6267\u884c":48,"\u9700\u8981\u540c\u65f6\u63d0\u4f9b\u6bcf\u4e00\u4e2a\u5185\u5c42\u5e8f\u5217\u5728\u6574\u4e2a":121,"\u9700\u8981\u540c\u6b65\u539f\u4ed3\u5e93":109,"\u9700\u8981\u542f\u52a8\u7684\u8282\u70b9\u4e2a\u6570\u4ee5\u53ca":127,"\u9700\u8981\u548c\u8be5op\u7684\u540d\u5b57\u4e00\u6837":111,"\u9700\u8981\u54ea\u4e9b\u5c42\u7684\u8ba1\u7b97\u7ed3\u679c\u4f5c\u4e3a\u8f93\u51fa":122,"\u9700\u8981\u5728":111,"\u9700\u8981\u5728\u521b\u5efa\u5bb9\u5668\u524d\u6302\u8f7d\u5377\u4ee5\u4fbf\u6211\u4eec\u4fdd\u5b58\u8bad\u7ec3\u7ed3\u679c":126,"\u9700\u8981\u5728\u7cfb\u7edf\u91cc\u5148\u5b89\u88c5\u597ddocker\u5de5\u5177\u5305":113,"\u9700\u8981\u5728cmake\u7684\u65f6\u5019":66,"\u9700\u8981\u5728macos\u7cfb\u7edf\u4e0a\u8fdb\u884c":137,"\u9700\u8981\u5c06\u5176parameter\u8bbe\u7f6e\u6210":94,"\u9700\u8981\u5c06\u7f51\u7edc\u7ed3\u6784\u4f7f\u7528":122,"\u9700\u8981\u5c06bugfix\u7684\u5206\u652f\u540c\u65f6merge\u5230":82,"\u9700\u8981\u5c06cuda\u76f8\u5173\u7684\u5e93\u8bbe\u7f6e\u5230":119,"\u9700\u8981\u5c06paddl":119,"\u9700\u8981\u5f15\u7528":66,"\u9700\u8981\u5f3a\u8c03\u7684\u662f":108,"\u9700\u8981\u601d\u8003\u5b8c\u6210\u4ee5\u4e0b\u5de5\u4f5c":[121,122],"\u9700\u8981\u624b\u52a8\u8fdb\u884c\u89e3\u538b":122,"\u9700\u8981\u6267\u884c":[97,100,102],"\u9700\u8981\u6307\u5b9a":119,"\u9700\u8981\u6307\u5b9a\u4e0e\u67d0\u4e00\u4e2a\u8f93\u5165\u7684\u5e8f\u5217\u4fe1\u606f\u662f\u4e00\u81f4\u7684":104,"\u9700\u8981\u6307\u5b9alayer\u7684\u8f93\u5165\u6765\u6e90":101,"\u9700\u8981\u660e\u786e\u6307\u5b9a":132,"\u9700\u8981\u663e\u5f0f\u5730\u94fe\u63a5":119,"\u9700\u8981\u663e\u793a\u5730\u94fe\u63a5":119,"\u9700\u8981\u663e\u793a\u5730\u94fe\u63a5mkl\u7684\u52a8\u6001\u5e93":119,"\u9700\u8981\u6709\u7a33\u5b9a\u7684\u5bfc\u51fa\u7b26\u53f7":65,"\u9700\u8981\u6839\u636e\u4e0d\u540c\u7684\u5206\u5e03\u5f0f\u5b58\u50a8\u6765\u7ed1\u5b9a\u4e00\u4e2a":127,"\u9700\u8981\u6ce8\u610f":111,"\u9700\u8981\u6ce8\u610f\u7684\u662f":[62,82,94,132],"\u9700\u8981\u6ce8\u610f\u7684\u662f\u68af\u5ea6\u68c0\u67e5\u4ec5\u4ec5\u9a8c\u8bc1\u4e86\u68af\u5ea6\u7684\u8ba1\u7b97":110,"\u9700\u8981\u6ce8\u610f\u7684\u662fpaddlepaddle\u76ee\u524d\u53ea\u652f\u6301\u5b50\u5e8f\u5217\u6570\u76ee\u4e00\u6837\u7684\u591a\u8f93\u5165\u53cc\u5c42rnn":104,"\u9700\u8981\u7528\u5230\u7684\u7f16\u8bd1\u5de5\u5177\u548c\u7cfb\u7edf\u5e93":136,"\u9700\u8981\u7528\u6237\u663e\u5f0f\u8bbe\u5b9a":95,"\u9700\u8981\u7d2f\u52a0\u4e0d\u540clayer\u4f20\u8fc7\u6765\u7684\u68af\u5ea6":62,"\u9700\u8981\u81ea\u5df1\u94fe\u63a5mkl\u94fe\u63a5\u5e93":119,"\u9700\u8981\u88ab\u66b4\u9732\u5230\u5176\u4ed6\u8bed\u8a00":66,"\u9700\u8981\u8bf7\u7ba1\u7406\u5458\u5b89\u88c5\u548c\u914d\u7f6e\u597d":108,"\u9700\u8981\u9075\u5faa\u4ee5\u4e0b\u7ea6\u5b9a":106,"\u9700\u8981\u91cd\u547d\u540dwheel\u5305\u4e2dplatform\u76f8\u5173\u7684\u540e\u7f00":82,"\u9700\u8981\u989d\u5916\u6ce8\u610f\u7684\u662f":112,"\u9700\u9644\u52a0\u53cc\u5c42\u5e8f\u5217\u4fe1\u606f":121,"\u9700\u9644\u52a0\u5e8f\u5217\u4fe1\u606f":121,"\u975e\u5e38\u6570":110,"\u975e\u5e8f\u5217\u8f93\u5165\u4e0d\u643a\u5e26":121,"\u975e\u5e8f\u5217\u8f93\u5165\u65e0\u9700\u6784\u9020":121,"\u975e\u96f6\u5143\u4e2a\u6570":121,"\u975e\u96f6\u5143\u7d20\u7684\u503c":121,"\u975e\u96f6\u5143\u7d20\u7684\u5217\u53f7":121,"\u975e\u96f6\u6570\u5b57\u7684\u4e2a\u6570":110,"\u9762\u5411\u67b6\u6784\u4e3a32\u4f4darm\u67b6\u6784":136,"\u9762\u5411\u67b6\u6784\u4e3a64\u4f4darm64\u67b6\u6784":136,"\u9879\u76ee\u5728\u52aa\u529b\u5f00\u59cb\u652f\u6301\u5176\u4ed6\u4e0d\u9700\u8981":108,"\u987a\u5e8f":104,"\u9884\u63d0\u4ea4\u94a9\u5b50":109,"\u9884\u6d4b\u4ee3\u7801\u66f4\u591a\u8be6\u7ec6\u793a\u4f8b\u4ee3\u7801\u8bf7\u53c2\u8003":122,"\u9884\u6d4b\u4f7f\u7528\u7684\u7f51\u7edc\u7ed3\u6784\u5f80\u5f80\u4e0d\u540c\u4e8e\u8bad\u7ec3":122,"\u9884\u6d4b\u5e93":120,"\u9884\u6d4b\u65f6":122,"\u9884\u6d4b\u65f6\u53ea\u9700\u52a0\u8f7d\u4e00\u4e2a\u6587\u4ef6\u4fbf\u4e8e\u53d1\u5e03":122,"\u9884\u6d4b\u7a0b\u5e8f\u5f00\u53d1\u4e24\u5927\u90e8\u5206":122,"\u9996\u5148":[104,107,110],"\u9996\u5148\u5728\u7cfb\u7edf\u8def\u5f84":97,"\u9996\u5148\u5b89\u88c5\u5e76\u5728\u5f53\u524d\u76ee\u5f55\u8fd0\u884c\u5b83":109,"\u9996\u5148\u5b9a\u4e49":111,"\u9996\u5148\u5bf9\u8f93\u5165\u505a\u4e00\u4e2a\u5c0f\u7684\u6270\u52a8":110,"\u9996\u5148\u6211\u4eec\u9700\u8981\u63a8\u5bfc\u8be5\u7f51\u7edc\u5c42\u7684":110,"\u9996\u5148\u6784\u9020\u5934\u4fe1\u606f":96,"\u9996\u5148\u901a\u8fc7":109,"\u9996\u5148\u9700\u8981\u52a0\u8f7d\u76f8\u5e94\u7684python\u5e93":101,"\u9a71\u52a8":113,"\u9ad8\u4eae\u90e8\u5206":104,"\u9ad8\u5ea6":121,"\u9ad8\u5ea6\u652f\u6301\u7075\u6d3b\u548c\u9ad8\u6548\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":107,"\u9ad8\u65af\u5206\u5e03":96,"\u9ed8\u8ba4":132,"\u9ed8\u8ba40":123,"\u9ed8\u8ba41":123,"\u9ed8\u8ba4127":123,"\u9ed8\u8ba4256k":48,"\u9ed8\u8ba47164":123,"\u9ed8\u8ba4\u4e0d\u663e\u793a":132,"\u9ed8\u8ba4\u4e0d\u8bbe\u7f6e":106,"\u9ed8\u8ba4\u4e3a0":[132,134],"\u9ed8\u8ba4\u4e3a1":[121,134],"\u9ed8\u8ba4\u4e3a100":134,"\u9ed8\u8ba4\u4e3a4096mb":132,"\u9ed8\u8ba4\u4e3a\u7b2c\u4e00\u4e2a\u8f93\u5165":106,"\u9ed8\u8ba4\u4e3anull":132,"\u9ed8\u8ba4\u4f1a\u5c06a\u548cb":94,"\u9ed8\u8ba4\u4f7f\u7528concurrentremoteparameterupdat":132,"\u9ed8\u8ba4\u4f7f\u7528mkl":97,"\u9ed8\u8ba4\u503c":[97,103,134,137],"\u9ed8\u8ba4\u503c\u4e3a":[136,137,138],"\u9ed8\u8ba4\u503c\u4e3a\u73af\u5883\u53d8\u91cf":137,"\u9ed8\u8ba4\u521d\u59cb\u72b6\u4e3a0":106,"\u9ed8\u8ba4\u60c5\u51b5\u4e0b":[96,124],"\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u6309\u7167float\u7cbe\u5ea6\u8ba1\u7b97":96,"\u9ed8\u8ba4\u6307\u5b9a\u7b2c\u4e00\u4e2a\u8f93\u5165":104,"\u9ed8\u8ba4\u662f\u4f7f\u7528mkl\u7684\u955c\u50cf":98,"\u9ed8\u8ba4\u6ca1\u6709\u5b89\u88c5vim":98,"\u9ed8\u8ba4\u7684paddlepaddle\u751f\u4ea7\u73af\u5883\u955c\u50cf":126,"\u9ed8\u8ba4\u7f16\u8bd1\u6240\u6709\u67b6\u6784":137,"\u9ed8\u8ba4\u8bbe\u7f6e\u4e3a":61,"\u9ed8\u8ba4\u8bbe\u7f6e\u4e3a\u771f":134,"\u9ed8\u8ba4\u8bbe\u7f6e\u6210\u73af\u5883\u53d8\u91cf":[136,138],"\u9ed8\u8ba4\u8c03\u7528":108,"\u9ed8\u8ba4fals":123,"abi\u7684paddlepaddle\u5e93":136,"abstract":[40,47,51,72,81,83],"android\u5b98\u65b9\u63d0\u4f9b\u7684":136,"android\u5e73\u53f0\u4e0a\u4f7f\u7528\u7684c":136,"android\u5e73\u53f0\u53ef\u9009\u914d\u7f6e\u53c2\u6570":136,"android\u5e73\u53f0\u7f16\u8bd1\u6307\u5357":139,"android\u7684docker\u5f00\u53d1\u955c\u50cf\u5411\u7528\u6237\u63d0\u4f9b\u4e24\u4e2a\u53ef\u914d\u7f6e\u7684\u53c2\u6570":136,"api\u4e0d\u4f1a\u76f4\u63a5\u52a0\u8f7d":122,"api\u4e0d\u5c0f\u4e8e21":136,"api\u4e2d":121,"api\u4e2d\u4f7f\u7528":65,"api\u4e2d\u7684\u4e00\u7ef4\u6570\u7ec4":121,"api\u4e2d\u7684\u77e9\u9635\u6765\u8868\u793a":121,"api\u4e2d\u795e\u7ecf\u7f51\u7edc\u7684\u4e00\u4e2a\u8f93\u5165":122,"api\u4f7f\u7528\u4e2d\u7684\u4e00\u4e2a\u91cd\u8981\u6982\u5ff5":122,"api\u4f7f\u7528\u6d41\u7a0b\u793a\u610f\u56fe":122,"api\u4f7f\u7528\u793a\u4f8b":122,"api\u521b\u5efa\u7684gradientmachine\u7c7b\u7684\u5bf9\u8c61":122,"api\u53ef\u4ee5\u901a\u8fc7\u5206\u522b\u6307\u5b9a\u5e8f\u5217\u5316\u540e\u7684\u7f51\u7edc\u7ed3\u6784\u6587\u4ef6\u548c\u53c2\u6570\u76ee\u5f55\u6765\u52a0\u8f7d\u8bad\u7ec3\u597d\u7684\u6a21\u578b":122,"api\u53ef\u4ee5\u901a\u8fc7\u6307\u5b9a":122,"api\u5b8c\u6210\u5206\u5e03\u5f0f\u8bad\u7ec3":123,"api\u5bf9\u6bd4\u4ecb\u7ecd":105,"api\u5bfc\u51fa\u7684\u52a8\u6001\u5e93":66,"api\u5bfc\u51fa\u7684\u9759\u6001\u5e93":66,"api\u5e93\u5c06\u88ab\u5b89\u88c5\u5230":136,"api\u5f00\u53d1\u5305\u5e76\u5b89\u88c5":100,"api\u5f00\u53d1\u9884\u6d4b\u7a0b\u5e8f\u65f6":119,"api\u5f00\u53d1\u9884\u6d4b\u7a0b\u5e8f\u9700\u8981\u4e00\u4e2a\u8bad\u7ec3\u597d\u7684\u6a21\u578b":122,"api\u6240\u9700\u7684\u4f9d\u8d56":119,"api\u63a5\u53d7\u7684\u7c7b\u578b\u5168\u662f":66,"api\u63a5\u53e3":48,"api\u63a5\u53e3\u751f\u6210":111,"api\u63a5\u53e3\u7684\u53c2\u6570\u8f6c\u53d1\u7ed9":66,"api\u63a5\u53e3\u7684\u751f\u6210":111,"api\u63d0\u4f9b\u7684":122,"api\u652f\u6301\u7684\u6240\u6709\u8f93\u5165\u6570\u636e\u7c7b\u578b\u548c\u4ed6\u4eec\u7684\u7ec4\u7ec7\u65b9\u5f0f":122,"api\u6587\u6863":[136,137],"api\u65f6":66,"api\u65f6\u4e3a\u8f93\u51fa":122,"api\u65f6\u6240\u552f\u4e00\u9700\u8981\u5f15\u5165\u7684\u5934\u6587\u4ef6":66,"api\u662f\u591a\u8bed\u8a00api\u7684\u57fa\u7840\u90e8\u5206":66,"api\u66b4\u9732\u7684\u7c7b\u578b":66,"api\u6765\u9884\u6d4b":[136,137],"api\u751f\u6210\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u4f1a\u88ab\u5b89\u88c5\u5230":66,"api\u7684\u5934\u6587\u4ef6":[136,137,138],"api\u7684\u5b9e\u4f8b":66,"api\u7684\u5b9e\u73b0\u7ec6\u8282":66,"api\u7684\u63a5\u53e3":66,"api\u7684\u65f6\u5019\u63a8\u8350paddle\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":66,"api\u7684\u7f16\u8bd1\u9009\u9879\u9ed8\u8ba4\u5173\u95ed":66,"api\u76ee\u5f55\u7ed3\u6784\u5982\u4e0a\u56fe\u8868\u6240\u793a":66,"api\u76f8\u5173\u63a5\u53e3":121,"api\u7ea7\u522b":136,"api\u7ea7\u522b\u4e3a21":136,"api\u83b7\u5f97\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u53c2\u6570\u5b9e\u4f8b":66,"api\u8bad\u7ec3":122,"api\u9700\u8981\u521b\u5efa\u7684\u6570\u636e\u7c7b\u578b":121,"api\u9759\u6001\u5e93":137,"api\u9884\u6d4b\u5e93":137,"api\u9884\u6d4b\u65f6":122,"apis\u505a\u4e86\u5c01\u88c5":61,"app\u4e2d":[136,137],"apple\u5b98\u65b9\u4e3aios\u5f00\u53d1\u63d0\u4f9b\u4e86\u5b8c\u6574\u7684\u4ea4\u53c9\u7f16\u8bd1\u5de5\u5177\u548c\u96c6\u6210\u5f00\u53d1\u73af\u5883":137,"async_sgd\u8fdb\u884c\u8bad\u7ec3\u65f6":96,"avx\u662f\u4e00\u79cdcpu\u6307\u4ee4\u96c6":98,"avx\u7248\u672c":98,"avx\u7684\u955c\u50cf":98,"aws\u4e0a\u8fd0\u884ckubernetes\u96c6\u7fa4\u8bad\u7ec3":123,"batch\u4e2d\u5305\u542b":94,"batch\u7684\u6743\u91cd":94,"batches\u4e2a\u6279\u6b21\u4fdd\u5b58\u4e00\u6b21\u53c2\u6570":132,"batches\u6b21":132,"block\u6784\u6210\u4e00\u4e2amodel":32,"book\u4e00\u5b9a\u662f\u60a8\u6700\u597d\u7684\u9009\u62e9":98,"book\u4e2d\u6240\u6709\u7ae0\u8282\u529f\u80fd\u7684\u6b63\u786e\u6027":82,"book\u662f\u4e3a\u7528\u6237\u548c\u5f00\u53d1\u8005\u5236\u4f5c\u7684\u4e00\u4e2a\u4ea4\u4e92\u5f0f\u7684jupyt":98,"book\u7684":101,"book\u7684docker\u955c\u50cf":98,"boolean":[17,18,47,49,57,65],"break":[9,30,86,89,90],"bugfix\u5206\u652f\u4e5f\u662f\u5728\u5f00\u53d1\u8005\u81ea\u5df1\u7684fork\u7248\u672c\u5e93\u7ef4\u62a4":82,"bugfix\u5206\u652f\u9700\u8981\u5206\u522b\u7ed9\u4e3b\u7248\u672c\u5e93\u7684":82,"byte":[9,11,48,64,96],"c99\u662f\u76ee\u524dc\u6700\u5e7f\u6cdb\u7684\u4f7f\u7528\u6807\u51c6":65,"c\u6709\u6807\u51c6\u7684abi":65,"c\u8bed\u8a00\u662f\u6709\u5bfc\u51fa\u7b26\u53f7\u7684\u6807\u51c6\u7684":65,"case":[4,16,18,34,40,42,47,51,60,66,72,76,78,79,117,125,140],"cc\u4e2d\u7684":112,"cells\u7b49":95,"char":36,"ci\u73af\u5883\u4f7f\u7528":82,"ci\u7f16\u8bd1wheel\u5b8c\u6210\u540e\u4f1a\u81ea\u52a8\u5c06docker\u955c\u50cfpush\u5230dockerhub":82,"class":[1,2,3,4,5,6,7,9,10,14,16,18,20,23,25,26,29,40,41,42,45,46,50,51,52,53,55,56,58,60,65,69,70,74,75,79,80,81,83,84,85,87,89,96,110,111,112,118],"cmake\u4e2d\u5c06":117,"cmake\u5b98\u65b9\u5bf9android\u5e73\u53f0\u7684\u4ea4\u53c9\u7f16\u8bd1\u63d0\u4f9b\u4e86\u901a\u7528\u7684\u652f\u6301":136,"cmake\u627e\u5230\u7684python\u5e93\u548cpython\u89e3\u91ca\u5668\u7248\u672c\u53ef\u80fd\u6709\u4e0d\u4e00\u81f4\u73b0\u8c61":91,"cmake\u7cfb\u7edf\u5bf9\u4ea4\u53c9\u7f16\u8bd1\u63d0\u4f9b\u4e86\u652f\u6301":136,"cmake\u7f16\u8bd1\u65f6":97,"cmake\u7f16\u8bd1\u7684\u76ee\u6807\u5e73\u53f0":[136,137,138],"cmake\u914d\u7f6e\u4e2d\u5c06":117,"cmake\u914d\u7f6e\u5b8c\u6210\u540e":[136,137,138],"compute\u51fd\u6570":61,"const":[29,34,36,50,52,58,59,73,74,76,80,83,85,87,88,89,110,111,112],"container\u4e2d":126,"core\u4e2d\u7684\u6a21\u578b\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u53c2\u6570":66,"core\u4e2d\u8fd9\u4e00\u7c7b\u578b\u63a5\u53e3\u7684\u667a\u80fd\u6307\u9488":66,"core\u662f\u5426\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u5b9e\u4f8b":66,"core\u6982\u5ff5":66,"cost\u63a5\u6536y_predict\u4e0ey\u4f5c\u4e3a\u8f93\u5165":101,"cost\u8fd8\u5927\u4e8e\u8fd9\u4e2a\u6570":96,"count\u4e2agpu\u4e0a\u4f7f\u7528\u6570\u636e\u5e76\u884c\u6765\u8ba1\u7b97\u67d0\u4e00\u5c42":134,"count\u548cgpu":134,"csr\u5b58\u50a8\u683c\u5f0f\u901a\u8fc7":121,"cuda\u5171\u4eabkernel\u5b9e\u73b0\u5728":111,"cuda\u5b9e\u73b0\u5171\u4eab\u540c\u4e00\u4e2a":111,"cuda\u5b9e\u73b0\u5728":111,"cuda\u5e93":132,"cuda\u7684\u4ee3\u7801\u53ef\u4ee5\u590d\u7528":111,"cuda\u76f8\u5173\u5e93\u4f1a\u5728\u9884\u6d4b\u7a0b\u5e8f\u8fd0\u884c\u65f6\u52a8\u6001\u88c5\u8f7d":119,"cudnn\u5e93":[97,132],"cumtime\u7684\u6bcf\u6b21\u8c03\u7528\u5e73\u5747\u65f6\u95f4":116,"data\u5230\u5206\u5e03\u5f0f\u5b58\u50a8\u8865\u5145\u8bad\u7ec3\u6570\u636e":33,"data\u63a5\u53e3\u5206\u914d\u5b9e\u9645\u7684\u5185\u5b58":112,"data\u76ee\u5f55\u4e2d\u5b58\u653e\u5207\u5206\u597d\u7684\u6570\u636e":127,"dataprovider\u5171\u8fd4\u56de\u4e24\u4e2a\u6570\u636e":104,"dataprovider\u5171\u8fd4\u56de\u4e24\u7ec4\u6570\u636e":104,"dataprovider\u7f13\u51b2\u6c60\u5185\u5b58":94,"decoder\u5faa\u73af\u5c55\u5f00\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u4f1a\u5f15\u7528\u5168\u90e8\u7ed3\u679c":106,"decoder\u63a5\u53d7\u4e24\u4e2a\u8f93\u5165":106,"decoder\u6bcf\u6b21\u9884\u6d4b\u4ea7\u751f\u4e0b\u4e00\u4e2a\u6700\u53ef\u80fd\u7684\u8bcd\u8bed":106,"decoer\u67b6\u6784":106,"default":[2,3,4,5,6,7,9,10,11,14,18,19,22,25,26,29,30,40,45,54,58,64,67,68,76,77,83,84,85,90,115,125,126,127,134,136,140],"device\u5c31\u80fd\u62ff\u5230\u6b63\u786e\u7684\u6570\u636e":62,"dist\u76ee\u5f55\u4e0b\u751f\u6210\u8f93\u51fa\u7684whl\u5305":97,"distributed\u5206\u5e03\u5f0f":123,"dnn\u4e09\u8005\u5173\u7cfb\u5982\u4e0b\u8868":62,"dnn\u4e2d\u7684":62,"dnn\u4e2d\u7684\u6392\u5217\u65b9\u5f0f\u4e0d\u6b62\u8fd9\u4e00\u79cd":62,"dnn\u4f1a\u4f5c\u4e3a\u7b2c\u4e09\u65b9\u5e93\u96c6\u6210\u8fdbpaddlepaddl":62,"dnn\u4f1a\u7528\u5230":62,"dnn\u5171\u540c\u4f7f\u7528":62,"dnn\u524d\u540e\u7684cnn\u7f51\u7edc\u6027\u80fd":62,"dnn\u5728\u53d1\u5e03":62,"dnn\u5b9e\u73b0":62,"dnn\u5e0c\u671b\u7684\u683c\u5f0f":62,"dnn\u6570\u5b66\u5e93":97,"dnn\u6570\u636e\u7684\u4e0d\u540c\u683c\u5f0f\u4ee5\u53ca\u76f8\u4e92\u4e4b\u95f4\u7684\u8f6c\u6362":62,"dnn\u7684":62,"dnn\u7684\u5e93\u76ee\u524d\u53ea\u6709\u52a8\u6001\u5e93":62,"dnn\u7684\u6027\u80fd":62,"dnn\u7684\u60c5\u51b5\u4e0b":62,"dnn\u7684\u64cd\u4f5c\u90fd\u662f\u76f4\u63a5\u8986\u76d6\u7684\u5f62\u5f0f":62,"dnn\u7684\u6d4b\u8bd5":62,"dnn\u7684\u73af\u5883\u4e0b":62,"dnn\u7684\u76f8\u5173\u529f\u80fd":62,"dnn\u7684\u7ed3\u679c":62,"dnn\u7684\u9ad8\u6027\u80fd\u683c\u5f0f\u4e0epaddlepaddle\u539f\u6709\u7684":62,"dnn\u7684layer":62,"dnn\u7684layers\u90fd\u4f1a\u7ee7\u627f\u4e8e":62,"docker\u5b89\u88c5\u65b9\u5f0f\u53ef\u4ee5\u8fdb\u5165docker\u5bb9\u5668\u6267\u884c":123,"docker\u5b89\u88c5\u8bf7\u53c2\u8003":113,"docker\u5b89\u88c5\u8bf7\u53c2\u8003docker\u7684\u5b98\u7f51":113,"docker\u5b98\u7f51":98,"docker\u5bb9\u5668\u4e2d\u5c06\u9ed8\u8ba4\u4f7f\u7528":136,"docker\u7684\u5b98\u7f51":113,"docker\u7f16\u8bd1\u73af\u5883\u955c\u50cf\u5b8c\u6210\u7f16\u8bd1":97,"docker\u80fd\u5728\u6240\u6709\u4e3b\u8981\u64cd\u4f5c\u7cfb\u7edf":136,"docker\u955c\u50cf":98,"docker\u955c\u50cf\u4e3a\u4e86\u51cf\u5c0f\u4f53\u79ef":98,"docker\u955c\u50cf\u9ed8\u8ba4":98,"dockerhub\u7f51\u7ad9":98,"double\u7c7b\u578b\u65f6\u4e3a8":96,"dropout\u7684\u6bd4\u4f8b":110,"eigenscalar\u7684\u8f6c\u6362":112,"encode\u6210\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":104,"encoder\u548cdecoder\u53ef\u4ee5\u662f\u80fd\u591f\u5904\u7406\u5e8f\u5217\u7684\u4efb\u610f\u795e\u7ecf\u7f51\u7edc\u5355\u5143":106,"encoder\u8f93\u51fa":106,"entropy\u4f5c\u4e3acost":96,"enum":[34,36,41,67,74,75,84,85,90],"export":[51,56,91,98,113,123],"f\u4ee3\u8868\u4e00\u4e2a\u6d6e\u70b9\u6570":101,"fabric\u96c6\u7fa4":123,"fc1\u548cfc2\u5c42\u5728gpu\u4e0a\u8ba1\u7b97":134,"fc3\u5c42\u4f7f\u7528cpu\u8ba1\u7b97":134,"final":[4,5,18,27,28,42,56,68,69,86,89],"flatten\u65b9\u6cd5\u662f\u628apaddle\u4e2d\u7684\u4e00\u4e2atensor\u8fdb\u884creshape\u64cd\u4f5c":112,"float":[2,3,4,6,9,18,19,45,50,58,85,87,88,111,112,117,121],"float\u7b49":134,"forward\u7684output\u7684\u503c":94,"from\u65b9\u6cd5\u662f\u628apaddle\u4e2d\u7684\u4e00\u7ef4tensor\u8f6c\u4e3aeigen\u7684\u4e00\u7ef4tensor":112,"from\u662feigentensor\u6a21\u677f\u63d0\u4f9b\u7684\u4e00\u4e2a\u63a5\u53e3":112,"full\u53c2\u6570\u63d0\u4ea4":92,"function":[4,5,9,17,18,19,23,26,28,29,31,35,36,37,39,40,41,42,45,46,50,52,55,58,63,68,69,72,73,74,75,76,78,79,80,81,83,85,89,107,115,116,140],"function\u4f7f\u7528":95,"git\u6d41\u5206\u652f\u6a21\u578b":109,"github\u9996\u9875":109,"glibc\u81f3\u5c11\u5305\u542bglibc_2":100,"golang\u53ef\u4ee5\u4f7f\u7528":65,"golang\u7684":65,"google\u5f00\u6e90\u7684\u5bb9\u5668\u96c6\u7fa4\u7684\u8c03\u5ea6\u6846\u67b6":123,"gpu\u4e8c\u8fdb\u5236\u6587\u4ef6":97,"gpu\u5219\u8fd8\u9700\u8981\u9ad8\u5e76\u884c\u6027":117,"gpu\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18":114,"gpu\u6267\u884c":112,"gpu\u6838\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u6307\u5b9a":132,"gpu\u7684docker\u955c\u50cf\u7684\u65f6\u5019":91,"gpu\u7b49":82,"group\u6559\u7a0b":105,"group\u7684\u5b9e\u73b0\u65b9\u5f0f":95,"gru\u6216lstm":107,"h\u5e76\u4e0d\u56f0\u96be":65,"html\u5373\u53ef\u8bbf\u95ee\u672c\u5730\u6587\u6863":113,"i\u4ee3\u8868\u4e00\u4e2a\u6574\u6570":101,"id\u6307\u5b9a\u4f7f\u7528\u54ea\u4e2agpu\u6838":132,"id\u6307\u5b9a\u7684gpu":134,"id\u65e0\u6548":132,"image\u91cc":126,"images\u6570\u636e\u96c6\u4e0a\u4f20\u5230\u4e91\u7aef\u7684":33,"imikolov\u6570\u636e\u96c6":123,"import":[3,4,26,29,30,40,41,44,52,54,56,57,63,68,69,75,83,86,100,101,102,111,122,123,125],"infer\u63a5\u53e3\u7684\u8fd4\u56de\u503c\u662f\u4e00\u4e2apython":94,"ingress\u9700\u8981\u628apfsclient\u7684\u8eab\u4efd\u4fe1\u606f\u4f20\u7ed9pfsserv":48,"instance\u4e0e\u751f\u6210\u6570\u636e\u96c6\u65f6":33,"instance\u5305\u6db5\u4e24\u4e2a\u503c":33,"instance\u662f\u4e00\u6a21\u4e00\u6837\u7684":33,"int":[2,3,4,5,9,10,11,18,19,28,29,34,35,36,39,40,41,43,57,58,61,62,63,65,66,74,75,77,78,84,85,87,89,90,104,110,112,121,123,134],"interface\u6587\u4ef6\u7684\u5199\u6cd5\u975e\u5e38":65,"ios\u5e73\u53f0\u53ef\u9009\u914d\u7f6e\u53c2\u6570":137,"ios\u5e73\u53f0\u7f16\u8bd1\u6307\u5357":139,"ip\u548c\u4efb\u52a1\u8282\u70b9\u4e2a\u6570\u7b49":123,"issue\u7f16\u53f7":109,"job\u662f\u672c\u6b21\u8bad\u7ec3\u5bf9\u5e94\u7684job":127,"job\u7684\u540d\u5b57":127,"kernel\u5b9e\u73b0":111,"kernel\u6ce8\u518ccpu\u5b9e\u73b0\u5728":111,"kernel\u7684\u5b9e\u73b0\u57fa\u4e8eeigen":111,"kubernetes\u4e3a\u8fd9\u6b21\u8bad\u7ec3\u521b\u5efa\u4e863\u4e2apod\u5e76\u4e14\u8c03\u5ea6\u5230\u4e863\u4e2anode\u4e0a\u8fd0\u884c":127,"kubernetes\u5355\u673a":123,"kubernetes\u53ef\u4ee5\u901a\u8fc7yaml\u6587\u4ef6\u6765\u521b\u5efa\u76f8\u5173\u5bf9\u8c61":127,"kubernetes\u5c31\u4f1a\u521b\u5efa3\u4e2apod\u4f5c\u4e3apaddlepaddle\u8282\u70b9\u7136\u540e\u62c9\u53d6\u955c\u50cf":127,"kubernetes\u6709job\u7c7b\u578b\u7684\u8d44\u6e90\u6765\u652f\u6301":126,"label\u662f\u539f\u59cb\u6570\u636e\u4e2d\u5bf9\u4e8e\u6bcf\u4e00\u53e5\u8bdd\u7684\u5206\u7c7b\u6807\u7b7e":104,"labels\u662f\u6bcf\u7ec4\u5185\u6bcf\u4e2a\u53e5\u5b50\u7684\u6807\u7b7e":104,"layer1\u5fc5\u987b\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":103,"layer1\u5fc5\u987b\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":103,"layer\u4f5c\u4e3a\u4e00\u4e2a\u6574\u4f53\u6765\u5b9e\u73b0":95,"layer\u62ff\u5230\u7684\u7528\u6237\u8f93\u5165":106,"layer\u65f6":[62,95],"layer\u662f\u6211\u4eec\u7684\u79ef\u6728":101,"layer\u7684\u540e\u9762\u63a5\u6709cpu":62,"layer\u7c7b\u53ef\u4ee5\u81ea\u52a8\u8ba1\u7b97\u4e0a\u9762\u7684\u5bfc\u6570":110,"layer\u8ba1\u7b97\u7684\u8f93\u51fa":95,"linux\u4e2d":98,"list\u4e2d":122,"list\u4f5c\u4e3a\u68c0\u67e5\u5217\u8868":82,"list\u5982\u4e0b\u6240\u793a":134,"list\u6307\u5b9a\u6d4b\u8bd5\u7684\u6a21\u578b\u5217\u8868":134,"long":[4,5,9,18,41],"memory\u4e0d\u80fd\u72ec\u7acb\u5b58\u5728":106,"memory\u4e5f\u53ef\u4ee5\u5177\u6709":107,"memory\u4e5f\u53ef\u4ee5\u662f\u5e8f\u5217":107,"memory\u53ea\u80fd\u5728":106,"memory\u53ef\u4ee5\u7f13\u5b58\u4e0a\u4e00\u4e2a\u65f6\u523b\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u8f93\u51fa":104,"memory\u6307\u5411\u4e00\u4e2alay":106,"memory\u662f\u5728\u5355\u6b65\u51fd\u6570\u4e2d\u5faa\u73af\u4f7f\u7528\u7684\u72b6\u6001":107,"memory\u662fpaddlepaddle\u5b9e\u73b0rnn\u65f6\u5019\u4f7f\u7528\u7684\u4e00\u4e2a\u6982\u5ff5":104,"memory\u7684":107,"memory\u7684\u521d\u59cb\u72b6\u6001":106,"memory\u7684\u65f6\u95f4\u5e8f\u5217\u957f\u5ea6\u4e00\u81f4\u7684\u60c5\u51b5":104,"memory\u7684\u66f4\u591a\u8ba8\u8bba\u8bf7\u53c2\u8003\u8bba\u6587":106,"memory\u7684\u8f93\u51fa\u5b9a\u4e49\u5728":107,"memory\u7684i":106,"memory\u9ed8\u8ba4\u521d\u59cb\u5316\u4e3a0":106,"mkl\u5e93\u7684":61,"mklml\u4ee5\u53camkl":62,"mklml\u53ef\u4ee5\u4e0emkl":62,"mklml\u7684\u5e93\u76ee\u524d\u90fd\u662f\u52a8\u6001\u5e93":62,"mnist\u624b\u5199\u6570\u5b57\u8bc6\u522b\u76ee\u5f55":122,"mode\u4e0b\u7684\u7ed3\u679c":61,"model\u505a\u5206\u652f\u7ba1\u7406":82,"name\u7ec4\u5408\u53ef\u4ee5\u627e\u5230\u672c\u6b21\u8bad\u7ec3\u9700\u8981\u7684\u6587\u4ef6\u8def\u5f84":127,"ndarray\u7c7b\u578b\u7684\u503c\u548c\u6574\u578b\u7684\u503c":33,"ndk\u4e2d\u5305\u542b\u4e86\u6240\u6709android":136,"new":[4,9,18,27,28,29,30,31,34,35,36,37,38,41,42,45,50,51,60,61,63,67,69,72,77,78,79,81,85,86,89,109,110,125,140],"note\u7684\u4e66\u5199":82,"null":[56,110,121,132],"num\u51b3\u5b9a\u603b\u7aef\u53e3\u4e2a\u6570":123,"num_gradient_servers\u53c2\u6570":127,"num_samples_processed\u4e3a\u5df2\u8bad\u7ec3\u6837\u672c\u6570":96,"only\u7684\u4e8c\u8fdb\u5236":97,"op\u4e0d\u9700\u8981\u5b9a\u4e49opprotomak":111,"op\u5355\u5143\u6d4b\u8bd5\u7ee7\u627f\u81ea":111,"op\u5b9a\u4e49":111,"op\u6709\u8ba1\u7b97\u51fd\u6570":111,"op\u6ce8\u518c\u5b9e\u73b0\u5728":111,"op\u7684\u4fe1\u606f":62,"op\u8ba1\u7b97\u51fd\u6570\u7684\u57fa\u7c7b":111,"openmp\u7528\u4e8e\u63d0\u9ad8mklml\u7684\u6027\u80fd":62,"openmpi\u96c6\u7fa4":123,"opprotomake\u5b9a\u4e49":111,"org\u5de5\u5177\u7684\u8be6\u7ec6\u4fe1\u606f":113,"org\u76ee\u524d\u9075\u5faa":82,"outer_mem\u662f\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":104,"output\u53ef\u4ee5\u662f\u4efb\u610f\u7ef4\u5ea6\u7684tensor":112,"output\u6587\u4ef6\u5939\u5b58\u653e\u8bad\u7ec3\u7ed3\u679c\u4e0e\u65e5\u5fd7":127,"output\u7684\u539f\u6709shape\u4fe1\u606f\u4e0d\u53d8":112,"packages\u91cc\u9762":91,"packages\u91cc\u9762\u7684python\u5305":91,"packed\u4f18\u5316\u540elayer\u7684\u6d4b\u8bd5":61,"packed\u76f8\u5173\u529f\u80fd":61,"paddepaddle\u901a\u8fc7\u7f16\u8bd1\u65f6\u6307\u5b9a\u8def\u5f84\u6765\u5b9e\u73b0\u5f15\u7528\u5404\u79cdbla":97,"paddle\u4e00\u4e2a\u52a8\u6001\u5e93\u53ef\u4ee5\u5728\u4efb\u4f55linux\u7cfb\u7edf\u4e0a\u8fd0\u884c":65,"paddle\u4e2d\u7ecf\u5e38\u4f1a\u5c06\u65f6\u95f4\u5e8f\u5217\u6210\u4e3a":104,"paddle\u4e8c\u8fdb\u5236\u5728\u8fd0\u884c\u65f6\u6355\u83b7\u4e86\u6d6e\u70b9\u6570\u5f02\u5e38":94,"paddle\u5185\u5d4c\u7684python\u89e3\u91ca\u5668\u548c\u5916\u90e8\u4f7f\u7528\u7684python\u5982\u679c\u7248\u672c\u4e0d\u540c":65,"paddle\u5185\u90e8\u7684\u7c7b\u4e3ac":65,"paddle\u7684\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0\u5305\u62ec\u4e00\u4e0b\u51e0\u4e2a\u65b9\u9762":65,"paddle\u7684\u7c7b\u578b\u5168\u90e8\u9000\u5316\u6210":66,"paddle\u7684\u94fe\u63a5\u65b9\u5f0f\u6bd4\u8f83\u590d\u6742":65,"paddle\u7684c":66,"paddle\u8bad\u7ec3\u4efb\u52a1":33,"paddle\u8def\u5f84\u4e0b":66,"paddle\u9700\u8981\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3":65,"paddle\u9700\u8981\u66b4\u9732\u7684api\u5f88\u591a":66,"paddle\u9759\u6001\u5e93\u94fe\u63a5\u590d\u6742":65,"paddle_\u7c7b\u578b\u540d":66,"paddle_\u7c7b\u578b\u540d_\u51fd\u6570\u540d":66,"paddlepaddle\u4e2d":[103,106],"paddlepaddle\u4e2d\u4e00\u4e2a\u8ba1\u7b97\u5c42\u7684\u8f93\u51fa\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f\u548c\u8f93\u5165\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f\u5b8c\u5168\u76f8\u540c":121,"paddlepaddle\u4e2d\u7684\u8bb8\u591alayer\u5e76\u4e0d\u5728\u610f\u8f93\u5165\u662f\u5426\u662f\u65f6\u95f4\u5e8f\u5217":104,"paddlepaddle\u4e2d\u7684cudnn\u90e8\u5206\u4f7f\u7528\u7684\u4e5f\u662f":62,"paddlepaddle\u4e2d\u795e\u7ecf\u7f51\u7edc\u8ba1\u7b97\u5c42\u8f93\u5165":121,"paddlepaddle\u4e2d\u8fd8\u5305\u542b":95,"paddlepaddle\u4e2d\u901a\u8fc7reader\u6765\u52a0\u8f7d\u6570\u636e":101,"paddlepaddle\u4e3a\u4ea4\u53c9\u7f16\u8bd1\u63d0\u4f9b\u4e86\u5de5\u5177\u94fe\u914d\u7f6e\u6587\u6863":[136,137],"paddlepaddle\u4e3a\u6df1\u5ea6\u5b66\u4e60\u7814\u7a76\u4eba\u5458\u63d0\u4f9b\u4e86\u4e30\u5bcc\u7684api":101,"paddlepaddle\u4e3ano":98,"paddlepaddle\u4e3b\u8981\u4f7f\u7528":97,"paddlepaddle\u4f1a\u81ea\u52a8\u8bbe\u5b9a":95,"paddlepaddle\u4f7f\u7528\u540c\u6b65\u5c4f\u969c":123,"paddlepaddle\u4f7f\u7528\u5747\u503c0":96,"paddlepaddle\u4f7f\u7528avx":91,"paddlepaddle\u4f7f\u7528git":82,"paddlepaddle\u4fdd\u5b58\u7684\u6a21\u578b\u53c2\u6570\u6587\u4ef6\u5185\u5bb9\u753116\u5b57\u8282\u5934\u4fe1\u606f\u548c\u7f51\u7edc\u53c2\u6570\u4e24\u90e8\u5206\u7ec4\u6210":96,"paddlepaddle\u4fdd\u5b58\u7684\u6a21\u578b\u53c2\u6570\u6587\u4ef6\u524d16\u5b57\u8282\u4e3a\u5934\u4fe1\u606f":96,"paddlepaddle\u53d1\u5e03\u7684\u5b89\u88c5\u5305\u4f1a\u5c3d\u91cf\u5bf9\u9f50":100,"paddlepaddle\u53ef\u4ee5\u4f7f\u7528\u591a\u79cd\u5206\u5e03\u5f0f\u8ba1\u7b97\u5e73\u53f0\u6784\u5efa\u5206\u5e03\u5f0f\u8ba1\u7b97\u4efb\u52a1":123,"paddlepaddle\u53ef\u4ee5\u4f7f\u7528\u5e38\u7528\u7684python\u5305\u7ba1\u7406\u5de5\u5177":100,"paddlepaddle\u53ef\u4ee5\u4f7f\u7528cudnn":97,"paddlepaddle\u53ef\u4ee5\u540c\u65f6\u652f\u6301\u540c\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":123,"paddlepaddle\u53ef\u4ee5\u6bd4\u8f83\u7b80\u5355\u7684\u5224\u65ad\u54ea\u4e9b\u8f93\u51fa\u662f\u5e94\u8be5\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684":104,"paddlepaddle\u53ef\u4ee5\u901a\u8fc7\u8be5\u673a\u5236\u5224\u65ad\u662f\u5426\u5df2\u7ecf\u6536\u96c6\u9f50\u6240\u6709\u7684\u68af\u5ea6":110,"paddlepaddle\u5728\u5b9e\u73b0rnn\u7684\u65f6\u5019":104,"paddlepaddle\u5728\u6fc0\u6d3b\u51fd\u6570\u91cc\u5b9e\u73b0dropout":95,"paddlepaddle\u5728\u7f16\u8bd1\u65f6":97,"paddlepaddle\u5b58\u7684\u662f\u6709\u503c\u4f4d\u7f6e\u7684\u7d22\u5f15":101,"paddlepaddle\u5b89\u88c5\u5305\u7531\u4e8e\u4e0d\u4ec5\u4ec5\u5305\u542b":100,"paddlepaddle\u5c06\u4f1a\u6839\u636e":137,"paddlepaddle\u5c06\u4f1a\u81ea\u52a8\u9009\u62e9":137,"paddlepaddle\u5c06\u6839\u636e":136,"paddlepaddle\u5c06\u81ea\u52a8\u4e0b\u8f7d\u548c\u7f16\u8bd1\u6240\u6709\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93":[136,137,138],"paddlepaddle\u5e93\u5df2\u7ecf\u5b89\u88c5\u5b8c\u6210":137,"paddlepaddle\u5f00\u53d1\u8fc7\u7a0b\u4f7f\u7528":82,"paddlepaddle\u63d0\u4f9b":99,"paddlepaddle\u63d0\u4f9b\u4e13\u7528\u7684":33,"paddlepaddle\u63d0\u4f9b\u7684":95,"paddlepaddle\u652f\u6301":97,"paddlepaddle\u652f\u6301\u4e0d\u540c\u7c7b\u578b\u7684\u8f93\u5165\u6570\u636e":101,"paddlepaddle\u652f\u6301\u4f7f\u7528pip\u5feb\u901f\u5b89\u88c5":102,"paddlepaddle\u652f\u6301\u975e\u5e38\u591a\u7684\u4f18\u5316\u7b97\u6cd5":94,"paddlepaddle\u652f\u6301sparse\u7684\u8bad\u7ec3":94,"paddlepaddle\u6587\u6863\u4f7f\u7528":113,"paddlepaddle\u662f\u6e90\u4e8e\u767e\u5ea6\u7684\u4e00\u4e2a\u6df1\u5ea6\u5b66\u4e60\u5e73\u53f0":101,"paddlepaddle\u6bcf\u6b21\u53d1\u65b0\u7684\u7248\u672c":82,"paddlepaddle\u6bcf\u6b21\u53d1\u7248\u672c\u9996\u5148\u8981\u4fdd\u8bc1paddlepaddl":82,"paddlepaddle\u7684":126,"paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u9075\u5faa":82,"paddlepaddle\u7684\u5185\u5b58\u5360\u7528\u4e3b\u8981\u5206\u4e3a\u5982\u4e0b\u51e0\u4e2a\u65b9\u9762":94,"paddlepaddle\u7684\u53c2\u6570\u4f7f\u7528\u540d\u5b57":96,"paddlepaddle\u7684\u5404\u7248\u672c\u955c\u50cf\u53ef\u4ee5\u53c2\u8003":126,"paddlepaddle\u7684\u5b89\u88c5\u53ef\u4ee5\u53c2\u8003":123,"paddlepaddle\u7684\u5df2\u7ecf\u5b89\u88c5\u5b8c\u6210":136,"paddlepaddle\u7684\u6240\u6709layer\u90fd\u6709\u552f\u4e00\u7684nam":95,"paddlepaddle\u7684\u6587\u6863\u5305\u62ec\u82f1\u6587\u6587\u6863":113,"paddlepaddle\u7684\u6587\u6863\u6784\u5efa\u6709\u4e09\u79cd\u65b9\u5f0f":113,"paddlepaddle\u7684\u6e90\u7801":109,"paddlepaddle\u7684\u7f16\u8bd1\u9009\u9879":97,"paddlepaddle\u7684activation\u4f1a\u76f4\u63a5\u4f7f\u7528":62,"paddlepaddle\u7684bas":110,"paddlepaddle\u7684c":136,"paddlepaddle\u7684cmake\u7cfb\u7edf\u4f1a\u81ea\u52a8\u7f16\u8bd1\u6240\u6709\u7684\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93":137,"paddlepaddle\u7684cmake\u7cfb\u7edf\u5c06\u6839\u636e\u8be5\u503c\u81ea\u52a8\u63a8\u5bfc\u548c\u8bbe\u7f6e\u9700\u8981\u4f7f\u7528\u7684\u4ea4\u53c9\u7f16\u8bd1\u5668":136,"paddlepaddle\u7684cmake\u7cfb\u7edf\u5c06\u6839\u636e\u8be5\u503c\u81ea\u52a8\u8bbe\u7f6e\u9700\u8981\u4f7f\u7528\u7684\u4ea4\u53c9\u7f16\u8bd1\u5668":138,"paddlepaddle\u7684cmake\u7cfb\u7edf\u624d\u8ba4\u4e3a\u5728\u662f\u5728\u4ea4\u53c9\u7f16\u8bd1raspberri":138,"paddlepaddle\u7684cmake\u7cfb\u7edf\u624d\u8ba4\u4e3a\u662f\u5728\u4ea4\u53c9\u7f16\u8bd1android\u7cfb\u7edf\u7684\u7248\u672c":136,"paddlepaddle\u7684dock":126,"paddlepaddle\u7684softmax\u4e0d\u80fd\u6307\u5b9a\u8ba1\u7b97\u7ef4\u5ea6":95,"paddlepaddle\u76ee\u524d\u53ea\u652f\u6301\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e2d":104,"paddlepaddle\u76ee\u524d\u63d0\u4f9b\u4e24\u79cd\u53c2\u6570\u521d\u59cb\u5316\u7684\u65b9\u5f0f":96,"paddlepaddle\u76ee\u524d\u652f\u63018\u79cdlearning_rate_schedul":96,"paddlepaddle\u7f16\u8bd1\u9700\u8981\u4f7f\u7528\u5230\u4e0b\u9762\u7684\u4f9d\u8d56":97,"paddlepaddle\u82e5\u68c0\u6d4b\u5230\u7528\u6237\u4f7f\u7528\u7684cmake\u7248\u672c\u4e0d\u4f4e\u4e8e3":136,"paddlepaddle\u8d1f\u8d23\u5b8c\u6210\u4fe1\u606f\u548c\u68af\u5ea6\u5728\u65f6\u95f4\u5e8f\u5217\u4e0a\u7684\u4f20\u64ad":106,"paddlepaddle\u8d1f\u8d23\u5b8c\u6210\u4fe1\u606f\u548c\u8bef\u5dee\u5728\u65f6\u95f4\u5e8f\u5217\u4e0a\u7684\u4f20\u64ad":106,"paddlepaddle\u955c\u50cf\u9700\u8981\u63d0\u4f9b":127,"pass\u4e2a\u6a21\u578b\u5230\u7b2c":132,"pass\u5c06\u4e0d\u8d77\u4f5c\u7528":132,"pass\u8f6e\u5f00\u59cb\u8bad\u7ec3":132,"pass\u8f6e\u7684\u6a21\u578b\u7528\u4e8e\u6d4b\u8bd5":132,"passes\u8f6e":132,"patch\u53f7":82,"patch\u53f7\u52a0\u4e00":82,"path\u6307\u5b9a\u6d4b\u8bd5\u7684\u6a21\u578b":134,"perftools\u6765\u8fdb\u884c\u6027\u80fd\u5206\u6790":116,"period\u4e2a\u6279\u6b21\u5bf9\u6240\u6709\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5":132,"period\u4e2a\u6279\u6b21\u6253\u5370\u65e5\u5fd7\u8fdb\u5ea6":132,"period\u4e2a\u6279\u6b21\u8f93\u51fa\u53c2\u6570\u7edf\u8ba1":132,"period\u4e2a\u6279\u6b21\u8f93\u51fa\u7b26\u53f7":132,"period\u6574\u9664":132,"period\u8f6e\u4fdd\u5b58\u8bad\u7ec3\u53c2\u6570":132,"pfsclient\u9700\u8981\u548cingress\u4e4b\u95f4\u505a\u53cc\u5411\u9a8c\u8bc1":48,"pfsclient\u9700\u8981\u5728\u4f20\u8f93\u5b8c\u6bd5\u6700\u540e\u4e00\u4e2achunk\u7684\u65f6\u5019\u68c0\u67e5destination\u6587\u4ef6\u7684md5\u503c\u662f\u5426\u548csource\u6587\u4ef6\u4e00\u81f4":48,"pfsserver\u63d0\u4f9brest":48,"pi\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u7684\u65b9\u6cd5\u548c\u6b65\u9aa4":138,"pi\u5e73\u53f0\u7f16\u8bd1\u6307\u5357":139,"pi\u7248\u672c\u7684\u5e93":138,"pi\u7248\u672cpaddlepaddle\u5e93\u65f6":138,"pi\u7684\u914d\u7f6e\u4fe1\u606f\u5728":138,"pi\u7cfb\u7edf\u4e0a\u6765\u6784\u5efa":138,"pi\u7cfb\u7edf\u7684\u7248\u672c":138,"pip\u548cdocker\u7684\u5b89\u88c5\u65b9\u5f0f":99,"pserver\u5730\u5740\u7b49\u53c2\u6570\u4f7ftrainer\u53ef\u4ee5\u6b63\u786e\u8fde\u63a5\u5230pserv":123,"pserver\u76d1\u542c\u7684\u8d77\u59cb\u7aef\u53e3":123,"public":[10,14,18,29,50,53,58,74,80,83,85,86,87,89,110,111,112,125,126],"pwd\u53d8\u91cf\u4f1a\u5c55\u5f00\u4e3a\u5f53\u524d\u8def\u5f84\u7684\u7edd\u5bf9\u8def\u5f84":98,"py\u4e2d":82,"py\u7a0b\u5e8f":100,"pydataprovider\u4f7f\u7528\u7684\u662f\u5f02\u6b65\u52a0\u8f7d":94,"pypi\u4e0a\u7684package\u540d\u79f0\u4e3apaddlepaddle\u548cpaddlepaddl":82,"pypi\u4e0d\u652f\u6301\u8986\u76d6\u4e0a\u4f20":82,"pypi\u5b89\u88c5\u5305\u53ef\u4ee5\u5728":100,"python\u5b89\u88c5\u5305\u652f\u6301linux":91,"python\u5c01\u88c5\u7684\u5b9e\u73b0\u4f7f\u5f97\u6211\u4eec\u53ef\u4ee5\u5728\u914d\u7f6e\u6587\u4ef6\u4e2d\u4f7f\u7528\u65b0\u5b9e\u73b0\u7684\u7f51\u7edc\u5c42":110,"python\u5e93yep":116,"python\u6807\u51c6\u5e93\u4e2d\u63d0\u4f9b\u4e86\u6027\u80fd\u5206\u6790\u7684\u5de5\u5177\u5305":116,"reader\u7684\u4f7f\u7528\u65b9\u5f0f\u90fd\u662f\u4e00\u81f4\u7684":33,"reader\u8f93\u51fa\u7684data":33,"recommendation\u6587\u4ef6\u5939\u5185\u5b58\u653e\u8bad\u7ec3\u6587\u4ef6":127,"request\u524d":109,"request\u7684":109,"request\u88ab\u5408\u5e76\u540e":109,"resnet\u7684mkl":62,"return":[2,4,5,7,9,10,11,14,18,20,25,26,27,28,29,33,34,36,39,40,46,50,52,53,54,56,58,59,60,63,68,69,70,74,75,76,80,83,85,87,89,94,96,101,104,107,110,112,125,127],"rnn\u5373\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":104,"rnn\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u901a\u8fc7\u4e86\u4e00\u4e2alstm\u7f51\u7edc":104,"rnn\u603b\u662f\u5f15\u7528\u4e0a\u4e00\u65f6\u523b\u9884\u6d4b\u51fa\u7684\u8bcd\u7684\u8bcd\u5411\u91cf":106,"rnn\u76f8\u5173\u6a21\u578b":114,"rnn\u90e8\u5206\u4e2d":61,"rnn\u914d\u7f6e":105,"root\u66ff\u6362\u4e3apaddlepaddle\u9884\u6d4b\u5e93\u7684\u5b89\u88c5\u8def\u5f84":119,"s3\u4e4b\u7c7b\u7684\u5206\u5e03\u5f0f\u5b58\u50a8\u4e4b\u4e0a":33,"search\u7684\u65b9\u6cd5":132,"sentences\u662f\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u7684\u6570\u636e":104,"seq\u53c2\u6570\u5fc5\u987b\u4e3afals":106,"server\u4e2a\u6279\u6b21\u6253\u5370\u65e5\u5fd7\u8fdb\u5ea6":132,"server\u4e4b\u4e0a":32,"server\u4e4b\u95f4\u7684\u7f51\u7edc\u5e26\u5bbd":32,"server\u4f1a\u6682\u505c\u53c2\u6570\u66f4\u65b0\u5e76\u7b49\u5f85":32,"server\u4f1a\u83b7\u53d6parameters\u5185\u5b58\u7684":32,"server\u5185\u5b58\u4e2d\u7684\u6a21\u578b\u6570\u636e\u7684\u5b8c\u6574\u955c\u50cf":32,"server\u540c\u6b65\u7684\u4fdd\u5b58\u4e00\u4e2a\u7279\u5b9a\u65f6\u95f4\u70b9\u7684\u5168\u5c40\u68c0\u67e5\u70b9":32,"server\u5728\u96c6\u7fa4\u4e2d\u542f\u52a8\u540e":32,"server\u6545\u969c\u540e\u88abkubernetes\u91cd\u65b0\u542f\u52a8":32,"server\u6b64\u65f6\u8fd8\u9700\u8981\u901a\u8fc7\u7f51\u7edc\u8bbf\u95ee\u5206\u5e03\u5f0f\u5b58\u50a8\u4ee5\u4fdd\u5b58\u5feb\u7167":32,"server\u751f\u6210\u4e00\u4e2auuid":32,"server\u7684\u5355\u70b9\u6216\u591a\u70b9\u540c\u65f6\u6545\u969c":32,"server\u7684\u6570\u636e\u5feb\u7167":32,"server\u7684\u68c0\u67e5\u70b9\u5404\u81ea\u72ec\u7acb\u4fdd\u5b58":32,"server\u7b2c\u4e00\u6b21\u542f\u52a8\u6216\u4efb\u610f\u65f6\u95f4paramet":32,"short":[4,5,50,54,77,83,86,89],"simd\u6307\u4ee4\u63d0\u9ad8cpu\u6267\u884c\u6548\u7387":91,"size\u4e3a512":132,"size\u53ef\u80fd\u4f1a\u5bf9\u8bad\u7ec3\u7ed3\u679c\u4ea7\u751f\u5f71\u54cd":94,"size\u672c\u8eab\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u8d85\u53c2\u6570":94,"softmax\u6fc0\u6d3b\u7684\u8f93\u51fa\u7684\u548c\u603b\u662f1":110,"sparse\u8bad\u7ec3\u9700\u8981\u8bad\u7ec3\u7279\u5f81\u662f":94,"static":[25,36,66,83,85,125,140],"step\u51fd\u6570\u4e2d\u7684memori":106,"step\u51fd\u6570\u5185\u90e8\u53ef\u4ee5\u81ea\u7531\u7ec4\u5408paddlepaddle\u652f\u6301\u7684\u5404\u79cdlay":106,"store\u4e0b\u8f7d\u5b89\u88c5xcode\u5373\u53ef":137,"subseq\u7684\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":103,"super":[77,110],"swig\u652f\u6301\u7684\u8bed\u8a00\u6216\u8005\u89e3\u91ca\u5668\u6709\u5c40\u9650":65,"swig\u66b4\u9732\u7684\u63a5\u53e3\u4fdd\u7559\u4e86c":65,"swig\u751f\u6210\u7684\u4ee3\u7801\u4e0d\u80fd\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":65,"swig\u76f4\u63a5\u8bfb\u53d6c":65,"swig\u9700\u8981\u5199\u4e00\u4e2ainterface\u6587\u4ef6":65,"switch":[29,66,125],"tag\u4e3a":82,"tag\u53ef\u4ee5\u662flatest\u6216latest":82,"tag\u7684\u66f4\u65b0\u65f6\u95f4\u662f\u5426\u5728\u4e0a\u8ff0\u7f16\u8bd1wheel\u5305\u5b8c\u6210\u540e\u662f\u5426\u6700\u65b0":82,"tensor\u5230\u5bf9eigentensor\u7684\u8f6c\u6362":112,"tensor\u5230eigentensor":112,"tensor\u5b9a\u4e49\u5728framework\u76ee\u5f55\u4e0b":112,"tensor\u662f\u4e00\u4e2a\u6b63\u5728\u5f00\u53d1\u4e2d\u7684\u6a21\u5757":112,"tensor\u6a21\u5757\u5bf9el":112,"tensor\u6a21\u5757\u6765\u5b9e\u73b0":111,"tensor\u6a21\u5757\u7684\u6587\u6863\u8f83\u5c11":112,"tensor\u6a21\u5757\u7684\u8be6\u7ec6\u4ecb\u7ecd\u8bf7\u53c2\u8003":112,"tests\u7684paddlepaddl":109,"tflops\u4e86":117,"throw":125,"tottime\u7684\u6bcf\u6b21\u8c03\u7528\u5e73\u5747\u65f6\u95f4":116,"trainer\u542f\u52a8\u9700\u8981\u4f20\u5165\u7aef\u53e3":123,"trainer\u63a5\u6536\u4e09\u4e2a\u53c2\u6570":101,"trainer\u8282\u70b9\u4e2a\u6570":123,"trainer\u9700\u8981\u548cpserver\u4fdd\u6301\u7f51\u7edc\u8054\u901a\u4ee5\u5b8c\u6210\u8bad\u7ec3":123,"true":[2,3,4,5,6,7,9,11,16,18,19,25,26,28,29,34,51,57,61,70,75,76,77,78,82,85,89,94,96,104,107,110,121,122,125,127,134],"true\u8868\u793a\u53cd\u5411\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":107,"try":[30,31,34,35,36,51,56,60,63,78,83,86,91],"type\u5b57\u6bb5\u5747\u4e0d\u5c3d\u76f8\u540c":66,"type\u6307\u5b9a\u4e3a":116,"ubuntu\u4e0b\u5b89\u88c5\u547d\u4ee4\u4e3a":116,"unit\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u8ba1\u7b97\u5f97\u5230\u7684\u4e2d\u95f4\u503c":95,"unsupported\u6a21\u5757":111,"update\u53c2\u6570\u65f6\u624d\u6709\u6548":132,"v1\u7248\u672c":91,"var":[17,28,29,40,45,52,53,55,57,70,75,76,77,79,83,88,89,113],"vector\u662frank\u4e3a1\u7684tensor":112,"void":[29,34,36,47,50,52,53,58,63,64,65,66,75,76,84,85,87,88,110,111,112],"wheel\u5305":82,"while":[2,4,9,18,29,38,41,51,56,59,60,69,72,73,78,81,83,87,127],"wise\u8ba1\u7b97\u63d0\u4f9b\u4e86\u5f3a\u5927\u7684\u652f\u6301":112,"wmt14\u6570\u636e\u7684\u63d0\u4f9b\u6587\u4ef6\u5728":107,"words\u5373\u4e3a\u8fd9\u4e2a\u6570\u636e\u4e2d\u7684\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":104,"words\u662f\u539f\u59cb\u6570\u636e\u4e2d\u7684\u6bcf\u4e00\u53e5\u8bdd":104,"x86_64\u548cmaco":91,"x\u4e0ey\u4e3a\u4e4b\u524d\u63cf\u8ff0\u7684\u8f93\u5165\u5c42":101,"x\u548cwindow":136,"y\u8868\u793a\u8f93\u5165\u6570\u636e\u662f\u4e00\u4e2a\u7ef4\u5ea6\u4e3a1\u7684\u7a20\u5bc6\u5411\u91cf":101,"yaml\u6587\u4ef6\u4e2d\u5404\u4e2a\u5b57\u6bb5\u7684\u5177\u4f53\u542b\u4e49":127,"yaml\u6587\u4ef6\u63cf\u8ff0\u4e86\u8fd9\u6b21\u8bad\u7ec3\u4f7f\u7528\u7684docker\u955c\u50cf":127,"zero\u4e09\u79cd\u64cd\u4f5c":132,AGE:[125,126],AWS:[9,33,129,130],Abs:18,Added:86,And:[3,4,6,9,10,11,18,25,27,34,38,39,47,54,56,67,71,74,78,83,87,125],But:[4,5,9,18,27,53,59,67,74,83,91,140],EOS:4,For:[3,4,5,6,9,18,25,26,28,29,35,36,37,39,40,42,45,46,51,52,53,55,58,60,64,67,68,69,72,73,74,75,76,77,78,79,80,81,84,85,86,87,88,90,115,117,140],IDE:108,IDs:[10,18,38,41,69],IRs:42,Into:125,Its:[3,4,52,84,125],K8s:140,NMS:4,NOT:[18,77],Not:[26,31,60,86,140],OPs:[42,44],One:[3,5,18,25,27,38,64,67,83,86,88],Ops:[79,81,85],PFS:48,QoS:126,Such:[58,77,86,89],TLS:[26,48,125],That:[4,9,71],The:[1,2,3,4,5,6,9,10,11,14,17,18,19,22,25,26,27,28,30,31,35,37,38,39,41,42,44,45,46,49,50,52,56,59,60,63,64,66,68,69,71,72,74,75,76,77,78,81,83,84,85,86,87,88,89,90,110,111,112,115,118,121,125,127],Their:[4,31],Then:[4,5,18,40,42,53,58,60,71,74,76,115,125],There:[3,4,10,18,25,26,29,30,31,36,38,39,41,42,49,50,51,56,60,67,68,69,72,73,74,77,81,83,84,87,125],These:[3,11,18,28,29,45,50,55,70,81,84,85,86],Use:[3,9,18,26,43,49,78,79,86,115,125],Used:[5,14,19,79,87],Uses:60,Using:[18,31,51,72,78,79,81,83],VPS:125,Will:[9,25,101],With:[4,5,40,45,51,71,75,86,89],YES:39,Yes:[62,98],___embedding_0__:127,___embedding_1__:127,___fc_layer_0__:125,__align__:50,__cuda_align__:50,__device__:50,__doc__:85,__file__:39,__forceinline__:50,__fp16:50,__global__:50,__gradient_machines__:25,__hadd:50,__half:50,__half_raw:50,__impl__:85,__init__:[45,46,54,60,70,77,89,110,115,116],__main__:54,__name__:54,__param_conf__:25,__rnn_step__:107,__square_error_cost_0__:127,__tmp_params__:25,__va_args__:80,__x:50,_addup_repetitive_outputs_:28,_append_backward_ops_:[28,45],_append_backward_vars_:28,_binari:30,_create_global_var:77,_def:60,_dtype:56,_filer:63,_filter:63,_fwd:63,_fwd_pd:63,_input:63,_librari:30,_link:5,_live_in:60,_live_out:60,_loss:54,_op:[56,111],_output:63,_presucessor:60,_program:60,_proj:4,_recurrent_group:107,_remove_no_grad_branch_:28,_reorder_input:63,_source_language_embed:107,_src_input:63,_sucessor:60,_target_language_embed:107,_test:30,_update_op:46,_use:60,_value_index:56,a75:50,a_op:111,a_prev:86,aaaaa:33,aaaaaaaaaaaaa:125,abbrevi:11,abc:4,abil:54,abl:[4,26,28,41,42,58,70,74,77,140],about:[5,11,18,29,30,39,44,49,52,60,68,78,83,85,86,87,115,125],abov:[3,4,18,26,28,29,30,31,35,40,41,42,50,51,52,53,55,63,68,69,70,71,72,74,75,77,85,86,88,89,115,117,125,140],abs:[5,16,27,54,94],abs_numerical_grad:27,absolut:94,acc:42,acceler:[4,32,62,71,72],accept:[2,4,9,18,26,79],access:[4,5,18,26,30,35,38,39,40,42,77],accessmod:125,accessor:77,accord:[3,4,11,18,27,28,36,42,44,55,69,79,89],accordingli:[3,4],account:[79,140],accoust:86,accrodingli:34,accumul:[31,36,46,71,72,86],accur:[27,38,74],accuraci:[3,14,46,86],achiev:[44,71,72,86,87],acquir:51,across:[4,9,28,42,68,86],act1:56,act2:56,act:[4,5,18,19,29,42,56,69,77,89,94,101,102,104,107,118],act_output:85,act_typ:56,actgat:18,action:125,activ:[5,18,19,24,30,56,60,69,74,77,81,85,94,101,102,107],activi:5,actnod:18,actual:[4,18,34,45,51,54,56,63,67,72,85,87,88],actual_layout:63,adadelta:94,adagrad:[20,72,84],adagradoptim:70,adam:[20,26,36,42,54,96],adamax:20,adapt:[3,6,18,25,74,88],add:[4,5,9,16,18,20,23,25,27,28,29,30,34,38,41,42,44,46,50,53,57,59,70,72,76,77,79,81,83,87,91,109,112,118],add_activ:77,add_bia:77,add_depend:30,add_execut:30,add_input:[68,110],add_memori:68,add_output:68,add_scalar:[29,69,75],add_sum:77,add_test:[30,110],add_to:95,add_two:[29,68],add_unittest_without_exec:110,addattr:[85,111],addbia:110,addcom:[85,111],added:[3,4,14,18,23,25,29,44,45,50,67,71,72,81,109],adding:81,addinput:[85,111],addit:[4,5,28,41,71,74,79,81,89],addition:68,addmemori:63,addop:53,addoutput:111,addprimit:63,addprimitivedesc:63,addr:31,address:[31,36,40,42,121,140],addrow:110,addtolay:4,addtyp:85,adjust:[28,45],admin:140,administr:[38,140],adopt:[50,54],advanc:27,advantag:[27,50,51,72,78],adversari:[54,78],affect:[4,29],affili:69,afford:35,aforement:30,after:[4,5,10,11,18,28,29,30,35,36,38,42,43,44,45,47,49,50,60,63,71,73,74,77,86,109,115,125],aftern:74,again:[26,31,72],against:125,age:[10,127],agg_level:[4,103,104],aggreg:[46,71,125],aggregatelevel:[103,104],ago:30,agre:[94,101],ahead:86,alex:18,alexnet_pass1:134,alexnet_pass2:134,algo:63,algo_hrnn_demo:104,algorithm:[4,6,18,28,35,45,60,63,69,72,81,86,88],alia:18,align:[4,5,9],all:[2,3,4,14,16,18,19,25,26,28,29,30,31,34,36,38,39,40,41,42,43,45,47,49,51,54,55,56,59,60,63,64,66,67,68,69,70,71,72,74,75,77,79,85,86,87,91,94,101,106,118,125,127,140],all_output_nam:28,alloc:[2,36,39,60,63,87,112,118],allow:[26,36,40,42,45,51,72,81,125],allow_only_one_model_on_one_gpu:[131,132,134],allreduc:71,almost:18,along:[4,11,18,19],alpha:[18,30,81],alreadi:[18,30,31,51,63,77,83,91,125],also:[4,5,10,18,26,28,29,30,34,37,41,42,50,51,53,54,55,56,59,60,67,68,69,72,73,74,75,76,77,78,81,83,85,86,87,89,90,117,140],altern:115,although:[28,71],altogeth:140,alwai:[4,5,18,25,30,64,84,125,127],amazon:[125,126],amazonaw:125,amazonec2fullaccess:125,amazonelasticfilesystemfullaccess:125,amazonroute53domainsfullaccess:125,amazonroute53fullaccess:125,amazons3fullaccess:125,amazonvpcfullaccess:125,ambigu:[78,86],amd64:125,amd:67,amend:109,amodei:86,among:[18,125],amort:71,amount:18,analys:74,analysi:[74,115],analyz:60,ancestor:[75,77],andd:125,andrew:60,android:136,android_abi:136,android_api:136,android_arm_neon:136,android_native_api_level:136,android_standalone_toolchain:136,android_toolchain:136,androideabi:136,ani:[4,5,9,18,20,26,30,31,36,38,39,40,41,42,47,50,51,58,60,64,69,71,72,77,78,80,81,86,88,94,101,125],announc:50,anoth:[4,9,25,26,28,29,39,41,51,52,63,69,77,83,85,87,88,125],anroid_arm_mod:136,ans:125,answer:[40,51,125],anymor:71,anyth:[9,69,78,125],anytim:54,anywai:115,apach:[62,94,101],apart:18,api:[10,14,25,26,28,30,36,37,39,40,46,48,53,54,56,68,73,74,79,82,89,90,100,114,115,116,117,119,121,123,125,127,135,136,140],api_pydataprovider2:94,api_shar:30,api_test:30,api_trainer_config_helpers_lay:107,apiserv:125,apivers:[125,126,127],appar:28,appear:[40,51,55,87],appel:60,append:[18,25,28,45,46,69,77,78,86,104,107,123,127],append_backward:[20,28,70,115,116],append_batch_s:18,append_clip_op:45,append_gradient_machin:25,append_op:[45,59,77],append_oper:77,appleyard:117,appli:[4,18,54,55,71,74,83],applic:[22,40,41,50,51,52,55,77,79,94,101,115,117,125,126,140],applyl1:34,appreci:86,approach:[4,42,43,44,71,72,73,81,86,140],approxim:[16,18,72],apt:[98,115,116],arbitrari:[4,42,64],arch:136,archetectur:86,architectur:[50,86],archiv:[10,18,65,66,119],area:54,arg:[3,5,22,28,56,70,85,96,111,127],arg_nam:4,argmax:18,argpars:127,args_ext:127,argu:76,argument:[4,9,11,22,28,29,34,35,42,70,73,76,77,119,121,122,127,136],argumentpars:127,arithmet:50,arm64:[136,137],arm64_standalone_toolchain:136,arm:[50,136,137,138],arm_standalone_toolchain:136,armeabi:136,armv7:[50,137],armv8:50,arn:125,around:[4,38,60,77,125,140],arrai:[2,4,9,11,18,25,36,40,41,55,69,75,77,78,79,89,94,96,101,111,121],arrang:89,arrari:[18,121],array_to_lod_tensor:60,arrow:54,articl:[52,55,109],artifact:[82,125],artifici:[16,60],arxiv:[5,16,18,54,86],as_row_vector:4,as_step_input:29,asgd:72,ask:[28,31,38],asr:86,assgin:60,assign:[3,4,19,28,35,40,43,45,50,52,71,86,121,125,140],assigne:86,assignmemt:60,associ:[73,80],assum:[3,4,18,29,42,63],assumpt:42,ast:40,astyp:[78,111],asyc:31,async:[31,44,131],async_count:[131,132],async_lagged_grad_discard_ratio:132,async_lagged_ratio_default:[131,132],async_lagged_ratio_min:[131,132],asynchron:[31,41,71,74],atom:43,att_seq:5,attach:5,attend:5,attended_sequ:5,attenion:5,attent:[4,5,19],attr1:4,attr2:4,attr:[2,4,5,18,29,40,56,59,63,75,76,77,85,94,95,96,107,111],attr_map:85,attrdesc:75,attribu:63,attribut:[4,5,18,24,28,29,44,45,59,75,77,79,83,85,89],attributemap:111,attrproto:85,attrtyp:[75,85,111],attrvalu:85,auc:[46,131],audio:86,augment:86,authent:125,author:[48,86,94,101,125],auto:[29,34,43,52,63,65,76,79,83,88,89,97,110,111,112,117],autom:125,automat:[4,18,26,28,36,42,44,45,53,70,79,85,86,115,125],avail:[31,36,44,50,51,60,125,140],averag:[3,4,7,18,25,35,94],average_test_period:[131,132],avg:[103,117],avg_cost:[42,118],avg_x:18,avgpool:4,avoid:[27,29,31,42,59,63,71,72,73,117],avx:98,awai:51,await:126,awar:[26,40,46,52,68,77,115,125],awk:128,awni:86,aws:48,aws_account_id:125,awsaccountid:125,awskeymanagementservicepowerus:125,axi:[4,18,94],axis:4,b363:126,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:126,ba5f:125,back:[4,18,25,28,31,42,50,54,72],background:[3,4,81,86],background_id:[3,4],backpropag:[27,28],backward:[1,4,5,23,27,29,34,36,45,54,61,62,70,72,73,76,80,81,110,111,118],backward_first:107,backward_op:27,backwardactiv:110,baidu:[51,86,126],bake:42,balanc:[44,71,125],bandwidth:[50,71],bare:[126,140],barrier:123,barrierstatset:117,basci:56,base:[3,4,7,9,10,14,16,18,20,23,26,35,45,46,50,51,58,63,67,70,71,72,74,79,80,81,87,89,108,115,118,125],baseactiv:5,baseerrorclipattr:45,baseev:25,baselin:86,basematrix:110,basenam:3,basepoolingtyp:[4,5],basestr:[2,3,4,5,7,25],bash:[97,98,108,109,123,125,126,127],basi:[94,101],basic:[4,25,42,56,63,74,75,79,80,86,89],batch:[4,5,9,11,14,18,19,25,26,29,31,33,34,41,42,46,47,51,54,57,67,68,69,71,72,86,89,94,101,121,125,126,127],batch_id:[25,54,94,101],batch_im:54,batch_images_from_tar:11,batch_label:54,batch_norm:[54,86],batch_norm_lay:5,batch_norm_typ:4,batch_read:[33,78],batch_siz:[9,18,42,54,61,69,94,101],batch_szi:54,batch_z:54,batchnorm:[18,54,86],batchsiz:[4,110],bazel:30,bbbbb:33,bbox:3,bcd:4,bcebo:10,bcm2708:138,bdist_wheel:82,beacus:56,beam:[4,107],beam_gen:[4,107],beam_search:[25,69,106,107],beam_siz:[4,69,107,131,132,134],becaus:[3,4,10,26,29,30,31,36,50,69,73,77,78,81,83,84,88,89,90,104,115,125],becom:[43,44,83,87],been:[4,5,18,28,30,35,41,51],befor:[4,5,18,28,31,38,41,45,49,52,55,67,72,73,74,78,81,91,94,111,115,125,140],begin:[3,4,14,18,28,34,36,46,49,55,69,71],beginiter:[25,26],beginn:107,beginpass:[25,26],begintrain:26,behavior:18,behind:[51,89],being:[18,28,38,45,51,76,78,115],belong:[3,4,42,83],below:[18,29,31,36,42,44,50,51,64,73,78,81,89,90,125],benchmark:[64,86],benefit:[5,38,39,69],bengio:16,besid:[4,10,42,60,67,71],best:[30,63],besteffort:126,beta1:[6,20],beta2:[6,20],beta:[18,54],better:[5,30,51,60,63,69,88,125,140],between:[3,4,11,18,25,28,30,31,36,42,44,50,51,63,66,71,73,80,83,125],bgr:11,bi_gru:5,bi_lstm:5,bia:[4,5,18,69,77,110],bias:[4,18],bias_attr:[4,5,18,77,94,96,104,107],bias_initi:18,bias_param_attr:5,biases_:110,biasparameter_:110,biassiz:110,bidi:126,bidirect:[4,5,86],bidirectional_lstm:95,big:[40,44,60,140],bigger:[18,31],bilinear:4,bilinear_interpol:4,bilinearfwdbwd:117,bin:[98,122,123,125,126,127],binari:[3,4,9,18,30,39,42,50,52,54,64,115,122,125],bind:[40,41,50,53,83,87],bioinf:18,bit:50,bitcod:137,black:54,blank:[4,18,125],block0:60,block1:60,block2:60,block:[4,28,32,34,36,40,41,42,43,44,45,46,47,51,58,60,67,68,70,87,90,112],block_expand:86,block_i:[4,18],block_id:[40,47],block_x:[4,18],blockdesc:[29,55,77,79],blockdescbind:58,blockingcount:43,blueprint:69,bn_bias_attr:5,bn_layer_attr:5,bn_param_attr:5,book:[10,79,86,98,107,113,118],bool:[2,3,4,5,6,7,9,11,18,25,29,50,57,59,61,62,63,76,77,84,85,89,90,110,121,132,134],boost:[67,86,87],boot:[4,106,107,140],boot_bia:4,boot_bias_active_typ:4,boot_lay:[104,107],boot_stat:89,boot_with_const_id:4,bootstrapp:140,borrow:[54,89],bos_id:[4,107],both:[1,2,4,5,11,18,26,29,30,31,38,42,44,50,51,54,58,60,67,69,71,74,76,84,86,87,125],bottl:71,bottleneck:74,bottom:[25,86],bound:[4,18,60],boundari:42,boundri:3,box:[4,54],brace:[29,55],brain:38,branch:[4,18,26,29,30,42,51,57,75,82,109],break_if:89,brief:[30,36,50,87,112],bring:[51,60],broadcast:[18,31,71,79,140],broken:109,browser:[115,125],bsd:[41,71,108],bsp:41,bucket_nam:125,buf:34,buf_siz:[9,42],buffer:[9,34,41,63,64,72,78,83,118],buffer_s:9,buffered_read:78,bufsiz:9,bug:[109,125],build:[4,10,30,39,42,55,56,60,62,72,81,82,85,86,91,97,108,109,113,115,116,119,123,125,127,129,130,136,137,138],build_dict:10,build_doc:113,build_model:54,buildtool:82,built:[30,40,42,50,52,60,67,71,85,86,89,115,116,117,140],bulk:41,bunch:64,button:125,c11:65,c703c041:109,c99:66,c99e:125,cach:[50,94],cache_pass_in_mem:94,cachetyp:94,cacul:[5,46],caff:[29,51],caffe2:[29,40,41,51],caffe_poli:96,calcul:[3,4,5,14,18,27,28,31,36,43,46,50,60],calcut:60,calendar:74,call:[3,4,5,9,18,25,26,27,28,29,34,35,36,37,39,40,41,42,45,52,54,55,60,68,69,70,74,77,79,80,83,85,87,89,115,116,117,125,127],callabl:[2,4,9,10],callback:[45,110],caller:[27,115,125],calrnn:104,can:[2,3,4,5,9,10,11,18,19,22,25,26,27,28,29,30,31,34,35,38,39,40,41,42,44,45,47,50,51,52,53,54,55,56,58,59,60,63,67,68,69,70,71,72,74,75,76,77,78,79,80,81,85,87,88,89,90,115,117,125,140],cancel:38,candid:[4,18,69,86],candidate_activ:18,cannot:[79,83,88,89,91],cantain:56,capabl:[50,73,79],capac:[81,125],capi:[65,119],capi_priv:119,capi_prvi:66,caption:69,captur:4,card:71,care:[5,39,60,78,86,87,140],carefulli:86,caret:25,carpedm20:54,carri:18,cast:[50,88],cast_to_op_attr:85,cat:[9,11,98,127,128],categori:[4,10,31],categorig:10,categoryfil:126,caus:[31,49],caution:125,cbla:[61,119],cc_:30,cc_binari:30,cc_test:30,cclient:37,cde:4,cdn:10,cduadevicecontext:[67,87],ceil:4,ceil_mod:4,cell:[4,5,18],cell_activ:18,cell_t_prev:18,cell_valu:18,center:11,center_crop:11,cento:[100,140],central:81,ceph:[9,33],cephf:[33,39,48],cer:86,certain:[18,59,67,70,74,83,87],certif:[26,48,91,125],cffi:65,cfg:[60,126],cgo:65,ch1:41,chain:[9,28,55],challeng:[4,31,51,57,87],chan:41,chanc:[26,50],chang:[4,10,30,35,39,42,51,63,73,75,78,80,82,83,86,109,125],changes:63,channel:[4,5,11,18,40,117],channel_shar:4,chapter:[68,69,86],chapter_data:68,chapter_out:68,charact:86,check:[9,17,28,29,30,45,63,76,79,91,96,109,110,121,125,132],check_align:9,check_attr:85,check_eq:110,check_grad:[27,111],check_l:110,check_output:111,check_sparse_distribution_batch:[131,132],check_sparse_distribution_in_pserv:[131,132],check_sparse_distribution_ratio:[131,132],check_sparse_distribution_unbalance_degre:[131,132],checker:79,checkgrad:132,checkgrad_ep:132,checkmark:140,checkout:109,checkpoint:[44,76],checksum:48,child:29,chip:51,chmod:125,choic:[18,30,51],choos:[18,59],chosen:[54,67],chunk:[35,48],chunk_schem:3,chunktyp:3,chw:11,circl:55,circular:41,circumst:87,claim:125,claimnam:[125,127],clang:[50,65,109,136],clarifi:[3,18],clariti:69,classdim:18,classic:[4,60,86],classif:[4,16,18,55],classifi:[4,54],classification_cost:[94,104],classification_error_evalu:3,classification_evalu:3,claster:125,clean:[29,30,47,73,79,91,109],clear:[3,30,69,73,83,88],clearer:[73,77],clearli:83,cli:125,click:[115,125],client:[34,37,79],clip:[2,5,132],clip_op:45,clip_op_desc:45,clock:4,clone:[4,97,108,113,115,116,119,136,138],close:[78,109],cloud:[30,31,39,48,49,79,140],cloud_read:9,cludform:125,cluster:[9,25,26,29,31,36,42,86,123,124,127],cluster_test_fil:123,cluster_train:[94,124],cluster_train_fil:123,cluster_train_v2:[124,128],cm469:125,cmake:[66,91,97,108,109,111,113,115,117,119,136,137,138],cmake_build_typ:[115,136,137,138],cmake_c:[136,137],cmake_system_nam:[136,137,138],cmakefil:91,cmakelist:[30,61,62,110],cmatrix:[65,66],cmu:18,cname:125,cnn:[4,18,126],coars:53,code:[4,9,26,28,30,38,41,42,44,47,50,53,54,55,59,64,67,70,72,73,74,76,78,79,80,81,85,89,110,125,126],codebas:79,coded_stream:96,codedinputstream:96,coeff:4,colindic:121,collabor:31,collect:[4,10,25,74],collectbia:110,color:11,colour:10,colum:121,column:[3,4,18,55,78,115,121],column_evalu:3,com:[4,5,10,18,30,54,82,91,97,98,108,109,113,115,116,118,119,125,126,136,138,140],combin:[3,4,5,9,20,25,60,70,79,83],come:[42,46,60,75,86,89],comma:[22,25,36],command:[9,22,30,34,39,49,108,110,115,125,126,127,129,130,134],commandlin:[117,127],comment:[18,30,56,85,86,104,127],commit:[30,126],common:[11,16,20,23,33,81,87],commonli:[49,81,115],commun:[31,36,37,41,42,44,71,125],compani:51,compar:[27,30,40,79],comparison:[30,51],compat:[19,50,53,71],compil:[4,30,42,51,56,58,60,67,71,80,84,85,90,108,123,136,137,138],complaint:30,complet:[4,5,10,18,20,25,28,29,31,35,36,45,48,55,64,67,79,115,125,126,127,140],complex:[5,18,38,41,60,69,79],complianc:[94,101],complic:[4,42,53,78,88,89],compon:[41,42,56,86,89,90],compos:[9,19,26,41,53,56,68,77,79],composenotalign:9,composit:53,compress:[35,121],compris:28,comput:[4,5,18,19,22,26,27,31,41,42,44,47,50,51,52,56,60,64,67,70,71,72,74,80,83,86,87,88,90,111,112,115,118,125],computation:4,computationgraph:56,con:71,concat:[54,107],concaten:[4,5,18,54,68,89,94],concentr:79,concept:[3,26,40,41,51,53,54,56,63,68,69,72,73,75,83,89,90],conceptu:[41,47,51,54,56],concern:[26,41,46],concis:[54,89],conckerneltrac:22,concret:[79,87],concurr:[31,38,44,74],cond:[18,29,51,57,75],condit:[4,18,35,42,51,57,63,86,94,101,126],condtion:54,conf:[4,96,104,124,127],conf_paddle_gradient_num:[125,127],conf_paddle_n:[125,127],conf_paddle_port:[125,127],conf_paddle_ports_num:[125,127],conf_paddle_ports_num_spars:[125,127],confer:16,confid:4,confidence_threshold:4,config:[2,4,22,33,49,69,101,110,119,125,126,127,131,132,134,140],config_:[34,132],config_arg:[131,132,134],config_bas:[3,4,25],config_lay:110,config_len:36,config_pars:[61,62,110],config_proto:36,configmap:42,configprotostr:96,configur:[4,18,25,28,34,36,38,39,42,44,51,56,59,77,86,87,88,102,110,140],confirm:49,conflict:[83,109],confus:[11,54,59],conll:10,connect:[5,18,39,40,42,44,86,92,125,126,140],connectionist:[4,18],consequ:[4,5],consid:[3,4,16,28,76,87,140],consider:[4,5,67,86],consist:[3,4,10,11,18,35,41,52,64,75,78,79,80,85,86,90],consol:125,consolid:29,constant:[4,16,18,56,58,59,67,96],constantiniti:18,constraint:83,construct:[3,18,26,47,56,60,68,77,79,83,85],constructbackwardgraph:55,constructoptimizationgraph:55,constructor:[18,45,50,74,77,79,83,85],consum:[31,115],consumpt:60,contact:38,contain:[3,4,5,7,9,10,11,18,25,26,28,29,35,47,54,56,63,64,67,73,74,77,79,80,83,84,85,86,89,90,108,125,126,127],containerport:125,content:[36,49,64,69,113],content_dir:113,content_len:36,context:[4,5,10,18,19,45,63,83,84,87,94,107,111,112,118],context_attr:5,context_len:[4,5],context_proj_layer_nam:5,context_proj_param_attr:5,context_project:5,context_start:[4,5],contin:125,continu:[3,28,31,64,86],contrast:4,contrib:81,contribut:[81,86],contributor:79,control:[2,29,40,41,125,126,140],controlflowgraph:60,conv2d:54,conv:[5,18,54,63,88],conv_act:[5,19],conv_batchnorm_drop_r:[5,19],conv_bias_attr:5,conv_filter_s:[5,19],conv_fwd:63,conv_layer_attr:5,conv_num_filt:[5,19],conv_op:4,conv_pad:[5,19],conv_param_attr:5,conv_pool_2:42,conv_strid:5,conv_with_batchnorm:[5,19],conveni:[26,28,56,70,85,86],convent:[18,28,36],convers:[50,51],convert:[10,18,33,42,43,44,50,51,52,63,78,80,86],convlay:4,convlut:86,convlution2d:18,convolut:[4,5,9,18,19,54,67,77,87],convolution2d:18,convolution_algorithm_opt:63,convoper:4,convproject:4,convtranslay:4,convtransproject:4,cool:109,cooper:86,coordin:[31,36],copi:[25,26,35,38,49,55,68,69,71,72,89,94,101,125],copy_from:45,copyright:[94,101],copyvariablewithtensor:88,core:[2,14,18,28,56,59,66,72,73,89,118],coreo:[125,140],corespond:18,corner:79,corpu:[10,86],correct:[4,18,27,28,50,71,125],correctli:[3,9,28,50,54],corresond:50,correspend:18,correspoind:26,correspond:[4,18,19,23,26,28,29,30,45,50,56,57,63,67,68,69,77,79,80,81,85,87,96,115],corss_entropi:26,cortex:50,cos:[4,85],cosin:[4,18,85],cosineop:85,cosineopproto:85,cosineopprotomak:85,cost:[18,25,26,28,42,55,70,71,75,76,88,94,101,118],cost_id:4,cost_np:76,could:[4,9,25,26,27,35,40,41,42,43,44,50,51,52,68,70,72,73,75,77,78,80,115,125],count:[3,31,39,46,76,78,86,117,123,126,132,134],counter:[22,31,35,43,55],cours:[3,39,67],covari:4,cover:[51,86],cp27:100,cp27m:[82,100],cp27mu:[82,100],cpp:[27,34,53,61,62,65,66,73,79,90,96,104,110,117,127],cprofil:[115,116],cprofilev:[115,116],cpu:[2,4,27,39,50,59,67,72,73,74,79,81,82,87,88,108,111,112,115,117,118,126,134],cpu_avx_mkl:100,cpu_avx_openbla:100,cpu_kernel:59,cpu_noavx_openbla:100,cpu_ns_:74,cpu_per_pserv:42,cpu_per_train:42,cpudevicecontext:[67,87,111],cpuelapsedu:74,cpuengin:62,cpuinfo:98,cpuplac:[42,59,63,67,87,88,111,112,118],cpusparsematrix:66,crash:[31,117],creat:[2,9,14,18,25,26,27,29,31,36,40,43,45,46,47,48,49,50,51,53,54,55,63,67,68,70,71,72,73,77,80,81,86,94,96,101,109,110,113,121,126,127,128,140],create_backward_pass:70,create_bias_paramet:110,create_block:77,create_doc_str:85,create_input_paramet:110,create_local_scop:47,create_oper:53,create_optimization_pass:[20,70],create_paramet:77,create_python_ops_creatation_funct:85,create_rnn:29,create_rnn_op:68,create_st:14,create_tmp_var:77,create_tmp_vari:77,create_var:77,create_whileloop:89,creategradientoper:80,creatememori:63,createop:85,createoper:29,createprimitivedesc:63,createstack:125,createvari:29,creation:[53,125],creationd:125,creator:[9,10,33,79,80],creator_:80,credenti:49,crf:[87,88],critic:[54,115],crlf:109,crop:[11,87],crop_grad:87,crop_siz:11,crope:11,cropgradkernel:87,cropkernel:87,cross:[4,18,77,96,136,137,138],cross_entropi:[4,26,42,54,60,88],cross_entropy_with_selfnorm:4,crt:48,csc:110,csr:[110,121],csv:[22,96],ctc:[3,18],ctc_error_evalu:86,ctc_evalu:3,ctest:[97,108,109,111],ctor:77,ctrl:[108,124],ctx:[63,88,111,112],cubla:67,cublas_handle_:87,cublashandle_t:87,cuda7:[100,102],cuda8:[97,98,100],cuda:[22,30,52,67,74,79,87,108,111,117,132],cuda_context:52,cuda_dir:[131,132],cuda_fp16:50,cuda_profil:22,cuda_so:[91,98],cuda_visible_devic:94,cudaconfigurecal:117,cudadevicecontext:[52,67,87,111],cudadevicegetattribut:117,cudaelapsedu:74,cudaevent_t:74,cudaeventcr:117,cudaeventcreatewithflag:117,cudafre:117,cudagetdevic:117,cudagetdevicecount:117,cudagetdeviceproperti:117,cudagetlasterror:117,cudahostalloc:117,cudalaunch:117,cudamalloc:117,cudamemcpi:117,cudaplac:[67,87,88],cudaprofilerstart:117,cudaprofilerstop:117,cudaprofilestop:117,cudaruntimegetvers:117,cudasetdevic:117,cudasetupargu:117,cudastream_t:87,cudastreamcr:117,cudastreamcreatewithflag:117,cudastreamsynchron:117,cudeviceget:117,cudevicegetattribut:117,cudevicegetcount:117,cudevicegetnam:117,cudevicetotalmem:117,cudnn:[4,7,18,30,59,63,67,87,88],cudnn_batch_norm:4,cudnn_conv:4,cudnn_conv_workspace_limit_in_mb:[131,132],cudnn_convt:4,cudnn_dir:[131,132],cudnn_kernel:59,cudnnavginclpadpool:4,cudnnavgpool:4,cudnnv5:97,cudrivergetvers:117,cuinit:117,cumtim:[115,116],cumul:4,cur_mem:69,curl:125,curli:[29,55],current:[4,18,28,29,30,31,34,36,40,44,46,51,59,67,68,69,72,73,74,77,83,88,89,113,125],current_block:[75,77],current_oper:75,current_word:[94,107],curv:26,custom:[20,26,39,50,54,69,72,79,86,125],custom_batch_read:78,cut:[9,89],cut_lin:9,cutoff:10,cv2:11,cxx:[136,137],cxx_compil:[136,137,138],cxx_flag:[136,137],cxxabi_1:100,cycl:31,cyclic:4,cython:65,d3e0:125,d_b0:54,d_b1:54,d_b2:54,d_block:54,d_f:54,d_g:54,d_h0:54,d_h0_bn:54,d_h0_relu:54,d_h1:54,d_h1_bn:54,d_h1_relu:54,d_h2:54,d_loss:54,d_loss_fak:54,d_loss_real:54,d_optim:54,d_step:54,d_t:54,d_w0:54,d_w1:54,d_w2:54,dandroid_abi:136,dandroid_arm_mod:136,dandroid_arm_neon:136,dandroid_standalone_toolchain:136,dario:86,darwin:125,dash:54,dat:33,data:[3,10,11,14,25,26,27,29,33,34,35,41,44,46,48,50,51,54,55,56,58,59,60,63,64,67,68,69,70,71,72,73,75,77,79,81,83,84,85,86,87,89,90,94,101,102,104,107,112,118,121,123,126,127,129,131],data_batch:94,data_fil:11,data_i:54,data_lay:[34,94,104],data_layout:18,data_layout_:88,data_read:[9,78],data_reader_creator_random_imag:78,data_shar:89,data_typ:[9,10,64,84,86,88,90,95,101,102,107,121],data_type_:[59,67,88],data_x:54,databas:10,datacent:[33,49],datacenter1:33,datacenter2:33,datacenter_1:33,datacenter_2:33,datacenter_nam:33,datadim:4,datafeed:[12,118],dataflow:56,dataflow_analysi:60,datalayout:88,dataparallel:42,dataprovid:[94,96,127],dataprovider_convert:86,datasci:4,dataset:[18,33,39,42,72,78,86,101,102,107,115,116,123],dataset_nam:11,datatransform:88,datatyp:[10,14,18,59,63,84,86,88,90],dcgan:54,dcmake_build_typ:[113,119],dcmake_install_prefix:[119,136,137,138],dcmake_system_nam:[136,137,138],dcuda_arch_nam:97,dcudnn_root:97,ddim:[67,87,112],dead:31,deal:[28,140],deb:109,debug:[27,28,42,49,51,77,113,115,116],debug_str:56,decai:[6,20,23],decar:9,decayr:34,decent:35,decid:[26,38,54,64,72,80,81,84],declar:[18,29,54,68],decod:[4,5,18,86,106,107],decoder_boot:107,decoder_dim:69,decoder_group_nam:107,decoder_input:[69,94,107],decoder_mem:[69,107],decoder_prev:5,decoder_s:[94,107],decoder_st:[5,107],deconv:[4,54],deconvolut:4,decor:9,decrement:43,decrementcount:43,decrypt:125,deduc:79,deep:[4,16,18,28,38,41,47,54,55,60,62,74,79,81,86,87,117],deeper:52,deepspeech2:61,def:[4,9,26,27,28,33,39,45,46,53,54,56,59,60,68,69,70,77,78,85,89,94,96,101,104,107,110,111,127],def_block:54,defalut:18,default_block:54,default_decor:127,default_devic:134,default_main_program:[14,118],default_param_attr:77,default_st:89,default_startup_program:[14,118],default_valu:134,defaultdict:60,defaultinfervartyp:58,defect:73,defer:38,defin:[4,5,9,16,20,23,25,26,28,29,30,31,38,40,43,44,45,50,51,52,53,54,56,59,60,67,68,71,75,77,78,79,83,85,87,89,94,101,111,115,118],define_py_data_sources2:96,definit:[28,29,31,35,42,47,52,59,75,80,85,89,115,118],definiton:53,degener:18,degre:4,delai:[72,87],delet:[18,39,48,109],deletestack:125,delimit:[3,96],deliv:140,delta:[4,27],delv:[4,16],demand:[31,87],demo:[4,10,79,126,129],denot:18,dens:[4,9,36,37,84,86,125],dense_arrai:[9,95],dense_vector:[9,101,102,121],dense_vector_sequ:[9,121],dense_vector_sub_sequ:121,densescann:86,dep:30,depart:86,depend:[18,29,30,31,39,42,44,56,71,76,84,140],dependent_var:76,deploi:[4,140],deploy:[56,64,79,125,140],deprec:[4,86],depth:[29,51,86],dequeu:44,deriv:[1,26,42,45,57,70],desc:[29,45,63,64,77,85,89],desc_:29,descend:[18,89],descent:[4,31,72],descproto:64,describ:[26,28,29,30,35,40,42,47,52,59,63,64,68,69,73,75,77,79,84,85,88,90,125,126],describestack:125,describestackev:125,describestackresourc:125,descripotor:63,descript:[3,29,30,58,62,64,67,80,84,86,88,90,125,127],descriptor:[41,63,88],deseri:[25,64,73],deserializ:79,desgin:55,design:[4,9,16,18,28,34,59,60,65,72,74,81,140],desir:[9,31,42,72,125,126],destin:[36,49],destroi:[29,47],destruct:83,destructor:74,det_output:3,detail:[2,3,4,5,6,18,27,28,35,39,42,44,49,51,54,56,60,63,64,67,68,74,77,81,83,87,88,89,90,115,125,140],detect:[58,109],detection_evalu:3,detection_output:3,determin:[4,9,18,29,42,60,67,79],dev:[79,91,98,108,109,115,116,136,140],dev_ctx:[29,63,74],devel:82,develop:[28,30,51,58,73,74,77,80,82,86,109,115,118,137],deviat:[2,16],devic:[2,40,42,46,50,56,62,63,67,71,73,74,79,88,91,98,112,118,134],device_:74,device_context:[63,111],devicecontext:[29,67,74,111],deviceid:[62,134],deviceid_:62,deviceplac:87,devid:4,devot:86,dhcp:140,diagon:18,diagram:68,diamond:54,dic:11,dict:[3,10,25,28,77,96,104,127],dict_dim:[94,104],dict_fil:[3,104],dict_siz:[10,18,34,69],dictionari:[3,4,10,18,25,26,27,77,94],did:73,diff:[94,109],diff_mat:27,differ:[3,4,18,25,28,29,30,31,36,38,42,43,44,45,46,47,50,51,54,56,57,60,63,67,69,71,72,74,76,80,83,86,88,89,90,115,125],differenti:53,difficult:[3,27,51],difficulti:16,dig:125,digit:4,digraph:56,dilat:[4,18,63],dilation_h:18,dilation_i:4,dilation_w:18,dim0:111,dim1:111,dim:[4,9,18,19,34,63,64,68,79,84,87,90,110,111,112],dim_:[87,112],dimens:[1,4,5,7,9,18,19,54,79,84,86,87,89,94,112],dimension:[4,18,121],dimes:4,dios_arch:137,dios_enable_bitcod:137,dios_platform:137,dios_use_veclib_for_bla:137,dir:[91,127,136],direcit:86,direct:[4,5,11,18,51,60,72,86,115],directli:[5,16,20,23,30,37,39,42,50,59,73,85,88,89],directori:[4,30,33,38,48,49,87,109,113,117,126],disabl:[18,74,96],disadvantag:[72,77],discard:[9,31,35,69,109,132],discexp:96,discount:4,discov:31,discoveri:125,discret:4,discrim:54,discuss:[26,29,35,36,37,42,63,86],disk:64,dispatch:[42,73],displai:[39,49],dist:[82,91,97],dist_train:[26,39],distanc:[3,4],distinguish:30,distribut:[4,16,29,35,36,37,38,40,41,46,52,71,79,86,90,94,101,129,130,132,140],distribute_test:[131,132],distributedli:42,disucss:26,div:18,divid:[4,6,18,28,46,85,90,115],divisor:18,diy_beam_search_prob_so:[131,132],dnn:[63,86,91],dns:125,do_forward_backward:78,doc:[9,56,68,89,111,113,123,124,127],doc_cn:113,docker:[82,91,97,98,109,113,123,125,126,127,129,130,136,140],docker_build:26,docker_clust:[124,128],docker_push:26,dockerfil:[108,109,127,136,138],document:[4,5,18,27,42,48,55,68,69,74,79,86],doe:[5,31,35,36,38,39,40,42,44,47,50,56,60,68,73,77,79,80,81,118],doesn:[2,4,9,26,29,40,41,78,115],doing:[34,38,42,55],domain:125,don:[5,26,30,53,55,60,78,86,125],done:[3,4,5,28,30,31,35,36,42,43,58,60,64,72,80,81,86,109,115,117,125,127],dot:[4,5,19,111],dot_period:[127,132,134],dotmuloper:4,dotmulproject:4,doubl:[18,42,50,55,74,88,111,132],down:[86,117],download:[10,30,31,34,38,48,91,126,140],doxygen:109,dozen:30,dpython_execut:91,dpython_include_dir:91,dpython_librari:91,draw:69,drive:83,drop:[4,5,18,19,69],drop_fc:95,drop_rat:[2,95],drope:18,dropout:[2,5,19,95],dropout_prob:18,dropout_r:[4,18,19,95],drpi_arm_neon:138,drpi_toolchain:138,drwxr:126,ds2:86,dst:[36,63],dst_primitive_desc:63,dtoh:117,dtype:[14,18,41,42,56,77,96,118],due:[35,38,54,60,69,77,115,116],dummi:[25,35],dump:[64,122],dump_config:122,dump_v2_config:122,duplic:[18,44],durat:35,dure:[4,5,18,23,28,29,31,35,38,39,46,51,60,71,72,74,77,79,86,90,125,140],duse_eigen_for_bla:136,dwith_c_api:[66,119,136,137,138],dwith_doc:113,dwith_golang:119,dwith_gpu:[97,113,119,138],dwith_mkl:[113,119],dwith_profil:117,dwith_python:[66,119,138],dwith_swig_pi:[66,119,136,137,138],dwith_test:[97,111,137],dwith_tim:117,dynam:[18,36,66,68,77,78],dynamic_cast:110,dynamic_recurrent_op:89,dyogatam:18,e2e:140,each:[3,4,5,7,9,10,14,18,19,25,27,28,30,31,34,35,36,38,39,40,41,42,45,46,47,52,55,58,60,63,67,68,69,71,73,74,76,77,78,79,80,83,84,85,86,87,88,89,90,115,125,140],each_feature_vector:1,each_time_step_output:1,eager:51,earli:[50,52],eas:[9,58],easi:[27,28,69,72,78,79,81],easier:[26,44,50,51,78,89],easili:[26,54,71,74,78,80,83,87],echo:[91,98],edg:[11,60],edit:[3,41,125],editor:77,edu:[10,18,125,126],eeoi3ezpr86c:125,effect:[4,18,25,125],effici:[4,42,64,78,86,87],effort:[42,86],efg:4,efs:125,efs_dns_nam:125,efsvol:125,egd:60,eigen:[50,67,72,79,81,87,111],eigen_device_:87,eigen_use_gpu:111,eigenmatrix:112,eigentensor:112,eigenvector:112,either:[4,5,9,18,25,26,42,54,57,58,68,72,81,94,101],elabor:86,elb:125,elbapis:125,electr:60,electron:126,elem_dim:4,elememt:4,element:[3,4,5,9,11,18,25,27,35,41,44,56,69,79,111],element_typ:36,elementari:79,elementwis:[18,19],elif:[26,85],els:[26,34,39,41,42,44,45,51,54,57,58,59,60,83,85,98,104,110],elsewher:74,emac:108,emailweixu:30,emb1:[34,104],emb2:[34,104],emb:[94,96,104,126],emb_group:104,emb_para:96,emb_param_fil:96,emb_sum:94,embed:[26,29,34,44,58,69,84,89,96,107],embedding_lay:[34,94,104],embedding_nam:[4,107],embedding_s:[4,107],empir:[4,18],emplace_back:110,emploi:[28,45,85],empti:[3,9,28,31,69],emul:50,enabl:[2,4,18,29,30,35,40,44,45,56,74,108,117,125],enable_grad_shar:[131,132],enable_parallel_vector:132,enableonstart:22,enc_proj:[5,107],enc_seq:5,enc_vec:107,encapsul:36,encod:[5,35,69,104],encoded_proj:[5,107],encoded_sequ:[5,107],encoded_vector:107,encoder1:104,encoder1_expand:104,encoder1_last:104,encoder1_rep:104,encoder2:104,encoder2_rep:104,encoder_ctx:69,encoder_ctx_expand:69,encoder_ctx_proj:69,encoder_dim:69,encoder_last:4,encoder_out_seq:69,encoder_s:107,encount:[18,34],encourag:[42,47],encrypt:125,encrypt_decrypt:125,end2end:140,end:[3,4,18,25,28,29,42,45,52,56,60,69,73,74,78,83,86,107,109],end_pass:26,end_po:4,endforwardbackward:[25,94],endian:64,endif:[67,74],enditer:[25,26,94,101],endpass:[25,26,101],endpoint:[9,33,125],endtrain:26,engin:[39,62,63,86],english:[4,86],enough:[28,29,59,60,67],enqueu:44,ensembl:5,ensur:[31,63,71,83],enter:[29,47],enterpris:79,entir:[4,5,36,38],entiti:[3,29,83],entranc:47,entri:[9,18,35,39,58,125],entropi:[4,18,77],entry_point:39,enumer:[1,67,96],env:[94,113,115,116,125,127],environ:[26,42,91,115,117,125,126],environmenterror:123,eol:109,eos_id:[4,107],epoch:54,epol:41,epsilon:[4,6,18,20],equal:[4,5,18,19,31,89,104,111],equat:[3,4,5,6,18,60,111],equival:[26,29,40,45,51,57,85,140],erlang:41,error:[2,3,4,5,18,26,27,35,49,50,51,63,83,86,91,96,119,125,132],error_clip:45,error_clip_callback:45,error_clipping_threshold:[2,94],errorclipbyvalu:45,espeaci:18,especi:[4,5,62],essenc:[26,28],essenti:[4,26,47,50],establish:40,estim:[4,26,44,72],eta:126,etal:18,etc:[3,9,18,29,41,42,46,63,71,72,78,83,86,125,140],etcd:[9,25,31,35,36,38],etcd_addr:36,etcd_endpoint:9,eth0:[125,127],etyp:41,euclidean:4,eval:[3,14,29,46,54,79],eval_program:[14,46],eval_result:46,evalu:[4,12,18,24,25,38,56,76,86,117,118,122],evaluate_difficult:3,even:[26,50,71,77,78],evenli:[36,125],event:[94,101,126],event_:74,event_block:74,event_handl:[25,26,94,101],eventkind:74,eventlist:74,eventu:[42,89],everi:[3,4,5,9,14,26,31,35,36,38,45,46,55,56,58,60,63,67,68,71,77,83,85,88,101,118],everyth:[42,44,54],evid:73,evolv:51,exactli:[4,5,94,125],exampl:[3,4,5,9,10,11,18,19,25,29,39,42,44,46,49,51,52,53,54,55,56,58,60,63,67,68,69,73,74,75,77,78,79,80,81,84,87,88,89,115,118,125],example_read:9,exc_path:91,exceed:4,except:[4,10,38,40,51,55,74,86,89,101],excess:60,exchang:73,exclud:4,exclude_mod:4,exclude_param:25,excluded_chunk_typ:3,exconv:4,exconvt:4,exdb:10,exe:[42,118],execut:[4,30,31,35,39,40,41,42,46,47,52,54,56,60,63,71,74,80,90,115,125],executioncontext:[63,88,111,112],executor:[12,14,40,42,46,50,51,52,54,70,75,77,88,90,115,116,118],exist:[26,29,31,49,51,69,77,78,80,85,87,89,112,125],exit:[36,49,126],exp:96,expand:[18,69,104],expand_a:[4,103,104],expand_lay:104,expand_level:[4,103],expandconvlay:4,expandlevel:103,expans:4,expect:[4,88],expected_desc:63,expected_kernel_kei:88,experi:[64,86],expert:30,expir:31,explain:[3,18,31,40,51,53,55,115],explan:[4,18,27,39,40,42,83,88],explicit:[74,89,110],explicitli:[26,42,47],explod:45,explor:[4,69,81],expon:4,exponenti:[1,18],expos:[28,37,41,63,64,87,89,125],express:[26,44,46,56,60,94,101,125],extend:[3,72,89],extens:[38,44,69],extent:66,extern:[30,62,65,66,79,86],extern_mklml:91,external_librari:30,extingrad_:62,extinval_:62,extoutgrad_:62,extoutval_:62,extra:[2,4,5,42,81,87,140],extra_lay:25,extraattr:[2,134],extraattribut:4,extraattributenon:4,extract:[3,4,18,51,73,86,125],extralayerattribut:[2,5,94,95],extralayeroutput:5,extrem:[4,40,51],f1205:96,f120da72:126,f7e3:125,fa0wx:126,fabric:[123,124],face:[30,81],fact:[18,40,51,71,75,77],factor:[2,6,18],factor_s:4,factori:65,fail:[31,35,69,91,96,126,132],failur:[31,36],fake:54,fake_imag:78,faked_imag:54,fall:[50,76],falloc:48,fals:[2,3,4,5,6,9,18,19,20,27,28,29,51,57,59,61,68,75,76,78,84,90,94,101,102,104,107,110,111,121,123,126,134],false_block:[29,57,75],false_label:78,false_neg:46,false_posit:46,false_read:78,fan_in:16,fan_out:16,faq:135,far:[45,89],fashion:42,fast:[4,35,51,117],faster:[4,5,18,23,31,51],fastest:51,father:28,fault:[25,35,79],fbd1f2bb71f4:126,fc1:[56,110,134],fc1_bia:56,fc1_weight:56,fc2:[56,134],fc3:[56,134],fc4:134,fc8a365:125,fc8a:125,fc_act:5,fc_attr:5,fc_bias_attr:5,fc_layer:[77,85,94,96,104,134],fc_layer_nam:5,fc_mat:25,fc_op:85,fc_out:[18,29],fc_output:85,fc_param_attr:5,fc_without_b:29,fclayer:110,fcop:53,fdata:104,feasibl:72,featur:[1,4,9,10,18,28,42,50,56,71,74,86,109],feed:[5,25,26,42,55,68,81,101,118],feed_dict:54,feed_list:118,feeder:[9,42,118],feedforward:16,fetch:[10,31,34,42,76,91,109,118],fetch_list:[42,77,118],fetch_op:76,few:[30,31,41,42,60,72,78,84,86],fewer:[4,18,41,77],fft:86,fg0:4,field1:25,field2:25,field:[4,25,29,56,58,64,76,77,80,84,85,94,125],fifth:55,figur:[26,30,42,44,54,62,68,74,77,86],file:[3,4,9,10,11,22,25,26,28,30,31,33,35,36,38,39,41,48,49,51,52,56,64,66,78,79,86,87,90,94,101,109,111,118,140],file_nam:[96,104],file_typ:9,filelist:86,filenam:[11,33,77,94,115,116],fileoffset:48,filesystem:[38,39,42,48,125],fill:[4,31,35,67,77,121,125],fill_zero_grad:79,fill_zeros_like_op:28,filter:[4,5,18,45,63],filter_s:[4,5,18,19],filter_size_h:18,filter_size_i:4,filter_size_w:18,filter_strid:18,find:[4,18,29,31,38,41,50,56,63,69,83,88],find_var:27,findmemori:63,findop:29,findprimit:63,findprimitivedesc:63,findvar:[29,83],fine:[2,35,53],fingerprint:125,finish:[31,35,38,39,47,60,71,85,125,126],first:[4,18,25,26,28,29,31,35,38,39,40,42,47,49,51,54,55,56,63,68,69,75,76,77,79,84,85,86,87,89,111,112,121,125,140],first_seq:107,firstli:[3,4],firstn:9,firstseen:126,fit:[10,50,59,60,64,69,79],five:75,fix:[2,4,18,42,60,65,77,86,109,115,121],flag:[4,10,18,61,62,74],flatten0:56,flatten:[18,56,75,77,112],flatten_result:94,flexibl:[4,5,26,36,42,51,55,59,68,69,72,78,87,89],flip:11,flist:123,fliud:40,float16:41,float16_t:50,float32:[9,18,42,50,53,54,77,78,96,111,118],float64:18,float_16:18,float_to_half_rn:50,floor:[4,96],flow:[18,29,40,41,68,74,82],fluid:[0,14,16,17,18,19,20,22,23,28,42,44,47,67,74,77,87,88,115,116],fluid_cuda_create_tensor:52,fluid_cuda_mult:52,fluid_cuda_read:52,fly:28,fmt:96,fname:96,fnt03:125,focu:[41,56,115],folder:[30,33,39,49,125],follow:[3,4,5,6,9,11,18,19,25,26,27,28,29,30,31,35,39,40,41,42,44,47,50,51,52,53,54,55,56,57,58,60,63,67,68,69,71,72,74,75,76,77,78,79,80,81,83,84,85,86,87,88,89,115,118,125,129,130,140],footprint:52,forbid:26,forc:[71,77,88],force_cpu:[18,59],force_cudnn:59,force_load:65,forest:29,forget:[6,18,26],forget_bia:18,fork:4,form:[4,5,18,41,46],formal:88,format:[3,9,10,11,18,22,25,27,35,42,50,51,67,69,86,89,102,109,110,121,125],former:[26,30,51,60,72],formul:18,formula:[4,5,6,18,27,60],formular:4,forth:54,forward:[1,4,5,18,27,28,29,34,36,45,51,54,61,62,63,64,70,73,75,78,79,80,81,84,110],forward_infer:63,forward_list:74,forward_op:27,forward_proj:18,forward_train:63,forwardactiv:110,forwardbackward:25,found:[50,75,81,83],four:[3,18,46,51,55,63,67],foward:76,fp16:[50,79,90],fp32:[67,79,88,90],fp64:[67,90],fparam:96,fpga:[67,118],fpgadevicecontext:87,fpgaengin:62,fpgaplac:[67,87],frac:18,frame:[3,47,79,86,89],framework:[26,28,29,41,45,46,50,51,56,67,71,72,74,75,79,81,83,85,87,111,115,116,118],free:[10,52,87,140],freememoryop:52,frequenc:[10,86],frequent:[35,78,79,81,87],fresh:38,friend:83,friendli:54,from:[3,4,5,9,10,11,16,18,25,27,28,29,30,31,33,34,35,36,40,41,42,44,45,46,49,50,51,53,54,55,56,57,59,60,63,68,69,70,71,73,75,77,78,79,80,83,86,87,88,89,91,106,111,112,115,116,117,122,125,126,140],from_no_sequ:[4,103],from_sequ:[4,103],from_tar:[25,101],fromfil:[78,96],fromstr:96,front:[56,60],fuction:22,fulfil:117,full:[4,18,31,38,68,71,72,140],full_matrix_project:[5,104,107],fulli:[18,42,44,86,140],fullmatrixproject:4,fullsiz:34,fully_matrix_project:5,fullyconnect:[56,77],fullyconnectedlay:110,func:[9,35,40,52,80],funciton:[5,18],functor:[53,56],fundament:[41,44,50,79],funtion:18,further:[4,85,140],furthermor:18,futur:[4,18,38,42,50,60,68,79],future_context_s:18,fvs:85,fwd_desc:63,fwd_op:80,fwd_primit:63,fwd_primitive_desc:63,fwd_var:45,g_b0:54,g_b1:54,g_b2:54,g_block:54,g_command_config_arg:[61,62],g_h0:54,g_h0_bn:54,g_h0_relu:54,g_h1:54,g_h1_bn:54,g_h1_relu:54,g_h2:54,g_im:54,g_loss:54,g_optim:54,g_program:77,g_state:74,g_step:54,g_w0:54,g_w1:54,g_w2:54,gain:4,gan:26,gangliao:30,gate:[4,5,18,19],gate_act:[4,5,104],gate_activ:18,gate_attr:4,gate_bias_attr:4,gate_param_attr:4,gate_recurr:4,gate_v:18,gatedrecurrentlay:61,gather:[4,18,28,60,71,73,111],gauss:2,gaussian:16,gaussian_normal_random:54,gcc:[50,52,65,79,97,108,115,136,138],gcc_3:100,gcreators_:85,gemm:61,gen:4,gen_proto_pi:113,gen_rand_param:96,gender:[10,127],gendrated_id:69,gener:[3,4,5,9,14,25,26,27,28,29,30,31,33,35,36,38,40,42,51,53,58,60,63,67,71,72,75,76,77,78,79,80,84,85,86,87,89,101,117,121,125,127,134],generated_id:69,generated_scor:69,generated_word_embed:4,generatedinput:[4,106,107],genr:127,gereat:3,get:[3,4,10,18,20,25,27,28,29,30,31,35,36,38,39,48,51,54,56,59,60,61,62,63,67,68,69,74,77,79,80,83,85,88,89,94,98,110,115,116,121,124,125,126,128],get_all_op_proto:85,get_block:77,get_config_arg:134,get_data:126,get_dict:10,get_dim:27,get_embed:10,get_float_el:27,get_grad:[25,94],get_grad_op_desc:28,get_input_lay:110,get_lin:9,get_movie_title_dict:10,get_numeric_gradi:27,get_numerical_gradi:27,get_output:27,get_program:60,get_sample_from_lin:94,get_shap:25,get_support:[91,100],get_symbol:56,get_tensor:27,get_vari:29,get_word_dict:10,get_worker_addr:40,getactualkerneltyp:59,getattr:45,getbatchs:110,geteigendevic:112,getengin:63,getenv:[26,39,123,127],getexpectedkerneltyp:[59,63,88],gethostbynam:127,gethostnam:127,getidmap:127,getinfervartyp:58,getinput:110,getinputgrad:110,getinputvalu:110,getkerneltyp:50,getkerneltypeforvar:88,getlayeroutput:[25,94],getlibrari:63,getmat:34,getoptconfig:34,getoutputgrad:110,getoutputvalu:110,getparam:34,getparameterconfig:34,getparameterptr:110,getparameterspars:34,getparametersremot:34,getplac:[63,87,111,112],getpodlist:127,getsiz:110,gettask:35,gettempl:125,gettensor:88,gettranspos:110,getw:110,getweight:110,getwgrad:110,gflag:119,gflags_complet:119,gflags_declar:119,gist:5,git:[82,91,97,108,109,113,119,136,138],github:[5,18,30,54,67,82,91,97,108,109,113,115,116,118,119,136,138],give:[18,31,68,77,79,88,125],given:[4,9,18,19,25,28,36,38,41,44,45,51,53,54,69,78,81,89],glibc:[136,138],glibc_2:100,glibcxx_3:100,glide:30,global:[2,18,20,26,29,30,31,52,56,59,73,74,79,83,85,87,88,108,117,125],global_block:77,global_learning_r:[2,20],global_pool:18,global_step:20,globalstat:117,globalstatinfo:117,glog:119,glorot10a:16,glorot:16,gnueabihf:138,go_librari:30,go_test:30,goal:[41,44,50,55,71,79,86],gob:35,godep:30,godoc:65,goe:[5,31,51,57,83,118],going:[28,53,72,115,140],golang:30,good:[41,54,72,77,78,81,115,140],googl:[18,26,74,79,96,115,116,119,136],googleapi:125,googlenet:62,goroutin:[40,41],got:[59,83],govern:[94,101],gpg2:125,gpg:125,gprof:116,gprotos_:85,gpu:[2,4,7,27,39,41,46,50,60,67,71,72,73,74,79,81,82,87,88,91,98,100,102,108,117,118,121,123,134,140],gpu_id:[94,132,134],gpu_per_train:42,gpudevic:87,gpugpu_id:131,gpukernel:79,gpustarttimestamp:22,grab:31,grad:[27,28,36,45,62,77,84,94,132],grad_info_map:28,grad_n:45,grad_nam:45,grad_op:45,grad_op_class:79,grad_op_desc:45,grad_op_maker_:80,grad_op_typ:[79,80],grad_op_type_:80,grad_s_block:28,grad_share_block_num:[131,132],grad_to_var:[28,45],grad_var_nam:27,gradient:[2,3,4,6,16,18,20,23,25,31,35,41,43,45,55,58,70,71,72,73,77,79,84,115,122,123,127,132],gradient_clipping_threshold:[2,94],gradient_evalu:3,gradient_flat:27,gradient_machin:[25,66,119],gradientmachin:[25,66,73,127],gradientmachine_:34,gradopdescmak:[58,80],gradopdescmakerbas:80,gradopmak:80,grai:11,grain:53,gram:86,grandient:25,grant:125,graph:[4,18,25,28,29,30,31,40,41,42,43,44,46,51,54,68,71,72,75],great:[44,86,140],greater:[4,45,72,121],greaterthan:85,greedi:[18,86],green:[40,54],grep:[98,128],gridsize3d:22,groudtruth:107,ground:[3,4,18],group:[5,18,19,35,56,63,87,140],group_input1:107,group_input2:107,group_input:[104,107],grouplen:10,grpc:140,gru:[4,18,69,86],gru_bias_attr:5,gru_decod:107,gru_decoder_with_attent:107,gru_layer_attr:5,gru_memori:5,gru_out:69,gru_param_attr:5,gru_step:[69,107],gru_step_lay:5,grumemori:[5,95,107],gserver:[4,61,62,110],gsizex:117,gtx:60,guarante:[63,77],guard:34,guest:100,gui:115,guid:[22,48,60,79,125,126],gzip:[35,126],h0_bn:54,h_0:18,h_f:18,h_prev:29,hadoop:26,half:[4,18,19,50,125],half_to_float:50,hand:[60,79,86,87],handi:30,handl:[9,26,28,39,40,42,56,60,63,67,73,78,83,87,89,118],handler:[25,29],hannun:86,happen:[18,35,85],hard:[42,51,69,86,89,125],hardshrink:18,hardsigmoid:18,hardwar:[51,52,87],has:[3,4,5,10,18,19,22,26,27,28,29,30,31,35,36,38,41,42,44,45,46,50,51,54,56,60,64,67,69,71,74,75,79,84,85,87,88,117,118,121,125,140],has_kei:[25,28,45],has_selected_colum:4,has_var_recurs:28,hasdependentvar:76,hash:[67,71],hasn:51,hassubseq:104,have:[4,5,9,18,19,26,27,28,29,30,31,35,36,38,39,41,42,44,45,47,50,51,52,53,54,55,59,60,63,64,67,68,69,71,72,73,74,75,77,78,79,80,83,84,86,87,88,90,125,140],haven:51,hdf:[9,33],head:[19,111,128],header:[36,64,66,79,87,96],headip:128,height:[4,9,11,18,29,65,78,96,110,111,121],height_:84,held:31,hello:26,help:[4,18,29,49,51,56,63,69,78,79,89,109,115],helper:[18,42,63,80,89],henc:[42,72,77,80,81,83],here:[2,3,4,5,9,18,19,26,30,31,37,41,44,45,47,49,51,55,56,63,67,68,78,81,85,121,125,140],heterogen:[42,44,74],heurist:[4,44,69],hidden:[4,5,18,70,77,95,96,125],hidden_a:96,hidden_b:96,hidden_dim:[18,104],hidden_out:29,hidden_s:5,hidden_t_prev:18,hidden_v:18,hidden_valu:18,hierach:106,hierarch:[4,75,77,79],hierarchi:79,high:[2,16,50,71,86,87,140],higher:[53,68,89],highest:[9,29],highli:[10,86,89],him:26,hint:[59,115],histor:53,histori:6,hl_get_sync_flag:110,hold:[26,28,31,35,37,41,50,54,56,58,60,83,85,87,88,112,125],holder_:[87,112],home:[33,49,98,115,116,125,126,127,128],honor:35,hook2:104,hook:[2,104],hookattr:2,hookattribut:2,horizont:[4,11],host:[30,39,74,125,126],host_c:[136,137,138],hostfil:128,hostnam:125,hostnetwork:127,hostpath:[126,127],hostport:125,hot:18,hous:[10,102],how:[2,4,18,26,29,31,35,40,41,42,47,49,51,53,56,59,63,68,69,73,74,81,85,88,115,125],howardjohnson:104,howev:[4,5,18,27,28,38,41,42,47,51,60,67,72,73,77,78,80,81,84,85,86,87,88,125],howto:[123,124,127],hpp:[50,65],html:[10,16],htod:117,http:[4,5,10,16,18,30,39,54,82,91,94,97,98,101,108,109,113,115,116,118,119,125,126,136,138,140],hub:82,huber:4,huge:72,human:[4,16,74,86],hwc:11,hyper:[4,54],hyperparamet:[4,81],hyperplan:9,i1116:127,i1117:117,i386:137,iOS:137,iamfullaccess:125,iamusersshkei:125,icc:52,iclrworkshop2016:18,icml:86,ics:10,id_input:3,id_rsa:128,idea:[30,41,51,52,72,78,81,115],ideal:[42,88],ident:[4,18,80,125],identifi:[4,57,67],identityoffsetproject:4,identityproject:4,idmap:127,ids:[3,4,18,69,94,121],ids_arrai:121,idx:[35,54,60,110],ies:49,if_else_op:28,ifdef:[67,74],ifels:[29,75],ifelseop:75,ignor:[4,18],iii:86,iil:96,illustr:[3,18,31,36,42,53,68],im2col:18,im_siz:54,imag:[7,8,9,10,18,19,26,42,51,54,55,69,70,75,78,86,108,109,125,126,127,129,130,140],image_a:78,image_b:78,image_conv_lay:86,image_fil:78,image_h:18,image_lay:78,image_nam:26,image_path:78,image_reader_cr:78,image_w:18,imagenet:[4,16,33],imagepullpolici:[125,127],imageri:4,images_reader_cr:78,imagin:55,img2label:11,img:[4,5],img_conv_lay:5,img_pool_lay:5,imgsiz:117,imgsizei:117,imgsizex:117,immedi:[60,63,72,81,125],immutable_paramet:26,imper:40,imperfect:79,implement:[4,5,9,16,18,19,20,23,29,35,36,37,38,39,40,41,42,44,51,53,56,57,58,60,63,65,66,67,69,73,76,83,85,86,87,88,89],implemet:34,impli:[30,94,101],implicitli:40,imposs:[69,140],impractic:88,improv:[4,43,44,60,79,86,115,125],in_arg:121,in_fals:18,in_plac:18,in_tru:18,inarg:34,inbound:125,inc_path:91,includ:[3,4,5,10,11,18,20,26,29,30,36,39,41,50,51,54,56,60,65,66,68,69,74,75,77,79,85,109,111,115,117,119,125,136,137,138],inclus:[18,69],incom:[40,59],incorpor:4,incorrect:4,increas:[31,35,50,96],increment:[46,55,60],incupd:110,inde:[9,41],independ:[4,18,27,28,36,43,83,87,140],index:[3,4,7,9,10,18,25,27,28,29,31,35,40,75,77,89,104,125],indexslot:4,indiact:18,indic:[3,4,18,28,29,36,47,54,68,75,80,84,87,89,121,125],indice_map:89,indices_map:89,individu:[31,71,125],industri:[31,64,140],ineffici:[73,88],infer:[11,18,26,28,29,31,46,51,57,58,59,60,61,65,67,76,77,79,84,86,88,101,102],infer_shap:77,infer_var_type_:58,inferer:86,inferfac:58,inferior:38,infershap:[29,77,79,111,112],infershapecontext:[111,112],infervartypefn:58,info:[3,4,10,50,68,94,101,104,110,124,127,140],infom:4,inform:[4,10,18,25,29,39,49,56,59,60,63,64,67,68,71,77,81,83,84,115,125],infrastructur:[51,125],ingrad_:62,ingredi:[41,86],inherit:[29,70,79,87],ininst:26,init:[2,16,25,29,43,54,62,68,69,101,102,110,123,125,127],init_attr:77,init_from_tar:25,init_hook:104,init_model_path:[131,132,134],initi:[2,4,5,10,12,18,25,28,30,35,40,42,43,44,46,55,68,71,72,77,81,85,89,102,118,132],initial_max:[2,96],initial_mean:[2,4,96],initial_min:[2,96],initial_std:[2,4,96],initialize_op_attr:77,initrd:140,inlcud:5,inlin:[87,112,125],inner:[4,94,104,121],inner_:104,inner_mem:104,inner_param_attr:5,inner_pos_arrai:121,inner_rnn_output:104,inner_rnn_st:104,inner_rnn_state_:104,inner_seq_pos_arrai:121,inner_step:104,inner_step_impl:104,inproj_attr:4,inproj_bias_attr:4,inproj_param_attr:4,input0:112,input1:[4,5,112],input2:4,input:[1,3,4,5,7,9,11,17,18,19,25,27,28,29,34,38,40,42,43,44,45,46,50,51,52,53,54,55,56,58,59,60,62,63,67,68,69,72,73,76,77,78,79,80,83,85,86,87,88,89,94,95,96,101,102,103,104,106,107,110,111,112,118,121,127,134],input_conf:4,input_data:110,input_data_target:110,input_dim_idx:18,input_dtyp:18,input_featur:1,input_hassub_sequence_data:110,input_id:4,input_imag:5,input_index:110,input_label:110,input_lay:110,input_loc:4,input_nam:26,input_proj_bias_attr:5,input_proj_layer_attr:5,input_seg:89,input_seq:[4,18],input_sequence_data:110,input_sequence_label:110,input_sparse_float_value_data:110,input_sparse_non_value_data:110,input_t:110,input_to_check:27,input_typ:[94,104],input_valu:27,input_var:[27,77],inputbuff:34,inputdef:110,inputgradi:80,inputlayers_:110,inputs_to_check:27,inputsizechang:63,inputtyp:9,insert:[28,45,52,71,76,79,80,109],insid:[3,5,28,31,42,44,45,46,59,63,73,74,78,79,80,125],inspir:74,instal:[4,18,39,62,82,91,97,98,100,102,109,113,115,116,119,123,126,136,137,138],install_android:136,instanc:[4,18,27,29,31,33,37,40,42,43,45,47,52,57,63,68,69,72,77,79,80],instance_ip:125,instanti:[31,47,118],instead:[4,5,7,28,30,34,39,40,41,42,50,51,55,56,86],instrins:50,instruct:[29,55],int16:90,int32:[18,67,75,89,90,132],int64:[18,42,48,67,84,88,90],int64_t:74,int8:67,integ:[3,4,9,18,35,39,40,50,65,69,101],integer_sequ:94,integer_valu:[9,94,101,104,121],integer_value_sequ:[9,69,86,104,107,121],integer_value_sub_sequ:[104,121],integr:[3,140],intel:[51,67,87],intellig:[16,60],inteloptimizedpaddl:62,intens:86,inter:[4,42],interact:[4,42,125],intercept:4,interchang:[55,79],interconnect:71,interest:[40,50,71],interfac:[2,4,5,16,20,22,23,25,29,35,39,49,56,71,73,79,80,86,87,125,140],intergr:4,intermedi:[18,42,49,52,54,60,70,86],intern:[4,5,16,20,25,50,86,115,116,125],internel:62,internet:[30,31,140],interpret:[3,18,47,51,52,90],interv:18,intrins:[40,47,50],introduc:[4,11,29,31,54,61,64,81,83,85,115],intuit:[38,79],inval_:62,invalid:[78,83],invent:51,invoc:[30,53,79],invok:[4,14,25,28,42,45,73,77,79,80,85,88,117,125],involv:69,iob:3,ioe:3,ios:137,ios_arch:137,ios_deployment_target:137,ios_development_root:137,ios_enable_bitcod:137,ios_platform:137,ios_sdk_root:137,ios_use_veclib_for_bla:137,ip_str:127,ips:[125,127],ipt:[4,77,85,96,104,107],ipx:140,ipython:26,is_color:11,is_cpu_plac:63,is_inf:122,is_loc:25,is_mkldnn_librari:63,is_revers:18,is_seq:[4,107],is_spars:18,is_stat:[2,96],is_target:76,is_tensor:85,is_test:[18,63],is_traget:76,is_train:11,isbinari:121,isinst:[45,94,101],ismkldnnkernel:63,ispodallrun:127,isspars:110,issu:[18,30,54,86],issue_numb:109,issuecom:18,istag:82,item:[4,9,18,25,38,50,78,102,127,140],iter:[4,5,6,9,25,26,31,42,51,52,60,63,72,74,78,86,89],iter_multiple_input_and_param:77,its:[4,5,16,18,23,25,26,27,28,29,31,35,40,41,44,45,46,51,52,54,55,56,58,60,64,68,69,71,72,73,76,77,79,80,83,84,85,87,88,117,125],itself:[28,31,38,52,63,72,83],ivector:[121,122],ivs:85,java:[29,65,75,79],jeremi:117,jian:16,jku:18,job:[10,28,38,40,42,45,79,127,131,132,134],job_desc:42,job_dispatch_packag:124,job_id:10,job_nam:[39,125,127],job_namespac:[125,127],job_path:[125,127],job_path_output:127,job_workspac:124,jobdesc:42,jobnam:[42,127],jobpath:[125,127],jobport0:125,jobport1:125,jobport2:125,jobport3:125,jobselector:127,jobserv:39,join:[31,104],jointli:5,jpg:11,json:[56,86,125,126],jth:5,judg:4,juditski:72,jupyt:39,just:[1,3,4,5,10,18,30,35,36,40,42,51,52,54,58,63,72,73,77,78,79,80,81,83,84,125],jx4xr:125,jypyt:26,k8s:[40,127,140],k8s_data:[125,127],k8s_job:26,k8s_token:26,k8s_train:[125,127],k8s_user:26,kafka:33,kaim:16,kcpu:74,kcuda:74,kdisabl:74,kebilinearinterpbw:117,kebilinearinterpfw:117,keep:[4,9,11,16,18,31,41,51,52,55,69,72,77,83,85,140],keep_dim:18,keep_top_k:4,kei:[10,11,19,22,25,27,28,29,31,33,35,48,50,59,63,79,80,85,86,89,94,108,109,117,127],kenlm:86,kept:[4,60,77],kera:81,kernel:[4,18,27,41,50,52,59,62,72,74,81,84,86,87,88,111,112],kernel_hint:59,kernel_type_for_var:88,kerneltyp:[59,63],key1:132,key2:132,key_pair_nam:125,keyid:125,keymetadata:125,keypair:125,keyserv:125,keystat:125,keyusag:125,keyword:[77,127],kforcecpu:59,kill:[31,125],kind:[26,27,31,37,42,45,52,55,59,63,70,71,74,87,88,90,94,101,125,126,127],kind_:74,kmark:74,kms:125,knchw8c:67,knchw:67,knhwc:67,know:[26,35,40,60,64,115,125],knowledg:86,known:[28,29,41,51,53,68],kpoprang:74,kpushrang:74,kqueue:41,kriz:10,krizhevski:18,kselectedrow:84,ksimonyan:5,kstate:74,kube_cluster_tl:26,kube_ctrl_start_job:26,kube_get_workers_addr:40,kube_list_containers_in_job_and_return_current_containers_rank:26,kubeconfig:125,kubectl:[124,126,127,128],kuberent:[31,125],kubernet:[26,31,40,42,79,123,127,129,130,140],kubernetes_service_host:26,kusecudnn:59,kusemkldnn:59,kvp:22,kwarg:[5,6,9,14,18,20,46,56,77,85,104],kwd:22,l1_rate:2,l1_regularization_op:81,l2_rate:2,l2_regularization_op:81,l2_sim:4,l2regular:94,l93:34,label:[3,4,9,10,11,18,25,42,46,51,54,55,56,70,75,78,86,88,94,101,104,118,126],label_dim:[4,104],label_fil:78,label_lay:78,label_path:78,labelselector:127,lag:132,lambda:[18,40,45],lambdacost:4,lambdarank:4,lan:123,languag:[4,10,19,40,41,51,55,60,74,79,83,86,94,101],larg:[7,10,18,42,44,45,60,64,72,86,109],larger:[2,3,4,60],larger_than:[29,57,75],largest:18,last:[3,4,5,18,28,45,60,68,74,75,103,104],last_seq:[69,104],last_time_step_output:4,lastseen:126,latenc:[4,50,86,125],latent:4,later:[30,79,81,86,87,112,125],latest:[4,29,30,31,38,82,91,98,109,113,126,127,136],latter:[72,89,115],launch:[63,125],launcher:26,law:[94,101],layer1:[4,5,94,103],layer2:[4,94,103],layer3:4,layer:[2,3,5,7,9,12,16,24,25,28,29,34,40,42,44,51,54,55,57,70,72,75,78,79,81,85,86,87,89,94,96,101,102,103,106,107,110,118,121,122],layer_0:110,layer_att:95,layer_attr:[4,94,95,107,134],layer_help:59,layer_nam:94,layer_num:134,layer_s:121,layer_typ:[4,61,62],layerbas:110,layerconfig:110,layergradutil:110,layerhelp:[18,59,77],layermap:110,layeroutout:4,layeroutput:5,layers_test:91,layout:[11,63,88],layout_:[59,67],layouttyp:59,lazi:[72,81],lbl:3,ld_library_path:119,lead:[60,67],leaki:54,leakyrelu:18,learing_r:70,learn:[2,3,4,5,6,10,19,20,26,28,36,38,41,42,44,47,54,55,60,62,69,71,72,74,78,79,81,87,98,117],learnabl:[18,19,25],learning_r:[2,20,36,42,94,96,118],learning_rate_arg:96,learning_rate_decay_a:96,learning_rate_decay_b:96,learning_rate_schedul:96,leas:31,least:[3,18,31],leav:[29,125],lectur:60,lecun:10,left:[4,29],left_right_flip:11,left_scor:94,legal:85,len:[4,18,36,40,48,51,77,102,104,110,127],length:[4,5,9,10,11,18,36,50,61,64,68,69,79,86,89,126],leran:60,less:[4,18,26,45,140],less_than:[26,60],lesser:18,let02:126,let:[3,4,18,26,29,38,40,52,53,55,59,63,67,68,69,70,80,87,88,115,125],level:[2,4,16,18,50,53,56,64,68,69,74,87,89,90,106,121],lgtest:30,lgtest_main:30,lib64:[91,98,132],lib:[66,97,115,116,119,136,137,138],lib_path:91,libapi:30,libari:66,libc:100,libcuda:[91,98],libgcc_:100,libgflag:119,libglog:119,libgoogl:[115,116],libiomp5:62,libmkldnn:62,libmklml_intel:62,libnvidia:[91,98],libopenbla:119,libpaddl:[65,66,79,109,115,116],libpaddle_capi:66,libpaddle_capi_engin:119,libpaddle_capi_lay:119,libpaddle_capi_shar:119,libpaddle_capi_whol:119,libpaddle_gserv:66,libpaddle_math:66,libprotobuf:[96,119],librari:[4,18,30,37,41,42,62,63,66,71,86,88,132],library_:67,library_type_:88,librarydevicecontext:67,librarytyp:88,libstdc:100,libz:119,licens:[62,71,94,101],life:31,lifecycl:[74,140],lifetim:83,lightweight:53,like:[3,4,9,10,18,28,29,30,31,34,39,40,41,47,51,52,53,54,55,56,58,63,67,71,72,77,78,79,80,81,83,84,86,88,89,115,118,125,140],limit:[4,9,18,51,60,64,69,79,81,94,96,101,117],linaro:138,line:[3,9,22,30,34,39,41,49,55,72,75,77,79,81,94,96,104,109,115,125,134],line_break:9,line_count:96,linear:[4,18,19,69,94,96,101,102],lineno:[115,116],link1:50,link2:50,link:[4,5,30,48,49,83,106,125,140],linux:[9,41,48,100,108,125,136,138],linux_x86_64:[82,91,100],lipo:137,list:[3,4,5,9,11,14,18,20,22,25,26,28,29,30,35,39,40,47,49,51,54,67,70,73,74,77,80,83,89,94,115,116,125,134],listdir:123,listen:[31,40,42],listen_and_do:40,listenanddo:40,lite:119,littl:[36,59,64],live:118,live_in:60,live_out:60,load:[11,26,31,42,54,71,77,101,125,127],load_and_transform:11,load_imag:11,load_image_byt:11,load_missing_parameter_strategi:[131,132,134],load_mnist:54,load_paramet:96,loadsave_parameters_in_pserv:[34,131,132],loc:[3,16],local:[2,18,25,27,29,31,37,38,41,55,60,68,75,77,79,97,115,127,131,132],local_scop:27,localhost:[98,113],localip:127,localpath:49,locat:[4,18,25,30,51,67,74,87,89],lock:[30,31,35,36],lod:[18,41,64,68,84,89,90],lod_desc:[84,90],lod_expand:69,lod_level:[18,77,84,90],lod_rank_table_obj:18,lod_tensor:[18,68,84,90],lod_tensor_aarri:18,lod_tensor_arrai:18,lodrankt:18,lodtensor:[18,19,41,58,64,79,90],lodtensorarrai:18,lodtensordesc:[64,84],log:[35,42,49,54,92,96,100,110,123,124,125,126,127,128,132],log_barrier_abstract:[131,132],log_barrier_lowest_nod:[131,132],log_barrier_show_log:[131,132],log_clip:[131,132],log_error_clip:[131,132],log_period:[126,127,132,134],log_period_serv:[131,132],logarithm:[1,18],logger:[94,104],logic:[38,42,44,45,54,58,70,71,73,83,89],logist:18,logit:[54,88],longer:[31,42,60],look:[3,18,29,39,40,51,52,55,72,77,80,81,86,118,125],lookahead:[4,18,86],lookup:[18,58,69,118],lookup_t:60,loop:[27,29,51,60,74,78,83],loop_var:89,loss:[4,18,20,28,42,54,56,70,72,81,86],lot:[42,67,69,72,77,81,87,140],low:[4,16,70,71,86,87,89],low_rnn:68,lower:[4,18,50,68,69],lower_level_rnn:68,lpaddle_capi_engin:119,lpaddle_capi_lay:119,lpaddle_capi_shar:66,lpaddle_capi_whol:66,lrelu:54,lstm:[4,18,104,107,126],lstm_bias_attr:5,lstm_cell_attr:5,lstm_group:[5,104],lstm_group_input:104,lstm_input:104,lstm_last:104,lstm_layer_attr:5,lstm_nest_group:104,lstm_output:104,lstm_step:5,lstm_unit_op:18,lstmemori:[5,95,104,107],lstmemory_group:[4,95,104],lstmemory_unit:95,lstmlayer:61,lstmp:18,ltr:4,luckili:60,mac:[66,136],machin:[5,10,25,42,44,51,54,60,62,71,72,81,94,106,122,125,128,140],machine_transl:107,maco:[100,108],macro:[53,67,80],made:[31,36,51],mai:[4,5,18,27,29,42,46,50,52,59,60,63,71,74,78,79,83,86,88,94,101,125],main:[18,40,41,45,51,52,56,71,75,79,115,116,119,125],main_program:[14,18,28,46],mainli:[37,60,67,87],maintain:[4,29,35,72,77,79,125],majel:30,major:[42,50,88],make:[3,4,18,26,28,29,30,31,35,36,38,41,42,43,50,51,55,68,69,72,73,77,78,79,81,86,89,91,97,108,109,110,111,113,115,117,119,125,136,137,138,140],make_chan:41,make_ddim:112,make_function_oper:53,make_vari:85,maker:[79,80],malloc:87,man:48,manag:[20,25,31,36,37,40,41,42,49,74,83,87,113],mandarin:[4,86],mani:[5,11,28,30,35,40,41,51,54,59,60,69,73,74,77,79,80,83,84,85,88,89],manili:56,manipul:[51,77,80],manner:[4,72,81,86,87],mantain:60,manual:[42,70,72,80,96,140],manufactur:51,manylinux1:100,manylinux1_x86_64:[82,91,100],manylinux:82,map:[3,4,9,19,25,26,29,35,45,63,67,77,80,83,85,87,89,101,119,140],map_fn:89,map_read:9,mapper:9,mapreduc:26,margin:18,mark:[28,44,54,55,68,69,74,83,115,140],marker:74,market:50,mask:[2,4,18],master:[26,38,79,82,138],mastermind:30,mat:[65,66,121],mat_cache_row:34,mat_norm:34,mat_normal_shar:34,mat_param_attr:5,mat_sparse_row:34,mat_sparse_row_auto_grow:34,mat_sparse_row_id:34,mat_sparse_row_prefetch:34,mat_sparse_row_prefetch_full_s:34,mat_value_shar:34,match:[18,30,50,94],matchbox:140,math:[5,18,62,65,79,110,111,117],mathemat:81,matirx:4,matmul:[29,56,68,89,111],matric:18,matrix:[3,4,5,9,18,19,25,34,65,66,110,111,119,121,122],matrixptr:110,matrixtyp:66,mattyp:34,max:[2,4,9,10,18,19,27,43,45,60,77,96,103,117,134],max_diff:27,max_id:[4,25],max_job_id:10,max_length:[4,69,107],max_movie_id:10,max_relative_error:[27,111],max_seq_len:18,max_sort_s:4,max_user_id:10,max_x:18,maxframe_evalu:3,maxid:3,maxid_evalu:3,maxim:[4,45],maximum:[3,4,10,18,29,36],maxinum:7,maxoutfunctor:87,maxpool:4,mayb:[29,63],mchw:18,md5:[10,32],mean:[2,3,4,5,6,7,9,11,16,25,28,30,42,43,45,56,69,76,78,83,86,88,94,115,118,125,132,140],mean_var_nam:4,meant:89,measur:46,mechan:[4,5,19,28,37,46,63,77,80,125],mem:[4,29,39,69,104],mem_per_pserv:42,mem_per_train:42,member:[4,10,26,45,55,56,67,73,77,83],memcpi:[73,117],memor:4,memori:[5,28,29,34,35,39,50,52,62,63,64,67,69,72,74,79,88,107,112,117,118,126],memory_boot:5,memory_nam:[4,95],memory_optim:60,memory_test:108,memory_threshold_on_load_data:[131,132],memoryalloc:87,memorydesc:63,mention:[18,28,30,35,42,44,51,68,71,72,74],mere:5,merg:[4,14,18,36,38,43,46,62,68,71,73,109,122],merge_model:122,merge_v2_model:122,merge_v2_modelss:122,messag:[29,40,41,47,51,52,55,64,74,75,76,77,79,80,84,90,91,109,126],metadata:[48,125,126,127],metal:140,metaphor:55,metaplotlib:26,method:[4,6,16,20,25,27,29,38,40,42,43,45,50,54,55,56,59,70,71,77,78,79,83,84,88,89,115,116],methodolog:72,metric:[14,46,74],mfs:127,microarchitectur:50,might:[4,29,30,40,41,51,60,75,86,115,125],million:10,min:[2,4,18,43,45,77,117,125,134],min_block:29,min_count:44,min_desc:29,min_pool_s:94,min_word_freq:10,mind:115,mini:[4,9,14,18,25,29,31,41,46,47,51,57,68,94],mini_batch:78,minibatch:[4,18,29,46,55,57,75],minim:[20,29,42,44,45,51,54,70,79,118],minimum:[4,18,86],minsizerel:[136,137,138],minu:80,minus_grad:80,minusgradop:80,minusop:80,minusopgradmak:80,minusopprotoandcheckermak:80,minut:[31,38,125],mip:136,mirror:30,mislead:36,mismatch:18,miss:54,mistak:51,mit:125,mix:[5,74,89,107],mixed_lay:[5,104],mixed_layer_attr:5,mixedlayertyp:4,mixtur:115,mkdir:[49,97,113,119,125,128],mkl:[63,79,87,88,91,97,119],mkl_packed_:61,mkldnn:[4,62,67,88],mkldnn_:62,mkldnn_batch_norm:4,mkldnnactiv:62,mkldnnbase:62,mkldnnlayer:62,mkldnnmatrix:62,mkldnnstream:62,mkldnntester:62,mklml:[62,91],mklml_lnx_2018:91,mklpack:61,mklpackedgatedrecurrentlay:61,mklpackedgemm:61,mklpackedlstmlay:61,mklpackedrecurrentlay:61,mlp:56,mlr:16,mnist:[33,42,54,55,75,78,79,115,116,122],mnist_random_image_batch_read:78,mnist_train:78,mnist_train_batch_read:78,mnist_v2:122,mnt:127,mobil:[50,51,60,79,113,135],mode:[4,22,25,50,61,71,109,127],model:[4,5,10,18,19,25,28,29,31,32,40,42,44,45,46,55,60,61,70,71,72,79,81,86,88,89,101,102,113,122,125,134],model_list:[132,134],model_path:134,modelparallel:42,modern:60,modif:86,modifi:[4,42,50,56,81,109,125],modul:[5,10,25,42,53,54,69,86,89,96,111,115,116],modular:69,modulo:4,moment:[20,115],momentum:[2,18,20,83,94,101],momentumop:[115,116],mon:126,monitor:[41,74],mono:4,month:30,more:[3,4,5,9,18,26,27,28,30,31,35,38,39,41,42,44,49,50,51,52,53,55,59,60,63,67,68,69,70,74,77,78,79,81,86,87,89,96,115,117,118,140],most:[4,9,25,26,28,30,38,41,42,52,55,56,67,69,72,74,78,81,86,87,115,118,140],mostli:[50,140],motiv:79,mount:[39,125],mountpath:[125,126,127],move:[4,31,35,49,51,72,125,140],movi:10,movidiu:51,movie_categori:10,movie_id:127,movie_info:10,movie_review:10,movieinfo:10,moving_average_fract:4,mpi:[41,71,128],mpirun:128,mse:[51,55,70,75],msra:16,much:[4,18,31,51,63,70,78,81,89],mul:[53,60,77,110,111],mul_grad:111,mul_op:[18,111],mul_ratio:4,mul_result:77,mulgradkernel:111,mulkernel:111,mulop:[53,111],mulopgrad:111,mulopmak:111,mult:[40,52],multi:[4,19,46,71,73,88,115,140],multi_binary_label_cross_entropi:4,multidimension:18,multigradientmachin:73,multinomi:4,multip:19,multipl:[3,4,5,9,14,18,19,25,26,27,35,36,38,40,41,42,44,46,51,52,53,59,71,74,79,86,88,90,101,115,125],multiple_input:77,multiple_param_attr:77,multipli:[3,4,18,40],multiprocess:9,must:[1,3,4,5,9,11,18,28,36,45,60,63,64,67,74,76,77,78,79,85,90,94,110,111,112,123,125],mutabl:[87,112],mutable_data:[63,87,111,112],mutex:41,mutuable_data:87,mxnet:[29,40,41,51],my_cluster_nam:125,my_cost:96,my_external_dns_nam:125,my_lib:123,myerrorclip:45,myfil:9,mypaddl:[126,127],naiv:40,name:[2,3,4,5,7,11,14,18,22,25,26,27,28,29,31,33,34,36,39,40,42,46,50,53,56,59,62,63,64,66,67,69,74,75,77,79,82,84,85,89,90,96,101,102,104,107,110,117,118,126,127,129,130,134,140],name_:74,name_prefix:33,namespac:[29,57,65,77,110,111,126,127],nativ:[4,50],natur:[18,35,38,44,69,89],ncall:[115,116],nccl1:71,nccl2:71,ncclinit:71,nchw8:88,nchw8c:88,nchw:[4,18,62,67],ndarrai:[11,25,33,94],ndcg:4,ndcg_num:4,ndk:136,nearest:50,nearli:27,necess:89,necessari:[4,28,29,36,38,45,46,60,64,69,73,77,85,89],necessarili:40,neck:71,need:[3,4,5,9,16,18,19,20,23,26,27,28,30,34,35,36,38,39,41,42,44,45,46,49,51,52,53,54,59,60,63,67,69,70,71,72,73,74,76,77,79,80,81,83,84,85,86,87,89,91,117,125,127,140],need_tran:96,neg:[3,4,18],neg_distribut:4,neg_overlap:4,neg_pos_ratio:4,neglect:4,neighberhood:71,neither:4,neon:50,ner:3,nervana:51,nessesari:86,nest:[4,9,28,29,74,75,90,121],net:[4,5,12,18,29,54,68,83,122],netop:[29,79],network:[2,3,4,9,16,18,19,23,24,25,26,27,28,29,31,34,42,44,46,54,56,60,61,62,68,70,72,74,77,78,81,83,85,86,87,88,90,95,101,102,104,121,122,127,134,140],network_config:134,networkadministr:125,neural:[4,5,9,16,18,25,26,28,29,31,42,56,60,61,62,68,72,81,83,87,88,90,102,104,106],neuralnetwork:73,neuron:18,never:[9,60,78,83,125,126,127],new_block_idx:77,new_dim:18,new_op_desc:45,new_scop:88,new_stat:68,newblock:77,newbuff:63,newest:36,newli:[50,140],newop:29,newopdesc:77,newprogram:77,newscop:88,newvardesc:77,next:[4,10,28,31,37,41,45,69,71,89,115,125],nextlay:62,nfs4:125,nfs:[125,127],nfsdir:127,nfsver:125,ngram:10,nic:[127,131,132],nil:35,nine:10,nlp:4,nltk:10,nms_threshold:4,nms_top_k:4,nmt_without_attent:94,nnz:[110,121],no_grad_dict:28,no_grad_set:[20,27,28,111],no_gradi:28,no_sequ:[4,101],node0:127,node1ip:128,node2ip:128,node3ip:128,node:[4,30,38,40,42,44,56,60,69,71,79,125,126,127,128,140],node_0:[125,127],node_1:[125,127],node_2:[125,127],node_id:123,nodeattr:56,nodeentri:56,nodefil:124,nodesep:56,nohup:123,nois:[4,31,54],noisi:[4,54],non:[4,18,31,50,51,84,125],none:[2,3,4,5,6,7,11,14,16,18,19,20,25,26,27,28,29,45,46,54,56,57,68,69,70,75,77,85,89,107,118],noneedtran:63,nonlinear:16,nontranspos:18,nor:40,norm:[5,18,54,67],norm_by_tim:4,normal:[4,5,10,16,18,72,86,126,127],notat:[4,60],note:[2,4,5,7,11,14,18,25,26,28,29,34,35,39,60,64,67,71,78,79,87,88,112,125],notebook:[39,98],noteworthi:51,noth:[1,25,59,77,83,109],notic:[4,45,51,71,80],notimplementederror:45,notin:88,notingradi:111,notion:89,notori:27,now:[9,28,30,31,44,54,64,67,72,79,80,81,83,106,125],np_arrai:9,nproc:108,nullptr:[63,74,80,83,110],num:[4,5,123,127,132],num_channel:[4,5],num_chunk_typ:3,num_class:[4,5,18,56],num_col_dim:18,num_filt:[4,5,18,19],num_flatten_dim:18,num_gradient_serv:[123,131,132],num_head:19,num_hidden:56,num_neg_sampl:4,num_or_sect:18,num_parameter_serv:26,num_pass:[25,101,126,127,131,132,134],num_per_batch:11,num_pserv:42,num_repeat:4,num_result:3,num_results_per_sampl:4,num_row:84,num_samples_process:96,num_shard:33,num_step:89,num_train:42,number:[3,4,5,9,10,11,18,19,29,31,33,44,46,60,72,74,78,79,85,89,115,125],numchunktyp:3,numdevices_:134,numer:4,numeric_grad:27,numerical_grad:27,numlogicaldevices_:134,numofallsampl:3,numofwrongpredict:3,numpi:[2,9,11,18,25,33,50,54,77,78,94,96,97,101,111],numreal:34,numsampl:117,numtagtyp:3,numtimeout:35,nv_:30,nv_gpu:108,nv_librari:30,nv_test:30,nvcc:[30,50,52],nvidia:[50,67,71,87,91,98,108],nvlink:71,nvprof:74,obei:3,obj:96,object:[2,4,5,9,18,25,26,34,42,45,46,54,56,60,65,70,74,77,79,81,83,117],observ:4,obtain:[4,18,38,72,87,94,101],obvious:[30,67,115],occup:[60,127],occupi:[50,74],occur:[10,25,60],occurr:29,oct:126,odd:4,odoti:18,off:[66,97,108,109,113,119,123,136,137,138,140],offer:[29,79,85],offici:[4,30,125],offlin:[31,33,140],offset:[4,18,34,121],often:[4,34,56,60,67,115],ograd:110,old:[27,36,38,69,79],older:[18,51],omega:81,omit:[18,94],omp_num_thread:[115,116],ompi_comm_world_rank:123,onc:[4,31,35,40,42,44,46,51,55,72,125],one:[1,3,4,5,7,9,16,18,20,23,25,26,27,28,29,31,34,35,36,38,39,40,42,45,46,47,50,51,52,53,54,56,58,59,63,64,67,68,69,70,71,72,73,75,76,77,78,79,80,83,84,86,87,88,89,118,121,125,140],onehotcrossentropyopkernel:111,ones:[53,54,79],onli:[3,4,5,7,11,18,23,25,26,27,28,30,34,35,36,37,38,39,40,42,44,45,46,47,49,50,51,54,55,60,63,68,69,70,71,73,74,77,79,84,85,86,87,88,89,104,106,121,125,140],onlin:[4,6,31,33,60,78],only_cpu:27,onnx:51,onto:[18,42,44,125],op1:[60,88],op1_2_op2:88,op1_to_op2:88,op2:[60,88],op3:60,op_:111,op_check:111,op_class:[79,85],op_desc:[45,58,76],op_info:118,op_kei:63,op_maker_class:[79,85],op_proto:85,op_registri:118,op_siz:45,op_test:111,op_typ:[79,111],op_unique_kei:63,opattrcheck:111,opcreat:85,opdesc:[29,45,55,75,76,77,79,80,85,90],opdescbind:[58,80],opdescbuild:29,open:[4,11,18,26,33,51,54,62,78,94,96,101,104,115,125],openbla:[97,98,119],opencv:11,openmp:115,openmpi:[123,128],opensourc:71,oper:[4,5,9,11,16,18,20,23,27,29,40,41,42,43,44,46,47,50,51,52,54,55,56,58,59,68,69,70,71,74,76,81,83,86,87,88,90,111,112,118,125],operand:[18,50],operartor:112,operator_grad:27,operator_list:74,operatorbas:[29,53,79,80,85,111],operatorwithkernel:[88,111],opinfo:[58,79,80],opinfomak:58,opinfomap:80,opkernel:[111,112],opkernelkei:79,opkerneltyp:[67,88],opmak:85,opposit:18,opproto:111,opprotoandcheckermak:[80,111],opprotomak:[85,111],opregist:85,opregistri:85,ops:[20,27,28,29,30,40,52,55,56,72,75,76,77,79,87,111,140],ops_:29,ops_test:30,opt:[26,70,76,85,97,127],opt_op_list:70,optest:111,optim:[2,12,24,25,27,28,42,43,44,52,54,71,72,73,75,79,81,84,86,94,96,101,115,118],optimis:70,optimize_op_attr:77,optimzi:94,option:[3,4,14,18,22,26,30,42,54,59,64,75,76,77,79,84,85,86,90,115,136,140],optmization_op_list:70,opts_np:76,optyp:[58,85],opwithkernel:84,order:[4,5,9,11,18,25,28,55,64,74,78,81,89,115,116,125,127,140],ordereddict:25,orderli:18,oregon:125,org:[3,4,5,10,16,18,33,48,54,94,101],organ:[3,4],orient:85,origin:[4,5,9,10,18,27,50,54,83,89,109],other:[3,4,5,9,18,20,29,31,36,40,49,50,51,52,58,60,63,67,68,72,76,81,83,85,86,87,88,115,118,125,140],otherchunktyp:3,otherwis:[4,9,10,11,18,25,26,28,31,36,38,54,58,63,78,86],our:[18,26,28,30,41,42,44,54,58,60,67,71,72,83,89,115,125],out:[4,18,25,26,29,30,35,38,42,45,51,56,60,63,68,69,77,88,94,104,106,107,111,112,115,116,125],out_dir:[125,127],out_fals:18,out_left:4,out_mem:107,out_memori:5,out_right:4,out_size_i:4,out_size_x:4,out_tru:18,outer:[4,104],outer_mem:104,outer_rnn_st:104,outer_rnn_state_:104,outer_step:104,outgrad_:62,outlier:4,outout_lay:25,outout_layer1:25,outout_layer2:25,output:[1,2,3,5,7,9,18,19,22,25,26,27,28,29,33,38,40,44,45,49,52,53,54,55,56,57,58,60,63,64,68,69,72,75,76,77,78,79,80,83,84,85,87,88,89,94,101,104,107,111,112,115,122,124,126,127,134],output_:[4,62],output_all_step:68,output_arg_nam:45,output_dim_idx:18,output_dtyp:18,output_fil:[22,122],output_height:18,output_id:4,output_lay:[25,94,101,102],output_max_index:7,output_mem:[4,107],output_mod:22,output_nam:27,output_num:68,output_path:33,output_s:18,output_seg:89,output_width:18,outputbuff:34,outputgradi:80,outputh:4,outputw:4,outsid:[4,5,42,83],outter:121,outter_pos_arrai:121,outter_seq_pos_arrai:121,outupt:89,outv:110,outval_:62,over:[4,5,18,25,26,51,60,71,72,89],overal:[54,72,74,140],overfit:[18,81],overlap:[3,4],overlap_threshold:[3,4],overload:[50,59],overrid:[29,31,49,63,87,111,112],overview:[35,36,37,87],overwrit:49,own:[4,28,36,38,45,47,56,58,70,71,72,81,85,125],pack:[89,96],packag:[9,10,35,39,40,53,62,82,91,115,116,125],pad:[5,18,63,86],pad_c:4,pad_h:4,pad_w:4,padding_attr:4,padding_down:18,padding_h:18,padding_i:4,padding_idx:18,padding_left:18,padding_right:18,padding_up:18,padding_w:18,padding_x:4,paddl:[1,2,3,4,5,6,7,9,10,11,14,16,17,18,19,20,22,23,25,26,29,30,31,33,39,42,49,52,53,54,57,61,62,63,64,65,66,68,69,73,75,79,81,82,85,86,87,89,94,96,97,98,100,101,102,107,108,109,110,111,113,115,116,117,118,119,121,122,123,124,125,126,127,128,134,136,140],paddle_arguments_get_sequence_start_po:121,paddle_arguments_set_id:121,paddle_arguments_set_sequence_start_po:121,paddle_arguments_set_valu:121,paddle_begin_init_param:36,paddle_capi:119,paddle_dir:111,paddle_doc:113,paddle_docs_cn:113,paddle_element_typ:36,paddle_element_type_float32:36,paddle_element_type_float64:36,paddle_element_type_int32:36,paddle_element_type_int64:36,paddle_element_type_uint32:36,paddle_element_type_uint64:36,paddle_enforc:[29,63],paddle_enforce_eq:[111,112],paddle_error:[65,66],paddle_exampl:39,paddle_finish_init_param:36,paddle_get_param:36,paddle_gradi:36,paddle_gradient_machine_create_shared_param:122,paddle_gradient_machine_forward:122,paddle_gradient_machine_load_parameter_from_disk:122,paddle_init:122,paddle_init_num_gradient_serv:123,paddle_init_param:36,paddle_init_port:123,paddle_init_ports_num:123,paddle_init_ports_num_for_spars:123,paddle_init_pserv:123,paddle_init_trainer_count:123,paddle_init_trainer_id:123,paddle_init_use_gpu:123,paddle_ivector:121,paddle_ivector_cr:121,paddle_job:39,paddle_manylinux_devel:97,paddle_matrix:[65,66,121,122],paddle_matrix_cr:[66,121],paddle_matrix_create_spars:121,paddle_matrix_get_row:121,paddle_matrix_get_shap:65,paddle_matrix_shap:65,paddle_matrix_sparse_copy_from:121,paddle_n:127,paddle_new_etcd_pserver_cli:36,paddle_new_pserver_cli:36,paddle_on_cloud:39,paddle_output:126,paddle_paramet:36,paddle_port:127,paddle_ports_num:127,paddle_ports_num_spars:127,paddle_process_by_paddl:127,paddle_pserver2:124,paddle_pserver_cli:36,paddle_pserver_client_releas:36,paddle_r:121,paddle_root:119,paddle_save_model:36,paddle_send_grad:36,paddle_server_num:127,paddle_train:[66,82,124,127],paddle_with_cuda:74,paddle_with_mkldnn:67,paddlepaddl:[4,5,9,10,11,18,25,30,31,33,36,37,38,39,40,42,48,49,53,54,55,57,59,64,68,69,70,73,74,77,78,79,83,89,90,94,97,98,100,101,102,107,108,109,114,115,116,117,121,122,123,124,126,127,129,130,136,138,140],paddlepaddle_gpu:100,paddlepaddlebook:98,paddlepaddlehub:98,page:125,pair:[3,19,20,22,28,29,42,55,70,74,79],pairwis:4,pakcag:30,paper:[4,16,18,54,86],para:34,paradigm:[40,47,79],paragraph:68,paragraph_data:68,paragraph_out:68,parallel:[40,41,42,44,71,74,79,88,117,125,126,127,134],parallel_for:40,parallel_nn:[2,131,132],paralleldo:43,parallelfor:40,paralleliz:86,param:[2,4,5,9,18,20,27,29,36,73,77,87,94,96,112],param_attr:[4,5,18,19,34,77,94,96,107],param_config_proto:36,param_fil:[96,122],param_initi:18,paramattr:[2,4,12,18,94,96,107],paramet:[3,5,6,7,9,14,17,18,19,20,24,27,28,29,30,32,34,38,40,42,43,45,47,49,51,52,54,55,56,58,64,68,70,71,75,78,83,85,86,89,94,96,101,102,118,121,123,124,127,132],parameter_block_s:[131,132],parameter_block_size_for_spars:[131,132],parameter_learning_r:2,parameter_list:[20,28,70],parameter_nam:[25,26],parameter_serv:26,parameter_valu:34,parameterattribut:[2,4,5,34],parameterclient2:127,parameterclient_:34,parametermap:110,parametermutex_:34,parameters_:110,parameters_and_grad:[20,70],parameterserver2:34,parameterset:26,parameterupdat:73,parameterupdater_:34,parametr:4,params_grad:70,params_pass_4:122,params_pass_90:101,params_pass_:101,paramt:125,paraspars:110,parent:[29,40,75,77,79],parent_:[29,83],parent_idx:77,parenthes:79,pars:[9,10,30,42,56,108,125],parse_known_arg:127,parsefromstr:96,parser:[9,127],part:[3,4,18,19,28,29,38,42,51,63,64,75,77,86,87,115,140],partial:[4,25],partial_sum:4,particular:[55,64,79,86,88],particularli:16,partit:[31,33,42,44,79,125],paserv:127,pass:[4,14,18,23,25,28,29,31,41,45,46,51,54,60,64,70,72,73,76,77,78,79,81,83,86,89,94,101,109,117,125,126,127,132,134],pass_gener:4,pass_id:[25,42,94,101],pass_idx:78,pass_manu:96,passtyp:110,past:[26,125],patch:[18,48],path:[3,9,10,11,25,31,35,36,39,60,69,78,86,119,125,126,127,132,136,137,138],path_to_paddlepaddle_working_directori:113,pattern:[10,31,65,72,81,125],paus:[31,38],pcie:71,pd_api:121,pdf:[5,18],peephol:18,peer:[71,92],pem:[26,33,125],pend:[31,35],pep425tag:[91,100],per:[3,4,10,11,18,31,36,71,72,78,81],percal:[115,116],perf_test:[115,116],perfectli:86,perform:[4,5,16,18,27,36,41,42,46,50,51,54,60,71,73,74,78,79,81,86,87,88,116,117,131],perftool:[74,115,116],period:[31,38,132],perm:18,permiss:[94,101,125],permut:18,peroid:[4,11],persist:[18,47,84,86,90,125],persistentvolum:125,persistentvolumeclaim:[125,127],person:[3,26,59],perspect:79,perturb:27,pex:140,pfs:[33,49],pfsclient:33,pfspath:49,pgp:125,phase:[63,69,71,72,78,80,86,140],philosophi:[72,81],photo:54,phrase:18,physic:140,pick:[18,125],pickl:[123,128],pictur:71,piec:[5,40,74],pil:11,pillow:39,pip:[82,91,97,100,102,109,113,115,116],pipe:9,pipelin:[46,86],piperead:9,pivot:63,pixel:[4,9,10,42],place:[18,28,29,31,38,42,44,47,59,63,71,79,88,112,118],place_:[59,67,87,88],placehold:[54,87,112],placement:44,plain:[3,4,9,39,64,66,67],plan:[31,40,63,79,86],platform:[29,52,63,67,74,87,88,100,111,112,118,125,136,137],pleas:[2,4,5,6,11,18,26,31,35,36,37,40,52,56,67,68,77,78,79,86,87,90,91,113,115,125,127],plot:26,plu:[4,27],plug:[71,72],pnpairvalid:131,pod:[33,39,40,125,126,127],pod_nam:125,podip:127,podlist:127,point:[18,29,31,39,41,50,60,63,71,87,112,115,117,121,140],pointer:[29,36,56,60,67,77,79,83,87,112,121],polar:10,poli:96,polici:[18,125],poll:41,pollut:38,polyak:72,ponit:56,pool3:110,pool:[5,18,24,43,60,86],pool_attr:5,pool_bias_attr:5,pool_layer_attr:5,pool_pad:[5,18],pool_siz:[4,5,18,19],pool_size_i:4,pool_strid:[5,18,19],pool_typ:[4,5,18,19],pooled_height:4,pooled_width:4,pooling_lay:[5,94],pooling_typ:[4,94,103],poolingtyp:7,pop:[29,47],popul:36,popular:[30,54,56,74],port:[30,40,115,123,125,126,127,131,132],port_num:131,portabl:56,portal:113,ports_num:[123,127,132],ports_num_for_spars:[34,123,127,131,132,134],pose:31,posit:[3,4,5,18,121],positive_label:3,possibl:[26,29,35,41,44,60,77,81,90],post:[39,48],postpon:81,potenti:[50,117],pow:96,power:[50,60,71,86,140],ppo_workspac:113,pprof:[115,116],pre:[4,5,10,26,36,59,60,125],pre_activ:77,pre_bia:77,pre_stat:[68,89],preambl:77,precis:[3,46,50,72],precision_evalu:3,precompil:47,pred:[56,60],predecessor:60,predetermin:4,predic:10,predict:[3,4,18,25,42,81,94,102,122],predict_fil:[131,132],predict_lay:25,predict_output_dir:[131,132],prediction1:25,prediction2:25,prefer:[51,59],prefetch:[34,110],prefix:[3,5,31,33,69,86,125],pregel:41,pregrad:110,prepand:77,prepar:[27,39,73,86,123,128,129],prepend:[18,77],prepend_oper:77,preprocess:[10,11,86,89],present:[26,28,29,74,89,109],preserv:49,press:16,prev_batch_st:[131,132],prev_cel:18,prev_cell_data:18,prev_hidden:18,prev_hidden_data:18,prevent:[6,18,26,31,35,38,45,81,115],preview:79,previou:[4,5,18,25,28,31,44,49,68,69,115,125],previous:4,previous_memori:29,price:[10,79,102],prim:63,primari:[51,55],primarili:[72,81],primit:[50,62,63,71,89],primitive_desc:63,primitivedesc:63,principl:[26,30,67],print:[2,25,26,42,51,56,77,91,100,101,102,115,128],print_graphviz:56,printallstatu:117,printer:3,printstatu:117,priorbox:4,prioriti:79,prite:3,privat:[29,66,74,77,83,84,85,87,89,109,112],privileg:125,pro:71,prob:[3,25,102],probabilist:4,probabl:[3,4,18,25,69,86],problem:[4,26,27,30,38,51,54,55,72,79,81],proc:98,proce:[9,31,78,125],procedur:[29,64],proceed:16,process2:104,process:[2,4,5,9,18,26,28,29,33,34,35,38,40,41,42,46,47,51,52,56,60,62,64,71,81,85,88,94,96,104,115,125,127],process_num:9,processor:[50,117],prod:109,produc:[4,5,9,18,31,51,56,78],product:[4,5,18,19,39,51,101,125],productgraph:126,prof:[115,116],profil:[12,49,74,86,116,117],profilerst:74,profl:116,proflier:[74,117],prog:127,program:[9,14,16,18,22,26,28,33,36,38,42,44,47,55,57,60,70,71,74,78,79,83,90,115,117,127],programdesc:[40,42,47,51,60,64,76,77,80,90],programm:[42,51,77],progress:[31,35],proj:4,proj_activ:18,proj_dim:18,proj_out:18,proj_siz:18,project:[4,5,18,19,39,66,86],promis:[4,5,69],prompt:[49,51],prone:26,pronunc:86,prop_kind:63,propag:[4,6,28,51,72],proper:59,properli:59,properti:[56,81],propos:[18,29,43,44,69,70,71,72,89],proprietari:62,protect:[50,85,110,111],proto:[7,41,59,64,67,75,79,85,90,111],proto_:85,protobuf:[25,29,39,40,42,47,51,52,55,56,60,64,75,77,79,80,85,96,119,122],protocol:[3,118,140],protomak:111,provi:123,provid:[4,10,18,26,29,36,39,40,46,47,50,51,54,56,58,59,67,71,72,74,77,81,85,86,87,89,94,102,104,115,125,131,140],provis:[125,140],prune:[4,29],ps_desir:31,pserver:[25,34,36,37,39,79,123,124,125,127,131,132],pserver_addr:36,pserver_cpu:39,pserver_id:32,pserver_mem:39,pserver_num_thread:[34,131,132],pserver_spec:25,pseudo:[26,28,39,80,89],pseudocod:89,psize:110,ptr:[66,87],pub:[18,128],pull:[30,79,82,98,136],purpos:[4,31,42,44,59,117],push:[29,47,51,74,82,127],push_back:110,put:[30,31,34,44,60,63,77,87],pvc:125,pwd:[97,98,108,109,113,136],pxe:140,py_paddl:91,pybind:[29,41,50],pydataprovid:94,pydataprovider2:127,pyramid:4,pyramid_height:4,python2:[115,116],python:[18,25,26,29,37,41,46,47,51,53,54,55,56,59,65,69,73,74,79,82,87,89,91,94,97,100,102,107,108,109,110,111,113,116,118,122,123,128],pythonpath:91,pytorch:[51,74],qualcomm:50,queri:[3,4,19,125],query_id:3,question:[4,26,40,44,85,125],queue:[41,44],quick:56,quick_start:[39,125,126,127,129],quick_start_data:126,quickli:[69,77,79],quickstart:126,quit:69,r14b:136,r_h_val:18,r_t:4,rais:[9,18,19,45,56,123],rajathkmp:54,ran:[44,117],rand:[54,96,117,121,132,134],rand_max:121,random:[2,4,9,16,18,33,54,67,73,77,78,96,111],random_crop:11,random_imag:33,randomli:[11,18,38,121],rang:[4,9,16,18,33,40,42,50,54,60,74,78,85,127],rank0:71,rank1:71,rank:[4,18,26,89,125],rank_tabl:18,rankdir:56,ranktabl:18,rapid:80,raspberri:139,raspberrypi:138,raspbian:138,rasspberri:138,rate:[2,3,4,5,6,10,19,20,36,86,94,127],rather:[28,39,54,89,125],ratio:[4,132],raw:[4,18,64],rdma_tcp:[131,132],reach:[31,60,71],read:[9,11,18,25,26,28,31,33,40,41,42,44,51,52,78,79,86,89,96,125,140],read_from_arrai:60,read_from_realistic_imag:26,read_from_rng:26,read_lock:32,read_minibatch:51,read_mnist_imag:26,read_next_from_fil:94,read_paramet:96,read_ranking_model_data:26,readabl:[74,79,115],reader:[10,25,33,42,50,54,55,75,86,101,115,116,123],reader_cr:33,reader_creator_bool:78,reader_creator_random_imag:[9,78],reader_creator_random_image_and_label:[9,78],readi:[31,125,126,140],readlockguard:34,readm:[66,109],readwritebuffer_:34,readwritemani:125,real:[4,18,34,54,78],realist:26,realiti:86,realiz:[29,68],realli:[51,81],rearrang:18,reason:[5,26,27,31,41,51,126],recal:3,receiv:[31,39,41,42,44,68],recent:[60,72],recognit:[4,86],recommend:[5,18,26,127],record:[9,35,63,74,85,125],recordev:74,recordio:[9,10,26,33,35],recov:[31,89],recover:79,recoveri:35,rectifi:[4,16],recurr:[18,61,68,83,86,104,105],recurrent_group:[5,86,94,95,104,106,107],recurrent_lay:5,recurrent_op:89,recurrentgradientmachin:[66,69,89],recurrentgroup:3,recurrentlay:61,recurs:[28,29,30,49,60,79],recv:[40,42,44,71,125],recvparametertyp:34,red:[54,115],redirect:9,reduc:[4,18,44,50,71,79,115,116],reduce_by_kei:79,reduce_mean:54,refactor:[42,44,55,69,72,73,77,81,89],refer:[2,4,5,6,11,16,18,19,22,27,29,31,35,36,37,40,50,56,63,67,68,71,75,77,79,81,83,87,89,90],referenc:35,refine_unknown_arg:127,reflect:35,reg:85,regard:[18,140],region:[4,83],regist:[41,60,67,80,87,88],register_gpu_profil:117,register_lay:110,register_op:[53,79,80,85,111],register_op_cpu_kernel:[87,111],register_op_cuda_kernel:[87,111],register_op_without_gradi:[79,111],register_oper:[58,80],register_tim:34,register_timer_info:117,registerop:85,registr:118,registri:[39,58,87,126,140],regress:4,regular:[2,12,18,20,28,94,125],regularization_coeff:23,reiniti:63,rel:[5,18,27,38,81],relat:[31,38,39,50,67,74,83,88,115,140],relationship:[80,87],releas:[82,86,91,119,125,136,137,138],reli:[27,40,69,70,72,81,115],reliabl:[31,81],relu1:56,relu2:56,relu:[4,54,56,60],relwithdebinfo:[115,116],remain:[18,89],remaind:18,rememb:4,remot:[2,30,34,42,79,109,125,132,134],remoteparameterupdat:[34,37],remov:[9,18,28,42,49,51,69,109],ren:16,renam:[28,49,50],reorder:63,reorder_primit:63,reorgan:4,repeat:[18,29,55,75,76,84,85,90,115],repeatedli:[55,60],replac:[30,35,58,72,80,86],replic:42,replicaset:39,repo:[30,138],report:[35,50,51,74],reportdataset:35,repositori:[4,113,136],reprenset:18,repres:[4,5,18,28,29,35,40,42,44,45,51,56,64,67,69,72,77,79,81,84,87,89,90,125],represent:[4,18,36,42,52,54,55,60,67,69,84],request:[30,31,34,38,40,79,82,125,126,140],requir:[3,4,20,26,28,31,36,38,39,42,44,45,49,50,56,60,62,68,72,74,75,76,79,81,84,85,86,90,94,101,113,125,140],requisit:60,research:[10,18,42,51],reserv:[18,49,94,101],reserveoutput:110,reset:[4,14,18,31,46,92],reset_program:[14,46],resetingrad:62,resetinvalu:62,resetoutgrad:62,resetoutvalu:62,resetxxx:62,reshap:[27,78,96],reshape_s:4,resid:18,resiz:[11,34,87,111,112],resize_s:11,resize_short:11,resolv:[30,109,126],resourc:[42,47,71,74,87,125],respect:[18,19,27,45,50,54,68],respons:[4,34,41,42,46,54,71,72,73,81,125,126],rest:[18,29,39,48,52,88,140],restart:[31,36,125,126,140],restartpolici:[125,126,127],restor:[27,72],restrict:[81,83,115,116],result:[1,3,4,17,18,22,25,27,28,35,46,54,55,56,60,64,69,70,71,73,101,115,117,118,125],result_fil:3,resum:38,retran:125,retriev:[29,69,83,115],return_op_list:20,return_seq:5,reuqest:82,reus:[29,38,69,78,79],rev:108,revamp:42,reveal:[26,115],revers:[4,5,18,28,106,107],review:[10,40,109,126],reviews_electronics_5:126,rewrit:[30,41],rgb:[4,11],rho:6,rid:51,right:[4,27,28,29,30,39,46,60,79,81,94,101],right_scor:94,ring:71,risk:28,rkt:[39,108],rmsprop:[72,94],rmspropoptim:72,rnn:[4,5,29,51,54,69,77,79,83,86,106,107,131],rnn_bias_attr:107,rnn_layer_attr:107,rnn_out:107,rnn_output:89,rnn_state:104,rnn_state_:104,rnn_step:4,rnn_use_batch:[61,131,132],rnnalgorithm:69,rnnlm:10,rnnstep:89,roadmap:[86,89],robust:[4,16],rocmplac:67,roi:4,role:[10,26,35,36,42,71,125],rollback:77,root:[6,7,28,71,125,126,127],rot:4,roughli:86,round:[50,71],routin:[50,62,71],row:[3,4,9,18,34,41,121],row_id:4,row_offset:121,rowoffset:121,rows_:84,rpc:35,rpcserver:35,rpi:138,rpi_arm_neon:138,rpi_toolchain:138,rsize:125,rstrip:127,rtk:140,rtype:9,rule:[3,18,28,42,45,51,55,125],run:[26,27,28,29,30,31,39,40,42,43,44,46,50,51,52,53,54,55,56,60,63,67,68,70,71,72,74,75,76,77,79,82,83,84,86,87,88,91,97,98,108,109,112,113,115,116,117,123,124,125,126,127,129,130,136,140],run_test:97,runinitfunct:[117,127],runnabl:44,running_on_cloud:39,runserv:113,runtim:[22,29,40,41,42,58,68,79,90,91],runtime_table_:29,s_block:28,safe:39,sai:[4,52,55,57,60,78],said:51,same:[3,4,5,16,18,19,25,26,27,35,36,38,40,41,42,53,54,56,59,60,68,69,71,77,79,80,83,86,88,89,104,112,125],samping_id:4,sampl:[3,9,10,18,46,54,77,85,121],sample_id:3,sample_num:3,sampler:54,satifi:[3,60],satisfi:[30,63,84,125],save:[4,9,25,31,33,35,36,39,40,42,55,56,60,64,72,84,90,125,126],save_dir:[126,127,132,134],save_only_on:[131,132],save_parameter_to_tar:[25,101],savetxt:96,saving_period:[127,131,132],saving_period_by_batch:[131,132,134],scalabl:79,scalar:[4,18,28,29,57,89],scale:[1,16,19,42,44,72,80,85,86,111],scaleop:111,scaleopmak:[79,111],scalingproject:4,scan:[18,28,35,60,79],scatter:[4,28,71],scenario:69,schdule:125,schedul:[35,39,44,125],scheduler_factor:2,scheme:[3,6,34,81],scienc:60,scope:[27,40,43,47,52,88,118],score:[3,4,18,69,94],score_diff:94,scorer:86,scp:128,script:[10,71,97,113,124,125,128,136],sdk:137,search:[4,31,83,107],second:[4,18,26,40,49,51,54,56,68,69,75,76,78,83,85,111],secret:125,section:[28,44,51,77,115,125],see:[4,5,18,26,28,31,40,41,44,50,51,77,86,94,96,101,115,125],seed:[16,18,96,117,132],seem:[30,41,50,51,86],seen:[19,81],segment:[3,18,68,89],sel_fc:4,selcet:4,select:[4,18,69,125],selected_generation_scor:69,selected_id:[4,69],selected_indic:4,selected_row:[84,90],selected_rows_desc:[84,90],selected_scor:69,selectedrow:[58,90],selectiv:4,selector:126,self:[27,45,46,54,56,60,61,62,64,70,77,89,110,111],self_addr:40,selfnorm:4,semant:[10,26,69,82],semaphor:41,semat:26,send:[31,36,40,42,44,59,71,79,85,125],send_back_parameter_typ:34,sendbackparameterspars:34,sendbackparametertyp:34,sendparameterrequest:34,sendparameterrespons:34,sens:[72,81,115],sensit:4,sent:[26,36,40,42,79,85,90,126],sentanc:94,sentenc:[4,10,51,68,69,89,104,107],sentence_input:89,sentence_last_state1:104,sentence_last_state2:104,separ:[3,18,22,36,42,53,72,80,81],seper:89,seq:[4,10,104],seq_len:89,seq_po:121,seq_pool:[4,103],seq_pos_arrai:121,seq_silc:4,seq_text_print:3,seq_typ:9,seqlastin:104,seqtext_evalu:3,seqtoseq:[4,96],seqtoseq_net:4,sequenc:[1,3,4,5,7,9,10,18,28,29,40,47,51,55,61,70,75,86,89,94,101,104,106,121],sequence_group:4,sequence_layer_group:104,sequence_nest_group:4,sequence_nest_layer_group:104,sequence_start_posit:121,sequencegen:104,sequencesoftmaxop:18,sequencestartposit:4,sequencetextprint:3,sequencetyp:[4,101],sequenti:[4,29,40,41],seri:[5,104],serial:[25,29,35,64,73,79],serializ:[79,90],serv:[42,50,79,89,125],server:[26,30,34,37,38,42,52,71,79,92,97,123,124,127,132,140],serverless:31,servic:[115,140],sess:[54,56,70],session:[56,70,76],set:[2,3,4,5,9,10,11,18,19,22,25,26,28,31,39,54,58,60,63,67,68,69,74,76,77,79,80,83,86,87,89,94,96,101,104,108,111,112,113,115,117,121,125,126],set_active_typ:110,set_attr:45,set_default_parameter_nam:2,set_drop_r:110,set_float_el:27,set_input:[4,45],set_output:45,set_siz:110,set_typ:[45,110],setdatatyp:84,setdefault:111,setp:125,setq:108,settotalbyteslimit:96,setup:[42,72,82,110,111,140],seven:86,sever:[3,4,27,34,42,44,54,68,69,71,73,74,77,84,87,89,125],sexstant:140,sgd:[20,25,26,31,39,44,72,73,84,101,118,123,131],sgd_optim:118,shall:[28,30],shaoq:16,shape:[3,4,9,14,18,19,25,27,28,29,42,54,57,67,68,75,77,79,84,86,87,101,118],shard:[31,32,33,34,35,36,38,42,44,123,125],share:[4,18,30,54,66,73,77,79,81,86,87,89],shared_bia:5,shared_bias:4,shared_librari:30,shared_ptr:[63,65,66,83,87,112],shell:125,shift:[4,18],shorten:4,shorter:11,should:[2,3,4,9,11,14,16,18,19,20,22,23,25,26,27,28,29,36,39,41,42,45,46,50,52,53,54,58,59,63,67,68,69,70,72,73,74,75,78,79,80,81,84,85,86,88,89,90,106,111,113,125],should_be_fals:26,should_be_tru:26,should_shuffl:104,show:[3,6,28,29,31,49,51,57,60,64,68,71,72,75,89,108,125],show_check_sparse_distribution_log:[131,132],show_layer_stat:[131,132],show_parameter_stats_period:[126,131,132,134],shown:[4,26,42,46,71,74,86,125],shrink_rnn_memori:18,shrunk:45,shuf:94,shuffl:[9,42,94],sid:125,side:[4,25,42,46,60,73],sig:125,sigint:124,sigmod:85,sigmod_op:85,sigmod_output:85,sigmoid:[4,19,29,85,89],sigmoidactiv:[5,104],sign:[48,64,125],signatur:125,signific:86,similar:[4,18,29,40,41,42,44,47,51,69,72,74,78,79,81,86,87,88,89,115,125,140],similarli:[4,9,51,60],simpl:[1,3,4,5,9,10,18,20,25,40,44,50,52,55,56,60,68,72,75,81,83,85,86,89,127],simple_attent:107,simple_gru:107,simple_lstm:[4,95],simple_rnn:[4,107],simple_transform:11,simpler:73,simplest:125,simpli:[4,11,26,36,42],simplifi:[26,69,77,85,86],simul:[51,137],simultan:125,sinc:[4,5,31,35,37,38,41,42,43,44,51,58,60,63,67,72,77,78,80,81,89,125,140],singl:[3,5,9,18,28,31,42,44,46,50,59,71,79,83,86,115],singleton:[40,43],sinlg:25,sit:42,site:[30,115,116,125],situat:[28,76,88],size:[3,4,5,9,10,11,18,19,25,31,33,34,36,41,42,50,54,60,64,69,72,77,78,84,85,86,87,89,94,96,101,102,104,107,110,111,112,118,121],size_a:4,size_b:4,size_in_byt:63,size_t:[34,87,89,110],sizeof:[29,121],skip:[28,78,96,109,125],sleep:127,slice:[18,40],sliceproject:4,slide:[4,6,10,31],slight:51,slightli:54,slope:[4,18],slopeinterceptlay:4,slowli:115,small:[4,10,18,27,40,52,54,62,69],small_messag:[131,132],smaller:[18,27,31,50,69],smart:83,smooth:4,snap:126,snapdragon:50,snapshot:[32,38,125],snippet:[53,70,125],sock:39,sock_recv_buf_s:[131,132],sock_send_buf_s:[131,132],socket:127,soft:18,soft_label:18,softmax:[4,5,18,26,29,42,44,51,56,57,69,75,94,107,110],softmax_param:96,softmax_param_attr:5,softmax_selfnorm_alpha:4,softmaxactiv:104,softmaxoutput:56,softrelu:18,softwar:[50,74,94,101,140],solid:54,solut:[71,140],solv:[26,28,60,79],some:[2,4,9,11,18,25,26,28,29,30,34,35,36,38,39,42,44,45,50,52,53,54,55,59,60,63,67,68,69,70,75,76,77,78,79,80,83,87,88,89,125,140],some_c_api_funct:66,some_inst:66,some_op:[58,68,89],some_python_class:65,somecppclass:65,somedata:25,somegotyp:65,someth:[28,34,77,115],sometim:[4,74,78],somewhat:36,somewher:83,soon:31,sort:[4,10,18,89,115,125,127],sort_by_length:89,sortagrad:86,sourc:[4,10,27,30,49,51,54,62,64,66,69,78,79,115,125],source_dict_dim:[69,107],source_dict_s:69,source_language_word:[69,107],space:[3,4,44,50,77,81,86],space_seperated_tokens_from_dictionary_according_to_seq:3,space_seperated_tokens_from_dictionary_according_to_sub_seq:3,span:74,spars:[2,4,6,9,18,34,41,94,110,121,123,125,127,132,134],sparse_binary_vector:[9,94,101,121],sparse_binary_vector_sequ:[9,121],sparse_binary_vector_sub_sequ:121,sparse_float_vector:[9,101],sparse_float_vector_sequ:9,sparse_non_value_slot:9,sparse_remot:34,sparse_upd:[2,34,94],sparse_value_slot:9,sparse_vector:[94,121],sparse_vector_sequ:121,sparse_vector_sub_sequ:121,sparseparam:110,sparseprefetchrowcpumatrix:110,spatial:4,spatial_scal:4,spec:[125,126,127],special:[4,18,28,36,42,50,52,58,67,69,70],specialvartypeinfer:58,specif:[18,19,25,28,30,31,42,45,49,52,69,79,83,87,94,101],specifi:[3,4,14,18,26,27,34,35,36,39,40,41,42,43,45,46,47,49,54,64,74,77,83,85,89,113,115,125],spectrogram:86,speech:[4,86],speed:[4,5,50,64,71,72,140],speedup:74,sphinx:[65,113],split:[4,9,19,38,40,43,51,57,69,79,89,104,123,125],split_count:[123,125,127],spread:28,sqrt:16,sqrt_x:18,squar:[4,6,7,56],square_error_cost:[101,118],squash:109,srand:[121,132],src:[30,63,91,123,124,127],src_backward:107,src_dict:96,src_dict_path:96,src_embed:[69,107],src_forward:107,src_primitive_desc:63,src_word_id:[69,107],src_word_vec:69,sreializ:90,srl:10,ssd:4,ssh:[125,128],ssh_server:124,sstabl:26,stabil:[4,27,60],stabl:[82,125],stack:[18,47,79,89,125],stackexchang:4,stage:[30,37,43,54,60,63,86,90,109],stale:31,stamp:91,standalon:136,standard:[2,9,16,18,41,51,79,81,86,115],stanford:[10,27,126],star:30,start:[4,5,18,25,28,30,31,34,35,36,38,39,41,42,43,69,71,73,74,91,109,115,121,126,127,132],start_mpi_train:128,start_op_idx:28,start_paddl:127,start_pass:[131,132],start_po:4,start_pserv:[131,132],startpaddl:127,startup:[18,31,39,51,125],startup_program:[14,18,20],stat:[117,132],state:[4,5,14,18,20,29,31,46,47,68,69,74,83,86,89,95,106,126],state_act:[4,5,104],statem:60,statement:[51,55,60,125],statfulset:127,static_cast:[63,112],staticinput:[4,106,107],statist:[4,14,16,46,74],statset:117,statu:[39,69,109,117,125,126,127],status:126,std:[25,30,34,56,58,59,63,65,66,74,76,79,80,83,85,87,110,111,112,132],stdbuf:123,stderr:124,stdout:[9,124],step1:18,step:[4,5,7,18,20,27,29,31,36,42,44,46,51,54,55,61,69,72,73,77,79,85,86,89,104,106,107,115,125,140],step_gradi:28,step_id:89,step_input:89,step_net:29,step_output:89,step_scop:79,stepnet:[29,68,79,83],stepout:104,still:[28,35,38,42,51,60,80],stirng:77,stmt1482205552000:125,stmt1482205746000:125,stochast:[6,31,35,38,72],stop:[4,77],stop_gradi:[18,77],storag:[48,50,125],store:[3,4,10,18,25,27,29,30,34,47,56,58,64,67,69,73,75,77,79,80,81,83,89,125],str:[11,14,18,25,28,39,89,127,134],straight:[75,78,84],straightforward:63,strategi:[7,31,77,132],stream:[9,42,63,74,87],stream_:87,streamid:22,street:4,strict:78,stride:[4,5,18,63,67,86],stride_h:18,stride_i:4,stride_w:18,stride_x:4,string:[3,4,9,11,18,22,25,28,29,35,49,56,59,64,74,75,76,77,79,80,83,84,85,90,110,111,125,132],strip:[96,104,115],struct:[35,36,48,50,58,59,66,67,74,80,85,88,96],structur:[28,29,35,51,54,64,69,75,77,79,84,125],sts:125,stuff:109,style:[4,79,85],sub:[3,4,9,18,26,28,38,40,44,54,60,68,71,73,77],sub_block:28,sub_nest_seq:4,sub_sequ:[4,101],subclass:[20,77],subcommand:49,subgradi:6,subgraph:[44,54],submiss:42,submit:[63,79,125],subnet0:125,subnet:[26,125],subobjectpath:126,subscript:18,subseq:[103,106],subsequ:[4,71],subsequenceinput:[4,104],subset:18,succ:60,succeed:[35,126],success:[4,36,125,126],successfulcr:126,sucess:60,sucessor:60,sudo:[108,125],suffer:27,suffix:[14,39,123],suggest:[4,30],suit:140,suitabl:[84,87],sum:[4,6,19,28,29,32,43,58,77],sum_op:28,sum_x:18,sume:18,summar:[54,74],summari:74,summat:18,sumopgradmak:80,sumpool:94,sun:16,supercomput:60,suppli:[18,84],support:[2,3,4,6,7,9,11,18,27,29,31,38,39,40,41,42,44,51,53,54,60,63,64,67,69,72,73,74,76,78,79,80,81,84,86,88,100,104,125,140],support_inplac:60,suppos:[5,18,19,30,40,53,84,121],suppress:[4,49],sure:[18,115,125],surpass:[4,16],svs:85,swagger:48,swig:[37,65,66,97],switch_ord:95,switchop:29,sychron:71,symbol:[4,29,56,66],symbols_ready_:29,symbolt:[29,79],symlink:109,sync:[31,72,81],sync_with_cpp:[115,116],syncflag:110,synchron:[31,35,41,63,71,74,125],syntax:[40,47,51,69,78],sysroot:136,system:[29,30,31,36,38,41,42,44,48,53,54,60,62,86,94,115],t_max:18,t_min:18,tabl:[3,4,18,29,40,51,58,64,84,90],tablelookup:84,tablelookupgrad:84,tablelookupop:84,tableproject:4,tag:[3,10,82,91,98,109,123],tagtyp:3,tail:69,tainer_id:127,take:[3,4,5,9,18,25,26,28,29,30,31,38,40,41,42,45,47,50,52,54,55,57,58,60,63,67,72,75,76,77,78,79,80,87,88,89,115,125],taken:[4,45,56,60,67,89],talk:[36,52],tangl:115,tanh:[4,5,54,69,107,110],tanhactiv:[5,104],tanhshrink:18,tar:[11,25,91,101,122,125],tarbal:125,target:[4,10,18,20,25,28,29,30,45,47,54,56,70,76,79],target_block:[28,45],target_dict_dim:107,target_dict_s:69,target_dictionary_dim:4,target_language_embed:4,target_language_word:107,target_link_librari:30,target_word:69,targetinlink:[4,104],task13:86,task14:86,task:[3,4,42,64,69,74,85,122],task_queu:35,taskentri:35,taskqueu:35,tbd:[37,63,86,104],tcp:[125,132],tear:117,technic:[28,31],techniqu:[18,60,115],technolog:51,tee:126,tell:[31,35,36,69,85],templat:[53,63,85,87,111,112,126,127,140],tempor:[4,18,86],temporari:[14,28,39,47,60,72,77],tempori:60,tensor:[18,19,27,30,40,41,43,44,50,51,52,54,56,58,59,63,64,67,68,69,84,89,90,111,118],tensor_arrai:40,tensor_array_read:89,tensor_array_s:89,tensor_array_stack:89,tensor_array_unstack:89,tensor_array_writ:89,tensor_data:64,tensor_in:88,tensor_s:27,tensor_test:30,tensor_to_check:27,tensorarrai:43,tensorarraydesc:89,tensordesc:[64,84],tensorflow:[29,40,41,42,44,51,54,57,81,89],term:[4,5,18,31,80,81,86],termin:126,terminolog:60,tessorarrai:89,test100:10,test10:10,test1:33,test:[4,9,10,11,18,25,26,27,30,56,66,72,78,82,102,109,110,111,112,117,118,121,123,128,132,134],test_:111,test_all_data_in_one_period:126,test_check_grad_ingore_i:111,test_check_grad_ingore_x:111,test_check_grad_norm:111,test_check_output:111,test_compar:91,test_comparespars:91,test_comparetwonet:91,test_comparetwoopt:91,test_config_pars:91,test_data_dir:123,test_fcgrad:110,test_gpuprofil:117,test_layergrad:110,test_list:96,test_mkldnn:62,test_mklpack:61,test_mul_op:[97,111],test_networkcompar:91,test_pass:[131,132,134],test_period:[131,132,134],test_predict:91,test_pydataprovid:91,test_pydataprovider2:91,test_pydataproviderwrapp:91,test_recurrent_machine_gener:91,test_recurrentgradientmachin:[91,104],test_swig_api:91,test_train:91,test_traineronepass:91,test_wait:[131,132],testa:26,testb:26,testbilinearfwdbwd:117,testconfig:110,testfcgrad:110,testfclay:110,testlayergrad:110,testmulop:111,testq:26,testresult:25,testutil:110,text1:49,text:[3,5,9,18,26,64,68,74,86,125],text_fil:9,tflop:117,tftp:140,tgz:[10,91,100],than:[2,3,4,5,18,28,31,39,40,45,51,52,53,54,77,79,81,89,96,121,125,140],the_step:51,theano:51,thehalf:18,thei:[4,14,16,18,23,26,28,30,31,36,38,40,41,44,45,49,51,54,55,59,60,69,70,74,77,79,85,89,90,117,125],them:[3,4,5,11,18,26,27,28,30,31,34,39,41,44,45,51,52,53,58,59,60,69,77,78,79,80,83,84,85,88,89,90,117,125],themselv:[28,30],theori:51,therefor:[28,60,72],therein:[4,18,29],theta:54,theta_d:54,theta_g:54,thi:[2,3,4,5,6,9,10,11,14,16,17,18,20,22,23,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,47,50,51,52,53,54,55,56,59,60,63,67,68,69,70,71,72,73,74,75,77,78,79,80,81,84,85,86,87,88,89,94,100,101,115,117,118,121,125,140],thin:58,thing:[42,54,79,87],think:[26,30],third:[4,31,56,115,121],third_parti:[4,62,91,119,136,137,138],those:[4,29,30,31,53,55,56,57,75],though:[89,140],thought:30,thread:[40,41,43,74,115,117],thread_count:43,thread_id:74,thread_id_:74,thread_local_rand_use_global_se:[131,132],thread_pool:43,threadblocks:22,threadid:134,threadloc:117,threadpool:40,three:[3,4,18,19,27,28,31,41,46,50,51,52,55,63,69,70,73,74,75,78,86,87],threshold:[2,3,4,18,31,35,45,132],thresholdedrelu:18,through:[4,19,28,30,31,35,37,46,60,70,72,113,118],throughout:47,throughput:117,thrust:79,thu:[4,18,38,46,56,60,86,125],tier:126,time:[4,5,7,9,18,25,26,27,30,31,35,38,41,42,44,45,51,53,58,60,61,67,68,69,71,74,77,78,79,80,84,85,86,89,90,104,115,116,117,121,126,127,132,140],timelin:[4,74,79],timeo:125,timeout:[31,35],timeout_sec:9,timer:117,timestamp:[4,32],timestep:[4,83],titan:60,titl:[10,127],tls:48,tmp:77,to_chw:11,to_no_sequ:[4,103],to_sequ:[4,103,104],to_tar:25,to_your_paddle_clone_path:113,todo:[3,9,10,29,31,35,38,69,85,86],toend:4,togeth:[4,5,9,25,28,89],token:[3,4,18,26,86,107],toler:[25,27],too:[10,27,40,41,45,63,88,89],took:140,tool:[74,113,115,125,127,136,138],toolchain:[115,136],toolkit:86,top:[3,18,25,68,69,86],top_k:[3,18,69],top_level_rnn:68,topic:63,topk_generated_scor:69,topk_id:69,topk_indic:18,topk_out:18,topk_scor:69,toplevel:108,topolog:[26,31,42,56,60,64,73],topoloi:56,topolopi:25,torch:[29,51],toronto:10,tostr:96,total:[18,25,31,44,46,71,74,78,115,117,126,140],total_pass:78,tottim:[115,116],touch:91,toward:51,trace:[29,52,54],track:[31,35,56,77,109],tractabl:4,tradit:[4,29,50,86],traffic:42,trail:9,train100:10,train10:10,train:[2,3,4,9,10,11,16,18,28,29,33,35,36,38,40,45,46,47,51,52,54,55,60,61,64,71,72,73,74,75,76,77,79,81,84,86,87,90,92,94,98,101,107,123,124,126,127,128,129,130,132,134],train_arg:127,train_args_dict:127,train_args_list:127,train_config_dir:[125,127],train_data:123,train_data_dir:123,train_i:101,train_id:125,train_list:[96,123],train_loop:51,train_read:[42,101],train_x:101,trainabl:[4,64,77],trainer:[26,32,33,34,35,37,42,44,52,61,62,72,73,79,101,110,123,127,132,134],trainer_config:[122,125,126,127],trainer_config_help:110,trainer_count:[94,102,123,125,126,127,131,132,134],trainer_cpu:39,trainer_cr:39,trainer_gpu:39,trainer_id:[123,125,127,132],trainer_intern:34,trainer_mem:39,trainer_packag:39,trainer_prog:42,trainerconfighelp:96,trainerid:[38,127],trainingjob:42,trainonebatch:34,tran:[63,110],trans_var:88,transact:[31,35],transcript:86,transfer:[60,74],transform:[4,5,11,18,79,86],transform_param_attr:5,transformed_st:5,translat:[4,5,60,94],translation_id:69,translation_scor:69,transpar:69,transpil:40,transpos:[4,11],transpose_i:18,transpose_x:18,transposedfullmatrixproject:4,travers:[28,55,60],travi:109,treat:[4,18,29,36,60],treatment:[36,50],tree:[4,29,40,47,51,77,118,127,138],trg_dic_siz:69,trg_embed:[69,107],trick:69,tricki:65,trigger:[38,73],trim:4,trivial:[69,89],true_block:[29,57,75],true_imag:78,true_label:78,true_neg:46,true_posit:46,true_read:78,truth:[3,4,18],tune:[2,86,115,116,131],tupl:[4,5,9,10,11,14,18,25,28,77,78],ture:4,turn:[4,18,77,78,106],tutori:[115,125,127,128,129,130],twice:[44,54],twine:82,two:[3,4,5,18,19,26,28,36,37,38,39,40,41,42,46,49,50,51,52,54,55,58,60,64,67,69,72,74,75,78,79,80,81,83,84,85,86,88,89,90,111,112,117,125],txt:[30,39,49,61,62,110,113,123,125,128],type:[3,4,5,7,9,10,14,18,26,28,29,31,34,35,38,39,42,48,49,50,52,58,59,63,64,65,66,68,69,75,76,77,78,79,80,81,84,85,86,87,88,90,101,102,104,107,110,111,112,121,125,126,134],type_nam:85,typedef:[36,50,65,66,67,87],typeerror:45,typeid:85,typenam:[53,85,87,111,112],typic:[3,42],ubuntu:[82,100,102,115],ubyt:78,uci:10,uci_h:102,ufldl:[4,18],uid:126,uint16_t:50,uint32:[48,64],uint32_t:74,uint64:[64,65],uint64_t:[65,121],unawar:36,unbound:60,unchang:18,unclear:38,uncreat:28,under:[30,35,44,71,88,94,101,125],underli:[18,69],understand:[16,51,77,86,115,140],understand_senti:107,undeterminist:117,uni:86,unidirect:[4,86],unifi:[47,56,84],uniform:[2,4,9,16,33,54,77,78],uniform_random:77,uniniti:28,uninstal:[91,97],uniqu:[26,29,31,38,39,63,67,77,83,125],unique_nam:77,unique_name_gener:77,unique_ptr:[80,83,87,110],unit:[4,5,18,19,30,72,74,81,87],unittest:[66,91,111],unix:41,unk:[84,90],unknown:[4,18],unless:[18,94,101],unlik:[4,18,69],unnecessari:[28,86],unordered_map:83,unpack:89,unrol:68,unseen:81,unseg:4,unsign:[36,50],unstack:89,unstack_from:89,unsupervis:54,unsupport:111,until:[31,36,43,44,51,60,83,125,127],untrack:109,unzip:136,updat:[2,4,6,18,20,28,31,35,36,42,48,50,54,68,69,70,71,72,73,83,86,89,109,115,116,134],update_equ:[25,101],update_hook:2,update_memori:29,update_op:70,updatecallback:110,updatestack:125,upgrad:[71,91,100],upload:[31,39,41,48,82],upon:31,upper:4,upstream:[91,109],uri:125,url:[9,10],usag:[3,4,5,11,18,25,50,57,60,73,77,123,124,127],use:[2,3,4,5,7,9,10,11,16,18,20,23,25,26,27,29,30,31,37,42,43,44,47,50,54,56,58,59,60,63,67,69,70,71,73,74,77,83,84,85,86,88,89,90,94,101,109,111,115,117,121,123,125,127],use_cpu:59,use_cudnn:[18,19,59],use_eigen_bla:136,use_eigen_for_bla:[136,137],use_etcd:25,use_global_stat:4,use_gpu:[94,101,102,123,126,127,131,132,134],use_mkl_pack:61,use_mkldnn:[4,59,62],use_nesterov:20,use_old_updat:[34,131,132],use_peephol:18,use_sparse_remote_updat:34,used:[3,4,5,6,7,9,10,11,16,18,22,25,26,27,29,30,31,37,38,42,45,47,50,51,54,56,60,68,69,72,73,74,77,78,79,81,83,85,87,88,89,115,117,125],useful:[4,5,27,50,60,77,83,88],usegpu:[110,121],user:[2,4,5,9,10,11,14,16,18,20,22,23,25,26,27,28,29,30,33,35,38,39,40,42,43,44,45,46,47,49,53,54,55,56,58,59,63,67,69,70,71,72,74,77,78,79,80,81,83,85,87,88,89,115,125,140],user_id:127,user_info:10,user_nam:33,usercert:33,userinfo:10,userkei:33,usernam:[33,109,136],uses:[4,31,38,40,41,42,50,60,67,68,69,73,74,87,88,125],using:[2,4,5,9,18,25,26,28,29,30,31,35,36,38,39,41,42,47,49,50,51,53,54,56,58,60,68,70,72,75,77,78,80,81,83,85,86,87,102,111,125],usr:[91,97,98,123,125,127,132],usual:[4,18,25,28,39,60,67,74,75,81,87,115,117,125],util:[42,61,62,71,117,122,127,140],uuid:[32,38],v7a:136,v8a:136,val:28,valgrind:116,valid:[4,11,18,78,79,83,125],valu:[2,3,4,7,9,10,11,16,18,19,22,25,27,28,29,31,40,41,45,46,56,57,60,62,64,68,69,70,72,73,75,79,83,84,85,89,90,94,110,121,125,127,134,136],value1:132,value2:132,value_:84,value_evalu:3,value_rang:9,valueerror:[18,19,56,94],values_:89,vanilla:107,var_nam:[28,88],var_recurs:45,vardesc:[29,55,75,77,79,84],vardescbuild:29,vari:125,variabl:[6,9,10,14,16,17,18,19,20,26,27,29,40,42,44,45,46,47,52,54,55,56,57,58,67,68,69,70,72,75,76,80,81,84,85,86,88,89,115,118,125,126],variablenamemap:111,varialbl:54,varianc:4,variant:[4,58,67,87,89],varibal:28,varibl:56,varienc:89,varient:89,variou:[29,41,50,60,81],varproto:85,vars_:[29,83],vartyp:[18,84,90],vartypeinfer:58,vec1:4,vec2:4,vec2seq:86,vec:96,veclib:137,vecter:18,vector:[4,5,9,10,18,26,29,34,36,56,57,63,68,69,74,77,79,80,84,86,89,119,121],veloc:20,vendor:30,verb:10,verbos:49,veri:[4,7,30,35,40,44,47,51,53,54,60,63,69,73,78,81,83,86,87,89,115],verifi:29,version:[4,5,28,30,39,42,45,49,52,54,56,57,64,69,82,86,94,101,109,115,117,123,125,131,132,137],versu:26,vertic:4,vgg:[5,19],via:[18,28,31,67,109,125,140],view:[4,64,67],vim:98,virtual:[45,58,59,80,87],virtualenv:108,visibl:[38,83],visit:[25,28],visual:[4,69],vlog:34,vocabulari:86,volum:[113,126,127],volumemount:[125,126,127],volumn:125,vutbr:10,w_f:18,wai:[3,5,18,26,28,36,38,41,47,51,59,60,69,72,77,78,81,89],wait:[31,36,43,127],wang:18,wangkuiyi:30,want:[4,26,39,40,41,46,54,59,67,72,74,76,78,81,83,87,88,89,115],warn:[25,49,91,96,127],warp:4,warp_ctc:86,warpctc:4,warranti:[94,101],wast:71,watch:31,wbia:125,web:115,weight:[3,4,5,6,16,18,19,23,61,64,81,110],weight_act:5,weightlist:110,weights_:110,weights_primitive_desc:63,weights_t:110,welcom:[30,86],well:[18,28,39,41,42,44,51,53,54,81,84,86,125],wer:86,were:[3,30,41,51],west:125,wget:[91,136],wgt:63,what:[2,4,30,51,54,69,77,85,88,109,115,140],wheel:100,when:[2,3,4,6,9,14,18,19,25,27,28,29,30,31,34,35,36,39,40,42,44,45,46,47,49,50,51,52,56,69,71,72,73,74,75,77,79,87,89,115,117,125,140],whenev:[18,77,86],where:[4,5,6,16,18,19,26,28,29,31,38,40,42,51,52,55,67,68,69,72,75,79,81,87,89,115,118],wherea:[18,29,35,53,57,87,90],whether:[3,4,11,17,18,25,27,28,29,47,74,78,84,89,121],which:[2,3,4,5,9,10,11,18,19,25,26,27,28,29,30,31,33,35,36,38,39,40,41,42,43,45,47,50,51,52,53,54,56,58,60,63,64,67,68,69,70,71,73,75,76,77,78,79,80,83,84,85,88,89,90,101,115,116,125,140],while_grad:60,while_loop:[69,89],while_op:28,whileloop:89,whileop:29,white:86,whl:[97,100],who:[28,53,55,71,77],whoever:36,whole:[3,9,28,54,57,60,65,66,68,71,76,85,86,119,125,140],whose:[4,9,18,27,28,31,38,45,68,79,80,85,89],why:[5,27,66,117],wide:[30,45,54,124,128],width:[3,4,9,11,18,34,65,78,96,110,111,121],wiki:[4,30],wikipedia:[4,10],window:[4,7,10,72,86,108],wirt:56,wise:[4,11,18,44,79,86],with_avx:[97,109,123,136,137],with_bia:85,with_c_api:[97,119,136,137,138],with_doc:97,with_doubl:[97,110,123],with_dso:97,with_golang:[97,119,136],with_gpu:[97,108,109,119,123,136,137],with_mkl:[61,62,97,119,136],with_mkldnn:62,with_mklml:62,with_profil:117,with_python:[97,119,123,136,137],with_rdma:[123,136,137],with_style_check:[97,109],with_swig_pi:[97,119,136,137],with_test:[97,109,111],with_tim:[117,123],within:[4,35,42,51,86],without:[3,4,20,28,31,36,41,74,77,78,79,86,94,101,115],wloop:89,wmt14:107,wmt_shrinked_data:10,won:104,word2vec:[39,94,123,124],word:[3,4,10,28,44,55,58,60,68,69,79,85,86,89,94,104,106],word_dict:[104,123,128],word_dim:[96,104],word_id:94,word_idx:10,word_vector_dim:[4,69,107],wordcount:86,words_freq_sort:10,work:[4,9,18,26,29,30,31,42,47,50,51,59,70,72,74,77,98,104,109,113,115,125,126,127,140],worker:[44,90,125],workercount:125,workflow:[79,125],workspac:[123,124],worth:118,would:[25,29,30,31,38,41,42,43,44,51,53,54,55,63,70,72,73,77,78,84,86,89,115,125,140],wouldn:[51,55],wrap:[51,53,54,71,140],wrapper:[5,30,41,53,71,72,80,89,117],write:[9,18,26,31,38,40,42,44,50,51,52,53,56,58,63,70,72,77,78,79,80,87,89,94,96,101,125],write_lock:32,write_to_arrai:60,writer:[26,77],written:[18,22,28,29,40,44,47,54,64,72,79,80,84,115],wrong:78,wrote:56,wsize:125,www:[10,18,94,101],x64:138,x86:[136,137],x86_64:[136,137],x_first_step:18,x_last_step:18,x_neg:27,x_num_col_dim:18,x_po:27,x_reshap:18,x_t:18,x_t_data:18,x_transpos:18,xarg:[3,91,98,110,128],xavier:16,xavieriniti:18,xcode:137,xcodebuild:137,xgbe0:132,xgbe1:132,xiangyu:16,xmap_read:9,xpu:51,xrang:[27,51,54,74,78,101,102,110],xx_layer:59,xxx:[26,89],xxxx:32,xxxxxxxxx:125,xxxxxxxxxx:125,xxxxxxxxxxxxx:125,xxxxxxxxxxxxxxxxxxx:125,y_dim:54,y_neg:27,y_num_col_dim:18,y_po:27,y_predict:[18,101,102,118],yaml:[30,124,125,126,127,128,140],yancey1989:39,yann:10,yapf:109,year:51,yeild:25,yep:[74,115,116],yet:[51,86,140],yield:[9,26,33,78,94,101,104],yoshua:16,you:[2,4,5,9,19,25,27,39,42,50,83,94,101,115,125,140],your:[4,9,25,26,30,34,39,49,79,91,125,136,137,138,140],your_access_key_id:125,your_param_nam:96,your_repo:127,your_secrete_access_kei:125,your_source_root:66,yuang:51,yuyang18:[9,10],yuyang:[115,116],z_dim:54,z_size:54,zero:[2,4,5,6,9,10,14,27,28,31,54,69,73,77,84,125,132],zhang:16,zip:[10,77,127,136],zlib:119,zone:125,zxf:91,zxvf:125},titles:["API","Activation","Parameter Attribute","Evaluators","Layers","Networks","Optimizer","Pooling","Data Reader Interface and DataSets","Data Reader Interface","Dataset","Image Interface","Fluid","DataFeeder","Evaluator","Executor","Initializer","IO","Layers","Nets","Optimizer","ParamAttr","Profiler","Regularizer","Model Configuration","Training and Inference","PaddlePaddle Design Doc","Auto Gradient Checker Design","Backward Building","Design Doc: Block and Scope","Required CMake Function","Design Doc: Distributed Training","\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\uff08Checkpointing\uff09","\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1","Alalysis of large model distributed training in Paddle","Design Doc: Master Server","Design Doc: The Client Library of Parameter Server","Design Doc: Remote Parameter Updater for Cluster Train","Design Doc: Save Model","Submit a Distributed Training Job","Design Doc: Concurrent Programming with Fluid","Design Doc: CSP in PaddlePaddle Fluid","Design Doc: Distributed Training Architecture","Design Doc: Execute the Program with Multi CPU","Design Doc: Parameter Server","Error Clip","Evaluator Design","Executor Design Doc","FileManager\u8bbe\u8ba1\u6587\u6863","PFSClient","Design Doc: float16","Design Doc: PaddlePaddle Fluid","PaddlePaddle Fluid: Towards a Compiled Programming Language","Design Doc: Functions, Operators, and Layers","Design for GAN","Design Doc: Computations as a Graph","Survey on Graph","The IfElse Operator","Design Doc: InferVarType","Problem","Memory Optimization","Intel\u00ae MKL Packed on PaddlePaddle: Design Doc","Intel\u00ae MKL-DNN on PaddlePaddle: Design Doc","Design Doc: Add MKLDNN Kernel in Fluid Operator","Design Doc: Model Format","Paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0","C-API \u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863","Design Doc: The Keys of Operator Kernel Type","RNNOp design","Design: Sequence Decoder Generating LoDTensors","Optimizer Design","Design Doc: NCCL support in Paddle Fluid","Averaging Parameter in PaddlePaddle","Design Doc: The C++ Class Parameters","Introduction","Design Doc: PaddlePaddle Programs","Prune","Design Doc: Python API","Python Data Reader Design Doc","Design Doc: Refactorization Overview","Design Doc: Gradient Operators Registration","Regularization in PaddlePaddle","PaddlePaddle\u53d1\u884c\u89c4\u8303","Design of Scope in Paddle","Design Doc: Selected Rows","Interaction between C++ and Python","DeepSpeech2 on PaddlePaddle: Design Doc","Design Doc: Supporting new Device/Library","Background","Design for TensorArray","Background","\u7f16\u8bd1\u5b89\u88c5\u4e0e\u5355\u5143\u6d4b\u8bd5","\u96c6\u7fa4\u8bad\u7ec3\u4e0e\u9884\u6d4b","FAQ","\u672c\u5730\u8bad\u7ec3\u4e0e\u9884\u6d4b","\u6a21\u578b\u914d\u7f6e","\u53c2\u6570\u8bbe\u7f6e","\u4ece\u6e90\u7801\u7f16\u8bd1","\u4f7f\u7528Docker\u5b89\u88c5\u8fd0\u884c","\u5b89\u88c5\u4e0e\u7f16\u8bd1","\u4f7f\u7528pip\u5b89\u88c5","\u57fa\u672c\u4f7f\u7528\u6982\u5ff5","\u65b0\u624b\u5165\u95e8","\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684Layer","\u5355\u53cc\u5c42RNN API\u5bf9\u6bd4\u4ecb\u7ecd","RNN\u76f8\u5173\u6a21\u578b","Recurrent Group\u6559\u7a0b","RNN\u914d\u7f6e","\u7528Docker\u7f16\u8bd1\u548c\u6d4b\u8bd5PaddlePaddle","\u5982\u4f55\u8d21\u732e\u4ee3\u7801","\u5b9e\u73b0\u65b0\u7684\u7f51\u7edc\u5c42","\u5982\u4f55\u5199\u65b0\u7684Operator","\u5728Paddle\u4e2d\u5982\u4f55\u4f7f\u7528Eigen","\u5982\u4f55\u8d21\u732e/\u4fee\u6539\u6587\u6863","\u8fdb\u9636\u6307\u5357","Profiling the Python Code","Python\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790","GPU\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18","PaddlePaddle Fluid Source Code Overview","\u7f16\u8bd1 PaddlePaddle \u9884\u6d4b\u5e93","PaddlePaddle C-API","\u8f93\u5165/\u8f93\u51fa\u6570\u636e\u7ec4\u7ec7","C-API \u4f7f\u7528\u6d41\u7a0b","\u5206\u5e03\u5f0f\u8bad\u7ec3","\u4f7f\u7528fabric\u542f\u52a8\u96c6\u7fa4\u8bad\u7ec3","Distributed PaddlePaddle Training on AWS with Kubernetes","Kubernetes\u5355\u673a\u8bad\u7ec3","Kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3","\u5728OpenMPI\u96c6\u7fa4\u4e2d\u63d0\u4ea4\u8bad\u7ec3\u4f5c\u4e1a","<no title>","<no title>","\u53c2\u6570\u6982\u8ff0","\u7ec6\u8282\u63cf\u8ff0","\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570","\u4f7f\u7528\u6848\u4f8b","PaddlePaddle \u6587\u6863","Android\u5e73\u53f0\u7f16\u8bd1\u6307\u5357","iOS\u5e73\u53f0\u7f16\u8bd1\u6307\u5357","Raspberry Pi\u5e73\u53f0\u7f16\u8bd1\u6307\u5357","MOBILE","Cluster bootstrapping tool survey"],titleterms:{"\u4e00\u4e9b\u7ec6\u8282\u7684\u8865\u5145":127,"\u4e0a\u4f20\u8bad\u7ec3\u6587\u4ef6":33,"\u4e0b\u8f7d\u6570\u636e":126,"\u4e0b\u8f7dmklml\u5e93\u5931\u8d25":91,"\u4e0d\u4f7f\u7528":65,"\u4e0d\u4f7f\u7528swig\u8fd9\u79cd\u4ee3\u7801\u751f\u6210\u5668":65,"\u4e0d\u540c\u7684":95,"\u4e0d\u5bfc\u51fapaddle\u5185\u90e8\u7684\u7ed3\u6784\u4f53":65,"\u4e0d\u5f15\u7528\u5176\u4ed6\u52a8\u6001\u5e93":65,"\u4e24\u79cd\u4f7f\u7528":95,"\u4e3a\u4ec0\u4e48\u8981":108,"\u4e3a\u4ec0\u4e48\u9700\u8981\u6027\u80fd\u5206\u6790":117,"\u4ec0\u4e48\u662f\u6027\u80fd\u5206\u6790":117,"\u4ec5\u4ec5\u4f7f\u7528void":65,"\u4ece\u5feb\u7167\u6062\u590d":32,"\u4ece\u6e90\u7801\u7f16\u8bd1":97,"\u4ee3\u7801\u8981\u6c42":109,"\u4f7f\u7528":[109,126],"\u4f7f\u7528\u5206\u5e03\u5f0f\u8ba1\u7b97\u5e73\u53f0\u6216\u5de5\u5177":123,"\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":65,"\u4f7f\u7528\u6848\u4f8b":134,"\u4f7f\u7528\u6a21\u578b\u521d\u59cb\u5316\u7f51\u7edc":134,"\u4f7f\u7528\u6d41\u7a0b":122,"\u4f7f\u7528\u73af\u5883\u53d8\u91cf":127,"\u4f7f\u7528\u8bf4\u660e":114,"\u4f7f\u7528\u8f6c\u6362\u5e93":33,"\u4f7f\u7528docker\u542f\u52a8paddlepaddl":98,"\u4f7f\u7528docker\u5b89\u88c5\u8fd0\u884c":98,"\u4f7f\u7528docker\u6267\u884cgpu\u8bad\u7ec3":98,"\u4f7f\u7528docker\u6784\u5efa":113,"\u4f7f\u7528fabric\u542f\u52a8\u96c6\u7fa4\u8bad\u7ec3":124,"\u4f7f\u7528paddlepaddl":113,"\u4f7f\u7528pip\u5b89\u88c5":100,"\u4fdd\u6301\u672c\u5730\u4ed3\u5e93\u6700\u65b0":109,"\u4fee\u6539\u542f\u52a8\u811a\u672c":126,"\u4fee\u6539\u6587\u6863":113,"\u514b\u9686":109,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":66,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5b9e\u73b0\u6587\u4ef6":66,"\u5185\u7f6e\u5b9a\u65f6\u5668":117,"\u5199\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5":110,"\u51c6\u5907\u4e00\u4e2alinux\u96c6\u7fa4":124,"\u51c6\u5907\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883":[136,137],"\u51c6\u5907\u6570\u636e\u96c6":123,"\u51c6\u5907\u8bad\u7ec3\u6570\u636e":127,"\u51c6\u5907\u8bad\u7ec3\u7a0b\u5e8f":123,"\u51c6\u5907\u9884\u6d4b\u6a21\u578b":122,"\u51c6\u5907openmpi\u96c6\u7fa4":128,"\u51cf\u5c11\u6570\u636e\u8f7d\u5165\u7684\u8017\u65f6":94,"\u51cf\u5c11dataprovider\u7f13\u51b2\u6c60\u5185\u5b58":94,"\u51fa\u73b0":95,"\u5206\u5757\u6587\u4ef6\u4f20\u8f93":48,"\u5206\u5e03\u5f0f\u8bad\u7ec3":123,"\u5206\u652f\u89c4\u8303":82,"\u521b\u5efa\u672c\u5730\u5206\u652f":109,"\u521b\u5efa\u795e\u7ecf\u7f51\u7edc\u8f93\u5165":122,"\u521b\u5efajob":127,"\u521b\u5efapaddlepaddl":126,"\u521d\u59cb\u5316paddlepaddle\u8fd0\u884c\u73af\u5883":122,"\u5220\u9664\u672c\u5730\u5206\u652f":109,"\u5220\u9664\u8fdc\u7a0b\u5206\u652f":109,"\u5229\u7528\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90":94,"\u5230\u8fdc\u7a0b\u4ed3\u5e93":109,"\u5236\u4f5c\u955c\u50cf":127,"\u5236\u4f5cdocker\u955c\u50cf":126,"\u524d\u5411\u8ba1\u7b97":122,"\u524d\u5411operator\u5355\u6d4b":111,"\u52a0\u8f7d\u6a21\u578b":122,"\u52a0\u8f7dpaddlepaddl":101,"\u52a0\u901f\u6267\u884c":32,"\u52a0\u901f\u8bad\u7ec3\u901f\u5ea6":94,"\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":65,"\u52a8\u6001\u6269\u5bb9":32,"\u5355\u5143\u6d4b\u8bd5":132,"\u5355\u53cc\u5c42rnn":104,"\u539f\u56e0":65,"\u539f\u56e0\u5217\u8868":65,"\u53c2\u6570\u5185\u5b58":94,"\u53c2\u6570\u670d\u52a1\u5668\u548c\u5206\u5e03\u5f0f\u901a\u4fe1":132,"\u53c2\u6570\u6982\u8ff0":131,"\u53c2\u6570\u8bbe\u7f6e":96,"\u53c2\u8003\u6587\u6863":48,"\u53c2\u8003\u8d44\u6599":117,"\u53cc\u5c42rnn":104,"\u53cc\u5c42rnn\u4ecb\u7ecd":106,"\u53cc\u5c42rnn\u7684\u4f7f\u7528":106,"\u53cd\u5411operator\u5355\u6d4b":111,"\u53d1\u5e03docker\u955c\u50cf":82,"\u53d1\u5e03wheel\u5305\u5230pypi":82,"\u53ef\u80fd\u78b0\u5230\u7684\u95ee\u9898":108,"\u5404\u4e2a\u7248\u672c\u6700\u65b0\u7684whl\u5305":100,"\u540d\u8bcd\u89e3\u91ca":48,"\u5411\u91cf":132,"\u542f\u52a8\u4efb\u52a1":127,"\u542f\u52a8\u53c2\u6570\u670d\u52a1\u5668":123,"\u542f\u52a8\u53c2\u6570\u8bf4\u660e":123,"\u542f\u52a8\u8ba1\u7b97\u8282\u70b9":123,"\u542f\u52a8\u96c6\u7fa4\u4f5c\u4e1a":[124,128],"\u5440":108,"\u548c":103,"\u5728\u4e0d\u540c\u8bbe\u5907\u4e0a\u6307\u5b9a\u5c42":134,"\u5728\u4e0d\u540c\u96c6\u7fa4\u4e2d\u8fd0\u884c":123,"\u5728docker\u4e2d\u6267\u884cpaddlepaddle\u8bad\u7ec3\u7a0b\u5e8f":98,"\u5728openmpi\u96c6\u7fa4\u4e2d\u63d0\u4ea4\u8bad\u7ec3\u4f5c\u4e1a":128,"\u5728paddle\u4e2d\u5982\u4f55\u4f7f\u7528eigen":112,"\u57fa\u4e8edocker\u5bb9\u5668\u7684\u7f16\u8bd1\u65b9\u5f0f":136,"\u57fa\u4e8elinux\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883\u7684\u7f16\u8bd1\u65b9\u5f0f":136,"\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":[101,121],"\u57fa\u672c\u539f\u7406":106,"\u57fa\u672c\u8981\u6c42":65,"\u5982\u4f55\u4e66\u5199\u6587\u6863":113,"\u5982\u4f55\u4f7f\u7528":95,"\u5982\u4f55\u5171\u4eab\u53c2\u6570":96,"\u5982\u4f55\u5199\u65b0\u7684oper":111,"\u5982\u4f55\u51cf\u5c11\u5185\u5b58\u5360\u7528":94,"\u5982\u4f55\u521d\u59cb\u5316\u53c2\u6570":96,"\u5982\u4f55\u52a0\u8f7d\u9884\u8bad\u7ec3\u53c2\u6570":96,"\u5982\u4f55\u52a0\u901f\u8bad\u7ec3\u901f\u5ea6":94,"\u5982\u4f55\u548c\u660e\u6587\u8fdb\u884c\u76f8\u4e92\u8f6c\u5316":96,"\u5982\u4f55\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u83b7\u5f97\u53c2\u6570\u7684\u6743\u91cd\u548c\u68af\u5ea6":94,"\u5982\u4f55\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u83b7\u5f97\u67d0\u4e00\u4e2alayer\u7684output":94,"\u5982\u4f55\u6307\u5b9agpu\u8bbe\u5907":94,"\u5982\u4f55\u66f4\u65b0www":113,"\u5982\u4f55\u6784\u5efa\u6587\u6863":113,"\u5982\u4f55\u8bbe\u7f6e\u5b66\u4e60\u7387\u9000\u706b":96,"\u5982\u4f55\u8c03\u7528":94,"\u5982\u4f55\u8d21\u732e":113,"\u5982\u4f55\u8d21\u732e\u4ee3\u7801":109,"\u5982\u4f55\u8fdb\u884c\u6027\u80fd\u5206\u6790":117,"\u5982\u4f55\u9009\u62e9sgd\u7b97\u6cd5\u7684\u5b66\u4e60\u7387":96,"\u5b50\u5e8f\u5217\u95f4\u65e0memori":104,"\u5b50\u5e8f\u5217\u95f4\u6709memori":104,"\u5b58\u50a8\u7684\u53c2\u6570\u683c\u5f0f\u662f\u4ec0\u4e48":96,"\u5b89\u88c5":100,"\u5b89\u88c5\u4e0e\u7f16\u8bd1":99,"\u5b89\u88c5\u4ea4\u53c9\u7f16\u8bd1\u5668":138,"\u5b89\u88c5\u6d41\u7a0b":99,"\u5b9a\u4e49operator\u7c7b":111,"\u5b9a\u4e49opkernel\u7c7b":111,"\u5b9a\u4e49protomaker\u7c7b":111,"\u5b9e\u73b0":65,"\u5b9e\u73b0\u5355\u5143\u6d4b\u8bd5":111,"\u5b9e\u73b0\u65b0\u7684\u7f51\u7edc\u5c42":110,"\u5b9e\u73b0\u65b9\u5f0f":66,"\u5b9e\u73b0\u8ba1\u7b97":112,"\u5b9e\u73b0c":[110,111],"\u5b9e\u73b0python\u5c01\u88c5":110,"\u5bfb\u627e\u6027\u80fd\u74f6\u9888":116,"\u5bfc\u51fac":65,"\u5c06\u547d\u4ee4\u53c2\u6570\u4f20\u7ed9\u7f51\u7edc\u914d\u7f6e":134,"\u5de5\u5177":117,"\u5e38\u89c1\u95ee\u9898\u548c\u89e3\u51b3\u65b9\u6cd5":100,"\u5e38\u89c1\u95ee\u9898\u89e3\u7b54":99,"\u5e76\u5b8c\u6210":109,"\u5efa\u7acb":109,"\u5f00\u53d1\u6807\u51c6":114,"\u5f00\u59cb\u5f00\u53d1":109,"\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":132,"\u5feb\u7167\u4fdd\u5b58\u7684\u8bbe\u8ba1\u5982\u4e0b":32,"\u5feb\u901f\u5b89\u88c5":102,"\u5feb\u901f\u5f00\u59cb":102,"\u6027\u80fd\u4f18\u5316":114,"\u6027\u80fd\u5206\u6790\u5c0f\u6280\u5de7":117,"\u6027\u80fd\u5206\u6790\u5de5\u5177\u4ecb\u7ecd":117,"\u6027\u80fd\u8c03\u4f18":132,"\u603b\u4f53\u6d41\u7a0b":108,"\u603b\u7ed3":121,"\u6216\u8005\u662f":91,"\u6267\u884c\u5355\u5143\u6d4b\u8bd5":97,"\u627e\u5230\u7684pythonlibs\u548cpythoninterp\u7248\u672c\u4e0d\u4e00\u81f4":91,"\u62a5importerror":91,"\u6307\u9488\u4f5c\u4e3a\u7c7b\u578b\u7684\u53e5\u67c4":65,"\u63a5\u53e3\u8f93\u51fa\u591a\u4e2alayer\u7684\u9884\u6d4b\u7ed3\u679c":94,"\u63a8\u5bfc\u65b9\u7a0b":110,"\u63a8\u6d4b\u6267\u884c":32,"\u63d0\u4ea4":109,"\u63d0\u4ea4\u4ee3\u7801\u7684\u4e00\u4e9b\u7ea6\u5b9a":109,"\u63d0\u4ea4\u955c\u50cf":126,"\u642d\u5efa\u795e\u7ecf\u7f51\u7edc":101,"\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684layer":103,"\u652f\u6301\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u6570\u636e\u9884\u5904\u7406job":33,"\u6570\u636e\u652f\u6301":132,"\u6574\u4f53\u65b9\u6848":127,"\u6587\u4ef6\u4f20\u8f93\u4f18\u5316":48,"\u6587\u4ef6\u8bbf\u95ee\u65b9\u5f0f":33,"\u6587\u4ef6\u8bbf\u95ee\u7684\u6743\u9650":33,"\u6587\u4ef6\u9884\u5904\u7406":33,"\u6587\u6863":135,"\u65b0\u624b\u5165\u95e8":102,"\u65e5\u5fd7\u4e2d\u4fdd\u5b58\u5747\u4e3a\u7f51\u7edc\u901a\u4fe1\u7c7b\u9519\u8bef":92,"\u65f6\u95f4\u5e8f\u5217":104,"\u65f6\u95f4\u6b65":104,"\u66b4\u9732\u63a5\u53e3\u539f\u5219":66,"\u672c\u5730\u6d4b\u8bd5":134,"\u672c\u5730\u8bad\u7ec3":134,"\u672c\u5730\u8bad\u7ec3\u4e0e\u9884\u6d4b":94,"\u672f\u8bed":32,"\u6784\u5efa\u548c\u6d4b\u8bd5":109,"\u6784\u5efapaddlepaddle\u7684android\u5f00\u53d1\u955c\u50cf":136,"\u67b6\u6784\u56fe":48,"\u67e5\u770b\u6027\u80fd\u5206\u6790\u6587\u4ef6":116,"\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c":126,"\u67e5\u770b\u8f93\u51fa":127,"\u6846\u67b6\u751f\u6210":48,"\u6848\u4f8b\u4e00":134,"\u6848\u4f8b\u4e8c":134,"\u68c0\u67e5\u6a21\u578b\u8f93\u51fa":124,"\u68c0\u67e5\u96c6\u7fa4\u8bad\u7ec3\u7ed3\u679c":124,"\u6982\u5ff5\u7b80\u4ecb":111,"\u6982\u5ff5\u89e3\u91ca":33,"\u6982\u8ff0":[103,106,119,123],"\u6a21\u5757":48,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9":32,"\u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863":66,"\u6a21\u578b\u914d\u7f6e":[95,104,114],"\u6a21\u578b\u914d\u7f6e\u7684\u6a21\u578b\u914d\u7f6e":104,"\u6ce8\u518coper":111,"\u6ce8\u610f\u4e8b\u9879":[111,122],"\u6d41\u7a0b\u4ecb\u7ecd":33,"\u6d4b\u8bd5":132,"\u6df7\u5408\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790":116,"\u6e05\u7406":122,"\u73af\u5883\u51c6\u5907":123,"\u751f\u6210\u5e8f\u5217":107,"\u751f\u6210\u6027\u80fd\u5206\u6790\u6587\u4ef6":116,"\u751f\u6210\u6d41\u7a0b\u7684\u4f7f\u7528\u65b9\u6cd5":106,"\u751f\u6210sparse\u6587\u4ef6":48,"\u7528\u6237\u4f7f\u7528\u6d41\u7a0b":48,"\u7528docker\u7f16\u8bd1\u548c\u6d4b\u8bd5paddlepaddl":108,"\u7684\u533a\u522b":95,"\u7684\u53c2\u6570":95,"\u7684\u65b9\u6cd5\u6709\u4f55\u533a\u522b":95,"\u76ee\u5f55\u7ed3\u6784":66,"\u76ee\u6807":48,"\u76f4\u63a5\u6784\u5efa":113,"\u76f8\u5173\u6982\u5ff5":106,"\u77e9\u9635":132,"\u793a\u4f8b1":104,"\u793a\u4f8b2":104,"\u793a\u4f8b3":104,"\u793a\u4f8b4":104,"\u793a\u4f8b\u7a0b\u5e8f":33,"\u795e\u7ecf\u5143\u6fc0\u6d3b\u5185\u5b58":94,"\u7a00\u758f\u8bad\u7ec3":134,"\u7aef\u6570\u636e\u7c7b\u578b\u8bf4\u660e":121,"\u7b26\u53f7":65,"\u7b80\u5355\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":107,"\u7c7b":[65,110,111],"\u7ebf\u6027\u56de\u5f52\u5b8c\u6574\u793a\u4f8b":101,"\u7ec4\u7ec7\u5e8f\u5217\u4fe1\u606f":121,"\u7ec4\u7ec7\u8f93\u5165\u6570\u636e":[121,122],"\u7ec6\u8282\u63cf\u8ff0":132,"\u7ec8\u6b62\u96c6\u7fa4\u4f5c\u4e1a":124,"\u7ed1\u5b9apython":111,"\u7f16\u5199\u9884\u6d4b\u4ee3\u7801":122,"\u7f16\u5199yaml\u6587\u4ef6":126,"\u7f16\u8bd1":[111,119],"\u7f16\u8bd1\u4f9d\u8d56":97,"\u7f16\u8bd1\u548c\u5b89\u88c5":[136,137,138],"\u7f16\u8bd1\u548c\u6267\u884c":111,"\u7f16\u8bd1\u5b89\u88c5\u4e0e\u5355\u5143\u6d4b\u8bd5":91,"\u7f16\u8bd1\u5b89\u88c5\u540e\u6267\u884c":91,"\u7f16\u8bd1\u65b9\u6cd5":97,"\u7f16\u8bd1\u6d41\u7a0b":99,"\u7f16\u8bd1\u9009\u9879":[66,97],"\u7f16\u8bd1\u9009\u9879\u7684\u8bbe\u7f6e":97,"\u7f16\u8bd1\u9009\u9879\u8bf4\u660e":97,"\u7f16\u8bd1paddlepaddl":136,"\u7f29\u5bb9":32,"\u800c\u662f\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":65,"\u80cc\u666f":65,"\u81ea\u7136\u8bed\u8a00\u5904\u7406":132,"\u83b7\u53d6paddlepaddle\u7684docker\u955c\u50cf":98,"\u8986\u76d6\u4e0d\u4e00\u81f4\u7684\u90e8\u5206":48,"\u8bad\u7ec3":132,"\u8bad\u7ec3\u56e0\u6b64\u9000\u51fa\u600e\u4e48\u529e":94,"\u8bad\u7ec3\u6570\u636e\u5b58\u50a8":33,"\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1":33,"\u8bad\u7ec3\u6a21\u578b":101,"\u8bad\u7ec3\u6d41\u7a0b\u7684\u4f7f\u7528\u65b9\u6cd5":106,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u51fa\u73b0":94,"\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570":133,"\u8bcd\u6c47\u8868":104,"\u8be6\u7ec6\u6559\u7a0b":117,"\u8bfb\u53d6\u53cc\u5c42\u5e8f\u5217\u6570\u636e":104,"\u8f6c\u6362\u5e93":33,"\u8f93\u5165":[106,121],"\u8f93\u5165\u4e0d\u7b49\u957f":104,"\u8f93\u5165\u793a\u4f8b":106,"\u8f93\u51fa":106,"\u8f93\u51fa\u6570\u636e":121,"\u8f93\u51fa\u6570\u636e\u7c7b\u578b":121,"\u8f93\u51fa\u6570\u636e\u7ec4\u7ec7":121,"\u8fd0\u884c\u5bb9\u5668":126,"\u8fd0\u884c\u73af\u5883\u4f9d\u8d56":100,"\u8fd0\u884cdocker":91,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u4f7f\u7528c99\u6807\u51c6\u7684\u5934\u6587\u4ef6\u5bfc\u51fa\u4e00\u4e9b\u51fd\u6570":65,"\u8fdb\u884c\u8bad\u7ec3":[33,126],"\u8fdb\u9636\u6307\u5357":114,"\u901a\u7528":132,"\u9047\u5230":91,"\u914d\u7f6e\u4ea4\u53c9\u7f16\u8bd1\u53c2\u6570":[136,137,138],"\u914d\u7f6e\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":107,"\u914d\u7f6e\u7f51\u7edc":101,"\u94a9\u5b50":109,"\u94fe\u63a5\u8bf4\u660e":119,"\u9519\u8bef\u600e\u4e48\u529e":95,"\u968f\u673a\u6570":132,"\u96c6\u7fa4\u591a\u8282\u70b9\u8bad\u7ec3":92,"\u96c6\u7fa4\u8bad\u7ec3":134,"\u96c6\u7fa4\u8bad\u7ec3\u4e0e\u9884\u6d4b":92,"\u9700\u8981\u7684\u8f6f\u786c\u4ef6":108,"\u975e\u6cd5\u6307\u4ee4":91,"\u9884\u6d4b\u5e93":119,"abstract":[42,43,44,71,140],"android\u5e73\u53f0\u7f16\u8bd1\u6307\u5357":136,"api\u5bf9\u6bd4\u4ecb\u7ecd":104,"api\u5e93":136,"beam_search\u7684\u751f\u6210":104,"book\u4e2d\u6240\u6709\u7ae0\u8282":82,"book\u6559\u7a0b":98,"case":28,"class":[54,73,77],"cmake\u6e90\u7801\u7f16\u8bd1":91,"filemanager\u8bbe\u8ba1\u6587\u6863":48,"final":59,"float":94,"function":[30,53,54,77],"gpu\u548ccpu\u6df7\u5408\u4f7f\u7528":134,"gpu\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18":117,"gpu\u955c\u50cf\u51fa\u73b0":91,"group\u6559\u7a0b":106,"import":91,"ios\u5e73\u53f0\u7f16\u8bd1\u6307\u5357":137,"kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3":127,"kubernetes\u5355\u673a\u8bad\u7ec3":126,"new":87,"org\u5de5\u5177":113,"paddle\u52a8\u6001\u5e93\u4e2d":65,"paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0":65,"paddle\u7248\u672c\u53f7\u4e3a0":91,"paddlepaddle\u53d1\u884c\u89c4\u8303":82,"paddlepaddle\u56de\u5f52\u6d4b\u8bd5\u5217\u8868":82,"paddlepaddle\u662f\u5426\u652f\u6301\u7ef4\u6570\u53ef\u53d8\u7684\u6570\u636e\u8f93\u5165":95,"paddlepaddle\u73af\u5883\u4f9d\u8d56":100,"paddlepaddle\u7684softmax\u80fd\u5426\u6307\u5b9a\u8ba1\u7b97\u7684\u7ef4\u5ea6":95,"paddlepaddle\u7f16\u8bd1\u4f9d\u8d56":97,"pi\u5e73\u53f0\u7f16\u8bd1\u6307\u5357":138,"pod\u95f4\u901a\u4fe1":127,"python\u4e0ec":116,"python\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790":116,"python\u76f8\u5173\u7684\u5355\u5143\u6d4b\u8bd5\u90fd\u8fc7\u4e0d\u4e86":91,"return":[77,78],"rnn\u76f8\u5173\u6a21\u578b":105,"rnn\u914d\u7f6e":107,"switch":[63,87],"tensor\u4f7f\u7528\u6837\u4f8b":112,"tensor\u5230eigentensor\u7684\u8f6c\u6362":112,"tensor\u6a21\u5757":112,AWS:125,Abs:1,DNS:125,EFS:125,For:30,KMS:125,The:[29,36,40,47,51,54,55,57,58,67,70,73,79,80],Use:[29,75],Using:[30,36],With:39,about:54,abs:18,absolut:69,access:125,account:125,accuraci:18,action:[61,62],activ:[1,4,62],actor:41,adadelta:6,adagrad:6,adagradoptim:20,adam:6,adamax:6,adamaxoptim:20,adamoptim:20,add:[60,63,125],address:125,addto:4,advanc:87,aggreg:4,aggregatelevel:4,alalysi:34,algorithm:[27,31,42,68,76],all:[83,89],analog:40,analysi:[42,60],anneal:96,api:[0,42,61,62,66,70,72,77,81,85,120,122],appendix:140,arbitrari:51,architectur:[42,74],argument:[49,78],arrai:27,array_length:18,array_read:18,array_to_lod_tensor:18,array_writ:18,asset:125,assign:18,associ:[83,125],assumpt:140,async:132,attent:107,attribut:[2,60,81],auc:3,auto:27,averag:72,avg:7,aws:125,backgraound:27,background:[44,61,87,88,89,90],backward:[28,51,55,79],base:[39,69],basepool:7,basic:[60,87,140],batch:78,batch_norm:[4,18],batch_siz:78,beam:[69,86],beam_search:4,beam_search_decod:18,becaus:96,benchmark:[61,62],benefit:[44,79],between:[26,41,77,79,85,87],bidirectional_gru:5,bidirectional_lstm:5,big:96,bilinear_interp:4,binari:29,bla:97,block:[29,52,54,55,75,77,79],block_expand:4,blockdesc:75,bootstrap:140,bottleneck:115,brelu:[1,18],bring:140,bucket:125,build:[28,54,79],can:83,capi:66,capi_priv:66,cast:18,ceil:18,challeng:[28,44,76],chang:69,channel:41,check:[4,27],checker:27,checkpoint:[31,32,38],choic:59,choos:[30,125],chunk:3,cifar:10,classif:3,classification_error:3,classification_error_print:3,client:36,clip:[4,45],clone:109,close:27,cloudform:125,cluster:[37,125,140],cmake:[30,61,62],code:[39,52,77,115,118],column_sum:3,commit:109,compar:140,comparis:77,compat:51,compil:[29,50,52,75,79,118],complet:51,compos:78,comput:[29,55,63,79,81],con:140,concat:[4,18],concept:[77,79,125],concern:62,conclus:[38,56,140],concurr:[40,41],condit:54,configur:[24,125],conll05:10,connect:4,constantiniti:16,construct:55,content:[61,62,66,86,91,92,94,95,96,103,117,125],context_project:4,control:[60,79],contruct:60,conv2d:18,conv2d_transpos:18,conv:4,conv_oper:4,conv_project:4,conv_shift:4,convert:38,convolut:86,core:[27,77,125],corner:28,cos_sim:[4,18],cost:4,cpu:43,creat:[28,41,78,79,83,125],create_arrai:18,creation:[35,72,81],creator:78,credenti:125,crf:4,crf_decod:4,cross_channel_norm:4,cross_entropi:18,cross_entropy_cost:4,cross_entropy_with_selfnorm_cost:4,csp:41,ctc:[4,86],ctc_error:3,ctc_greedy_decod:18,cuda:[50,91,97],cudnn:97,cudnnavg:7,cudnnmax:7,current:[50,80],custom:78,data:[4,8,9,18,31,42,78,88,125],datafeed:[9,13],dataflow:60,dataprovid:132,dataset:[8,10,31,35],datatyp:[9,67],decayedadagrad:6,decayedadagradoptim:20,decod:69,decor:78,deep:[29,51],deepspeech2:86,defin:125,definit:90,delet:125,demo:[54,125],dens:38,depend:[54,86],deploi:39,describ:[51,70],descript:[49,79],design:[26,27,29,31,35,36,37,38,40,41,42,43,44,46,47,50,51,53,54,55,58,61,62,63,64,67,68,69,70,71,73,75,77,78,79,80,83,84,86,87,89],destroi:[83,125],detail:[34,86],detect:[3,4],detection_map:3,detection_output:4,develop:79,devic:87,devicecontext:87,dictionari:78,differ:[79,87],directori:125,discrimin:54,discuss:[44,54],dispatch:[31,35],distribut:[26,31,34,39,42,44,125],dnn:62,doc:[26,29,31,35,36,37,38,40,41,42,43,44,47,50,51,53,55,58,61,62,63,64,67,71,73,75,77,78,79,80,84,86,87],docker:[39,108],doe:78,dot_prod:4,dot_product_attent:5,dotmul_oper:4,dotmul_project:4,down:125,download:125,driver:91,drop_out:95,dropout:[4,18],duplic:95,dure:[69,78],dylib:66,dynam:[31,89],dynamic_gru:18,dynamic_lstm:18,dynamic_lstmp:18,dynet:56,ec2:125,edit_dist:18,eigen:112,elast:125,elect:38,elementwise_add:18,elementwise_div:18,elementwise_mul:18,elementwise_sub:18,els:29,elu:18,embed:[4,18],engin:54,enough:27,entri:78,environ:39,eos:4,error:45,evalu:[3,14,46],event:[25,26,74],evolut:51,examin:115,exampl:[26,30,40,41,57,66],except:94,execut:[29,43,51,75,79],executor:[15,47],exp:[1,18],expand:[4,103],expandlevel:4,explain:27,extern:125,factor:4,factorization_machin:4,faq:93,fault:31,file:[29,115,125],fill_const:18,fill_constant_batch_size_lik:18,find:125,first_seq:[4,103],float16:50,floor:18,flow:60,fluid:[12,40,41,51,52,63,71,118],fork:109,format:[29,31,64],forward:55,frame:29,framework:[27,112],from:[26,38,85],full_matrix_project:4,fulli:4,functor:87,futur:[51,86],gan:54,gate:107,gated_unit:4,gener:[52,54,69,115,140],get_output:4,give:78,global:[75,77],glu:19,gpu:132,grad_op:28,gradient:[27,28,36,62,80],gradient_print:3,graident:27,graph:[55,56,60,79,81],group:[4,125],gru:[5,132],gru_group:5,gru_step:4,gru_unit:[5,18],grumemori:4,handler:[26,65],happen:38,hard_shrink:18,hard_sigmoid:18,hardwar:50,helper:77,hierarchi:29,high:[70,72,81,85],how:[27,34,72,78,79,87],hsigmoid:4,huber_classification_cost:4,huber_regression_cost:4,iam:125,ident:1,identifi:115,identity_project:4,ifels:57,ifelseop:29,illeg:91,im2sequ:18,imag:[4,5,11,39],imdb:10,img_cmrnorm:4,img_conv:4,img_conv_bn_pool:5,img_conv_group:[5,19],img_pool:4,imikolov:10,implement:[27,28,30,34,43,45,46,50,64,68,71,72,77,78,79,80,81],increment:18,infer:[25,94],infershap:[75,84],infervartyp:58,ingredi:26,ingress:48,initi:[16,36,54,125],insid:83,inspect:125,instal:[125,140],instanc:125,instead:78,instruct:91,insuffici:91,integr:[87,125],intel:[61,62],interact:85,interfac:[8,9,11,27,31,36,37,47,70,78,83],intermedi:79,interpol:4,introduc:[69,89],introduct:[74,81],is_paramet:17,isn:78,issu:[50,109],job:[31,39,125,126],join:4,kei:[61,67,125],kernel:[63,67,79],kmax_sequence_scor:4,kube:125,kubectl:125,kubernet:[39,125,126],l1decayregular:23,l2_distanc:4,l2_normal:18,l2decayregular:23,lambda_cost:4,languag:[29,52],larg:34,last_seq:[4,103],layer:[4,18,26,53,61,62,77,95],layout:67,leaky_relu:18,learn:[29,51,96],learnabl:4,less_than:18,leval:85,level:[70,72,81,85],libpaddle_capi_shar:66,libpaddle_capi_whol:66,librari:[36,50,67,79,87],limit:42,linear:1,linear_chain_crf:18,linear_comb:4,list:[32,78],live:60,load:41,local:[42,83,125],lod:69,lod_rank_t:18,lod_tensor_to_arrai:18,lodtensor:[68,69,89],lodtensordesc:90,log:[1,18],logic:35,logsigmoid:18,look:115,low:[72,81,85],lstm:[5,132],lstm_step:4,lstm_unit:18,lstmemori:4,lstmemory_group:5,lstmemory_unit:5,machin:[4,69],macro:79,main:54,make:60,manag:30,map:[78,79],master:[31,35,39,40],math:[4,87],mathemat:27,matmul:18,matrix:62,max:7,max_sequence_len:18,maxframe_print:3,maxid:4,maxid_print:3,maxout:4,mean:18,member:54,memori:[4,60,68,87,95,104,106],merge_lod_tensor:18,messag:[85,96],method:69,might:54,migrat:79,mileston:79,mini:78,minibatch:[9,41],misc:4,mix:4,mkl:[61,62],mkldnn:63,mkldnn_helper:63,mkldnndevicecontext:63,mnist:10,mobil:139,model:[24,26,34,36,38,41,51,54,64,69,107],modul:[79,87,91],momentum:6,momentumoptim:20,more:54,motiv:[28,41,47,64,71,76],movielen:10,msrainiti:16,mul:18,multi:[43,52],multi_binary_label_cross_entropy_cost:4,multibox_loss:4,multipl:78,multiplex:[4,18],mxnet:56,name:[83,91,95,125],nativ:52,nccl:71,nce:4,necess:77,necessari:79,need:78,nest:68,net:19,network:[5,79,107],neural:107,nlp:[5,132],norm:[4,81],normaliniti:16,note:27,numer:27,numpi:27,nvprof:117,nvvp:117,object:31,offset:69,ones:18,onli:[78,83],op_mak:79,oper:[53,57,60,63,67,72,75,77,79,80,84,89],opinfomap:79,opkernel:[79,87],opproto:85,ops:81,optim:[6,20,31,36,55,60,70,77],option:49,opwithkernel:79,order:49,org:113,origin:79,orthogon:83,other:62,out_prod:4,output:[4,125],overview:[38,45,47,61,62,79,83,86,118],pack:[61,69],packag:30,pad:4,paddl:[34,71,78,83,91,95,112],paddlejob:39,paddlepaddl:[26,29,41,51,52,61,62,72,75,81,82,86,91,113,118,119,120,125,135],pair:125,paradigm:51,parallel_nn:134,paramattr:21,paramet:[2,4,25,26,31,36,37,39,41,44,62,72,73,77,81,125],parameteraverageoptim:72,parent:83,part:55,partit:36,path:[38,49],penalti:81,perform:[72,115,132],persist:35,pfsclient:[48,49],pfsserver:48,place:[60,67,87],placement:42,platform:91,pnpair:3,point:[61,94,125],polici:60,pool2d:18,pool:[4,7,103],pose:[58,80],potenti:59,pow:18,power:4,pre:109,precision_recal:3,prefetch:78,prelu:4,prepar:125,principl:63,print:3,privat:125,pro:140,problem:[46,58,59,60,67,70,80,88],procedur:140,process:[31,36,39,70,79],profil:[22,115],program:[29,40,41,43,51,52,75,77],programdesc:[52,75],project:30,propos:[58,80,81],protobuf:84,protocol:96,provid:78,prune:76,pserver:38,pull:109,push:109,python:[27,39,42,61,62,68,70,72,77,78,81,85,90,115,121],qualiti:79,queue:[31,35],rank:3,rank_cost:4,raspberri:138,rate:96,reader:[8,9,26,78],realiz:79,reciproc:18,recoveri:31,recurr:[4,5,95,106,107],recurrent_group:4,recv:41,reduce_max:18,reduce_mean:18,reduce_min:18,reduce_sum:18,ref:27,refactor:79,refer:[42,44,60,61,62,86],region:125,regist:[58,79,85],registr:[79,80],registri:79,regular:[23,36,81],reject:96,rel:69,relat:[79,89],relu6:18,relu:[1,18],remot:37,remoteexecutor:42,render:125,repeat:4,represent:[29,79],request:109,requir:[30,54],reshap:[4,18],resiz:4,retri:35,reus:77,rmsprop:6,rnn:[68,89,104,132],rnnop:[29,68,79],roi_pool:4,rotat:4,round:18,route53:125,row:[84,86],row_conv:[4,18],row_l2_norm:4,rpc:41,run:[47,118],runtim:39,sampl:4,sampling_id:4,save:38,scale:[4,18,31],scale_shift:4,scaled_dot_product_attent:19,scaling_project:4,scope:[29,68,79,83],search:[69,86],secur:125,select:[36,41,84],selectedrow:84,selective_fc:4,send:41,sentiment:10,separ:79,seq_concat:4,seq_reshap:4,seq_slic:4,seqtext_print:3,sequenc:[69,107],sequence_conv:18,sequence_conv_pool:[5,19],sequence_expand:18,sequence_first_step:18,sequence_last_step:18,sequence_pool:18,sequence_reshap:18,sequence_softmax:18,sequencesoftmax:1,server:[31,35,36,39,41,44,125],servic:125,setup:125,sextant:140,sgd:132,sgdoptim:20,shape:69,share:[26,28,60,83],should:83,shrink_memori:18,shuffl:78,sigmoid:[1,18],sigmoid_cross_entropy_with_logit:18,simpl:69,simple_attent:5,simple_gru2:5,simple_gru:5,simple_img_conv_pool:[5,19],simple_lstm:5,singl:78,slice:4,slice_project:4,slope_intercept:4,small_vgg:5,smooth_l1_cost:4,soft_relu:18,softmax:1,softplu:18,softrelu:1,softshrink:18,softsign:[1,18],solut:[58,59,60,61,67,76,80,88],sourc:118,spars:[36,37,38,84],split:18,split_lod_tensor:18,spp:4,sqrt:18,squar:[1,18],square_error_cost:[4,18],squarerootn:7,stack:29,stanh:1,start:[26,125],statement:46,step2:122,step:[68,122],storag:81,store:31,strategi:60,sub_nested_seq:4,sub_seq:4,subcommond:49,submit:39,suffici:78,suitabl:30,sulut:63,sum:[3,7,18],sum_cost:4,sum_to_one_norm:4,summar:[26,40],summari:64,support:[50,71,87,89,91],survei:[50,56,81,140],swish:18,synopsi:49,syntax:41,system:[51,125],tabl:[66,86],table_project:4,tanh:[1,18],tanh_shrink:18,task:[31,35,86],tear:125,tecton:140,templat:125,tensor:[4,79,87,112],tensorarrai:[69,89],tensordesc:90,tensorflow:56,test:[61,62,63],text_conv_pool:5,theori:27,thi:[83,91],think:54,three:89,thresholded_relu:18,time:118,timelin:38,todo:[32,33,43],togeth:83,toler:31,too:96,tool:[30,140],topic:87,topk:18,toward:52,train:[25,26,31,34,37,39,42,70,78,125],trainer:[25,31,36,38,39,41,125],tran:4,trans_full_matrix_project:4,transform:88,translat:69,transpil:[42,43,44,52,60,71],transpos:18,tune:132,ture:51,two:27,type:[41,67],uci_h:10,uniform:89,uniforminiti:16,unit:[61,62,63],unpack:69,updat:[26,37,38,125],usag:[28,45,68,69,78],use:[34,78],user:31,util:3,valu:77,value_print:3,vardesc:90,variabl:[28,60,77,79,83,90],verifi:125,version:[40,50,91],vgg_16_network:5,volum:125,vpc:125,warp_ctc:4,weightdecayregular:23,what:[34,38],wheel:91,when:[38,83],whl:91,why:[50,51,72,78,79,89],wmt14:10,work:86,worker:40,xavieriniti:16,zero:18}}) \ No newline at end of file +Search.setIndex({docnames:["api/index_cn","api/v2/config/activation","api/v2/config/attr","api/v2/config/evaluators","api/v2/config/layer","api/v2/config/networks","api/v2/config/optimizer","api/v2/config/pooling","api/v2/data","api/v2/data/data_reader","api/v2/data/dataset","api/v2/data/image","api/v2/fluid","api/v2/fluid/data_feeder","api/v2/fluid/evaluator","api/v2/fluid/executor","api/v2/fluid/initializer","api/v2/fluid/io","api/v2/fluid/layers","api/v2/fluid/nets","api/v2/fluid/optimizer","api/v2/fluid/param_attr","api/v2/fluid/profiler","api/v2/fluid/regularizer","api/v2/model_configs","api/v2/run_logic","design/api","design/auto_gradient_check","design/backward","design/block","design/build_system/README","design/cluster_train/README","design/cluster_train/checkpointing","design/cluster_train/data_dispatch","design/cluster_train/large_model_dist_train","design/cluster_train/master_server","design/cluster_train/pserver_client","design/cluster_train/remote_parameter_updater","design/cluster_train/save_model","design/cluster_train/submit-job","design/concurrent_programming","design/csp","design/dist_refactor/distributed_architecture","design/dist_refactor/multi_cpu","design/dist_refactor/parameter_server","design/error_clip","design/evaluator","design/executor","design/file_manager/README","design/file_manager/pfs/pfsclient","design/float16","design/fluid","design/fluid_compiler","design/functions_operators_layers","design/gan_api","design/graph","design/graph_survey","design/if_else_op","design/infer_var_type","design/kernel_hint_design","design/memory_optimization","design/mkl/mkl_packed","design/mkl/mkldnn","design/mkl/mkldnn_fluid","design/model_format","design/multi_language_interface/00.why_plain_c","design/multi_language_interface/01.inference_implementation","design/operator_kernel_type","design/ops/rnn","design/ops/sequence_decoder","design/optimizer","design/paddle_nccl","design/parameter_average","design/parameters_in_cpp","design/profiler","design/program","design/prune","design/python_api","design/reader/README","design/refactorization","design/register_grad_op","design/regularization","design/releasing_process","design/scope","design/selected_rows","design/simple_op_design","design/speech/deep_speech_2","design/support_new_device","design/switch_kernel","design/tensor_array","design/var_desc","faq/build_and_install/index_cn","faq/cluster/index_cn","faq/index_cn","faq/local/index_cn","faq/model/index_cn","faq/parameter/index_cn","getstarted/build_and_install/build_from_source_cn","getstarted/build_and_install/docker_install_cn","getstarted/build_and_install/index_cn","getstarted/build_and_install/pip_install_cn","getstarted/concepts/use_concepts_cn","getstarted/index_cn","howto/deep_model/rnn/hierarchical_layer_cn","howto/deep_model/rnn/hrnn_rnn_api_compare_cn","howto/deep_model/rnn/index_cn","howto/deep_model/rnn/recurrent_group_cn","howto/deep_model/rnn/rnn_config_cn","howto/dev/build_cn","howto/dev/contribute_to_paddle_cn","howto/dev/new_layer_cn","howto/dev/new_op_cn","howto/dev/use_eigen_cn","howto/dev/write_docs_cn","howto/index_cn","howto/optimization/cpu_profiling","howto/optimization/cpu_profiling_cn","howto/optimization/gpu_profiling_cn","howto/read_source","howto/usage/capi/compile_paddle_lib_cn","howto/usage/capi/index_cn","howto/usage/capi/organization_of_the_inputs_cn","howto/usage/capi/workflow_of_capi_cn","howto/usage/cluster/cluster_train_cn","howto/usage/cluster/fabric_cn","howto/usage/cluster/k8s_aws_cn","howto/usage/cluster/k8s_cn","howto/usage/cluster/k8s_distributed_cn","howto/usage/cluster/openmpi_cn","howto/usage/cluster/src/k8s_data/README","howto/usage/cluster/src/k8s_train/README","howto/usage/cmd_parameter/arguments_cn","howto/usage/cmd_parameter/detail_introduction_cn","howto/usage/cmd_parameter/index_cn","howto/usage/cmd_parameter/use_case_cn","index_cn","mobile/cross_compiling_for_android_cn","mobile/cross_compiling_for_ios_cn","mobile/cross_compiling_for_raspberry_cn","mobile/index_cn","survey/cluster_bootstrapping_tools"],envversion:50,filenames:["api/index_cn.rst","api/v2/config/activation.rst","api/v2/config/attr.rst","api/v2/config/evaluators.rst","api/v2/config/layer.rst","api/v2/config/networks.rst","api/v2/config/optimizer.rst","api/v2/config/pooling.rst","api/v2/data.rst","api/v2/data/data_reader.rst","api/v2/data/dataset.rst","api/v2/data/image.rst","api/v2/fluid.rst","api/v2/fluid/data_feeder.rst","api/v2/fluid/evaluator.rst","api/v2/fluid/executor.rst","api/v2/fluid/initializer.rst","api/v2/fluid/io.rst","api/v2/fluid/layers.rst","api/v2/fluid/nets.rst","api/v2/fluid/optimizer.rst","api/v2/fluid/param_attr.rst","api/v2/fluid/profiler.rst","api/v2/fluid/regularizer.rst","api/v2/model_configs.rst","api/v2/run_logic.rst","design/api.md","design/auto_gradient_check.md","design/backward.md","design/block.md","design/build_system/README.md","design/cluster_train/README.md","design/cluster_train/checkpointing.md","design/cluster_train/data_dispatch.md","design/cluster_train/large_model_dist_train.md","design/cluster_train/master_server.md","design/cluster_train/pserver_client.md","design/cluster_train/remote_parameter_updater.md","design/cluster_train/save_model.md","design/cluster_train/submit-job.md","design/concurrent_programming.md","design/csp.md","design/dist_refactor/distributed_architecture.md","design/dist_refactor/multi_cpu.md","design/dist_refactor/parameter_server.md","design/error_clip.md","design/evaluator.md","design/executor.md","design/file_manager/README.md","design/file_manager/pfs/pfsclient.md","design/float16.md","design/fluid.md","design/fluid_compiler.md","design/functions_operators_layers.md","design/gan_api.md","design/graph.md","design/graph_survey.md","design/if_else_op.md","design/infer_var_type.md","design/kernel_hint_design.md","design/memory_optimization.md","design/mkl/mkl_packed.md","design/mkl/mkldnn.md","design/mkl/mkldnn_fluid.md","design/model_format.md","design/multi_language_interface/00.why_plain_c.md","design/multi_language_interface/01.inference_implementation.md","design/operator_kernel_type.md","design/ops/rnn.md","design/ops/sequence_decoder.md","design/optimizer.md","design/paddle_nccl.md","design/parameter_average.md","design/parameters_in_cpp.md","design/profiler.md","design/program.md","design/prune.md","design/python_api.md","design/reader/README.md","design/refactorization.md","design/register_grad_op.md","design/regularization.md","design/releasing_process.md","design/scope.md","design/selected_rows.md","design/simple_op_design.md","design/speech/deep_speech_2.md","design/support_new_device.md","design/switch_kernel.md","design/tensor_array.md","design/var_desc.md","faq/build_and_install/index_cn.rst","faq/cluster/index_cn.rst","faq/index_cn.rst","faq/local/index_cn.rst","faq/model/index_cn.rst","faq/parameter/index_cn.rst","getstarted/build_and_install/build_from_source_cn.rst","getstarted/build_and_install/docker_install_cn.rst","getstarted/build_and_install/index_cn.rst","getstarted/build_and_install/pip_install_cn.rst","getstarted/concepts/use_concepts_cn.rst","getstarted/index_cn.rst","howto/deep_model/rnn/hierarchical_layer_cn.rst","howto/deep_model/rnn/hrnn_rnn_api_compare_cn.rst","howto/deep_model/rnn/index_cn.rst","howto/deep_model/rnn/recurrent_group_cn.md","howto/deep_model/rnn/rnn_config_cn.rst","howto/dev/build_cn.md","howto/dev/contribute_to_paddle_cn.md","howto/dev/new_layer_cn.rst","howto/dev/new_op_cn.md","howto/dev/use_eigen_cn.md","howto/dev/write_docs_cn.rst","howto/index_cn.rst","howto/optimization/cpu_profiling.md","howto/optimization/cpu_profiling_cn.md","howto/optimization/gpu_profiling_cn.rst","howto/read_source.md","howto/usage/capi/compile_paddle_lib_cn.md","howto/usage/capi/index_cn.rst","howto/usage/capi/organization_of_the_inputs_cn.md","howto/usage/capi/workflow_of_capi_cn.md","howto/usage/cluster/cluster_train_cn.md","howto/usage/cluster/fabric_cn.md","howto/usage/cluster/k8s_aws_cn.md","howto/usage/cluster/k8s_cn.md","howto/usage/cluster/k8s_distributed_cn.md","howto/usage/cluster/openmpi_cn.md","howto/usage/cluster/src/k8s_data/README.md","howto/usage/cluster/src/k8s_train/README.md","howto/usage/cmd_parameter/arguments_cn.md","howto/usage/cmd_parameter/detail_introduction_cn.md","howto/usage/cmd_parameter/index_cn.rst","howto/usage/cmd_parameter/use_case_cn.md","index_cn.rst","mobile/cross_compiling_for_android_cn.md","mobile/cross_compiling_for_ios_cn.md","mobile/cross_compiling_for_raspberry_cn.md","mobile/index_cn.rst","survey/cluster_bootstrapping_tools.md"],objects:{"paddle.v2":{image:[11,0,0,"-"]},"paddle.v2.image":{batch_images_from_tar:[11,1,1,""],center_crop:[11,1,1,""],left_right_flip:[11,1,1,""],load_and_transform:[11,1,1,""],load_image:[11,1,1,""],load_image_bytes:[11,1,1,""],random_crop:[11,1,1,""],resize_short:[11,1,1,""],simple_transform:[11,1,1,""],to_chw:[11,1,1,""]}},objnames:{"0":["py","module","Python \u6a21\u5757"],"1":["py","function","Python \u51fd\u6570"]},objtypes:{"0":"py:module","1":"py:function"},terms:{"00m":117,"01org":91,"03m":117,"0424m":117,"0473v3":5,"04\u4ee5\u4e0a":100,"04\u4ee5\u53camaco":102,"055ee37d":125,"0630u":117,"06u":117,"0810u":117,"0957m":117,"0\u53f7\u8bad\u7ec3\u8282\u70b9\u662f\u4e3b\u8bad\u7ec3\u8282\u70b9":132,"0\u5c42\u5e8f\u5217":103,"0_cudnn5":97,"0_cudnn5_avx_mkl":[98,100],"0_cudnn7_avx_mkl":100,"0ab":4,"0rc1":82,"0rc2":82,"0x10f256d50":56,"0x7ffe4de00110":56,"100gi":125,"100m":94,"10g":39,"1150u":117,"11\u5b9e\u73b0\u4e86c":66,"11e6":126,"124n":117,"12\u4ee5\u4e0a":100,"12\u64cd\u4f5c\u7cfb\u7edf":91,"12gb":60,"13m":126,"1490u":117,"14\u7248\u672c\u4ee5\u4e0a\u7684":138,"14\u8fd9\u79cd\u5199\u6cd5\u5c06\u4f1a\u6d4b\u8bd5\u6a21\u578b":134,"1550u":117,"15\u884c":104,"16\u5b57\u8282\u8868\u793a\u4fdd\u5b58\u7684\u53c2\u6570\u603b\u4e2a\u6570":96,"16u":117,"173n":117,"1770u":117,"18ad":125,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":126,"197u":117,"1\u4e4b\u540e\u7684\u4efb\u4f55\u4e00\u4e2a\u7248\u672c\u6765\u7f16\u8bd1\u8fd0\u884c":97,"1\u7684\u5c42\u4e4b\u5916":134,"1\u7a00\u758f\u6570\u636e":110,"1\u8f6e\u5b58\u50a8\u7684\u6240\u6709\u6a21\u578b":134,"1st":18,"210u":117,"211839e770f7b538e2d8":5,"215n":117,"228u":117,"2520u":117,"2680u":117,"26\u884c":104,"279n":117,"27m":117,"285m":117,"2863m":117,"28m":117,"2977m":117,"2\u4e09\u7c7b\u7684\u6bd4\u4f8b\u4e3a":96,"2\u4e2a\u5b50\u5e8f\u5217":121,"2\u5206\u522b\u4ee3\u88683\u4e2a\u8282\u70b9\u7684trainer":127,"2\u610f\u5473\u77400\u53f7\u548c1\u53f7gpu\u5c06\u4f1a\u4f7f\u7528\u6570\u636e\u5e76\u884c\u6765\u8ba1\u7b97fc1\u548cfc2\u5c42":134,"2\u8fd9\u51e0\u4e2a\u76ee\u5f55\u8868\u793apaddlepaddle\u8282\u70b9\u4e0etrain":127,"2cbf7385":125,"2nd":18,"302n":117,"30u":117,"328n":117,"32u":117,"32x32":10,"331n":117,"3320u":117,"365e":125,"36u":117,"3710m":117,"3768m":117,"387u":117,"38u":117,"3920u":117,"39u":117,"3\u4ee5\u4e0a\u7684\u7b26\u53f7":100,"3\u53f7gpu":94,"4035m":117,"4090u":117,"4096mb":132,"4279m":117,"43u":117,"448a5b355b84":126,"4560u":117,"4563m":117,"45u":117,"4650u":117,"4726m":117,"473m":126,"4\u4e2a\u5e8f\u5217\u7684\u957f\u5ea6\u5206\u522b\u4e3a":121,"4\u5b57\u8282\u8868\u793apaddlepaddle\u7248\u672c\u4fe1\u606f":96,"4gb":132,"500m":94,"50bd":125,"50gi":125,"514u":117,"525n":117,"526u":117,"536u":117,"5460u":117,"5470u":117,"54u":117,"5690m":117,"573u":117,"578n":117,"5798m":117,"586u":117,"58s":126,"5969m":117,"5\u4f5c\u4e3a\u7f16\u8bd1\u73af\u5883":100,"5\u5373\u5c06\u505c\u6b62\u7ef4\u62a4":100,"5_cudnn5_avx_mkl":100,"5_cudnn5_avx_openbla":[100,102],"6080u":117,"6140u":117,"6305m":117,"639u":117,"64\u5e73\u53f0\u4e3a\u4f8b":136,"64m":64,"655u":117,"6780u":117,"6810u":117,"682u":117,"6970u":117,"6\u4e07\u4ebf\u6b21\u6d6e\u70b9\u8fd0\u7b97\u6bcf\u79d2":117,"6\u4ee5\u4e0a":[100,102],"6\u4f5c\u4e3a\u6807\u51c6\u7f16\u8bd1\u73af\u5883":100,"6ce9":125,"704u":117,"7090u":117,"72u":117,"73u":117,"75u":117,"760u":117,"767u":117,"783n":117,"784u":117,"78m":117,"7\u4ee5\u4e0a":136,"7\u4ee5\u4e0a\u7684\u7b26\u53f7":100,"7\u4ee5\u4e0b":136,"7\u548cpip":91,"7\u7248\u672c\u5f00\u59cb":136,"7\u7cfb\u5217":100,"7eamaa":10,"7kb":126,"8000\u5c31\u53ef\u4ee5\u5728\u7f51\u9875\u4e0a\u751f\u6210\u9700\u8981\u7684\u6587\u6863":113,"8250u":117,"8300u":117,"830n":117,"849m":117,"861u":117,"8661m":117,"892m":117,"8\u5b57\u8282\u8868\u793a\u6bcf\u4e2a\u53c2\u6570\u5360\u7528\u7684\u5b57\u8282\u6570":96,"901n":117,"90u":117,"918u":117,"9247m":117,"924n":117,"9261m":117,"9330m":117,"94u":117,"9530m":117,"983m":117,"988u":117,"997u":117,"99u":117,"9a235":137,"9f18":126,"\u4e00":104,"\u4e00\u4e2a":121,"\u4e00\u4e2a0\u5c42\u5e8f\u5217":103,"\u4e00\u4e2a0\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u6269\u5c55\u6210\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":103,"\u4e00\u4e2a\u4e0d\u5171\u4eab\u7684\u4f8b\u5b50\u662f":111,"\u4e00\u4e2a\u5178\u578b\u7684chunk\u5982\u4e0b\u6240\u793a":48,"\u4e00\u4e2a\u5206\u5e03\u5f0fpaddlepaddle\u8bad\u7ec3\u4efb\u52a1\u4e2d":126,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":103,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u6216\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":103,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u6269\u5c55\u6210\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":103,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u8fdb\u5165":106,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":103,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":103,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":103,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":103,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u8fdb\u5165":106,"\u4e00\u4e2a\u53cc\u5c42rnn\u7531\u591a\u4e2a\u5355\u5c42rnn\u7ec4\u6210":106,"\u4e00\u4e2a\u53ef\u8c03\u7528\u7684\u51fd\u6570":106,"\u4e00\u4e2a\u5e38\u7528\u7684cmake\u914d\u7f6e\u5982\u4e0b":138,"\u4e00\u4e2a\u6570\u636e\u96c6\u5927\u90e8\u5206\u5e8f\u5217\u957f\u5ea6\u662f100":94,"\u4e00\u4e2a\u662f\u6d6e\u70b9\u8ba1\u7b97\u91cf":117,"\u4e00\u4e2a\u72ec\u7acb\u7684\u5143\u7d20":103,"\u4e00\u4e2a\u72ec\u7acb\u7684\u8bcd\u8bed":103,"\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u7684\u6a21\u578b\u7531\u5927\u91cf\u7684\u53c2\u6570\u7ec4\u6210":32,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684\u524d\u5411\u4f20\u64ad\u90e8\u5206\u628a\u8f93\u5165\u8f6c\u5316\u4e3a\u76f8\u5e94\u7684\u8f93\u51fa":110,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684\u53c2\u6570\u662f\u5728":110,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684c":110,"\u4e00\u4e2a\u8f93\u51fa\u6570\u636e\u540c\u6837\u88ab\u7ec4\u7ec7\u4e3a\u4e00\u4e2a":121,"\u4e00\u4e2a\u8f93\u51fa\u7ec4\u6210":111,"\u4e00\u4e2a\u91cd\u8981\u7684\u95ee\u9898\u662f\u9009\u62e9\u6b63\u786e\u7684learning_r":96,"\u4e00\u4e2achunk\u7531\u6240\u5728\u7684\u6587\u4ef6\u504f\u79fb":48,"\u4e00\u4e2agpu\u8bbe\u5907\u4e0a\u4e0d\u5141\u8bb8\u914d\u7f6e\u591a\u4e2a\u6a21\u578b":132,"\u4e00\u4e2agradientmachine\u7c7b\u7684\u5bf9\u8c61\u7ba1\u7406\u7740\u4e00\u7ec4\u8ba1\u7b97\u5c42":122,"\u4e00\u4e2alabel":104,"\u4e00\u4e2amemory\u5305\u542b":107,"\u4e00\u4e2aposix\u517c\u5bb9\u7684\u6587\u4ef6\u7cfb\u7edf":48,"\u4e00\u4e9b\u60c5\u51b5\u4e3a\u4e86\u4fbf\u4e8e\u53d1\u5e03":122,"\u4e00\u4eba":104,"\u4e00\u53e5\u8bdd\u662f\u7531\u8bcd\u8bed\u6784\u6210\u7684\u5e8f\u5217":106,"\u4e00\u53f0\u7535\u8111":108,"\u4e00\u65e9":104,"\u4e00\u662fbatch":94,"\u4e00\u6837\u7684\u65b9\u5f0f":108,"\u4e00\u6b21\u6027\u676f\u5b50":104,"\u4e00\u7ef4\u6570\u7ec4":[121,122],"\u4e00\u7ef4\u6574\u578b\u6570\u7ec4":121,"\u4e00\u81f4":[103,104],"\u4e00\u822c\u4e0d\u5141\u8bb8\u518d\u4ece":82,"\u4e00\u822c\u4ece":109,"\u4e00\u822c\u5728paddlepaddle\u4e2d":104,"\u4e00\u822c\u662f\u7531\u4e8e\u76f4\u63a5\u4f20\u9012\u5927\u5b57\u5178\u5bfc\u81f4\u7684":96,"\u4e00\u822c\u6765\u8bf4":107,"\u4e00\u822c\u7531mkl":62,"\u4e00\u822c\u8868\u793a":104,"\u4e00\u822c\u8bbe\u7f6e":96,"\u4e00\u8282":122,"\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f":101,"\u4e0a":109,"\u4e0a\u4ea4\u53c9\u7f16\u8bd1raspberri":138,"\u4e0a\u4f20\u5230cloud\u6216\u8005\u4e0b\u8f7d\u5230\u672c\u5730\u7684\u65f6\u95f4\u53ef\u80fd\u6bd4\u8f83\u957f":48,"\u4e0a\u4f20\u65b9\u6cd5":82,"\u4e0a\u4f20\u8ba1\u7b97\u5f97\u51fa\u7684\u68af\u5ea6":123,"\u4e0a\u56fe\u4e2d\u7684":121,"\u4e0a\u56fe\u4e2d\u865a\u7ebf\u7684\u8fde\u63a5":104,"\u4e0a\u56fe\u63cf\u8ff0\u4e86\u4e00\u4e2a3\u8282\u70b9\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3\u573a\u666f":127,"\u4e0a\u6ce8\u518c\u4e00\u4e0b":48,"\u4e0a\u7f16\u8bd1\u5f88\u6162":108,"\u4e0a\u7f51":104,"\u4e0a\u8fd0\u884c":136,"\u4e0a\u8ff0\u4ee3\u7801\u5c06bias\u5168\u90e8\u521d\u59cb\u5316\u4e3a1":96,"\u4e0a\u8ff0\u547d\u4ee4\u4e2d":98,"\u4e0a\u8ff0\u547d\u4ee4\u7f16\u8bd1\u51fa\u4e00\u4e2a":108,"\u4e0a\u8ff0\u7684":95,"\u4e0a\u8ff0\u7684\u4ee3\u7801\u7247\u6bb5\u5305\u542b\u4e86\u4e24\u79cd\u65b9\u6cd5":117,"\u4e0a\u8ff0paddlepaddl":82,"\u4e0a\u9762\u7684\u4ee3\u7801\u5728":111,"\u4e0a\u9762\u7684\u4ee3\u7801\u9996\u5148\u5bfc\u5165\u4f9d\u8d56\u7684\u5305":111,"\u4e0b":[111,113],"\u4e0b\u4e00\u4e2awheel\u5305\u9700\u8981\u66f4\u65b0\u7248\u672c\u53f7\u624d\u53ef\u4ee5\u4e0a\u4f20":82,"\u4e0b\u4f1a\u770b\u5230\u5982\u4e0b\u76ee\u5f55\u7ed3\u6784":119,"\u4e0b\u540c":96,"\u4e0b\u56fe\u4e2d\u5c31\u5c55\u793a\u4e86\u4e00\u4e9b\u5173\u4e8e\u5185\u5b58\u6570\u636e\u8fc1\u5f99\u548c\u8ba1\u7b97\u8d44\u6e90\u5229\u7528\u7387\u7684\u5efa\u8bae":117,"\u4e0b\u56fe\u662f\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7684\u793a\u610f\u56fe":110,"\u4e0b\u56fe\u662fcsr\u5b58\u50a8\u7a00\u758f\u77e9\u9635\u7684\u793a\u610f\u56fe":121,"\u4e0b\u5b58\u653e\u516c\u5171\u6570\u636e\u96c6\u5408":33,"\u4e0b\u627e\u5230":119,"\u4e0b\u62c9\u6846\u4e2d\u627e\u5230\u751f\u6210\u76843\u4e2a\u4e8c\u8fdb\u5236\u6587\u4ef6":82,"\u4e0b\u6587\u4ee5nlp\u4efb\u52a1\u4e3a\u4f8b":106,"\u4e0b\u6587\u4f1a\u8be6\u7ec6\u8fdb\u884c\u4ecb\u7ecd":121,"\u4e0b\u6587\u4f7f\u7528":127,"\u4e0b\u6587\u5c31\u662f\u7528job\u7c7b\u578b\u7684\u8d44\u6e90\u6765\u8fdb\u884c\u8bad\u7ec3":126,"\u4e0b\u6587\u8be6\u7ec6\u89e3\u91ca":121,"\u4e0b\u6b21":104,"\u4e0b\u7684":[122,127],"\u4e0b\u8868\u5217\u51fa\u4e86python\u7aef\u8bad\u7ec3\u63a5\u53e3\u66b4\u9732\u7684\u6570\u636e\u7c7b\u578b":121,"\u4e0b\u8f7d":48,"\u4e0b\u8f7d\u5230\u672c\u5730":48,"\u4e0b\u8f7d\u5b8c\u6570\u636e\u540e":126,"\u4e0b\u8f7d\u5f97\u5230":82,"\u4e0b\u8f7d\u6307\u5b9a\u7248\u672c\u7684docker\u955c\u50cf":98,"\u4e0b\u8f7dgpu\u7248\u672c":98,"\u4e0b\u9762":122,"\u4e0b\u9762\u4e3e\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50":117,"\u4e0b\u9762\u4ecb\u7ecd\u4ecb\u7ecd":111,"\u4e0b\u9762\u4ee5":123,"\u4e0b\u9762\u4ee5\u77e9\u9635\u4e58\u64cd\u4f5c":111,"\u4e0b\u9762\u4ee5addop\u4e3a\u4f8b\u8bf4\u660etensor\u7684\u4f7f\u7528\u8fc7\u7a0b":112,"\u4e0b\u9762\u5206\u522b\u4ecb\u7ecd\u67d0\u4e00\u7c7b\u6587\u4ef6\u7684\u5b9e\u73b0\u65b9\u5f0f":66,"\u4e0b\u9762\u5217\u51fa\u4e86":107,"\u4e0b\u9762\u5217\u51fa\u4e86\u5168\u8fde\u63a5\u5c42\u7684\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5":110,"\u4e0b\u9762\u5c31\u6839\u636e\u8fd9\u51e0\u4e2a\u6b65\u9aa4\u5206\u522b\u4ecb\u7ecd":127,"\u4e0b\u9762\u6211\u4eec\u4f7f\u7528\u8fd9\u4e2a\u955c\u50cf\u6765\u4e0b\u8f7d\u6570\u636e\u5230docker":126,"\u4e0b\u9762\u662f":111,"\u4e0b\u9762\u662f\u5bf9":111,"\u4e0b\u9762\u662fc":122,"\u4e0b\u9762\u7684\u4ee3\u7801\u5c06\u968f\u673a\u751f\u6210\u7684\u77e9\u9635\u8f6c\u5316\u4e3a\u53ef\u4ee5\u88abpaddlepaddle\u52a0\u8f7d\u7684\u6a21\u578b\u53c2\u6570":96,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u4ecegithub\u62c9\u53d6\u6700\u65b0\u4ee3\u7801":119,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u521b\u5efa\u4e86\u4e00\u4e2a\u9ad8\u5ea6\u4e3a1":121,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u521b\u5efa\u4e86\u4e00\u4e2acpu\u4e0a\u7684\u4e8c\u503c\u7a00\u758f\u77e9\u9635":121,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u521b\u5efa\u4e86\u542b\u6709\u4e09\u4e2a\u5143\u7d20":121,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u5728\u521b\u5efa\u4e86\u4e00\u4e2acpu\u4e0a\u7684\u5e26\u5143\u7d20\u503c\u7684\u7a00\u758f\u77e9\u9635":121,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u5b9e\u73b0\u4e86":110,"\u4e0b\u9762\u7684\u70b9\u5b9e\u73b0\u4e86mulop\u7684\u5b9a\u4e49":111,"\u4e0b\u9762\u7ed9\u51fa\u4e86\u4e00\u4e2a\u4f8b\u5b50":110,"\u4e0b\u9762\u7ed9\u51fa\u5728\u4e09\u7ef4\u7a7a\u95f4\u4e2d\u4f7f\u7528\u7ebf\u6027\u56de\u5f52\u62df\u5408\u4e00\u6761\u76f4\u7ebf\u7684\u4f8b\u5b50":101,"\u4e0b\u9762\u8be6\u7ec6\u89e3\u91ca\u4ec0\u4e48\u662f":121,"\u4e0b\u9762\u8fd9\u4e9blayer\u80fd\u591f\u63a5\u53d7\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165":103,"\u4e0d":104,"\u4e0d\u4e00\u81f4\u7684\u7531pfsclient\u4e0b\u8f7d\u6216\u8005\u4f20\u8f93chunk\u5b8c\u6210":48,"\u4e0d\u4ec5\u8981\u63d0\u4f9b\u6bcf\u4e00\u4e2a\u5916\u5c42\u5e8f\u5217\u5728\u6574\u4e2a":121,"\u4e0d\u4f1a\u4fdd\u7559\u5728\u78c1\u76d8\u4e0a":108,"\u4e0d\u4f1a\u518d\u4ece":94,"\u4e0d\u4f1a\u865a\u62df\u4efb\u4f55\u786c\u4ef6":108,"\u4e0d\u4f7f\u7528\u9759\u6001\u5e93":65,"\u4e0d\u4f7f\u7528\u989d\u5916\u7a7a\u95f4":110,"\u4e0d\u4f7f\u7528c":65,"\u4e0d\u4f7f\u7528swig":65,"\u4e0d\u5141\u8bb8\u4e00\u4e2a\u6587\u4ef6\u4e2d\u5305\u542b\u591a\u4e2aop":111,"\u4e0d\u5171\u4eab\u5219\u4e0d\u52a0":111,"\u4e0d\u5171\u4eab\u7684\u4f8b\u5b50\u53ef\u4ee5\u53c2\u8003":111,"\u4e0d\u53ef\u4ee5\u66f4\u6539":82,"\u4e0d\u53ef\u518d\u8fdb\u884c\u62c6\u5206":121,"\u4e0d\u540c":62,"\u4e0d\u540c\u4e8e\u4e0a\u8ff0\u4ecb\u7ecd\u7684recurr":95,"\u4e0d\u540c\u4e8eop\u7684\u7f16\u8bd1\u6d4b\u8bd5":111,"\u4e0d\u540c\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u6570\u636e\u5927\u5c0f\u7684\u6700\u5927\u503c\u4e0e\u6700\u5c0f\u503c\u7684\u6bd4\u7387":132,"\u4e0d\u540c\u5e8f\u5217\u53ef\u80fd\u4f1a\u542b\u6709\u4e0d\u540c\u6570\u76ee\u4e2a\u5143\u7d20":121,"\u4e0d\u540c\u65f6\u95f4\u6b65\u7684\u8f93\u5165\u662f\u4e0d\u540c\u7684":107,"\u4e0d\u540c\u7248\u672c\u7684\u7f16\u8bd1\u5668\u4e4b\u95f4":65,"\u4e0d\u540c\u7684\u4f18\u5316\u7b97\u6cd5\u9700\u8981\u4f7f\u7528\u4e0d\u540c\u5927\u5c0f\u7684\u5185\u5b58":94,"\u4e0d\u540c\u7684\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf":127,"\u4e0d\u540c\u7684\u6570\u636e\u7c7b\u578b\u548c\u5e8f\u5217\u6a21\u5f0f\u8fd4\u56de\u7684\u683c\u5f0f\u4e0d\u540c":101,"\u4e0d\u540c\u8ba1\u7b97\u5c42\u5bf9\u7a7a\u8f93\u5165\u7684\u5904\u7406\u7b56\u7565\u6709\u53ef\u80fd\u4e0d\u540c":121,"\u4e0d\u540c\u8bbe\u5907":111,"\u4e0d\u540c\u8bed\u8a00\u7684\u63a5\u53e3\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u7279\u6027":65,"\u4e0d\u540c\u8f93\u5165\u542b\u6709\u7684\u5b50\u53e5":106,"\u4e0d\u540c\u8f93\u5165\u5e8f\u5217\u542b\u6709\u7684\u8bcd\u8bed\u6570\u5fc5\u987b\u4e25\u683c\u76f8\u7b49":106,"\u4e0d\u540cdataprovider\u5bf9\u6bd4\u5982\u4e0b":104,"\u4e0d\u540crank\u7684tensor\u662f\u4e0d\u540c\u7c7b\u578b":112,"\u4e0d\u5728":66,"\u4e0d\u5bb9\u6613\u51fa\u9519":48,"\u4e0d\u5c11":104,"\u4e0d\u5d4c\u5165\u5176\u4ed6\u8bed\u8a00\u89e3\u91ca\u5668":65,"\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":65,"\u4e0d\u5e94\u8be5\u88ab\u62c6\u89e3":106,"\u4e0d\u6307\u5b9a\u65f6":106,"\u4e0d\u652f\u6301":121,"\u4e0d\u652f\u6301\u5e8f\u5217\u957f\u5ea6\u4e3a":121,"\u4e0d\u662f\u4e00\u6761\u5e8f\u5217":101,"\u4e0d\u662f\u771f\u6b63\u7684layer":95,"\u4e0d\u662f\u901a\u8fc7\u4e00\u822c\u7684\u65b9\u5f0f\u6765\u5b9e\u73b0\u5bf9\u8f93\u51fa\u7684\u6fc0\u6d3b":95,"\u4e0d\u663e\u793a\u7684\u5199\u6bcf\u4e2a\u7c7b\u5177\u4f53\u5305\u542b\u4ec0\u4e48":65,"\u4e0d\u6ee1\u8db3\u94a9\u5b50\u7684":109,"\u4e0d\u7528mount\u7684\u65b9\u5f0f\u6765\u8bbf\u95ee\u6570\u636e":33,"\u4e0d\u80fd\u4fee\u6539op\u7684\u6210\u5458\u53d8\u91cf":111,"\u4e0d\u80fd\u592a\u968f\u610f":109,"\u4e0d\u80fd\u88ab\u63d0\u4ea4\u5230":109,"\u4e0d\u8981\u5728\u6ce8\u91cd\u6027\u80fd\u7684\u8bad\u7ec3\u573a\u666f\u4e0b\u4f7f\u7528":94,"\u4e0d\u8bba\u5e8f\u5217\u4e2d\u7684\u5143\u7d20\u5728\u5185\u5b58\u4e2d\u5360\u7528\u591a\u5c11\u5b9e\u9645\u5b58\u50a8\u7a7a\u95f4":121,"\u4e0d\u8bba\u6570\u636e\u57df\u662f":121,"\u4e0d\u8bba\u662f\u4e00\u7ef4\u6574\u578b\u6570\u7ec4\u8fd8\u662f\u4e8c\u7ef4\u6d6e\u70b9\u6570\u77e9\u9635":121,"\u4e0d\u8bba\u662f\u5355\u5c42\u5e8f\u5217\u8fd8\u662f\u53cc\u5c42\u5e8f\u5217\u7684\u5e8f\u5217\u4fe1\u606f":121,"\u4e0d\u8fc7":104,"\u4e0d\u8fc7\u5b9e\u9645\u4e0a\u662f\u8fd0\u884c\u5728\u4e00\u4e2a":108,"\u4e0d\u8fdc":104,"\u4e0d\u9519":104,"\u4e0d\u9700\u5728\u4f7f\u7528c":122,"\u4e0d\u9700\u8981\u4f9d\u8d56\u5176\u4ed6\u4efb\u4f55\u8f6f\u4ef6\u4e86":108,"\u4e0d\u9700\u8981\u63d0\u4f9b\u5143\u7d20\u503c":121,"\u4e0d\u9700\u8981\u8bbe\u7f6e":136,"\u4e0e":[62,111,116,127],"\u4e0e\u4e4b\u76f8\u5bf9\u7684\u662flocal":48,"\u4e0e\u5176\u4ed6\u7b2c\u4e09\u65b9\u5e93\u4e00\u6837":62,"\u4e0e\u5176\u5b83":122,"\u4e0e\u529f\u80fd\u5206\u652f\u4e0d\u540c\u7684\u662f":82,"\u4e0e\u5355\u5c42rnn\u7684\u914d\u7f6e\u7c7b\u4f3c":104,"\u4e0e\u53ef\u80fd\u6709\u7684":82,"\u4e0e\u540c\u6b65sgd\u76f8\u6bd4":123,"\u4e0e\u5bfb\u627epython\u4ee3\u7801\u7684\u6027\u80fd\u74f6\u9888\u7c7b\u4f3c":116,"\u4e0e\u5f53\u524d\u7684\u8870\u51cf\u56e0\u5b50\u7684\u4e58\u79ef":96,"\u4e0e\u672c\u5730\u8bad\u7ec3\u76f8\u540c":124,"\u4e0e\u6b64\u4e0d\u540c\u7684\u662f":127,"\u4e0e\u8c03\u4f18":116,"\u4e0e\u8f93\u5165\u4e0d\u540c\u7684\u662f":122,"\u4e0e\u8fd9\u4e2a\u8bad\u7ec3\u6570\u636e\u4ea4\u4e92\u7684layer":94,"\u4e0ebatch":61,"\u4e0ejob":127,"\u4e0eoperator\u524d\u5411\u8ba1\u7b97\u7684\u8f93\u51fa\u8fdb\u884c\u5bf9\u6bd4":111,"\u4e0eoperator\u6ce8\u518c\u65f6\u6ce8\u518c\u7684\u7c7b\u578b\u4e00\u81f4":111,"\u4e0epython\u4e0d\u540c":116,"\u4e14":104,"\u4e14\u4e0d\u6392\u9664commit\u4e4b\u95f4\u7684\u4fee\u6539\u5b58\u5728\u76f8\u4e92\u8986\u76d6\u7684\u60c5\u51b5":109,"\u4e14\u4f7f\u7528":119,"\u4e14\u589e\u52a0\u4e00\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00":65,"\u4e14\u5c55\u793a\u6548\u679c\u66f4\u597d":116,"\u4e14\u5e8f\u5217\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20\u8fd8\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":101,"\u4e14\u6bcf\u4e2a\u53e5\u5b50\u8868\u793a\u4e3a\u5bf9\u5e94\u7684\u8bcd\u8868\u7d22\u5f15\u6570\u7ec4":104,"\u4e14\u8c03\u7528\u65f6\u4e0d\u80fd\u629b\u51fa\u5f02\u5e38\u6216\u51fa\u73b0\u8fd0\u884c\u65f6\u9519\u8bef":66,"\u4e14c99\u652f\u6301bool\u7c7b\u578b\u548c\u5b9a\u957f\u6574\u6570":65,"\u4e14c99\u76f8\u5bf9\u4e8ec11\u4f7f\u7528\u66f4\u52a0\u5e7f\u6cdb":65,"\u4e24":104,"\u4e24\u4e2a\u5b50\u76ee\u5f55\u4e0b":113,"\u4e24\u4e2a\u5d4c\u5957\u7684":106,"\u4e24\u4e2a\u64cd\u4f5c":117,"\u4e24\u4e2a\u8f93\u5165\u7684\u5b50\u5e8f\u5217\u957f\u5ea6\u4e5f\u5e76\u4e0d\u76f8\u540c":104,"\u4e24\u4e2a\u90e8\u5206":113,"\u4e24\u4e2a\u9690\u5c42\u7684\u7b80\u5355\u5168\u8fde\u63a5\u7f51\u7edc":122,"\u4e24\u6b21":121,"\u4e24\u79cd\u5e38\u7528\u7684\u6a21\u578b\u52a0\u8f7d\u65b9\u5f0f":122,"\u4e24\u79cd\u65b9\u6cd5\u7684\u533a\u522b":94,"\u4e24\u79cdblas\u5e93":97,"\u4e24\u8005\u90fd\u662f\u5bf9\u68af\u5ea6\u7684\u622a\u65ad":94,"\u4e25\u683c\u7684\u547d\u540d\u89c4\u8303pep":82,"\u4e2a\u5185\u5b58\u6c60\u5b9e\u9645\u4e0a\u51b3\u5b9a\u4e86shuffle\u7684\u7c92\u5ea6":94,"\u4e2a\u6027\u5316\u63a8\u8350":82,"\u4e2a\u6279\u6b21\u7684\u53c2\u6570\u5e73\u5747\u503c\u8fdb\u884c\u6d4b\u8bd5":132,"\u4e2a\u6a21\u578b\u6d4b\u8bd5\u6570\u636e":132,"\u4e2d":[61,62,65,66,94,110,111,112,116,121,127],"\u4e2d\u4e0d\u8981\u6dfb\u52a0\u5927\u6587\u4ef6\u7b49":109,"\u4e2d\u4f1a\u4f7f\u7528\u5230\u7684\u5b57\u5178\u6570\u636e\u6587\u4ef6":123,"\u4e2d\u4f1a\u63d0\u4f9b\u4e00\u4e9b\u5fc5\u8981\u7684\u63a5\u53e3\u548c\u51fd\u6570":62,"\u4e2d\u4f20\u5165\u53c2\u6570":123,"\u4e2d\u4f20\u5165\u7684\u53c2\u6570":123,"\u4e2d\u5143\u7d20\u4e2a\u6570\u603b\u662f\u7b49\u4e8e\u884c\u6570":121,"\u4e2d\u5143\u7d20\u7684\u4e2a\u6570\u7b49\u4e8e\u7f51\u7edc\u4e2d\u8f93\u51fa\u5c42\u7684\u4e2a\u6570":94,"\u4e2d\u5173\u4e8e\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc\u7684\u4ecb\u7ecd":104,"\u4e2d\u5199\u5165json\u5185\u5bb9":32,"\u4e2d\u5305\u542b\u4e00\u4e2araspberri":138,"\u4e2d\u5305\u542b\u6240\u4f9d\u8d56\u7684\u6240\u6709\u7b2c\u4e09\u65b9\u5e93":136,"\u4e2d\u5305\u542b\u82e5\u5e72\u4e2a\u4e0d\u540candroid":136,"\u4e2d\u5305\u542bc":[136,138],"\u4e2d\u5355\u5143\u6d4b\u8bd5\u7684\u4e00\u90e8\u5206":109,"\u4e2d\u5355\u5143\u6d4b\u8bd5\u80fd\u987a\u5229\u901a\u8fc7":109,"\u4e2d\u542b\u6709\u591a\u4e2a\u5e8f\u5217":121,"\u4e2d\u5b8c\u5168\u4e00\u81f4":65,"\u4e2d\u5b9a\u4e49":107,"\u4e2d\u5b9a\u4e49\u548c\u4f7f\u7528":106,"\u4e2d\u5b9e\u73b0\u4e86\u4e00\u4e2amerge\u7684\u65b9\u6cd5":62,"\u4e2d\u5b9e\u73b0\u7684\u7ed3\u6784\u4f53":66,"\u4e2d\u5bf9\u5e94\u7684layer\u5904":61,"\u4e2d\u5f15\u5165\u7684":61,"\u4e2d\u6253\u5370\u5176\u503c":94,"\u4e2d\u6307\u5b9a":132,"\u4e2d\u6307\u5b9a\u7684\u540d\u5b57":134,"\u4e2d\u63d0\u4f9b\u4e00\u4e2a\u4e0emkl\u6709\u5173\u7684\u603b\u5f00\u5173":62,"\u4e2d\u63d0\u4f9b\u4e86\u4e00\u4e9b\u5168\u5c40\u51fd\u6570\u7528\u6765\u5b9e\u73b0paddl":112,"\u4e2d\u641c\u7d22\u8fd9\u51e0\u4e2a\u5e93":97,"\u4e2d\u64cd\u4f5c":121,"\u4e2d\u6587\u6587\u6863":113,"\u4e2d\u6587\u6587\u6863\u76ee\u5f55":113,"\u4e2d\u6587\u7ef4\u57fa\u767e\u79d1\u9875\u9762":104,"\u4e2d\u6839\u636e":61,"\u4e2d\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2alayer\u7684\u8f93\u51fa\u7ed3\u679c\u77e9\u9635":94,"\u4e2d\u6bcf\u4e2apod\u7684ip\u5730\u5740":127,"\u4e2d\u6bcf\u5c42\u7684\u6570\u503c\u7edf\u8ba1":132,"\u4e2d\u6dfb\u52a0":61,"\u4e2d\u6dfb\u52a0\u4e00\u4e2a":62,"\u4e2d\u6dfb\u52a0\u4e24\u4e2a\u8f93\u5165":111,"\u4e2d\u7528\u4e8e\u5b58\u50a8\u6570\u636e\u7684":122,"\u4e2d\u7684":[112,122],"\u4e2d\u7684\u4e00\u884c":109,"\u4e2d\u7684\u4ee3\u7801\u4f5c\u4e3a\u5b9e\u4f8b":123,"\u4e2d\u7684\u504f\u79fb":121,"\u4e2d\u7684\u5bf9\u5e94\u5206\u652f\u5373\u53ef":109,"\u4e2d\u7684\u7248\u672c\u4fe1\u606f":82,"\u4e2d\u7684\u76f8\u5173\u811a\u672c":122,"\u4e2d\u7684\u8d77\u59cb\u504f\u79fb":121,"\u4e2d\u83b7\u53d6":127,"\u4e2d\u8bbe\u7f6e\u7684\u6240\u6709\u8282\u70b9":124,"\u4e2d\u8be6\u7ec6\u4ecb\u7ecd":110,"\u4e2d\u8c03\u7528":111,"\u4e2d\u8fd0\u884c\u4efb\u52a1\u7684\u89d2\u5ea6":33,"\u4e2d\u914d\u7f6e\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":107,"\u4e34\u65f6\u53d8\u91cf\u7b49\u7b49":94,"\u4e3a":[61,62,107,111,121,136,137,138],"\u4e3a\u4e86\u4f7f":111,"\u4e3a\u4e86\u4f7f\u8bc4\u5ba1\u4eba\u5728\u8bc4\u5ba1\u4ee3\u7801\u65f6\u66f4\u597d\u5730\u4e13\u6ce8\u4e8e\u4ee3\u7801\u672c\u8eab":109,"\u4e3a\u4e86\u4fdd\u8bc1\u6548\u7387":110,"\u4e3a\u4e86\u4fdd\u8bc1gpu\u9a71\u52a8\u80fd\u591f\u5728\u955c\u50cf\u91cc\u9762\u6b63\u5e38\u8fd0\u884c":98,"\u4e3a\u4e86\u51cf\u5c11\u751f\u6210\u94fe\u63a5\u5e93\u7684\u5927\u5c0f\u628a":119,"\u4e3a\u4e86\u5c01\u88c5\u80fd\u591f\u6b63\u786e\u5de5\u4f5c":110,"\u4e3a\u4e86\u5c3d\u53ef\u80fd\u5c11\u7684\u5728\u7236\u7c7blayer\u4e2d\u6dfb\u52a0\u53d8\u91cf\u6216\u8005\u51fd\u6570":62,"\u4e3a\u4e86\u5e94\u5bf9\u4ee5\u4e0a\u7684\u95ee\u9898":48,"\u4e3a\u4e86\u5f00\u53d1paddlepaddl":108,"\u4e3a\u4e86\u63cf\u8ff0\u65b9\u4fbf":106,"\u4e3a\u4e86\u65b9\u4fbf\u5927\u5bb6":109,"\u4e3a\u4e86\u66b4\u9732\u7684\u63a5\u53e3\u5c3d\u91cf\u7b80\u5355":66,"\u4e3a\u4e86\u66f4\u597d\u7684\u7b26\u5408paddlepaddle\u7684\u4ee3\u7801\u98ce\u683c":62,"\u4e3a\u4e86\u6700\u5927\u7a0b\u5ea6\u51cf\u5c11\u591a\u6b21\u8c03\u7528":61,"\u4e3a\u4e86\u751f\u6210\u66f4\u53ef\u8bfb\u7684\u6027\u80fd\u5206\u6790\u7ed3\u679c":116,"\u4e3a\u4e86\u7b80\u5316cmake\u914d\u7f6e":136,"\u4e3a\u4e86\u8fbe\u5230\u6027\u80fd\u6700\u4f18":117,"\u4e3a\u4e86\u8fbe\u5230\u6700\u5feb\u7684\u8ba1\u7b97\u901f\u5ea6":[136,137],"\u4e3a\u4e86\u8fdb\u4e00\u6b65\u63d0\u5347paddlepaddle\u5728\u57fa\u672c\u6570\u5b66\u8fd0\u7b97\u7684\u8ba1\u7b97\u901f\u5ea6":62,"\u4e3a\u4ec0\u4e48\u7528":108,"\u4e3a\u4f7f\u7528c":122,"\u4e3a\u4f8b":[95,111],"\u4e3a\u4f8b\u6765\u4ecb\u7ecd\u5982\u4f55\u5199\u5e26kernel\u7684oper":111,"\u4e3a\u53c2\u6570\u77e9\u9635\u7684\u5bbd\u5ea6":96,"\u4e3a\u5b83\u4eec\u9644\u52a0\u4e0a\u5e8f\u5217\u4fe1\u606f\u5c06\u53d8\u6210\u5e8f\u5217\u8f93\u5165":121,"\u4e3a\u5bb9\u5668\u5185\u6267\u884c\u7684\u547d\u4ee4":98,"\u4e3a\u60a8\u505a\u6027\u80fd\u8c03\u4f18\u63d0\u4f9b\u4e86\u65b9\u5411":117,"\u4e3a\u65b9\u4fbf\u4f5c\u4e1a\u542f\u52a8\u63d0\u4f9b\u4e86\u4e24\u4e2a\u72ec\u7279\u7684\u547d\u4ee4\u9009\u9879":124,"\u4e3a\u6b64":126,"\u4e3a\u6bcf\u4e00\u4e2a":[121,122],"\u4e3a\u6bcf\u4e00\u4e2a\u8f93\u5165":[121,122],"\u4e3a\u6bcf\u4e2aop\u521b\u5efa\u5355\u72ec\u7684":111,"\u4e3a\u8f93\u51fa\u5206\u914d\u5185\u5b58":110,"\u4e3aconst\u51fd\u6570":111,"\u4e3aoutput_\u7533\u8bf7\u5185\u5b58":110,"\u4e3b\u8981\u4e3a\u5f00\u53d1\u8005\u4f7f\u7528":132,"\u4e3b\u8981\u529f\u80fd\u5305\u62ec":48,"\u4e3b\u8981\u5305\u62ec":62,"\u4e3b\u8981\u5305\u62ec\u4e86\u6df1\u5ea6\u5b66\u4e60\u76f8\u5173\u7684\u6570\u5b66\u539f\u8bed\u4e0e\u64cd\u4f5c":62,"\u4e3b\u8981\u5305\u62ec\u56db\u79cd\u7c7b\u578b":101,"\u4e3b\u8981\u539f\u56e0":104,"\u4e3b\u8981\u539f\u56e0\u5305\u62ec\u4e24\u4e2a\u65b9\u9762":94,"\u4e3b\u8981\u7528\u4e8epython":111,"\u4e3b\u8981\u9488\u5bf9paddlepaddle\u5728\u91cd\u6784\u4e4b\u524d\u7684\u4ee3\u7801\u6846\u67b6\u4ee5\u53cav1\u7684api":62,"\u4e3e\u4e00\u4e2a\u4f8b\u5b50":96,"\u4e3e\u4f8b":94,"\u4e3e\u4f8b\u8bf4\u660e":104,"\u4e4b\u524d":109,"\u4e4b\u540e":[101,110],"\u4e4b\u540e\u4f7f\u7528":110,"\u4e4b\u540e\u4f7f\u7528\u77e9\u9635\u8fd0\u7b97\u51fd\u6570\u6765\u8ba1\u7b97":110,"\u4e4b\u540e\u518d\u7528\u7f51\u9875\u8fde\u5230http":113,"\u4e4b\u540e\u521d\u59cb\u5316\u6240\u6709\u7684\u6743\u91cd\u77e9\u9635":110,"\u4e4b\u540e\u624d\u80fd\u5f00\u59cb\u7f16\u8bd1\u7684\u6b65\u9aa4":97,"\u4e4b\u5916\u7684\u6240\u6709\u5934\u6587\u4ef6":66,"\u4e4b\u7c7b\u7684\u7a0b\u5e8f\u6765\u7f16\u8bd1\u6e90\u7801":108,"\u4e4b\u95f4\u7684\u8fd0\u7b97\u662f\u72ec\u7acb\u7684":106,"\u4e58\u4e0a\u8f93\u51fa\u7684\u68af\u5ea6":110,"\u4e58\u6cd5\u548c\u4e58\u6cd5\u68af\u5ea6\u7684\u8ba1\u7b97\u5360\u75282":116,"\u4e58\u9664\u7b49\u65f6\u5019":94,"\u4e5f":104,"\u4e5f\u4e0d\u4f7f\u7528\u5176\u4ed6\u52a8\u6001\u5e93":65,"\u4e5f\u4e0d\u5b58\u5728\u4e00\u4e2asubseq\u76f4\u63a5\u751f\u6210\u4e0b\u4e00\u4e2asubseq\u7684\u60c5\u51b5":106,"\u4e5f\u4e0d\u5e94\u8be5\u62a5\u9519":66,"\u4e5f\u4e0d\u751f\u6210":66,"\u4e5f\u4e0d\u80fd\u63a5\u6536\u5e8f\u5217\u6570\u636e\u4f5c\u4e3a\u8f93\u5165":95,"\u4e5f\u4f1a\u5360\u7528\u78c1\u76d8":108,"\u4e5f\u53ef\u4ee5\u4f7f\u7528":109,"\u4e5f\u53ef\u4ee5\u4f7f\u7528\u8fd9\u4e9b\u955c\u50cf":82,"\u4e5f\u53ef\u4ee5\u5229\u7528paddlepaddl":113,"\u4e5f\u53ef\u4ee5\u662f\u4e00\u4e2a\u8bcd\u8bed":106,"\u4e5f\u53ef\u4ee5\u662f\u5728\u4efb\u52a1\u542f\u52a8\u524d\u4e0b\u8f7d\u5230\u672c\u5730\u7684":123,"\u4e5f\u53ef\u4ee5\u76f4\u63a5\u5728\u7f51\u9875\u9884\u89c8\u6587\u6863":113,"\u4e5f\u53ef\u4ee5\u8bf4\u662f\u67d0\u4e9b\u7279\u5b9a\u6307\u4ee4\u7684\u4f7f\u7528\u60c5\u51b5":117,"\u4e5f\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539":127,"\u4e5f\u53ef\u5199\u6210":111,"\u4e5f\u53ef\u81ea\u884c\u524d\u5f80\u5b98\u7f51\u4e0b\u8f7d":137,"\u4e5f\u53ef\u901a\u8fc7\u4ee5\u4e0b\u547d\u4ee4\u83b7\u53d6":136,"\u4e5f\u5c31\u662f":109,"\u4e5f\u5c31\u662f\u672c\u5730\u7684\u6e90\u7801\u6811\u6839\u76ee\u5f55\u91cc\u7684":108,"\u4e5f\u5c31\u662f\u7a7a\u8f93\u5165":121,"\u4e5f\u5c31\u662f\u81ea\u5df1\u7528\u6237\u540d\u4e0b\u7684":109,"\u4e5f\u5c31\u662f\u8bf4":[121,132,134],"\u4e5f\u5c31\u662f\u8bf4\u8f93\u51fa\u7684\u7ed3\u679c\u4e0d\u4f1a\u5728\u539f\u6765\u7684\u6570\u636e\u4e0a\u7d2f\u52a0":62,"\u4e5f\u5c31\u662fpaddlepaddle\u4e2d\u7684\u4e00\u7ef4\u6574\u578b\u6570\u7ec4":121,"\u4e5f\u63cf\u8ff0\u4e86\u5bb9\u5668\u9700\u8981\u4f7f\u7528\u7684\u5b58\u50a8\u5377\u6302\u8f7d\u7684\u60c5\u51b5":127,"\u4e5f\u652f\u6301cpu\u7684\u6027\u80fd\u5206\u6790":117,"\u4e5f\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":104,"\u4e5f\u662fdecoder\u5faa\u73af\u5c55\u5f00\u7684\u4f9d\u636e":106,"\u4e5f\u6ca1\u7528":91,"\u4e66\u5199":65,"\u4e7e":104,"\u4e86":[104,108],"\u4e86\u89e3\u5176\u8c03\u7528\u5173\u7cfb":116,"\u4e86\u89e3\u60a8\u7684\u786c\u4ef6":117,"\u4e86\u89e3\u66f4\u591a\u7ec6\u8282":107,"\u4e86\u89e3\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f":107,"\u4e8c\u7ef4\u6d6e\u70b9\u578b\u77e9\u9635":121,"\u4e8c\u7ef4\u6d6e\u70b9\u6570\u77e9\u9635":121,"\u4e8c\u7ef4\u77e9\u9635":122,"\u4e8c\u7ef4\u77e9\u9635\u53ef\u4ee5\u8868\u793a\u884c\u5411\u91cf\u548c\u5217\u5411\u91cf":121,"\u4e8c\u8005\u8bed\u610f\u4e0a\u5b8c\u5168\u4e00\u81f4":104,"\u4e8e\u662f":121,"\u4e8e\u662f\u6211\u4eec\u53ef\u4ee5\u70b9\u51fb":116,"\u4e8e\u662f\u8fd9\u91cc\u4f7f\u7528":116,"\u4e94\u661f\u7ea7":104,"\u4ea4\u4e92\u7684\u65b9\u6cd5":116,"\u4ea4\u53c9\u7f16\u8bd1\u5de5\u5177\u94fe\u4e3a":136,"\u4ea4\u53c9\u7f16\u8bd1android\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":136,"\u4ea4\u53c9\u7f16\u8bd1android\u7248\u672c\u7684paddlepaddle\u5e93\u65f6":136,"\u4ea4\u53c9\u7f16\u8bd1ios\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":137,"\u4ea4\u53c9\u7f16\u8bd1ios\u7248\u672c\u7684paddlepaddle\u5e93\u65f6":137,"\u4ea4\u53c9\u7f16\u8bd1raspberri":138,"\u4ea4\u7531cmake\u7cfb\u7edf\u672c\u8eab\u6765\u5904\u7406":136,"\u4ea4\u901a":104,"\u4ea4\u901a\u4fbf\u5229":104,"\u4ea6\u53ef\u4ee5\u901a\u8fc7\u624b\u52a8\u8bbe\u7f6e":[136,137],"\u4eab\u53d7\u60a8\u7684\u65c5\u7a0b":98,"\u4eba\u8138\u8bc6\u522b":33,"\u4ec0\u4e48\u662f":108,"\u4ec5\u4ec5\u4f7f\u7528":65,"\u4ec5\u4f1a\u5728\u652f\u6301avx2\u6307\u4ee4\u96c6\u53ca\u4ee5\u4e0a\u7684\u673a\u5668\u624d\u4f7f\u7528mkl":62,"\u4ec5\u5728\u8fdc\u7a0b\u7a00\u758f\u8bad\u7ec3\u65f6\u6709\u6548":110,"\u4ec5\u5bf9\u7a00\u758f\u6570\u636e\u6709\u6548":110,"\u4ec5\u652f\u6301\u6574\u578b\u503c":121,"\u4ec5\u7528\u4e8e\u5b58\u50a8\u6574\u578b\u503c":122,"\u4ecb\u7ecd\u4e86\u4e00\u79cd\u901a\u8fc7ssh\u8fdc\u7a0b\u5206\u53d1\u4efb\u52a1":127,"\u4ecb\u7ecd\u4ea4\u53c9\u7f16\u8bd1android\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93\u7684\u65b9\u6cd5\u548c\u6b65\u9aa4":136,"\u4ecb\u7ecd\u4f7f\u7528paddlepaddl":123,"\u4ece":[82,92,117],"\u4ece0\u5230num":132,"\u4ece0\u5f00\u59cb\u7684\u6574\u6570":123,"\u4ece\u4e00\u4e2aword\u751f\u6210\u4e0b\u4e00\u4e2aword":106,"\u4ece\u5185\u6838\u51fd\u6570\u7684\u89d2\u5ea6":117,"\u4ece\u6a21\u578b\u6587\u4ef6\u5c06\u9884\u8bad\u7ec3\u53c2\u6570\u8f7d\u5165":96,"\u4ece\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u6765\u770b":104,"\u4ece\u6e90\u7801\u4ea4\u53c9\u7f16\u8bd1ios\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":137,"\u4ece\u6e90\u7801\u4ea4\u53c9\u7f16\u8bd1paddlepaddl":136,"\u4ece\u6e90\u7801\u7f16\u8bd1":99,"\u4ece\u78c1\u76d8\u52a0\u8f7d\u9884\u6d4b\u6a21\u578b":122,"\u4ece\u78c1\u76d8\u6587\u4ef6\u4e2d\u52a0\u8f7duuid\u6587\u4ef6\u540d\u7684\u68c0\u67e5\u70b9\u5feb\u7167\u6587\u4ef6":32,"\u4ece\u800c\u53ef\u4ee5\u505a\u4e00\u4e9b\u4e0e\u8ba1\u7b97\u91cd\u53e0\u7684\u5de5\u4f5c":110,"\u4ece\u800c\u5f15\u53d1\u5176\u4ed6\u8282\u70b9\u65e0\u6cd5\u8fde\u63a5\u5bfc\u81f4":92,"\u4ece\u800c\u907f\u514d\u4e86packing\u5197\u4f59":61,"\u4ece\u8bed\u4e49\u4e0a\u770b":106,"\u4ece\u8d77\u59cb\u7aef\u53e3\u76d1\u542c\u591a\u4e2a\u7aef\u53e3\u7528\u4e8e\u901a\u4fe1":123,"\u4ece\u8f93\u5165\u6570\u636e\u4e0a\u770b":104,"\u4ececmake":136,"\u4eceetcd\u4e2d\u8bfb\u53d6\u8282\u70b9":32,"\u4ecestart":132,"\u4ed3\u5e93\u7684\u8fdc\u7a0b\u4e3b\u673a":109,"\u4ed6\u4e3b\u8981\u5305\u542b\u4e86\u5b9e\u9645\u66b4\u9732\u7684\u7c7b\u578b\u7ed3\u6784":66,"\u4ed6\u4eec\u5206\u522b\u662f":104,"\u4ed6\u4eec\u5728\u81ea\u5df1\u7684":108,"\u4ed6\u4eec\u5728paddle\u7684\u6587\u6863\u548capi\u4e2d\u662f\u4e00\u4e2a\u6982\u5ff5":104,"\u4ed6\u662f\u5c06":66,"\u4ed6\u7684\u76ee\u6807\u662f\u4f7f\u7528c":65,"\u4ee3\u66ff":127,"\u4ee3\u7801\u4e2d9":104,"\u4ee3\u7801\u53c2\u8003":123,"\u4ee3\u7801\u5982\u4e0b":[94,95,96,107],"\u4ee3\u7801\u6ce8\u91ca\u8bf7\u9075\u5b88":109,"\u4ee3\u7801\u7247\u6bb5\u5982\u4e0b":121,"\u4ee3\u7801\u751f\u6210\u7684\u7b26\u53f7\u53ef\u80fd\u4e0d\u4e00\u81f4":65,"\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790":116,"\u4ee3\u7801\u793a\u4f8b\u5982\u4e0b":[111,122],"\u4ee3\u8868\u5bbf\u4e3b\u673a\u76ee\u5f55":127,"\u4ee3\u8868\u8fd9\u4e2alayer\u662f\u7528\u4e8e\u8dd1\u5728mkl":62,"\u4ee3\u8868\u8fd9\u4e2ashard\u7684\u6700\u5927index":33,"\u4ee3\u8868shard\u7684index":33,"\u4ee5":95,"\u4ee5\u4e0a":[109,136],"\u4ee5\u4e0a\u4e24\u79cd\u65b9\u5f0f\u53ea\u9700\u9009\u62e9\u5176\u4e00\u5373\u53ef":122,"\u4ee5\u4e0a\u4ee3\u7801\u7684reader\u8f93\u51fa\u7684data":33,"\u4ee5\u4e0a\u547d\u4ee4\u4f1a\u5728\u5f53\u524d\u76ee\u5f55\u4e0b\u751f\u6210100\u4e2a\u6587\u4ef6":33,"\u4ee5\u4e0b":33,"\u4ee5\u4e0b\u4ee3\u7801\u7247\u6bb5\u5b9a\u4e49":107,"\u4ee5\u4e0b\u547d\u4ee4\u542f\u52a8\u4e00\u4e2a":108,"\u4ee5\u4e0b\u6307\u4ee4\u80fd\u68c0\u67e5linux\u7535\u8111\u662f\u5426\u652f\u6301avx":98,"\u4ee5\u4e0b\u64cd\u4f5c\u5747\u5728head\u8282\u70b9\u4e2d\u6267\u884c":128,"\u4ee5\u4e0b\u6559\u7a0b\u5c06\u6307\u5bfc\u60a8\u63d0\u4ea4\u4ee3\u7801":109,"\u4ee5\u4e0b\u7b80\u79f0rnn":61,"\u4ee5\u4ea4\u4e92\u5f0f\u7684\u65b9\u5f0f\u6267\u884c\u6216\u8c03\u8bd5\u60a8\u7684\u4ee3\u7801":98,"\u4ee5\u4f7f\u7528":136,"\u4ee5\u4f7f\u7528adam\u7b97\u6cd5\u4e3a\u4f8b":96,"\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u628a\u66f4\u591a\u7684\u7cbe\u529b\u653e\u5230\u903b\u8f91\u672c\u8eab\u4e0a":48,"\u4ee5\u4fbf\u83b7\u5f97\u8bad\u7ec3\u6570\u636e\u7684\u4f4d\u7f6e\u548c\u83b7\u53d6\u73af\u5883\u53d8\u91cf\u914d\u7f6e":123,"\u4ee5\u4fdd\u8bc1\u68af\u5ea6\u7684\u6b63\u786e\u8ba1\u7b97":110,"\u4ee5\u4fdd\u8bc1\u68af\u5ea6\u8ba1\u7b97\u7684\u6b63\u786e\u6027":110,"\u4ee5\u4fdd\u8bc1\u7f16\u8bd1\u9ad8\u6548":108,"\u4ee5\u53ca":[61,108,110,121],"\u4ee5\u53ca\u4f7f\u7528\u5b50\u5e8f\u5217\u6765\u5b9a\u4e49\u5206\u7ea7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":107,"\u4ee5\u53ca\u5207\u6362\u673a\u5668\u65f6\u9700\u8981\u65b0\u5b89\u88c5\u7684\u8f9b\u82e6":108,"\u4ee5\u53ca\u53cc\u5c42\u5e8f\u5217":103,"\u4ee5\u53ca\u5982\u4f55\u89e3\u6790\u795e\u7ecf\u7f51\u7edc\u524d\u5411\u8ba1\u7b97\u7684\u8f93\u51fa\u7ed3\u679c":121,"\u4ee5\u53ca\u76ee\u6807\u673a\u7248openblas\u5e93":138,"\u4ee5\u53ca\u76f8\u5173\u7684\u5c5e\u6027\u53c2\u6570":111,"\u4ee5\u53ca\u7b2c\u4e09\u65b9\u4f9d\u8d56\u94fe\u63a5\u5e93\u548c\u5934\u6587\u4ef6":119,"\u4ee5\u53ca\u8ba1\u7b97\u903b\u8f91\u5728\u5e8f\u5217\u4e0a\u7684\u5faa\u73af\u5c55\u5f00":106,"\u4ee5\u53ca\u8f93\u5165\u7684\u68af\u5ea6":110,"\u4ee5\u53caandroid":136,"\u4ee5\u53cagcc":97,"\u4ee5\u53canumpi":33,"\u4ee5\u53carelu":110,"\u4ee5\u63d0\u4f9b\u4e00\u4e9b\u9ed8\u8ba4\u7684\u7f16\u8bd1\u5668\u548c\u7f16\u8bd1\u53c2\u6570\u76f8\u5173\u914d\u7f6e":136,"\u4ee5\u63d0\u4f9b\u4e00\u4e9b\u9ed8\u8ba4\u7684\u7f16\u8bd1\u5668\u548c\u7f16\u8bd1\u53c2\u6570\u914d\u7f6e":137,"\u4ee5\u6b64\u8fbe\u5230\u6700\u597d\u7684\u6027\u80fd":62,"\u4ee5\u786e\u4fdd\u6240\u6709\u7684\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93\u548cpaddlepaddle\u4ee3\u7801\u90fd\u662f\u9488\u5bf9\u65b0\u7684cmake\u914d\u7f6e\u91cd\u65b0\u7f16\u8bd1\u7684":[136,137,138],"\u4ee5\u793a\u533a\u5206":[61,62],"\u4ee5\u8f93\u51fa":94,"\u4ee5\u9017\u53f7\u95f4\u9694":132,"\u4ee5\u907f\u514d\u94fe\u63a5\u4e0d\u5fc5\u8981\u7684\u5e93":119,"\u4ee5eigentensor\u4e3a\u4f8b":112,"\u4ee5embedding\u5c42\u4e3a\u4f8b":96,"\u4ee5lstm\u4e3a\u4f8b":95,"\u4ef7\u683c":104,"\u4efb\u4f55\u65f6\u5019\u5982\u679c\u9700\u8981\u6d6e\u70b9\u578b\u6570\u7ec4":121,"\u4efb\u52a1\u6765\u7ec8\u6b62\u96c6\u7fa4\u4f5c\u4e1a":124,"\u4efb\u52a1\u88ab\u8c03\u5ea6\u5728\u96c6\u7fa4\u4e2d\u65f6":123,"\u4efb\u610f\u5c06\u4e00\u4e9b\u6570\u636e\u7ec4\u5408\u6210\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":104,"\u4efb\u610f\u65f6\u523b\u53ea\u53ef\u80fd\u540c\u65f6\u6709\u4e00\u53f0\u670d\u52a1\u5668\u6545\u969c":32,"\u4f18\u5316\u524d":61,"\u4f18\u5316\u540e":61,"\u4f18\u5316\u5668\u5219\u7528\u94fe\u5f0f\u6cd5\u5219\u6765\u5bf9\u6bcf\u4e2a\u53c2\u6570\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u7684\u68af\u5ea6":110,"\u4f1a\u4ea7\u751f\u5f53\u524dpython\u4e8c\u8fdb\u5236\u7684\u5b8c\u6574\u8def\u5f84":116,"\u4f1a\u4ee5":[61,62],"\u4f1a\u4f7f\u7528":122,"\u4f1a\u4f7f\u7528\u76f8\u540c\u7684\u539f\u6570\u636e":61,"\u4f1a\u5148\u4e34\u65f6\u4fdd\u5b58\u5728":62,"\u4f1a\u5148\u8fdb\u884c\u53c2\u6570\u7684\u521d\u59cb\u5316\u4e0e\u89e3\u6790":127,"\u4f1a\u5171\u4eab\u53c2\u6570":96,"\u4f1a\u5173\u8054\u53c2\u6570":95,"\u4f1a\u5206\u522b\u4ecb\u7ecd\u96c6\u7fa4\u4f5c\u4e1a\u7684\u542f\u52a8\u548c\u505c\u6b62\u65b9\u6cd5":123,"\u4f1a\u52a0\u8f7d\u4e0a\u4e00\u8f6e\u7684\u53c2\u6570":132,"\u4f1a\u53d8\u6210\u8bcd\u8868\u4e2d\u7684\u4f4d\u7f6e":104,"\u4f1a\u542f\u52a8pserver\u4e0etrainer\u8fdb\u7a0b":127,"\u4f1a\u5728":[62,113],"\u4f1a\u5728\u5f53\u524d\u76ee\u5f55\u751f\u6210\u4e24\u4e2a\u5b50\u76ee\u5f55":113,"\u4f1a\u5728\u7f16\u8bd1paddlepaddle\u7684\u65f6\u5019\u4e0b\u8f7d\u5e76\u7f16\u8bd1mkl":62,"\u4f1a\u5927\u4e0d\u76f8\u540c":123,"\u4f1a\u5bf9\u6bcf\u4e00\u4e2a\u6fc0\u6d3b\u6682\u5b58\u4e00\u4e9b\u6570\u636e":94,"\u4f1a\u5bf9\u8bad\u7ec3\u6027\u80fd\u9020\u6210\u5f71\u54cd":94,"\u4f1a\u5bf9\u8fd9\u7c7b\u8f93\u5165\u8fdb\u884c\u62c6\u89e3":106,"\u4f1a\u5bfc\u81f4\u4e0d\u540c\u7248\u672cpython\u5728\u4e00\u4e2a\u8fdb\u7a0b\u91cc\u7684bug":65,"\u4f1a\u5c06\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u62fc\u63a5":106,"\u4f1a\u5c06\u7b2c\u4e00\u4e2a":94,"\u4f1a\u5f15\u5165":62,"\u4f1a\u6210\u4e3astep\u51fd\u6570\u7684\u8f93\u5165":106,"\u4f1a\u6253\u5370\u5230\u6807\u51c6\u8f93\u51fa":116,"\u4f1a\u628a\u8bad\u7ec3\u96c6\u548c\u6d4b\u8bd5\u96c6\u5206\u522b\u5206\u5272\u6210\u591a\u4e2a\u6587\u4ef6":123,"\u4f1a\u628acpu\u7684buffer\u5bf9\u9f50\u4e3a4096":62,"\u4f1a\u62a5\u5982\u4e0b\u7684\u9519\u8bef":94,"\u4f1a\u62a5\u9519":106,"\u4f1a\u6dfb\u52a0\u76f8\u5e94\u7684\u811a\u672c\u5728":62,"\u4f1a\u6dfb\u52a0\u76f8\u5e94\u7684\u811a\u672c\u7528\u4e8e\u6d4b\u8bd5\u548c\u5bf9\u6bd4\u5728\u4f7f\u7528mkl":61,"\u4f1a\u72ec\u7acb\u62e5\u6709\u4e00\u4efd\u8bad\u7ec3\u597d\u7684\u6a21\u578b":122,"\u4f1a\u751f\u6210\u6027\u80fd\u5206\u6790\u7ed3\u679c\u6587\u4ef6":116,"\u4f1a\u76f4\u63a5\u62a5\u9519\u9000\u51fa":65,"\u4f1a\u76f8\u5e94\u5730\u6539\u53d8\u8f93\u51fa\u7684\u5c3a\u5bf8":110,"\u4f1a\u81ea\u52a8\u4f7f\u7528mklml\u5e93\u4f5c\u4e3apaddlepaddle\u7684cblas\u548clapack\u5e93":62,"\u4f1a\u81ea\u52a8\u5173\u95ed\u5bf9\u5e94\u7684issu":109,"\u4f1a\u81ea\u52a8\u5728\u7f16\u8bd1\u65f6\u4e0b\u8f7d":97,"\u4f1a\u81ea\u52a8\u6839\u636e\u786c\u4ef6\u914d\u7f6e":62,"\u4f1a\u83b7\u53d6\u5f53\u524dnamespace\u4e0b\u7684\u6240\u6709pod":127,"\u4f1a\u88ab":123,"\u4f1a\u88ab\u62c6\u89e3\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":106,"\u4f1a\u88ab\u62c6\u89e3\u4e3a\u975e\u5e8f\u5217":106,"\u4f1a\u88abpickle\u5e8f\u5217\u5316\u6210\u5b57\u7b26\u4e32":33,"\u4f1a\u901a\u8fc7\u5224\u6570\u636e\u662f\u5426\u9644\u5e26\u6709\u5e8f\u5217\u4fe1\u606f\u6765\u5224\u65ad\u4e00\u4e2a\u5411\u91cf":121,"\u4f1a\u9020\u6210\u90ae\u4ef6\u707e\u96be":109,"\u4f20\u5165":33,"\u4f20\u7ed9dataprovider\u7684\u67d0\u4e00\u4e2aargs\u8fc7\u5927":96,"\u4f20\u9012\u7ed9\u914d\u7f6e\u6587\u4ef6\u7684\u53c2\u6570":132,"\u4f46":66,"\u4f46\u4e0d\u66b4\u9732":66,"\u4f46\u4e0d\u7528\u4e8e\u8ba1\u7b97\u68af\u5ea6":110,"\u4f46\u4e0d\u9700\u8981\u63d0\u524d\u521b\u5efa":132,"\u4f46\u4e8e\u53cc\u5c42\u5e8f\u5217\u7684lstm\u6765\u8bf4":104,"\u4f46\u53ef\u4ee5\u83b7\u53d6":94,"\u4f46\u548c\u5355\u5c42rnn\u4e0d\u540c":104,"\u4f46\u5b50\u53e5\u542b\u6709\u7684\u8bcd\u8bed\u6570\u53ef\u4ee5\u4e0d\u76f8\u7b49":106,"\u4f46\u5c3d\u91cf\u8bf7\u4fdd\u6301\u7f16\u8bd1\u548c\u8fd0\u884c\u4f7f\u7528\u7684cudnn\u662f\u540c\u4e00\u4e2a\u7248\u672c":97,"\u4f46\u5e76\u6ca1\u6709\u7ecf\u8fc7\u56de\u5f52\u6d4b\u8bd5":82,"\u4f46\u5e8f\u5217\u8f93\u51fa\u65f6":104,"\u4f46\u622a\u65ad\u65f6\u673a\u4e0d\u540c":94,"\u4f46\u6240\u6709fork\u7684\u7248\u672c\u5e93\u7684\u6240\u6709\u5206\u652f\u90fd\u76f8\u5f53\u4e8e\u7279\u6027\u5206\u652f":82,"\u4f46\u662f":[94,104],"\u4f46\u662f\u53c8\u8fc7\u4e8e\u7410\u788e":66,"\u4f46\u662f\u5728mkl":62,"\u4f46\u662f\u5728paddlepaddle\u4e2d":62,"\u4f46\u662f\u5927\u90e8\u5206\u53c2\u6570\u662f\u4e3a\u5f00\u53d1\u8005\u63d0\u4f9b\u7684":131,"\u4f46\u662f\u5b50\u5e8f\u5217\u7684\u6570\u76ee\u5fc5\u987b\u4e00\u6837":104,"\u4f46\u662f\u5e76\u4e0d\u80fd\u4fdd\u8bc1\u53c2\u6570\u540c\u6b65\u66f4\u65b0":123,"\u4f46\u662f\u652f\u6301avx\u6307\u4ee4\u96c6":109,"\u4f46\u662f\u6574\u4e2a\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4e0d\u9700\u8981\u4efb\u4f55\u8f6c\u6362":62,"\u4f46\u662f\u6bcf\u4e2a\u6837\u672c\u4ec5\u5305\u542b\u51e0\u4e2a\u8bcd":134,"\u4f46\u662f\u6ce8\u610f\u7684\u662f":62,"\u4f46\u662f\u7a81\u7136\u6709\u4e00\u4e2a10000\u957f\u7684\u5e8f\u5217":94,"\u4f46\u662f\u865a\u62df\u7684\u4e0d\u4ec5\u4ec5\u662f":108,"\u4f46\u662f\u89e3\u91ca\u6027\u8bed\u8a00":65,"\u4f46\u662f\u8c03\u8bd5python\u4e2d\u4f7f\u7528\u7684\u52a8\u6001\u94fe\u63a5\u5e93\u4e0e\u76f4\u63a5\u8c03\u8bd5\u539f\u59cb\u4e8c\u8fdb\u5236\u76f8\u6bd4\u589e\u52a0\u4e86\u5f88\u591a\u590d\u6742\u5ea6":116,"\u4f46\u662fbatch":94,"\u4f46\u6709\u503c\u7684\u5730\u65b9\u5fc5\u987b\u4e3a1":101,"\u4f46\u6709\u503c\u7684\u90e8\u5206\u53ef\u4ee5\u662f\u4efb\u4f55\u6d6e\u70b9\u6570":101,"\u4f46\u7531\u4e8ecuda\u5e93\u901a\u5e38\u9700\u8981cento":100,"\u4f46\u9700\u6ce8\u610f\u53cd\u5411op\u6ca1\u6709":111,"\u4f46eigen":112,"\u4f4d\u7f6e":104,"\u4f4f":104,"\u4f5c\u4e3a\u4e0b\u4e00\u4e2a\u5b50\u53e5memory\u7684\u521d\u59cb\u72b6\u6001":104,"\u4f5c\u4e3a\u4f8b\u5b50\u6f14\u793a\u5982\u4f55\u914d\u7f6e\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b":107,"\u4f5c\u4e3a\u53c2\u6570\u5c5e\u6027":111,"\u4f5c\u4e3a\u53c2\u6570\u7684id":96,"\u4f5c\u4e3a\u53e6\u4e00\u4e2a\u7b2c\u4e09\u65b9\u5e93\u96c6\u6210\u8fdbpaddlepaddl":62,"\u4f5c\u4e3a\u5b58\u50a8\u7cfb\u7edf":33,"\u4f5c\u4e3a\u5f53\u524d\u65f6\u523b\u8f93\u5165":106,"\u4f5c\u4e3a\u7c7b\u53e5\u67c4":65,"\u4f5c\u4e3a\u7edf\u8ba1\u7684\u57fa\u672c\u5355\u4f4d":121,"\u4f5c\u4e3a\u7f16\u8bd1\u5de5\u5177":97,"\u4f5c\u4e3a\u8c03\u7528":122,"\u4f5c\u4e3a\u8f93\u5165":121,"\u4f5c\u4e3a\u8f93\u51fa":107,"\u4f5c\u4e3aboot_layer\u4f20\u7ed9\u4e0b\u4e00\u4e2a\u5b50\u53e5\u7684memori":104,"\u4f5c\u7528":103,"\u4f60\u53ef\u4ee5\u5c06\u7f51\u7edc\u914d\u7f6e\u6210\u67d0\u4e9b\u5c42\u4f7f\u7528gpu\u8ba1\u7b97":134,"\u4f60\u8fd8\u53ef\u4ee5\u901a\u8fc7\u8fd0\u884cdjango\u6846\u67b6\u76f4\u63a5\u6fc0\u6d3b\u5de5\u5177\u7684\u670d\u52a1\u5668":113,"\u4f60\u9700\u8981\u4e00\u4e9b\u66f4\u590d\u6742\u7684\u5355\u5143\u6d4b\u8bd5\u6765\u4fdd\u8bc1\u4f60\u5b9e\u73b0\u7684\u7f51\u7edc\u5c42\u662f\u6b63\u786e\u7684":110,"\u4f60\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a\u8bbe\u5907\u7684id\u53f7":134,"\u4f60\u9700\u8981\u5728\u914d\u7f6ecmake\u65f6\u5c06":110,"\u4f60\u9700\u8981\u628a\u8be5\u6587\u4ef6\u52a0\u5165":110,"\u4f7f\u4e4b\u53d8\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u8f93\u5165":121,"\u4f7f\u4e4b\u53d8\u4e3a\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u8f93\u5165":121,"\u4f7f\u5f97\u5355\u5143\u6d4b\u8bd5\u6709\u4e00\u4e2a\u5e72\u51c0\u7684\u73af\u5883":91,"\u4f7f\u5f97\u642d\u6a21\u578b\u65f6\u66f4\u65b9\u4fbf":110,"\u4f7f\u68af\u5ea6\u7684\u63d0\u4ea4\u548c\u53c2\u6570\u7684\u66f4\u65b0\u6309\u7167\u987a\u5e8f\u65b9\u5f0f\u6267\u884c":123,"\u4f7f\u7528":[62,66,82,94,95,96,104,106,107,110,116,117,119,121,122,132,136],"\u4f7f\u75280\u53f7\u548c1\u53f7gpu\u8ba1\u7b97fc2\u5c42":134,"\u4f7f\u75280\u53f7gpu\u8ba1\u7b97fc2\u5c42":134,"\u4f7f\u75281\u53f7gpu\u8ba1\u7b97fc3\u5c42":134,"\u4f7f\u75282\u53f7\u548c3\u53f7gpu\u8ba1\u7b97fc3\u5c42":134,"\u4f7f\u7528\u4e00\u4e2a\u5c3a\u5ea6\u4e3a":110,"\u4f7f\u7528\u4e00\u4e2a\u8bcd\u524d\u4e24\u4e2a\u8bcd\u548c\u540e\u4e24\u4e2a\u8bcd":94,"\u4f7f\u7528\u4e0a\u6587\u521b\u5efa\u7684yaml\u6587\u4ef6\u521b\u5efakubernet":126,"\u4f7f\u7528\u4e0b\u9762\u547d\u4ee4":33,"\u4f7f\u7528\u4e0b\u9762\u7684\u547d\u4ee4\u6765\u8fd0\u884c\u5b83":113,"\u4f7f\u7528\u4e86\u540c\u6837\u7684parameter\u548cbia":96,"\u4f7f\u7528\u4ee5\u4e0a\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u8fdb\u884c\u9884\u6d4b":101,"\u4f7f\u7528\u52a8\u6001\u5e93":65,"\u4f7f\u7528\u53c2\u6570":[97,123],"\u4f7f\u7528\u540c\u6837\u7684\u8bad\u7ec3\u6570\u636eblock":32,"\u4f7f\u7528\u57fa\u4e8edocker\u5bb9\u5668\u7684\u7f16\u8bd1\u65b9\u5f0f":136,"\u4f7f\u7528\u591a\u5757\u663e\u5361\u8bad\u7ec3":94,"\u4f7f\u7528\u591a\u7ebf\u7a0b\u8bad\u7ec3":94,"\u4f7f\u7528\u5b66\u4e60\u5b8c\u6210\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u751f\u6210\u5e8f\u5217":107,"\u4f7f\u7528\u5b83\u4f1a\u5f00\u542f\u4e00\u4e2ahttp\u670d\u52a1":116,"\u4f7f\u7528\u5bb9\u5668\u65b9\u5f0f\u8fd0\u884c\u8bad\u7ec3\u4efb\u52a1\u7684kubernet":127,"\u4f7f\u7528\u6211\u4eec\u4e4b\u524d\u6784\u9020\u7684\u955c\u50cf":126,"\u4f7f\u7528\u6570\u503c\u6cd5\u68c0\u6d4b\u68af\u5ea6\u6b63\u786e\u6027\u548c\u7a33\u5b9a\u6027":111,"\u4f7f\u7528\u6587\u6863":111,"\u4f7f\u7528\u663e\u5361\u8bad\u7ec3":94,"\u4f7f\u7528\u667a\u80fd\u6307\u9488\u7684\u539f\u56e0\u662f":66,"\u4f7f\u7528\u6848\u4f8b":133,"\u4f7f\u7528\u6d41\u7a0b":120,"\u4f7f\u7528\u73af\u5883\u53d8\u91cf":123,"\u4f7f\u7528\u7684\u53c2\u6570\u4e0epaddlepaddle\u7533\u8bf7\u7684buffer\u5171\u7528\u4e00\u5757\u5185\u5b58":62,"\u4f7f\u7528\u76f8\u5bf9\u8def\u5f84\u7684\u5f15\u7528\u65b9\u5f0f":66,"\u4f7f\u7528\u8005\u4e0d\u9700\u8981\u5173\u5fc3":132,"\u4f7f\u7528\u8005\u53ea\u9700\u8981\u5173\u6ce8\u4e8e\u8bbe\u8ba1rnn\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u5b8c\u6210\u7684\u8ba1\u7b97":106,"\u4f7f\u7528\u8005\u65e0\u9700\u5173\u5fc3\u8fd9\u4e2a\u53c2\u6570":132,"\u4f7f\u7528\u8005\u901a\u5e38\u65e0\u9700\u5173\u5fc3":132,"\u4f7f\u7528\u8be5learning_rate_schedule\u65f6":96,"\u4f7f\u7528\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u5b8c\u6210\u5bf9\u65b0\u6570\u636e\u7684\u9884\u6d4b":32,"\u4f7f\u7528\u8fd9\u79cd\u65b9\u5f0f":[104,122],"\u4f7f\u7528\u8fdc\u7a0b\u7a00\u758f\u65b9\u5f0f\u8bad\u7ec3\u65f6":110,"\u4f7f\u7528\u9759\u6001\u5e93\u548c\u52a8\u6001\u5e93\u96be\u5ea6\u5dee\u4e0d\u591a":65,"\u4f7f\u7528c":[66,119],"\u4f7f\u7528c99\u505a\u63a5\u53e3":65,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c11\u7684\u539f\u56e0\u662f":65,"\u4f7f\u7528c99\u800c\u4e0d\u4f7f\u7528c89":65,"\u4f7f\u7528checkgrad\u6a21\u5f0f\u65f6\u7684\u53c2\u6570\u53d8\u5316\u5927\u5c0f":132,"\u4f7f\u7528cmake\u7684\u8bdd":116,"\u4f7f\u7528cpu\u4e24\u7ebf\u7a0b\u8ba1\u7b97fc4\u5c42":134,"\u4f7f\u7528cpu\u8ba1\u7b97fc4\u5c42":134,"\u4f7f\u7528docker":98,"\u4f7f\u7528docker\u5b89\u88c5\u548c\u8fd0\u884cpaddlepaddle\u53ef\u4ee5\u65e0\u9700\u8003\u8651":98,"\u4f7f\u7528docker\u5b89\u88c5\u8fd0\u884c":99,"\u4f7f\u7528docker\u5c31\u4e0d\u7528\u914d\u7f6e\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883\u4e86":108,"\u4f7f\u7528docker\u6784\u5efapaddlepaddle\u7684\u6587\u6863":113,"\u4f7f\u7528docker\u7684\u60c5\u51b5\u4e0b":97,"\u4f7f\u7528eigen\u8fdb\u884c\u77e9\u9635\u8ba1\u7b97":136,"\u4f7f\u7528init":134,"\u4f7f\u7528lstm\u4f5c\u4e3aencod":104,"\u4f7f\u7528memory\u7684rnn\u5b9e\u73b0\u4fbf\u5982\u4e0b\u56fe\u6240\u793a":104,"\u4f7f\u7528model":134,"\u4f7f\u7528openblas\u7684\u955c\u50cf":98,"\u4f7f\u7528openblas\u8fdb\u884c\u77e9\u9635\u8ba1\u7b97":136,"\u4f7f\u7528paddlepaddl":[119,122],"\u4f7f\u7528pip\u5b89\u88c5":99,"\u4f7f\u7528rdma\u8fd8\u662ftcp\u4f20\u8f93\u534f\u8bae":132,"\u4f7f\u7528regress":82,"\u4f7f\u7528swig\u53ea\u652f\u6301cpython\u89e3\u91ca\u5668":65,"\u4f7f\u7528swig\u9700\u8981\u591a\u8bed\u8a00\u7ed1\u5b9a\u7684\u5f00\u53d1\u4eba\u5458\u719f\u7ec3\u638c\u63e1swig\u914d\u7f6e":65,"\u4f7f\u7528void":65,"\u4f7f\u8be5\u5c42\u7684\u53c2\u6570\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4fdd\u6301\u4e0d\u53d8":96,"\u4f86":104,"\u4f8b\u5982":[33,65,66,82,94,95,97,101,104,107,110,117,121,127,131,132,134],"\u4f8b\u5982\u4e0b\u56fe\u4e2d":116,"\u4f8b\u5982\u4e0b\u9762\u4ee3\u7801":94,"\u4f8b\u5982\u4e5f\u53ef\u5728\u7a0b\u5e8f\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u518d\u52a0\u8f7d\u53e6\u5916\u4e00\u4e2a\u6a21\u578b":122,"\u4f8b\u5982\u4f7f\u7528":94,"\u4f8b\u5982\u542b\u6709\u591a\u4e2a\u901a\u9053\u7684\u56fe\u7247":121,"\u4f8b\u5982\u5728deepspeech2":61,"\u4f8b\u5982\u5bf9\u4e8ejava\u6216\u8005python":65,"\u4f8b\u5982\u5bf9\u4e8ejava\u6765\u8bf4":65,"\u4f8b\u5982\u5bf9\u4e8epython":65,"\u4f8b\u5982\u5c06\u7b2c\u4e00\u6761\u6570\u636e\u8f6c\u5316\u4e3a":104,"\u4f8b\u5982\u6587\u672c\u5206\u7c7b\u4e2d":104,"\u4f8b\u5982\u672c\u4f8b\u4e2d\u7684\u4e24\u4e2a\u7279\u5f81":104,"\u4f8b\u5982\u673a\u5668\u4e0a\u67094\u5757gpu":94,"\u4f8b\u5982c":65,"\u4f8b\u5982java\u4e0epython\u7684\u9519\u8bef\u5904\u7406\u662f\u76f4\u63a5\u6254\u51fa\u6765except":65,"\u4f8b\u5982output\u76ee\u5f55\u4e0b\u5c31\u5b58\u653e\u4e86\u8f93\u51fa\u7ed3\u679c":127,"\u4f8b\u5982python\u53ef\u4ee5\u4f7f\u7528":65,"\u4f8b\u5982python\u7684":65,"\u4f8b\u5982rnn":61,"\u4f8b\u5982sigmoid":110,"\u4f8b\u5b50\u4e2d\u4e3a3\u4e2a":123,"\u4f8b\u5b50\u4e2d\u662f":110,"\u4f8b\u5b50\u4e2d\u662f0":110,"\u4f8b\u5b50\u4e2d\u662f100":110,"\u4f8b\u5b50\u4e2d\u662f4096":110,"\u4f8b\u5b50\u4e2d\u662f8192":110,"\u4f8b\u5b50\u4e2d\u662ffc":110,"\u4f8b\u5b50\u4e2d\u662fsoftmax":110,"\u4f9bpaddlepaddle\u52a0\u8f7d":132,"\u4f9d\u636e\u662f\u5426\u5305\u542bkernel":111,"\u4f9d\u6b21\u7c7b\u63a8":82,"\u4f9d\u8d56":[97,100],"\u4f9d\u8d56\u73af\u5883\u5373\u53ef\u8fd0\u884c":98,"\u4f9d\u8d56libpython2":97,"\u4fbf\u5229":104,"\u4fbf\u548c\u5355\u5c42rnn\u914d\u7f6e\u4e2d\u7684":104,"\u4fbf\u5b9c":104,"\u4fbf\u662f\u5c06\u9759\u6001\u5e93\u52a0\u5165jvm\u4e2d":65,"\u4fdd\u5b58\u6a21\u578b\u53c2\u6570\u7684\u76ee\u5f55":132,"\u4fdd\u5b58\u7684\u53c2\u6570\u4e5f\u662ffloat\u7c7b\u578b":96,"\u4fdd\u5b58\u7f51\u7edc\u5c42\u8f93\u51fa\u7ed3\u679c\u7684\u76ee\u5f55":132,"\u4fdd\u5b58\u9884\u6d4b\u7ed3\u679c\u7684\u6587\u4ef6\u540d":132,"\u4fdd\u6301\u5c3d\u91cf\u5c11\u7684commit":109,"\u4fdd\u8bc1\u4f7f\u7528gpu\u8bad\u7ec3\u65f6\u4e5f\u53ef\u4ee5\u83b7\u5f97":94,"\u4fe1\u53f7\u6765\u81ea\u52a8\u7ec8\u6b62\u5b83\u542f\u52a8\u7684\u6240\u6709\u8fdb\u7a0b":124,"\u4fe1\u606f":121,"\u4fee\u590d\u6240\u6709bug\u540e":82,"\u4fee\u590ddocker\u7f16\u8bd1\u955c\u50cf\u95ee\u9898":82,"\u4fee\u6539":[62,82,126],"\u4fee\u6539\u542f\u52a8\u811a\u672c\u540e":126,"\u4fee\u6539\u6210":82,"\u4fee\u6539\u6210\u66f4\u5feb\u7684\u7248\u672c":117,"\u4fee\u6539\u6587\u6863":114,"\u503c\u5f97\u6ce8\u610f\u7684\u662f":[104,109],"\u503c\u5f97\u6df1\u5165\u5206\u6790":117,"\u503c\u7c7b\u578b":134,"\u5047\u5982\u6211\u4eec\u662f\u4e09\u5206\u7c7b\u95ee\u9898":96,"\u5047\u8bbe":110,"\u5047\u8bbe\u60a8\u5df2\u7ecf\u5728\u5f53\u524d\u76ee\u5f55":98,"\u5047\u8bbe\u635f\u5931\u51fd\u6570\u662f":110,"\u5047\u8bbe\u7b2c\u4e00\u4e2alayer\u7684\u8f93\u51faa\u662f\u4e00\u4e2a":94,"\u504f\u7f6e\u53c2\u6570\u7684\u5927\u5c0f":110,"\u505a\u4e00\u4e2a\u4ecb\u7ecd":112,"\u505a\u53ea\u8bfb\u6302\u8f7d":33,"\u505a\u5982\u4e0b\u51e0\u4e2a\u64cd\u4f5c":82,"\u505a\u63a5\u53e3":65,"\u505a\u68af\u5ea6\u68c0\u6d4b":111,"\u505a\u68c0\u67e5":111,"\u505c\u6b62\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":32,"\u505c\u6b62\u52a0\u8f7d\u6570\u636e":132,"\u505c\u7535":104,"\u5141\u8bb8\u5916\u7f51\u8bbf\u95ee\u8fd9\u4e2ahttp\u670d\u52a1":116,"\u5143\u7d20":103,"\u5143\u7d20\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u5e8f\u5217\u6240\u643a\u5e26\u7684\u91cd\u8981\u4fe1\u606f":121,"\u5143\u7d20\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u91cd\u8981\u7684\u8f93\u5165\u4fe1\u606f":103,"\u5145\u5206\u53d1\u6325\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u4f18\u52bf":61,"\u5145\u5206\u5c55\u73b0\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u4f18\u52bf":62,"\u5148\u4ece\u5355\u7ebf\u7a0b\u5f00\u59cb":116,"\u5148\u5378\u8f7d\u4e4b\u524d\u7684\u7248\u672c":97,"\u5148\u5b8c\u6210\u5bf9\u6743\u91cd\u7684packing\u64cd\u4f5c":61,"\u5148\u5b9e\u73b0\u6a21\u578b\u63a8\u65ad\u7684api":66,"\u5148\u627e\u51fa\u53c2\u6570":95,"\u5148\u67e5\u770b\u4e00\u4e0b\u662f\u5426\u66fe\u7ecf\u5b89\u88c5\u8fc7paddl":91,"\u5148\u68c0\u67e5\u5173\u952e\u8def\u5f84\u7684\u6027\u80fd\u95ee\u9898":116,"\u514b\u9686\u4e0b\u9762":138,"\u5168\u5bb6":104,"\u5168\u8fde\u63a5\u5c42\u4ee5\u4e00\u4e2a\u7ef4\u5ea6\u4e3a":110,"\u5168\u8fde\u63a5\u5c42\u6ca1\u6709\u7f51\u7edc\u5c42\u914d\u7f6e\u7684\u8d85\u53c2\u6570":110,"\u5168\u8fde\u63a5\u5c42\u7684\u5b9e\u73b0\u4f4d\u4e8e":110,"\u5168\u8fde\u63a5\u5c42\u7684\u6bcf\u4e2a\u8f93\u51fa\u90fd\u8fde\u63a5\u5230\u4e0a\u4e00\u5c42\u7684\u6240\u6709\u7684\u795e\u7ecf\u5143\u4e0a":110,"\u5168\u8fde\u63a5\u5c42python\u5c01\u88c5\u7684\u4f8b\u5b50\u4e2d\u5305\u542b\u4e0b\u9762\u51e0\u6b65":110,"\u516c\u5f0f":98,"\u5171\u4eab\u4e00\u4e2aop\u5b9a\u4e49":111,"\u5171\u4eab\u5185\u5b58":62,"\u5171\u4eab\u540c\u4e00\u4e2a\u6743\u91cd":61,"\u5171\u4eab\u540c\u4e00\u4e2akernel\u65f6":111,"\u5171\u4eab\u5b58\u50a8\u6302\u5728\u7684\u8def\u5f84":127,"\u5173\u4e8e\u4ec0\u4e48\u662f":121,"\u5173\u4e8e\u5728paddlepaddle\u4e2d\u5982\u4f55\u4f7f\u7528eigen\u5e93":111,"\u5173\u4e8e\u65f6\u95f4\u5e8f\u5217":104,"\u5173\u4e8e\u6784\u5efa\u548c\u6d4b\u8bd5\u7684\u66f4\u591a\u4fe1\u606f":109,"\u5173\u4e8eavx":98,"\u5173\u4e8eeigen":112,"\u5173\u4e8elstm":95,"\u5173\u4e8epaddlepaddle\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3":127,"\u5173\u4e8epaddlepaddle\u7684\u66f4\u591a\u4f7f\u7528\u65b9\u6cd5\u8bf7\u53c2\u8003":101,"\u5173\u4e8eunbound":106,"\u5173\u952e\u8bcd\u5305\u62ec":109,"\u5176\u4e2d":[65,82,94,96,101,107,110,116,136,138],"\u5176\u4e2d\u5305\u542b\u4e86\u7528\u6237\u7684\u8bad\u7ec3\u7a0b\u5e8f":123,"\u5176\u4e2d\u5305\u542b\u6240\u4f9d\u8d56\u7684\u6240\u6709\u7b2c\u4e09\u65b9\u5e93":137,"\u5176\u4e2d\u5305\u542b\u6240\u6709c":137,"\u5176\u4e2d\u5305\u542bpaddlepaddle\u7684c":137,"\u5176\u4e2d\u6bcf\u4e2a\u5143\u7d20\u662f\u53cc\u5c42\u5e8f\u5217\u4e2d\u6bcf\u4e2asubseq\u6700\u540e\u4e00\u4e2a":103,"\u5176\u4e2dcheckgrad\u4e3b\u8981\u4e3a\u5f00\u53d1\u8005\u4f7f\u7528":132,"\u5176\u4e2dmean\u548cstd\u662f\u8bad\u7ec3\u914d\u7f6e\u4e2d\u7684\u53c2\u6570":132,"\u5176\u4e2dx\u8868\u793a\u8f93\u5165\u6570\u636e\u662f\u4e00\u4e2a\u7ef4\u5ea6\u4e3a2\u7684\u7a20\u5bc6\u5411\u91cf":101,"\u5176\u4e3b\u8981\u63a5\u53e3\u5982\u4e0b":112,"\u5176\u4ed6\u4eba\u53ef\u4ee5\u590d\u73b0\u95ee\u9898\u4ee5\u4fbf\u5e2e\u52a9":108,"\u5176\u4ed6\u5185\u5b58\u6742\u9879":94,"\u5176\u4ed6\u5185\u5b58\u6742\u9879\u662f\u6307paddlepaddle\u672c\u8eab\u6240\u7528\u7684\u4e00\u4e9b\u5185\u5b58":94,"\u5176\u4ed6\u51fd\u6570\u5747\u8fd4\u56de":66,"\u5176\u4ed6\u6240\u6709\u5c42\u90fd\u4f1a\u4f7f\u7528gpu\u8ba1\u7b97":134,"\u5176\u4ed6\u7528\u6237\u7684fork\u7248\u672c\u5e93\u5e76\u4e0d\u9700\u8981\u4e25\u683c\u9075\u5b88":82,"\u5176\u4ed6\u7684\u4f9d\u8d56\u8f6f\u4ef6":97,"\u5176\u4ed6\u914d\u7f6e\u53c2\u6570":[136,137],"\u5176\u4ed6\u9ad8\u7ea7\u529f\u80fd\u5305\u62ec\u5b9a\u4e49\u591a\u4e2amemori":107,"\u5176\u4f1a\u81ea\u52a8\u88ab\u52a0\u5165\u7f16\u8bd1\u5217\u8868":110,"\u5176\u547d\u4ee4\u5982\u4e0b":116,"\u5176\u5b83\u53ef\u9009\u7f16\u8bd1\u9009\u9879\u6309\u9700\u8fdb\u884c\u8bbe\u5b9a":119,"\u5176\u5b83layer\u7684\u8f93\u51fa":106,"\u5176\u5b9e\u4e5f\u662f\u548c\u6bcf\u4e2amini":94,"\u5176\u6b21":104,"\u5176\u8bf4\u660e\u5982\u4e0b":104,"\u5176\u8f6c\u6362\u6b21\u6570\u51cf\u5c11\u81f3":61,"\u5176\u8f93\u51fa\u88ab\u7528\u4f5cmemory\u7684\u521d\u59cb\u503c":107,"\u5176name\u7531\u53c2\u6570":95,"\u5177\u4f53\u4f7f\u7528\u65b9\u6cd5\u4e3a":[66,94],"\u5177\u4f53\u505a\u6cd5\u8bf7\u53c2\u8003":108,"\u5177\u4f53\u539f\u56e0\u53c2\u8003":66,"\u5177\u4f53\u53ef\u4ee5\u53c2\u8003":[94,110],"\u5177\u4f53\u53ef\u4ee5\u53c2\u8003mkl":62,"\u5177\u4f53\u53ef\u53c2\u8003\u6587\u6863":106,"\u5177\u4f53\u5b9e\u73b0\u65b9\u5f0f\u6bd4\u5982":[61,62],"\u5177\u4f53\u60c5\u51b5\u56e0\u4eba\u800c\u5f02":117,"\u5177\u4f53\u64cd\u4f5c\u5982\u4e0b":91,"\u5177\u4f53\u6b65\u9aa4\u5982\u4e0b":91,"\u5177\u4f53\u7684\u5b8c\u6210\u72b6\u6001\u53ef\u4ee5\u53c2\u89c1":62,"\u5177\u4f53\u7684\u89e3\u51b3\u65b9\u6cd5\u662f":91,"\u5177\u4f53\u8bf7\u53c2\u8003":[66,109],"\u5177\u4f53\u8bf7\u89c1":109,"\u5177\u6709\u76f8\u540c\u7684\u7ed3\u679c\u4e86":104,"\u5185":107,"\u5185\u5b58":117,"\u5185\u5b58\u4e0d\u8db3":92,"\u5185\u5b58\u5bb9\u9650\u9608\u503c":132,"\u5185\u5bb9":111,"\u5185\u5bb9\u5982\u4e0b":126,"\u5185\u5c42\u5e8f\u5217\u5728":121,"\u5185\u5c42inner_step\u7684recurrent_group\u548c\u5355\u5c42\u5e8f\u5217\u7684\u51e0\u4e4e\u4e00\u6837":104,"\u5185\u5df2\u7ecf\u5305\u542bpaddlepaddle\u7684\u6267\u884c\u7a0b\u5e8f\u4f46\u662f\u8fd8\u6ca1\u4e0a\u8ff0\u529f\u80fd":127,"\u5185\u7f6e\u7684":122,"\u5185\u90e8":[122,127],"\u5185\u90e8\u5b58\u50a8":62,"\u5185\u90e8\u7531":[121,122],"\u5185\u90e8\u9a71\u52a8python\u89e3\u91ca\u5668\u8fdb\u884c\u6a21\u578b\u914d\u7f6e\u89e3\u6790\u548c\u6570\u636e\u8bfb\u53d6":65,"\u518d\u4ee5":111,"\u518d\u505a\u4e00\u5b9a\u7684reshap":95,"\u518d\u5199\u5165\u7f51\u7edc\u53c2\u6570":96,"\u518d\u5728\u6bcf\u4e00\u4e2aapi\u4e2d\u81ea\u5df1\u68c0\u67e5\u7c7b\u578b":65,"\u518d\u57fa\u4e8e":82,"\u518d\u5b89\u88c5":[91,100],"\u518d\u5bf9\u6bcf\u4e00\u4e2a\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u8fdb\u884c\u5904\u7406":104,"\u518d\u5bf9\u6bcf\u4e00\u53e5\u8bdd\u7684\u7f16\u7801\u5411\u91cf\u7528lstm\u7f16\u7801\u6210\u4e00\u4e2a\u6bb5\u843d\u7684\u5411\u91cf":104,"\u518d\u5bf9\u8fd9\u4e2a\u6bb5\u843d\u5411\u91cf\u8fdb\u884c\u5206\u7c7b":104,"\u518d\u5c06\u66f4\u65b0\u540e\u7684\u53c2\u6570\u4e0b\u53d1\u5230\u6bcf\u4e2a\u8ba1\u7b97\u8282\u70b9":123,"\u518d\u5f00\u542f\u591a\u7ebf\u7a0b":116,"\u518d\u628a\u5df2\u8f6c\u6362\u4e3apacked\u683c\u5f0f\u7684\u6570\u636e\u4f20\u9012\u7ed9\u90a3\u4e9b\u590d\u7528\u540c\u4e00\u6570\u636e\u7684gemm":61,"\u518d\u6307\u5b9a":97,"\u518d\u68c0\u67e5\u5176\u4ed6\u90e8\u5206\u7684\u6027\u80fd\u95ee\u9898":116,"\u518d\u6b21\u5bf9\u4ee3\u7801\u8fdb\u884c\u6027\u80fd\u5206\u6790":117,"\u518d\u6b21\u8fdb\u884c\u6027\u80fd\u5206\u6790":116,"\u518d\u7528\u8fd9\u4e2a\u68af\u5ea6\u53bb\u548c":110,"\u518d\u901a\u8fc7\u51fd\u6570":127,"\u518d\u91cd\u65b0\u5b89\u88c5":97,"\u5199\u4ee3\u7801":65,"\u5199\u5165\u5feb\u7167\u6570\u636e":32,"\u5199\u5165\u6587\u4ef6\u4e2d":122,"\u5199\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5\u662f\u4e00\u4e2a\u9a8c\u8bc1\u65b0\u5b9e\u73b0\u7684\u5c42\u662f\u5426\u6b63\u786e\u7684\u76f8\u5bf9\u7b80\u5355\u7684\u529e\u6cd5":110,"\u5199\u7684":116,"\u51c6\u5907":104,"\u51c6\u5907\u60a8\u7684\u8ba1\u7b97\u96c6\u7fa4":123,"\u51c6\u5907\u8bad\u7ec3\u6570\u636e":128,"\u51c6\u5907\u8bad\u7ec3\u6570\u636e\u548c\u9a8c\u8bc1\u6570\u636e\u96c6":123,"\u51c6\u5907\u9884\u6d4b\u6a21\u578b\u548c":122,"\u51c6\u5907\u9884\u6d4b\u6a21\u578b\u90e8\u5206":122,"\u51cf\u5c0f\u5e8f\u5217\u7684\u957f\u5ea6":94,"\u51cf\u5c0f\u8fd9\u4e2a\u5185\u5b58\u6c60\u5373\u53ef\u51cf\u5c0f\u5185\u5b58\u5360\u7528":94,"\u51cf\u5c0fbatch":94,"\u51e0\u53f0\u5230\u51e0\u5343\u53f0\u89c4\u6a21":123,"\u51fa\u53bb\u73a9":104,"\u51fa\u5dee":104,"\u51fa\u6765":104,"\u51fa\u73b0":91,"\u51fa\u73b0\u4ee5\u4e0b\u9519\u8bef":96,"\u51fa\u73b0\u8be5\u9519\u8bef\u7684\u539f\u56e0\u4e00\u822c\u662f\u7528\u6237\u5bf9\u4e0d\u540clayer\u7684\u53c2\u6570":95,"\u51fa\u73b0\u8fd9\u4e2a\u95ee\u9898\u7684\u4e3b\u8981\u539f\u56e0\u662f":[91,100],"\u51fd\u6570":[61,62,107,110,116,117,121],"\u51fd\u6570\u4e2d\u64cd\u4f5c\u7684\u91cd\u8981\u53d8\u91cf\u7684\u8be6\u7ec6\u89e3\u91ca":111,"\u51fd\u6570\u5047\u8bbe":107,"\u51fd\u6570\u52a0\u5230\u4ee3\u7801\u4e2d":117,"\u51fd\u6570\u5373\u53ef\u5b8c\u6210\u8f6c\u6362":33,"\u51fd\u6570\u53ea\u5173\u6ce8\u4e8ernn\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u7684\u8ba1\u7b97":106,"\u51fd\u6570\u540d":116,"\u51fd\u6570\u540d\u4e3a":66,"\u51fd\u6570\u547d\u540d":65,"\u51fd\u6570\u5b9a\u4e49\u8f93\u5165":111,"\u51fd\u6570\u5b9e\u9645\u4f7f\u7528\u7684\u603b\u65f6\u95f4":116,"\u51fd\u6570\u5f97\u5230\u7684\u68af\u5ea6\u53bb\u5bf9\u6bd4":110,"\u51fd\u6570\u5fc5\u987b\u5148\u8c03\u7528\u57fa\u7c7b\u4e2d\u7684\u51fd\u6570":110,"\u51fd\u6570\u5fc5\u987b\u8fd4\u56de\u4e00\u4e2a\u6216\u591a\u4e2alayer\u7684\u8f93\u51fa":106,"\u51fd\u6570\u603b\u65f6\u95f4":116,"\u51fd\u6570\u6307\u51fa\u4e86\u5728\u8bad\u7ec3\u65f6\u9700\u8981\u4ece\u53c2\u6570\u670d\u52a1\u5668\u53d6\u51fa\u7684\u884c":110,"\u51fd\u6570\u6765\u5c06\u4fe1\u606f\u8f93\u51fa\u5230\u754c\u9762\u4e2d":117,"\u51fd\u6570\u7684\u5b9e\u73b0\u662f\u6b63\u786e\u7684":110,"\u51fd\u6570\u7684\u5f00\u5934\u5fc5\u987b\u8c03\u7528":110,"\u51fd\u6570\u7684\u603b\u5171\u8017\u65f6\u5f88\u957f":116,"\u51fd\u6570\u7684\u8c03\u7528\u6b21\u6570":116,"\u51fd\u6570\u80fd\u591f\u5c06\u4f7f\u7528":122,"\u51fd\u6570\u91cc\u5b9e\u73b0":111,"\u5206\u4e3a":122,"\u5206\u522b\u4e3a\u6570\u636e\u8f93\u5165\u6dfb\u52a0\u5916\u5c42\u5e8f\u5217\u548c\u5185\u5c42\u5e8f\u5217\u7684\u5e8f\u5217\u4fe1\u606f":121,"\u5206\u522b\u4ece\u8bcd\u8bed\u548c\u53e5\u5b50\u7ea7\u522b\u7f16\u7801\u8f93\u5165\u6570\u636e":106,"\u5206\u522b\u4ee3\u8868\u8f93\u5165\u6570\u636e":62,"\u5206\u522b\u4f7f\u7528\u5355\u53cc\u5c42rnn\u4f5c\u4e3a\u7f51\u7edc\u914d\u7f6e\u7684\u6a21\u578b":104,"\u5206\u522b\u5b9a\u4e49\u5b50\u53e5\u7ea7\u522b\u548c\u8bcd\u8bed\u7ea7\u522b\u4e0a\u9700\u8981\u5b8c\u6210\u7684\u8fd0\u7b97":106,"\u5206\u522b\u5bf9\u5e94capi":82,"\u5206\u522b\u662f":103,"\u5206\u522b\u662frnn\u72b6\u6001\u548c\u8f93\u5165\u7684\u53d8\u6362\u77e9\u9635":107,"\u5206\u522b\u662fsentences\u548clabel":104,"\u5206\u522b\u662fwords\u548clabel":104,"\u5206\u522b\u8ba1\u7b97\u6bcf\u4e2a\u53c2\u6570\u7684\u68af\u5ea6":110,"\u5206\u522b\u8fdb\u884c\u5e8f\u5217\u64cd\u4f5c":104,"\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1":32,"\u5206\u5e03\u5f0f\u8ba1\u7b97\u5e73\u53f0\u901a\u5e38\u4f1a\u901a\u8fc7api\u6216\u8005\u73af\u5883\u53d8\u91cf\u63d0\u4f9b\u4efb\u52a1\u8fd0\u884c\u9700\u8981\u7684\u53c2\u6570":123,"\u5206\u5e03\u5f0f\u8bad\u7ec3":114,"\u5206\u5e03\u5f0f\u8bad\u7ec3\u67b6\u6784\u5982\u4e0b\u56fe\u6240\u793a":123,"\u5206\u652f":[82,109],"\u5206\u652f\u4e00\u65e6\u5efa\u7acb":82,"\u5206\u652f\u4e0a":109,"\u5206\u652f\u4e0a\u521b\u5efa\u65b0\u5206\u652f":109,"\u5206\u652f\u4e2d":82,"\u5206\u652f\u4e3a\u5f00\u53d1":82,"\u5206\u652f\u4e3a\u6bcf\u4e00\u6b21release\u65f6\u5efa\u7acb\u7684\u4e34\u65f6\u5206\u652f":82,"\u5206\u652f\u4e3a\u7a33\u5b9a":82,"\u5206\u652f\u529f\u80fd\u7684\u5c01\u95ed":82,"\u5206\u652f\u5408\u5165":82,"\u5206\u652f\u5408\u5165master\u5206\u652f":82,"\u5206\u652f\u540c\u6b65\u4e3b\u7248\u672c\u5e93\u7684":82,"\u5206\u652f\u540d":109,"\u5206\u652f\u540d\u4e3a":82,"\u5206\u652f\u5b58\u5728\u7684\u65f6\u5019":82,"\u5206\u652f\u6d3e\u751f\u51fa\u65b0\u7684\u5206\u652f":82,"\u5206\u652f\u7528\u6765\u6d4b\u8bd5\u53ea\u9700\u8981\u8ba1\u7b97\u4e00\u4e2a\u8f93\u5165\u68af\u5ea6\u7684\u60c5\u51b5":111,"\u5206\u652f\u7684\u7248\u672c\u90fd\u662f\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5\u548c\u56de\u5f52\u6d4b\u8bd5\u7684\u7248\u672c":82,"\u5206\u652f\u7684\u7248\u672c\u90fd\u7ecf\u8fc7\u5355\u5143\u6d4b\u8bd5":82,"\u5206\u652f\u89c4\u8303":109,"\u5206\u6790\u5f97\u5230\u7684\u4fe1\u606f\u7528\u4e8e\u534f\u52a9\u8fdb\u884c\u7a0b\u5e8f\u7684\u4f18\u5316":117,"\u5206\u7247":32,"\u5206\u7c7b\u4efb\u52a1\u4e2d\u7c7b\u522b\u6807\u7b7e":121,"\u5206\u914d\u5230\u5f53\u524d\u6570\u636e\u5757\u6837\u672c\u6570\u7684\u56db\u5206\u4e4b\u4e00":132,"\u5207\u6362\u5230":109,"\u5207\u6362\u5230\u6240\u5efa\u5206\u652f":109,"\u5217\u5143\u7d20\u6392\u5217\u6210\u7684\u77e9\u5f62\u9635\u5217":121,"\u5217\u540d":116,"\u5217\u8868\u5982\u4e0b":101,"\u5219\u4e0d\u9700\u8981\u91cd\u5199\u8be5\u51fd\u6570":110,"\u5219\u4f1a\u4f7f\u7528openblas\u4f5c\u4e3ablas\u5e93":97,"\u5219\u4f7f\u7528":137,"\u5219\u4f7f\u7528\u540c\u6b65\u8bad\u7ec3":132,"\u5219\u4f7f\u7528\u542f\u52a8\u53c2\u6570\u5b9a\u4e49\u7684\u521d\u59cb\u5316\u65b9\u6cd5\u521d\u59cb\u5316\u53c2\u6570":32,"\u5219\u4f7f\u7528\u8be5\u53c2\u6570\u4f5c\u4e3a\u9ed8\u8ba4\u503c":132,"\u5219\u53ef\u8bbe\u7f6e":[136,137,138],"\u5219\u5e76\u4e0d\u4f1a\u7b49\u5f85\u6240\u6709trainer\u63d0\u4ea4\u68af\u5ea6\u624d\u66f4\u65b0\u53c2\u6570":123,"\u5219\u5ffd\u7565":32,"\u5219\u603b\u4f1a\u663e\u793a\u963b\u9694\u6458\u8981\u4fe1\u606f":132,"\u5219\u628a\u53e6\u4e00\u4e2a\u6162\u901f\u7684kill\u6389":32,"\u5219\u662f\u5e26gui\u7684nvidia\u53ef\u89c6\u5316\u6027\u80fd\u5206\u6790\u5de5\u5177":117,"\u5219\u663e\u793a\u963b\u9694\u6027\u80fd\u7684\u6458\u8981\u4fe1\u606f":132,"\u5219\u76f4\u63a5\u5f15\u5165\u53e6\u4e00\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":66,"\u5219\u8bbe\u7f6e\u6210":[136,138],"\u5219\u9700\u8981\u4f7f\u7528\u7b49\u4e8e\u6743\u91cd\u53c2\u6570\u89c4\u6a21\u5927\u7ea65\u500d\u7684\u5185\u5b58":94,"\u5219\u9700\u8981\u5206\u522b\u7f16\u8bd1\u771f\u673a\u548c\u6a21\u62df\u5668\u7248\u672c":137,"\u5219\u9700\u8981\u56de\u6eda\u5230\u4e0a\u4e00\u4e2a\u68c0\u67e5\u70b9":32,"\u5219\u9700\u8981\u5728\u672c\u673a\u5b89\u88c5\u4e0b\u9762\u7ae0\u8282\u5217\u51fa\u7684":97,"\u5219\u9700\u8981\u624b\u52a8\u62f7\u8d1d\u5c5e\u4e8e\u6bcf\u4e2atrainer\u8282\u70b9\u7684\u8bad\u7ec3\u6570\u636e\u5230\u5bf9\u5e94\u7684\u8282\u70b9\u4e0a":123,"\u521b\u5efa":[62,121,122],"\u521b\u5efa\u4e00\u4e2a":102,"\u521b\u5efa\u4e00\u4e2akubernet":127,"\u521b\u5efa\u5e76\u5207\u6362\u5230\u65b0\u5206\u652f":109,"\u521b\u5efa\u6210\u529f\u540e":127,"\u521b\u5efa\u65e5\u5fd7\u76ee\u5f55":128,"\u521b\u5efa\u7a00\u758f\u77e9\u9635\u65f6\u9700\u8981\u663e\u793a\u5730\u6307\u5b9a\u77e9\u9635\u7684":121,"\u521d\u59cb\u5316\u504f\u7f6e\u5411\u91cf":110,"\u521d\u59cb\u5316\u6743\u91cd\u8868":110,"\u521d\u59cb\u5316\u6a21\u578b\u7684\u8def\u5f84":132,"\u521d\u59cb\u5316\u7236\u7c7b":110,"\u521d\u59cb\u5316biases_":110,"\u521d\u59cb\u72b6\u6001":106,"\u5220\u9664":109,"\u5220\u9664\u78c1\u76d8\u76ee\u5f55\u4e2d\u4e0d\u662f\u5f53\u524duuid\u7684\u5feb\u7167\u6587\u4ef6":32,"\u5224\u65ad\u662f\u5426\u5b89\u88c5\u6210\u529f":137,"\u5229\u7528\u5206\u5e03\u5f0f\u8bad\u7ec3\u9a7e\u9a6d\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90":94,"\u5229\u7528\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90\u53ef\u4ee5\u5206\u4e3a\u4ee5\u4e0b\u51e0\u4e2a\u65b9\u5f0f\u6765\u8fdb\u884c":94,"\u5229\u7528\u8fd9\u79cd\u7279\u6027":106,"\u5229\u843d":104,"\u522b\u4eba\u5e2e\u4e86\u5fd9":109,"\u522b\u5fd8\u4e86":108,"\u5230":[32,91,107],"\u5230\u6307\u5b9a\u6587\u4ef6\u4e2d":122,"\u5230\u672c\u5730":109,"\u5230\u6b64":111,"\u5230\u7b2c\u4e8c\u6b65":82,"\u5236\u4f5c\u65b0\u955c\u50cf\u6765\u5b8c\u6210\u4ee5\u4e0a\u7684\u5de5\u4f5c":127,"\u5236\u4f5cpaddlepaddle\u955c\u50cf":127,"\u5237\u7259":104,"\u524d\u4e00\u7bc7\u6587\u7ae0\u4ecb\u7ecd\u4e86\u5982\u4f55\u5728kubernetes\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2a\u5355\u673apaddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":127,"\u524d\u53f0":104,"\u524d\u540e\u7684\u7f51\u7edc\u6027\u80fd":61,"\u524d\u5411\u4f20\u64ad":110,"\u524d\u5411\u4f20\u64ad\u7ed9\u5b9a\u8f93\u5165":110,"\u524d\u5411\u548c\u540e\u5411":110,"\u524d\u5411\u8ba1\u7b97\u4e4b\u540epaddlepaddle\u5185\u90e8\u5df2\u7ecf\u5206\u914d":122,"\u524d\u5411op\u5b9e\u73b0\u5b8c\u6210":111,"\u524d\u8005\u5728":94,"\u524d\u8005\u5b58\u50a8op\u7684\u8f93\u5165\u8f93\u51fa\u548c\u53c2\u6570\u5c5e\u6027":111,"\u524d\u8005\u622a\u65ad\u53ef\u5b66\u4e60\u53c2\u6570\u7684\u68af\u5ea6":94,"\u524d\u8005op\u7684\u5b9a\u4e49\u7ee7\u627f\u81ea":111,"\u524d\u81ea\u52a8\u68c0\u67e5\u4e00\u4e9b\u57fa\u672c\u4e8b\u5b9c":109,"\u524d\u9700\u8981\u5b89\u88c5":116,"\u524d\u9988":123,"\u529f\u80fd":48,"\u529f\u80fd\u7684\u6b63\u786e\u6027\u5305\u62ec\u9a8c\u8bc1paddlepaddle\u76ee\u524d\u7684":82,"\u52a0\u4e0a\u504f\u7f6e\u5411\u91cf":110,"\u52a0\u5165":117,"\u52a0\u6743\u548c\u7528\u6765\u751f\u6210":107,"\u52a0\u6743\u7f16\u7801\u5411\u91cf":107,"\u52a0\u8f7d\u5177\u4f53\u7f51\u7edc\u53c2\u6570":96,"\u52a0\u8f7d\u6a21\u578b\u53ef\u5176\u5b83\u591a\u79cd\u65b9\u5f0f":122,"\u52a0\u8f7d\u6a21\u578b\u9700\u540c\u65f6\u6307\u5b9a":122,"\u52a0\u8f7d\u9884\u6d4b\u6a21\u578b":122,"\u52a0\u8f7d\u9884\u8bad\u7ec3\u53c2\u6570":96,"\u52a0\u8f7dtest":132,"\u52a0\u901f\u7f16\u8bd1":97,"\u52a0\u901fpaddlepaddle\u8bad\u7ec3\u53ef\u4ee5\u8003\u8651\u4ece\u4ee5\u4e0b\u51e0\u4e2a\u65b9\u9762":94,"\u52a8\u6001\u5e93":[65,119],"\u52a9\u624b":110,"\u5305":116,"\u5305\u542b\u4e86\u67d0\u79cd\u7c7b\u578b\u7684\u7c7b\u578b\u5b9a\u4e49\u548c\u66b4\u9732\u7684\u5168\u90e8\u51fd\u6570":66,"\u5305\u542b\u4f46\u4e0d\u9650\u4e8e":97,"\u5305\u542b\u6d4b\u8bd5\u6570\u636e\u96c6\u7684\u76ee\u5f55":123,"\u5305\u542b\u8bad\u7ec3\u6570\u636e\u7684\u76ee\u5f55":123,"\u5305\u542b\u8fd9\u4e2a\u51fd\u6570\u8c03\u7528\u5176\u4ed6\u51fd\u6570\u7684\u65f6\u95f4":116,"\u5305\u542bkernel\u7684op\u548c\u4e0d\u5305\u542bkernel\u7684op":111,"\u5305\u62ec":[33,61,62,119,123,132],"\u5305\u62ec\u4e86\u7f16\u8bd1\u51fa\u7684paddlepaddle\u5934\u6587\u4ef6\u548c\u94fe\u63a5\u5e93":119,"\u5305\u62ec\u5b57\u7b26\u4e32\u5206\u914d":94,"\u5305\u62ec\u6743\u91cdw\u548c\u504f\u7f6eb":32,"\u5305\u62ec\u751f\u6210cpu":97,"\u5305\u62ec\u795e\u7ecf\u7f51\u7edc\u62d3\u6251\u7ed3\u6784":101,"\u5305\u62ecbool":134,"\u5305\u62eclinux":136,"\u5305\u62ecmkl":62,"\u5305\u7684\u65b9\u6cd5\u662f":91,"\u533a\u522b\u662f\u540c\u65f6\u5904\u7406\u4e86\u4e24\u4e2a\u8f93\u5165":104,"\u533a\u522b\u662frnn\u4f7f\u7528\u4e24\u5c42\u5e8f\u5217\u6a21\u578b":104,"\u5341\u4e00":104,"\u534e\u6da6\u4e07\u5bb6":104,"\u534f\u540c\u5b8c\u6210releas":82,"\u5355\u4e2a\u503c":33,"\u5355\u4f4d\u662fmb":132,"\u5355\u5143\u6d4b\u8bd5":[108,112],"\u5355\u5143\u6d4b\u8bd5\u4f1a\u5f15\u7528site":91,"\u5355\u5143\u6d4b\u8bd5\u4f1a\u88ab\u81ea\u52a8\u52a0\u5165\u5de5\u7a0b\u8fdb\u884c\u7f16\u8bd1":111,"\u5355\u5143\u6d4b\u8bd5\u5728\u5185\u7684\u6240\u6709\u5355\u5143\u6d4b\u8bd5":108,"\u5355\u5143\u6d4b\u8bd5checkgrad_ep":131,"\u5355\u53cc\u5c42\u5e8f\u5217\u7684\u53e5\u5b50\u662f\u4e00\u6837\u7684":104,"\u5355\u53cc\u5c42rnn":105,"\u5355\u5c42":106,"\u5355\u5c42\u4e0d\u7b49\u957frnn":104,"\u5355\u5c42\u548c\u53cc\u5c42\u5e8f\u5217\u7684\u4f7f\u7528\u548c\u793a\u4f8b2\u4e2d\u7684\u793a\u4f8b\u7c7b\u4f3c":104,"\u5355\u5c42\u5e8f\u5217":[103,121],"\u5355\u5c42\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20":103,"\u5355\u5c42\u5e8f\u5217\u7b2ci\u4e2a\u5143\u7d20":103,"\u5355\u5c42\u6216\u53cc\u5c42":103,"\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":104,"\u5355\u5c42rnn":[104,106],"\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u7684\u7f51\u7edc\u914d\u7f6e":104,"\u5355\u673acpu\u8bad\u7ec3":94,"\u5355\u673agpu\u8bad\u7ec3":94,"\u5355\u6b65\u51fd\u6570":107,"\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570\u5728":107,"\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570\u90fd\u975e\u5e38\u7b80\u5355":107,"\u5355\u6b65\u51fd\u6570\u7684\u5b9e\u73b0\u5982\u4e0b\u6240\u793a":107,"\u5355\u6d4b\u5305\u62ec\u5bf9\u6bd4\u524d\u5411op\u4e0d\u540c\u8bbe\u5907":111,"\u5355\u70b9\u6545\u969c":32,"\u5355\u7eaf\u7684":116,"\u5355\u8fdb\u5355\u51fa":106,"\u5360\u7528\u4e8617":116,"\u536b\u751f":104,"\u5373":[66,94,95,111,113,127],"\u5373\u4e0a\u8ff0\u4ee3\u7801\u4e2d\u7684\u7b2c19\u884c":104,"\u5373\u4e0b\u8f7d\u5931\u8d25":91,"\u5373\u4e0d\u5141\u8bb8\u5728":111,"\u5373\u4e0d\u9700\u8981\u4f7f\u7528memori":104,"\u5373\u4e3a\u4e00\u4e2a\u65f6\u95f4\u6b65":104,"\u5373\u4e3a\u5355\u5c42rnn\u5e8f\u5217\u7684\u4f7f\u7528\u4ee3\u7801":104,"\u5373\u4e3a\u65f6\u95f4\u5e8f\u5217\u7684\u8f93\u5165":104,"\u5373\u4e3a\u8fd9\u4e2a\u53cc\u5c42rnn\u7684\u7f51\u7edc\u7ed3\u6784":104,"\u5373\u4e8c\u7ef4\u6570\u7ec4":104,"\u5373\u4f7f\u7528":[66,95],"\u5373\u4f7f\u7528\u6237\u76f4\u63a5\u5f15\u7528\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":66,"\u5373\u4f7f\u95f4\u9694\u5f88\u5c0f":132,"\u5373\u4f7fc":66,"\u5373\u4f8b\u5982":66,"\u5373\u4fbf\u662f":108,"\u5373\u4fbf\u8bbe\u7f6e":91,"\u5373\u4fbfpaddl":66,"\u5373\u521d\u59cb\u72b6\u6001\u4e3a0":106,"\u5373\u5355\u65f6\u95f4\u6b65\u6267\u884c\u7684\u51fd\u6570":107,"\u5373\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":104,"\u5373\u53cc\u5c42rnn\u7684\u6bcf\u4e2a\u72b6\u6001":106,"\u5373\u53ef":109,"\u5373\u53ef\u4ee5\u6781\u5927\u7684\u52a0\u901f\u6570\u636e\u8f7d\u5165\u6d41\u7a0b":94,"\u5373\u53ef\u4f7f\u7528\u5f00\u53d1\u955c\u50cf\u6765\u7f16\u8bd1android\u7248paddlepaddl":136,"\u5373\u53ef\u5728":138,"\u5373\u53ef\u5f00\u59cb\u4e0b\u8f7d":100,"\u5373\u53ef\u5f00\u59cb\u4e0b\u9762\u7684\u6b65\u9aa4":98,"\u5373\u53ef\u663e\u793a\u6027\u80fd\u5206\u6790\u7684\u7ed3\u679c":116,"\u5373\u53ef\u68c0\u67e5\u6211\u4eec\u8c03\u4f18\u540e\u7684\u4fee\u6b63\u662f\u5426\u80fd\u591f\u6539\u5584\u7a0b\u5e8f\u7684\u6027\u80fd":116,"\u5373\u5728\u53cc\u5c42\u5e8f\u5217\u7684\u539f\u59cb\u6570\u636e\u4e2d":104,"\u5373\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d":94,"\u5373\u5927\u90e8\u5206\u503c\u4e3a0":101,"\u5373\u5b8c\u6210\u67d0\u4e00\u4e2a\u4efb\u52a1\u7684\u6700\u5c11\u51fd\u6570":66,"\u5373\u5c06\u4e00\u6bb5\u8bdd\u8fdb\u884c\u5206\u7c7b":104,"\u5373\u5c06nchw\u8f6c\u6362\u6210nhwc":95,"\u5373\u5f53\u524d\u65f6\u95f4\u6b65\u4e0b\u7684\u795e\u7ecf\u7f51\u7edc\u4f9d\u8d56\u524d\u4e00\u4e2a\u65f6\u95f4\u6b65\u795e\u7ecf\u7f51\u7edc\u4e2d\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u8f93\u51fa":104,"\u5373\u6211\u4eec\u53ef\u4ee5\u5148\u5b9a\u4e49\u4e00\u4e2atensor":112,"\u5373\u628a\u5355\u5c42rnn\u751f\u6210\u540e\u7684subseq\u7ed9\u62fc\u63a5\u6210\u4e00\u4e2a\u65b0\u7684\u53cc\u5c42seq":106,"\u5373\u6574\u4e2a\u53cc\u5c42group\u662f\u5c06\u524d\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":104,"\u5373\u6574\u4e2a\u8f93\u5165\u5e8f\u5217":103,"\u5373\u6574\u6570\u6570\u7ec4":104,"\u5373\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":104,"\u5373\u662f\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684\u7f51\u7edc\u8fde\u63a5":104,"\u5373\u66b4\u9732":66,"\u5373\u7279\u5f81\u7684\u6570\u7ec4":104,"\u5373\u7f51\u5361\u540d":127,"\u5373\u8868\u793a\u4e0d\u9700\u8981\u8f6c\u6362":62,"\u5373\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u51fa\u73b0nan\u6216\u8005inf":94,"\u5373\u8bbe\u7f6e":94,"\u5373\u8fd0\u884c\u8bad\u7ec3\u7a0b\u5e8f":98,"\u5373\u8fd9\u4e2a\u52a8\u6001\u5e93\u662f\u4e0d\u4f9d\u8d56\u4e8e\u5176\u4ed6\u4efb\u4f55\u6587\u4ef6\u7684":65,"\u5373define_py_data_sources2\u5e94\u6539\u4e3a":96,"\u5373input":106,"\u5373rnn\u4e4b\u95f4\u6709\u4e00\u6b21\u5d4c\u5957\u5173\u7cfb":104,"\u5378\u8f7dpaddlepaddle\u5305":91,"\u538b\u6241\u6210\u4e3aeigen\u7684\u4e00\u7ef4tensor":112,"\u538b\u7f29\u6210\u4e00\u4e2a\u5411\u91cf":104,"\u539f\u56e0":[91,109],"\u539f\u56e0\u5728\u4e8e\u6ca1\u6709\u628a\u673a\u5668\u4e0acuda\u76f8\u5173\u7684\u9a71\u52a8\u548c\u5e93\u6620\u5c04\u5230\u5bb9\u5668\u5185\u90e8":91,"\u539f\u56e0\u662f\u6bcf\u4e2a\u56de\u590d\u90fd\u4f1a\u53d1\u9001\u4e00\u5c01\u90ae\u4ef6":109,"\u539f\u6765\u7684\u65b9\u6848":62,"\u53bb\u8fc7":104,"\u53c2\u6570":[2,3,4,5,6,7,9,10,11,17,18,19,22,23,25,65,94,108,110,122,127,131],"\u53c2\u6570\u4e3a":111,"\u53c2\u6570\u5171\u4eab\u7684\u914d\u7f6e\u793a\u4f8b\u4e3a":96,"\u53c2\u6570\u548c\u73af\u5883\u53d8\u91cf":123,"\u53c2\u6570\u670d\u52a1\u5668":[123,131],"\u53c2\u6570\u670d\u52a1\u5668\u4e4b\u95f4\u4e0d\u76f8\u4e92\u4f9d\u8d56":123,"\u53c2\u6570\u670d\u52a1\u5668\u4e5f\u4e0d\u4f1a\u7b49\u5f85\u8ba1\u7b97\u8282\u70b9\u5168\u90e8\u90fd\u63d0\u4ea4\u68af\u5ea6\u4e4b\u540e\u624d\u5f00\u59cb\u4e0b\u4e00\u6b65":123,"\u53c2\u6570\u670d\u52a1\u5668\u63a5\u6536\u4ece\u8ba1\u7b97\u8282\u70b9\u4e0a\u4f20\u7684\u68af\u5ea6":123,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u53c2\u6570\u5206\u5757\u5927\u5c0f":132,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u76d1\u542c\u7aef\u53e3":132,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u7f51\u7edc\u8bbe\u5907\u540d\u79f0":132,"\u53c2\u6570\u670d\u52a1\u5668\u7684ip\u5730\u5740":132,"\u53c2\u6570\u670d\u52a1\u5668\u7a00\u758f\u66f4\u65b0\u7684\u53c2\u6570\u5206\u5757\u5927\u5c0f":132,"\u53c2\u6570\u6765\u63a7\u5236\u7f13\u5b58\u65b9\u6cd5":94,"\u53c2\u6570\u6982\u8ff0":133,"\u53c2\u6570\u7684\u4e2a\u6570\u548c\u53c2\u6570\u5217\u8868":122,"\u53c2\u6570\u7684\u89e3\u6790":127,"\u53c2\u6570\u8bbe\u7f6e":93,"\u53c2\u6570\u8bbe\u7f6e\u4e86\u5916\u5c42":104,"\u53c2\u6570\u8bf4\u660e":123,"\u53c2\u6570\u8bf4\u660e\u5bb9\u5668\u5df2\u4ea4\u4e92\u5f0f\u8fd0\u884c":98,"\u53c2\u6570\u8f93\u5165":94,"\u53c2\u6570\u9700\u8981\u5b9e\u73b0":107,"\u53c2\u7167\u4e0a\u8ff0\u6b65\u9aa4\u66f4\u65b0":109,"\u53c2\u8003":[48,65,98],"\u53c2\u8003\u4e0b\u56fe":82,"\u53c2\u8003\u5f3a\u8c03\u90e8\u5206":117,"\u53c2\u8003\u65f6\u95f4\u5e8f\u5217":104,"\u53c2\u8003\u6837\u4f8b\u6570\u636e\u51c6\u5907\u811a\u672c":123,"\u53c2\u8003\u955c\u50cf\u7684":127,"\u53c8":104,"\u53c8\u53ef\u4ee5\u907f\u514d\u4e0d\u5fc5\u8981\u7684\u8f6c\u6362":62,"\u53c8\u662f\u4e00\u4e2a\u5355\u5c42\u7684\u5e8f\u5217":103,"\u53c8\u8981\u4fdd\u8bc1\u6570\u636e\u662f\u968f\u673a\u7684":94,"\u53ca":110,"\u53cc\u5411\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u9690\u85cf\u72b6\u6001":107,"\u53cc\u5411\u9a8c\u8bc1":48,"\u53cc\u5c42":106,"\u53cc\u5c42\u4e0d\u7b49\u957frnn":104,"\u53cc\u5c42\u5e8f\u5217":[103,121],"\u53cc\u5c42\u5e8f\u5217\u5728\u5904\u7406\u957f\u5e8f\u5217\u7684\u4efb\u52a1\u6216\u662f\u6784\u5efa\u5c42\u7ea7\u6a21\u578b\u65f6\u4f1a\u53d1\u6325\u4f5c\u7528":121,"\u53cc\u5c42\u5e8f\u5217\u6216\u5355\u5c42\u5e8f\u5217":103,"\u53cc\u5c42\u5e8f\u5217\u6570\u636e\u4e00\u5171\u67094\u4e2a\u6837\u672c":104,"\u53cc\u5c42\u5e8f\u5217\u662f\u4e00\u4e2a\u5d4c\u5957\u7684\u5e8f\u5217":103,"\u53cc\u5c42\u5e8f\u5217\u662fpaddlepaddle\u652f\u6301\u7684\u4e00\u79cd\u975e\u5e38\u7075\u6d3b\u7684\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f":106,"\u53cc\u5c42\u5e8f\u5217\u6bcf\u4e2asubseq\u4e2d\u6bcf\u4e2a\u5143\u7d20":103,"\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":103,"\u53cc\u5c42\u5e8f\u5217\u9700\u8981\u8bbe\u7f6e\u5206\u522b\u4e3a\u5916\u5c42\u5e8f\u5217\u548c\u5185\u5c42\u5e8f\u5217\u5206\u522b\u8bbe\u7f6e":121,"\u53cc\u5c42\u6216\u8005\u5355\u5c42":103,"\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u7684dataprovider\u7684\u4ee3\u7801":104,"\u53cc\u5c42rnn":106,"\u53cc\u5c42rnn\u6570\u636e\u968f\u610f\u52a0\u4e86\u4e00\u4e9b\u9694\u65ad":104,"\u53cc\u5c42rnn\u987e\u540d\u601d\u4e49":104,"\u53cc\u8fdb\u5355\u51fa":106,"\u53cc\u8fdb\u53cc\u51fa":106,"\u53cd\u5411\u4f20\u64ad":110,"\u53cd\u5411\u4f20\u64ad\u6839\u636e\u8f93\u51fa\u7684\u68af\u5ea6":110,"\u53cd\u5411\u8ba1\u7b97\u5df2\u7ecf\u81ea\u52a8\u96c6\u6210\u8fdb\u6d4b\u8bd5\u6846\u67b6":111,"\u53cd\u5411op\u7684\u68af\u5ea6\u6d4b\u8bd5":111,"\u53cd\u5411op\u7c7b":111,"\u53cd\u5411op\u7c7b\u7684\u5b9a\u4e49":111,"\u53cd\u5411opkernel\u7684\u5b9a\u4e49\u4e0e\u524d\u5411op\u7c7b\u4f3c":111,"\u53d1\u578b\u7248":82,"\u53d1\u5e03\u5230dockerhub":82,"\u53d1\u5e03docker\u955c\u50cf\u53ea\u9700\u8981\u5bf9\u81ea\u52a8push\u7684\u955c\u50cf\u6253\u4e0a":82,"\u53d1\u6563\u5230\u4e86\u4e00\u4e2a\u6570\u503c\u7279\u522b\u5927\u7684\u5730\u65b9":94,"\u53d1\u884c\u548c\u7ef4\u62a4":109,"\u53d1\u9001\u53c2\u6570\u7684\u7aef\u53e3\u53f7":132,"\u53d6\u503c\u76f8\u540c\u7684layer":95,"\u53d6\u5176\u4e2d\u4e00\u4e2a\u6a21\u578bparams_pass_90":101,"\u53d6\u51b3\u4e8e":111,"\u53d8\u6362\u77e9\u9635":110,"\u53d8\u91cf\u6765\u533a\u5206layer\u7684\u5c5e\u6027":62,"\u53e3\u5934":104,"\u53e5\u5b50\u662f\u7531\u8bcd\u8bed\u6784\u6210\u7684\u5e8f\u5217":121,"\u53e6\u4e00\u4e2a\u65b9\u6cd5\u662f\u4ea4\u53c9\u7f16\u8bd1":138,"\u53e6\u4e00\u4e2a\u662f\u5185\u5b58\u64cd\u4f5c\u91cf":117,"\u53e6\u4e00\u4e2a\u662f\u6bcf\u6761\u5e8f\u5217":94,"\u53e6\u4e00\u79cd\u65b9\u5f0f\u662f\u5c06\u7f51\u7edc\u5c42\u5212\u5206\u5230\u4e0d\u540c\u7684gpu\u4e0a\u53bb\u8ba1\u7b97":134,"\u53e6\u5916":[104,108],"\u53e6\u5916\u6700\u65b0\u7684pip\u5b98\u65b9\u6e90\u4e2d\u7684\u5b89\u88c5\u5305\u9ed8\u8ba4\u662fmanylinux1\u6807\u51c6":100,"\u53ea\u4f5c\u4e3aread":106,"\u53ea\u4fdd\u5b58\u6700\u540e\u4e00\u8f6e\u7684\u53c2\u6570":132,"\u53ea\u5728\u7b2c\u4e00\u6b21cmake\u7684\u65f6\u5019\u6709\u6548":97,"\u53ea\u5bf9\u7279\u6b8a\u5728\u7ebf\u7cfb\u7edf\u8003\u8651\u4e24\u53f0\u4ee5\u4e0a\u540c\u65f6\u6545\u969c\u7684\u5bb9\u707e":32,"\u53ea\u5bf9\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u8fdb\u884c\u5e8f\u5217\u5316":122,"\u53ea\u5c06\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u8fdb\u884c\u5e8f\u5217\u5316":122,"\u53ea\u662f\u53cc\u5c42\u5e8f\u5217\u5c06\u5176\u53c8\u505a\u4e86\u5b50\u5e8f\u5217\u5212\u5206":104,"\u53ea\u66b4\u9732\u6982\u5ff5\u7684\u63a5\u53e3":66,"\u53ea\u6709":104,"\u53ea\u6709\u5728\u9047\u5230\u9700\u8981":99,"\u53ea\u6709\u5f53\u8bbe\u7f6e\u4e86spars":132,"\u53ea\u7528\u4e8e\u5728\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u4e2d\u6307\u5b9a\u8f93\u5165\u6570\u636e":106,"\u53ea\u7559\u4e0b\u6838\u5fc3\u8ba1\u7b97\u5c42":122,"\u53ea\u80fd\u5728recurrent_group\u4e2d\u4f5c\u4e3astep":95,"\u53ea\u80fd\u6309\u884c\u8ba1\u7b97":95,"\u53ea\u80fd\u6d4b\u8bd5\u5355\u4e2a\u6a21\u578b":134,"\u53ea\u80fd\u8bbf\u95ee\u5b83\u4eec\u7684\u8f93\u51fa\u503c":95,"\u53ea\u80fd\u8c03\u7528paddle\u7684\u52a8\u6001\u5e93":65,"\u53ea\u8981\u4e00\u7cfb\u5217\u7279\u5f81\u6570\u636e\u4e2d\u7684":104,"\u53ea\u8981\u51fa\u73b0\u6d6e\u70b9\u6570\u5f02\u5e38":94,"\u53ea\u8bfbmemory\u8f93\u5165":106,"\u53ea\u9488\u5bf9\u5185\u5b58":94,"\u53ea\u9700\u4e2d\u65ad":124,"\u53ea\u9700\u5728\u7f16\u8bd1\u65f6\u9700\u914d\u5236\u4e0b\u9762\u8fd9\u4e9b\u7f16\u8bd1\u9009\u9879":119,"\u53ea\u9700\u7528\u60a8\u5b9a\u4e49\u7684\u76ee\u5f55\u4fee\u6539":124,"\u53ea\u9700\u8981":107,"\u53ea\u9700\u8981\u6062\u590d\u8fd9\u53f0\u8282\u70b9":32,"\u53ea\u9700\u8981\u8bbe\u7f6e\u884c\u504f\u79fb":121,"\u53ea\u9700\u8981\u94fe\u63a5":119,"\u53ea\u9700\u8fdb\u884c\u524d\u5411\u8ba1\u7b97\u800c\u65e0\u9700\u8c03\u7528\u53cd\u5411\u8ba1\u7b97":122,"\u53ef\u4ee5":[82,98,104,109,113],"\u53ef\u4ee5\u4ece":98,"\u53ef\u4ee5\u4ece\u6211\u4eec\u7684ci\u7cfb\u7edf\u4e2d\u4e0b\u8f7d\u6700\u65b0\u7684whl\u5b89\u88c5\u5305\u548cc":100,"\u53ef\u4ee5\u4f30\u8ba1\u51fa\u5982\u679c\u6a21\u578b\u91c7\u7528\u4e0d\u53d8\u7684\u8f93\u51fa\u6700\u5c0f\u7684cost0\u662f\u591a\u5c11":96,"\u53ef\u4ee5\u4f7f\u7528":[96,122,123],"\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684\u547d\u4ee4\u66f4\u65b0\u60a8\u7684pip":100,"\u53ef\u4ee5\u4f7f\u7528\u5982\u4e0b\u4ee3\u7801":96,"\u53ef\u4ee5\u4f7f\u7528\u76f8\u5e94\u6570\u636e\u7c7b\u578b\u7684":96,"\u53ef\u4ee5\u4f7f\u7528\u8be5\u53c2\u6570":132,"\u53ef\u4ee5\u4f7f\u7528kubernetes\u7684\u547d\u4ee4\u884c\u5de5\u5177\u521b\u5efajob":127,"\u53ef\u4ee5\u5148\u4f7f\u7528":95,"\u53ef\u4ee5\u51cf\u5c0f\u7cfb\u7edf\u590d\u6742\u6027":32,"\u53ef\u4ee5\u51cf\u5c11\u7f13\u5b58\u6c60\u7684\u5927\u5c0f":94,"\u53ef\u4ee5\u521b\u5efa\u4e00\u4e2a":126,"\u53ef\u4ee5\u521b\u5efa\u975e":111,"\u53ef\u4ee5\u52a0\u901fpaddlepaddle\u7684\u8ba1\u7b97":98,"\u53ef\u4ee5\u53c2\u8003":[98,104,107,108,109],"\u53ef\u4ee5\u53c2\u8003\u4e0b\u9762\u7684\u6b65\u9aa4\u6392\u67e5":92,"\u53ef\u4ee5\u53c2\u8003paddlepaddl":101,"\u53ef\u4ee5\u540c\u65f6\u5728cpu":112,"\u53ef\u4ee5\u542b\u6709\u4e00\u6761\u6216\u591a\u6761\u6837\u672c":121,"\u53ef\u4ee5\u544a\u8bc9\u60a8\u67d0\u4e2a\u64cd\u4f5c\u5230\u5e95\u82b1\u4e86\u591a\u957f\u65f6\u95f4":117,"\u53ef\u4ee5\u5728":[97,124],"\u53ef\u4ee5\u5728\u4efb\u4f55\u673a\u5668\u4e0a\u6267\u884c\u7684":65,"\u53ef\u4ee5\u5728\u5171\u4eab\u5b58\u50a8\u4e0a\u67e5\u770b\u8f93\u51fa\u7684\u65e5\u5fd7\u548c\u6a21\u578b":127,"\u53ef\u4ee5\u5728\u6b64\u9875\u9762\u7684":82,"\u53ef\u4ee5\u5728\u8fd9\u4e2a":109,"\u53ef\u4ee5\u5728event_handler\u4e2d":94,"\u53ef\u4ee5\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684sgd\u65b9\u6cd5\u7684\u8bad\u7ec3":123,"\u53ef\u4ee5\u5b9e\u73b0\u4ecepaddl":112,"\u53ef\u4ee5\u5c06cmake":116,"\u53ef\u4ee5\u5c06memory\u7406\u89e3\u4e3a\u4e00\u4e2a\u65f6\u5ef6\u64cd\u4f5c":106,"\u53ef\u4ee5\u5c06op\u5206\u4e3a\u4e24\u79cd":111,"\u53ef\u4ee5\u5c1d\u8bd5\u4ee5\u4e0b\u7684\u65b9\u6cd5":98,"\u53ef\u4ee5\u5e2e\u60a8\u63d0\u4f9b\u4e00\u4e9b\u5b9a\u4f4d\u6027\u80fd\u74f6\u9888\u7684\u5efa\u8bae":117,"\u53ef\u4ee5\u5e76\u884c\u7f16\u8bd1\u5417":108,"\u53ef\u4ee5\u5feb\u901f\u5728\u672c\u5730\u542f\u52a8\u4e00\u4e2a\u5305\u542b\u4e86paddlepaddle\u5b98\u65b9book\u6559\u7a0b\u7684jupyt":98,"\u53ef\u4ee5\u6267\u884c":[91,100],"\u53ef\u4ee5\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4\u7f16\u8bd1\u751f\u6210\u6587\u6863":113,"\u53ef\u4ee5\u6267\u884cctest\u547d\u4ee4\u5373\u53ef":97,"\u53ef\u4ee5\u628a\u5b83\u60f3\u8c61\u4e3a\u4e00\u4e2a\u7c7b\u4f3c":108,"\u53ef\u4ee5\u628a\u672c\u5730\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5b58\u50a8\u96c6\u7fa4\u4e2d":33,"\u53ef\u4ee5\u6307\u5b9a\u540c\u65f6\u6267\u884cgpu\u4e0a\u7684\u5355\u5143\u6d4b\u8bd5":97,"\u53ef\u4ee5\u6307\u5b9a\u54ea\u4e00\u4e2a\u8f93\u5165\u548c\u8f93\u51fa\u5e8f\u5217\u4fe1\u606f\u4e00\u81f4":104,"\u53ef\u4ee5\u6307\u5b9a\u5f00\u542f\u81ea\u52a8\u68c0\u6d4bsm\u67b6\u6784":97,"\u53ef\u4ee5\u6309\u7167\u4e0b\u9762\u7684\u65b9\u6cd5":97,"\u53ef\u4ee5\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":[103,106],"\u53ef\u4ee5\u662f\u4e00\u4e2a\u975e\u5e8f\u5217":106,"\u53ef\u4ee5\u662f\u4ece\u5206\u5e03\u5f0f\u5b58\u50a8\u6302\u8f7d\u8fc7\u6765\u7684":123,"\u53ef\u4ee5\u662f\u4ee5\u4e0b\u51e0\u79cd":110,"\u53ef\u4ee5\u662f\u6574\u578b":121,"\u53ef\u4ee5\u663e\u793a\u5730\u6307\u5b9a\u4e00\u4e2alayer\u7684\u8f93\u51fa\u7528\u4e8e\u521d\u59cb\u5316memori":106,"\u53ef\u4ee5\u66f4\u6709\u6b21\u5e8f\u7684\u5b8c\u6210\u6027\u80fd\u7684\u4f18\u5316":116,"\u53ef\u4ee5\u6709\u4ee5\u4e0b\u4e24\u79cd":106,"\u53ef\u4ee5\u6709\u6548\u51cf\u5c0f\u7f51\u7edc\u7684\u963b\u585e":132,"\u53ef\u4ee5\u6709\u6548\u7684\u907f\u514dparamet":32,"\u53ef\u4ee5\u67e5\u770b":127,"\u53ef\u4ee5\u67e5\u770b\u6b64pod\u8fd0\u884c\u7684\u5bbf\u4e3b\u673a":126,"\u53ef\u4ee5\u6d4b\u8bd5\u591a\u4e2a\u6a21\u578b":134,"\u53ef\u4ee5\u7528":[48,108],"\u53ef\u4ee5\u7528\u4ee5\u4e0b\u6307\u4ee4":33,"\u53ef\u4ee5\u7528\u5982\u4e0b\u547d\u4ee4":109,"\u53ef\u4ee5\u7528\u6765\u8ba1\u7b97cpu\u51fd\u6570\u6216cuda\u5185\u6838\u7684\u65f6\u95f4\u6d88\u8017":117,"\u53ef\u4ee5\u76f4\u63a5\u8fd0\u884c":122,"\u53ef\u4ee5\u770b\u4f5c\u662f\u4e00\u4e2a\u975e\u5e8f\u5217\u8f93\u5165":103,"\u53ef\u4ee5\u770b\u51fa":123,"\u53ef\u4ee5\u770b\u5230\u6700\u8017\u65f6\u7684\u51fd\u6570\u662fc":116,"\u53ef\u4ee5\u7cbe\u786e\u8bf4\u660e\u4e00\u4e2a\u957f\u8017\u65f6\u64cd\u4f5c\u7684\u5177\u4f53\u539f\u56e0":117,"\u53ef\u4ee5\u7ee7\u7eed\u5728\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f\u63d0\u4ea4\u4ee3\u7801":82,"\u53ef\u4ee5\u8003\u8651\u4f7f\u7528\u4e00\u4e9b\u4f18\u5316\u7b97\u6cd5":94,"\u53ef\u4ee5\u8054\u7cfbop":92,"\u53ef\u4ee5\u8054\u7cfbop\u662f\u5426\u53ef\u4ee5\u66f4\u6362\u96c6\u7fa4\u6216\u5347\u7ea7\u5f53\u524d\u96c6\u7fa4":92,"\u53ef\u4ee5\u83b7\u53d6\u7f51\u7edc\u4e2d\u5b9a\u4e49\u7684\u4efb\u610f\u591a\u4e2a":122,"\u53ef\u4ee5\u88c5\u7684\u662f":108,"\u53ef\u4ee5\u8bbe\u7f6e":[116,136,137,138],"\u53ef\u4ee5\u8bbf\u95ee\u7531recurr":95,"\u53ef\u4ee5\u8c03\u7528resize\u63a5\u53e3\u8fdb\u884c\u6539\u53d8":112,"\u53ef\u4ee5\u8f7b\u677e\u5730\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":101,"\u53ef\u4ee5\u8fd0\u884c":123,"\u53ef\u4ee5\u9009\u5728\u5728\u5f53\u524d\u673a\u5668\u5b89\u88c5\u4e5f\u53ef\u4ee5\u62f7\u8d1d\u5230\u76ee\u6807\u673a\u5668\u5b89\u88c5":97,"\u53ef\u4ee5\u9009\u62e9\u662f\u5426\u4f7f\u7528\u53c2\u6570":134,"\u53ef\u4ee5\u901a\u8fc7":109,"\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539\u8fd9\u4e24\u4e2a\u51fd\u6570\u6765\u5b9e\u73b0\u590d\u6742\u7684\u7f51\u7edc\u914d\u7f6e":107,"\u53ef\u4ee5\u901a\u8fc7\u5728":94,"\u53ef\u4ee5\u901a\u8fc7\u7f51\u9875\u6d4f\u89c8":98,"\u53ef\u4ee5\u901a\u8fc7\u8fd9\u4e2a\u8f93\u51fa\u6765\u5b8c\u6210\u81ea\u5b9a\u4e49\u7684\u8bc4\u4f30\u6307\u6807\u8ba1\u7b97\u7b49\u529f\u80fd":94,"\u53ef\u4ee5\u901a\u8fc7\u9636\u6bb5\u6027\u7684\u4fdd\u5b58\u6bcf\u4e2aparamet":32,"\u53ef\u4ee5\u91c7\u53d6\u4e0b\u9762\u51e0\u70b9\u63aa\u65bd":116,"\u53ef\u4ee5\u91cd\u547d\u540d\u8fd9\u4e2awhl\u5305\u4e3a":[91,100],"\u53ef\u53c2\u8003":122,"\u53ef\u5728":119,"\u53ef\u5728\u547d\u4ee4\u884c\u6267\u884c":137,"\u53ef\u663e\u5f0f\u6307\u5b9a\u4e3a":137,"\u53ef\u7528\u4e8e\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u89e3\u6790\u8fd9\u4e9b\u53c2\u6570":134,"\u53ef\u76f4\u63a5\u8fd0\u884c":122,"\u53ef\u80fd\u4f1a\u5bfc\u81f4\u51fa\u9519":127,"\u53ef\u80fd\u4f1a\u9020\u6210\u7f51\u7edc\u62e5\u585e":32,"\u53ef\u80fd\u7684\u4ee3\u7801\u4e3a":94,"\u53ef\u80fd\u7684\u539f\u56e0\u662f":96,"\u53ef\u80fd\u7684\u60c5\u51b5\u4e0b":117,"\u53ef\u80fd\u9700\u8981\u6ce8\u610f\u7ed9\u8fd9\u4e2a\u865a\u62df\u673a\u591a\u5206\u914d\u4e00\u4e9b":108,"\u53ef\u89c1\u8be5\u8ba1\u7b97\u7531\u4e24\u4e2a\u8f93\u5165":111,"\u53ef\u8bbe\u7f6e":[136,137],"\u53ef\u8bbe\u7f6e\u4e3a":137,"\u53ef\u8bbe\u7f6e\u7684\u76ee\u6807\u67b6\u6784\u5982\u4e0b\u8868\u6240\u793a":137,"\u53ef\u9009":[97,110,122,123],"\u53ef\u9009\u7684\u4e0d\u540c\u7f16\u8bd1\u73af\u5883docker\u955c\u50cf":97,"\u53ef\u9009\u914d\u7f6e\u9009\u9879":119,"\u53ef\u914d\u7f6e\u4e3a":119,"\u53ef\u91c7\u7528\u7b2c\u4e8c\u79cd\u65b9\u5f0f":95,"\u53f3\u4fa7\u7684":82,"\u5403":104,"\u5403\u996d":104,"\u5404\u65b9\u9762":104,"\u5404\u6b21\u524d\u5411\u4e4b\u95f4\u4e5f\u90fd\u4f7f\u7528\u4e86\u76f8\u540c\u7684\u6743\u91cd":61,"\u5404\u9879\u66f4\u52a0\u5177\u4f53\u7684\u5355\u5143\u6d4b\u8bd5\u5728":111,"\u5408":104,"\u5408\u5e76\u5165\u4e00\u4e2a\u6587\u4ef6":122,"\u5408\u5e76\u6a21\u578b\u6587\u4ef6":122,"\u5408\u7406":104,"\u540c\u4e00\u6b21\u524d\u5411":61,"\u540c\u65f6":[61,62,91,94,117],"\u540c\u65f6\u4e5f\u4f1a\u8bfb\u53d6\u76f8\u5173\u8def\u5f84\u53d8\u91cf\u6765\u8fdb\u884c\u641c\u7d22":97,"\u540c\u65f6\u4e5f\u53ef\u4ee5\u52a0\u901f\u5f00\u59cb\u8bad\u7ec3\u524d\u6570\u636e\u8f7d\u5165\u7684\u8fc7\u7a0b":94,"\u540c\u65f6\u4e5f\u53ef\u4ee5\u901a\u8fc7":109,"\u540c\u65f6\u4e5f\u80fd\u591f\u5f15\u5165\u66f4\u52a0\u590d\u6742\u7684\u8bb0\u5fc6\u673a\u5236":106,"\u540c\u65f6\u4f1a\u5f00\u542fintel":62,"\u540c\u65f6\u5176\u5185\u90e8\u5b9e\u73b0\u53ef\u4ee5\u907f\u514d\u7eafcpu\u7248\u672cpaddlepaddle\u5728\u6267\u884c\u672c\u8bed\u53e5\u65f6\u53d1\u751f\u5d29\u6e83":117,"\u540c\u65f6\u518d\u5c06":82,"\u540c\u65f6\u53c8\u5c3d\u53ef\u80fd\u5c11\u7684\u727a\u7272mkl":62,"\u540c\u65f6\u5728\u5185\u5b58\u91cc\u76f4\u63a5\u968f\u5373\u9009\u53d6\u6570\u636e\u6765\u505ashuffl":94,"\u540c\u65f6\u5c06\u53c2\u6570\u521d\u59cb\u5316\u4e3a":96,"\u540c\u65f6\u628a\u5f53\u524d\u76ee\u5f55":108,"\u540c\u65f6\u63d0\u8d77":82,"\u540c\u65f6\u6570\u636e\u683c\u5f0f\u5c31\u662f":62,"\u540c\u65f6\u7528\u6237\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a":134,"\u540c\u65f6\u8bbe\u7f6e\u5185\u5b58\u7f13\u5b58\u529f\u80fd":94,"\u540c\u65f6\u8f93\u51fa\u5e8f\u5217\u5c42\u548c\u975e\u5e8f\u5217\u5c42":94,"\u540c\u6837":101,"\u540c\u6837\u4e5f\u53ef\u4ee5\u5728\u6d4b\u8bd5\u6a21\u5f0f\u4e2d\u6307\u5b9a\u6a21\u578b\u8def\u5f84":132,"\u540c\u6837\u53ef\u4ee5\u6269\u5c55\u5230\u53cc\u5c42\u5e8f\u5217\u7684\u5904\u7406\u4e0a":106,"\u540c\u6837\u53ef\u83b7\u53d6\u5230\u8f93\u5165\u8f93\u51fa\u548c\u5c5e\u6027\u53c2\u6570":111,"\u540c\u6b65\u6267\u884c\u64cd\u4f5c\u7684\u7ebf\u7a0b\u6570":132,"\u540c\u7406":111,"\u540d\u5b57\u4fee\u9970":65,"\u540e":[96,97,109,127,136,137,138],"\u540e\u5411":61,"\u540e\u5411\u4f20\u64ad":110,"\u540e\u5411\u4f20\u64ad\u7ed9\u5b9a\u8f93\u51fa\u7684\u68af\u5ea6":110,"\u540e\u5411\u65f6\u590d\u7528\u5df2\u7ecf\u8f6c\u6362\u8fc7\u7684\u6743\u91cd":61,"\u540e\u7f00\u4e3a":123,"\u540e\u8005\u5728\u6fc0\u6d3b\u51fd\u6570\u53cd\u5411\u8ba1\u7b97\u65f6\u88ab\u8c03\u7528":94,"\u540e\u8005\u622a\u65ad\u56de\u4f20\u7ed9\u524d\u5c42\u7684\u68af\u5ea6":94,"\u540e\u8005\u7528\u4e8e\u68c0\u67e5\u53c2\u6570\u5c5e\u6027\u7684\u5408\u6cd5\u6027":111,"\u540e\u8005\u7ee7\u627f\u81ea":111,"\u540e\u9988":123,"\u5411\u6307\u5b9a\u7684\u76ee\u5f55\u4e2d\u4e00\u4e2a\u65b0\u7684\u6587\u4ef6":32,"\u5411\u91cf":121,"\u5411\u91cfenable_parallel_vector":131,"\u5411paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u63d0\u4ea4":82,"\u5417":108,"\u5426\u5219":[111,136,138],"\u5426\u5219\u4f1a\u628a":109,"\u5426\u5219\u4f7f\u7528\u591a\u673a\u8bad\u7ec3":132,"\u5426\u5219\u4f7f\u7528cpu\u6a21\u5f0f":132,"\u5426\u5219\u4f7f\u7528gpu":134,"\u5426\u5219\u5b83\u4ee5\u4e00\u4e2a\u5e8f\u5217\u8f93\u5165":107,"\u5426\u5219\u5f97\u628apaddle\u9759\u6001\u5e93\u94fe\u63a5\u5230\u89e3\u91ca\u5668\u91cc":65,"\u5426\u5219\u9891\u7e41\u7684\u591a\u8282\u70b9\u5de5\u4f5c\u7a7a\u95f4\u90e8\u7f72\u53ef\u80fd\u4f1a\u5f88\u9ebb\u70e6":124,"\u542b\u4e49":116,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u548c\u5b50\u5e8f\u5217\u4fe1\u606f\u7684\u7a20\u5bc6\u5411\u91cf":110,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u7684\u6574\u6570":110,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u7684\u7a20\u5bc6\u5411\u91cf":110,"\u542f\u52a8\u4e00\u4e2a\u65b0\u7684\u7ebf\u7a0b\u5f00\u59cb\u4fdd\u5b58\u68c0\u67e5\u70b9":32,"\u542f\u52a8\u4e00\u4e2a\u6d4b\u8bd5\u96c6\u7fa4":124,"\u542f\u52a8\u5bb9\u5668\u5f00\u59cb\u8bad\u7ec3":127,"\u542f\u52a8\u5e76\u884c\u5411\u91cf\u7684\u9608\u503c":132,"\u542f\u52a8\u5feb\u901f\u5e94\u7b54":132,"\u542f\u52a8\u8bad\u7ec3\u4efb\u52a1":128,"\u542f\u7528\u68af\u5ea6\u53c2\u6570\u7684\u9608\u503c":132,"\u5440":104,"\u5468\u56f4":104,"\u547d\u4ee4\u4e3a":[91,126],"\u547d\u4ee4\u521b\u5efa\u65b0\u955c\u50cf":126,"\u547d\u4ee4\u5220\u9664":[136,137,138],"\u547d\u4ee4\u53ef\u4ee5\u8bbe\u7f6e":97,"\u547d\u4ee4\u65f6":136,"\u547d\u4ee4\u6709\u65f6\u5019\u4f1a\u4ea7\u751f\u4e00\u4e9b\u4e2d\u95f4\u7ed3\u679c":108,"\u547d\u4ee4\u770b\u5230\u505c\u6b62\u540e\u4f46\u662f\u6ca1\u6709\u5220\u9664\u7684":108,"\u547d\u4ee4\u7f16\u8bd1\u6e90\u7801\u5373\u53ef":108,"\u547d\u4ee4\u884c\u4e2d\u7684":116,"\u547d\u4ee4\u8bbe\u7f6e\u8be5\u7c7b\u7f16\u8bd1\u9009\u9879":97,"\u547d\u4ee4\u9009\u9879\u5e76\u4e14":124,"\u547d\u4ee4\u91cc\u90fd\u7528\u4e86":108,"\u547d\u540d\u4e3a":109,"\u547d\u540d\u89c4\u8303":111,"\u547d\u540d\u8bf7\u9075\u5b88":111,"\u548c":[33,61,62,65,66,82,94,95,96,97,104,107,108,109,110,111,112,113,116,117,119,121,123,124,134,136,138],"\u548c\u4e00\u4e2a\u5df2\u7ecf\u5206\u8bcd\u540e\u7684\u53e5\u5b50":104,"\u548c\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f":101,"\u548c\u4e0b\u9762\u5c06\u8981\u4ecb\u7ecd\u7684\u6ce8\u518c\u51fd\u6570\u4e00\u8d77\u653e\u5728":111,"\u548c\u4e2d\u6587\u6587\u6863":113,"\u548c\u4e4b\u524d\u51cf\u5c0f\u901a\u8fc7\u51cf\u5c0f\u7f13\u5b58\u6c60\u6765\u51cf\u5c0f\u5185\u5b58\u5360\u7528\u7684\u539f\u7406\u4e00\u81f4":94,"\u548c\u504f\u7f6e\u5411\u91cf":110,"\u548c\u5185\u5b58":108,"\u548c\u5217\u53f7":121,"\u548c\u53cc\u5c42\u5e8f\u5217\u542b\u6709subseq":103,"\u548c\u5bf9\u5e94\u884c\u7684\u4ee3\u7801":116,"\u548c\u5e8f\u5217\u4e2d\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee\u540c":103,"\u548c\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":123,"\u548c\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165":107,"\u548c\u64cd\u4f5c\u7cfb\u7edf\u4e0a\u76f4\u63a5\u8fd0\u884c\u7684":108,"\u548c\u672a\u6765\u53ef\u80fd\u8fd8\u4f1a\u7528\u5230":62,"\u548c\u793a\u4f8b2\u4e2d\u7684\u914d\u7f6e\u7c7b\u4f3c":104,"\u548c\u79bb\u7ebf\u6570\u636e\u7684\u65b9\u5f0f":33,"\u548c\u90e8\u5206layer":106,"\u548cpool":103,"\u548cpserver\u4e4b\u95f4\u7528\u4e8e\u7a00\u758f\u7c7b\u578b\u53c2\u6570\u901a\u4fe1\u7684\u7aef\u53e3\u4e2a\u6570":123,"\u54c1\u8d28":104,"\u54ea\u4e2atrainer\u5148\u5b8c\u6210block\u7684\u8bad\u7ec3":32,"\u54ea\u4e9b\u4e0d\u662f":104,"\u5546\u52a1":104,"\u554a":104,"\u56db\u79cd\u6570\u636e\u7c7b\u578b":101,"\u56e0\u4e3a\u5168\u8fde\u63a5\u5c42\u7684\u6fc0\u6d3b\u53ef\u4ee5\u662fsoftmax":110,"\u56e0\u4e3a\u53c2\u6570":134,"\u56e0\u4e3a\u5b83\u4eec\u7684\u8ba1\u7b97\u6548\u7387\u6bd4":107,"\u56e0\u4e3a\u5b83\u6bd4":107,"\u56e0\u4e3a\u5b98\u65b9\u955c\u50cf":127,"\u56e0\u4e3a\u6211\u4eec\u4f1a\u628a\u6240\u6709\u7f16\u8bd1\u5de5\u5177\u90fd\u5b89\u88c5\u8fdb\u4e00\u4e2a":108,"\u56e0\u4e3a\u6e90\u7801\u5c31\u5728\u672c\u673a\u4e0a":108,"\u56e0\u4e3a\u8fd9\u4e2a\u5de5\u5177\u5177\u6709web\u670d\u52a1\u754c\u9762":116,"\u56e0\u4e3a\u8fd9\u6837\u505a\u4e5f\u6ca1\u6cd5\u4fdd\u8bc1\u6d88\u9664\u968f\u673a\u6027":32,"\u56e0\u4e3ac":116,"\u56e0\u4e3apython\u7684\u641c\u7d22\u8def\u5f84\u662f\u4f18\u5148\u5df2\u7ecf\u5b89\u88c5\u7684python\u5305":91,"\u56e0\u4e3aswig\u5728\u7b2c\u4e09\u65b9\u8bed\u8a00\u4e2d\u66b4\u9732\u7684\u51fd\u6570\u540d":65,"\u56e0\u6b64":[61,104,106,110,136],"\u56e0\u6b64\u53cc\u5c42\u5e8f\u5217\u7684\u914d\u7f6e\u4e2d":104,"\u56e0\u6b64\u53ef\u80fd\u6d4b\u8bd5\u4e0d\u591f\u5b8c\u5907":112,"\u56e0\u6b64\u5728\u8f6c\u6362\u65f6\u9700\u8981\u663e\u793a\u7684\u6307\u5b9a":112,"\u56e0\u6b64\u5b83\u662finteger_value_sub_sequ":104,"\u56e0\u6b64\u5f53":136,"\u56e0\u6b64\u6211\u4eec\u91c7\u7528\u8f93\u51fa\u7684\u52a0\u6743\u548c":110,"\u56e0\u6b64\u7528\u6237\u5e76\u4e0d\u9700\u8981\u5173\u5fc3\u5b83\u4eec":131,"\u56e0\u6b64\u9519\u8bef\u7684\u4f7f\u7528\u4e8c\u8fdb\u5236\u53d1\u884c\u7248\u53ef\u80fd\u4f1a\u5bfc\u81f4\u8fd9\u79cd\u9519\u8bef":91,"\u56fd\u5185\u7528\u6237\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684\u955c\u50cf\u6e90\u6765\u52a0\u901f\u8bbf\u95ee":98,"\u56fe1":[121,122],"\u56fe2":121,"\u56fe\u50cf\u5206\u7c7b":82,"\u56fe\u8868":98,"\u5728":[61,62,66,82,103,104,107,108,109,111,116,121,122,123,137],"\u5728\u4e00\u4e2a\u4e0d\u53ef\u4e2d\u65ad\u5e76\u7f3a\u5c11\u5907\u4efd\u7684\u8bad\u7ec3\u4efb\u52a1\u4e2d":32,"\u5728\u4e00\u4e2a\u529f\u80fd\u9f50\u5168\u7684kubernetes\u673a\u7fa4\u91cc":126,"\u5728\u4e00\u4e2a\u53c2\u6570\u7684\u68af\u5ea6\u88ab\u66f4\u65b0\u540e":110,"\u5728\u4e00\u4e9b\u5206\u5e03\u5f0f\u7cfb\u7edf\u4e2d":123,"\u5728\u4e00\u6b21\u8bad\u7ec3\u4e2d":116,"\u5728\u4e00\u8f6e\u4e2d\u6bcfsave":132,"\u5728\u4e0a\u56fe\u4e2d\u663e\u793a\u4e86\u5728\u4e00\u4e2a\u5b9e\u9645\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u5e94\u7528":33,"\u5728\u4e0a\u9762\u4ee3\u7801\u4e2d":104,"\u5728\u4e0a\u9762\u7684\u4ee3\u7801\u4e2d":111,"\u5728\u4e0b\u4e00\u7bc7\u4e2d":126,"\u5728\u4e4b\u540e\u7684":94,"\u5728\u4e86\u89e3docker\u7684\u57fa\u672c\u4f7f\u7528\u65b9\u6cd5\u4e4b\u540e":98,"\u5728\u4efb\u610f\u65f6\u95f4\u67d0\u4e00\u53f0\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u4fdd\u5b58\u7684\u53c2\u6570\u53ef\u80fd\u6bd4\u53e6\u4e00\u53f0\u8981\u66f4\u65b0":123,"\u5728\u4f7f\u7528\u4e0d\u540c\u7684\u5206\u5e03\u5f0f\u8ba1\u7b97\u5e73\u53f0\u65f6":123,"\u5728\u4f7f\u7528\u5206\u5e03\u5f0f\u8ba1\u7b97\u5e73\u53f0\u8fdb\u884c\u8bad\u7ec3\u65f6":123,"\u5728\u4f7f\u7528\u540c\u6b65sgd\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u65f6":123,"\u5728\u4f7f\u7528\u65f6":95,"\u5728\u4f7f\u7528\u8be5\u6587\u6863\u4e4b\u524d":101,"\u5728\u4f7f\u7528c":119,"\u5728\u4f7f\u7528paddlepaddl":119,"\u5728\u4f7f\u7528twine\u4e0a\u4f20\u4e4b\u524d":82,"\u5728\u5168\u8fde\u63a5\u5c42\u4e2d":110,"\u5728\u5177\u4f53\u7684\u8ba1\u7b97\u4e2d":112,"\u5728\u51c6\u5907\u53d1\u8d77":109,"\u5728\u51fa\u73b0\u5355\u70b9\u6545\u969c\u65f6":32,"\u5728\u51fd\u6570":127,"\u5728\u5206\u5e03\u5f0f\u73af\u5883\u4e2d\u6d4b\u8bd5":132,"\u5728\u5206\u5e03\u5f0f\u8bad\u7ec3\u4e2d":132,"\u5728\u521b\u5efaparameters\u540e":96,"\u5728\u5355\u5c42\u6570\u636e\u7684\u57fa\u7840\u4e0a":104,"\u5728\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u52a0\u8f7d\u548c\u4fdd\u5b58\u53c2\u6570":132,"\u5728\u53c2\u6570\u670d\u52a1\u5668\u7ec8\u7aef\u6bcflog":132,"\u5728\u53cc\u5c42rnn\u4e2d\u7684\u7ecf\u5178\u60c5\u51b5\u662f\u5c06\u5185\u5c42\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217\u6570\u636e":104,"\u5728\u53cd\u5411\u4f20\u9012\u7684\u65f6\u5019":94,"\u5728\u53d8\u6362\u65f6\u9700\u8981\u5c06\u8f93\u5165\u5e8f\u5217\u4f20\u5165":104,"\u5728\u542f\u52a8job\u4e4b\u524d":127,"\u5728\u547d\u4ee4\u884c\u663e\u793a\u5206\u6790\u7ed3\u679c":116,"\u5728\u56de\u590d\u8bc4\u5ba1\u4eba\u610f\u89c1\u65f6":109,"\u5728\u56fe\u50cf\u4efb\u52a1\u4e2d":95,"\u5728\u591acpu\u8bad\u7ec3\u65f6\u5171\u4eab\u8be5\u53c2\u6570":132,"\u5728\u5b8c\u6210\u4e00\u5b9a\u91cf\u6570\u636e\u7684\u8bad\u7ec3\u540e":123,"\u5728\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684\u642d\u5efa\u4e4b\u540e":101,"\u5728\u5b9a\u4e49\u8f93\u5165layer\u4e4b\u540e":101,"\u5728\u5b9e\u73b0\u6bcf\u4e2a\u5b50\u7c7b\u7684\u65f6\u5019\u5c31\u4e0d\u9700\u8981\u5173\u5fc3\u5206\u652f\u7684\u4e8b\u60c5\u4e86":62,"\u5728\u5b9e\u73b0\u8fc7\u7a0b\u4e2d":66,"\u5728\u5b9e\u9645\u5e94\u7528\u4e2d":95,"\u5728\u5bb9\u5668\u4e2d\u7f16\u8f91\u4ee3\u7801":98,"\u5728\u5bb9\u5668\u521b\u5efa\u540e":127,"\u5728\u5bf9\u5bb9\u5668\u7684\u63cf\u8ff0":127,"\u5728\u5bf9\u5e94\u7684":61,"\u5728\u5c42\u4e2d\u6307\u5b9a":134,"\u5728\u5c42\u521d\u59cb\u5316\u7684\u65f6\u5019":61,"\u5728\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u4e2d":106,"\u5728\u5f00\u59cb\u8bad\u7ec3\u4e4b\u524d":33,"\u5728\u5f02\u6784\u96c6\u7fa4\u4e2d":32,"\u5728\u5f02\u6b65sgd\u4e2d":123,"\u5728\u5f15\u5165\u5176\u4ed6\u7c7b\u578b\u7684\u5934\u6587\u4ef6\u65f6":66,"\u5728\u5f53\u524d":94,"\u5728\u5f53\u524d\u7684\u5b9e\u73b0\u65b9\u5f0f\u4e0b":110,"\u5728\u5f97\u5230":127,"\u5728\u5feb\u7167\u5199\u5165\u5b8c\u6210\u540e":32,"\u5728\u60a8\u7684\u5b9e\u9645\u73af\u5883\u4e2d":32,"\u5728\u6211\u4eec\u7684\u4f8b\u5b50\u4e2d":107,"\u5728\u6267\u884c\u65f6":112,"\u5728\u63d0\u4ea4":109,"\u5728\u642d\u5efa\u795e\u7ecf\u7f51\u7edc\u7684\u8fc7\u7a0b\u4e2d":101,"\u5728\u65e0\u7279\u6b8a\u9700\u6c42\u60c5\u51b5\u4e0b":119,"\u5728\u6709\u666e\u901a\u7684cpu":62,"\u5728\u672c\u4f8b\u4e2d":[104,109,134],"\u5728\u672c\u6559\u7a0b\u4e2d":107,"\u5728\u672c\u6587\u6863\u4e2d":48,"\u5728\u672c\u793a\u4f8b\u4e2d":104,"\u5728\u672c\u8282\u4e2d":107,"\u5728\u673a\u7fa4\u4e0a\u8fd0\u884c\u8f6c\u6362\u7a0b\u5e8f":33,"\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b":94,"\u5728\u6811\u7684\u6bcf\u4e00\u5c42\u4e0a":132,"\u5728\u6837\u4f8b\u4e2d":66,"\u5728\u6b64":[131,134],"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e2d":107,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u5b50\u5e8f\u5217\u957f\u5ea6\u53ef\u4ee5\u4e0d\u76f8\u7b49":104,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u957f":107,"\u5728\u6bcf\u4e2apod\u4e0a\u90fd\u901a\u8fc7volume\u65b9\u5f0f\u6302\u8f7d\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u7684\u4e00\u4e2a\u76ee\u5f55\u7528\u4e8e\u4fdd\u5b58\u8bad\u7ec3\u6570\u636e\u548c\u8f93\u51fa\u7ed3\u679c":127,"\u5728\u6d4b\u8bd5\u9636\u6bb5":132,"\u5728\u6e90\u7801\u76ee\u5f55\u6811\u7684\u6839\u76ee\u5f55\u4e2d\u8fd0\u884c":109,"\u5728\u751f\u6210\u65f6":107,"\u5728\u7528\u6237\u4f7f\u7528c":66,"\u5728\u76f8\u5e94\u7684\u4f18\u5316\u7b97\u6cd5\u91cc\u8bbe\u7f6elearning_rate_schedule\u53ca\u76f8\u5173\u53c2\u6570":96,"\u5728\u76f8\u5e94layer\u7684":95,"\u5728\u795e\u7ecf\u7f51\u7edc\u4e2d\u7b49\u4e8e\u4e00\u6b21\u9884\u6d4b\u5904\u7406\u7684\u6837\u672c\u6570":121,"\u5728\u7a0b\u5e8f\u5b9e\u73b0\u4e2d\u90fd\u4f1a\u8f6c\u5316\u4e3a\u4e8c\u7ef4\u77e9\u9635":121,"\u5728\u7b2c\u4e8c\u4e2atab":82,"\u5728\u7ebf\u4e0a\u7cfb\u7edf\u4e2d":123,"\u5728\u7ebf\u6a21\u578b\u9884\u6d4b\u670d\u52a1":33,"\u5728\u7ec4\u5408\u65f6":101,"\u5728\u7ec4\u7ec7\u795e\u7ecf\u7f51\u7edc\u8f93\u5165":122,"\u5728\u7ec4\u7ec7\u795e\u7ecf\u7f51\u7edc\u8f93\u5165\u65f6":121,"\u5728\u7ec8\u7aef\u6267\u884c":122,"\u5728\u7f16\u8bd1\u5bbf\u4e3b\u673a\u7248protoc\u53ef\u6267\u884c\u6587\u4ef6\u548c\u76ee\u6807\u673a\u7248openblas\u5e93\u65f6\u9700\u8981\u7528\u5230":[136,138],"\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d":110,"\u5728\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u4e2d":103,"\u5728\u8bad\u7ec3\u4e2d":107,"\u5728\u8bad\u7ec3\u4e4b\u524d":127,"\u5728\u8bad\u7ec3\u65f6":126,"\u5728\u8bad\u7ec3\u7ed3\u675f\u7684\u65f6\u5019\u518d\u4fdd\u5b58\u4e3apaddlepaddle\u7684\u683c\u5f0f":62,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d":127,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u6bcfshow":132,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u83b7\u5f97\u53c2\u6570\u7684\u6743\u91cd\u548c\u68af\u5ea6":94,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u83b7\u5f97\u67d0\u4e00\u4e2alayer\u7684output":94,"\u5728\u8bbe\u7f6e":[136,137,138],"\u5728\u8bc4\u5ba1\u8fc7\u7a0b\u4e2d":82,"\u5728\u8be5\u793a\u4f8b\u4e2d":96,"\u5728\u8be5\u914d\u7f6e\u76847":104,"\u5728\u8c03\u7528":122,"\u5728\u8c03\u7528c":122,"\u5728\u8f6f\u4ef6\u5de5\u7a0b\u7684\u8303\u7574\u91cc":117,"\u5728\u8f93\u51fa\u7684\u8fc7\u7a0b\u4e2d":106,"\u5728\u8fd0\u884c\u5b8c\u6027\u80fd\u5206\u6790\u540e":116,"\u5728\u8fd0\u884c\u65f6\u5c06\u795e\u7ecf\u7f51\u7edc\u7684\u591a\u4e2a\u53ef\u5b66\u4e60\u53c2\u6570\u653e\u5728\u540c\u4e00\u4e2a\u76ee\u5f55\u4e2d":122,"\u5728\u8fd0\u884c\u795e\u7ecf\u7f51\u7edc\u8ba1\u7b97\u56fe\u65f6":112,"\u5728\u8fd9\u4e2a":82,"\u5728\u8fd9\u4e2a\u4f8b\u5b50\u91cc":[110,126],"\u5728\u8fd9\u4e2a\u51fd\u6570\u4e2d":104,"\u5728\u8fd9\u4e2a\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":65,"\u5728\u8fd9\u4e2a\u6559\u7a0b\u4e2d":117,"\u5728\u8fd9\u4e2a\u6a21\u578b\u4e2d":107,"\u5728\u8fd9\u4e2a\u9636\u6bb5\u7684\u4ee3\u7801\u6b63\u5728\u7ecf\u5386\u56de\u5f52\u6d4b\u8bd5":82,"\u5728\u8fd9\u4e9b\u5934\u6587\u4ef6\u4e2d":66,"\u5728\u8fd9\u4e9b\u6587\u4ef6\u4e2d":66,"\u5728\u8fd9\u4e9blayer\u4e2d":104,"\u5728\u8fd9\u65f6\u771f\u6b63\u7684\u5206\u914d\u5185\u5b58":112,"\u5728\u8fd9\u6bb5\u4ee3\u7801\u4e2d":112,"\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b":[107,110],"\u5728\u8fd9\u79cd\u7ed3\u6784\u4e2d":106,"\u5728\u8fd9\u7bc7\u6587\u6863\u91cc":126,"\u5728\u8fd9\u7bc7\u6587\u7ae0\u91cc":127,"\u5728\u8fd9\u91cc":106,"\u5728\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528\u5168\u8fde\u63a5\u5c42\u4f5c\u4e3a\u4f8b\u5b50\u6765\u5c55\u793a\u5b9e\u73b0\u65b0\u7f51\u7edc\u5c42\u6240\u9700\u8981\u7684\u56db\u4e2a\u6b65\u9aa4":110,"\u5728\u8fd9\u91cc\u7528eigenvector\u6765\u8868\u793a":112,"\u5728\u8fd9\u91cc\u9700\u8981\u6ce8\u610f\u7684\u662f":112,"\u5728\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u65f6":123,"\u5728\u8fdb\u884c\u7f51\u7edc\u914d\u7f6e\u4e4b\u524d":101,"\u5728\u91c7\u7528sgd":96,"\u5728\u91cd\u6784\u524d\u7684paddlepaddle\u4e2d":62,"\u5728\u95ee\u9898\u672c\u8eab\u7684\u8ba1\u7b97\u91cf\u6bd4\u8f83\u5c0f\u7684\u65f6\u5019":61,"\u5728\u96c6\u7fa4\u4e0a\u8bad\u7ec3\u4e00\u4e2a\u7a00\u758f\u6a21\u578b\u9700\u8981\u52a0\u4e0a\u4e0b\u9762\u7684\u53c2\u6570":134,"\u5728\u975e\u5e8f\u5217\u8f93\u5165\u65f6":94,"\u5728android\u5e73\u53f0\u4e0a\u4e0d\u652f\u6301\u901a\u8fc7swig\u8c03\u7528\u6765\u8bad\u7ec3\u6216\u8005\u9884\u6d4b":136,"\u5728android\u5e73\u53f0\u4e0a\u53ea\u652f\u6301\u4f7f\u7528c":136,"\u5728batch":61,"\u5728build\u76ee\u5f55\u4e0b\u6267\u884c":91,"\u5728c":[65,121],"\u5728c\u7684\u5934\u6587\u4ef6":65,"\u5728cmake\u53c2\u6570\u914d\u7f6e\u4e0a":[136,137],"\u5728cmake\u7684\u547d\u4ee4\u884c\u4e2d":97,"\u5728eigen\u4e2d":112,"\u5728ios\u5e73\u53f0\u4e0a\u4e0d\u652f\u6301\u901a\u8fc7swig\u8c03\u7528\u6765\u8bad\u7ec3\u6216\u8005\u9884\u6d4b":137,"\u5728ios\u5e73\u53f0\u4e0a\u53ea\u652f\u6301\u4f7f\u7528c":137,"\u5728main":116,"\u5728packing\u4e0a\u7684\u8017\u65f6":61,"\u5728paddl":127,"\u5728paddle\u4e2d":134,"\u5728paddle\u4e4b\u4e0a\u8fd0\u884c\u7684\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u8f93\u51fa\u7684\u6a21\u578b\u4f1a\u63d0\u4f9b\u7ed9\u5728\u7ebf\u4eba\u8138\u8bc6\u522b\u7684\u5e94\u7528\u4f7f\u7528":33,"\u5728paddlepaddl":121,"\u5728paddlepaddle\u4e2d":[101,106],"\u5728paddlepaddle\u4e2d\u4f7f\u7528dropout\u6709\u4e24\u79cd\u65b9\u5f0f":95,"\u5728paddlepaddle\u4e2d\u5305\u542b\u4ee5\u4e0b":95,"\u5728paddlepaddle\u5185\u90e8":[121,122],"\u5728paddlepaddle\u7684\u6587\u6863\u4e2d":104,"\u5728paramet":32,"\u5728python\u811a\u672c\u4e2d\u5b9e\u73b0\u4e0e\u524d\u5411operator\u76f8\u540c\u7684\u8ba1\u7b97\u903b\u8f91":111,"\u5728rnn\u7684\u60c5\u51b5\u4e0b":61,"\u5728step\u51fd\u6570\u4e2d\u5b9a\u4e49":106,"\u5728step\u51fd\u6570\u4e2d\u5b9a\u4e49memori":106,"\u5728trainer":134,"\u5728trainer\u4e2d\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u53d6\u6a21\u7684\u65b9\u6cd5\u4e3a\u6bcf\u4e2atrainer\u5206\u914d\u8bad\u7ec3\u6570\u636e\u6587\u4ef6":123,"\u5730\u6bb5":104,"\u5730\u7406\u4f4d\u7f6e":104,"\u5730\u94c1\u7ad9":104,"\u5747\u4f1a\u5b58\u653e\u4e8e":119,"\u5747\u4f1a\u88ab\u5b89\u88c5\u5230includ":66,"\u5747\u5300\u5206\u5e03":96,"\u5747\u5300\u5206\u5e03\u7684\u8303\u56f4\u662f":132,"\u5747\u662f\u5728":66,"\u5747\u6709\u4e09\u4e2a\u5b50\u5e8f\u5217":104,"\u5747\u6709\u4e24\u7ec4\u7279\u5f81":104,"\u57fa\u4e8e\u53cc\u5c42\u5e8f\u5217\u8f93\u5165":106,"\u57fa\u4e8e\u7c98\u6027\u4f1a\u8bdd\u7684\u8d1f\u8f7d\u5747\u8861\u529f\u80fd":48,"\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":[102,122],"\u57fa\u7840\u4e0a":121,"\u57fa\u7c7b":111,"\u586b\u5199":109,"\u589e\u52a0":111,"\u589e\u52a0\u4e86\u4e00\u6761cd\u547d\u4ee4":126,"\u589e\u52a0\u4e86\u8bbe\u5907\u7c7b\u578b":111,"\u589e\u52a0\u5982\u4e0b\u53c2\u6570":134,"\u589e\u52a0\u68af\u5ea6\u68c0\u6d4b\u7684\u5355\u5143\u6d4b\u8bd5":110,"\u5904\u7406\u5668\u6709\u4e24\u4e2a\u5173\u952e\u6027\u80fd\u9650\u5236":117,"\u5904\u7406\u7684\u8f93\u5165\u5e8f\u5217\u4e3b\u8981\u5206\u4e3a\u4ee5\u4e0b\u4e09\u79cd\u7c7b\u578b":106,"\u5907\u6ce8":117,"\u590d\u6742\u5ea6\u6216\u65f6\u95f4\u590d\u6742\u5ea6":117,"\u5916\u5c42\u5e8f\u5217\u5728":121,"\u5916\u5c42memory\u662f\u4e00\u4e2a\u5143\u7d20":104,"\u5916\u5c42outer_step\u4e2d":104,"\u5916\u90e8\u5b58\u50a8":62,"\u591a\u4e2a":122,"\u591a\u4e2a\u503c":33,"\u591a\u4e2a\u5c42\u7684\u8f93\u51fa\u77e9\u9635\u7684\u9ad8\u5ea6\u4e0d\u4e00\u81f4\u5bfc\u81f4\u62fc\u63a5\u5931\u8d25":94,"\u591a\u4e2a\u6392\u6210\u4e00\u5217\u7684\u5143\u7d20":121,"\u591a\u4e2a\u8f93\u51fa\u5c42\u5904\u7406\u591a\u4e2a\u4e0d\u540c\u957f\u5ea6\u7684\u5e8f\u5217":94,"\u591a\u4e2aip\u4f7f\u7528":123,"\u591a\u4e2aparamet":32,"\u591a\u53e5\u8bdd\u8fdb\u4e00\u6b65\u6784\u6210\u4e86\u6bb5\u843d":106,"\u591a\u673a\u8bad\u7ec3":94,"\u591a\u6b21\u8c03\u7528":61,"\u591a\u7528\u4e8e\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1":122,"\u591a\u8f6e\u5bf9\u8bdd\u7b49\u66f4\u4e3a\u590d\u6742\u7684\u8bed\u8a00\u6570\u636e":106,"\u5927\u4e8e\u7b49\u4e8e\u4e00\u4e2a":122,"\u5927\u591a\u6570\u5c42\u4e0d\u9700\u8981\u8fdc\u7a0b\u7a00\u758f\u8bad\u7ec3\u51fd\u6570":110,"\u5927\u591a\u6570\u5c42\u9700\u8981\u8bbe\u7f6e\u4e3a":110,"\u5927\u591a\u6570\u7f51\u7edc\u5c42\u4e0d\u9700\u8981\u652f\u6301\u8fdc\u7a0b\u7a00\u758f\u66f4\u65b0":110,"\u5927\u591a\u6570\u8bed\u8a00\u90fd\u652f\u6301\u4f7f\u7528c\u8bed\u8a00api":65,"\u5927\u5bb6\u53ef\u4ee5\u7528\u628a\u5f00\u53d1\u5de5\u5177\u5b89\u88c5\u8fdb\u5165":108,"\u5927\u5bb6\u53ef\u4ee5\u901a\u8fc7\u5b83\u9605\u8bfb\u6559\u7a0b":98,"\u5927\u5c0f\u4e0d\u4e00\u6837\u65f6":94,"\u5927\u6982\u82b1\u5341\u5206\u949f\u770b\u4e00\u4e0b":108,"\u5927\u90e8\u5206":116,"\u5929":104,"\u5929\u4e00\u5e7f\u573a":104,"\u5929\u4e00\u9601":104,"\u5934\u4fe1\u606f\u4e2d":96,"\u5934\u6587\u4ef6\u4e2d\u628a\u53c2\u6570\u5b9a\u4e49\u4e3a\u7c7b\u7684\u6210\u5458\u53d8\u91cf":110,"\u5934\u6587\u4ef6\u5982\u4e0b":110,"\u597d":104,"\u597d\u5403":104,"\u5982":[107,109,111,134],"\u5982\u4e0a\u4e00\u5c0f\u8282\u6240\u793a":112,"\u5982\u4e0b":123,"\u5982\u4e0b\u56fe\u6240\u793a":[104,117],"\u5982\u4e0b\u6240\u793a":134,"\u5982\u4f55\u8d21\u732e":114,"\u5982\u4f55\u8d21\u732e\u4ee3\u7801":114,"\u5982\u56fe\u4e2dtrainer":32,"\u5982\u6709":111,"\u5982\u679c\u4e00\u4e2a\u7f51\u7edc\u5c42\u9700\u8981\u914d\u7f6e\u7684\u8bdd":110,"\u5982\u679c\u4e0a\u9762\u4e24\u6b65\u51fa\u73b0\u9519\u8bef":32,"\u5982\u679c\u4e0d\u4e3a0":132,"\u5982\u679c\u4e0d\u4f7f\u7528\u5206\u5e03\u5f0f\u5b58\u50a8":123,"\u5982\u679c\u4e0d\u4f7f\u7528docker":97,"\u5982\u679c\u4e0d\u4f7f\u7528docker\u7f16\u8bd1\u73af\u5883":97,"\u5982\u679c\u4e0d\u60f3\u4f7f\u7528":113,"\u5982\u679c\u4e0d\u6307\u5b9a\u8fd9\u4e2a\u6587\u4ef6":116,"\u5982\u679c\u4e0d\u6536\u655b":96,"\u5982\u679c\u4e0d\u9700\u8981\u5916\u90e8\u5b58\u50a8\u7528\u4e8e\u8f6c\u6362":62,"\u5982\u679c\u4e3a0":132,"\u5982\u679c\u4e3a\u5426\u5219\u662f\u7528openbla":97,"\u5982\u679c\u4e3afals":132,"\u5982\u679c\u4e3atrue":132,"\u5982\u679c\u4e4b\u540e\u60f3\u8981\u91cd\u65b0\u8bbe\u7f6e":97,"\u5982\u679c\u4ec5\u4ec5\u4fee\u6539\u4e00\u4e2a\u6587\u4ef6\u4f46\u63d0\u4ea4\u4e86\u5341\u51e0\u4e2acommit":109,"\u5982\u679c\u4ecd\u7136\u5b58\u5728\u95ee\u9898":100,"\u5982\u679c\u4ed4\u7ec6\u8bbe\u7f6e\u7684\u8bdd":132,"\u5982\u679c\u4f60\u53ea\u9700\u8981\u4f7f\u7528\u7b80\u5355\u7684rnn":107,"\u5982\u679c\u4f60\u60f3\u4f7f\u7528\u8fd9\u4e9b\u7279\u6027":134,"\u5982\u679c\u4f60\u60f3\u8981\u4fdd\u5b58\u67d0\u4e9b\u5c42\u7684\u7279\u5f81\u56fe":132,"\u5982\u679c\u4f60\u66fe\u5728\u6e90\u7801\u76ee\u5f55\u4e0b\u7f16\u8bd1\u8fc7\u5176\u4ed6\u5e73\u53f0\u7684paddlepaddle\u5e93":137,"\u5982\u679c\u4f60\u66fe\u7ecf\u5728\u6e90\u7801\u76ee\u5f55\u4e0b\u7f16\u8bd1\u8fc7\u5176\u4ed6\u5e73\u53f0\u7684paddlepaddle\u5e93":[136,138],"\u5982\u679c\u4f60\u6b63\u5728\u5904\u7406\u5e8f\u5217\u6807\u8bb0\u4efb\u52a1":107,"\u5982\u679c\u4f60\u8981\u4e3a\u4e86\u6d4b\u8bd5\u800c\u589e\u52a0\u65b0\u7684\u6587\u4ef6":110,"\u5982\u679c\u4f7f\u7528":122,"\u5982\u679c\u4f7f\u7528docker\u7f16\u8bd1\u73af\u5883":97,"\u5982\u679c\u4f7f\u7528mkl\u5e76\u4e14\u673a\u5668\u542b\u6709avx2\u6307\u4ee4\u96c6":97,"\u5982\u679c\u4f7f\u7528swig\u6211\u4eec\u9700\u8981\u5c06\u5728interface\u6587\u4ef6\u91cc":65,"\u5982\u679c\u5173\u95edmkl":97,"\u5982\u679c\u51fa\u73b0\u4ee5\u4e0bpython\u76f8\u5173\u7684\u5355\u5143\u6d4b\u8bd5\u90fd\u8fc7\u4e0d\u4e86\u7684\u60c5\u51b5":91,"\u5982\u679c\u53c2\u6570\u4fdd\u5b58\u4e0b\u6765\u7684\u6a21\u578b\u76ee\u5f55":94,"\u5982\u679c\u53d1\u73b0\u6700\u65e9\u7684\u62a5\u9519\u5c31\u662f\u7f51\u7edc\u901a\u4fe1\u7684\u95ee\u9898":92,"\u5982\u679c\u540c\u65f6\u4f7f\u7528":123,"\u5982\u679c\u5728\u4f7f\u7528mkl":62,"\u5982\u679c\u5728\u70b9\u51fb\u4e0b\u9762\u94fe\u63a5\u65f6\u51fa\u73b0\u5982\u4e0b\u767b\u9646\u754c\u9762":100,"\u5982\u679c\u5728\u7f16\u8bd1":119,"\u5982\u679c\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u672a\u8bbe\u7f6easync":132,"\u5982\u679c\u5728\u8bad\u7ec3\u671f\u95f4\u540c\u65f6\u53d1\u8d77\u53e6\u5916\u4e00\u4e2a\u8fdb\u7a0b\u8fdb\u884c\u6d4b\u8bd5":132,"\u5982\u679c\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u8bbe\u7f6ebatch":132,"\u5982\u679c\u5728\u8bad\u7ec3nlp\u76f8\u5173\u6a21\u578b\u65f6":96,"\u5982\u679c\u591a\u4e2aop\u4f9d\u8d56\u4e00\u4e9b\u5171\u7528\u7684\u51fd\u6570":111,"\u5982\u679c\u5931\u8d25":82,"\u5982\u679c\u5b58\u5728\u6570\u636e\u6392\u5217\u683c\u5f0f\u4e0d\u4e00\u6837\u7684\u60c5\u51b5\u65f6":62,"\u5982\u679c\u5b58\u5728\u67d0\u4e9btrainer\u6267\u884c\u901f\u5ea6\u8fc7\u6162\u4f1a\u5f71\u54cd\u6574\u4f53\u96c6\u7fa4\u7684\u901f\u5ea6":32,"\u5982\u679c\u5c06\u8fd9\u4e2a\u5185\u5b58\u6c60\u51cf\u5c0f":94,"\u5982\u679c\u5c0f\u4e8e75m":91,"\u5982\u679c\u5df2\u7ecf\u6709pod\u8fd0\u884c":127,"\u5982\u679c\u5df2\u7ecf\u6b63\u5728\u6267\u884c\u4fdd\u5b58\u68c0\u67e5\u70b9\u7684\u7ebf\u7a0b":32,"\u5982\u679c\u5e0c\u671b\u53ef\u4ee5\u5728\u540e\u53f0\u8fd0\u884cpserver\u7a0b\u5e8f":123,"\u5982\u679c\u5f53\u524dmpi\u96c6\u7fa4\u5e76\u4e0d\u652f\u6301\u4efb\u52a1\u72ec\u5360\u6a21\u5f0f":92,"\u5982\u679c\u60a8\u5728\u4f7f\u7528window":98,"\u5982\u679c\u60a8\u60f3\u8981\u66f4\u6df1\u5165\u4e86\u89e3deep":98,"\u5982\u679c\u60a8\u671f\u671b\u5728\u7f16\u8bd1\u5b8c\u6210\u540e\u7acb\u5373\u6267\u884c\u6240\u6709\u7684\u5355\u5143\u6d4b\u8bd5":97,"\u5982\u679c\u60a8\u6ca1\u6709\u542c\u8bf4":108,"\u5982\u679c\u60a8\u7684\u7535\u8111\u4e0d\u652f\u6301avx":98,"\u5982\u679c\u60a8\u7684gpu\u7406\u8bba\u53ef\u4ee5\u8fbe\u52306":117,"\u5982\u679c\u60a8\u9009\u62e9\u4e0d\u4f7f\u7528docker\u955c\u50cf":97,"\u5982\u679c\u60f3\u4f7f\u7528\u53ef\u89c6\u5316\u7684\u5206\u6790\u5668":117,"\u5982\u679c\u60f3\u5f88\u597d\u7684\u7406\u89e3\u7a0b\u5e8f\u7684\u884c\u4e3a":117,"\u5982\u679c\u60f3\u6539\u53d8\u539f\u6709tensor\u7684shape\u4fe1\u606f":112,"\u5982\u679c\u60f3\u8981\u4e86\u89e3\u53cc\u5c42rnn\u5728\u5177\u4f53\u95ee\u9898\u4e2d\u7684\u4f7f\u7528":104,"\u5982\u679c\u60f3\u8981\u542f\u7528paddlepaddle\u7684\u5185\u7f6e\u5b9a\u65f6\u5668":117,"\u5982\u679c\u6211\u4eec\u53ea\u9700\u8981\u7f16\u8bd1\u4e00\u4e2a\u53ea\u652f\u6301":108,"\u5982\u679c\u6211\u77e5\u9053\u5185\u6838\u82b1\u4e8610ms\u6765\u79fb\u52a81gb\u6570\u636e":117,"\u5982\u679c\u6307\u5b9a\u4e862\u4e2alayer\u4f5c\u4e3a\u8f93\u51fa\u5c42":94,"\u5982\u679c\u63d0\u793a\u6b63\u786e":113,"\u5982\u679c\u652f\u6301\u589e\u52a0\u6b64\u53c2\u6570\u63d0\u4ea4":92,"\u5982\u679c\u662f\u4e00\u4e2a\u5e8f\u5217\u8f93\u5165":121,"\u5982\u679c\u662f\u5176\u5b83\u7c7b\u578b":33,"\u5982\u679c\u662f\u7528\u7f16\u8bd1\u65f6\u6307\u5b9acpu\u7248\u672c":119,"\u5982\u679c\u6709\u591a\u4e2a\u8f93\u5165":106,"\u5982\u679c\u6709\u591a\u4e2a\u8f93\u5165\u5e8f\u5217":106,"\u5982\u679c\u6709\u9700\u8981\u4fee\u6539\u7684\u5730\u65b9":109,"\u5982\u679c\u6709bugfix\u7684\u884c\u4e3a":82,"\u5982\u679c\u672a\u8bbe\u7f6e":132,"\u5982\u679c\u672a\u8bbe\u7f6egpu":134,"\u5982\u679c\u673a\u5668\u4e2d\u5df2\u7ecf\u5b89\u88c5\u8fc7paddlepaddl":97,"\u5982\u679c\u67d0\u4e00\u4e2a\u7c7b\u578b\u9700\u8981\u5f15\u7528\u53e6\u4e00\u4e2a\u7c7b\u578b":66,"\u5982\u679c\u67d0\u4e00\u4e2apaddl":66,"\u5982\u679c\u67d0\u4e00\u4e2apaddle\u6982\u5ff5\u5fc5\u987b\u8981\u66b4\u9732":66,"\u5982\u679c\u67d0\u4e00\u5757\u6839\u672c\u5c31\u4e0d\u600e\u4e48\u8017\u65f6":117,"\u5982\u679c\u68c0\u67e5\u5230\u5206\u914d\u5728\u4e0d\u540c\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u53c2\u6570\u7684\u5206\u5e03\u4e0d\u5747\u5300\u6b21\u6570\u5927\u4e8echeck":132,"\u5982\u679c\u6ca1\u6709\u5b89\u88c5nvidia":98,"\u5982\u679c\u6ca1\u6709\u5b9a\u4e49memori":106,"\u5982\u679c\u6ca1\u8fc7":109,"\u5982\u679c\u6d88\u606f\u6570\u636e\u592a\u5c0f":132,"\u5982\u679c\u6ee1\u8db3\u6761\u4ef6":32,"\u5982\u679c\u7528\u516c\u7528\u7684\u7535\u8111\u5f00\u53d1":108,"\u5982\u679c\u7528\u6237\u4e0d\u9700\u8981\u8bbf\u95eelstm\u7684\u4e2d\u95f4\u53d8\u91cf":95,"\u5982\u679c\u7528\u6237\u60f3\u8981\u81ea\u5b9a\u4e49\u521d\u59cb\u5316\u65b9\u5f0f":96,"\u5982\u679c\u7528\u6237\u8981\u628apaddle\u7684\u9759\u6001\u5e93":65,"\u5982\u679c\u7528\u81ea\u5df1\u7684\u7535\u8111\u5f00\u53d1":108,"\u5982\u679c\u771f\u60f3\u6316\u6398\u5185\u6838\u6df1\u5904\u7684\u67d0\u4e2a\u79d8\u5bc6":117,"\u5982\u679c\u795e\u7ecf\u7f51\u7edc\u6709\u591a\u4e2a\u8f93\u5165\u6216\u8005\u591a\u4e2a\u8f93\u51fa":[121,122],"\u5982\u679c\u7a0b\u5e8f\u5d29\u6e83\u4f60\u4e5f\u53ef\u4ee5\u624b\u52a8\u7ec8\u6b62":124,"\u5982\u679c\u7cfb\u7edf\u5b89\u88c5\u4e86\u591a\u4e2apython\u7248\u672c":91,"\u5982\u679c\u7cfb\u7edf\u652f\u6301":[91,100],"\u5982\u679c\u7cfb\u7edf\u652f\u6301\u7684\u662f":[91,100],"\u5982\u679c\u7f16\u8bd1\u65f6\u6307\u5b9a\u7f16\u8bd1cpu\u7248\u672c":119,"\u5982\u679c\u7f16\u8bd1\u65f6\u6307\u5b9a\u7f16\u8bd1gpu\u7248\u672c":119,"\u5982\u679c\u7f16\u8bd1\u7684\u65f6\u5019\u6211\u4eec\u7528\u4e86":108,"\u5982\u679c\u7f51\u7edc\u5c42\u4e0d\u9700\u8981\u8fdc\u7a0b\u7a00\u758f\u66f4\u65b0":110,"\u5982\u679c\u7f51\u7edc\u67b6\u6784\u7b80\u5355":107,"\u5982\u679c\u8981\u4e0a\u4f20gpu\u7248\u672c\u7684\u5305":82,"\u5982\u679c\u8981\u542f\u7528gpu":123,"\u5982\u679c\u8981\u8fd0\u884c\u6240\u6709\u7684\u5355\u5143\u6d4b\u8bd5":109,"\u5982\u679c\u89e3\u51b3\u4e86\u67d0\u4e2aissue\u7684\u95ee\u9898":109,"\u5982\u679c\u8bad\u7ec3\u4e00\u4e2apass":96,"\u5982\u679c\u8bad\u7ec3\u8fc7\u7a0b\u7684\u7684cost\u660e\u663e\u9ad8\u4e8e\u8fd9\u4e2a\u5e38\u6570\u8f93\u51fa\u7684cost":96,"\u5982\u679c\u8bbe\u7f6e\u8be5\u53c2\u6570":132,"\u5982\u679c\u8bc4\u5ba1\u610f\u89c1\u6bd4\u8f83\u591a":109,"\u5982\u679c\u8c03\u7528\u9759\u6001\u5e93\u53ea\u80fd\u5c06\u9759\u6001\u5e93\u4e0e\u89e3\u91ca\u5668\u94fe\u63a5":65,"\u5982\u679c\u8f93\u5165\u662f\u5e8f\u5217\u6570\u636e":121,"\u5982\u679c\u8f93\u51fa\u662f\u4e00\u4e2a\u5e8f\u5217":121,"\u5982\u679c\u8f93\u51fa\u662fno":98,"\u5982\u679c\u8fd0\u884c":91,"\u5982\u679c\u8fd8\u4e0d\u884c":91,"\u5982\u679c\u9700\u8981":119,"\u5982\u679c\u9700\u8981\u5728c\u7ef4\u5ea6\u8ba1\u7b97softmax":95,"\u5982\u679c\u9700\u8981\u5b89\u88c5\u652f\u6301gpu\u7684\u7248\u672c":[100,102],"\u5982\u679c\u9700\u8981\u624b\u52a8\u7f16\u8bd1":82,"\u5982\u679c\u9700\u8981\u6269\u5927\u77e9\u9635":110,"\u5982\u679c\u9700\u8981\u7f29\u51cf\u77e9\u9635":110,"\u5982\u679c\u9700\u8981\u83b7\u53d6":100,"\u5982\u679ccuda":111,"\u5982\u679clearning_rate\u592a\u5927":96,"\u5982\u679clearning_rate\u592a\u5c0f":96,"\u5982\u679cmkl":62,"\u5982\u679cop\u6ca1\u6709\u5b9e\u73b0cuda":111,"\u5982\u679cop\u7684\u67d0\u4e2a\u8f93\u5165\u4e0d\u53c2\u4e0e\u53cd\u5411\u68af\u5ea6\u7684\u8ba1\u7b97":111,"\u5982\u679cpaddlepaddle\u5305\u5df2\u7ecf\u5728python\u7684sit":91,"\u5982\u679cpaddlepaddle\u5e93\u9700\u8981\u540c\u65f6\u652f\u6301\u771f\u673a\u548c\u6a21\u62df\u5668":137,"\u5982\u679cparamet":32,"\u5982\u6bcf\u4e2a\u6587\u4ef6\u53ea\u6709\u4e00\u4e2a":109,"\u5982\u795e\u7ecf\u5143\u6fc0\u6d3b\u503c\u7b49":94,"\u5982\u8981build\u8fd9\u4e2a\u5f00\u53d1\u955c\u50cf":109,"\u5982\u9ad8\u4eae\u90e8\u5206":117,"\u5982train":123,"\u5b50":104,"\u5b50\u53e5":106,"\u5b50\u53e5\u7684\u5355\u8bcd\u6570\u548c\u6307\u5b9a\u7684\u4e00\u4e2a\u8f93\u5165\u5e8f\u5217\u4e00\u81f4":106,"\u5b50\u76ee\u5f55":108,"\u5b50\u7c7b\u53ea\u9700\u8981\u4f7f\u7528\u5b9a\u4e49\u597d\u7684\u63a5\u53e3":62,"\u5b57\u6bb5\u4e2d":127,"\u5b57\u6bb5\u4e3a\u4f8b":94,"\u5b57\u6bb5\u7684\u53d6\u503c":121,"\u5b57\u6bb5\u8868\u793a\u5bb9\u5668\u7684\u73af\u5883\u53d8\u91cf":127,"\u5b57\u6bb5\u8868\u793a\u8fd9\u4e2ajob\u4f1a\u540c\u65f6\u5f00\u542f3\u4e2apaddlepaddle\u8282\u70b9":127,"\u5b57\u6bb5\u8bbe\u4e3a":82,"\u5b57\u7b26\u4e32":33,"\u5b58\u50a8":[33,121,122],"\u5b58\u50a8\u6d6e\u70b9\u7c7b\u578b\u8f93\u5165":122,"\u5b58\u50a8\u7684\u538b\u7f29\u6587\u4ef6":122,"\u5b58\u6570\u6570\u636e":121,"\u5b66\u4e60":108,"\u5b66\u4e60\u6210\u672c\u9ad8":65,"\u5b66\u4e60\u7387\u4e3a":96,"\u5b81\u6ce2":104,"\u5b83\u4eec\u4e3b\u8981\u662f\u7528\u4e8e":62,"\u5b83\u4eec\u7684\u6587\u4ef6\u540d\u662f":33,"\u5b83\u5305\u542b\u4ee5\u4e0b\u51e0\u6b65":110,"\u5b83\u5305\u542b\u4ee5\u4e0b\u53c2\u6570":110,"\u5b83\u53ea\u4f1a\u5305\u62ec\u751f\u6210\u597d\u7684\u52a8\u6001\u5e93\u548c\u5934\u6587\u4ef6":62,"\u5b83\u53eb\u505a":107,"\u5b83\u53ef\u4ee5\u5e2e\u52a9\u51cf\u5c11\u5206\u53d1\u5ef6\u8fdf":124,"\u5b83\u53ef\u4ee5\u5e2e\u52a9\u6211\u4eec\u683c\u5f0f\u5316\u6e90\u4ee3\u7801":109,"\u5b83\u53ef\u4ee5\u6307\u6d4b\u91cf\u4e00\u4e2a\u7a0b\u5e8f\u7684\u7a7a\u95f4":117,"\u5b83\u53ef\u80fd\u6709\u4e0d\u6b62\u4e00\u4e2a\u6743\u91cd":110,"\u5b83\u5b9a\u4e49\u4e86":107,"\u5b83\u5b9a\u4e49\u89e3\u7801\u7f51\u7edc\u7684":107,"\u5b83\u5c06\u88ab\u5206\u53d1\u5230":124,"\u5b83\u5e76\u4e0d\u662f\u4e00\u4e2a\u5b8c\u6574\u7684recurr":95,"\u5b83\u5e94\u8be5\u6253\u5370\u51fa\u9884\u6d4b\u4f4f\u623f\u6570\u636e\u7684\u6e05\u5355":102,"\u5b83\u652f\u6301\u591a\u7ebf\u7a0b\u66f4\u65b0":110,"\u5b83\u662finteger_value\u7c7b\u578b\u7684":104,"\u5b83\u662finteger_value_sequence\u7c7b\u578b\u7684":104,"\u5b83\u6709\u52a9\u4e8e\u5e2e\u52a9\u9891\u7e41\u4fee\u6539\u548c\u8bbf\u95ee\u5de5\u4f5c\u533a\u6587\u4ef6\u7684\u7528\u6237\u51cf\u5c11\u8d1f\u62c5":124,"\u5b83\u7684":107,"\u5b83\u7684\u529f\u80fd\u662f":111,"\u5b83\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20":103,"\u5b83\u7684\u8f93\u5165\u4e0e\u7ecf\u8fc7\u5b66\u4e60\u7684\u53c2\u6570\u505a\u5185\u79ef\u5e76\u52a0\u4e0a\u504f\u7f6e":110,"\u5b83\u8868\u793a":108,"\u5b83\u8d1f\u8d23\u51b3\u5b9a\u7f16\u8bd1\u65f6\u662f\u5426\u4f7f\u7528mklml\u548cmkl":62,"\u5b83\u9996\u5148\u8c03\u7528\u57fa\u6784\u9020\u51fd\u6570":110,"\u5b89\u6392":104,"\u5b89\u88c5":116,"\u5b89\u88c5\u4e0e\u7f16\u8bd1":102,"\u5b89\u88c5\u540e":98,"\u5b89\u88c5\u540e\u7684\u76ee\u5f55\u7ed3\u6784\u4e3a":66,"\u5b89\u88c5\u597ddocker\u4e4b\u540e\u53ca\u53ef\u7528\u4ee5\u4e0b\u547d\u4ee4\u542f\u52a8\u5de5\u5177":113,"\u5b89\u88c5\u597ddocker\u4e4b\u540e\u53ef\u4ee5\u4f7f\u7528\u6e90\u7801\u76ee\u5f55\u4e0b\u7684\u811a\u672c\u6784\u5efa\u6587\u6863":113,"\u5b89\u88c5\u5b8c\u6210\u4e4b\u540e":[123,137],"\u5b89\u88c5\u5b8c\u6bd5\u540e":116,"\u5b89\u88c5\u5f00\u53d1\u5de5\u5177\u5230":108,"\u5b89\u88c5\u6587\u6863":101,"\u5b89\u88c5\u65b9\u5f0f\u6765\u5feb\u901f\u5b89\u88c5paddlepaddl":123,"\u5b89\u9759":104,"\u5b8c\u6210":109,"\u5b8c\u6210\u4e00\u4e2a\u4f20\u8f93\u52a8\u4f5c\u5b8c\u6210\u7684\u65f6\u95f4\u4e5f\u6bd4\u8f83\u77ed":48,"\u5b8c\u6210\u4e0a\u8ff0\u51c6\u5907\u4e4b\u540e":122,"\u5b8c\u6210\u4efb\u610f\u7684\u8fd0\u7b97\u903b\u8f91":106,"\u5b8c\u6210\u540evolume\u4e2d\u7684\u6587\u4ef6\u5185\u5bb9\u5927\u81f4\u5982\u4e0b":127,"\u5b8c\u6210\u5728windows\u4e0a\u5b89\u88c5\u548c\u4f7f\u7528dock":98,"\u5b8c\u6210\u5b89\u88c5":100,"\u5b8c\u6210\u5e38\u7528layer\u7684mkl":62,"\u5b8c\u6210\u5e38\u89c1\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edcvgg":62,"\u5b8c\u6210\u6570\u636e\u7684\u9884\u5904\u7406":33,"\u5b8c\u6210\u76f8\u5e94\u7684\u8ba1\u7b97":103,"\u5b8c\u6210\u81ea\u52a8\u5316\u4e8c\u8fdb\u5236\u7f16\u8bd1":82,"\u5b8c\u6210paddlepaddle\u7684\u5b89\u88c5":101,"\u5b8c\u6574\u4ee3\u7801\u53ef\u4ee5\u53c2\u8003\u793a\u4f8b":94,"\u5b8c\u6574\u4ee3\u7801\u53ef\u4ee5\u67e5\u770b":122,"\u5b8c\u6574\u6e90\u7801\u53ef\u53c2\u8003":96,"\u5b8c\u6574\u7684\u53c2\u6570\u77e9\u9635\u88ab\u5206\u5e03\u5728\u4e0d\u540c\u7684\u53c2\u6570\u670d\u52a1\u5668\u4e0a":110,"\u5b8c\u6574\u7684\u914d\u7f6e\u6587\u4ef6\u5728":107,"\u5b98\u65b9\u6587\u6863":97,"\u5b9a\u4e49":62,"\u5b9a\u4e49\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185rnn\u5355\u5143\u5b8c\u6210\u7684\u8ba1\u7b97":106,"\u5b9a\u4e49\u4e00\u4e9b\u9664\u4e86layer\u548cmemory\u76f8\u5173\u7684\u7c7b\u548c\u51fd\u6570":62,"\u5b9a\u4e49\u4e86\u4e00\u4e2a\u53ea\u8bfb\u7684memori":106,"\u5b9a\u4e49\u4e86lstm\u5355\u5143\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u7684\u8ba1\u7b97\u8fc7\u7a0b":95,"\u5b9a\u4e49\u4f4d\u7f6e":111,"\u5b9a\u4e49\u5728\u5916\u5c42":106,"\u5b9a\u4e49\u5f02\u6b65\u8bad\u7ec3\u7684\u957f\u5ea6":132,"\u5b9a\u4e49\u6e90\u8bed\u53e5\u7684\u6570\u636e\u5c42":107,"\u5b9a\u4e49\u7684\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784":122,"\u5b9a\u4e49\u7c7b\u578b":111,"\u5b9a\u4e49\u89e3\u7801\u5668\u7684memori":107,"\u5b9a\u4e49\u8f93\u5165":111,"\u5b9a\u4e49\u8f93\u51fa":111,"\u5b9a\u4e49\u8f93\u51fa\u51fd\u6570":107,"\u5b9a\u4e49\u95e8\u63a7\u5faa\u73af\u5355\u5143\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5355\u6b65\u51fd\u6570":107,"\u5b9d\u5854\u7684\u5e95\u7aef\u9700\u8981\u575a\u5b9e\u7684\u57fa\u5ea7\u6765\u652f\u6491":101,"\u5b9e\u73b0\u4e24\u4e2a\u5b8c\u5168\u7b49\u4ef7\u7684\u5168\u8fde\u63a5rnn":104,"\u5b9e\u73b0\u5177\u4f53\u7684\u51fd\u6570\u529f\u80fd\u5373\u53ef":62,"\u5b9e\u73b0\u524d\u5411\u4f20\u64ad\u7684\u90e8\u5206\u6709\u4e0b\u9762\u51e0\u4e2a\u6b65\u9aa4":110,"\u5b9e\u73b0\u5355\u6b65\u51fd\u6570":107,"\u5b9e\u73b0\u540e\u5411\u4f20\u64ad\u7684\u90e8\u5206\u6709\u4e0b\u9762\u51e0\u4e2a\u6b65\u9aa4":110,"\u5b9e\u73b0\u5728":111,"\u5b9e\u73b0\u5bf9":112,"\u5b9e\u73b0\u65b0\u7684op\u90fd\u6dfb\u52a0\u81f3\u76ee\u5f55":111,"\u5b9e\u73b0\u6784\u9020\u51fd\u6570":110,"\u5b9e\u73b0\u7684":95,"\u5b9e\u73b0\u7b80\u5355":65,"\u5b9e\u73b0\u7ec6\u8282":110,"\u5b9e\u73b0\u7f51\u7edc\u5c42\u7684\u524d\u5411\u4f20\u64ad":110,"\u5b9e\u73b0\u7f51\u7edc\u5c42\u7684\u540e\u5411\u4f20\u64ad":110,"\u5b9e\u73b0\u8bcd\u8bed\u548c\u53e5\u5b50\u4e24\u4e2a\u7ea7\u522b\u7684\u53cc\u5c42rnn\u7ed3\u6784":106,"\u5b9e\u73b0\u8be5\u5c42\u7684c":110,"\u5b9e\u9645\u4e0a\u4f7f\u7528\u4e86":95,"\u5b9e\u9645\u4e0a\u9700\u8981\u7684\u8f93\u51fa\u7ed3\u679c\u662f\u4e24\u4e2a\u77e9\u9635":94,"\u5ba2\u6237":104,"\u5bb6":104,"\u5bb9\u5668\u8fd0\u884c\u90fd\u8fd0\u884c":127,"\u5bb9\u5668\u9ed8\u8ba4\u6267\u884c":136,"\u5bbd\u5ea6":121,"\u5bbd\u5ea6\u4e3a":121,"\u5bbd\u5ea6\u7b49\u4e8e\u914d\u7f6e\u4e2dlayer\u7684s":94,"\u5bbf\u4e3b\u673a\u7684c":[136,137,138],"\u5bc4\u5b58\u5668\u4f7f\u7528\u60c5\u51b5\u548c\u5171\u4eab\u5185\u5b58\u4f7f\u7528\u60c5\u51b5\u80fd\u8ba9\u6211\u4eec\u5bf9gpu\u7684\u6574\u4f53\u4f7f\u7528\u6709\u66f4\u597d\u7684\u7406\u89e3":117,"\u5bf9":[104,122],"\u5bf9\u4e00\u4e2a5\u7ef4\u975e\u5e8f\u5217\u7684\u7a00\u758f01\u5411\u91cf":101,"\u5bf9\u4e00\u4e2a5\u7ef4\u975e\u5e8f\u5217\u7684\u7a00\u758f\u6d6e\u70b9\u5411\u91cf":101,"\u5bf9\u4e8e":107,"\u5bf9\u4e8e\u4e0d\u540c\u7684\u8bad\u7ec3\u4efb\u52a1":123,"\u5bf9\u4e8e\u4e0d\u540c\u7684\u96c6\u7fa4\u5e73\u53f0":123,"\u5bf9\u4e8e\u4e0d\u540c\u8bed\u8a00":65,"\u5bf9\u4e8e\u4e24\u79cd\u4e0d\u540c\u7684\u8f93\u5165\u6570\u636e\u7c7b\u578b":104,"\u5bf9\u4e8e\u4e60\u60ef\u4f7f\u7528windows\u548cmacos\u7684\u5f00\u53d1\u8005\u6765\u8bf4":108,"\u5bf9\u4e8e\u5355\u5c42rnn":104,"\u5bf9\u4e8e\u5355\u5c42rnn\u7684\u6570\u636e\u4e00\u5171\u6709\u4e24\u4e2a\u6837\u672c":104,"\u5bf9\u4e8e\u53cc\u5c42rnn":104,"\u5bf9\u4e8e\u540c\u4e00\u6bb5c":65,"\u5bf9\u4e8e\u540c\u6837\u7684\u6570\u636e":104,"\u5bf9\u4e8e\u540c\u6837\u8bbe\u7f6e\u7684\u7f51\u7edc\u6a21\u578b":61,"\u5bf9\u4e8e\u56fd\u5185\u7528\u6237":98,"\u5bf9\u4e8e\u591a\u8bed\u8a00\u63a5\u53e3":65,"\u5bf9\u4e8e\u5927\u591a\u6570\u8bed\u8a00":65,"\u5bf9\u4e8e\u5e8f\u5217\u957f\u5ea6":61,"\u5bf9\u4e8e\u6027\u80fd\u7684\u5173\u952e\u8def\u5f84\u90fd\u505a\u51fa\u4e86\u7ea2\u8272\u6807\u8bb0":116,"\u5bf9\u4e8e\u6211\u4eec\u652f\u6301\u7684\u5168\u90e8\u77e9\u9635\u64cd\u4f5c":110,"\u5bf9\u4e8e\u6709\u53c2\u6570\u7684\u5c42":62,"\u5bf9\u4e8e\u672c\u6837\u4f8b\u4ee3\u7801":123,"\u5bf9\u4e8e\u6bb5\u843d\u7684\u6587\u672c\u5206\u7c7b":104,"\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u5355\u5c42rnn\u7684\u6570\u636e":104,"\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u65b0\u52a0\u7684rnn":61,"\u5bf9\u4e8e\u6bcf\u79cd\u7c7b\u578b":66,"\u5bf9\u4e8e\u6bcf\u79cdc":66,"\u5bf9\u4e8e\u8fd9\u6837\u7684\u9700\u6c42":122,"\u5bf9\u4e8e\u914d\u5907\u6709\u6ce8\u610f\u529b\u673a\u5236\u7684\u89e3\u7801\u5668":107,"\u5bf9\u4e8enchw":95,"\u5bf9\u4ee3\u7801\u8fdb\u884c\u6027\u80fd\u5206\u6790":117,"\u5bf9\u4f7f\u7528\u7684\u4e2d\u95f4\u53d8\u91cf\u548c\u8d44\u6e90\u8fdb\u884c\u6e05\u7406\u548c\u91ca\u653e":122,"\u5bf9\u5168\u8fde\u63a5\u5c42\u6765\u8bf4":110,"\u5bf9\u52a0\u8f7d\u9884\u8bad\u7ec3\u53c2\u6570\u7684\u5c42":96,"\u5bf9\u53cc\u5c42\u5e8f\u5217\u6765\u8bb2":121,"\u5bf9\u5df2\u7ecfpush\u5230\u8fdc\u7a0b\u4ed3\u5e93\u7684\u591a\u4e2acommit":109,"\u5bf9\u5e94":137,"\u5bf9\u5e94\u4e00\u4e2a\u5b50\u53e5":106,"\u5bf9\u5e94\u4e00\u4e2a\u8bcd":106,"\u5bf9\u5e94\u4e8e\u8c03\u7528c":121,"\u5bf9\u5e94\u7684\u68af\u5ea6op\u8ba1\u7b97\u4e4b\u4e2d":111,"\u5bf9\u5e94\u7740\u4e0a\u6587\u63d0\u5230\u7684\u4e00\u7ef4\u6574\u578b\u6570\u7ec4":121,"\u5bf9\u5e94\u7740\u4e0a\u6587\u63d0\u5230\u7684\u4e8c\u7ef4\u6d6e\u70b9\u578b\u77e9\u9635":121,"\u5bf9\u63a8\u8350\u914d\u7f6e\u4e2d\u7684\u9009\u9879\u5efa\u8bae\u6309\u7167\u8bbe\u7f6e":119,"\u5bf9\u65b0\u7684\u6743\u91cd\u8fdb\u884c\u8f6c\u6362\u7528\u4e8e\u4e0b\u6b21\u8fed\u4ee3":61,"\u5bf9\u6bcf\u4e2a\u8f93\u5165":110,"\u5bf9\u6bcf\u4e2a\u8f93\u5165\u4e58\u4e0a\u53d8\u6362\u77e9\u9635":110,"\u5bf9\u6bd4":65,"\u5bf9\u6bd4\u4f18\u5316\u540elayer\u4e0e\u76f8\u5bf9\u5e94\u7684paddlepaddle\u539f\u6709lay":61,"\u5bf9\u6bd4\u4f18\u5316\u540elayer\u81ea\u8eab":61,"\u5bf9\u6bd4\u53cd\u5411op\u4e0d\u540c\u8bbe\u5907":111,"\u5bf9\u6fc0\u6d3b\u6c42\u5bfc":110,"\u5bf9\u795e\u7ecf\u7f51\u7edc\u6765\u8bf4":121,"\u5bf9\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u8fdb\u884c\u5e8f\u5217\u5316":122,"\u5bf9\u8bc4\u5ba1\u610f\u89c1\u4e0d\u540c\u610f\u7684":109,"\u5bf9\u8bc4\u5ba1\u610f\u89c1\u540c\u610f\u4e14\u6309\u5176\u4fee\u6539\u5b8c\u7684":109,"\u5bf9\u8c61":96,"\u5bf9\u8c61\u5206\u914d\u7a7a\u95f4":122,"\u5bf9\u8f93\u5165\u53c2\u6570\u7684\u5b89\u5168\u6027\u8fdb\u884c\u4e86\u5fc5\u8981\u7684\u5224\u65ad":66,"\u5bf9\u8f93\u51fa\u7684\u5408\u5e76":106,"\u5bf9\u8fd9\u4e2a\u7248\u672c\u7684\u63d0\u4ea4":82,"\u5bf9\u9762":104,"\u5bf9sparse_binary_vector\u548csparse_float_vector":101,"\u5bfb\u627e\u6709\u6ca1\u6709\u5176\u4ed6\u53ef\u4ee5\u4f18\u5316\u7684\u53ef\u80fd":62,"\u5bfb\u627epython\u4e0ec":116,"\u5bfc\u51fa\u8fd9\u4e9b\u63a5\u53e3":66,"\u5bfc\u81f4\u4e86\u6d6e\u70b9\u6570\u6ea2\u51fa":94,"\u5bfc\u81f4\u53c2\u6570\u6536\u655b\u5230\u4e86\u4e00\u4e9b\u5947\u5f02\u7684\u60c5\u51b5":94,"\u5bfc\u81f4\u53c2\u6570\u7d2f\u52a0":94,"\u5bfc\u81f4\u7f16\u8bd1paddlepaddle\u5931\u8d25":91,"\u5bfc\u81f4\u8bad\u7ec3\u65f6\u95f4\u8fc7\u957f":96,"\u5bfc\u81f4mklml\u5e93\u4e0b\u8f7d\u4e0d\u6210\u529f":91,"\u5c01\u88c5\u4e86":117,"\u5c01\u88c5\u8be5\u5c42\u7684python\u63a5\u53e3":110,"\u5c06":[82,96,117],"\u5c06\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc\u53c2\u6570\u62c6\u5206\u6210\u591a\u4efd":32,"\u5c06\u4e0a\u4e00\u65f6\u95f4\u6b65\u6240\u751f\u6210\u7684\u8bcd\u7684\u5411\u91cf\u6765\u4f5c\u4e3a\u5f53\u524d\u65f6\u95f4\u6b65\u7684\u8f93\u5165":107,"\u5c06\u4f1a\u4f18\u5148\u4f7f\u7528":123,"\u5c06\u4f1a\u59cb\u7ec8\u4f7f\u7528":136,"\u5c06\u4f1a\u5c06\u7528\u6237\u4f20\u8fdb\u6765\u7684\u914d\u7f6e\u53c2\u6570\u4f20\u9012cmake\u7cfb\u7edf":136,"\u5c06\u4f1a\u81ea\u52a8\u8ba1\u7b97\u51fa\u4e00\u4e2a\u5408\u9002\u7684\u503c":132,"\u5c06\u5176\u8bbe\u7f6e\u6210":94,"\u5c06\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u6570\u636e\u5148\u53d8\u6362\u6210\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u6570\u636e":104,"\u5c06\u542b\u6709\u5b50\u53e5":106,"\u5c06\u542b\u6709\u8bcd\u8bed\u7684\u53e5\u5b50\u5b9a\u4e49\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":106,"\u5c06\u56fe\u7247\u5206\u7c7b\u5230":122,"\u5c06\u591a\u53e5\u8bdd\u770b\u6210\u4e00\u4e2a\u6574\u4f53\u540c\u65f6\u4f7f\u7528encoder\u538b\u7f29":104,"\u5c06\u591a\u53f0\u673a\u5668\u7684\u6d4b\u8bd5\u7ed3\u679c\u5408\u5e76":132,"\u5c06\u5927\u91cf\u7684":65,"\u5c06\u5b57\u5178\u7684\u5730\u5740\u4f5c\u4e3aargs\u4f20\u7ed9dataprovid":96,"\u5c06\u5b83\u4eec\u653e\u5728\u540c\u4e00\u76ee\u5f55\u4e2d":122,"\u5c06\u5bf9\u5e94\u6570\u636e\u5c42\u7684\u7ef4\u6570\u8bbe\u7f6e\u6210\u4e00\u4e2a\u5927\u4e8e\u8f93\u5165\u6570\u636e\u7ef4\u6570\u7684\u503c\u7528\u4e8e\u5360\u4f4d\u5373\u53ef":95,"\u5c06\u5e8f\u5217\u5316\u7ed3\u679c\u5199\u5165\u4e00\u4e2a\u6587\u4ef6\u5185":122,"\u5c06\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u524d\u5411\u548c\u53cd\u5411\u90e8\u5206\u6df7\u5408\u5728\u4e00\u8d77":107,"\u5c06\u6027\u80fd\u5206\u6790\u7ed3\u679c\u4ee5\u7f51\u9875\u7684\u5f62\u5f0f\u5c55\u793a\u51fa\u6765":116,"\u5c06\u6027\u80fd\u5206\u6790\u7ed3\u679c\u6309\u7167tottime\u6392\u5e8f":116,"\u5c06\u6570\u636e\u5207\u5206\u6210\u591a\u4efd":123,"\u5c06\u65b0\u5206\u652f\u7684\u7248\u672c\u6253\u4e0atag":82,"\u5c06\u65b0\u5efa\u7684\u6743\u91cd\u52a0\u5165\u6743\u91cd\u8868":110,"\u5c06\u660e\u6587\u53c2\u6570\u8f6c\u5316\u4e3apaddlepaddle\u53ef\u52a0\u8f7d\u7684\u6a21\u578b\u53c2\u6570\u65f6":96,"\u5c06\u672c\u5730\u7684\u4fee\u6539\u63a8\u9001\u5230":109,"\u5c06\u6b64\u76ee\u5f55\u6302\u8f7d\u4e3a\u5bb9\u5668\u7684":127,"\u5c06\u73af\u5883\u53d8\u91cf\u8f6c\u6362\u6210paddle\u7684\u547d\u4ee4\u884c\u53c2\u6570":127,"\u5c06\u7528\u4e8epython":111,"\u5c06\u7ed3\u679c\u4fdd\u5b58\u5230\u6b64\u76ee\u5f55\u91cc":127,"\u5c06\u7f51\u7edc\u7ed3\u6784\u5b9a\u4e49\u548c\u8bad\u7ec3\u7ed3\u675f\u5b58\u50a8\u4e0b\u6765\u7684\u6a21\u578b\u53c2\u6570\u6587\u4ef6":122,"\u5c06\u8bad\u7ec3\u6587\u4ef6\u4e0e\u5207\u5206\u597d\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5171\u4eab\u5b58\u50a8":127,"\u5c06\u8df3\u8fc7\u5206\u53d1\u9636\u6bb5\u76f4\u63a5\u542f\u52a8\u6240\u6709\u8282\u70b9\u7684\u96c6\u7fa4\u4f5c\u4e1a":124,"\u5c06\u8fd9\u79cd\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684\u8fde\u63a5\u7528\u4e00\u4e2a\u7279\u6b8a\u7684\u795e\u7ecf\u7f51\u7edc\u5355\u5143\u5b9e\u73b0":104,"\u5c06\u8fdc\u7a0b\u4ed3\u5e93":109,"\u5c06\u900f\u660e":124,"\u5c06\u9700\u8981\u8f93\u51fa\u7684\u5c42\u4f5c\u4e3a":94,"\u5c06cuda\u5e93\u548clinux\u8bbe\u5907\u6302\u8f7d\u5230docker\u5bb9\u5668\u5185":98,"\u5c06ip\u6392\u5e8f\u751f\u6210\u7684\u5e8f\u53f7\u4f5c\u4e3atrain":127,"\u5c06master\u5206\u652f\u7684\u5408\u5165commit\u6253\u4e0atag":82,"\u5c06node\u8282\u70b9\u7684ip\u5730\u5740\u4fdd\u5b58\u5230machines\u6587\u4ef6\u4e2d":128,"\u5c06paddlepaddle\u4fdd\u5b58\u7684\u6a21\u578b\u53c2\u6570\u8fd8\u539f\u56de\u660e\u6587\u65f6":96,"\u5c06recurr":95,"\u5c0f\u4e8e\u67d0\u4e2a\u6bd4\u8f83\u5c0f\u7684\u9608\u503c\u8ba4\u4e3a\u901a\u8fc7":62,"\u5c1a\u53ef":104,"\u5c31":104,"\u5c31\u4f1a\u5728\u5b8c\u6210\u7f16\u8bd1\u4e4b\u540e":97,"\u5c31\u53ef\u4ee5\u4e86\u89e3\u5230\u95ee\u9898\u4ee3\u7801\u5728\u54ea\u91cc":116,"\u5c31\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684\u547d\u4ee4\u5f00\u59cb\u6267\u884c\u8bad\u7ec3":98,"\u5c31\u53ef\u4ee5\u6309":108,"\u5c31\u5c06\u8fd9\u4e9b\u5c42\u52a0\u5165\u4e00\u4e2apython":122,"\u5c31\u5f88\u5bb9\u6613\u5bfc\u81f4\u5185\u5b58\u8d85\u9650":94,"\u5c31\u662f":104,"\u5c31\u662f\u7528\u4e8e\u5c55\u793a\u4e0a\u8ff0\u5206\u6790\u5de5\u5177\u7684\u7528\u6cd5":117,"\u5c31\u662fpaddlepaddle\u4e2d\u6240\u6307\u7684":121,"\u5c31\u8fd9\u4e48\u7b80\u5355":98,"\u5c31\u901a\u5e38\u7684gpu\u6027\u80fd\u5206\u6790\u6765\u8bf4":117,"\u5c31\u9700\u8981\u5bf9\u8fd9\u4e2a\u7b2c\u4e09\u65b9\u8bed\u8a00\u589e\u52a0\u4e00\u4e9b\u5b9a\u4e49":65,"\u5c31\u9700\u8981\u9009\u62e9\u4f7f\u7528no":98,"\u5c3d\u65e9\u62a5\u9519":111,"\u5c42\u524d\u5411\u8ba1\u7b97\u7684\u7ed3\u679c":122,"\u5c42\u548c\u8f93\u5165\u7684\u914d\u7f6e":110,"\u5c42\u6b21\u5316\u7684rnn":106,"\u5c42\u7684\u540d\u79f0\u4e0e":107,"\u5c42\u7684\u5927\u5c0f":110,"\u5c42\u7684\u7c7b\u578b":110,"\u5c42\u7684\u8f93\u51fa\u88ab\u7528\u4f5c\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684":107,"\u5c45\u7136":104,"\u5c55\u793a\u4e86\u4e00\u4e2a\u542b\u67094\u4e2a\u5e8f\u5217\u7684":121,"\u5c55\u793a\u7684\u8c03\u7528\u56fe\u4e5f\u53ef\u4ee5\u5e2e\u52a9\u6211\u4eec\u53d1\u73b0\u6027\u80fd\u4e2d\u7684\u95ee\u9898":116,"\u5c5e\u4e8e\u8fd9\u4e00\u7c7b\u7684\u5b9e\u73b0":95,"\u5c5e\u6027":111,"\u5de5\u4f5c\u6a21\u5f0f":132,"\u5de5\u4f5c\u7a7a\u95f4\u4e2d\u7684":124,"\u5de5\u4f5c\u7a7a\u95f4\u5e94\u5982\u4e0b\u6240\u793a":123,"\u5de5\u5177\u4e0a\u4f20\u5373\u53ef":82,"\u5de5\u5177\u5408\u5e76fat\u5e93":137,"\u5de5\u5177\u670d\u52a1\u5668\u5c06\u8bfb\u53d6\u73af\u5883\u53d8\u91cf":113,"\u5de5\u5177\u6765\u7ba1\u7406":109,"\u5de5\u5177\u6765\u7f16\u8bd1\u6587\u6863":113,"\u5de5\u5177\u94fe":136,"\u5de5\u5177\u94fe\u7684android":136,"\u5de6\u53f3\u7684\u8ba1\u7b97\u65f6\u95f4":116,"\u5df2\u6253\u5f00":109,"\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u5b8c\u6210\u8bbe\u7f6e":132,"\u5e02\u9762\u4e0a\u5df2\u7ecf\u6709nvidia\u6216\u7b2c\u4e09\u65b9\u63d0\u4f9b\u7684\u4f17\u591a\u5de5\u5177":117,"\u5e0c\u671b\u80fd\u591f\u5c06\u5e8f\u5217\u5316\u540e\u7684\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u548c\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u53c2\u6570\u6253\u5305\u8fdb\u4e00\u4e2a\u6587\u4ef6":122,"\u5e26\u6709\u4e0b\u9762\u4e24\u4e2a\u6a21\u677f\u53c2\u6570":111,"\u5e2e\u52a9\u6211\u4eec\u5b8c\u6210\u5bf9\u8f93\u5165\u5e8f\u5217\u7684\u62c6\u5206":106,"\u5e2e\u52a9\u6211\u4eec\u66f4\u597d\u5730\u63cf\u8ff0\u6bb5\u843d":106,"\u5e2e\u52a9\u6211\u4eec\u6784\u9020\u4e00\u4e9b\u590d\u6742\u7684\u8f93\u5165\u4fe1\u606f":103,"\u5e38\u5e38\u51fa\u73b0":91,"\u5e38\u7528\u4e8e\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1":121,"\u5e38\u7528\u7684cmake\u914d\u7f6e\u5982\u4e0b":[136,137],"\u5e38\u89c1\u7684\u5305\u62ec":116,"\u5e72\u51c0":104,"\u5e73\u5747\u6545\u969c\u4fee\u590d\u65f6\u95f4":32,"\u5e73\u5747\u6545\u969c\u7387":32,"\u5e76\u4e0d\u4fdd\u8bc1":110,"\u5e76\u4e0d\u662f\u4f7f\u7528\u53cc\u5c42rnn\u89e3\u51b3\u5b9e\u9645\u7684\u95ee\u9898":104,"\u5e76\u4e0d\u662fkubernetes\u4e2d\u7684node\u6982\u5ff5":127,"\u5e76\u4e0d\u771f\u6b63":[121,122],"\u5e76\u4e0d\u771f\u6b63\u7684\u548c":104,"\u5e76\u4e0d\u96be":108,"\u5e76\u4e14":107,"\u5e76\u4e14\u4e5f\u53ef\u4ee5\u5728windows\u7684docker\u4e2d\u8fd0\u884c":98,"\u5e76\u4e14\u4e66\u5199\u4e00\u4efd\u4ee3\u7801":112,"\u5e76\u4e14\u4f1a\u5199\u597d":62,"\u5e76\u4e14\u4f1a\u6839\u636e":136,"\u5e76\u4e14\u4f7f\u7528":66,"\u5e76\u4e14\u5185\u5c42\u7684\u5e8f\u5217\u64cd\u4f5c\u4e4b\u95f4\u72ec\u7acb\u65e0\u4f9d\u8d56":104,"\u5e76\u4e14\u52a0\u4e0a\u4e0b\u9762\u7684\u547d\u4ee4\u884c\u53c2\u6570":134,"\u5e76\u4e14\u5305\u62ecunit":109,"\u5e76\u4e14\u53ea\u9700\u8981\u5728\u5fc5\u8981\u7684\u65f6\u5019\u8f6c\u6362\u8fd9\u79cd\u683c\u5f0f":62,"\u5e76\u4e14\u53ef\u80fd\u4f1a\u52a0\u901f\u8bad\u7ec3\u8fc7\u7a0b":94,"\u5e76\u4e14\u542f\u52a8\u8bad\u7ec3":127,"\u5e76\u4e14\u5728\u5e38\u89c1\u7684\u5e73\u53f0\u4e0a":65,"\u5e76\u4e14\u5c55\u793a\u4e86\u5982\u4f55\u5229\u7528paddlepaddle\u6765\u89e3\u51b3\u4e00\u4e2a\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u95ee\u9898":101,"\u5e76\u4e14\u5f3a\u5236\u8bbe\u7f6e\u4e00\u4e9bpaddlepaddle\u53c2\u6570\u7684\u503c":137,"\u5e76\u4e14\u5f53\u7f16\u8bd1\u65f6":61,"\u5e76\u4e14\u628a\u5404\u79cd\u5f00\u53d1\u5de5\u5177\u5b89\u88c5\u8fdb\u53bb":108,"\u5e76\u4e14\u628a\u7cfb\u7edf\u751f\u6210\u7684ca":48,"\u5e76\u4e14\u628a\u7ed3\u679c\u8fd4\u56depfsclient\u7aef":48,"\u5e76\u4e14\u67e5\u8be2paddlepaddle\u5355\u5143\u6d4b\u8bd5\u7684\u65e5\u5fd7":91,"\u5e76\u4e14\u7f16\u8bd1\u65f6\u9700\u8981\u6253\u5f00":111,"\u5e76\u4e14\u7f16\u8bd1\u80fd\u901a\u8fc7\u4ee3\u7801\u6837\u5f0f\u68c0\u67e5":109,"\u5e76\u4e14\u8ba9\u63a5\u53e3\u8131\u79bb\u5b9e\u73b0\u7ec6\u8282":65,"\u5e76\u4e14\u8bbe\u7f6e\u9ed8\u8ba4\u503c\u4e3a1":111,"\u5e76\u4e14\u8f93\u5165\u8f93\u51fa\u90fd\u662f\u5171\u7528\u4e00\u5757\u5185\u5b58":62,"\u5e76\u4e14\u8f93\u51fa\u4e00\u4e2a":109,"\u5e76\u4e14\u8fd0\u884c":108,"\u5e76\u4e14\u9700\u8981\u91cd\u5199\u57fa\u7c7b\u4e2d\u7684\u4ee5\u4e0b\u51e0\u4e2a\u865a\u51fd\u6570":110,"\u5e76\u4e14cpu":111,"\u5e76\u4e14softmax\u5c42\u7684\u4e24\u4e2a\u8f93\u5165\u4e5f\u4f7f\u7528\u4e86\u540c\u6837\u7684\u53c2\u6570":96,"\u5e76\u4f7f\u7528":124,"\u5e76\u4fdd\u5b58\u8f93\u51fa\u5230\u4e00\u4e2a\u65e5\u5fd7\u6587\u4ef6":123,"\u5e76\u521b\u5efa\u4e86\u4e00\u4e2a\u65b0\u6587\u4ef6":109,"\u5e76\u521b\u5efaoptim":101,"\u5e76\u521d\u59cb\u5316":111,"\u5e76\u5220\u9664":82,"\u5e76\u5220\u9664\u66f4\u65e9\u7684\u5feb\u7167":32,"\u5e76\u52a0\u8f7d\u5176\u4e2d\u7684\u53c2\u6570":32,"\u5e76\u53d1\u5e03\u5230pypi":82,"\u5e76\u53ef\u4ee5\u5728\u5927\u591a\u6570\u4e3b\u6d41\u7684linux\u64cd\u4f5c\u7cfb\u7edf\u4ee5\u53camacos\u4e0a\u6267\u884c":100,"\u5e76\u548c\u53c2\u6570\u670d\u52a1\u5668\u901a\u4fe1":123,"\u5e76\u5728\u4e58\u79ef\u7ed3\u679c\u4e0a\u518d\u52a0\u4e0a\u7ef4\u5ea6\u4e3a":110,"\u5e76\u5728\u6700\u5f00\u59cb\u521d\u59cb\u5316\u4e3a\u8d77\u59cb\u8bcd":107,"\u5e76\u5728\u6bcf\u6b21\u6743\u91cd\u66f4\u65b0\u540e":61,"\u5e76\u5728\u7c7b\u6784\u5efa\u51fd\u6570\u4e2d\u628a\u5b83\u653e\u5165\u4e00\u4e2a\u7c7b\u6210\u5458\u53d8\u91cf\u91cc":110,"\u5e76\u5728\u8be5layer\u91cc\u91c7\u7528\u7b2c\u4e00\u79cd\u65b9\u5f0f\u8bbe\u7f6e":95,"\u5e76\u5728\u96c6\u7fa4\u4e2d\u8fd0\u884c\u591a\u4e2a\u5206\u5e03\u5f0f\u6570\u636e\u5904\u7406\u4efb\u52a1":33,"\u5e76\u5728python\u811a\u672c\u4e2d\u5b8c\u6210\u4e0eoperator\u540c\u6837\u7684\u8ba1\u7b97\u903b\u8f91":111,"\u5e76\u5904\u7406\u4e0e\u4e4b\u76f8\u5173\u7684\u6240\u6709\u7ec6\u8282":122,"\u5e76\u5b89\u88c5\u4e86python":91,"\u5e76\u5b89\u88c5\u6700\u65b0":100,"\u5e76\u5b89\u88c5\u6709python2":102,"\u5e76\u5b8c\u6210\u53c2\u6570\u4f18\u5316\u66f4\u65b0":123,"\u5e76\u5bf9\u6bd4\u662f\u5426\u548c\u6b63\u5728\u5b89\u88c5\u7684\u540e\u7f00\u4e00\u81f4":91,"\u5e76\u5bf9\u76f8\u5e94\u7684\u53c2\u6570\u8c03\u7528":110,"\u5e76\u5c06":82,"\u5e76\u5c06\u5176\u6295\u5c04\u5230":107,"\u5e76\u5c06\u8be5layer\u4e0a\u4e00\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u4f5c\u4e3a\u81ea\u8eab\u5f53\u524d\u65f6\u95f4\u6b65\u7684\u8f93\u51fa":95,"\u5e76\u5c06c":66,"\u5e76\u624b\u52a8\u751f\u6210download\u6210\u529f\u6807\u7b7e":91,"\u5e76\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4":98,"\u5e76\u628a\u5feb\u7167\u4fdd\u5b58\u5230\u8fd9\u4e2a\u76ee\u5f55\u4e0b":32,"\u5e76\u628a\u7ed3\u679c\u653e\u5230\u5f53\u524d\u5c42\u7684":62,"\u5e76\u628a\u8fd9\u4e2a\u5305\u542b\u4e86\u8bad\u7ec3\u6570\u636e\u7684container\u4fdd\u5b58\u4e3a\u4e00\u4e2a\u65b0\u7684\u955c\u50cf":126,"\u5e76\u66f4\u6362job":92,"\u5e76\u6839\u636e\u5206\u5e03\u5f0f\u8bad\u7ec3\u5e76\u53d1\u6570":123,"\u5e76\u68c0\u67e5\u548c\u9700\u5b89\u88c5\u7684\u5305\u662f\u5426\u5339\u914d":100,"\u5e76\u6ca1\u6709paddle\u7279\u522b\u9700\u8981\u7684\u7279\u6027":65,"\u5e76\u6dfb\u52a0\u5934\u6587\u4ef6":61,"\u5e76\u6dfb\u52a0\u6ce8\u91ca":111,"\u5e76\u7279\u5316\u6a21\u677f\u53c2\u6570\u4e3a":111,"\u5e76\u7c98\u8d34\u6b64python\u4ee3\u7801":102,"\u5e76\u81ea\u52a8\u4e0b\u8f7d\u5b89\u88c5\u4f9d\u8d56\u8f6f\u4ef6":100,"\u5e76\u81ea\u52a8\u7f16\u8bd1\u5bbf\u4e3b\u673a\u7248protoc\u53ef\u6267\u884c\u6587\u4ef6":138,"\u5e76\u81ea\u52a8\u7f16\u8bd1paddlepaddle\u6240\u9700\u7684\u6240\u6709\u7b2c\u4e09\u65b9\u5e93":136,"\u5e76\u884c\u5730\u6267\u884c\u6a21\u578b\u7684\u8bad\u7ec3":123,"\u5e76\u884c\u5730\u63a5\u6536\u68af\u5ea6\u548c\u66f4\u65b0\u53c2\u6570":123,"\u5e76\u88ab\u5b58\u50a8\u5728\u8bf8\u5982hadoop":33,"\u5e76\u89c2\u5bdf\u7ed3\u679c":117,"\u5e76\u89e3\u91ca\u4e86\u5404\u81ea\u542b\u4e49":111,"\u5e76\u8bb0\u5f55\u5b83\u7684\u7f16\u53f7":109,"\u5e76\u8fdb\u884c\u521d\u59cb\u5316\u64cd\u4f5c":101,"\u5e76\u9002\u5e94github\u7684\u7279\u6027\u505a\u4e86\u4e00\u4e9b\u533a\u522b":82,"\u5e76\u91cd\u65b0\u6253\u5305wheel\u5305":82,"\u5e76\u94fe\u63a5\u5230\u751f\u6210\u7684lib\u5e93\u4e2d":111,"\u5e78\u800cpython\u7684\u4e00\u4e2a\u7b2c\u4e09\u65b9\u5e93":116,"\u5e8a\u4e0a\u7528\u54c1":104,"\u5e8a\u57ab":104,"\u5e8f\u5217\u4e2d\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee\u540c":103,"\u5e8f\u5217\u4e2d\u7684\u4e00\u4e2a\u5143\u7d20":121,"\u5e8f\u5217\u4e2d\u7684\u5143\u7d20\u662f\u8bcd\u8bed":121,"\u5e8f\u5217\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20\u53c8\u662f\u4e00\u4e2a\u5e8f\u5217":121,"\u5e8f\u5217\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20\u662f\u975e\u5e8f\u5217":121,"\u5e8f\u5217\u4fe1\u606f":121,"\u5e8f\u5217\u5316\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u914d\u7f6e":122,"\u5e8f\u5217\u5316\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u65f6":122,"\u5e8f\u5217\u5316\u7ed3\u679c\u4f1a\u5199\u5165\u5f53\u524d\u8fd0\u884c\u76ee\u5f55\u4e0b\u7684":122,"\u5e8f\u5217\u6570\u636e\u662f\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u9762\u5bf9\u7684\u4e00\u79cd\u4e3b\u8981\u8f93\u5165\u6570\u636e\u7c7b\u578b":106,"\u5e8f\u5217\u662f\u4e00\u79cd\u5e38\u89c1\u7684\u6570\u636e\u7c7b\u578b":103,"\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u5927\u591a\u9075\u5faaencod":106,"\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u7684\u8f93\u5165":106,"\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20\u662f\u539f\u6765\u53cc\u5c42\u5e8f\u5217\u6bcf\u4e2asubseq\u5143\u7d20\u7684\u5e73\u5747\u503c":103,"\u5e8f\u5217\u8f93\u5165":121,"\u5e8f\u5217\u8f93\u5165\u65f6\u7b49\u4e8e":94,"\u5e8f\u5217\u8f93\u5165\u793a\u610f\u56fe":121,"\u5e93\u6709\u81ea\u5df1\u72ec\u7acb\u7684\u52a8\u6001\u5e93\u6587\u4ef6":119,"\u5e94\u7528\u524d\u5411\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":107,"\u5e94\u7528\u53cd\u5411\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":107,"\u5e94\u80fd\u53cd\u6620\u5f53\u524dcommit\u7684\u5185\u5bb9":109,"\u5e94\u8be5":104,"\u5e94\u8be5\u4e0e\u5b83\u7684memory\u540d\u5b57\u76f8\u540c":107,"\u5e94\u8be5\u8bf4\u8c22\u8c22":109,"\u5e94\u8be5\u8bfb\u53d6\u5f53\u524d\u76ee\u5f55\u4e0b\u7684":108,"\u5e94\u8be5\u964d\u4f4e\u5b66\u4e60\u7387":96,"\u5e95\u5c42\u8fdb\u7a0b":124,"\u5efa\u7acb\u4e00\u4e2a":109,"\u5efa\u8bae":[82,99,109],"\u5efa\u8bae\u5c06\u8be5\u53c2\u6570\u8bbe\u4e3atrue":132,"\u5f00\u53d1\u4e86\u6a21\u578b\u9884\u6d4b\u7684\u6837\u4f8b\u4ee3\u7801":66,"\u5f00\u53d1\u4eba\u5458\u4f7f\u7528":109,"\u5f00\u53d1\u5206\u652f":100,"\u5f00\u53d1\u8005\u4f7f\u7528":108,"\u5f00\u53d1\u8005\u4fee\u6539\u81ea\u5df1\u7684\u4ee3\u7801":82,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4e2d":82,"\u5f00\u53d1\u8005fork\u7684\u7248\u672c\u5e93\u4f7f\u7528":82,"\u5f00\u53d1\u955c\u50cf":109,"\u5f00\u53d1\u9884\u6d4b\u5e8f":122,"\u5f00\u53d1\u9884\u6d4b\u7a0b\u5e8f\u94fe\u63a5":119,"\u5f00\u542f":97,"\u5f00\u5934":[61,62],"\u5f00\u5934\u7684\u90e8\u5206":123,"\u5f00\u5934\u90e8\u5206\u6307\u5b9a":123,"\u5f00\u59cb\u63d0\u4f9b\u670d\u52a1":32,"\u5f00\u59cb\u6807\u8bb0":107,"\u5f00\u59cb\u795e\u7ecf\u7f51\u7edc\u7684":123,"\u5f00\u59cb\u9636\u6bb5":117,"\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":131,"\u5f15\u5165\u4e86\u4ee5\u4e0b\u56db\u4e2aapi":61,"\u5f15\u5165\u4e86\u7c7b\u578b\u7684\u5934\u6587\u4ef6":66,"\u5f15\u53d1":9,"\u5f15\u5bfc\u5c42":107,"\u5f15\u7528memory\u5f97\u5230\u8fd9layer\u4e0a\u4e00\u65f6\u523b\u8f93\u51fa":106,"\u5f39\u51fa\u4e0b\u9762\u7684\u9009\u62e9\u6846":82,"\u5f3a\u70c8\u63a8\u8350":104,"\u5f52\u4e00\u5316\u6982\u7387\u5411\u91cf":107,"\u5f53":134,"\u5f53\u4e00\u4e2a":121,"\u5f53\u4e0a\u8ff0\u63a5\u53e3\u7b2c4\u4e2a\u53c2\u6570":121,"\u5f53\u4f60\u6267\u884c\u547d\u4ee4":110,"\u5f53\u4fdd\u5b58\u7684\u7f51\u7edc\u53c2\u6570\u4e3afloat\u7c7b\u578b\u65f6\u4e3a4":96,"\u5f53\u524d\u65f6\u95f4\u6b65\u5904\u7684memory\u7684\u8f93\u51fa\u4f5c\u4e3a\u4e0b\u4e00\u65f6\u95f4\u6b65memory\u7684\u8f93\u5165":107,"\u5f53\u524d\u7684\u5b66\u4e60\u7387\u4e3a\u6240\u8bbe\u7f6e":96,"\u5f53\u524d\u7684\u5b9e\u73b0\u65b9\u5f0f\u4e0b":110,"\u5f53\u524d\u7684\u8f93\u5165y\u548c\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51farnn_state\u505a\u4e86\u4e00\u4e2a\u5168\u94fe\u63a5":104,"\u5f53\u524d\u8bad\u7ec3\u4efb\u52a1\u542f\u52a8\u7684pserver\u7684ip\u5217\u8868":123,"\u5f53\u524d\u8bad\u7ec3\u4efb\u52a1pserver\u603b\u6570":123,"\u5f53\u524d\u8bad\u7ec3\u4efb\u52a1trainer\u603b\u4e2a\u6570":123,"\u5f53\u529f\u80fd\u5206\u652f\u5f00\u53d1\u5b8c\u6bd5\u540e":82,"\u5f53\u53ea\u505a\u63a8\u65ad":61,"\u5f53\u5728\u7f51\u7edc\u5c42\u914d\u7f6e\u4e2d\u8bbe\u7f6e":132,"\u5f53\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u8bbe\u7f6e":132,"\u5f53\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5927\u4e8e1000\u5c0f\u4e8e\u7b49\u4e8e2000\u65f6":96,"\u5f53\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5927\u4e8e2000\u65f6":96,"\u5f53\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5c0f\u4e8e\u7b49\u4e8e1000\u65f6":96,"\u5f53\u5df2\u8bad\u7ec3pass\u6570\u5927\u4e8e1\u5c0f\u4e8e\u7b49\u4e8e2\u65f6":96,"\u5f53\u5df2\u8bad\u7ec3pass\u6570\u5927\u4e8e2\u65f6":96,"\u5f53\u5df2\u8bad\u7ec3pass\u6570\u5c0f\u4e8e\u7b49\u4e8e1\u65f6":96,"\u5f53\u5f00\u542f":62,"\u5f53\u6211\u4eec\u505a\u51fa\u6027\u80fd\u4fee\u6b63\u540e":116,"\u5f53\u6240\u6709pod\u90fd\u5904\u4e8erunning\u72b6\u6001":127,"\u5f53\u6253\u5f00":62,"\u5f53\u6570\u636e\u683c\u5f0f\u4e0epaddlepaddle\u9ed8\u8ba4\u7684":62,"\u5f53\u6a21\u578b\u53c2\u6570\u4e0d\u5b58\u5728\u65f6":132,"\u5f53\u6a21\u5f0f\u4e3a":132,"\u5f53\u7136":[98,117],"\u5f53\u7136\u53ef\u4ee5":108,"\u5f53\u7136\u8fd9\u4e24\u8005\u4e5f\u53ef\u4ee5\u76f8\u7b49":62,"\u5f53\u7528\u6237\u4f7f\u7528\u5b8c\u8fd9\u4e2a\u53c2\u6570\u540e":66,"\u5f53\u7528\u6237\u6ca1\u6709\u663e\u5f0f\u8bbe\u5b9a\u65f6":95,"\u5f53\u7f51\u7edc\u51fa\u73b0\u5206\u652f\u4e14\u5728":62,"\u5f53\u7f51\u7edc\u5c42\u7528\u4e00\u4e2a\u6279\u6b21\u505a\u8bad\u7ec3\u65f6":110,"\u5f53\u89e3\u8bfb\u6bcf\u4e00\u4e2a":107,"\u5f53\u8d85\u8fc7\u8be5\u9608\u503c\u65f6":132,"\u5f53\u8f93\u5165\u662f\u7ef4\u5ea6\u5f88\u9ad8\u7684\u7a00\u758f\u6570\u636e\u65f6":134,"\u5f53\u9700\u8981\u5b8c\u6210\u8ba1\u7b97\u65f6":112,"\u5f53\u975e\u5e8f\u5217\u8f93\u5165\u65f6":121,"\u5f53destination\u6587\u4ef6\u4e0d\u5b58\u5728\u6216\u8005\u5927\u5c0f\u548csource\u6587\u4ef6\u4e0d\u4e00\u81f4\u65f6":48,"\u5f53n1":94,"\u5f62\u6210recurr":106,"\u5f62\u6210recurrent\u8fde\u63a5":106,"\u5f88":104,"\u5f88\u591a":[104,108],"\u5f88\u5b89\u9759":104,"\u5f88\u5e72\u51c0":104,"\u5f88\u65b9\u4fbf":104,"\u5f88\u6709\u53ef\u80fd\u5b9e\u9645\u5e94\u7528\u5c31\u662f\u6ca1\u6709\u6309\u7167\u60a8\u7684\u9884\u671f\u60c5\u51b5\u8fd0\u884c":117,"\u5f88\u6709\u53ef\u80fd\u662f\u975e\u72ec\u5360\u65b9\u5f0f\u6267\u884c\u5bfc\u81f4\u7684\u7aef\u53e3\u51b2\u7a81":92,"\u5f88\u96be\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":65,"\u5f97":104,"\u5f97\u4f7f\u7528":65,"\u5f97\u5230\u8f93\u51fa\u503c":111,"\u5faa\u73af\u5c55\u5f00\u7684\u6bcf\u4e2a\u65f6\u95f4\u6b65\u603b\u662f\u80fd\u591f\u5f15\u7528\u6240\u6709\u8f93\u5165":106,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u4e2d":107,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u4f5c\u4e3a\u4f7f\u7528":107,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u548c":107,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u9aa4\u987a\u5e8f\u5730\u5904\u7406\u5e8f\u5217":107,"\u5faa\u73af\u7f51\u7edc\u4ece":107,"\u5fc5\u8981":66,"\u5fc5\u9009":123,"\u5fc5\u987b":110,"\u5fc5\u987b\u5206\u522b\u4e0e":62,"\u5fc5\u987b\u5c06\u524d\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5143\u7d20":104,"\u5fc5\u987b\u6307\u5411\u4e00\u4e2apaddlepaddle\u5b9a\u4e49\u7684lay":106,"\u5fc5\u987b\u6307\u5b9a\u4e3a":122,"\u5fc5\u987b\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":106,"\u5fc5\u987b\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":103,"\u5fc5\u987b\u7531\u53ea\u8bfbmemory\u7684":107,"\u5fc5\u987b\u8bbe\u7f6e\u4e3a":[136,137],"\u5fc5\u987b\u8bbe\u7f6e\u4e3aon":137,"\u5fc5\u987b\u914d\u7f6e\u4e3a":[119,138],"\u5fc5\u987b\u914d\u7f6e\u9009\u9879":119,"\u5feb":104,"\u6027\u4ef7\u6bd4":104,"\u6027\u80fd\u4f18\u5316\u7684\u8fc7\u7a0b\u901a\u5e38\u662f\u4e0d\u65ad\u91cd\u590d\u5730":116,"\u6027\u80fd\u5206\u6790":117,"\u6027\u80fd\u5206\u6790\u5de5\u5177\u662f\u7528\u4e8e\u7ed9\u5e94\u7528\u7a0b\u5e8f\u7684\u6027\u80fd\u505a\u5b9a\u91cf\u5206\u6790\u7684":117,"\u6027\u80fd\u5206\u6790\u662f\u6027\u80fd\u4f18\u5316\u7684\u5173\u952e\u4e00\u6b65":117,"\u6027\u80fd\u548c\u628a\u7f16\u8bd1\u5de5\u5177\u5b89\u88c5\u5728\u672c\u673a\u8fd0\u884c\u4e00\u6837":108,"\u6027\u80fd\u8c03\u4f18":131,"\u6027\u80fdtip":[136,137],"\u603b\u4f53\u6765\u8bf4":104,"\u60a8\u4e5f\u53ef\u4ee5\u8fdb\u5165\u5230docker\u5bb9\u5668\u4e2d":98,"\u60a8\u4f1a\u5728\u63a5\u4e0b\u6765\u7684\u90e8\u5206\u4e2d\u83b7\u5f97\u66f4\u591a\u7684\u7ec6\u8282\u4ecb\u7ecd":117,"\u60a8\u53ef\u4ee5\u4ece\u4e0b\u9762\u7684\u8868\u683c\u4e2d\u627e\u5230\u9700\u8981\u7684\u7248\u672c":100,"\u60a8\u53ef\u4ee5\u4efb\u610f\u4f7f\u7528\u4e00\u4e2a\u6216\u4e24\u4e2a\u6765\u5bf9\u611f\u5174\u8da3\u7684\u4ee3\u7801\u6bb5\u505a\u6027\u80fd\u5206\u6790":117,"\u60a8\u53ef\u4ee5\u5728":98,"\u60a8\u53ef\u4ee5\u5728\u5bb9\u5668\u4e2d\u6267\u884c":98,"\u60a8\u53ef\u4ee5\u5bfc\u5165":117,"\u60a8\u53ef\u4ee5\u6309\u7167\u4e0b\u9762\u7684\u6b65\u9aa4\u5728openmpi\u96c6\u7fa4\u4e2d\u63d0\u4ea4paddle\u8bad\u7ec3\u4efb\u52a1":128,"\u60a8\u53ef\u4ee5\u91c7\u7528\u4e0b\u9762\u4e94\u4e2a\u6b65\u9aa4":117,"\u60a8\u53ef\u80fd\u9700\u8981\u4fee\u6539":123,"\u60a8\u5c06\u4e86\u89e3\u5982\u4f55":107,"\u60a8\u5c31\u80fd\u83b7\u5f97\u5982\u4e0b\u7684\u5206\u6790\u7ed3\u679c":117,"\u60a8\u6309\u5982\u4e0b\u6b65\u9aa4\u64cd\u4f5c\u5373\u53ef":117,"\u60a8\u6700\u597d\u5148\u786e\u8ba4":117,"\u60a8\u9996\u5148\u9700\u8981\u5728\u76f8\u5173\u4ee3\u7801\u6bb5\u4e2d\u52a0\u5165":117,"\u60c5\u611f\u5206\u6790":82,"\u60f3\u4e86\u89e3\u66f4\u591apaddlepaddl":113,"\u610f\u5473\u7740\u4e0d\u540c\u65f6\u95f4\u6b65\u7684\u8f93\u5165\u90fd\u662f\u76f8\u540c\u7684\u503c":107,"\u610f\u601d\u662f\u4e0d\u4f7f\u7528\u5e73\u5747\u53c2\u6570\u6267\u884c\u6d4b\u8bd5":132,"\u610f\u601d\u662f\u4e0d\u4fdd\u5b58\u7ed3\u679c":132,"\u610f\u601d\u662f\u4f7f\u7528\u7b2ctest":132,"\u610f\u601d\u662f\u5728gpu\u6a21\u5f0f\u4e0b\u4f7f\u75284\u4e2agpu":132,"\u611f\u89c9":104,"\u6210\u529f\u7f16\u8bd1\u540e":119,"\u6210\u529f\u8bad\u7ec3\u4e14\u9000\u51fa\u7684pod\u6570\u76ee\u4e3a3\u65f6":127,"\u6210\u5458":111,"\u6210\u719f\u7684\u9ad8\u6027\u80fd\u5e76\u884c\u8ba1\u7b97\u6846\u67b6":123,"\u6211\u4eec\u4e0d\u80fd\u901a\u8fc7\u5e38\u89c4\u7684\u68af\u5ea6\u68c0\u67e5\u7684\u65b9\u5f0f\u6765\u8ba1\u7b97\u68af\u5ea6":110,"\u6211\u4eec\u4e3b\u8981\u4f1a\u4ecb\u7ecdnvprof\u548cnvvp":117,"\u6211\u4eec\u4e5f\u53ef\u4ee5\u786e\u5b9a\u6bcf\u4e00\u4e2a\u53c2\u6570\u7684\u7c7b\u578b":66,"\u6211\u4eec\u4e5f\u5c06mklml\u5373":62,"\u6211\u4eec\u4ec5\u4ec5\u5bf9\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165\u8fdb\u884c\u4e86\u63cf\u8ff0":101,"\u6211\u4eec\u4ec5\u6709\u4e00\u4e2a\u8f93\u5165":110,"\u6211\u4eec\u4ecb\u7ecd\u5982\u4f55\u5728":126,"\u6211\u4eec\u4ecb\u7ecd\u5982\u4f55\u5728kubernetes\u96c6\u7fa4\u4e0a\u8fdb\u884c\u5206\u5e03\u5f0fpaddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":127,"\u6211\u4eec\u4ee5\u624b\u5199\u6570\u5b57\u8bc6\u522b\u4efb\u52a1\u4e3a\u4f8b\u8fdb\u884c\u4ecb\u7ecd":122,"\u6211\u4eec\u4f1a\u4fdd\u8bc1":62,"\u6211\u4eec\u4f1a\u5728\u7f51\u7edc\u8bad\u7ec3\u4e4b\u524d\u628a\u683c\u5f0f\u8f6c\u6362\u4e3amkl":62,"\u6211\u4eec\u4f1a\u5bf9\u6bcf\u4e2a\u8bad\u7ec3\u4efb\u52a1\u90fd\u4f1a\u5728\u6bcf\u4e2a\u8282\u70b9\u4e0a\u521b\u5efa\u4e00\u4e2a\u5de5\u4f5c\u7a7a\u95f4":123,"\u6211\u4eec\u4f1a\u5bf9\u6bd4\u5982\u4e0b2\u4e2a\u65b9\u9762":61,"\u6211\u4eec\u4f1a\u628amkl":62,"\u6211\u4eec\u4f1a\u6dfb\u52a0":[61,62],"\u6211\u4eec\u4f1a\u7ee7\u7eed\u4f7f\u7528\u73b0\u6709\u7684\u5185\u5b58\u5757":110,"\u6211\u4eec\u4f1a\u91cd\u65b0\u5206\u914d\u5185\u5b58":110,"\u6211\u4eec\u4f7f\u7528":110,"\u6211\u4eec\u4f7f\u7528\u4e0d\u540c\u7684layer\u8fdb\u884c\u7ec4\u5408":101,"\u6211\u4eec\u4f7f\u7528\u4e86":104,"\u6211\u4eec\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":65,"\u6211\u4eec\u4f7f\u7528paddl":123,"\u6211\u4eec\u5047\u8bbe\u4e00\u53f0\u673a\u5668\u4e0a\u67094\u4e2agpu":134,"\u6211\u4eec\u5148\u8c03\u7528\u6bcf\u4e2a":112,"\u6211\u4eec\u51b3\u5b9a\u4f7f\u7528\u5df2\u6709\u7684":62,"\u6211\u4eec\u5373\u53ef\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684\u642d\u5efa":101,"\u6211\u4eec\u53ea\u6f14\u793a\u4e00\u4e2a\u5355\u673a\u4f5c\u4e1a":126,"\u6211\u4eec\u53ea\u9700\u8981":108,"\u6211\u4eec\u53ea\u9700\u8981\u4f7f\u7528lstm":104,"\u6211\u4eec\u53ea\u9700\u8981\u8fd0\u884c\u4e0b\u9762\u547d\u4ee4\u628a\u7f16\u8bd1\u597d\u7684paddlepaddle\u6253\u5305\u6210\u4e00\u4e2a":109,"\u6211\u4eec\u53ea\u9700\u8981\u914d\u7f6e":108,"\u6211\u4eec\u53ef\u4ee5":108,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528":116,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5176\u4ed6layer\u8fdb\u884c\u7ec4\u5408":101,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u751f\u6210\u5e8f\u5217":107,"\u6211\u4eec\u53ef\u4ee5\u5148\u5b8c\u6210\u5bf9\u539f\u6570\u636e\u7684packing\u64cd\u4f5c":61,"\u6211\u4eec\u53ef\u4ee5\u521b\u5efatrainer\u6765\u5bf9\u7f51\u7edc\u8fdb\u884c\u8bad\u7ec3":101,"\u6211\u4eec\u53ef\u4ee5\u53c2\u8003tensorflow\u7684":112,"\u6211\u4eec\u53ef\u4ee5\u5728":109,"\u6211\u4eec\u53ef\u4ee5\u5728\u547d\u4ee4\u884c\u4e2d\u7b80\u5355\u7684\u770b\u4e00\u4e0b\u751f\u6210\u6548\u679c":116,"\u6211\u4eec\u53ef\u4ee5\u5b9a\u4e49\u5982\u4e0b\u7684layer\u7ec4\u5408":101,"\u6211\u4eec\u53ef\u4ee5\u5b9a\u4e49\u5982\u4e0blayer\u6765\u63cf\u8ff0\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165":101,"\u6211\u4eec\u53ef\u4ee5\u6309\u7167\u5982\u4e0b\u5c42\u6b21\u5b9a\u4e49\u975e\u5e8f\u5217":103,"\u6211\u4eec\u53ef\u4ee5\u67e5\u770b\u6027\u80fd\u5206\u6790\u7684\u7ed3\u679c":116,"\u6211\u4eec\u53ef\u4ee5\u8bbe\u8ba1\u642d\u5efa\u4e00\u4e2a\u7075\u6d3b\u7684":106,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7":116,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u65e5\u5fd7\u67e5\u770b\u5bb9\u5668\u8bad\u7ec3\u7684\u60c5\u51b5":127,"\u6211\u4eec\u5728":112,"\u6211\u4eec\u5728\u51fd\u6570\u7684\u7ed3\u5c3e\u8fd4\u56de":107,"\u6211\u4eec\u5bf9\u6a21\u578b\u8fdb\u884c\u4e86\u4ee5\u4e0b\u66f4\u6539":107,"\u6211\u4eec\u5c06":127,"\u6211\u4eec\u5c06\u4e00\u6bb5\u8bdd\u770b\u6210\u53e5\u5b50\u7684\u6570\u7ec4":104,"\u6211\u4eec\u5c06\u4ecb\u7ecd\u5982\u4f55\u542f\u52a8\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f5c\u4e1a":126,"\u6211\u4eec\u5c06\u4f7f\u7528":107,"\u6211\u4eec\u5c06\u4f7f\u7528\u7b80\u5355\u7684":107,"\u6211\u4eec\u5c06\u539f\u59cb\u6570\u636e\u7684\u6bcf\u4e00\u7ec4":104,"\u6211\u4eec\u5c06\u5b83\u4eec\u5212\u5206\u4e3a\u4e0d\u540c\u7684\u7c7b\u522b":131,"\u6211\u4eec\u5c06\u795e\u7ecf\u7f51\u7edc\u4e00\u6b21\u8ba1\u7b97\u63a5\u53d7\u7684\u6240\u6709\u8f93\u5165\u6837\u672c\u79f0\u4e4b\u4e3a\u4e00\u4e2a":121,"\u6211\u4eec\u5c06\u8bad\u7ec3\u7ed3\u675f\u540e\u5b58\u50a8\u4e0b\u6765\u7684\u6a21\u578b\u8f6c\u6362\u6210\u9884\u6d4b\u6a21\u578b":122,"\u6211\u4eec\u5c31\u5b8c\u6210\u4e86\u4e00\u6b21\u4ee3\u7801\u8d21\u732e\u7684\u8fc7\u7a0b":109,"\u6211\u4eec\u5df2\u7ecf\u5b9e\u73b0\u4e86\u5927\u591a\u6570\u5e38\u7528\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":107,"\u6211\u4eec\u5efa\u8bae\u4f60\u4e3a\u4f60\u7684python\u5c01\u88c5\u5b9e\u73b0\u4e00\u4e2a":110,"\u6211\u4eec\u5efa\u8bae\u4f60\u5728\u5199\u65b0\u7f51\u7edc\u5c42\u65f6\u628a\u6d4b\u8bd5\u4ee3\u7801\u653e\u5165\u65b0\u7684\u6587\u4ef6\u4e2d":110,"\u6211\u4eec\u5efa\u8bae\u4f7f\u7528\u7b2c\u4e8c\u7c7b\u5b9e\u73b0":95,"\u6211\u4eec\u603b\u7ed3\u51fa\u4e00\u4e9b\u7279\u522b\u9700\u8981\u6ce8\u610f\u7684\u70b9":62,"\u6211\u4eec\u628apaddlepaddle\u7684\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883\u6253\u5305\u6210\u4e00\u4e2a\u955c\u50cf":136,"\u6211\u4eec\u63a8\u8350\u4f7f\u7528":[98,123],"\u6211\u4eec\u63a8\u8350\u4f7f\u7528\u6700\u65b0\u7248\u672c\u7684cudnn":97,"\u6211\u4eec\u63a8\u8350\u60a8\u4f7f\u7528paddlepaddl":97,"\u6211\u4eec\u63d0\u4f9b\u4e24\u4e2a\u8f6c\u6362\u65b9\u5f0f":33,"\u6211\u4eec\u63d0\u4f9b\u4e86\u52a0\u901f\u8bbf\u95ee\u7684\u955c\u50cf\u6e90":98,"\u6211\u4eec\u63d0\u4f9b\u53ef\u4ee5\u76f4\u63a5\u8fd0\u884cpaddlepaddl":98,"\u6211\u4eec\u63d0\u51fa\u4e86chunk\u7684\u6982\u5ff5":48,"\u6211\u4eec\u662f\u5bf9\u6bcf\u4e00\u4e2a\u5b50\u5e8f\u5217\u53d6\u6700\u540e\u4e00\u4e2a\u5143\u7d20":104,"\u6211\u4eec\u6700\u7ec8\u7684\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165python\u6216\u8005\u5176\u4ed6\u4efb\u4f55\u8bed\u8a00\u7684\u89e3\u91ca\u5668":65,"\u6211\u4eec\u6709\u4e00\u4e2a\u5e8f\u5217\u4f5c\u4e3a\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u72b6\u6001":107,"\u6211\u4eec\u7684":108,"\u6211\u4eec\u7684\u6807\u51c6\u5f00\u53d1\u6d41\u7a0b\u662f\u628a\u8fd9\u4e9b\u5de5\u5177\u90fd\u88c5\u8fdb\u4e00\u4e2adocker":109,"\u6211\u4eec\u770b\u4e00\u4e0b\u5355\u5c42rnn\u7684\u914d\u7f6e":104,"\u6211\u4eec\u770b\u4e00\u4e0b\u8bed\u4e49\u76f8\u540c\u7684\u53cc\u5c42rnn\u7684\u7f51\u7edc\u914d\u7f6e":104,"\u6211\u4eec\u771f\u8bda\u5730\u611f\u8c22\u60a8\u7684\u8d21\u732e":109,"\u6211\u4eec\u79f0\u4e4b\u4e3a\u4e00\u4e2a0\u5c42\u7684\u5e8f\u5217":103,"\u6211\u4eec\u8ba1\u5212\u5c06":61,"\u6211\u4eec\u8ba1\u5212\u5c06\u82f1\u7279\u5c14\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edc\u6570\u5b66\u5e93":62,"\u6211\u4eec\u8bbe\u8ba1\u8bf4\u660e\u4e86\u540d\u4e3afilemanager\u7cfb\u7edf":48,"\u6211\u4eec\u8c03\u7528\u4e86eigenvector\u7684flatten\u63a5\u53e3":112,"\u6211\u4eec\u8fd8\u53ef\u4ee5\u767b\u5f55\u5230\u5bbf\u4e3b\u673a\u4e0a\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c":126,"\u6211\u4eec\u8fd8\u5c06\u7f16\u7801\u5411\u91cf\u6295\u5c04\u5230":107,"\u6211\u4eec\u9009\u53d6\u5355\u53cc\u5c42\u5e8f\u5217\u914d\u7f6e\u4e2d\u7684\u4e0d\u540c\u90e8\u5206":104,"\u6211\u4eec\u9009\u62e9":33,"\u6211\u4eec\u901a\u5e38\u501f\u52a9":111,"\u6211\u4eec\u901a\u5e38\u5c06\u4e00\u53e5\u8bdd\u7406\u89e3\u6210\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":104,"\u6211\u4eec\u901a\u8fc7\u4f7f\u7528\u65b0\u5f15\u5165\u7684gemm":61,"\u6211\u4eec\u901a\u8fc7\u8bfb\u53d6":127,"\u6211\u4eec\u90fd\u63d0\u4f9bpython\u7684\u8f6c\u6362\u5e93":33,"\u6211\u4eec\u9700\u8981":108,"\u6211\u4eec\u9700\u8981\u5148\u628a\u8f93\u5165tensor\u548c\u8f93\u51fatensor\u8f6c\u6362\u4e3aeigen\u652f\u6301\u7684\u683c\u5f0f":112,"\u6211\u4eec\u9700\u8981\u5236\u4f5c\u4e00\u4e2a\u5305\u542b\u8bad\u7ec3\u6570\u636e\u7684paddlepaddle\u955c\u50cf":126,"\u6211\u4eec\u9700\u8981\u5728\u96c6\u7fa4\u7684\u6240\u6709\u8282\u70b9\u4e0a\u5b89\u88c5":123,"\u6211\u4eec\u9700\u8981\u7b49\u5f0f\u5de6\u8fb9\u7684eigentensor\u8c03\u7528device\u63a5\u53e3":112,"\u6211\u4eec\u9700\u8981\u8ba1\u7b97":110,"\u6211\u4eec\u9996\u5148\u9700\u8981\u6839\u636e\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u6765\u521b\u5efa\u6240\u9700\u8981\u4f18\u5316\u7684paramet":101,"\u6211\u5220\u9664\u4e86":109,"\u6211\u53ef\u4ee5\u7528":108,"\u6211\u53ef\u4ee5\u9009\u62e9\u4e0d\u7528docker\u5417":108,"\u6216":[117,121,137],"\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":103,"\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":103,"\u6216\u4e00\u4e2a\u5411\u91cf":106,"\u6216\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":103,"\u6216\u662f\u5728\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u4e2d\u8868\u793a\u8bcd\u8bed\u5728\u5b57\u5178\u4e2d\u7684\u5e8f\u53f7":121,"\u6216\u6700\u5927\u503c":103,"\u6216\u79f0\u4f5cweight":94,"\u6216\u7b2c\u4e00\u4e2a":103,"\u6216\u7b2c\u4e00\u4e2a\u5143\u7d20":103,"\u6216\u7f16\u5199\u7a0b\u5e8f\u65f6":123,"\u6216\u8005":[62,65,66,94,103,104,108,109,111,116,117,121],"\u6216\u8005\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":106,"\u6216\u8005\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":[103,106],"\u6216\u8005\u4ece\u5de5\u5177\u7684\u754c\u9762\u91cc\u8fd0\u884c\u60a8\u7684\u5e94\u7528":117,"\u6216\u8005\u5236\u4f5c\u548c\u5206\u4eab\u5e26\u6709\u4ee3\u7801":98,"\u6216\u8005\u53cd\u5411\u5730\u4ece":107,"\u6216\u8005\u53ef\u88abdns\u89e3\u6790\u7684\u4e3b\u673a\u540d":123,"\u6216\u8005\u5728cpu\u6a21\u5f0f\u4e0b\u4f7f\u75284\u4e2a\u7ebf\u7a0b":132,"\u6216\u8005\u5c06\u8fd9\u53f0\u8282\u70b9\u8fc1\u79fb\u5230\u53e6\u4e00\u4e2a\u8282\u70b9\u5e76\u542f\u52a8\u5373\u53ef\u6062\u590d\u8bad\u7ec3\u4efb\u52a1":32,"\u6216\u8005\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u81ea\u52a8\u8bbe\u7f6e":131,"\u6216\u8005\u5f15\u8d77\u884c\u65f6\u9519\u8bef":121,"\u6216\u8005\u6570\u7ec4\u7684\u6570\u7ec4\u8fd9\u4e2a\u6982\u5ff5":104,"\u6216\u8005\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":103,"\u6216\u8005\u662f\u51fd\u6570\u8c03\u7528\u7684\u9891\u7387\u548c\u8017\u65f6\u7b49":117,"\u6216\u8005\u66f4\u65e9":96,"\u6216\u8005\u6bcf\u4e00\u4e2a\u7cfb\u5217\u91cc\u7684\u7279\u5f81\u6570\u636e":104,"\u6216\u8005\u7528tuple\u8868\u793a\u7684\u591a\u4e2a\u503c":33,"\u6216\u8005\u7531\u5b83\u4eec\u7ec4\u6210\u7684list":33,"\u6216\u8005\u76f4\u63a5\u6254\u6389\u975e\u5e38\u957f\u7684\u5e8f\u5217":94,"\u6216\u8005\u76f8\u5bf9\u4e8e\u6784\u5efa\u76ee\u5f55\u7684\u76f8\u5bf9\u8def\u5f84":[136,138],"\u6216\u8005\u8f93\u5165\u6570\u636e\u5c3a\u5ea6\u8fc7\u5927":94,"\u6216\u8005\u8fd0\u884c":91,"\u6216\u8005\u91c7\u7528\u5e76\u884c\u8ba1\u7b97\u6765\u52a0\u901f\u67d0\u4e9b\u5c42\u7684\u66f4\u65b0":134,"\u6216activ":62,"\u6216gpu":132,"\u622a\u65ad\u5bf9\u8c61\u4e0d\u540c":94,"\u623f":104,"\u623f\u95f4":104,"\u6240\u4ee5":[62,82,94,98,116],"\u6240\u4ee5\u4e00\u4e2a\u7248\u672c\u53f7\u7684wheel\u5305\u53d1\u5e03\u4e4b\u540e":82,"\u6240\u4ee5\u4e0d\u5b58\u5728\u8fd9\u4e2a\u95ee\u9898":62,"\u6240\u4ee5\u4e0d\u80fd\u91c7\u7528\u7b2c\u4e00\u79cd\u65b9\u5f0f\u5728\u8fd9\u51e0\u4e2alayer\u91cc\u8bbe\u7f6e":95,"\u6240\u4ee5\u505a\u6cd5\u53ef\u4ee5\u6709\u4e24\u79cd":94,"\u6240\u4ee5\u53ef\u4ee5\u7b80\u5316\u5bf9\u73af\u5883\u7684\u8981\u6c42":126,"\u6240\u4ee5\u5728":62,"\u6240\u4ee5\u5728\u5199\u5165\u5feb\u7167\u7684\u8fc7\u7a0b\u4e2d":32,"\u6240\u4ee5\u5916\u5c42\u8f93\u51fa\u7684\u5e8f\u5217\u5f62\u72b6":104,"\u6240\u4ee5\u5bf9":104,"\u6240\u4ee5\u5f00\u53d1\u8005\u9700\u8981\u6839\u636e\u81ea\u5df1\u8bad\u7ec3\u4efb\u52a1\u7684\u5b9e\u9645\u573a\u666f\u5b8c\u6210\u8bad\u7ec3\u6570\u636e\u7684\u5206\u5272\u548c":123,"\u6240\u4ee5\u6027\u80fd\u4e5f\u5c31\u9010\u6b65\u53d8\u6210\u4e86\u6df1\u5ea6\u5b66\u4e60\u9886\u57df\u6700\u91cd\u8981\u7684\u6307\u6807":117,"\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u5728\u8fd9\u4e2a\u57fa\u7840\u4e0a":127,"\u6240\u4ee5\u6211\u4eec\u5b9a\u4e49\u4e86\u4e00\u4e2a":62,"\u6240\u4ee5\u6211\u4eec\u786e\u4fdd\u53d1\u5e03\u7684\u4e8c\u8fdb\u5236\u5305\u53ef\u4ee5\u652f\u6301\u4e3b\u6d41\u7684linux\u64cd\u4f5c\u7cfb\u7edf":100,"\u6240\u4ee5\u6211\u4eec\u9700\u8981\u5c06\u8f93\u5165\u6570\u636e\u6807\u8bb0\u6210":104,"\u6240\u4ee5\u6211\u4eec\u9ed8\u8ba4\u4f7f\u7528cento":100,"\u6240\u4ee5\u6574\u4f53\u4e0a":62,"\u6240\u4ee5\u6dfb\u52a0\u4e86\u5bf9\u5e94\u7684":62,"\u6240\u4ee5\u7528\u6237\u9700\u8981\u9996\u5148\u5728":48,"\u6240\u4ee5\u76f8\u6bd4\u4e8erecurr":95,"\u6240\u4ee5\u8fd9\u4e00\u6b65\u662f\u5fc5\u8981\u7684":110,"\u6240\u4ee5\u9700\u8981\u5f15\u5165\u4e00\u4e2a\u8f6c\u6362\u65b9\u6cd5":62,"\u6240\u4f7f\u7528":137,"\u6240\u4f9d\u8d56\u7684\u7b2c\u4e09\u65b9\u5e93\u540c\u65f6\u4e5f\u88ab\u5b89\u88c5\u5230":136,"\u6240\u5bf9\u5e94\u7684\u8bcd\u8868index\u6570\u7ec4":104,"\u6240\u6709\u4e0e\u7c7b\u578b\u76f8\u5173\u7684\u51fd\u6570":66,"\u6240\u6709\u4ee3\u7801\u5fc5\u987b\u5177\u6709\u5355\u5143\u6d4b\u8bd5":109,"\u6240\u6709\u53c2\u6570\u7f6e\u4e3a\u96f6":132,"\u6240\u6709\u547d\u4ee4\u884c\u9009\u9879\u53ef\u4ee5\u8bbe\u7f6e\u4e3a":124,"\u6240\u6709\u5916\u90e8\u7684\u8f6c\u6362\u5de5\u4f5c\u90fd\u4f1a\u5728reset\u7cfb\u5217\u51fd\u6570\u4e2d\u90fd\u51c6\u5907\u597d":62,"\u6240\u6709\u67b6\u6784":136,"\u6240\u6709\u7684":[61,109,110],"\u6240\u6709\u7684\u5355\u6d4b\u90fd\u4f1a\u88ab\u6267\u884c\u4e00\u6b21":110,"\u6240\u6709\u7684\u63a5\u53e3\u5747\u4e3ac\u63a5\u53e3":66,"\u6240\u6709\u7684\u64cd\u4f5c\u90fd\u662f\u9488\u5bf9\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u6765\u8fdb\u884c\u7684":104,"\u6240\u6709\u7684python\u5c01\u88c5\u90fd\u4f7f\u7528":110,"\u6240\u6709\u7684python\u5c01\u88c5\u90fd\u5728":110,"\u6240\u6709\u76f8\u5173\u7684":61,"\u6240\u6709\u7c7b\u578b\u540d\u4e3a":66,"\u6240\u6709\u7f51\u7edc\u5c42\u7684\u68af\u5ea6\u68c0\u67e5\u5355\u6d4b\u90fd\u4f4d\u4e8e":110,"\u6240\u6709\u8f93\u5165\u5e8f\u5217\u5e94\u8be5\u6709\u76f8\u540c\u7684\u957f\u5ea6":107,"\u6240\u6709mkl":62,"\u6240\u9700\u652f\u6301\u7684\u6700\u4f4eandroid":136,"\u6240\u9700\u7684\u5f00\u53d1\u5de5\u5177\u548c\u7b2c\u4e09\u65b9\u5e93\u53ef\u4ee5\u53c2\u8003":138,"\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":65,"\u624b\u5199\u6570\u5b57\u8bc6\u522b":122,"\u624b\u5199\u6570\u5b57\u8bc6\u522b\u4efb\u52a1\u5b9a\u4e49\u4e86\u4e00\u4e2a\u542b\u6709":122,"\u624b\u52a8\u4e0b\u8f7d\u4e14\u89e3\u538b\u7f29":91,"\u624b\u52a8\u4e0b\u8f7d\u5e76\u5b89\u88c5":91,"\u624d\u53ef\u4ee5\u5b89\u88c5":100,"\u624d\u80fd\u4fdd\u8bc1\u548c\u5355\u5c42\u5e8f\u5217\u7684\u914d\u7f6e\u4e2d":104,"\u624d\u80fd\u53d1\u6325\u5176\u5168\u90e8\u80fd\u529b":117,"\u624d\u80fd\u66f4\u597d\u7684\u53d1\u6325mkl":62,"\u6253\u5f00":117,"\u6253\u5f00\u6d4f\u89c8\u5668\u8bbf\u95ee\u5bf9\u5e94\u76ee\u5f55\u4e0b\u7684index":113,"\u6253\u5f00\u8fd9\u4e2a\u7f16\u8bd1\u9009\u9879":66,"\u6267\u884c":[82,102,119,124],"\u6267\u884c\u4e0a\u8ff0":136,"\u6267\u884c\u4e0a\u8ff0\u4ee3\u7801\u751f\u6210makefile\u6587\u4ef6\u540e":119,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4":97,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u4ee5\u542f\u52a83\u4e2a\u8282\u70b9\u7684openmpi\u96c6\u7fa4\u548c\u4e00\u4e2a":128,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u5373\u53ef\u5728\u5f53\u524d\u673a\u5668\u4e0a\u5b89\u88c5paddlepaddle\u7684\u8fd0\u884c\u65f6\u73af\u5883":100,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u53ef\u4ee5\u67e5\u770b\u5df2\u7ecf\u5b89\u88c5\u7684\u7248\u672c":123,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u5b8c\u6210\u5feb\u901f\u5b89\u88c5":102,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u6765\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5":111,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u7f16\u8bd1cpu":97,"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u83b7\u53d6\u6700\u65b0\u7684paddlepaddl":98,"\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4":[136,137,138],"\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4\u542f\u52a8\u4f7f\u7528python\u7f16\u5199\u7684trainer\u7a0b\u5e8f":123,"\u6267\u884c\u4ee5\u4e0b\u64cd\u4f5c":107,"\u6267\u884c\u4ee5\u4e0b\u7684\u547d\u4ee4\u542f\u52a8\u4e00\u4e2a\u53c2\u6570\u670d\u52a1\u5668\u5e76\u7b49\u5f85\u548c\u8ba1\u7b97\u8282\u70b9\u7684\u6570\u636e\u4ea4\u4e92":123,"\u6267\u884c\u5b8c\u5b89\u88c5\u547d\u4ee4\u540e":[136,137,138],"\u6267\u884c\u60a8\u7684\u4ee3\u7801":117,"\u627e\u5230":[97,107,123],"\u627e\u5230\u6700\u65e9\u62a5\u9519\u7684\u5730\u65b9":92,"\u627e\u5230\u8fd0\u884c\u6162\u7684\u539f\u56e0":117,"\u627e\u5230\u8fd0\u884c\u6162\u7684\u90e8\u5206":117,"\u628a":[33,110],"\u628a\u4e4b\u524d\u793a\u4f8b\u4e2d\u8f6c\u6362\u5b8c\u6bd5\u7684random":33,"\u628a\u4efb\u610f\u7ef4\u5ea6\u7684tensor\u8f6c\u4e3a\u4e86\u4e00\u7ef4\u7684eigenvector":112,"\u628a\u5de5\u5177\u548c\u914d\u7f6e\u90fd\u5b89\u88c5\u5728\u4e00\u4e2a":108,"\u628a\u8bad\u7ec3\u6570\u636e\u76f4\u63a5\u653e\u5728":126,"\u628a\u8fd9\u4e9b\u5de5\u5177\u5b89\u88c5\u5230\u672c\u673a":108,"\u6295\u5c04\u53cd\u5411rnn\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b\u5230":107,"\u6295\u5c04\u7f16\u7801\u5411\u91cf\u5230":107,"\u62c6\u6210\u4ee5\u4e0a\u4e24\u4e2a\u9759\u6001\u94fe\u63a5\u5e93":119,"\u62c6\u89e3":106,"\u62c6\u89e3\u6210\u7684\u6bcf\u4e00\u53e5\u8bdd\u518d\u901a\u8fc7\u4e00\u4e2alstm\u7f51\u7edc":104,"\u62f7\u8d1d\u5230numpi":94,"\u62f7\u8d1d\u5fc5\u8981\u7684\u6587\u4ef6\u5230head\u8282\u70b9":128,"\u62f7\u8d1d\u8bad\u7ec3\u6570\u636e\u5230\u5404\u81ea\u7684\u8282\u70b9":128,"\u62f7\u8d1d\u8bad\u7ec3\u6587\u4ef6\u5230\u5bb9\u5668\u5185":127,"\u62f7\u8d1d\u8bad\u7ec3\u7a0b\u5e8f\u548c\u5b57\u5178\u6587\u4ef6\u5230\u6bcf\u53f0mpi\u8282\u70b9":128,"\u62fc\u63a5":94,"\u6302\u8f7d\u5230\u5bb9\u5668\u5185\u90e8\u7684":98,"\u6302\u8f7d\u6216\u4e0b\u8f7d\u7684\u8bad\u7ec3\u6570\u636e\u5206\u7247":123,"\u6307\u53d1\u73b0\u6027\u80fd\u74f6\u9888":116,"\u6307\u5411\u4e00\u4e2alayer":106,"\u6307\u5b9a":[94,95,106,107],"\u6307\u5b9a\u4e00\u53f0\u673a\u5668\u4e0a\u4f7f\u7528\u7684\u7ebf\u7a0b\u6570":132,"\u6307\u5b9a\u4e3a":121,"\u6307\u5b9a\u4f7f\u75282":94,"\u6307\u5b9a\u524d\u5411\u7f51\u7edc\u6700\u7ec8\u7684\u8f93\u51fa\u76ee\u6807\u53d8\u91cf":111,"\u6307\u5b9a\u52a0\u8f7d\u7684\u65b9\u5f0f":132,"\u6307\u5b9a\u5728\u751f\u6210\u6027\u80fd\u5206\u6790\u6587\u4ef6\u4e4b\u540e":116,"\u6307\u5b9a\u5bf9\u8f93\u5165\u53d8\u91cf":111,"\u6307\u5b9a\u5c06\u5f53\u524d\u8def\u5f84":98,"\u6307\u5b9a\u6267\u884c\u5176\u4e2d\u4e00\u4e2a\u5355\u5143\u6d4b\u8bd5":97,"\u6307\u5b9a\u68c0\u6d4b\u68af\u5ea6\u65f6\u80fd\u5bb9\u5fcd\u7684\u6700\u5927\u9519\u8bef\u503c":111,"\u6307\u5b9a\u7684\u5185\u5bb9\u5b58\u50a8\u5e93\u8fd0\u884c\u547d\u4ee4":113,"\u6307\u5b9a\u7684\u8f93\u5165\u4e0d\u4f1a\u88ab":106,"\u6307\u5b9a\u8981\u8f93\u51fa\u7684\u5b57\u6bb5\u8fdb\u884c\u8f93\u51fa":94,"\u6307\u5b9a\u9700\u8981\u4f7f\u7528\u7684\u5bb9\u5668":98,"\u6307\u5b9acudnn\u7684\u6700\u5927\u5de5\u4f5c\u7a7a\u95f4\u5bb9\u9650":132,"\u6307\u5bf9\u4e8e\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217\u8f93\u5165\u6570\u636e":104,"\u6307\u5f00\u542fhttp\u670d\u52a1":116,"\u6307\u6d88\u9664\u74f6\u9888":116,"\u6307\u6df1\u5ea6\u5b66\u4e60\u8bad\u7ec3\u4e4b\u540e\u5f97\u5230\u7684\u6240\u6709\u53c2\u6570":32,"\u6307\u793a\u4f7f\u7528\u54ea\u4e2agpu\u6838":132,"\u6307\u793a\u5728\u7b80\u5355\u7684recurrentlayer\u5c42\u7684\u8ba1\u7b97\u4e2d\u662f\u5426\u4f7f\u7528\u6279\u5904\u7406\u65b9\u6cd5":132,"\u6307\u793a\u5f53\u6307\u5b9a\u8f6e\u7684\u6d4b\u8bd5\u6a21\u578b\u4e0d\u5b58\u5728\u65f6":132,"\u6307\u793a\u662f\u5426\u4f7f\u7528\u591a\u7ebf\u7a0b\u6765\u8ba1\u7b97\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc":132,"\u6307\u793a\u662f\u5426\u5f00\u542f\u53c2\u6570\u670d\u52a1\u5668":132,"\u6307\u793a\u662f\u5426\u663e\u793a\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u7a00\u758f\u53c2\u6570\u5206\u5e03\u7684\u65e5\u5fd7\u7ec6\u8282":132,"\u6307\u793a\u662f\u5426\u68c0\u67e5\u6240\u6709\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u7a00\u758f\u53c2\u6570\u7684\u5206\u5e03\u662f\u5747\u5300\u7684":132,"\u6309\u542f\u53d1\u5f0f\u635f\u5931\u7684\u5927\u5c0f\u9012\u589e\u6392\u5e8f":132,"\u6309\u7167\u4e0b\u9762\u6b65\u9aa4\u5373\u53ef":127,"\u6309\u7167\u5176\u5185\u5bb9\u521b\u5efa\u4e00\u4e2a\u540d\u4e3a":108,"\u6309\u7167\u5177\u4f53\u5b9e\u73b0\u65b9\u5f0f\u53ef\u4ee5\u5f52\u7eb3\u4e3a2\u7c7b":95,"\u6309\u7167\u57fa\u672c\u6570\u636e\u7c7b\u578b\u5728paddlepaddle\u5185\u90e8\u7684\u5b9a\u4e49\u548c\u5b9e\u73b0":121,"\u6309\u94ae":[82,109],"\u633a":104,"\u633a\u597d":104,"\u635f\u5931\u51fd\u6570\u5c42":122,"\u6362":104,"\u6392\u6210\u4e00\u5217\u7684\u591a\u4e2a\u5143\u7d20":103,"\u63a5\u4e0a\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42":101,"\u63a5\u4e0a\u5e73\u65b9\u8bef\u5dee\u5c42":101,"\u63a5\u4e0b\u6765":111,"\u63a5\u4e0b\u6765\u53ef\u4ee5\u8003\u8651\u4e0b\u65f6\u95f4\u7ebf\u7684\u5206\u6790":117,"\u63a5\u4e0b\u6765\u5c31\u53ef\u4ee5\u4f7f\u7528":117,"\u63a5\u4e0b\u6765\u6211\u4eec\u521b\u5efa\u4e00\u4e2a\u539f\u59cb":109,"\u63a5\u4e0b\u6765\u6211\u4eec\u53d6\u6d88\u5bf9":109,"\u63a5\u4e0b\u6765\u7b49\u5f85":109,"\u63a5\u53d7\u4e00\u4e2a\u8f93\u5165\u53c2\u6570":111,"\u63a5\u53e3":[65,66,111,112,122],"\u63a5\u53e3\u4f1a\u88ab\u8c03\u7528":112,"\u63a5\u53e3\u5b8c\u6210\u795e\u7ecf\u7f51\u7edc\u7684\u524d\u5411\u8ba1\u7b97":122,"\u63a5\u53e3\u5bf9\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u548c\u8bad\u7ec3\u597d\u7684\u53c2\u6570\u8fdb\u884c\u5e8f\u5217\u5316":122,"\u63a5\u53e3\u5c42\u505a\u8fc7\u591a\u5c01\u88c5":66,"\u63a5\u53e3\u662f":33,"\u63a5\u53e3\u6700\u7ec8\u4f1a\u8c03\u7528\u5bf9\u5e94":112,"\u63a5\u53e3\u6709\u4e00\u4e2a":94,"\u63a5\u53e3\u7684":94,"\u63a5\u53e3\u8bf4\u660e\u8bf7\u67e5\u770b":121,"\u63a5\u6536\u5904\u7406pfsclient\u7aef\u7684\u6587\u4ef6\u7ba1\u7406\u8bf7\u6c42":48,"\u63a5\u7740\u7f16\u8bd1\u5373\u53ef":91,"\u63a7\u5236":132,"\u63a7\u5236\u662f\u5426\u4f7f\u7528mkl":62,"\u63a7\u5236\u662f\u5426\u4f7f\u7528mklml\u5e93":62,"\u63a7\u5236\u7528\u6237\u6743\u9650":33,"\u63a8\u5bfc\u8be5\u5c42\u524d\u5411\u548c\u540e\u5411\u4f20\u9012\u7684\u65b9\u7a0b":110,"\u63a8\u8350":104,"\u63a8\u8350\u4f7f\u7528\u6b64\u65b9\u5f0f":119,"\u63a8\u8350\u4f7f\u7528centos\u7684devtools2":97,"\u63a8\u8350\u6e05\u7406\u6574\u4e2a\u7f16\u8bd1\u76ee\u5f55":97,"\u63a8\u8350\u8bbe\u7f6e\u4e3a":119,"\u63a8\u8350\u914d\u7f6e\u4e3a":119,"\u63a8\u8350\u914d\u7f6e\u9009\u9879":119,"\u63a8\u9001\u5230\u8fdc\u7a0b\u4ed3\u5e93":109,"\u63cf\u8ff0\u7684\u9ed8\u8ba4\u5165\u53e3\u7a0b\u5e8f":108,"\u63cf\u8ff0\u8be5op\u7684\u8f93\u5165":111,"\u63cf\u8ff0\u95ee\u9898":109,"\u63d0\u4ea4\u65b9\u5f0f\u53c2\u89c1":113,"\u63d0\u4ea4pull":109,"\u63d0\u4f9b":124,"\u63d0\u4f9b\u4e03\u5c42\u534f\u8bae\u7684\u53cd\u5411\u4ee3\u7406":48,"\u63d0\u4f9b\u4e86\u4e00\u4e2a\u542f\u52a8\u811a\u672c":127,"\u63d0\u4f9b\u4e86\u547d\u4ee4\u6837\u4f8b\u6765\u8fd0\u884c":124,"\u63d0\u4f9b\u4e86\u65b9\u4fbf\u7684\u548c":116,"\u63d0\u4f9b\u4e86\u81ea\u52a8\u5316\u811a\u672c\u6765\u542f\u52a8\u4e0d\u540c\u8282\u70b9\u4e2d\u7684\u6240\u6709":124,"\u63d0\u4f9b\u51e0\u4e4e\u6240\u6709\u8bad\u7ec3\u7684\u5185\u90e8\u8f93\u51fa\u65e5\u5fd7":124,"\u63d0\u4f9b\u5e38\u7528\u7684\u547d\u4ee4\u884c\u7ba1\u7406\u547d\u4ee4\u7ba1\u7406\u6587\u4ef6\u548c\u76ee\u5f55":48,"\u63d0\u4f9b\u6269\u5c55\u7684\u957f\u5ea6\u4fe1\u606f":103,"\u63d0\u4f9b\u7528\u6237\u7ba1\u7406\u6587\u4ef6\u7684\u547d\u4ee4":48,"\u63d0\u4f9b\u7ed9paddle\u4f5c\u4e3a\u8bad\u7ec3\u6570\u636e":33,"\u63d0\u4f9b\u8bad\u7ec3\u8fc7\u7a0b\u7684":124,"\u63d0\u793a":91,"\u641c\u7d22\u4ee3\u7801\u5e93":113,"\u642d\u5efa\u795e\u7ecf\u7f51\u7edc\u5c31\u50cf\u4f7f\u7528\u79ef\u6728\u642d\u5efa\u5b9d\u5854\u4e00\u6837":101,"\u64cd\u4f5c":104,"\u64cd\u4f5c\u7cfb\u7edf":[100,108],"\u652f\u6301\u4e24\u79cd\u5e8f\u5217\u7c7b\u578b":121,"\u652f\u6301\u4ea4\u53c9\u7f16\u8bd1":138,"\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684layer":[105,106],"\u652f\u6301\u5927\u6587\u4ef6\u7684\u65ad\u70b9\u4e0a\u4f20":48,"\u652f\u6301\u5927\u89c4\u6a21\u96c6\u7fa4\u751f\u4ea7\u73af\u5883\u7684\u5b8c\u6574\u96c6\u7fa4\u65b9\u6848":123,"\u652f\u6301\u7684\u6700\u5c0f\u7684android":136,"\u652f\u6301\u7684\u6700\u5c0fandroid":136,"\u652f\u6301\u7ef4\u6570\u53ef\u53d8\u7684\u6570\u636e\u8f93\u5165":95,"\u652f\u6301\u7f16\u8bd1\u5668":136,"\u6539\u53d8\u7ef4\u5ea6\u987a\u5e8f":95,"\u653e\u5728\u8fd9\u4e2a\u76ee\u5f55\u91cc\u7684\u6587\u4ef6\u5176\u5b9e\u662f\u4fdd\u5b58\u5230\u4e86mfs\u4e0a":127,"\u653e\u5fc3":104,"\u6545\u800c\u662f\u4e00\u4e2a\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":104,"\u6548\u679c\u5982\u4e0b":116,"\u6559\u7a0b":98,"\u6570":106,"\u6570\u5b66\u5e93":119,"\u6570\u5fc5\u987b\u4e25\u683c\u76f8\u7b49":106,"\u6570\u636e":[48,121,122],"\u6570\u636e\u4e2d0":96,"\u6570\u636e\u5206\u7247":123,"\u6570\u636e\u63d0\u4f9b\u5668":131,"\u6570\u636e\u8bbf\u95ee":0,"\u6570\u636e\u8bfb\u53d6\u5747\u4ea4\u7531\u5176\u4ed6\u8bed\u8a00\u5b8c\u6210":65,"\u6570\u636e\u8f93\u5165":[106,121],"\u6570\u636e\u957f\u5ea6\u53ca\u6821\u9a8c\u503c\u7ec4\u6210":48,"\u6570\u636e\u96c6":122,"\u6570\u636e\u96c6\u9700\u8981\u9884\u5148\u88ab\u8f6c\u6362\u6210paddlepaddle\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f7f\u7528\u7684\u5b58\u50a8\u683c":33,"\u6570\u636e\u9884\u5904\u7406\u4efb\u52a1":33,"\u6570\u76ee":134,"\u6574\u4f53":104,"\u6574\u4f53\u4f7f\u7528\u6d41\u7a0b":122,"\u6574\u4f53\u6570\u636e\u548c\u539f\u59cb\u6570\u636e\u5b8c\u5168\u4e00\u6837":104,"\u6574\u4f53\u7684\u7ed3\u6784\u56fe\u5982\u4e0b":127,"\u6574\u578b\u6570\u7ec4":121,"\u6574\u6570":110,"\u6574\u6570\u6807\u7b7e":101,"\u6574\u6d01":104,"\u6587\u4ef6":[65,108,109,111,121,126],"\u6587\u4ef6\u4e2d":[111,122,127],"\u6587\u4ef6\u4e2d\u6ce8\u518c\u524d\u5411":111,"\u6587\u4ef6\u4e2d\u6ce8\u518c\u8be5op\u548ckernel":111,"\u6587\u4ef6\u4e2d\u6ce8\u518ccuda":111,"\u6587\u4ef6\u4e3a":94,"\u6587\u4ef6\u4e4b\u5916":109,"\u6587\u4ef6\u4f20\u8f93\u7684\u7684\u5173\u952e\u5728\u4e8e\u9700\u8981pfsclient\u7aef\u5bf9\u6bd4source\u548cdestination\u7684\u6587\u4ef6chunks\u7684checksum\u662f\u5426\u4fdd\u6301\u4e00\u81f4":48,"\u6587\u4ef6\u5185\u5bb9\u4e3a":65,"\u6587\u4ef6\u540d":116,"\u6587\u4ef6\u540d\u4e3a\u4efb\u610f\u6587\u4ef6\u540d":123,"\u6587\u4ef6\u540d\u4e3a\u6b64uuid":32,"\u6587\u4ef6\u547d\u540d\u4ee5":111,"\u6587\u4ef6\u59390":127,"\u6587\u4ef6\u5bf9\u5e94\u7684data":33,"\u6587\u4ef6\u5de5\u5177\u662f\u4f7f\u7528docker":113,"\u6587\u4ef6\u7684\u4e0a\u4f20\u548c\u4e0b\u8f7d\u90fd\u662f\u901a\u8fc7\u5bf9chunk\u7684\u64cd\u4f5c\u6765\u5b9e\u73b0\u7684":48,"\u6587\u4ef6\u7684\u6539\u53d8":109,"\u6587\u4ef6\u7684\u8def\u5f84\u6765\u52a0\u8f7d\u9884\u6d4b\u6a21\u578b":122,"\u6587\u4ef6model":134,"\u6587\u5b57\u7684\u4ea4\u4e92\u5f0f\u6587\u6863":98,"\u6587\u6863":91,"\u6587\u68631":112,"\u6587\u68632":112,"\u6587\u6863\u8f83\u5c11":112,"\u6587\u6863\u90fd\u662f\u901a\u8fc7":113,"\u6587\u7ae0":127,"\u65b0":104,"\u65b0\u5efa\u4e00\u4e2a\u6743\u91cd":110,"\u65b0\u624b\u5165\u95e8":135,"\u65b0\u624b\u5165\u95e8\u7ae0\u8282":82,"\u65b0\u7248\u672c":62,"\u65b9\u4fbf":104,"\u65b9\u4fbf\u5feb\u901f\u5b89\u88c5":99,"\u65b9\u4fbf\u6392\u67e5\u4ee5\u53ca\u5feb\u901f\u5b9a\u4f4d\u95ee\u9898":94,"\u65b9\u4fbf\u6d4b\u8bd5\u4eba\u5458\u6d4b\u8bd5paddlepaddle\u7684\u884c\u4e3a":82,"\u65b9\u4fbf\u7528\u6237\u4e0a\u4f20\u81ea\u5df1\u7684\u8bad\u7ec3\u6570\u636e\u4ee5\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":48,"\u65b9\u4fbf\u7528\u6237\u5728python\u7aef\u9009\u62e9\u662f\u5426\u542f\u7528\u8fd9\u4e2a\u529f\u80fd":61,"\u65b9\u4fbf\u7528\u6237\u9009\u62e9\u4f7f\u7528mkl":62,"\u65b9\u5f0f1":94,"\u65b9\u5f0f2":94,"\u65b9\u5f0f\u5c06\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u548c\u8bad\u7ec3\u597d\u7684\u53c2\u6570\u5e8f\u5217\u5316\u5230\u4e00\u4e2a\u6587\u4ef6":122,"\u65b9\u5f0f\u7c7b\u4f3c\u4e8e":62,"\u65b9\u6cd5\u4e00":134,"\u65b9\u6cd5\u4e09":134,"\u65b9\u6cd5\u4e8c":134,"\u65c1\u8fb9":104,"\u65e0":104,"\u65e0\u5ef6\u8fdf":132,"\u65e0\u6cd5\u505a\u5230\u5bf9\u4e8e\u5404\u79cd\u8bed\u8a00\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u7684\u9002\u914d":65,"\u65e0\u8bba\u5728\u672c\u5730\u8fd8\u662f\u5728\u4e91\u7aef":33,"\u65e0\u8bba\u662f\u4ece":33,"\u65e0\u8bba\u662f\u5728\u672c\u5730\u6216\u662f\u4e91\u7aef\u8f6c\u6362":33,"\u65e0\u8bba\u662f\u91cd\u6784\u524d\u7684layer\u8fd8\u662f\u91cd\u6784\u540e\u7684op":62,"\u65e0\u9700\u5173\u5fc3\u548c\u5904\u7406\u5e8f\u5217\u4fe1\u606f":121,"\u65e0\u9700\u63d0\u4f9b\u975e\u96f6\u5143\u7684\u503c":121,"\u65e0\u9700\u9644\u52a0\u5e8f\u5217\u4fe1\u606f":121,"\u65e0\u9ed8\u8ba4\u503c":[136,138],"\u65e5\u5fd7\u62a5\u9519\u4e3a\u7f51\u7edc\u901a\u4fe1\u7c7b\u9519\u8bef":92,"\u65e9\u9910":104,"\u65f6":[32,61,62,94,96,103,107,110,119,121,127,132,136],"\u65f6\u4e00\u8d77\u66f4\u65b0":62,"\u65f6\u4f7f\u7528openblas\u6570\u5b66\u5e93":119,"\u65f6\u5019":104,"\u65f6\u5982\u4f55\u7ec4\u7ec7\u8f93\u5165\u6570\u636e":121,"\u65f6\u6709\u6548":137,"\u65f6\u88ab\u8bad\u7ec3\u7684":110,"\u65f6\u8bbe\u5907id\u53f7\u7684\u5206\u914d":134,"\u65f6\u95f4":104,"\u65f6\u95f4\u6b65\u7684\u6982\u5ff5":104,"\u65f6\u987b\u4ece\u7b2c17\u5b57\u8282\u5f00\u59cb":96,"\u6620\u5c04\u4e3a":108,"\u6620\u5c04\u5230\u4e00\u4e2a\u7ef4\u5ea6\u4e3a":110,"\u662f":[48,62,91,100,104],"\u662f\u4e00\u4e2a\u51681\u7684\u5411\u91cf":110,"\u662f\u4e00\u4e2a\u5185\u7f6e\u7684\u5b9a\u65f6\u5668\u5c01\u88c5":117,"\u662f\u4e00\u4e2a\u52a8\u6001\u7a0b\u5e8f\u5206\u6790\u7684\u672f\u8bed":117,"\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":103,"\u662f\u4e00\u4e2a\u53cc\u5c42\u7684\u5e8f\u5217":103,"\u662f\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3\u7684\u4ee3\u7801\u751f\u6210\u5668":65,"\u662f\u4e00\u4e2a\u5c01\u88c5\u5bf9\u8c61":117,"\u662f\u4e00\u4e2a\u5f88\u6709\u7528\u7684\u53c2\u6570":134,"\u662f\u4e00\u4e2a\u7c7b\u578b\u7684\u6807\u5fd7":66,"\u662f\u4e00\u4e2a\u975e\u7ebf\u6027\u7684":110,"\u662f\u4e00\u4e2apython\u7684\u7b2c\u4e09\u65b9\u5e93":116,"\u662f\u4e00\u4e2aunbound":106,"\u662f\u4e00\u6761\u65f6\u95f4\u5e8f\u5217":101,"\u662f\u4e00\u6b21\u9884\u6d4b\u63a5\u53d7\u7684\u6837\u672c\u6570\u76ee":121,"\u662f\u4e00\u79cd\u4efb\u610f\u590d\u6742\u7684rnn\u5355\u5143":106,"\u662f\u4e0d\u5305\u62ec\u6e90\u7801\u7684":126,"\u662f\u4e0d\u5e38\u89c1\u7684\u505a\u6cd5":65,"\u662f\u4f7f\u5f97\u8981\u5171\u4eab\u7684\u53c2\u6570\u4f7f\u7528\u540c\u6837\u7684":96,"\u662f\u4f7f\u7528mkl\u6570\u5b66\u5e93":119,"\u662f\u504f\u5dee":107,"\u662f\u5404\u4e2a\u5b9e\u73b0\u4e2d\u5171\u4eab\u7684\u5934\u6587\u4ef6":66,"\u662f\u5411\u91cf":110,"\u662f\u5426\u4ec5\u7f16\u8bd1capi":97,"\u662f\u5426\u4ee5\u9006\u5e8f\u5904\u7406\u8f93\u5165\u5e8f\u5217":106,"\u662f\u5426\u4f7f\u7528":137,"\u662f\u5426\u4f7f\u7528\u53cc\u7cbe\u5ea6\u6d6e\u70b9\u6570":97,"\u662f\u5426\u4f7f\u7528\u65e7\u7684remoteparameterupdat":132,"\u662f\u5426\u4f7f\u7528\u6743\u91cd":110,"\u662f\u5426\u4f7f\u7528arm\u6a21\u5f0f":136,"\u662f\u5426\u4f7f\u7528eigen\u5e93\u8fdb\u884c\u77e9\u9635\u8ba1\u7b97":[136,137],"\u662f\u5426\u4f7f\u7528mkl\u6570\u5b66\u5e93":97,"\u662f\u5426\u4f7f\u7528neon\u6307\u4ee4":[136,138],"\u662f\u5426\u4f7f\u80fd":137,"\u662f\u5426\u5185\u5d4cpython\u89e3\u91ca\u5668":97,"\u662f\u5426\u5219\u5171\u4eab\u540c\u4e00\u4e2a":111,"\u662f\u5426\u542f\u7528gpu\u8bad\u7ec3":123,"\u662f\u5426\u5c06\u5168\u5c40\u79cd\u5b50\u5e94\u7528\u4e8e\u672c\u5730\u7ebf\u7a0b\u7684\u968f\u673a\u6570":132,"\u662f\u5426\u5f00\u542f\u5355\u5143\u6d4b\u8bd5":97,"\u662f\u5426\u6253\u5370\u7248\u672c\u4fe1\u606f":132,"\u662f\u5426\u6253\u5f00":61,"\u662f\u5426\u652f\u6301gpu":97,"\u662f\u5426\u663e\u793a":132,"\u662f\u5426\u7a00\u758f":110,"\u662f\u5426\u7f16\u8bd1\u4e2d\u82f1\u6587\u6587\u6863":97,"\u662f\u5426\u7f16\u8bd1\u542b\u6709avx\u6307\u4ee4\u96c6\u7684paddlepaddle\u4e8c\u8fdb\u5236\u6587\u4ef6":97,"\u662f\u5426\u7f16\u8bd1\u65f6\u8fdb\u884c\u4ee3\u7801\u98ce\u683c\u68c0\u67e5":97,"\u662f\u5426\u7f16\u8bd1c":137,"\u662f\u5426\u7f16\u8bd1go\u8bed\u8a00\u7684\u53ef\u5bb9\u9519paramet":97,"\u662f\u5426\u7f16\u8bd1python\u7684swig\u63a5\u53e3":97,"\u662f\u5426\u8fd0\u884c\u65f6\u52a8\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":97,"\u662f\u5426\u9700\u8981\u7b49\u5f85\u8be5\u8f6e\u6a21\u578b\u53c2\u6570":132,"\u662f\u56e0\u4e3a\u8fd9\u4e2a\u6d41\u7a0b\u6bd4\u5176\u4ed6\u65b9\u6cd5\u90fd\u66f4\u7b80\u4fbf":108,"\u662f\u56e0\u4e3ac99\u652f\u6301":65,"\u662f\u5728paddlepaddle\u4e2d\u6784\u9020\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u65f6\u6700\u91cd\u8981\u7684\u6982\u5ff5":107,"\u662f\u5b58\u6709\u4e00\u7cfb\u5217\u53d8\u6362\u77e9\u9635\u7684\u6743\u91cd":110,"\u662f\u5b58\u6709\u504f\u7f6e\u5411\u91cf\u7684\u6743\u91cd":110,"\u662f\u5bf9\u7528\u6237\u6587\u4ef6\u5b58\u50a8\u7a7a\u95f4\u7684\u62bd\u8c61":48,"\u662f\u5bfb\u627e\u74f6\u9888\u7684\u5173\u952e\u6307\u6807":116,"\u662f\u5f00\u542favx\u7f16\u8bd1\u7684":98,"\u662f\u5f85\u6269\u5c55\u7684\u6570\u636e":103,"\u662f\u6211\u4eec":109,"\u662f\u6211\u4eec\u8981\u5206\u6790\u7684\u7a0b\u5e8f":116,"\u662f\u6307":66,"\u662f\u6307\u4e00\u7cfb\u5217\u7684\u7279\u5f81\u6570\u636e":104,"\u662f\u6307recurrent_group\u7684\u591a\u4e2a\u8f93\u5165\u5e8f\u5217":104,"\u662f\u6570\u636e\u8f93\u5165":107,"\u662f\u6709\u610f\u4e49\u7684":104,"\u662f\u6784\u5efa\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u6700\u91cd\u8981\u7684\u5de5\u5177":107,"\u662f\u6ca1\u6709\u540d\u5b57\u7684":108,"\u662f\u7528\u6237\u4f7f\u7528c":66,"\u662f\u7684":108,"\u662f\u77e9\u9635":110,"\u662f\u795e\u7ecf\u7f51\u7edc\u5b9a\u4e49\u65f6":121,"\u662f\u7f51\u7edc\u5c42\u5b9e\u4f8b\u7684\u540d\u5b57\u6807\u8bc6\u7b26":110,"\u662f\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26":110,"\u662f\u7f51\u7edc\u5c42\u7684\u7c7b\u578b":110,"\u662f\u7f51\u7edc\u5c42\u8f93\u51fa\u7684\u5927\u5c0f":110,"\u662f\u8be5\u5c42\u7684\u6807\u8bc6\u7b26":110,"\u662f\u8be5\u5c42\u7684\u7c7b\u540d":110,"\u662f\u8be5\u7f51\u7edc\u5c42\u7684":110,"\u662f\u8f93\u5165":107,"\u662f\u8fd9\u4e00\u7c7b\u7684":95,"\u662f\u8fdb\u884c\u8ba1\u7b97\u7684\u57fa\u672c\u5355\u4f4d":121,"\u662f\u9700\u8981\u4e86\u89e3\u54ea\u4e9b\u6b65\u9aa4\u62d6\u6162\u4e86\u6574\u4f53":117,"\u662fc":66,"\u662fdecoder\u7684\u6570\u636e\u8f93\u5165":106,"\u662fnvidia\u6027\u80fd\u5206\u6790\u5de5\u5177":117,"\u662fpaddlepaddle\u4e2d\u5355\u5c42\u5e8f\u5217\u548c\u53cc\u5c42\u5e8f\u5217\u5b58\u50a8\u793a\u610f\u56fe":121,"\u662fpaddlepaddle\u652f\u6301\u7684\u4e00\u79cd\u4efb\u610f\u590d\u6742\u7684rnn\u5355\u5143":106,"\u662fpython\u5c01\u88c5\u7684\u7c7b\u540d":110,"\u662frnn\u72b6\u6001":107,"\u663e\u5f97\u76f8\u5bf9\u6765\u8bf4\u8f83\u4e3a\u8017\u65f6":61,"\u663e\u7136":116,"\u665a":104,"\u6682\u4e0d\u8003\u8651\u5728\u5185":94,"\u6682\u65e0":100,"\u6682\u65f6\u4e0d\u652f\u6301python3":100,"\u6682\u65f6\u4e0d\u8003\u8651\u591a\u4e2aparamet":32,"\u66b4\u9732\u8fd9\u4e2a\u6982\u5ff5\u5fc5\u8981\u51fd\u6570":66,"\u66f4\u522b\u63d0\u7b80\u5316\u95ee\u9898\u590d\u73b0\u5e26\u6765\u7684\u597d\u5904\u4e86":108,"\u66f4\u591a\u5173\u4e8edocker\u7684\u5b89\u88c5\u4e0e\u4f7f\u7528":91,"\u66f4\u591a\u7684\u8f6c\u6362\u65b9\u6cd5\u8bf7\u53c2\u8003eigen":112,"\u66f4\u597d\u5730\u5b8c\u6210\u4e00\u4e9b\u590d\u6742\u7684\u8bed\u8a00\u7406\u89e3\u4efb\u52a1":106,"\u66f4\u5feb":107,"\u66f4\u65b0":91,"\u66f4\u65b0\u53ef\u80fd\u5bfc\u81f4\u9700\u8981\u65b0\u7684\u5f00\u53d1\u5de5\u5177":108,"\u66f4\u65b0\u6a21\u5f0f":94,"\u66f4\u65b0\u7684\u6587\u6863\u4ee5pr\u7684\u5f62\u5f0f\u63d0\u4ea4\u5230github\u4e2d":113,"\u66f4\u65b0\u7f51\u7edc\u53c2\u6570\u65f6\u5e94\u7528":94,"\u66f4\u65b9\u4fbf\u7684\u8bbe\u7f6e\u65b9\u5f0f":96,"\u66f4\u8be6\u7ec6\u7684\u5b89\u88c5\u548c\u7f16\u8bd1\u65b9\u6cd5\u53c2\u8003":102,"\u66f4\u8fdb\u4e00\u6b65":106,"\u66f4\u9ad8":107,"\u66ff\u6211\u4eec\u5b8c\u6210\u4e86\u539f\u59cb\u8f93\u5165\u6570\u636e\u7684\u62c6\u5206":106,"\u6700":104,"\u6700\u4e3b\u8981\u7684\u5de5\u4f5c\u5c31\u662f\u89e3\u6790\u51fa":127,"\u6700\u540e":[98,109,110,123],"\u6700\u540e\u4e00\u4e2a":103,"\u6700\u540e\u4e00\u5c42cost\u4e2d\u8bb0\u5f55\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u6240\u6709\u62d3\u6251\u7ed3\u6784":101,"\u6700\u540e\u518d\u8c03\u7528mutabl":112,"\u6700\u540e\u5220\u9664":82,"\u6700\u540e\u6211\u4eec\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219\u8ba1\u7b97":110,"\u6700\u540e\u8ba1\u7b97softmax":95,"\u6700\u5c0f\u7684ios\u90e8\u7f72\u7248\u672c":137,"\u6700\u5c11\u663e\u793a\u591a\u5c11\u4e2a\u8282\u70b9":132,"\u6700\u5e38\u89c1\u7684\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662fexcept":65,"\u6700\u65b0\u7684\u4ee3\u7801":109,"\u6700\u65b0\u7684paddlepaddl":[91,98],"\u6700\u7ec8":110,"\u6700\u7ec8\u5b9e\u73b0\u4e00\u4e2a\u5c42\u6b21\u5316\u7684\u590d\u6742rnn":106,"\u6700\u7ec8\u6211\u4eec\u53ef\u4ee5\u8c03\u7528trainer\u7684train\u65b9\u6cd5\u542f\u52a8\u8bad\u7ec3":101,"\u6700\u7ec8\u7684\u8f93\u51fa\u7ed3\u679c":106,"\u6708\u6e56":104,"\u6709":104,"\u6709\u4e00\u4e9b\u5fc5\u987b\u914d\u7f6e\u7684\u53c2\u6570":[136,137,138],"\u6709\u4e24\u79cd\u65b9\u6cd5":97,"\u6709\u4e9b\u5c42\u53ef\u80fd\u9700\u8981\u9ad8\u7cbe\u5ea6\u6765\u4fdd\u8bc1\u68af\u5ea6\u68c0\u67e5\u5355\u6d4b\u6b63\u786e\u6267\u884c":110,"\u6709\u4e9b\u5c42\u6216\u8005\u6fc0\u6d3b\u9700\u8981\u505a\u5f52\u4e00\u5316\u4ee5\u4fdd\u8bc1\u5b83\u4eec\u7684\u8f93\u51fa\u7684\u548c\u662f\u4e00\u4e2a\u5e38\u6570":110,"\u6709\u4e9b\u7279\u5f81\u7684\u53d6\u503c\u8fbe\u5230\u6570\u767e\u4e07":94,"\u6709\u4eba\u7528\u865a\u62df\u673a\u6765\u7c7b\u6bd4":108,"\u6709\u4ee5\u4e0b\u5efa\u8bae":[136,137],"\u6709\u5173":104,"\u6709\u5173\u53c2\u6570\u914d\u7f6e\u7684\u8be6\u7ec6\u8bf4\u660e\u89c1":136,"\u6709\u5173\u7ebf\u6027\u56de\u5f52\u7684\u5b9e\u9645\u5e94\u7528":101,"\u6709\u52a9\u4e8e\u5728\u8bad\u7ec3\u65f6\u89c2\u5bdf\u5177\u4f53\u6570\u503c":94,"\u6709\u52a9\u4e8e\u8bca\u65ad\u5206\u5e03\u5f0f\u9519\u8bef":124,"\u6709\u591a\u96be":108,"\u6709\u6548\u63d0\u5347paddlepaddle\u5728\u82f1\u7279\u5c14\u67b6\u6784\u4e0a\u7684\u6027\u80fd":[61,62],"\u6709\u65f6\u5019\u6211\u4eec\u4f1a\u5e0c\u671b\u6e05\u7406\u6389\u5df2\u7ecf\u4e0b\u8f7d\u7684\u7b2c\u4e09\u65b9\u4f9d\u8d56\u4ee5\u53ca\u5df2\u7ecf\u7f16\u8bd1\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6":108,"\u6709\u65f6\u5019\u6211\u4eec\u53ea\u60f3\u8fd0\u884c\u4e00\u4e2a\u7279\u5b9a\u7684\u5355\u5143\u6d4b\u8bd5":108,"\u6709\u6807\u51c6\u7684":65,"\u6709\u7684\u65f6\u5019":65,"\u6709\u7684\u65f6\u5019\u7b80\u7b80\u5355\u5355\u7684\u6539\u53d8\u5c31\u80fd\u5728\u6027\u80fd\u4e0a\u4ea7\u751f\u660e\u663e\u7684\u4f18\u5316\u6548\u679c":117,"\u6709\u7684\u8bdd\u9700\u8981\u5148\u5378\u8f7d":91,"\u6709\u975e\u5e38\u5927\u7684\u5dee\u522b":116,"\u670d\u52a1":104,"\u670d\u52a1\u5458":104,"\u670d\u52a1\u5668\u4e4b\u95f4\u53ef\u4ee5\u901a\u8fc7\u5c40\u57df\u7f51":123,"\u672a\u6307\u5b9a\u6309\u7167double\u7cbe\u5ea6\u7f16\u8bd1":96,"\u672a\u8bbe\u7f6e":137,"\u672c\u4f8b\u4e2d\u7684\u539f\u59cb\u6570\u636e\u4e00\u5171\u670910\u4e2a\u6837\u672c":104,"\u672c\u5217\u8868\u8bf4\u660epaddlepaddle\u53d1\u7248\u4e4b\u524d\u9700\u8981\u6d4b\u8bd5\u7684\u529f\u80fd\u70b9":82,"\u672c\u5730":[91,100],"\u672c\u5730\u6d4b\u8bd5":131,"\u672c\u5730\u8bad\u7ec3":[121,131],"\u672c\u5730\u8bad\u7ec3\u4e0e\u9884\u6d4b":93,"\u672c\u5730\u8bad\u7ec3\u7684\u5b9e\u9a8c":134,"\u672c\u6559\u7a0b\u4e3b\u8981\u4ecb\u7ecd\u5e26kernel\u7684op\u5982\u4f55\u5199":111,"\u672c\u6559\u7a0b\u5c06\u6307\u5bfc\u4f60\u5982\u4f55\u5728":107,"\u672c\u6587\u4e2d\u6240\u6709\u7684\u4f8b\u5b50":104,"\u672c\u6587\u4e2d\u7684\u4f8b\u5b50\u91cc":108,"\u672c\u6587\u4e2d\u793a\u4f8b\u6240\u4f7f\u7528\u7684\u5355\u5143\u6d4b\u8bd5\u6587\u4ef6\u662f":104,"\u672c\u6587\u4ee5paddlepaddle\u7684\u53cc\u5c42rnn\u5355\u5143\u6d4b\u8bd5\u4e3a\u793a\u4f8b":104,"\u672c\u6587\u5c06\u4ecb\u7ecd\u5728kubernetes\u5bb9\u5668\u7ba1\u7406\u5e73\u53f0\u4e0a\u5feb\u901f\u6784\u5efapaddlepaddle\u5bb9\u5668\u96c6\u7fa4":127,"\u672c\u6587\u5c06\u4ecb\u7ecd\u5982\u4f55\u4f7f\u7528paddlepaddle\u5728\u4e0d\u540c\u7684\u96c6\u7fa4\u6846\u67b6\u4e0b\u5b8c\u6210\u5206\u5e03\u5f0f\u8bad\u7ec3":123,"\u672c\u6587\u6863\u5c06\u4ee5linux":136,"\u672c\u6587\u6863\u63cf\u8ff0paddl":66,"\u672c\u6587\u7684\u5c06\u4ecb\u7ecd\u5728macos\u4e0a":137,"\u672c\u6765":104,"\u672c\u6b21\u8bad\u7ec3\u6587\u4ef6\u6240\u5728\u76ee\u5f55":127,"\u672c\u6b21\u8bad\u7ec3\u7684yaml\u6587\u4ef6\u53ef\u4ee5\u5199\u6210":127,"\u672c\u6b21\u8bad\u7ec3\u8981\u6c42\u67093\u4e2apaddlepaddle\u8282\u70b9":127,"\u672c\u793a\u4f8b\u4e2d\u4f7f\u7528\u7684\u539f\u59cb\u6570\u636e\u5982\u4e0b":104,"\u672c\u793a\u4f8b\u610f\u56fe\u4f7f\u7528\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u5b9e\u73b0\u4e24\u4e2a\u5b8c\u5168\u7b49\u4ef7\u7684\u5168\u8fde\u63a5rnn":104,"\u673a\u5668\u4e0a\u4ee5\u53ca":138,"\u673a\u5668\u7684\u8bbe\u5907":134,"\u673a\u5668\u7ffb\u8bd1":82,"\u6743\u91cd\u66f4\u65b0\u7684\u68af\u5ea6":132,"\u6765":104,"\u6765\u4e3a\u4e00\u4e2a":121,"\u6765\u4ee3\u66ff":109,"\u6765\u4f20\u8f93\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6\u4e2d\u5b9a\u4e49\u7684\u7f51\u7edc\u7ed3\u6784\u548c\u76f8\u5173\u53c2\u6570":122,"\u6765\u4f7f\u7528dropout":95,"\u6765\u4f7f\u7528dropout\u7684":95,"\u6765\u4fdd\u8bc1\u8bad\u7ec3\u8fc7\u7a0b\u53ef\u4ee5\u4ece\u4e2d\u95f4\u72b6\u6001\u91cd\u65b0\u542f\u52a8":32,"\u6765\u505a\u68af\u5ea6\u68c0\u67e5":110,"\u6765\u51b3\u5b9a\u662f\u5426\u5f00\u542fmkl":61,"\u6765\u5206\u6790\u6267\u884c\u6587\u4ef6":117,"\u6765\u521d\u59cb\u5316\u53c2\u6570":96,"\u6765\u542f\u52a8\u548c":108,"\u6765\u5b58\u50a8":121,"\u6765\u5b58\u50a8\u6570\u636e":[121,122],"\u6765\u5b8c\u6210\u524d\u5411\u548c\u53cd\u5411\u8ba1\u7b97":122,"\u6765\u5b8c\u6210\u7f51\u7edc\u7684\u8bad\u7ec3":101,"\u6765\u5b9a\u4e49\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":107,"\u6765\u5b9e\u73b0":62,"\u6765\u5b9e\u9645\u5b58\u50a8\u6570\u636e":[121,122],"\u6765\u5bf9\u6bd4\u5206\u6790\u4e24\u8005\u8bed\u4e49\u76f8\u540c\u7684\u539f\u56e0":104,"\u6765\u5f71\u54cdpaddlepaddle\u7684\u7f16\u8bd1\u8fc7\u7a0b":[136,137],"\u6765\u5f97\u5230\u67d0\u4e2a\u7279\u5b9a\u53c2\u6570\u7684\u68af\u5ea6\u77e9\u9635":110,"\u6765\u6267\u884c":108,"\u6765\u63cf\u8ff0\u7684":112,"\u6765\u63cf\u8ff0\u8be5op\u7684\u8f93\u5165":111,"\u6765\u63cf\u8ff0\u8f93\u5165":121,"\u6765\u642d\u5efa\u795e\u7ecf\u7f51\u7edc":101,"\u6765\u663e\u793a\u6027\u80fd\u5206\u6790\u7ed3\u679c":116,"\u6765\u67e5\u770b\u6027\u80fd\u5206\u6790\u7ed3\u679c":116,"\u6765\u6ce8\u518c\u8be5\u5c42":110,"\u6765\u6df7\u5408\u4f7f\u7528gpu\u548ccpu\u8ba1\u7b97\u7f51\u7edc\u5c42\u7684\u53c2\u6570":134,"\u6765\u6e05\u7406\u8fd9\u4e9b\u5185\u5bb9":108,"\u6765\u7279\u6307":121,"\u6765\u7279\u6307\u8c03\u7528paddlepaddl":122,"\u6765\u7279\u6307paddlepaddl":122,"\u6765\u7279\u6307paddlepaddle\u4e2d\u7684\u4e00\u7ef4\u6574\u578b\u6570\u7ec4":121,"\u6765\u7279\u6307paddlepaddle\u4e2d\u7684\u4e8c\u7ef4\u6d6e\u70b9\u578b\u77e9\u9635":121,"\u6765\u7279\u6307paddlepaddle\u4e2d\u795e\u7ecf\u7f51\u7edc\u8ba1\u7b97\u5c42\u4e00\u4e2a\u8f93\u5165":121,"\u6765\u786e\u4fdd\u628a":65,"\u6765\u786e\u5b9a\u7a00\u758f\u77e9\u9635\u7684\u5185\u5bb9":121,"\u6765\u7f16\u8bd1":108,"\u6765\u83b7\u5f97\u8f93\u51fa\u7684\u68af\u5ea6":110,"\u6765\u8868\u793a":107,"\u6765\u8868\u793a\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":107,"\u6765\u8868\u793apaddle\u5185\u90e8\u7c7b":65,"\u6765\u89e3\u51b3\u4e0a\u9762\u7684\u95ee\u9898":94,"\u6765\u8ba1\u7b97\u68af\u5ea6":110,"\u6765\u8bb0\u5f55\u8f93\u5165":121,"\u6765\u8bb2\u89e3\u5982\u4f55\u4f7f\u7528\u53cc\u5c42rnn":104,"\u6765\u8bbe\u7f6e":96,"\u6765\u8bbf\u95ee\u7528\u6237\u81ea\u5df1\u7684\u6570\u636e":33,"\u6765\u8bfb\u53d6\u4e00\u4e2a":121,"\u6765\u8c03\u6574":109,"\u6765\u8c03\u7528":108,"\u6765\u8fd0\u884c\u5305\u62ec":108,"\u6765\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5\u4e86":108,"\u6765\u8fd0\u884c\u6027\u80fd\u5206\u6790\u548c\u8c03\u4f18":117,"\u6765\u8fd0\u884c\u955c\u50cf":98,"\u6765\u8fdb\u884c\u8ba8\u8bba":66,"\u6765\u9884\u6d4b\u8fd9\u4e2a\u4e2d\u95f4\u7684\u8bcd":94,"\u676f\u5b50":104,"\u6784\u5efa":136,"\u6784\u5efa\u597d\u5f00\u53d1\u955c\u50cf\u540e":136,"\u6784\u5efa\u76ee\u6807\u4e3a":137,"\u6784\u6210\u4e00\u4e2a\u5e8f\u5217":121,"\u6784\u6210\u4e86\u8f93\u51fa\u53cc\u5c42\u5e8f\u5217\u7684\u7b2ci\u4e2a":103,"\u6784\u9020":127,"\u6784\u9020\u51fd\u6570\u542b\u67092\u4e2a\u53c2\u6570":111,"\u6784\u9020\u51fd\u6570\u91cc\u901a\u8fc7":111,"\u67b6\u6784\u7684\u6a21\u62df\u5668\u5e73\u53f0":137,"\u67b6\u6784\u7684iphone\u6216\u8005ipad\u7b49\u7269\u7406\u8bbe\u5907":137,"\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u4e00\u4e2a\u8f93\u5165\u4e3a\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7f51\u7edc\u4e2d\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u8f93\u51fa":104,"\u67d0\u4e9b\u53c2\u6570\u53ea\u53ef\u7528\u4e8e\u7279\u5b9a\u7684\u5c42\u4e2d":131,"\u67e5\u770b":109,"\u67e5\u770b\u5305\u7684\u5927\u5c0f":91,"\u67e5\u770b\u5f53\u524d\u72b6\u6001":109,"\u67e5\u770b\u5f53\u524d\u8fdc\u7a0b\u4ed3\u5e93\u7684\u540d\u5b57":109,"\u67e5\u770b\u6587\u4ef6\u5177\u4f53\u88ab\u4fee\u6539\u7684\u5185\u5bb9":109,"\u67e5\u770b\u662f\u5426\u662f\u5176\u4ed6\u9519\u8bef\u5f15\u53d1\u7684\u62a5\u9519":92,"\u67e5\u770bjob\u7684\u8be6\u7ec6\u60c5\u51b5":126,"\u67e5\u770blatest":82,"\u6807\u51c6":100,"\u6807\u51c6\u5dee\u4e3a":96,"\u6807\u51c6\u8868\u793apaddlepaddle\u7248\u672c\u53f7":82,"\u6807\u8bc6\u4e86\u4e00\u4e2a\u8f93\u51fa\u7684\u6587\u4ef6\u540d":116,"\u6807\u8bc6\u6027\u80fd\u5206\u6790\u7684\u7ed3\u679c\u6587\u4ef6":116,"\u6807\u8bc6\u662f\u5426\u4e3a\u8fde\u7eed\u7684batch\u8ba1\u7b97":132,"\u6807\u8bc6\u88ab\u6027\u80fd\u5206\u6790\u7684\u6e90\u6587\u4ef6":116,"\u6807\u8bc6http\u670d\u52a1\u7684\u7aef\u53e3":116,"\u6807\u8bc6http\u670d\u52a1\u7ed1\u5b9a\u7684ip":116,"\u6838\u4e00\u6837\u591a\u7684\u8fdb\u7a0b\u6765\u5e76\u884c\u7f16\u8bd1":108,"\u6838\u5fc3\u4ee3\u7801\u7f16\u8bd1\u6210\u94fe\u63a5\u5e93":119,"\u6839\u636e\u4e2a\u4eba\u7684\u9700\u6c42\u4fee\u6539\u5b9a\u5236docker\u5bb9\u5668\u6240\u6267\u884c\u7684\u811a\u672c":136,"\u6839\u636e\u4f60\u7684\u4efb\u52a1":134,"\u6839\u636e\u524d\u6587\u7684\u63cf\u8ff0":127,"\u6839\u636e\u7f51\u7edc\u914d\u7f6e\u4e2d\u7684":132,"\u6839\u636e\u8f93\u5165tensor\u7684\u5927\u5c0f\u6765\u8bbe\u7f6e\u8f93\u51fatensor\u7684\u5927\u5c0f":112,"\u6839\u636e\u8fd9\u4e9b\u53c2\u6570\u7684\u4f7f\u7528\u573a\u5408":131,"\u6839\u636e\u9ed8\u8ba4\u503c\u9012\u589e":132,"\u6839\u636e\u9ed8\u8ba4\u7aef\u53e3\u53f7\u9012\u589e":132,"\u6839\u636ejob\u5bf9\u5e94\u7684pod\u4fe1\u606f":126,"\u6839\u636eport":123,"\u683c\u5f0f":132,"\u683c\u5f0f\u4e0d\u5339\u914d\u65f6":62,"\u683c\u5f0f\u5b58\u50a8":121,"\u683c\u5f0f\u7684\u6587\u4ef6\u6765\u5b58\u653e":111,"\u6846\u67b6\u63d0\u4f9b\u7684blas\u51fd\u6570\u8fdb\u884c\u77e9\u9635\u8ba1\u7b97":137,"\u6846\u67b6\u8fdb\u884cblas\u77e9\u9635\u8ba1\u7b97":137,"\u68af\u5ea6\u4f1a\u5c31\u5730":110,"\u68af\u5ea6\u4f1a\u6709\u566a\u58f0":123,"\u68af\u5ea6\u53c2\u6570\u7684\u5206\u5757\u6570\u76ee":132,"\u68af\u5ea6\u5c31\u53ef\u4ee5\u901a\u8fc7\u8fd9\u4e2a\u65b9\u7a0b\u8ba1\u7b97\u5f97\u5230":110,"\u68af\u5ea6\u670d\u52a1\u5668\u7684\u6570\u91cf":132,"\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5\u901a\u8fc7\u6709\u9650\u5dee\u5206\u6cd5\u6765\u9a8c\u8bc1\u4e00\u4e2a\u5c42\u7684\u68af\u5ea6":110,"\u68af\u5ea6\u68c0\u67e5\u7684\u8f93\u5165\u6570\u636e\u7684\u6279\u6b21\u5927\u5c0f":110,"\u68c0\u67e5\u70b9\u4fdd\u5b58\u7a0b\u5e8f\u6d41\u7a0b":32,"\u68c0\u67e5\u8f93\u5165\u6570\u636e\u7ef4\u5ea6":111,"\u697c\u5c42":104,"\u6982\u5ff5\u4e0a":122,"\u6982\u5ff5\u4e0a\u53ef\u4ee5\u5c06":121,"\u6a21\u5757\u4e0b\u7684\u76f8\u5173":112,"\u6a21\u578b\u4e00\u76f4\u4e0d\u6536\u655b":94,"\u6a21\u578b\u4e2d\u6240\u6709\u53ef\u5b66\u4e60\u53c2\u6570\u4f1a\u88ab\u5b58\u4e3a\u4e00\u4e2a\u538b\u7f29\u6587\u4ef6":122,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\u901a\u8fc7\u5b9a\u671f\u5411\u78c1\u76d8\u4e0a\u4fdd\u5b58\u4e00\u4efd\u5b58\u50a8\u5728paramet":32,"\u6a21\u578b\u6570\u636e\u68c0\u67e5\u70b9\u7684\u5b9e\u73b0":32,"\u6a21\u578b\u6587\u4ef6\u5c06\u88ab\u5199\u5165\u8282\u70b9":124,"\u6a21\u578b\u6765\u6307\u5bfc\u4f60\u5b8c\u6210\u8fd9\u4e9b\u6b65\u9aa4":107,"\u6a21\u578b\u6f14\u793a\u5982\u4f55\u914d\u7f6e\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b":107,"\u6a21\u578b\u7684\u4ee3\u7801\u53ef\u4ee5\u5728":107,"\u6a21\u578b\u7684\u7f16\u7801\u5668\u90e8\u5206\u5982\u4e0b\u6240\u793a":107,"\u6a21\u578b\u8bad\u7ec3\u7b49\u4efb\u52a1":101,"\u6a21\u578b\u914d\u7f6e":[0,93],"\u6a21\u578b\u914d\u7f6e\u89e3\u6790":65,"\u6a21\u5f0f\u4e0b\u7684\u6027\u80fd\u6d4b\u8bd5\u662f\u6ca1\u6709\u610f\u4e49\u7684":116,"\u6a2a\u5411\u62fc\u63a5":94,"\u6b21":104,"\u6b21\u8fed\u4ee3\u6267\u884c\u7684\u8f6c\u6362\u6b21\u6570\u4e3a":61,"\u6b22\u8fce\u901a\u8fc7":109,"\u6b63\u5728\u7b49\u5f85\u672a\u5b8c\u6210\u7684\u4efb\u52a1":91,"\u6b63\u5e38\u60c5\u51b5\u4e0b\u662f75m":91,"\u6b63\u786e\u7684\u89e3\u51b3\u65b9\u6cd5\u662f":91,"\u6b63\u8d1f\u5bf9\u9a8c\u8bc1":131,"\u6b64\u547d\u4ee4\u5c06\u5728":136,"\u6b64\u5904\u90fd\u4e3a2":104,"\u6b64\u5916":[95,108,109,136],"\u6b64\u6559\u7a0b\u4f1a\u4ecb\u7ecd\u5982\u4f55\u4f7f\u7528python\u7684cprofile\u5305":116,"\u6b64\u6559\u7a0b\u5c06\u5411\u60a8\u5206\u6b65\u4ecb\u7ecd\u5982\u4f55\u4f7f\u7528\u5185\u7f6e\u7684\u5b9a\u65f6\u5de5\u5177":117,"\u6b64\u65b9\u6cd5\u4e0d\u80fd\u83b7\u53d6":94,"\u6b64\u65f6\u53ea\u9700\u8981":108,"\u6b64\u65f6\u53ef\u4ee5\u5728\u8c03\u7528infer\u63a5\u53e3\u65f6\u901a\u8fc7\u8bbe\u7f6e":94,"\u6b64\u65f6\u53ef\u4ee5\u8df3\u8fc7paddlepaddle\u6a21\u578b\u53c2\u6570\u6587\u4ef6\u7684\u5934\u4fe1\u606f":96,"\u6b64\u65f6\u6bcf\u4e2a\u5c0f\u5206\u652f\u7684":62,"\u6b64\u65f6master\u5c06\u8d1f\u8d23\u542f\u52a8\u4e00\u4e2a\u65b0\u7684train":32,"\u6b64\u76ee\u5f55":122,"\u6b64\u793a\u4f8b":122,"\u6b64\u7c7b\u62a5\u9519\u901a\u5e38\u662f\u7531\u4e8e\u67d0\u4e00\u4e2a\u8282\u70b9\u7684\u9519\u8bef\u5bfc\u81f4\u8fd9\u4e2a\u8282\u70b9\u7684\u8bad\u7ec3\u8fdb\u7a0b\u9000\u51fa":92,"\u6b65\u9aa4":94,"\u6bb5\u843d\u53ef\u4ee5\u770b\u4f5c\u662f\u4e00\u4e2a\u5d4c\u5957\u7684\u53cc\u5c42\u7684\u5e8f\u5217":106,"\u6bb5\u843d\u662f\u7531\u53e5\u5b50\u6784\u6210\u7684\u5e8f\u5217":121,"\u6bcf\u4e00\u4e2a":[82,122],"\u6bcf\u4e00\u4e2a\u5916\u5c42\u5e8f\u5217\u53c8\u542b\u6709\u82e5\u5e72\u4e2a\u5185\u5c42\u5e8f\u5217":121,"\u6bcf\u4e00\u4e2a\u5e8f\u5217\u5728\u6574\u4e2a":121,"\u6bcf\u4e00\u4e2a\u6587\u4ef6\u662f\u6570\u636e\u96c6\u7684\u4e00\u4e2ashard":33,"\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65":104,"\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u95f4\u7684\u795e\u7ecf\u7f51\u7edc\u5177\u6709\u4e00\u5b9a\u7684\u76f8\u5173\u6027":104,"\u6bcf\u4e00\u4e2a\u8282\u70b9\u90fd\u6709\u76f8\u540c\u7684\u65e5\u5fd7\u7ed3\u6784":124,"\u6bcf\u4e00\u4e2a\u8f93\u5165":[121,122],"\u6bcf\u4e00\u4e2alayer\u8f93\u51fa\u77e9\u9635\u7684\u9ad8\u5ea6":94,"\u6bcf\u4e00\u5217\u7684\u542b\u4e49\u662f":116,"\u6bcf\u4e00\u7ec4\u5185\u7684\u6240\u6709\u53e5\u5b50\u548clabel":104,"\u6bcf\u4e00\u884c\u5143\u7d20\u5728":121,"\u6bcf\u4e2a":62,"\u6bcf\u4e2a\u503c\u7684\u7c7b\u578b\u53ef\u4ee5\u662f\u6574\u5f62":33,"\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":103,"\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":103,"\u6bcf\u4e2a\u5355\u5c42rnn":106,"\u6bcf\u4e2a\u53c2\u6570\u670d\u52a1\u5668\u53ea\u4fdd\u5b58\u6574\u4e2a\u795e\u7ecf\u7f51\u7edc\u6240\u6709\u53c2\u6570\u7684\u4e00\u90e8\u5206":123,"\u6bcf\u4e2a\u53e5\u5b50\u53c8\u662f\u5355\u8bcd\u7684\u6570\u7ec4":104,"\u6bcf\u4e2a\u53e5\u5b50\u90fd\u4ee5\u5f00\u59cb\u6807\u8bb0\u5f00\u5934":107,"\u6bcf\u4e2a\u53e5\u5b50\u90fd\u4ee5\u7ed3\u675f\u6807\u8bb0\u7ed3\u5c3e":107,"\u6bcf\u4e2a\u5b50\u5e8f\u5217\u957f\u5ea6\u53ef\u4ee5\u4e0d\u4e00\u81f4":104,"\u6bcf\u4e2a\u5c42\u5728\u5176":110,"\u6bcf\u4e2a\u6279\u6b21\u6570\u636e":132,"\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u7684\u8fd0\u7b97\u662f\u72ec\u7acb\u7684":106,"\u6bcf\u4e2a\u65f6\u95f4\u6b65\u90fd\u7528\u4e86\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u7ed3\u679c":104,"\u6bcf\u4e2a\u6743\u91cd\u5bf9\u5e94\u4e00\u4e2a\u8f93\u5165":110,"\u6bcf\u4e2a\u6837\u672c\u7531\u4e24\u90e8\u5206\u7ec4\u6210":104,"\u6bcf\u4e2a\u6837\u672c\u95f4\u7528\u7a7a\u884c\u5206\u5f00":104,"\u6bcf\u4e2a\u6d4b\u8bd5\u4f1a\u5bf9\u6bd4paddlepaddle\u4e2dcpu\u7b97\u51fa\u7684\u7ed3\u679c\u4e0emkl":62,"\u6bcf\u4e2a\u72b6\u6001":106,"\u6bcf\u4e2a\u7ebf\u7a0b":132,"\u6bcf\u4e2a\u7ebf\u7a0b\u5206\u914d\u5230128\u4e2a\u6837\u672c\u7528\u4e8e\u8bad\u7ec3":132,"\u6bcf\u4e2a\u8bad\u7ec3\u8282\u70b9\u5fc5\u987b\u6307\u5b9a\u4e00\u4e2a\u552f\u4e00\u7684id\u53f7":132,"\u6bcf\u4e2a\u8f93\u5165\u90fd\u662f\u4e00\u4e2a":110,"\u6bcf\u4e2a\u8f93\u51fa\u8282\u70b9\u90fd\u8fde\u63a5\u5230\u6240\u6709\u7684\u8f93\u5165\u8282\u70b9\u4e0a":110,"\u6bcf\u4e2a\u90e8\u5206\u5206\u522b\u7ed9\u6bcf\u4e2atrainer\u4f7f\u7528":123,"\u6bcf\u4e2acommit\u53ea\u505a\u4e86\u5c11\u91cf\u7684\u4fee\u6539":109,"\u6bcf\u4e2adata":33,"\u6bcf\u4e2amkldnnlayer\u90fd\u5305\u542b\u7528\u4e8e\u5185\u90e8\u5b58\u50a8\u548c\u5916\u90e8\u5b58\u50a8\u7684\u4e00\u7cfb\u5217mkldnnmatrix":62,"\u6bcf\u4e2aparamet":32,"\u6bcf\u4e2apod\u5305\u542b\u4e00\u4e2apaddlepaddle\u5bb9\u5668":127,"\u6bcf\u4e2ashard\u5206\u522b\u5b58\u50a8\u5728\u5176\u4e2d\u4e00\u53f0paramet":32,"\u6bcf\u4e2atrainer\u542f\u52a8\u540e\u8bfb\u53d6\u5207\u5206\u597d\u7684\u4e00\u90e8\u5206\u6570\u636e":123,"\u6bcf\u4e2atrainer\u7684\u552f\u4e00id":123,"\u6bcf\u4e2atrainer\u8fdb\u7a0b\u9700\u8981\u80fd\u591f\u8bfb\u53d6\u5c5e\u4e8e\u81ea\u5df1\u7684\u4e00\u4efd\u6570\u636e":123,"\u6bcf\u53f0\u670d\u52a1\u5668\u5177\u6709\u96c6\u7fa4\u4e2d\u552f\u4e00\u7684ip\u5730\u5740":123,"\u6bcf\u5c42\u4e0a\u53ea\u80fd\u4fdd\u5b58\u56fa\u5b9a\u6570\u76ee\u4e2a\u6700\u597d\u7684\u72b6\u6001":132,"\u6bcf\u5c42\u4f7f\u7528\u7684gpu\u53f7\u4f9d\u8d56\u4e8e\u53c2\u6570train":134,"\u6bcf\u6279\u6b21":132,"\u6bcf\u6b21\u63d0\u4ea4\u4ee3\u7801":109,"\u6bcf\u6b21\u63d0\u4ea4\u65f6":109,"\u6bcf\u6b21\u8c03\u7528\u65f6\u5bf9\u539f\u6570\u636e\u7684\u91cd\u590dpacking\u4fbf\u6210\u4e3a\u4e86\u5197\u4f59":61,"\u6bcf\u6b21\u8c03\u7528\u7684\u8017\u65f6\u4e5f\u5f88\u957f":116,"\u6bcf\u6b21\u8f93\u51fa\u4e00\u4e2adata":33,"\u6bcf\u884c\u8868\u793a\u4e00\u4e2a\u6279\u6b21\u4e2d\u7684\u5355\u4e2a\u8f93\u5165":110,"\u6bcf\u8f6e\u4f1a\u5c06\u6570\u636e\u96c6\u4e2d\u7684\u6240\u6709\u8bad\u7ec3\u6837\u672c\u4f7f\u7528\u4e00\u6b21":132,"\u6bcf\u8f6e\u7ed3\u675f\u65f6\u5bf9\u6240\u6709\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5":132,"\u6bcf\u8f6e\u90fd\u4f1a\u4fdd\u5b58\u9884\u6d4b\u7ed3\u679c":132,"\u6bcf\u8fd0\u884c\u591a\u5c11\u4e2a\u6279\u6b21\u6267\u884c\u4e00\u6b21\u7a00\u758f\u53c2\u6570\u5206\u5e03\u7684\u68c0\u67e5":132,"\u6bcf\u969410\u5206\u949f":32,"\u6bcfdot":132,"\u6bcflog":132,"\u6bcfsave":132,"\u6bcftest":132,"\u6bd4\u5982":[33,62,92,94,98,108,109],"\u6bd4\u5982\u4e00\u53e5\u8bdd\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5355\u8bcd":104,"\u6bd4\u5982\u53ef\u80fd\u4f1a\u7528openmp\u6539\u8fdbsgd\u7684\u66f4\u65b0\u6027\u80fd":62,"\u6bd4\u5982\u5728":98,"\u6bd4\u5982\u5982\u679c\u8981build\u4e00\u4e2a\u4e0d\u4f9d\u8d56gpu":109,"\u6bd4\u5982\u5c06":82,"\u6bd4\u5982\u5e0c\u671b\u6700\u5c0f\u5316\u751f\u6210\u5e93\u7684\u5927\u5c0f":137,"\u6bd4\u5982\u5e0c\u671b\u6700\u5c0f\u5316\u751f\u6210\u7684\u5e93\u7684\u5927\u5c0f":[136,138],"\u6bd4\u5982\u6bcf\u969410\u5206\u949f\u6700\u65b0\u7684\u5feb\u7167":32,"\u6bd4\u5982\u6d41\u5f0f\u6570\u636e\u5904\u7406":33,"\u6bd4\u5982\u8282\u70b9\u7684id":123,"\u6bd4\u5982\u8bbe\u7f6e\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7684\u53c2\u6570\u521d\u59cb\u5316\u65b9\u5f0f\u548cbias\u521d\u59cb\u5316\u65b9\u5f0f":96,"\u6bd4\u5982cento":100,"\u6bd4\u5982fpe":92,"\u6bd4\u5982ide\u914d\u7f6e\u91cc":109,"\u6bd4\u5982imagenet\u8fd9\u4e2a\u6570\u636e\u96c6\u53ef\u80fd\u88ab\u5206\u62101000\u4e2ashard":33,"\u6bd4\u5982pil\u5e93\u7b49":123,"\u6bd5\u7adf\u5355\u7ebf\u7a0b\u8c03\u8bd5\u66f4\u5bb9\u6613":116,"\u6c34\u6e29":104,"\u6c49\u5ead":104,"\u6ca1":104,"\u6ca1\u6709\u5fc5\u8981\u5728\u6bcf\u6b21\u524d\u5411\u4e2d\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u8ba1\u7b97\u65f6\u5bf9\u6743\u91cd\u8fdb\u884c\u91cd\u590d\u7684packing\u64cd\u4f5c":61,"\u6ca1\u6709\u627e\u5230\u548c\u5f53\u524d\u7cfb\u7edf\u5339\u914d\u7684paddlepaddle\u5b89\u88c5\u5305":[91,100],"\u6ca1\u6709\u8bbe\u7f6e":[136,138],"\u6ce8":[32,82,98,121],"\u6ce8\u518c":111,"\u6ce8\u518ccpu":111,"\u6ce8\u518clayer\u7684\u65f6\u5019\u4fdd\u8bc1":[61,62],"\u6ce8\u518cop":111,"\u6ce8\u518cop\u65f6\u7684\u7c7b\u578b\u540d":111,"\u6ce8\u610f":[62,94,97,101,107,110,113,116,122,123,127,136,137,138],"\u6ce8\u610f\u4e0a\u8ff0\u547d\u4ee4\u4e2d":127,"\u6ce8\u610f\u4e8b\u9879":121,"\u6ce8\u610f\u5230\u6211\u4eec\u5df2\u7ecf\u5047\u8bbe\u673a\u5668\u4e0a\u67094\u4e2agpu":134,"\u6ce8\u610fnode":127,"\u6ce8\u91ca":111,"\u6cf3\u6c60":104,"\u6d41":104,"\u6d41\u7a0b\u6765\u63d0\u4ea4\u4ee3\u7801":109,"\u6d44":104,"\u6d4b\u8bd5":109,"\u6d4b\u8bd5\u5206\u4e3a\u6bcf\u4e2alayer":62,"\u6d4b\u8bd5\u65f6\u6307\u5b9a\u7684\u5b58\u50a8\u6a21\u578b\u5217\u8868\u7684\u6587\u4ef6":132,"\u6d4b\u8bd5\u662f":109,"\u6d4b\u8bd5\u672c\u6b21release\u7684\u6b63\u786e\u6027":82,"\u6d4b\u8bd5\u7684\u6027\u80fd\u5bf9\u6bd4\u7ed3\u679c\u4f1a\u5728":62,"\u6d4b\u8bd5\u7684\u6a21\u578b\u5305\u62ec\u4ece\u7b2cm\u8f6e\u5230\u7b2cn":134,"\u6d4b\u8bd5model_list":131,"\u6d4b\u8bd5oper":111,"\u6d4b\u8bd5save_dir":131,"\u6d6e\u70b9\u578b\u6570\u636e":33,"\u6d6e\u70b9\u578b\u7a00\u758f\u77e9\u9635":121,"\u6d6e\u70b9\u578b\u7a20\u5bc6\u77e9\u9635":121,"\u6d6e\u70b9\u5f02\u5e38\u901a\u5e38\u7684\u539f\u56e0\u662f\u6d6e\u70b9\u6570\u6ea2\u51fa":94,"\u6d6e\u70b9\u6570":121,"\u6d6e\u70b9\u6570\u5411\u91cf\u7b49":121,"\u6d6e\u70b9\u7a00\u758f\u6570\u636e":110,"\u6df1\u5165paddlepaddl":62,"\u6df7\u5408\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790\u6765\u8fdb\u884c\u8c03\u4f18":116,"\u6df7\u5408\u4ee3\u7801\u7684\u6027\u80fd\u74f6\u9888\u4e5f\u662f\u8981\u770b":116,"\u6df7\u5408\u5f53\u524d\u8bcd\u5411\u91cf\u548cattention\u52a0\u6743\u7f16\u7801\u5411\u91cf":107,"\u6dfb\u52a0":61,"\u6dfb\u52a0\u4e86\u4e00\u4e2a\u8f93\u51fa":111,"\u6dfb\u52a0\u542f\u52a8\u811a\u672c":127,"\u6dfb\u52a0\u5e8f\u5217\u4fe1\u606f":121,"\u6dfb\u52a0\u7684\u76f8\u5173\u6587\u4ef6\u548c\u76ee\u5f55\u7ed3\u6784\u5982\u4e0b":[61,62],"\u6dfb\u52a0\u8f93\u5165\u53c2\u6570":111,"\u6dfb\u52a0\u8f93\u51fa\u53c2\u6570":111,"\u6dfb\u52a0op\u7684\u6ce8\u91ca":111,"\u6e05\u7406":108,"\u6e05\u7406\u548c\u7ed3\u675f":122,"\u6e05\u7406\u6389\u8001\u65e7\u7684paddlepaddle\u5b89\u88c5\u5305":91,"\u6e29\u99a8":104,"\u6e90\u4ee3\u7801\u683c\u5f0f":109,"\u6e90\u5e8f\u5217":107,"\u6e90\u7801\u6811\u6839\u76ee\u5f55":108,"\u6f5c\u5728\u4f1a\u5f15\u8d77\u672a\u5b9a\u4e49\u884c\u4e3a":121,"\u6fc0\u6d3b":110,"\u6fc0\u6d3b\u51fd\u6570\u662f\u72ec\u7acb\u4e8e":62,"\u6fc0\u6d3b\u65b9\u7a0b":110,"\u6fc0\u6d3b\u7684\u7c7b\u578b":110,"\u70b9\u51fb":[82,100],"\u70b9\u51fb\u8fd9\u91cc":113,"\u70ed\u60c5":104,"\u7136\u540e":[117,124],"\u7136\u540e\u4e0b\u8f7d\u4f18\u5316\u66f4\u65b0\u540e\u7684\u795e\u7ecf\u7f51\u7edc\u53c2\u6570":123,"\u7136\u540e\u4ea4\u7ed9step\u51fd\u6570":106,"\u7136\u540e\u4f7f\u7528":137,"\u7136\u540e\u4f7f\u7528resize\u63a5\u53e3\u8bbe\u7f6etensor\u7684\u5927\u5c0f":112,"\u7136\u540e\u5355\u51fb":109,"\u7136\u540e\u53ef\u4ee5\u4ecehead\u8282\u70b9ssh\u65e0\u5bc6\u7801\u767b\u5f55\u5230openmpi\u7684\u6bcf\u4e2a\u8282\u70b9\u4e0a":128,"\u7136\u540e\u53ef\u4ee5\u4f7f\u7528\u547d\u4ee4\u884c\u5de5\u5177\u521b\u5efajob":127,"\u7136\u540e\u5728\u4e0b\u4e00\u4e2a\u65f6\u95f4\u6b65\u8f93\u5165\u7ed9\u53e6\u4e00\u4e2a\u795e\u7ecf\u5143":104,"\u7136\u540e\u5728\u524d\u5411":61,"\u7136\u540e\u5728\u6d4f\u89c8\u5668\u4e2d\u8f93\u5165\u4ee5\u4e0b\u7f51\u5740":98,"\u7136\u540e\u5728dataprovider\u91cc\u9762\u6839\u636e\u8be5\u5730\u5740\u52a0\u8f7d\u5b57\u5178":96,"\u7136\u540e\u5728etcd\u7684":32,"\u7136\u540e\u5b89\u88c5paddle\u7684python\u73af\u5883":91,"\u7136\u540e\u5b9a\u4e49":107,"\u7136\u540e\u5c06\u6784\u5efa\u6210\u529f\u7684\u955c\u50cf\u4e0a\u4f20\u5230\u955c\u50cf\u4ed3\u5e93":127,"\u7136\u540e\u5c06\u8fd9\u4e9blayer\u7684\u53c2\u6570":95,"\u7136\u540e\u5c31\u53ef\u4ee5\u5e76\u53d1\u5199\u5165\u591a\u4e2achunk":48,"\u7136\u540e\u6240\u6709\u7528":109,"\u7136\u540e\u624d\u80fd\u4f7f\u7528pfsclient":48,"\u7136\u540e\u6253\u5370\u8f93\u51fa":101,"\u7136\u540e\u6309\u7167\u4e0a\u8ff0\u7684\u65b9\u6cd5":82,"\u7136\u540e\u63d0\u4ea4\u65b0\u6dfb\u52a0\u7684":109,"\u7136\u540e\u70b9\u51fb":[82,109],"\u7136\u540e\u7533\u660e\u4e00\u4e2a\u5b58\u50a8\u5377":127,"\u7136\u540e\u89c2\u5bdf\u5230\u8f93\u51fa\u7684\u53d8\u5316\u4e3a":110,"\u7136\u540e\u901a\u8fc7\u51fd\u6570":127,"\u7136\u540e\u901a\u8fc7\u81ea\u8eab\u7684ip\u5730\u5740\u5728":127,"\u7136\u540e\u91cd\u65b0cmake\u5373\u53ef":91,"\u7136\u800c":[107,132],"\u7248\u672c":[97,100,108,137],"\u7248\u672c\u4e3acpu_avx_mkl":98,"\u7248\u672c\u4e3acpu_avx_openbla":[100,102],"\u7248\u672c\u5206\u652f":82,"\u7248\u672c\u53f7":82,"\u7248\u672c\u53f7\u5bf9\u5e94\u7684tag\u5373\u53ef":82,"\u7248\u672c\u53f7rc":82,"\u7248\u672c\u5728":109,"\u7248\u672c\u8bf4\u660e":100,"\u7248\u672cfork\u51fa\u81ea\u5df1\u7684\u529f\u80fd\u5206\u652f":82,"\u7279\u522b\u662f\u5728lstm\u7b49rnn\u4e2d":94,"\u7279\u6307":122,"\u7279\u6709\u7684\u8bbe\u5907id":62,"\u72ec\u7acb\u5b9a\u5236\u7684\u4e8c\u8fdb\u5236\u65f6\u624d\u9700\u8981\u7f16\u8bd1":99,"\u72ec\u7acb\u5de5\u5177\u94fe":136,"\u72ec\u7acb\u5de5\u5177\u94fe\u6240\u5728\u7684\u7edd\u5bf9\u8def\u5f84":136,"\u73af\u5883\u53d8\u91cf":123,"\u73af\u5883\u53d8\u91cf\u4e2d":119,"\u73af\u5883\u53d8\u91cf\u6765\u6307\u5b9a\u7279\u5b9a\u7684gpu":94,"\u73b0\u9636\u6bb5\u7684\u4f18\u5316\u4e3b\u8981\u9488\u5bf9":61,"\u73b0\u9636\u6bb5paddle\u6709\u4e00\u4e2a\u95ee\u9898\u662f":65,"\u7406\u89e3":108,"\u7406\u89e3\u4e3a\u4e00\u4e2a\u4e00\u7ef4\u7684\u6574\u578b\u6570\u7ec4":121,"\u751a\u81f3\u80fd\u89e3\u91ca\u4e3a\u4ec0\u4e48\u67d0\u4e2a\u64cd\u4f5c\u82b1\u4e86\u5f88\u957f\u65f6\u95f4":117,"\u751f\u4ea7\u73af\u5883\u4e2d\u7684\u8bad\u7ec3\u6570\u636e\u96c6\u901a\u5e38\u4f53\u79ef\u5f88\u5927":33,"\u751f\u4ea7\u73af\u5883\u7684\u65e5\u5fd7\u6570\u636e\u4f1a\u901a\u8fc7\u5b9e\u65f6\u6d41\u7684\u65b9\u5f0f":33,"\u751f\u4ea7\u955c\u50cf":109,"\u751f\u6210":127,"\u751f\u6210\u5404\u79cd\u8bed\u8a00\u7684\u7ed1\u5b9a\u4ee3\u7801":65,"\u751f\u6210\u540e\u7684\u6587\u6863\u5206\u522b\u5b58\u50a8\u5728\u7f16\u8bd1\u76ee\u5f55\u7684":113,"\u751f\u6210\u5e8f\u5217\u7684\u6700\u5927\u957f\u5ea6":107,"\u751f\u6210\u6587\u6863":65,"\u751f\u6210\u7684":33,"\u751f\u6210\u7684\u6027\u80fd\u5206\u6790\u6587\u4ef6\u4e3a":116,"\u751f\u6210\u7684\u6570\u636e\u5c06\u4f1a\u5b58\u50a8\u5728\u8fd9\u4e2avolume\u4e0b":127,"\u751f\u6210\u7684\u6570\u636e\u7f13\u5b58\u5728\u5185\u5b58\u91cc":94,"\u751f\u6210\u7ed9\u5b9a":33,"\u751f\u6210\u7f51\u7edc\u5c42\u914d\u7f6e":110,"\u751f\u6210\u81ea\u5df1\u76ee\u5f55\u4e0b\u7684\u4ed3\u5e93":109,"\u751f\u6210\u8c03\u8bd5\u4fe1\u606f":116,"\u751f\u6210\u968f\u673a\u7684\u8f93\u5165\u6570\u636e":111,"\u751f\u6210api\u6587\u6863":65,"\u751f\u6210pfsclient\u548cpfsserver\u7684\u6846\u67b6\u90e8\u5206":48,"\u751f\u6210python\u6027\u80fd\u5206\u6790\u7684\u547d\u4ee4\u5982\u4e0b":116,"\u7528":48,"\u7528\u4e8e\u521d\u59cb\u5316\u53c2\u6570\u548c\u8bbe\u7f6e":110,"\u7528\u4e8e\u5c06\u53c2\u6570\u4f20\u9012\u7ed9\u7f51\u7edc\u914d\u7f6e":134,"\u7528\u4e8e\u6307\u5b9a\u5176\u8981\u5173\u8054\u7684layer":95,"\u7528\u4e8e\u6307\u5b9a\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":132,"\u7528\u4e8e\u6ce8\u518c\u6ca1\u6709\u53cd\u5411\u7684op":111,"\u7528\u4e8e\u6d4b\u8bd5\u548c\u5bf9\u6bd4\u5728\u4f7f\u7528mkl":62,"\u7528\u4e8e\u7a00\u758f\u7c7b\u578b\u53c2\u6570\u901a\u4fe1\u7684\u7aef\u53e3\u4e2a\u6570":123,"\u7528\u4e8e\u7a00\u758f\u8bad\u7ec3\u4e2d":132,"\u7528\u4e8e\u7ba1\u7406mkl":62,"\u7528\u4e8e\u83b7\u53d6\u7279\u5b9alayer\u4e0a\u4e00\u65f6\u95f4\u6b65\u7684\u8f93\u51fa":95,"\u7528\u4e8e\u8ba1\u7b97\u7f16\u7801\u5411\u91cf\u7684\u52a0\u6743\u548c":107,"\u7528\u4e8e\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u7684\u6570\u636e":123,"\u7528\u4e8e\u9009\u62e9\u662f\u5426\u4f7f\u7528\u76f8\u5173\u529f\u80fd":61,"\u7528\u4e8e\u9009\u62e9\u662f\u5426\u4f7f\u7528mkl":62,"\u7528\u4e8emkl":[61,62],"\u7528\u53cc\u5411\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7f16\u7801":107,"\u7528\u591a\u5bf9\u6548\u679c\u5b8c\u5168\u76f8\u540c\u7684":104,"\u7528\u6237\u4e00\u822c\u901a\u8fc7\u8c03\u7528":116,"\u7528\u6237\u4e0a\u4f20\u6570\u636e\u540e":33,"\u7528\u6237\u4e5f\u53ef\u4ee5\u4e0a\u4f20label":33,"\u7528\u6237\u4e5f\u53ef\u4ee5\u4f7f\u7528paddlepaddle\u63d0\u4f9b\u7684\u5b98\u65b9\u5f00\u53d1\u955c\u50cf":136,"\u7528\u6237\u4eceapp":137,"\u7528\u6237\u53ea\u9700\u5b9a\u4e49rnn\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u5b8c\u6210\u7684\u8ba1\u7b97":106,"\u7528\u6237\u53ef\u4ee5\u5206\u522b\u67e5\u770b\u6700\u65b0\u7684":113,"\u7528\u6237\u53ef\u4ee5\u53c2\u8003\u4e0b\u6587":136,"\u7528\u6237\u53ef\u4ee5\u53c2\u8003sphinx\u6559\u7a0b\u8fdb\u884c\u4e66\u5199":113,"\u7528\u6237\u53ef\u4ee5\u5b89\u5168\u7684\u91ca\u653e\u67d0\u4e2ac":66,"\u7528\u6237\u53ef\u4ee5\u628a\u81ea\u5df1\u7684\u6570\u636e\u5206\u4eab\u7ed9\u522b\u4eba":33,"\u7528\u6237\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u8fd9\u4e2a\u52a8\u6001\u5e93\u6765\u5f15\u5165paddl":66,"\u7528\u6237\u53ef\u4ee5\u81ea\u5b9a\u4e49beam":132,"\u7528\u6237\u53ef\u4ee5\u8bbe\u7f6e":134,"\u7528\u6237\u53ef\u5728\u81ea\u5df1\u719f\u6089\u7684\u5f00\u53d1\u5e73\u53f0\u4e0a\u7f16\u8bd1android\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u5e93":136,"\u7528\u6237\u53ef\u5728\u8c03\u7528cmake\u7684\u65f6\u5019\u8bbe\u7f6e\u5b83\u4eec":97,"\u7528\u6237\u53ef\u5c06":136,"\u7528\u6237\u53ef\u5c06\u5408\u6210\u7684fat\u5e93\u7528\u4e8e\u6df1\u5ea6\u5b66\u4e60\u76f8\u5173\u7684io":137,"\u7528\u6237\u53ef\u6839\u636e\u81ea\u5df1\u7684\u7f16\u8bd1\u76ee\u6807\u67b6\u6784":136,"\u7528\u6237\u53ef\u81ea\u884c\u524d\u5f80\u4e0b\u8f7d\u9884\u7f16\u8bd1\u597d\u7684\u7248\u672c":136,"\u7528\u6237\u53ef\u901a\u8fc7\u5982\u4e0b\u4e24\u79cd\u65b9\u5f0f":136,"\u7528\u6237\u5728\u4f7f\u7528\u8fd9\u4e00\u7c7brecurr":95,"\u7528\u6237\u5728\u4f7f\u7528paddlepaddl":91,"\u7528\u6237\u5728\u672c\u5730\u8f6c\u6362\u597d\u518d\u4e0a\u4f20":33,"\u7528\u6237\u5c06\u53c2\u6570\u8f7d\u5165":96,"\u7528\u6237\u5c06\u914d\u7f6e\u4e0e\u8bad\u7ec3\u6570\u636e\u5207\u5206\u597d\u653e\u5728\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u9884\u5148\u5206\u914d\u597d\u7684\u76ee\u5f55\u4e2d":127,"\u7528\u6237\u5f3a\u5236\u6307\u5b9a\u7279\u5b9a\u7684python\u7248\u672c":91,"\u7528\u6237\u6587\u4ef6\u53ef\u80fd\u662f\u6bd4\u8f83\u5927\u7684":48,"\u7528\u6237\u8fd8\u53ef\u6839\u636e\u81ea\u5df1\u7684\u9700\u6c42\u8bbe\u7f6e\u5176\u4ed6\u7f16\u8bd1\u53c2\u6570":[136,137,138],"\u7528\u6237\u901a\u8fc7\u53c2\u6570":[95,96],"\u7528\u6237\u901a\u8fc7c":66,"\u7528\u6237\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a":134,"\u7528\u6237\u9700\u8981\u5728cmake\u65f6\u624b\u52a8\u8bbe\u7f6e\u8fd9\u4e9b\u503c":[136,138],"\u7528\u6237\u9700\u8981\u6307\u5b9a\u672c\u673a\u4e0apython\u7684\u8def\u5f84":91,"\u7528\u6237\u9700\u8981\u63d0\u524d\u51c6\u5907\u597d\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883":136,"\u7528\u672c\u673a\u7684\u7b2c\u4e00\u4e2a":108,"\u7528\u6765\u4ece\u53c2\u6570\u670d\u52a1\u5668\u9884\u53d6\u53c2\u6570\u77e9\u9635\u76f8\u5e94\u7684\u884c":110,"\u7528\u6765\u5b58\u50a8\u672c\u6b21\u6027\u80fd\u5206\u6790\u7684\u7ed3\u679c":116,"\u7528\u8fd9\u4e2a\u955c\u50cf\u521b\u5efa\u7684\u5bb9\u5668\u9700\u8981\u6709\u4ee5\u4e0b\u4e24\u4e2a\u529f\u80fd":127,"\u7528docker\u7f16\u8bd1\u548c\u6d4b\u8bd5paddlepaddl":99,"\u7528web\u6d4f\u89c8\u5668\u8bbf\u95ee\u5bf9\u5e94\u7f51\u5740":116,"\u7531":[95,106,121],"\u7531\u4e8e":119,"\u7531\u4e8e\u5728\u73b0\u6709\u7684\u67d0\u4e9b\u60c5\u51b5\u4e0b":61,"\u7531\u4e8e\u5b83\u5185\u90e8\u5305\u542b\u4e86\u6bcf\u7ec4\u6570\u636e\u4e2d\u7684\u6240\u6709\u53e5\u5b50":104,"\u7531\u4e8e\u5bf9parameters\u7684\u66f4\u65b0\u9700\u8981\u83b7\u53d6parameters\u5185\u5b58\u7684":32,"\u7531\u4e8e\u6211\u4eec\u60f3\u8981\u7684\u53d8\u6362\u662f\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":104,"\u7531\u4e8e\u6211\u4eec\u652f\u6301\u8bad\u7ec3\u6570\u636e\u6709\u4e0d\u540c\u7684\u6279\u6b21\u5927\u5c0f":110,"\u7531\u4e8e\u96c6\u7fa4\u4e2d\u540c\u65f6\u5b58\u5728\u4e24\u53f0\u673a\u5668\u6545\u969c\u7684\u6982\u7387\u6781\u4f4e":32,"\u7531\u4e8earm64\u67b6\u6784\u8981\u6c42android":136,"\u7531\u4e8ec":65,"\u7531\u4e8echunk\u6bd4\u8f83\u5c0f":48,"\u7531\u4e8eeigen":112,"\u7531\u4e8emkl":62,"\u7531\u4e8epypi":82,"\u7531\u4e8estep":106,"\u7531\u4e8etensor\u7684rank\u662f\u6a21\u677f\u53c2\u6570":112,"\u7531\u5206\u652f\u5904\u7684layer\u8d1f\u8d23\u6c42\u548c":62,"\u7531\u8bcd\u8bed\u6784\u6210\u7684\u53e5\u5b50":103,"\u7531\u94fe\u63a5\u65b9\u5f0f\u51b3\u5b9a":119,"\u7533\u8bf7\u7528\u6237\u7a7a\u95f4":48,"\u7535\u8111":104,"\u767b\u5f55\u5230head\u8282\u70b9":128,"\u7684":[100,104,108,109,112,121,122,124,127,137],"\u7684\u4e00\u4e2a\u5b50\u96c6":62,"\u7684\u4e00\u4e2a\u7b80\u5355\u8c03\u7528\u5982\u4e0b":106,"\u7684\u4e3a0":132,"\u7684\u4efb\u4e00\u4e00\u79cd":94,"\u7684\u4f5c\u7528\u662f\u5ef6\u8fdf\u5206\u914d\u5185\u5b58":112,"\u7684\u4f7f\u7528\u793a\u4f8b\u5982\u4e0b":103,"\u7684\u4fe1\u606f":62,"\u7684\u503c":[136,137,138],"\u7684\u503c\u81ea\u52a8\u63a8\u5bfc\u5f97\u5230":136,"\u7684\u504f\u7f6e\u5411\u91cf":110,"\u7684\u5171\u4eab\u5df2\u7ecf\u52a0\u8f7d\u7684\u9884\u6d4b\u6a21\u578b":122,"\u7684\u5177\u4f53\u8ba1\u7b97\u903b\u8f91":111,"\u7684\u5185\u5b58":94,"\u7684\u5185\u5bb9\u6765\u5b9a\u5236imag":127,"\u7684\u5185\u6838block\u4f7f\u7528\u60c5\u51b5":117,"\u7684\u522b\u540d":[1,2,4,16,20,23],"\u7684\u5355\u5143\u6d4b\u8bd5":111,"\u7684\u5355\u5143\u6d4b\u8bd5\u548c\u7b80\u5355\u7f51\u7edc\u7684\u6574\u4f53\u6d4b\u8bd5":62,"\u7684\u53cd\u5411\u4f20\u64ad\u5c06\u4f1a\u6253\u5370\u65e5\u5fd7\u4fe1\u606f":132,"\u7684\u53d8\u6362\u77e9\u9635":110,"\u7684\u540d\u79f0\u76f8\u540c":107,"\u7684\u5411\u91cf":110,"\u7684\u542f\u52a8\u53c2\u6570":127,"\u7684\u542f\u52a8\u53c2\u6570\u5e76\u6267\u884c\u8fdb\u7a0b":127,"\u7684\u547d\u4ee4\u548c\u4e00\u822c\u7684":116,"\u7684\u547d\u540d\u98ce\u683c\u5e76\u4e0d\u80fd\u9002\u5e94\u5176\u4ed6\u7b2c\u4e09\u65b9\u8bed\u8a00":65,"\u7684\u5730\u65b9":109,"\u7684\u5747\u5300\u5206\u5e03":96,"\u7684\u57fa\u672c\u903b\u8f91":62,"\u7684\u591a\u79cd\u5b89\u88c5\u65b9\u5f0f":123,"\u7684\u5934\u6587\u4ef6":65,"\u7684\u5b50\u7c7b\u53ea\u9700\u8981\u4f7f\u7528\u5185\u90e8\u5b58\u50a8\u5c31\u53ef\u4ee5\u4e86":62,"\u7684\u5b9e\u73b0":111,"\u7684\u5de5\u4f5c\u6d41\u7a0b\u5982\u56fe1\u6240\u793a":122,"\u7684\u5e73\u5747\u503c":103,"\u7684\u5e8f\u5217":121,"\u7684\u5e8f\u5217\u5f62\u72b6\u4e00\u81f4":104,"\u7684\u5f00\u53d1\u5de5\u4f5c\u90fd\u5e94\u8be5\u5728\u4e00\u4e2a\u65b0\u7684\u5206\u652f\u4e0a\u5b8c\u6210":109,"\u7684\u5f00\u53d1\u6d41\u7a0b":108,"\u7684\u5f00\u59cb\u8bf7\u52a0\u4e0a\u5b8f\u5b9a\u4e49":111,"\u7684\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18\u5206\u4e3a\u4e24\u4e2a\u90e8\u5206":116,"\u7684\u6027\u80fd\u5206\u6790\u5de5\u5177\u975e\u5e38\u591a":116,"\u7684\u6027\u80fd\u6709\u95ee\u9898":116,"\u7684\u60c5\u51b5\u4e0b":61,"\u7684\u63a5\u53e3\u6837\u5f0f":65,"\u7684\u63a5\u53e3\u8bf7\u67e5\u770b":121,"\u7684\u63cf\u8ff0\u8bf4\u660e\u4e2d":109,"\u7684\u64cd\u4f5c":112,"\u7684\u6570\u636e\u6d41\u56fe":33,"\u7684\u6570\u76ee\u4e00\u81f4":103,"\u7684\u6587\u4ef6\u4e5f\u5e26\u5230\u65b0\u5206\u652f\u4e0a":109,"\u7684\u65b9\u7a0b":110,"\u7684\u65f6\u5019":62,"\u7684\u65f6\u95f4\u6b65\u4fe1\u606f\u6210\u6b63\u6bd4":94,"\u7684\u66f4\u8be6\u7ec6\u51c6\u786e\u7684\u5b9a\u4e49":104,"\u7684\u6700\u5c0f\u503c":132,"\u7684\u6700\u65b0\u4ee3\u7801\u5e76\u66f4\u65b0\u5f53\u524d\u5206\u652f":109,"\u7684\u6784\u9020\u51fd\u6570":111,"\u7684\u67b6\u6784\u7684\u793a\u4f8b":107,"\u7684\u6837\u5f0f":109,"\u7684\u6838\u5fc3\u662f\u8bbe\u8ba1step\u51fd\u6570\u7684\u8ba1\u7b97\u903b\u8f91":106,"\u7684\u6839\u76ee\u5f55":137,"\u7684\u683c\u5f0f\u59cb\u7ec8\u662f":62,"\u7684\u683c\u5f0f\u5b58\u50a8":62,"\u7684\u6982\u5ff5":62,"\u7684\u6bb5\u843d\u5b9a\u4e49\u4e3a\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":106,"\u7684\u6bcf\u4e2a\u8fdb\u7a0b\u90fd\u53ef\u4ee5\u4ececeph\u8bfb\u53d6\u6570\u636e":126,"\u7684\u6e90\u7801\u4ee5\u53ca\u751f\u6210\u6587\u6863\u9700\u8981\u591a\u79cd\u5f00\u53d1\u5de5\u5177":109,"\u7684\u6e90\u7801\u91cc\u4f7f\u7528\u4e86":65,"\u7684\u7248\u672c":[82,108,138],"\u7684\u72b6\u6001":106,"\u7684\u72ec\u7acb\u5de5\u5177\u94fe":136,"\u7684\u77e9\u9635":[94,110],"\u7684\u7a20\u5bc6\u5411\u91cf\u4f5c\u4e3a\u8f93\u5165":110,"\u7684\u7a20\u5bc6\u77e9\u9635":121,"\u7684\u7a20\u5bc6\u77e9\u9635\u662f\u4e00\u4e2a\u7531":121,"\u7684\u7b2c\u4e00\u4e2a\u53c2\u6570":122,"\u7684\u7b2ci\u4e2a\u503c":110,"\u7684\u7b2cj\u4e2a\u503c":110,"\u7684\u7cfb\u7edf":108,"\u7684\u7ed3\u679c":61,"\u7684\u7f16\u5199":123,"\u7684\u7f16\u8bd1\u5de5\u5177\u94fe":136,"\u7684\u7f29\u5199":48,"\u7684\u7f51\u7edc\u6a21\u578b":61,"\u7684\u89c4\u8303":65,"\u7684\u89d2\u5ea6":33,"\u7684\u8ba1\u7b97\u4ee3\u7801":112,"\u7684\u8ba1\u7b97\u8fc7\u7a0b\u4e66\u5199\u66f4\u52a0\u7b80\u5355":111,"\u7684\u8bdd":94,"\u7684\u8be6\u7ec6\u4fe1\u606f":116,"\u7684\u8f93\u5165":106,"\u7684\u8f93\u51fa":[94,117],"\u7684\u8f93\u51fa\u4fe1\u606f\u5165\u624b\u662f\u4e2a\u4e0d\u9519\u7684\u9009\u62e9":117,"\u7684\u8f93\u51fa\u51fd\u6570\u8fd4\u56de\u7684\u662f\u4e0b\u4e00\u4e2a\u65f6\u523b\u8f93\u51fa\u8bcd\u7684":107,"\u7684\u8f93\u51fa\u683c\u5f0f":104,"\u7684\u8f93\u51fa\u88ab\u7528\u4f5c":107,"\u7684\u8f93\u51fab\u662f\u4e00\u4e2a":94,"\u7684\u8fd0\u884c\u73af\u5883":108,"\u7684\u8fdc\u7a0b\u4ed3\u5e93\u7684\u540d\u5b57":109,"\u7684\u914d\u7f6e\u5199\u5230\u914d\u7f6e\u6587\u4ef6\u4e2d":33,"\u7684\u96c6\u88c5\u7bb1\u6280\u672f":108,"\u7684\u9875\u9762\u5220\u9664\u8fdc\u7a0b\u4ed3\u5e93\u7684\u5206\u652f":109,"\u7684cpu":111,"\u7684docker\u955c\u50cf":98,"\u7684flag":[61,62],"\u7684linux\u670d\u52a1\u5668\u7ec4\u6210":123,"\u7684paddlepaddle\u5e93":136,"\u7684vanilla":61,"\u76d1\u542c\u7684\u7aef\u53e3\u4e2a\u6570":123,"\u76ee\u524d":106,"\u76ee\u524d\u4f7f\u7528":109,"\u76ee\u524d\u53ea\u8003\u8651":62,"\u76ee\u524d\u53ea\u8003\u8651\u52a8\u6001\u6269\u5bb9trainer\u6570\u91cf":32,"\u76ee\u524d\u5728paddlepaddle\u4e2d":62,"\u76ee\u524d\u5728paddlepaddle\u4e2d\u6570\u636e\u90fd\u662f\u4ee5":62,"\u76ee\u524d\u5d4c\u5165python\u89e3\u91ca\u5668":65,"\u76ee\u524d\u5fc5\u987b\u8bbe\u7f6e\u6210":138,"\u76ee\u524d\u6211\u4eec\u7528cephfs\u6765\u642d\u5efa":48,"\u76ee\u524d\u63d0\u4f9b\u4e09\u79cd\u94fe\u63a5\u65b9\u5f0f":119,"\u76ee\u524d\u652f\u6301":136,"\u76ee\u524d\u652f\u6301\u4e24\u79cd":103,"\u76ee\u524d\u652f\u6301cento":102,"\u76ee\u524d\u652f\u6301fail":132,"\u76ee\u524d\u7684\u4f18\u5316":62,"\u76ee\u524d\u8be5\u53c2\u6570\u4ec5\u7528\u4e8eaucvalidationlayer\u548cpnpairvalidationlayer\u5c42":132,"\u76ee\u524d\u8fd8\u672a\u652f\u6301":106,"\u76ee\u524dpaddle\u7684\u8fdb\u7a0b\u6a21\u578b\u662fc":65,"\u76ee\u524dpaddlepaddle\u7684develop\u5206\u652f\u7684\u6587\u6863\u662f\u81ea\u52a8\u89e6\u53d1\u66f4\u65b0\u7684":113,"\u76ee\u524dpaddlepaddle\u91c7\u7528\u4e86":61,"\u76ee\u5f55":[98,108,124,126,127,136,137,138],"\u76ee\u5f55\u4e0b":[66,110,124],"\u76ee\u5f55\u4e0b\u5bf9\u5e94\u7684\u5730\u65b9":62,"\u76ee\u5f55\u4e0b\u65b0\u589e\u7684":111,"\u76ee\u5f55\u4e0b\u6700\u65b0\u7684":137,"\u76ee\u5f55\u4e0b\u7684\u4ee3\u7801\u793a\u4f8b":122,"\u76ee\u5f55\u4e0b\u7684\u751f\u6210\u6587\u4ef6\u7528\u4e8e\u6df1\u5ea6\u5b66\u4e60\u76f8\u5173android":136,"\u76ee\u5f55\u4e0b\u7684python\u5305":91,"\u76ee\u5f55\u4e2d":[119,122,124],"\u76ee\u5f55\u4e2d\u4f1a\u5305\u542b":[136,138],"\u76ee\u5f55\u4e2d\u4f1a\u5305\u542b\u4ee5\u4e0b\u5185\u5bb9":137,"\u76ee\u5f55\u4e2d\u7684":117,"\u76ee\u5f55\u4e2dpaddl":127,"\u76ee\u5f55\u548c":[136,137,138],"\u76ee\u5f55\u5c31\u6210\u4e3a\u4e86\u5171\u4eab\u5b58\u50a8":127,"\u76ee\u5f55\u751f\u6210\u4e00\u5957\u72ec\u7acb\u7f16\u8bd1\u5de5\u5177\u94fe":136,"\u76ee\u5f55\u91cc\u627e\u5230\u4ea4\u53c9\u7f16\u8bd1\u5668":138,"\u76ee\u6807\u5411\u91cf":107,"\u76ee\u6807\u5de5\u5177\u94fe":136,"\u76ee\u6807\u673a\u7248protobuf\u5e93":138,"\u76ee\u6807\u67b6\u6784":137,"\u76ee\u6807\u67b6\u6784abi":136,"\u76f4\u5230\u8bad\u7ec3\u6536\u655b\u4e3a\u6b62":96,"\u76f4\u63a5\u4f7f\u7528\u4e0a\u8ff0\u5b89\u88c5\u6d41\u7a0b":99,"\u76f4\u63a5\u4f7f\u7528c\u8bed\u8a00\u7684":65,"\u76f4\u63a5\u5220\u9664\u8fd9\u4e2a\u53c2\u6570\u5373\u53ef":66,"\u76f4\u63a5\u5347\u7ea7\u5230\u66f4\u65b0\u7684\u7248\u672c":97,"\u76f4\u63a5\u5bfc\u51fa\u5230c\u7684\u63a5\u53e3\u6bd4\u8f83\u56f0\u96be":65,"\u76f4\u63a5\u8c03\u7528\u76f8\u5e94\u63a5\u53e3\u5373\u53ef":111,"\u76f4\u63a5\u8fd0\u884c":98,"\u76f8\u5173\u5c42":61,"\u76f8\u540c\u540d\u5b57\u7684\u53c2\u6570":96,"\u76f8\u5bf9":104,"\u76f8\u5f53":104,"\u76f8\u6bd4":111,"\u770b\u5f53\u524dmpi\u96c6\u7fa4\u662f\u5426\u652f\u6301resourc":92,"\u77a7":102,"\u77e9\u9635":131,"\u77e9\u9635\u4e2d\u6bcf\u4e2a\u5143\u7d20\u7684\u503c\u968f\u673a\u751f\u6210":121,"\u77e9\u9635\u4e58\u6cd5\u7684\u516c\u5f0f":111,"\u77e9\u9635\u5927\u5c0f\u662f":61,"\u77e9\u9635\u662f\u5426\u662f\u4e00\u4e2a\u5e8f\u5217":121,"\u77e9\u9635\u7684\u9ad8\u5ea6":121,"\u77e9\u9635\u91cc\u7684\u5143\u7d20\u662f\u6d6e\u70b9\u6570":121,"\u786e\u4fdd\u7f16\u8bd1\u5668\u9009\u9879":109,"\u78c1\u76d8\u4e0d\u591f":108,"\u78c1\u76d8\u7a7a\u95f4\u4e0d\u8db3\u7b49":92,"\u793a\u4f8b":[94,96,122],"\u793a\u4f8b3\u5bf9\u4e8e\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u6570\u636e\u5b8c\u5168\u76f8\u540c":104,"\u793a\u4f8b3\u7684\u914d\u7f6e\u4f7f\u7528\u4e86\u5355\u5c42rnn\u548c\u53cc\u5c42rnn":104,"\u793a\u4f8b3\u7684\u914d\u7f6e\u5206\u522b\u4e3a":104,"\u793a\u4f8b\u4ee3\u7801\u5982\u4e0b":[94,122],"\u793a\u4f8b\u5982\u4e0b":96,"\u793a\u4f8b\u7a0b\u5e8f":123,"\u793e\u533a\u53c2\u4e0e\u56f0\u96be":65,"\u793e\u533a\u8d21\u732e\u4ee3\u7801\u5b66\u4e60\u6210\u672c\u9ad8":65,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u4e00\u4e2a\u8ba1\u7b97\u5c42\u7684\u8f93\u5165":121,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u4e00\u4e2a\u8ba1\u7b97\u5c42\u7684\u8f93\u5165\u8f93\u51fa\u88ab\u7ec4\u7ec7\u4e3a\u4e00\u4e2a":122,"\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u53c2\u6570":32,"\u795e\u7ecf\u7f51\u7edc\u4e5f\u9700\u8981\u4e00\u4e9b\u7279\u5b9a\u7684layer\u4f5c\u4e3a\u8f93\u5165\u63a5\u53e3":101,"\u795e\u7ecf\u7f51\u7edc\u53c2\u6570\u4ee5\u53ca\u8fed\u4ee3\u65b9\u7a0b":101,"\u795e\u7ecf\u7f51\u7edc\u5728\u8bad\u7ec3\u7684\u65f6\u5019":94,"\u795e\u7ecf\u7f51\u7edc\u672c\u8d28\u4e0a\u662f\u4e00\u4e2a\u8ba1\u7b97\u56fe":112,"\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u7ed3\u6784\u548c\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u5c06\u88ab\u5e8f\u5217\u5316\u5408\u5e76\u5165\u4e00\u4e2a\u6587\u4ef6":122,"\u795e\u7ecf\u7f51\u7edc\u7684\u7f51\u7edc\u7ed3\u6784\u4e2d\u5177\u6709\u6709\u5411\u73af\u7ed3\u6784":104,"\u795e\u7ecf\u7f51\u7edc\u7684\u8bad\u7ec3\u672c\u8eab\u662f\u4e00\u4e2a\u975e\u5e38\u6d88\u8017\u5185\u5b58\u548c\u663e\u5b58\u7684\u5de5\u4f5c":94,"\u79bb":104,"\u79bb\u7ebf\u6279\u5904\u7406":33,"\u79f0\u4e3a":[107,109],"\u79f0\u4e3a\u5f00\u53d1\u955c\u50cf":136,"\u79f0\u4e4b\u4e3a":121,"\u79f0\u4e4b\u4e3a\u53cc\u5c42\u5e8f\u5217\u7684\u4e00\u4e2a\u5b50\u5e8f\u5217":103,"\u79f0\u4e4b\u4e3a\u96c6\u675f\u5927\u5c0f":132,"\u79f0\u4f5c\u6709kernel":111,"\u79f0\u4f5ckernel":111,"\u79fb\u52a8\u7aef\u9884\u6d4b":121,"\u7a00\u758f\u6570\u636e\u7684\u683c\u5f0f":110,"\u7a00\u758f\u66f4\u65b0\u7684\u7aef\u53e3\u6570\u91cf":127,"\u7a00\u758f\u768401\u5411\u91cf":101,"\u7a00\u758f\u7684\u5411\u91cf":101,"\u7a00\u758f\u77e9\u9635":121,"\u7a00\u758f\u77e9\u9635\u4f7f\u7528":121,"\u7a00\u758f\u77e9\u9635\u53ca\u76f8\u5173\u7684\u63a5\u53e3":121,"\u7a00\u758f\u77e9\u9635\u5b58\u50a8\u793a\u610f\u56fe":121,"\u7a00\u758f\u77e9\u9635\u7684\u4e58\u79ef\u5e94\u7528\u4e8e\u524d\u5411\u4f20\u64ad\u8fc7\u7a0b":134,"\u7a0b\u5e8f\u4ece\u6b64\u76ee\u5f55\u62f7\u8d1d\u6587\u4ef6\u5230\u5bb9\u5668\u5185\u8fdb\u884c\u8bad\u7ec3":127,"\u7a0b\u5e8f\u4f9d\u8d56":123,"\u7a0b\u5e8f\u505c\u6b62":132,"\u7a0b\u5e8f\u662f\u4e00\u6837\u7684":116,"\u7a0b\u5e8f\u76f4\u63a5\u9000\u51fa":132,"\u7a20\u5bc6\u5411\u91cf":110,"\u7a20\u5bc6\u66f4\u65b0\u7684\u7aef\u53e3\u6570\u91cf":127,"\u7a20\u5bc6\u7684\u6d6e\u70b9\u6570\u5411\u91cf":101,"\u7a20\u5bc6\u77e9\u9635":121,"\u7a97\u6237":104,"\u7acb\u523b\u9000\u51fa":94,"\u7acb\u5373\u6267\u884c\u5355\u5143\u6d4b\u8bd5":97,"\u7ae0\u8282":136,"\u7aef\u53e3":92,"\u7aef\u6570\u636e\u7c7b\u578b":121,"\u7aef\u7684":116,"\u7aef\u8bfb\u53d6\u6570\u636e":94,"\u7b2c":104,"\u7b2c\u4e00\u4e2a":109,"\u7b2c\u4e00\u4e2a\u53c2\u6570":111,"\u7b2c\u4e00\u4e2a\u6837\u672c\u540c\u65f6encode\u4e24\u6761\u6570\u636e\u6210\u4e24\u4e2a\u5411\u91cf":104,"\u7b2c\u4e00\u4e2atag\u4e3a":82,"\u7b2c\u4e00\u5929":104,"\u7b2c\u4e00\u6b65\u9700\u8c03\u7528":122,"\u7b2c\u4e00\u7ae0\u8282":101,"\u7b2c\u4e09\u4e2a\u53c2\u6570":111,"\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93\u9700\u8981\u6309\u7167\u4e0e\u65b9\u5f0f2\u540c\u6837\u65b9\u6cd5\u663e\u793a\u5730\u8fdb\u884c\u94fe\u63a5":119,"\u7b2c\u4e09\u65b9\u94fe\u63a5\u5e93\u548c\u5934\u6587\u4ef6":119,"\u7b2c\u4e09\u6b65\u5b8c\u6210\u540e":82,"\u7b2c\u4e8c\u4e2a":94,"\u7b2c\u4e8c\u4e2a\u4e3a":82,"\u7b2c\u4e8c\u4e2a\u53c2\u6570":111,"\u7b2c\u4e8c\u7c7b":95,"\u7b2ci\u884c\u7b2cj\u5217\u7684\u6570\u503c":110,"\u7b49":[62,66,92,111,122],"\u7b49\u4e8e\u6837\u672c\u6570":94,"\u7b49\u5168\u90e8\u9759\u6001\u5e93\u4e2d\u7684\u76ee\u6807\u6587\u4ef6\u5168\u90e8\u6253\u5305\u540e\u4ea7\u751f\u7684\u6587\u4ef6":66,"\u7b49\u53c2\u6570":127,"\u7b49\u5f85\u7f16\u8bd1\u5b8c\u6210\u540e":82,"\u7b49\u6587\u4ef6":66,"\u7b49\u7b2c\u4e09\u65b9\u5e93":119,"\u7b80\u5199":111,"\u7b80\u5355\u4ecb\u7ecd\u9700\u8981\u7528\u5230\u57fa\u7c7b":111,"\u7b80\u5355\u603b\u7ed3op\u9700\u8981\u5305\u542b\u7684\u5185\u5bb9\u5982\u4e0b":111,"\u7b80\u5355\u6765\u8bf4":117,"\u7b80\u5355\u7684\u5168\u8fde\u63a5\u7f51\u7edc":96,"\u7b80\u5355\u7684\u6027\u80fd\u5206\u6790":117,"\u7b80\u5355\u7684yaml\u6587\u4ef6\u5982\u4e0b":126,"\u7b80\u76f4":104,"\u7b97\u6cd5":[94,107],"\u7b97\u6cd5\u4e2d\u7684beam\u5927\u5c0f":107,"\u7ba1\u7406\u4e86\u6bcf\u4e2a\u8ba1\u7b97\u5c42\u8f93\u51fa\u7684\u5b58\u50a8\u7a7a\u95f4":122,"\u7c7b\u4f3c":[66,103],"\u7c7b\u4f5c\u4e3a\u53c2\u6570\u7684\u62bd\u8c61":110,"\u7c7b\u522b\u4e2d\u7684\u53c2\u6570\u53ef\u7528\u4e8e\u6240\u6709\u573a\u5408":131,"\u7c7b\u522b\u6807\u7b7e\u4e4b\u4e00":122,"\u7c7b\u522b\u6807\u7b7e\u5c42":122,"\u7c7b\u540d\u548cc":65,"\u7c7b\u578b":[65,111,121,132],"\u7c7b\u578b\u4e3a":111,"\u7c7b\u578b\u4ecd\u7136\u4e3aeigenvector":112,"\u7c7b\u578b\u53ef\u4ee5\u662fpaddlepaddle\u652f\u6301\u7684\u4efb\u610f\u8f93\u5165\u6570\u636e\u7c7b\u578b":103,"\u7c7b\u578b\u540d\u4e3a":111,"\u7c7b\u578b\u662fnumpy\u7684ndarrai":94,"\u7c7b\u578b\u662fsparse_binary_vector":101,"\u7c7b\u578b\u662fsparse_float_vector":101,"\u7c7b\u578b\u7684":104,"\u7c7b\u578b\u7b49\u662f\u5426\u5408\u6cd5":111,"\u7c7b\u578b\u8fd8\u662f":121,"\u7c7b\u7684\u5b9a\u4e49\u5199\u5728":111,"\u7c7b\u7684\u5bf9\u8c61":122,"\u7c7b\u7684\u6784\u9020\u51fd\u6570\u548c\u6790\u6784\u51fd\u6570":110,"\u7c7b\u91cd\u5199":111,"\u7c7b\u9700\u8981\u5b9e\u73b0\u521d\u59cb\u5316":110,"\u7cfb\u6570":111,"\u7cfb\u7edf\u4e2d\u7684\u74f6\u9888\u53ef\u80fd\u548c\u7a0b\u5e8f\u5458\u5f00\u53d1\u8fc7\u7a0b\u4e2d\u60f3\u8c61\u7684\u74f6\u9888\u76f8\u53bb\u751a\u8fdc":116,"\u7cfb\u7edf\u4f1a\u5bf9\u65b0\u589e\u7684op\u81ea\u52a8\u7ed1\u5b9apython":111,"\u7cfb\u7edf\u4f1a\u63d0\u4f9b\u4e00\u4e2a\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1":123,"\u7cfb\u7edf\u4f1a\u6839\u636e\u6587\u4ef6\u540d\u81ea\u52a8\u6784\u5efaop\u548c\u5176\u5bf9\u5e94\u7684python\u6269\u5c55":111,"\u7ebf\u7a0bid\u53f7":134,"\u7ec6\u8282\u63cf\u8ff0":133,"\u7ecf\u5e38\u4f1a\u6d88\u8017\u657010gb\u7684\u5185\u5b58\u548c\u6570gb\u7684\u663e\u5b58":94,"\u7ed3\u5c3e":111,"\u7ed3\u675f\u6807\u8bb0":107,"\u7ed3\u675f\u9884\u6d4b\u4e4b\u540e":122,"\u7ed3\u6784\u4f53":[121,122],"\u7ed3\u679c\u4f1a\u5199\u5165\u5f53\u524d\u8fd0\u884c\u76ee\u5f55\u4e0b\u7684":122,"\u7ed3\u679c\u5982\u4e0b\u56fe\u6240\u793a":116,"\u7ed3\u679c\u8f93\u51fa\u5230":108,"\u7ed3\u8bba":65,"\u7ed9":104,"\u7ed9\u4e2a\u7b80\u5355\u7684":109,"\u7ed9\u5b9aencoder\u8f93\u51fa\u548c\u5f53\u524d\u8bcd":106,"\u7edf\u4e00\u7528":33,"\u7ee7\u627f\u81ea":111,"\u7ee7\u627f\u81eaoperatorbas":111,"\u7ef4\u57fa\u767e\u79d1\u4e2d\u6587\u9875\u9762":104,"\u7ef4\u57fa\u767e\u79d1\u9875\u9762":104,"\u7ef4\u7a7a\u95f4":107,"\u7ef4\u7a7a\u95f4\u5b8c\u6210":107,"\u7f13\u5b58\u6c60\u7684\u51cf\u5c0f":94,"\u7f16\u5199":98,"\u7f16\u5199\u4e86\u4e00\u4e2apaddlepaddle\u7684\u7a0b\u5e8f":98,"\u7f16\u5199\u5b8cyaml\u6587\u4ef6\u540e":127,"\u7f16\u5199\u672c\u6b21\u8bad\u7ec3\u7684yaml\u6587\u4ef6":127,"\u7f16\u5199\u6df1\u5ea6\u5b66\u4e60\u7a0b\u5e8f":116,"\u7f16\u5199\u7684\u90e8\u5206":100,"\u7f16\u5199\u96c6\u7fa4\u4efb\u52a1\u63d0\u4ea4\u548c\u7ba1\u7406\u811a\u672c":123,"\u7f16\u53f7\u4ece0\u5f00\u59cb":94,"\u7f16\u7801\u5411\u91cf":107,"\u7f16\u7801\u5668\u8f93\u51fa":107,"\u7f16\u7801\u6e90\u5e8f\u5217":107,"\u7f16\u8bd1":[98,108,109,120,136],"\u7f16\u8bd1\u51fa\u7684paddlepaddle\u9884\u6d4b\u5e93\u548c\u5934\u6587\u4ef6":119,"\u7f16\u8bd1\u540e\u7684\u6587\u4ef6\u5c06\u88ab\u5b58\u50a8\u5728\u5de5\u4f5c\u76ee\u5f55":113,"\u7f16\u8bd1\u548c\u5b89\u88c5paddlepaddl":138,"\u7f16\u8bd1\u548c\u5b89\u88c5paddlepaddle\u9884\u6d4b\u5e93":[136,137],"\u7f16\u8bd1\u5668":[136,137,138],"\u7f16\u8bd1\u5668\u6ca1\u6709":65,"\u7f16\u8bd1\u5668\u8981\u6c42\u7cfb\u7edf\u652f\u6301":136,"\u7f16\u8bd1\u578b\u8bed\u8a00":65,"\u7f16\u8bd1\u5b89\u88c5\u4e0e\u5355\u5143\u6d4b\u8bd5":93,"\u7f16\u8bd1\u5b89\u88c5\u7ed3\u675f\u4e4b\u540e":136,"\u7f16\u8bd1\u5b8c\u6210\u4e4b\u540e":113,"\u7f16\u8bd1\u5b8c\u6210\u540e\u4f1a\u5728build":97,"\u7f16\u8bd1\u5de5\u5177\u94fe":136,"\u7f16\u8bd1\u5de5\u5177\u94fe\u6240\u5728\u7684\u7edd\u5bf9\u8def\u5f84":138,"\u7f16\u8bd1\u6027\u80fd\u4f1a\u548c":116,"\u7f16\u8bd1\u6210\u529f\u540e":111,"\u7f16\u8bd1\u6210\u529f\u540e\u5728":119,"\u7f16\u8bd1\u6210\u52a8\u6001\u5e93":132,"\u7f16\u8bd1\u65f6\u4e00\u5b9a\u8981\u5f00\u542f\u4f18\u5316":116,"\u7f16\u8bd1\u65f6\u4f1a\u628a\u5bf9\u5e94\u7684\u5934\u6587\u4ef6\u548c\u5e93\u653e\u5728":62,"\u7f16\u8bd1\u65f6\u53ef\u80fd\u4f1a\u53bb\u6389\u8c03\u8bd5\u4fe1\u606f":116,"\u7f16\u8bd1\u65f6\u6307\u5b9a":116,"\u7f16\u8bd1\u751f\u6210":113,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684docker\u53d1\u884c\u955c\u50cf":82,"\u7f16\u8bd1\u8fd9\u4e2a\u7248\u672c\u7684python":82,"\u7f16\u8bd1c":66,"\u7f16\u8bd1paddlepaddl":97,"\u7f51\u7edc\u5c42\u53ef\u4ee5\u6709\u591a\u4e2a\u8f93\u5165":110,"\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26\u4e3a":110,"\u7f51\u7edc\u5c42\u7684\u7c7b\u578b":110,"\u7f51\u7edc\u5c42\u7684\u7ec6\u8282\u53ef\u4ee5\u901a\u8fc7\u4e0b\u9762\u8fd9\u4e9b\u4ee3\u7801\u7247\u6bb5\u6765\u6307\u5b9a":110,"\u7f51\u7edc\u5c42\u7684\u8f93\u51fa\u662f\u7ecf\u8fc7\u6fc0\u6d3b\u51fd\u6570\u4e4b\u540e\u7684\u503c":132,"\u7f51\u7edc\u5c42\u914d\u7f6e\u5305\u542b\u4ee5\u4e0b\u51e0\u9879":110,"\u7f51\u7edc\u63a5\u53d7\u4e00\u5e45\u56fe\u7247\u4f5c\u4e3a\u8f93\u5165":122,"\u7f51\u7edc\u7ed3\u6784\u7684\u5e8f\u5217\u5316\u7ed3\u679c\u548c\u6a21\u578b\u53c2\u6570\u5b58\u50a8\u76ee\u5f55":122,"\u7f51\u7edc\u901a\u4fe1":110,"\u7f51\u901f\u6216ssl\u94fe\u63a5\u539f\u56e0":91,"\u800c":[95,107,116],"\u800c\u4e0d\u4f1a\u6539\u53d8\u539f\u6709tensor\u7684shape\u4fe1\u606f":112,"\u800c\u4e0d\u5fc5\u5728\u610fpaddl":66,"\u800c\u4e0d\u652f\u6301pypy\u89e3\u91ca\u5668":65,"\u800c\u4e0d\u662f\u5728layer\u91cc\u5b9e\u73b0":95,"\u800c\u4e0d\u662f\u6e90\u7801\u76ee\u5f55\u91cc":91,"\u800c\u4e0d\u662f\u7279\u5f81\u7684\u96c6\u5408":104,"\u800c\u4e0d\u662f\u76f8\u5bf9":121,"\u800c\u4e0d\u662fc":121,"\u800c\u4e0d\u66b4\u9732\u6982\u5ff5\u7684\u5b9e\u73b0":66,"\u800c\u4e14\u4e2a\u6570\u5e76\u4e0d\u786e\u5b9a":123,"\u800c\u4e14\u5305\u542b\u4e86c":100,"\u800c\u4e14\u5728\u4f20\u8f93\u7684\u8fc7\u7a0b\u4e2d\u4e5f\u53ef\u80fd\u51fa\u73b0\u7f51\u7edc\u4e0d\u7a33\u5b9a\u7684\u60c5\u51b5":48,"\u800c\u4e14cento":100,"\u800c\u4e4b\u524d\u7684\u53c2\u6570\u5c06\u4f1a\u88ab\u5220\u9664":132,"\u800c\u4ece\u5e94\u7528\u7684\u89d2\u5ea6":117,"\u800c\u4f18\u5316\u6027\u80fd\u7684\u9996\u8981\u4efb\u52a1":117,"\u800c\u5176\u4ed6\u5c42\u4f7f\u7528cpu\u8ba1\u7b97":134,"\u800c\u51fa\u73b0\u9636\u6bb5\u6027\u7684\u8fd0\u884c\u505c\u6ede":32,"\u800c\u53cc\u5c42rnn\u662f\u53ef\u4ee5\u5904\u7406\u8fd9\u79cd\u8f93\u5165\u6570\u636e\u7684\u7f51\u7edc\u7ed3\u6784":104,"\u800c\u53cd\u5411\u6d4b\u8bd5\u4e2d":111,"\u800c\u53ea\u9700\u8981\u83b7\u5f97recurr":95,"\u800c\u5728\u8ba1\u7b97\u7ed3\u675f\u4e4b\u540e":112,"\u800c\u5728cpp\u91cc\u9762\u5b9e\u73b0\u8fd9\u4e2ac\u7684\u63a5\u53e3":65,"\u800c\u591a\u8bed\u8a00\u63a5\u53e3\u9700\u8981\u76f4\u63a5\u8bfb\u53d6\u751f\u6210\u7684\u4e8c\u8fdb\u5236":65,"\u800c\u5b89\u88c5\u5305":[91,100],"\u800c\u5b89\u88c5\u5305\u662f":[91,100],"\u800c\u5bf9\u4e8e\u53cc\u5c42\u5e8f\u5217":104,"\u800c\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u5185\u5c42\u7279\u5f81\u6570\u636e\u800c\u8a00":104,"\u800c\u5bf9\u4e8egolang":65,"\u800c\u5bf9\u4e8egolang\u9519\u8bef\u5904\u7406\u5e94\u8be5\u4f7f\u7528\u8fd4\u56de\u503c":65,"\u800c\u5c06\u8fd9\u4e2a\u6bb5\u843d\u7684\u6bcf\u4e00\u53e5\u8bdd\u7528lstm\u7f16\u7801\u6210\u4e00\u4e2a\u5411\u91cf":104,"\u800c\u5f53\u524d\u5df2\u7ecf\u67095":117,"\u800c\u662f\u5c06\u8f93\u5165":[121,122],"\u800c\u662f\u76f4\u63a5\u4ece\u5185\u5b58\u7684\u7f13\u5b58\u91cc\u8bfb\u53d6\u6570\u636e":94,"\u800c\u662f\u76f4\u63a5\u4fee\u6539paddl":66,"\u800c\u662f\u76f4\u63a5\u7528api\u7684\u63a5\u53e3\u8fdc\u7a0b\u8bbf\u95ee":33,"\u800c\u66f4\u6df1\u5165\u7684\u5206\u6790":117,"\u800c\u6709\u4e9b\u53c2\u6570\u9700\u8981\u5728\u96c6\u7fa4\u591a\u673a\u8bad\u7ec3\u4e2d\u4f7f\u7528\u7b49":131,"\u800c\u6e90\u5e8f\u5217\u7684\u7f16\u7801\u5411\u91cf\u53ef\u4ee5\u88ab\u65e0\u8fb9\u754c\u7684memory\u8bbf\u95ee":107,"\u800c\u795e\u7ecf\u7f51\u7edc\u662f\u6211\u4eec\u8981\u642d\u5efa\u7684\u5b9d\u5854":101,"\u800c\u7a00\u758f\u66f4\u65b0\u5728\u53cd\u5411\u4f20\u64ad\u4e4b\u540e\u7684\u6743\u91cd\u66f4\u65b0\u65f6\u8fdb\u884c":134,"\u800c\u8ba1\u7b97\u8fc7\u7a0b\u662f\u7531":112,"\u800c\u8fd9\u4e00\u53e5\u8bdd\u5c31\u53ef\u4ee5\u8868\u793a\u6210\u8fd9\u4e9b\u4f4d\u7f6e\u7684\u6570\u7ec4":104,"\u800c\u8fd9\u6bcf\u4e00\u4e2a\u6570\u7ec4\u5143\u7d20":104,"\u800c\u975e\u76f4\u63a5\u56de\u590d\u7684\u65b9\u5f0f":109,"\u800c\u975e\u9759\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":97,"\u800ceigenvector":112,"\u800crnn\u662f\u6700\u6d41\u884c\u7684\u9009\u62e9":106,"\u800cswig\u53ea\u80fd\u7b80\u5355\u7684\u66b4\u9732c":65,"\u800ctrainer\u9700\u8981\u8bfb\u53d6\u8bad\u7ec3\u6570\u636e\u8fdb\u884c\u8bad\u7ec3":101,"\u800cy_predict\u662f\u63a5\u6536x\u4f5c\u4e3a\u8f93\u5165":101,"\u8054\u901a":123,"\u80fd\u591f\u5904\u7406\u53cc\u5c42\u5e8f\u5217":106,"\u80fd\u591f\u5bf9\u53cc\u5411\u5e8f\u5217\u8fdb\u884c\u5904\u7406\u7684\u6709":106,"\u80fd\u591f\u8bb0\u5f55\u4e0a\u4e00\u4e2asubseq":106,"\u80fd\u591f\u9488\u5bf9cpu\u548cgpu\u7684\u8ba1\u7b97\u505a\u66f4\u591a\u4f18\u5316":95,"\u80fd\u83b7\u53d6":124,"\u811a\u672c":[108,122,136],"\u811a\u672c\u5f00\u59cb\u65f6":127,"\u811a\u672c\u96c6\u6210\u4e86\u5e8f\u5217\u5316\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u7684\u8fc7\u7a0b":122,"\u81ea\u52a8\u5173\u95ed\u5bf9\u5e94\u7684":109,"\u81ea\u52a8\u5730\u5c06\u8fd9\u4e9b\u9009\u9879\u5e94\u7528\u5230":124,"\u81ea\u52a8\u5b8c\u6210\u8fd9\u4e00\u8fc7\u7a0b":106,"\u81ea\u52a8\u6302\u8f7d\u5206\u5e03\u5f0f\u5b58\u50a8\u76ee\u5f55":32,"\u81ea\u52a8\u6784\u5efa\u72ec\u7acb\u5de5\u5177\u94fe":136,"\u81ea\u52a8\u751f\u6210":113,"\u81ea\u52a8\u83b7\u53d6\u4e0a\u4e00\u4e2a\u751f\u6210\u7684\u8bcd":107,"\u81ea\u52a8\u9009\u62e9":137,"\u81ea\u6b64":[136,137],"\u81ea\u7136\u4e5f\u5c31\u6709\u7ba1\u7406\u5458\u6743\u9650":108,"\u81ea\u7136\u8bed\u8a00\u4e2d\u7684\u53e5\u5b50\u662f\u4e00\u4e2a\u5e8f\u5217":121,"\u81ea\u7136\u8bed\u8a00\u4e2d\u7684\u6bb5\u843d\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":121,"\u81ea\u7136\u8bed\u8a00\u5904\u7406\u7b49":134,"\u81f3\u4e8e\u4e3a\u4ec0\u4e48\u9700\u8981c":66,"\u81f3\u5c11\u5305\u542bgcc_3":100,"\u81f3\u5c11\u5305\u542bglibcxx_3":100,"\u81f3\u6b64":[104,109],"\u8212\u9002":104,"\u826f\u597d\u7684\u6587\u6863":65,"\u8282\u70b9":[123,128],"\u8282\u7701\u4e86\u4e0d\u5fc5\u8981\u7684\u64cd\u4f5c":62,"\u82e5":110,"\u82e5\u5728paddlepaddle\u7f16\u8bd1\u65f6":96,"\u82e5\u5e0c\u671b\u5f97\u5230\u6700\u5feb\u7684\u6267\u884c\u901f\u5ea6":137,"\u82e5\u5e0c\u671b\u6700\u5feb\u7684\u6267\u884c\u901f\u5ea6":[136,138],"\u82e5\u5e72\u4e2a\u53e5\u5b50\u6784\u6210\u4e00\u4e2a\u6bb5\u843d":103,"\u82e5\u6709\u4e0d\u4e00\u81f4\u4e4b\u5904":117,"\u82e5\u6709\u5fc5\u8981":110,"\u82e5\u672a\u663e\u5f0f\u6307\u5b9a":137,"\u82e5\u6ca1\u6709\u663e\u5f0f\u8bbe\u7f6e":136,"\u82e5\u73af\u5883\u53d8\u91cf":[136,137,138],"\u82e5\u8981\u5bf9\u8fd9\u51e0\u4e2alayer\u4f7f\u7528dropout":95,"\u82e5\u8f93\u51fa\u662f\u5355\u5c42\u5e8f\u5217":103,"\u82e5\u8f93\u51fa\u662f\u53cc\u5c42\u5e8f\u5217":103,"\u82f1\u6587\u6587\u6863":113,"\u82f1\u6587\u6587\u6863\u76ee\u5f55":113,"\u8303\u56f4":134,"\u83b7\u53d6":109,"\u83b7\u53d6\u53ef\u9009\u7684tag":98,"\u83b7\u53d6\u5f53\u524d\u7cfb\u7edf\u652f\u6301\u7684\u5b89\u88c5\u5305\u683c\u5f0f":100,"\u83b7\u53d6\u5f53\u524d\u7cfb\u7edf\u652f\u6301\u7684python\u5305\u7684\u540e\u7f00":91,"\u83b7\u53d6\u6700\u65b0\u7684\u68c0\u67e5\u70b9\u7684\u6587\u4ef6uuid":32,"\u83b7\u53d6\u6e90\u7801":108,"\u83b7\u53d6\u8f93\u51fa\u65f6":122,"\u83b7\u53d6trainer":127,"\u83b7\u5f97\u53c2\u6570\u5c3a\u5bf8":110,"\u83b7\u5f97\u5728\u6a21\u578b\u914d\u7f6e\u4e2d\u67d0\u4e00\u5c42\u7684name":94,"\u83b7\u5f97\u57fa\u672c\u7684docker\u5b89\u88c5\u548c\u4f7f\u7528\u65b9\u6cd5":98,"\u83b7\u5f97\u5f53\u524dmini":94,"\u83b7\u5f97\u7684\u503c\u7c7b\u578b\u5747\u4e3a":94,"\u83b7\u5f97\u8ba1\u7b97\u7ed3\u679c":122,"\u83b7\u5f97\u8fd9\u4e9b\u8282\u70b9\u7684ip\u5730\u5740":124,"\u83b7\u5f97head\u548cnode\u8282\u70b9\u7684ip\u5730\u5740":128,"\u865a\u62df\u673a\u4e0a":108,"\u867d\u7136\u4e0d\u9f13\u52b1\u8fd9\u6837":66,"\u867d\u7136\u5f02\u6b65sgd\u65b9\u5f0f\u4f1a\u63d0\u9ad8\u53c2\u6570\u66f4\u65b0\u5e76\u884c\u5ea6":123,"\u867d\u7136paddle\u770b\u8d77\u6765\u5305\u542b\u4e86\u4f17\u591a\u53c2\u6570":131,"\u884c":121,"\u884c\u504f\u79fb":121,"\u884c\u53f7":116,"\u8865\u5145\u4e0a\u6b21\u7684commit":109,"\u8868\u660e\u4e86\u8fd9\u4e9b\u884c\u7684\u6807\u53f7":110,"\u8868\u660e\u8fd9\u4e2a\u5c42\u7684\u4e00\u4e2a\u5b9e\u4f8b\u662f\u5426\u9700\u8981\u504f\u7f6e":110,"\u8868\u793a":111,"\u8868\u793a\u4e3adeviceid":134,"\u8868\u793a\u5bf9\u8f93\u5165\u6570\u636e":62,"\u8868\u793a\u5c06\u5916\u5c42\u7684outer_mem\u4f5c\u4e3a\u5185\u5c42memory\u7684\u521d\u59cb\u72b6\u6001":104,"\u8868\u793a\u5f53\u524d\u96c6\u7fa4\u4f5c\u4e1a\u7684\u8282\u70b9":124,"\u8868\u793a\u6570\u636e\u7c7b\u578b":111,"\u8868\u793a\u7684\u504f\u79fb\u662f\u4ee5":121,"\u8868\u793a\u8bbe\u5907\u7c7b\u578b":111,"\u8868\u793a\u8bcd\u8bed\u5728\u8bcd\u5178\u4e2d\u7684\u5e8f\u53f7":121,"\u8868\u793a\u8bfb\u8005\u6240\u4f7f\u7528\u7684docker\u955c\u50cf\u4ed3\u5e93\u5730\u5740":127,"\u8868\u793a\u8fd9\u4e2ajob\u7684\u540d\u5b57":127,"\u8868\u793a\u9700\u8981\u6784\u5efa\u63a8\u7406\u5e93":138,"\u88ab":109,"\u88ab\u5207\u5206\u6210\u591a\u4e2a\u90e8\u5206":123,"\u88ab\u6269\u5c55\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":103,"\u88ab\u653e\u5728":110,"\u88ab\u79f0\u4e3a":107,"\u8981\u4f7f\u7528\u547d\u4ee4\u884c\u5206\u6790\u5de5\u5177":117,"\u8981\u5728\u5df2\u6709\u7684kubernetes\u96c6\u7fa4\u4e0a\u8fdb\u884cpaddlepaddle\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3":127,"\u8981\u6c42\u5355\u5c42\u5e8f\u5217\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee":103,"\u8981\u751f\u6210\u7684\u76ee\u6807\u5e8f\u5217":106,"\u8981\u8c03\u7528":110,"\u89c6\u9891\u7b49":121,"\u89e3\u51b3\u529e\u6cd5\u662f":91,"\u89e3\u51b3\u65b9\u6848\u662f":96,"\u89e3\u6790\u73af\u5883\u53d8\u91cf\u5f97\u5230":127,"\u89e3\u7801\u5668\u4f7f\u7528":107,"\u89e3\u7801\u5668\u57fa\u4e8e\u7f16\u7801\u6e90\u5e8f\u5217\u548c\u6700\u540e\u751f\u6210\u7684\u76ee\u6807\u8bcd\u9884\u6d4b\u4e0b\u4e00\u76ee\u6807\u8bcd":107,"\u89e3\u7801\u5668\u662f\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":107,"\u89e3\u91ca\u578b\u8bed\u8a00\u53ea\u80fd\u8c03\u7528\u52a8\u6001\u5e93":65,"\u89e3\u91ca\u6027\u8bed\u8a00\u5b9e\u9645\u8fd0\u884c\u7684\u4e8c\u8fdb\u5236\u662f\u89e3\u91ca\u5668\u672c\u8eab":65,"\u8ba1\u5212\u5728":[61,62],"\u8ba1\u7b97":[107,123],"\u8ba1\u7b97\u504f\u7f6e\u7684\u68af\u5ea6":110,"\u8ba1\u7b97\u53cd\u5411rnn\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b":107,"\u8ba1\u7b97\u53d8\u6362\u77e9\u9635\u7684\u5927\u5c0f\u548c\u683c\u5f0f":110,"\u8ba1\u7b97\u5f53\u524d\u5c42\u6743\u91cd\u7684\u68af\u5ea6":110,"\u8ba1\u7b97\u6548\u7387\u66f4\u9ad8":95,"\u8ba1\u7b97\u6bcf\u4e2a\u8bcd\u7684\u8bcd\u5411\u91cf":107,"\u8ba1\u7b97\u6fc0\u6d3b\u51fd\u6570\u7684\u68af\u5ea6":110,"\u8ba1\u7b97\u7684\u7ec6\u8282\u5c06\u5728\u4e0b\u9762\u7684\u5c0f\u8282\u7ed9\u51fa":110,"\u8ba1\u7b97\u8282\u70b9":123,"\u8ba1\u7b97\u8282\u70b9\u4e4b\u95f4\u4e5f\u4e0d\u4f1a\u76f8\u4e92\u4f9d\u8d56":123,"\u8ba1\u7b97\u8f6c\u6362\u77e9\u9635\u548c\u8f93\u5165\u7684\u68af\u5ea6":110,"\u8ba1\u7b97\u8f93\u5165\u548c\u53c2\u6570\u7684\u68af\u5ea6":110,"\u8ba1\u7b97\u8f93\u5165\u5c42\u7684\u504f\u5dee":110,"\u8ba1\u7b97\u8f93\u51fa":110,"\u8ba1\u7b97\u8fd9\u4e2a\u6587\u4ef6\u7684md5":32,"\u8ba1\u7b97\u96c6\u7fa4\u901a\u5e38\u7531\u4e00\u7ec4":123,"\u8ba1\u7b97\u9700\u8981\u7684\u6570\u636e\u5b58\u653e\u5728":112,"\u8ba9paddle\u6838\u5fc3\u4e2d":66,"\u8bad\u7ec3":131,"\u8bad\u7ec3\u4e0e\u5e94\u7528":0,"\u8bad\u7ec3\u4efb\u52a1\u7684\u8fd0\u884c\u53ef\u80fd\u4f1a\u5360\u6ee1trainer\u548cparamet":32,"\u8bad\u7ec3\u548c\u7eaf\u4f7f\u7528":82,"\u8bad\u7ec3\u5931\u8d25\u65f6\u53ef\u4ee5\u68c0\u67e5\u9519\u8bef\u65e5\u5fd7":124,"\u8bad\u7ec3\u597d\u4e00\u4e2a\u6df1\u5c42\u795e\u7ecf\u7f51\u7edc\u901a\u5e38\u8981\u8017\u8d39\u975e\u5e38\u957f\u7684\u65f6\u95f4":117,"\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u9ed8\u8ba4\u4fdd\u5b58\u5728\u5f53\u524d\u8fd0\u884c\u76ee\u5f55\u4e0b\u7684":122,"\u8bad\u7ec3\u6570\u636e\u6709\u95ee\u9898":94,"\u8bad\u7ec3\u6570\u636e\u683c\u5f0f\u548c\u8bad\u7ec3\u7a0b\u5e8f\u7684":123,"\u8bad\u7ec3\u65f6":127,"\u8bad\u7ec3\u6a21\u578b\u540e":107,"\u8bad\u7ec3\u6a21\u578b\u6b63\u786e\u6027":82,"\u8bad\u7ec3\u7a0b\u5e8f":123,"\u8bad\u7ec3\u7ed3\u675f\u540e\u67e5\u770b\u8f93\u51fa\u7ed3\u679c":127,"\u8bad\u7ec3\u8282\u70b9\u6570\u91cf":127,"\u8bad\u7ec3\u8bed\u8a00\u6a21\u578b\u8ddd\u79bb":94,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u53c2\u6570\u6216\u8005\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u7684\u68af\u5ea6\u5c3a\u5ea6\u8fc7\u5927":94,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u6d4b\u8bd5test_period":131,"\u8bad\u7ec3\u8fc7\u7a0b\u662f\u5426\u4e3a\u672c\u5730\u6a21\u5f0f":132,"\u8bad\u7ec3\u8fc7\u7a0b\u662f\u5426\u4f7f\u7528gpu":132,"\u8bad\u7ec3\u914d\u7f6e\u4e2d\u7684\u8bbe\u5907\u5c5e\u6027\u5c06\u4f1a\u65e0\u6548":132,"\u8bad\u7ec3dot_period":131,"\u8bb0\u5f55\u4e0b\u6240\u6709\u5931\u8d25\u7684\u4f8b\u5b50":82,"\u8bb0\u5fc6\u6a21\u5757":107,"\u8bbe\u4e3a\u5df2\u90e8\u7f72\u7684\u5de5\u4f5c\u7a7a\u95f4\u76ee\u5f55":124,"\u8bbe\u4e3a\u672c\u5730":124,"\u8bbe\u5b9a":95,"\u8bbe\u7f6e":[66,94,95,97,136,137],"\u8bbe\u7f6e\u4e3a":110,"\u8bbe\u7f6e\u4e3a\u4e0d\u540c\u7684\u503c":95,"\u8bbe\u7f6e\u4e3atrue\u4f7f\u7528\u672c\u5730\u8bad\u7ec3\u6216\u8005\u4f7f\u7528\u96c6\u7fa4\u4e0a\u7684\u4e00\u4e2a\u8282\u70b9":132,"\u8bbe\u7f6e\u4e3atrue\u4f7f\u7528gpu\u6a21\u5f0f":132,"\u8bbe\u7f6e\u4e86\u76f8\u540c\u7684\u53d6\u503c":95,"\u8bbe\u7f6e\u5176\u53c2\u6570\u5c5e\u6027":96,"\u8bbe\u7f6e\u53c2\u6570\u7684\u540d\u5b57":96,"\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570":[94,114],"\u8bbe\u7f6e\u5b66\u4e60\u7387\u8870\u51cf\u56e0\u5b50\u5206\u6bb5\u51fd\u6570":96,"\u8bbe\u7f6e\u5e8f\u5217\u4fe1\u606f\u7684\u63a5\u53e3":121,"\u8bbe\u7f6e\u6210":96,"\u8bbe\u7f6e\u6210\u4e00\u4e2a\u5c0f\u4e00\u4e9b\u7684\u503c":94,"\u8bbe\u7f6e\u8f93\u51fa\u7684\u5c3a\u5bf8":110,"\u8bbe\u7f6e\u8f93\u51fatensor\u7684\u5f62\u72b6":111,"\u8bbe\u7f6e\u9ed8\u8ba4\u8bbe\u5907\u53f7\u4e3a0":134,"\u8bbe\u7f6egpu":132,"\u8bbf\u95ee\u5bf9\u5e94\u7684\u7f51\u5740":116,"\u8bbf\u95eekubernetes\u7684\u63a5\u53e3\u6765\u67e5\u8be2\u6b64job\u5bf9\u5e94\u7684\u6240\u6709pod\u4fe1\u606f":127,"\u8bc4\u5ba1\u4eba\u4e00\u822c\u4e0d\u505a\u8bc4\u5ba1":109,"\u8bc4\u5ba1\u4eba\u7684\u6bcf\u4e2a\u610f\u89c1\u90fd\u5fc5\u987b\u56de\u590d":109,"\u8bc4\u5ba1\u4eba\u9700\u8981\u9010\u4e00\u67e5\u770b\u6bcf\u4e2acommit\u624d\u80fd\u77e5\u9053\u505a\u4e86\u54ea\u4e9b\u4fee\u6539":109,"\u8bc4\u8bba\u6846\u4e2d\u52a0\u4e0a":109,"\u8bc6\u522b\u6570\u5b57":82,"\u8bcd\u5411\u91cf":82,"\u8bd5\u7740\u8ba9\u8f93\u51fa\u7684\u5206\u6790\u6570\u636e\u548c\u7406\u8bba\u503c\u5bf9\u5e94":117,"\u8be5\u53c2\u6570\u5728\u7f51\u7edc\u914d\u7f6e\u7684output":132,"\u8be5\u53c2\u6570\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u81ea\u52a8\u8bbe\u7f6e":132,"\u8be5\u53c2\u6570\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u5b8c\u6210\u8bbe\u7f6e":132,"\u8be5\u53c2\u6570\u5fc5\u987b\u80fd\u88abflag":132,"\u8be5\u53c2\u6570\u6307\u793a\u662f\u5426\u6253\u5370\u65e5\u5fd7\u622a\u65ad\u4fe1\u606f":132,"\u8be5\u53c2\u6570\u6307\u793a\u662f\u5426\u6253\u5370\u9519\u8bef\u622a\u65ad\u65e5\u5fd7":132,"\u8be5\u53c2\u6570\u7528\u4e8e\u6307\u5b9a\u52a8\u6001\u5e93\u8def\u5f84":132,"\u8be5\u53c2\u6570\u7684\u610f\u601d\u662f\u8bad\u7ec3num":132,"\u8be5\u53c2\u6570\u9ed8\u8ba4\u4e3anull":132,"\u8be5\u5c42\u4ec5\u9700\u8981\u8fd9\u4e9b\u975e\u96f6\u6837\u672c\u4f4d\u7f6e\u6240\u5bf9\u5e94\u7684\u53d8\u6362\u77e9\u9635\u7684\u90a3\u4e9b\u884c":110,"\u8be5\u622a\u65ad\u4f1a\u5f71\u54cd":132,"\u8be5\u6279\u6b21\u7684\u8f93\u5165\u4e2d\u4ec5\u6709\u4e00\u4e2a\u5b50\u96c6\u662f\u975e\u96f6\u7684":110,"\u8be5\u63a5\u53e3\u53ef\u7528\u4e8e\u9884\u6d4b\u548c\u5b9a\u5236\u5316\u8bad\u7ec3":97,"\u8be5\u63a5\u53e3\u63a5\u53d7\u4e24\u4e2a\u53c2\u6570":122,"\u8be5\u6570\u76ee\u662f\u63d0\u524d\u5b9a\u4e49\u597d\u7684":132,"\u8be5\u6587\u4ef6\u5bf9\u76f8\u5173gemm":61,"\u8be5\u65f6\u95f4\u53bb\u9664\u6389\u672c\u51fd\u6570\u8c03\u7528\u5176\u4ed6\u51fd\u6570\u7684\u65f6\u95f4":116,"\u8be5\u6a21\u578b\u7684\u8bf4\u660e\u5982\u4e0b\u56fe\u6240\u793a":107,"\u8be5\u7c7b\u7684":111,"\u8be5\u7c7b\u7684\u5b9e\u73b0\u7ec6\u8282\u5728":110,"\u8be5\u7c7b\u7ee7\u627f\u4e8epaddlepaddle\u7684\u57fa\u7c7b":62,"\u8be5\u811a\u672c\u4e2d\u8bb0\u5f55\u4e86\u4ea4\u53c9\u7f16\u8bd1android\u7248paddlepaddle\u5e93\u5e38\u7528\u7684cmake\u914d\u7f6e":136,"\u8be5\u8bed\u53e5\u4f1a\u4e3a\u6bcf\u4e2a\u5c42\u521d\u59cb\u5316\u5176\u6240\u9700\u8981\u7684\u53d8\u91cf\u548c\u8fde\u63a5":110,"\u8be5layer\u662f\u901a\u8fc7\u53c2\u6570":95,"\u8be6\u7ec6\u4ecb\u7ecd\u53ef\u4ee5\u53c2\u8003":104,"\u8be6\u7ec6\u4ecb\u7ecd\u8bf7\u53c2\u8003\u8bbe\u8ba1\u6587\u6863":111,"\u8be6\u7ec6\u4fe1\u606f\u8bf7\u68c0\u67e5":124,"\u8be6\u7ec6\u53c2\u8003":97,"\u8be6\u7ec6\u53ef\u53c2\u8003":109,"\u8be6\u7ec6\u6587\u6863\u53c2\u8003":94,"\u8be6\u7ec6\u7684cmake\u4f7f\u7528\u65b9\u6cd5\u53ef\u4ee5\u53c2\u8003":97,"\u8be6\u7ec6\u89c1":103,"\u8be6\u7ec6\u8bbe\u8ba1":48,"\u8bed\u610f\u89d2\u8272\u6807\u6ce8":82,"\u8bed\u8a00\u91cd\u6784\u540e\u7684":116,"\u8bf4\u660e":[32,97,100,121],"\u8bf4\u660e\u63d0\u4ea4\u7684\u4ee3\u7801\u5b58\u5728\u95ee\u9898":109,"\u8bf4\u660e\u8fd9\u4e2a\u5c42\u7684\u8f93\u5165":110,"\u8bf7\u4e0d\u8981\u521b\u5efa\u7a7a\u7684":111,"\u8bf7\u4e0d\u8981\u5fd8\u8bb0\u63d0\u524d\u5728\u7269\u7406\u673a\u4e0a\u5b89\u88c5gpu\u6700\u65b0\u9a71\u52a8":98,"\u8bf7\u4fdd\u8bc1travi":109,"\u8bf7\u5148\u4f7f\u7528":[136,137,138],"\u8bf7\u53c2\u7167\u7f51\u7edc\u914d\u7f6e\u7684\u6587\u6863\u4e86\u89e3\u66f4\u8be6\u7ec6\u7684\u4fe1\u606f":134,"\u8bf7\u53c2\u8003":[66,91,94,101,104,110,111,122],"\u8bf7\u53c2\u8003\u6b64":122,"\u8bf7\u53c2\u89c1":109,"\u8bf7\u53c2\u9605":107,"\u8bf7\u5728\u8be5pull":109,"\u8bf7\u5728\u8f93\u5165\u65f6\u8fdb\u884c\u5408\u6cd5\u6027\u68c0\u67e5":121,"\u8bf7\u60a8\u6bcf\u6b21\u63d0\u4ea4\u4ee3\u7801\u65f6":109,"\u8bf7\u60a8\u9075\u5b88\u4ee5\u4e0b\u7ea6\u5b9a":109,"\u8bf7\u6307\u5b9a\u7684paddlepaddle\u5de5\u4f5c\u76ee\u5f55\u7ed9\u73af\u5883\u53d8\u91cf":113,"\u8bf7\u6307\u5b9a\u8be5\u76ee\u5f55":132,"\u8bf7\u663e\u793a\u5730\u8c03\u7528":111,"\u8bf7\u68c0\u67e5python\u7248\u672c\u662f\u5426\u4e3a2":100,"\u8bf7\u6ce8\u610f":[107,111,126],"\u8bf7\u6ce8\u610f\u662f\u5426\u9700\u8981\u4fee\u6539\u7f51\u7edc\u7ed3\u6784":122,"\u8bf7\u6ce8\u610f\u6bcf\u4e2acommit\u7684\u540d\u79f0":109,"\u8bf7\u6ce8\u610f\u8fd9\u4e2a\u547d\u4ee4\u7ed3\u5c3e\u5904\u7684":108,"\u8bf7\u6ce8\u610fcommit\u7684\u6570\u91cf":109,"\u8bf7\u76f4\u63a5\u586b\u51450":96,"\u8bf7\u770b\u4e0b\u9762\u7684\u4f8b\u5b50":134,"\u8bf7\u786e\u4fdd":109,"\u8bf7\u7ed9\u51fa\u603b\u4f53\u7684\u4fee\u6539\u60c5\u51b5":109,"\u8bf7\u7ed9\u51fa\u60a8\u81ea\u5df1\u7684\u53cd\u9a73\u7406\u7531":109,"\u8bf7\u9009\u62e9\u5408\u9002\u7684\u8bcd\u6c47":109,"\u8bf7\u9009\u62e9\u6b63\u786e\u7684\u7248\u672c":91,"\u8bf7\u9075\u5b88":109,"\u8bf7\u91c7\u7528":109,"\u8bf8\u5982\u56fe\u50cf\u5206\u7c7b":134,"\u8bfb\u53d6\u9700\u8981\u7684\u7ed3\u679c\u5373\u53ef":121,"\u8bfb\u53d6volume\u4e2d\u7684\u6570\u636e\u8fdb\u884c\u8fd9\u6b21\u5206\u5e03\u5f0f\u8bad\u7ec3":127,"\u8bfb\u8005\u53ef\u4ee5\u67e5\u770b":127,"\u8bfb\u8005\u9700\u8981\u66ff\u6362\u6210\u81ea\u5df1\u4f7f\u7528\u7684\u4ed3\u5e93\u5730\u5740":127,"\u8c03\u7528":[110,122,137],"\u8c03\u7528\u5bf9\u5e94":112,"\u8c03\u7528\u65b9\u6cd5\u89c1c":[136,137],"\u8c03\u7528\u7528":116,"\u8c03\u7528\u7684\u4e00\u4e9b\u7528\u6237\u5b9a\u4e49\u7684\u5e93\u51fd\u6570":123,"\u8c03\u7528\u7684\u51fd\u6570\u662f\u5426\u652f\u6301\u4e0d\u540c\u8bbe\u5907":111,"\u8c03\u7528\u8be5\u51fd\u6570\u540e":110,"\u8c03\u7528c":[121,122],"\u8d21\u732e\u6587\u6863":113,"\u8d77":104,"\u8d77\u59cb\u5b58\u50a8\u5730\u5740\u4ee5\u6570\u636e\u7684\u5b58\u50a8\u5927\u5c0f\u4e3a\u5355\u4f4d\u7684\u504f\u79fb":121,"\u8df3\u8f6c\u5230":109,"\u8df3\u8fc7":94,"\u8f6c\u5316\u65b9\u6cd5\u5728\u76f8\u5e94\u7684\u9886\u57df\u90fd\u6709\u901a\u7528\u89e3\u51b3\u65b9\u6848":121,"\u8f6c\u6362\u5185\u5b58\u7684\u5de5\u4f5c":62,"\u8f6c\u6362\u5197\u4f59":61,"\u8f6c\u6362\u51fd\u6570":62,"\u8f6c\u6362\u751f\u6210\u7684\u6587\u4ef6\u540d\u4f1a\u662f\u4ee5\u4e0b\u683c\u5f0f":33,"\u8f6c\u6362\u8017\u65f6":61,"\u8f83":104,"\u8f93\u5165":[103,107,120,122],"\u8f93\u5165\u4e86\u6027\u80fd\u5206\u6790\u7ed3\u679c":116,"\u8f93\u5165\u548c\u8f93\u51fa\u90fd\u662f\u5355\u5c42\u5e8f\u5217":106,"\u8f93\u5165\u548c\u8f93\u51fa\u90fd\u662f\u53cc\u5c42\u5e8f\u5217":106,"\u8f93\u5165\u5e8f\u5217\u4e2d\u5143\u7d20\u7684\u603b\u6570":94,"\u8f93\u5165\u6570\u636e\u4e3a\u4e00\u4e2a\u5b8c\u6574\u7684\u65f6\u95f4\u5e8f\u5217":104,"\u8f93\u5165\u6570\u636e\u4e3a\u5728\u5355\u5c42rnn\u6570\u636e\u91cc\u9762":104,"\u8f93\u5165\u6570\u636e\u53ef\u5206\u4e3a":121,"\u8f93\u5165\u6570\u636e\u6574\u4f53\u4e0a\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":104,"\u8f93\u5165\u6570\u636e\u7684\u5b57\u5178\u7ef4\u6570\u662f1\u767e\u4e07":134,"\u8f93\u5165\u6570\u636e\u7c7b\u578b":121,"\u8f93\u5165\u662f\u5426\u662f\u8f6c\u7f6e\u7684":110,"\u8f93\u5165\u662f\u7531\u4e00\u4e2alist\u4e2d\u7684\u7f51\u7edc\u5c42\u5b9e\u4f8b\u7684\u540d\u5b57\u7ec4\u6210\u7684":110,"\u8f93\u5165\u68af\u5ea6":62,"\u8f93\u5165\u7684\u540d\u5b57":110,"\u8f93\u5165\u7684\u5927\u5c0f":110,"\u8f93\u5165\u7684\u7c7b\u578b":110,"\u8f93\u5165\u9700\u8981\u9884\u6d4b\u7684\u5411\u91cf\u7ec4":101,"\u8f93\u51fa":[103,107,111,122],"\u8f93\u51fa\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":106,"\u8f93\u51fa\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":106,"\u8f93\u51fa\u4fe1\u606f\u6709\u673a\u5730\u7ec4\u7ec7\u5728\u4e00\u8d77":121,"\u8f93\u51fa\u51fd\u6570":107,"\u8f93\u51fa\u521b\u5efa":[121,122],"\u8f93\u51fa\u5e8f\u5217\u7684\u7c7b\u578b":103,"\u8f93\u51fa\u5e8f\u5217\u7684\u8bcd\u8bed\u6570\u548c\u8f93\u5165\u5e8f\u5217\u4e00\u81f4":106,"\u8f93\u51fa\u6240\u643a\u5e26\u7684\u5e8f\u5217\u4fe1\u606f":121,"\u8f93\u51fa\u6570\u636e\u548c\u8f93\u51fa\u68af\u5ea6":62,"\u8f93\u51fa\u6570\u636e\u548c\u8f93\u51fa\u68af\u5ea6\u7684\u8f6c\u6362":62,"\u8f93\u51fa\u6570\u636e\u662f\u5728\u4e0a\u6587\u4ecb\u7ecd\u7684":121,"\u8f93\u51fa\u6570\u636e\u6709\u673a\u5730\u7ec4\u7ec7\u5728\u4e00\u8d77":122,"\u8f93\u51fa\u6570\u636e\u7ec4\u7ec7":[120,122],"\u8f93\u51fa\u7531":121,"\u8f93\u51fa\u7684\u5e8f\u5217\u4fe1\u606f":121,"\u8f93\u51fa\u7684\u68af\u5ea6":132,"\u8f93\u51fa\u7ed3\u679c\u53ef\u80fd\u4f1a\u968f\u7740\u5bb9\u5668\u7684\u6d88\u8017\u800c\u88ab\u5220\u9664":126,"\u8f93\u51fa\u88ab\u7ec4\u7ec7\u4e3a":121,"\u8f93\u51fa\u88ab\u7ec4\u7ec7\u4e3a\u4e00\u4e2a":121,"\u8f93\u51fa\u90fd\u4f1a\u5bf9\u5e94\u6709\u81ea\u5df1\u7684":[121,122],"\u8fbe\u5230\u5bb9\u707e\u7684\u76ee\u7684":32,"\u8fc7\u4e86\u4e00\u4e2a\u5f88\u7b80\u5355\u7684recurrent_group":104,"\u8fc7\u5b8c\u6240\u6709\u8bad\u7ec3\u6570\u636e\u5373\u4e3a\u4e00\u4e2apass":94,"\u8fc7\u7a0b\u4e2d\u6240\u6709\u65f6\u95f4\u6b65":61,"\u8fd0\u884c":122,"\u8fd0\u884c\u4e00\u4e2a":108,"\u8fd0\u884c\u4e0b\u9762\u547d\u4ee4\u53ef\u4ee5\u8fdb\u884c\u7f16\u8bd1":111,"\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5":108,"\u8fd0\u884c\u5355\u5143\u6d4b\u8bd5\u6d4b\u65f6\u9700\u8981\u7f16\u8bd1\u6574\u4e2a\u5de5\u7a0b":111,"\u8fd0\u884c\u5931\u8d25":134,"\u8fd0\u884c\u5b8c\u6210\u540e":124,"\u8fd0\u884c\u5b8c\u6bd5\u540e\u8f93\u51fa":116,"\u8fd0\u884c\u6027\u80fd\u5206\u6790\u7684\u65f6\u5019":116,"\u8fd0\u884c\u65e5\u5fd7":124,"\u8fd0\u884c\u65f6\u4e5f\u53ef\u80fd\u56e0\u4e3a\u591a\u7ebf\u7a0b\u4ea7\u751f\u6df7\u4e71\u4e0d\u53ef\u8bfb\u7684\u6027\u80fd\u5206\u6790\u7ed3\u679c":116,"\u8fd0\u884c\u65f6\u4f1a\u81ea\u52a8\u627e\u5230\u7cfb\u7edf\u4e2d\u5b89\u88c5\u7684cuda\u548ccudnn\u5e93\u8fdb\u884c\u7f16\u8bd1\u548c\u6267\u884c":97,"\u8fd0\u884c\u65f6c":122,"\u8fd0\u884c\u7684\u4e00\u4e9b\u53c2\u6570\u901a\u8fc7\u8fd9\u79cd\u65b9\u5f0f\u4f20\u9012\u5230\u5bb9\u5668\u5185":127,"\u8fd0\u884c\u8be5\u7f16\u8bd1\u5de5\u5177\u94fe\u9700\u8981\u4e00\u53f0":138,"\u8fd1":104,"\u8fd1\u671f\u76ee\u6807":62,"\u8fd4\u56de":[3,4,5,9,10,11,17,18,19,23,25],"\u8fd4\u56de\u7684\u662f":101,"\u8fd4\u56de\u7b2c\u4e8c\u6b65":82,"\u8fd4\u56de\u7b2ci\u4e2a\u8f93\u5165\u77e9\u9635":110,"\u8fd4\u56de\u7c7b\u578b":[3,4,5,9,10,11,18,19,25],"\u8fd4\u56depython\u7aef\u7684\u8ba1\u7b97\u7ed3\u679c":111,"\u8fd8\u4f1a":104,"\u8fd8\u4f1a\u4e0b\u8f7dmkl":97,"\u8fd8\u4f1a\u5f3a\u5236\u8bbe\u7f6e\u4e00\u4e9bpaddlepaddle\u53c2\u6570\u7684\u503c":136,"\u8fd8\u4f1a\u8f93\u51fa\u4e00\u4e2a":109,"\u8fd8\u53ef\u4ee5\u901a\u8fc7\u51cf\u5c0f\u5b66\u4e60\u7387\u6216\u8005\u5bf9\u6570\u636e\u8fdb\u884c\u5f52\u4e00\u5316\u5904\u7406\u6765\u89e3\u51b3\u8fd9\u7c7b\u95ee\u9898":94,"\u8fd8\u662f":104,"\u8fd8\u662f\u4ece":33,"\u8fd8\u662f\u865a\u62df\u673a":108,"\u8fd8\u6709":104,"\u8fd8\u9700\u8981\u5728\u8282\u70b9\u4e0a\u5b89\u88c5\u5bf9\u5e94\u7684gpu\u9a71\u52a8\u4ee5\u53cacuda":123,"\u8fd8\u9700\u8981\u91cd\u5199":111,"\u8fd9":[94,104],"\u8fd98\u79cdlearning_rate_schedule\u53ca\u5176\u5bf9\u5e94\u5b66\u4e60\u7387\u8ba1\u7b97\u65b9\u5f0f\u5982\u4e0b":96,"\u8fd9\u4e00\u4e2a\u5e93":119,"\u8fd9\u4e00\u5757\u7684\u8017\u65f6\u6bd4\u4f8b\u771f\u7684\u592a\u9ad8":117,"\u8fd9\u4e00\u5c42\u8fdb\u884c\u5c01\u88c5":66,"\u8fd9\u4e00\u6570\u636e\u683c\u5f0f\u7684\u8f6c\u6362\u64cd\u4f5c":61,"\u8fd9\u4e00\u6982\u5ff5\u4e0d\u518d\u7410\u788e":66,"\u8fd9\u4e00\u8282\u5bf9\u56fe1\u4e2d\u9884\u6d4b\u4ee3\u7801\u7f16\u5199\u76845\u4e2a\u6b65\u9aa4\u8fdb\u884c\u4ecb\u7ecd\u548c\u8bf4\u660e":122,"\u8fd9\u4e00\u8ba1\u7b97\u5355\u5143":95,"\u8fd9\u4e00\u8fc7\u7a0b\u5bf9\u7528\u6237\u662f\u5b8c\u5168\u900f\u660e\u7684":106,"\u8fd9\u4e09\u4e2a\u5206\u652f":82,"\u8fd9\u4e24\u4e2a\u6307\u6807\u4ee3\u8868\u4e86\u67d0\u4e00\u4e2a\u51fd\u6570\u771f\u5b9e\u7684\u8fd0\u884c\u65f6\u95f4":116,"\u8fd9\u4e2a":[100,104,108],"\u8fd9\u4e2a\u4efb\u52a1\u7684\u914d\u7f6e\u4e3a":94,"\u8fd9\u4e2a\u4efb\u52a1\u7684dataprovider\u4e3a":94,"\u8fd9\u4e2a\u4f8b\u5b50\u6709\u4e24\u5904\u4e0d\u540c":111,"\u8fd9\u4e2a\u51fd\u6570\u672c\u8eab\u4f1a\u5728\u8ba1\u7b97\u524d\u5c06\u539f\u6570\u636e\u8f6c\u6362\u4e3a\u66f4\u9002\u5408\u82f1\u7279\u5c14\u5e73\u53f0\u7684\u5185\u90e8\u683c\u5f0f":61,"\u8fd9\u4e2a\u51fd\u6570\u7684":107,"\u8fd9\u4e2a\u51fd\u6570\u8fdb\u884c\u53d8\u6362":104,"\u8fd9\u4e2a\u51fd\u6570\u9700\u8981\u8bbe\u7f6e":107,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u7684\u8fde\u63a5\u53c2\u6570\u4e0epaddle\u7684\u5176\u4ed6\u4e8c\u8fdb\u5236":66,"\u8fd9\u4e2a\u53c2\u6570\u4e5f\u4e0d\u4f1a\u4e00\u5e76\u5220\u9664":66,"\u8fd9\u4e2a\u5730\u5740\u6765\u8868\u793a\u6b64\u6b65\u9aa4\u6240\u6784\u5efa\u51fa\u7684\u955c\u50cf":127,"\u8fd9\u4e2a\u57fa\u7c7b":110,"\u8fd9\u4e2a\u5934\u6587\u4ef6\u4e0d\u5047\u8bbe\u5176\u4ed6\u6587\u4ef6\u7684\u5f15\u7528\u987a\u5e8f":66,"\u8fd9\u4e2a\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20\u53c8\u662f\u4e00\u4e2a\u5e8f\u5217":106,"\u8fd9\u4e2a\u60c5\u51b5\u4e0b\u6240\u6709\u7684\u6587\u4ef6\u4f1a\u5b58\u5728\u6574\u7406\u8fc7\u7684\u7684\u6587\u4ef6\u76ee\u5f55":113,"\u8fd9\u4e2a\u63a5\u53e3\u9700\u8981\u505a\u5230":65,"\u8fd9\u4e2a\u6570\u636e\u4e5f\u88ab\u5355\u5c42rnn\u7f51\u7edc\u76f4\u63a5\u4f7f\u7528":104,"\u8fd9\u4e2a\u6587\u4ef6\u5177\u6709\u72ec\u7279\u7684\u8bed\u6cd5":65,"\u8fd9\u4e2a\u662f\u76ee\u524d\u63a8\u8350\u7684\u4f7f\u7528\u65b9\u6cd5":113,"\u8fd9\u4e2a\u73af\u5883\u53d8\u91cf\u5173\u95edopenmp\u4f18\u5316":116,"\u8fd9\u4e2a\u76ee\u5f55\u4e2d\u9664\u4e86":66,"\u8fd9\u4e2a\u793a\u4f8b":122,"\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u5355\u5143\u5c31\u53ebmemori":104,"\u8fd9\u4e2a\u7c7b\u7684\u53c2\u6570\u5305\u62ec":110,"\u8fd9\u4e2a\u7c7b\u9700\u8981\u7ee7\u627f":110,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u4e2d\u7684\u53e6\u4e00\u4e2a\u9879\u76ee\u662f":66,"\u8fd9\u4e2a\u7ed3\u6784\u4f53\u5305\u542b\u4e24\u4e2a\u9879\u76ee":66,"\u8fd9\u4e2a\u811a\u672c\u8c03\u7528":108,"\u8fd9\u4e2a\u8f93\u5165\u4e0d\u53c2\u4e0e":111,"\u8fd9\u4e2a\u8fc7\u7a0b\u5bf9\u7528\u6237\u4e5f\u662f\u900f\u660e\u7684":106,"\u8fd9\u4e2a\u8fc7\u7a0b\u9664\u4e86\u7f16\u8bd1paddlepaddle\u4e3a":109,"\u8fd9\u4e2a\u9009\u62e9":[61,62],"\u8fd9\u4e2a\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u751f\u6210\u4e00\u7cfb\u5217\u6743\u91cd":107,"\u8fd9\u4e2a\u9759\u6001\u5e93\u5305\u542b\u4e86paddle\u7684\u5168\u90e8\u7b26\u53f7":66,"\u8fd9\u4e2ainstance\u53ef\u4ee5\u662f\u5355\u4e2a\u503c":33,"\u8fd9\u4e2aissu":108,"\u8fd9\u4e2ajob\u624d\u7b97\u6210\u529f\u7ed3\u675f":127,"\u8fd9\u4e2alayer\u7684\u8f93\u51fa\u4f1a\u4f5c\u4e3a\u6574\u4e2a":106,"\u8fd9\u4e5f\u4f1a\u6781\u5927\u51cf\u5c11\u6570\u636e\u8bfb\u5165\u7684\u8017\u65f6":94,"\u8fd9\u4e9b\u4f1a\u5728":[61,62],"\u8fd9\u4e9b\u4f8b\u5b50\u90fd\u53ef\u4ee5\u5728":123,"\u8fd9\u4e9b\u51fd\u6570\u4f1a\u5c06\u5bf9\u5e94\u5185\u5bb9\u6dfb\u52a0\u5230":111,"\u8fd9\u4e9b\u51fd\u6570\u4f1a\u6839\u636e\u8f93\u5165\u53c2\u6570\u91cd\u65b0\u8bbe\u7f6e\u5185\u90e8\u548c\u5916\u90e8\u5b58\u50a8":62,"\u8fd9\u4e9b\u5206\u5e03\u5f0f\u5b58\u50a8\u670d\u52a1\u901a\u5e38\u4f1a\u628a\u6570\u636e\u5207\u5272\u6210\u591a\u4e2a\u5206\u7247\u5206\u5e03\u5f0f\u7684\u5b58\u50a8\u5728\u591a\u4e2a\u8282\u70b9\u4e4b\u4e0a":33,"\u8fd9\u4e9b\u53c2\u6570\u53ef\u4ee5\u901a\u8fc7":123,"\u8fd9\u4e9b\u53c2\u6570\u7684\u5177\u4f53\u63cf\u8ff0":127,"\u8fd9\u4e9b\u540d\u5b57\u5fc5\u987b\u8981\u5199\u5bf9":110,"\u8fd9\u4e9b\u6570\u636e\u4f1a\u88ab\u7528\u6765\u66f4\u65b0\u53c2\u6570":94,"\u8fd9\u4e9b\u6570\u636e\u4f7f\u7528\u7684\u5185\u5b58\u4e3b\u8981\u548c\u4e24\u4e2a\u53c2\u6570\u6709\u5173\u7cfb":94,"\u8fd9\u4e9b\u7279\u5f81\u6570\u636e\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u6709\u610f\u4e49\u7684":104,"\u8fd9\u4e9b\u955c\u50cf\u4e5f\u53ef\u4ee5\u4ece":82,"\u8fd9\u4efd\u6559\u7a0b\u5c55\u793a\u4e86\u5982\u4f55\u5728paddlepaddle\u4e2d\u5b9e\u73b0\u4e00\u4e2a\u81ea\u5b9a\u4e49\u7684\u7f51\u7edc\u5c42":110,"\u8fd9\u4f1a\u63d0\u793a\u5f53\u524d\u76ee\u5f55\u7684\u4e00\u4e9b\u53d8\u5316":109,"\u8fd9\u4f1a\u7ed9\u8bc4\u5ba1\u4eba\u5e26\u6765\u5f88\u5927\u56f0\u6270":109,"\u8fd9\u4f1a\u81ea\u52a8\u8fdb\u884c\u7f51\u7edc\u914d\u7f6e\u4e2d\u58f0\u660e\u7684\u6fc0\u6d3b\u64cd\u4f5c":110,"\u8fd9\u4fbf\u662f\u4e00\u79cd\u53cc\u5c42rnn\u7684\u8f93\u5165\u6570\u636e":104,"\u8fd9\u51e0\u4e2a\u7f16\u8bd1\u9009\u9879\u7684\u8bbe\u7f6e":97,"\u8fd9\u53e5\u8868\u793a\u4f7f\u7528\u57fa\u7c7b":111,"\u8fd9\u53ef\u4ee5\u5e2e\u60a8\u7701\u6389\u82b1\u4e00\u5c0f\u65f6\u5b89\u88c5\u548c\u914d\u7f6e\u5404\u79cd\u5f00\u53d1\u5de5\u5177":108,"\u8fd9\u53ef\u4ee5\u8ba9\u5176\u4ed6\u4eba\u77e5\u9053\u8fd9\u6b21\u63d0\u4ea4\u505a\u4e86\u54ea\u4e9b\u6539\u53d8":109,"\u8fd9\u53ef\u4ee5\u901a\u8fc7":109,"\u8fd9\u548c\u5355\u5c42rnn\u7684\u914d\u7f6e\u662f\u7b49\u4ef7\u7684":104,"\u8fd9\u56db\u4e2a\u5e8f\u5217\u53c8\u5206\u522b\u542b\u67093":121,"\u8fd9\u56db\u6761\u6570\u636e\u540c\u65f6\u5904\u7406\u7684\u53e5\u5b50\u6570\u91cf\u4e3a":104,"\u8fd9\u5728\u6784\u9020\u975e\u5e38\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u65f6\u662f\u6709\u7528\u7684":107,"\u8fd9\u5bf9\u4e8e\u901a\u5e38\u7684java\u7684\u5f00\u53d1\u8005\u6765\u8bf4":65,"\u8fd9\u5c06\u4f1a\u5bfc\u81f4\u5355\u5143\u6d4b\u8bd5\u51fa\u9519":111,"\u8fd9\u5c06\u4f1a\u5bfc\u81f4\u7f16\u8bd1\u51fa\u9519":111,"\u8fd9\u610f\u5473\u7740":107,"\u8fd9\u610f\u5473\u7740\u9664\u4e86\u6307\u5b9adevic":134,"\u8fd9\u65f6":[94,122],"\u8fd9\u65f6\u5728\u4f7f\u7528":96,"\u8fd9\u65f6\u7684":121,"\u8fd9\u65f6\u7684\u9700\u8981\u540c\u65f6\u63d0\u4f9b":121,"\u8fd9\u65f6\u884c\u504f\u79fb\u548c\u5217\u53f7\u6307\u5b9a\u7684\u5143\u7d20\u9ed8\u8ba4\u5176\u503c\u4e3a1":121,"\u8fd9\u65f6\u8fdb\u884c\u77e9\u9635\u4e58\u6cd5\u8fd0\u7b97\u5c31\u53ef\u80fd\u5bfc\u81f4\u6d6e\u70b9\u6570\u6ea2\u51fa":94,"\u8fd9\u65f6\u9700\u8981\u8c03\u7528\u521b\u5efa\u5e8f\u5217\u4fe1\u606f\u548c\u4e3a":121,"\u8fd9\u662f\u4e00\u79cd\u6309\u5df2\u8bad\u7ec3\u6837\u672c\u6570\u5206\u6bb5\u53d6\u503c\u7684\u5b66\u4e60\u7387\u9000\u706b\u65b9\u6cd5":96,"\u8fd9\u662f\u4e00\u79cd\u6309\u5df2\u8bad\u7ec3pass\u6570\u5206\u6bb5\u53d6\u503c\u7684\u5b66\u4e60\u7387\u9000\u706b\u65b9\u6cd5":96,"\u8fd9\u662f\u4e00\u79cd\u975e\u5e38\u7075\u6d3b\u7684\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f":103,"\u8fd9\u662f\u56e0\u4e3a":65,"\u8fd9\u662f\u5f00\u6e90\u793e\u533a\u7684\u57fa\u672c\u793c\u8c8c":109,"\u8fd9\u662f\u666e\u901a\u7684\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u7684dataprovider\u4ee3\u7801":104,"\u8fd9\u662f\u76ee\u524dcmake\u5bfb\u627epython\u7684\u903b\u8f91\u5b58\u5728\u7f3a\u9677":91,"\u8fd9\u6837":[66,123],"\u8fd9\u6837\u4e0b\u4e00\u4e2acpu":62,"\u8fd9\u6837\u4fdd\u5b58\u5728\u5206\u5e03\u5f0f\u5b58\u50a8\u4e2d\u7684\u6570\u636e\u53ef\u4ee5\u88ab\u96c6\u7fa4\u4e2d\u7684\u6bcf\u4e2a\u8282\u70b9\u8bfb\u53d6\u5230":123,"\u8fd9\u6837\u4fdd\u8bc1":82,"\u8fd9\u6837\u4fdd\u8bc1\u8fd0\u884c\u7ed3\u675f\u4e4b\u540e\u7684":108,"\u8fd9\u6837\u505a\u53ef\u4ee5\u6781\u5927\u7684\u51cf\u5c11\u5185\u5b58\u5360\u7528":94,"\u8fd9\u6837\u53ef\u4ee5\u514d\u53bb\u5355\u72ec\u5b89\u88c5\u7f16\u8bd1\u4f9d\u8d56\u7684\u6b65\u9aa4":97,"\u8fd9\u6837\u53ef\u4ee5\u51cf\u5c0fgpu\u5185\u5b58":134,"\u8fd9\u6837\u5982\u679c\u9047\u5230\u95ee\u9898":108,"\u8fd9\u6837\u5bb9\u5668\u7684":127,"\u8fd9\u6837\u5c31\u53ef\u4ee5\u5728\u4e91\u7aef\u6267\u884c\u591a\u79cd\u6570\u636e\u7c7b\u8ba1\u7b97\u4efb\u52a1":33,"\u8fd9\u6837\u5df2\u7ecf\u4f20\u8f93\u6210\u529f\u7684\u90e8\u5206\u5c31\u4e0d\u7528\u91cd\u65b0\u4f20\u8f93\u4e86":48,"\u8fd9\u6837\u5e26\u6765\u7684\u597d\u5904\u5c31\u662f\u4e0d\u9700\u8981\u4e00\u76f4\u6e05\u7a7amemori":62,"\u8fd9\u6837\u5f53\u8be5pull":109,"\u8fd9\u6837\u65e2\u4f7f\u5f97\u6700\u7ec8\u4fdd\u5b58\u7684\u53c2\u6570\u683c\u5f0f\u4e0epaddlepaddle\u4e00\u81f4":62,"\u8fd9\u6837\u6781\u5927\u5730\u63d0\u9ad8\u4e86\u8ba1\u7b97\u7684\u5e76\u884c\u6027":123,"\u8fd9\u6837\u7684\u88c5\u9970\u5668":110,"\u8fd9\u6837\u7684\u8bdd":126,"\u8fd9\u6837\u8bad\u7ec3\u6587\u4ef6\u7684\u4e2a\u6570\u4f1a\u6bd4\u8f83\u591a":123,"\u8fd9\u6b63\u662f\u5b83\u4eec\u901f\u5ea6\u5feb\u7684\u539f\u56e0":117,"\u8fd9\u7528\u4e8e\u5728\u591a\u7ebf\u7a0b\u548c\u591a\u673a\u4e0a\u66f4\u65b0\u53c2\u6570":110,"\u8fd9\u79cd\u521d\u59cb\u5316\u65b9\u5f0f\u5728\u4e00\u822c\u60c5\u51b5\u4e0b\u4e0d\u4f1a\u4ea7\u751f\u5f88\u5dee\u7684\u7ed3\u679c":96,"\u8fd9\u79cd\u60c5\u51b5\u4e0b\u4e0d\u9700\u8981\u91cd\u5199\u8be5\u51fd\u6570":110,"\u8fd9\u79cd\u60c5\u51b5\u591a\u51fa\u73b0\u5728\u4f7f\u7528\u591a\u7ebf\u7a0b\u9884\u6d4b\u65f6":122,"\u8fd9\u79cd\u60c5\u51b5\u5e38\u5e38\u53d1\u751f\u5728":94,"\u8fd9\u79cd\u65b9\u5f0f\u5bf9\u5185\u5b58\u6d88\u8017\u8f83\u5927":95,"\u8fd9\u79cd\u65b9\u5f0f\u5fc5\u987b\u4f7f\u7528paddle\u5b58\u50a8\u7684\u6a21\u578b\u8def\u5f84\u683c\u5f0f":134,"\u8fd9\u79cd\u65b9\u5f0f\u6700\u4e3a\u7b80\u4fbf":119,"\u8fd9\u79cd\u751f\u6210\u6280\u672f\u53ea\u7528\u4e8e\u7c7b\u4f3c\u89e3\u7801\u5668\u7684\u751f\u6210\u8fc7\u7a0b":107,"\u8fd9\u79cd\u7c7b\u578b\u7684\u8f93\u5165\u5fc5\u987b\u901a\u8fc7":106,"\u8fd9\u79cd\u94fe\u63a5\u65b9\u5f0f\u4e3b\u8981\u7528\u4e8e\u79fb\u52a8\u7aef\u9884\u6d4b":119,"\u8fd9\u79cd\u96c6\u7fa4\u8282\u70b9\u7ba1\u7406\u65b9\u5f0f\u4f1a\u5728\u5c06\u6765\u4f7f\u7528":127,"\u8fd9\u7bc7":98,"\u8fd9\u7bc7\u6587\u6863":109,"\u8fd9\u7bc7\u6587\u6863\u4e4b\u540e\u90e8\u5206\u4f1a\u4f7f\u7528":122,"\u8fd9\u7bc7\u6587\u6863\u4e4b\u540e\u90e8\u5206\u4f1a\u7edf\u4e00\u4f7f\u7528":121,"\u8fd9\u7bc7\u6587\u6863\u4e4b\u540e\u90e8\u5206\u5c06\u4f1a\u7edf\u4e00\u4f7f\u7528":121,"\u8fd9\u7bc7\u6587\u6863\u4ecb\u7ecd":122,"\u8fd9\u7bc7\u6587\u6863\u4ecb\u7ecd\u5728":138,"\u8fd9\u7bc7\u6587\u6863\u4ecb\u7ecd\u5728\u4f7f\u7528":121,"\u8fd9\u7bc7\u6587\u6863\u4ecb\u7ecd\u57fa\u4e8e":108,"\u8fd9\u7bc7\u6587\u6863\u7684\u4e4b\u540e\u90e8\u5206\u4f1a\u4f7f\u7528":122,"\u8fd9\u7bc7\u6587\u7ae0":108,"\u8fd9\u7ec4\u8bed\u4e49\u76f8\u540c\u7684\u793a\u4f8b\u914d\u7f6e\u5982\u4e0b":104,"\u8fd9\u884c\u547d\u4ee4\u4e2d":116,"\u8fd9\u901a\u8fc7\u83b7\u5f97\u53cd\u5411\u5faa\u73af\u7f51\u7edc\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b":107,"\u8fd9\u90fd\u9700\u8981\u8fd9\u4e2a\u63a5\u53e3\u6309\u7167\u7ea6\u5b9a\u4fd7\u6210\u7684\u89c4\u5219\u6765\u6ce8\u91ca\u5b8c\u5907":65,"\u8fd9\u91cc":[62,96,97,107,109,127],"\u8fd9\u91cc\u4e0d\u518d\u8d58\u8ff0":111,"\u8fd9\u91cc\u4ecb\u7ecdc":122,"\u8fd9\u91cc\u4f7f\u7528\u4e86\u7528":116,"\u8fd9\u91cc\u4f7f\u7528\u4e86paddlepaddle\u9884\u5b9a\u4e49\u597d\u7684rnn\u5904\u7406\u51fd\u6570":104,"\u8fd9\u91cc\u4f7f\u7528\u7b80\u5355\u7684":94,"\u8fd9\u91cc\u5c06\u4ecb\u7ecdpaddlepaddle\u7684\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":101,"\u8fd9\u91cc\u6211\u4eec\u5c55\u793a\u4e00\u4efd\u7b80\u5316\u8fc7\u7684\u4ee3\u7801":110,"\u8fd9\u91cc\u6211\u4eec\u901a\u8fc7\u5728kubernetes\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2ajob\u6765\u4e0b\u8f7d\u5e76\u5207\u5272\u6570\u636e":127,"\u8fd9\u91cc\u6709\u4e24\u79cd\u6709\u6548\u7684\u89e3\u51b3\u65b9\u6cd5":94,"\u8fd9\u91cc\u68c0\u9a8c\u8fd0\u884c\u65f6\u95f4\u6a21\u578b\u7684\u6536\u655b":124,"\u8fd9\u91cc\u7684dockerimage\u4f5c\u4e3a\u7f16\u8bd1\u73af\u5883\u4ee5\u652f\u6301\u66f4\u591a\u7684linux":82,"\u8fd9\u91cc\u7684eigentensor\u4e4b\u95f4\u7684\u8fd0\u7b97\u53ea\u662f\u6539\u53d8\u4e86\u539f\u6709tensor\u4e2d\u7684\u6570\u636e":112,"\u8fd9\u91cc\u9009\u62e90":82,"\u8fd9\u91cc\u9700\u8981\u7528\u6237\u989d\u5916\u6ce8\u610f":32,"\u8fd9\u9700\u8981\u8054\u5408\u6211\u4eec\u7b2c\u4e8c\u8282":116,"\u8fdb\u4e00\u6b65\u4f18\u5316":62,"\u8fdb\u4e3b\u4ed3\u5e93\u540e":109,"\u8fdb\u5165":82,"\u8fdb\u5165\u5bb9\u5668":126,"\u8fdb\u5165\u5bf9\u5e94\u7684\u76ee\u5f55":91,"\u8fdb\u7a0b\u542f\u52a8\u7684\u5fc5\u8981\u53c2\u6570":127,"\u8fdb\u7a0b\u7684":124,"\u8fdb\u7a0b\u7684\u542f\u52a8\u53c2\u6570":127,"\u8fdb\u7a0b\u7684\u8fd0\u884c\u73af\u5883":127,"\u8fdb\u7a0b\u9700\u8981\u7684":127,"\u8fdb\u800c\u591a\u673a":116,"\u8fdb\u800c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5982\u4e0b\u547d\u4ee4\u5f00\u542f\u4e00\u4e2ahttp\u670d\u52a1":116,"\u8fdb\u800c\u6307\u5b9a\u4e86python\u53ef\u6267\u884c\u6587\u4ef6\u7684\u8def\u5f84":116,"\u8fdb\u800c\u8fdb\u884c\u4ee3\u7801\u8bc4\u5ba1":82,"\u8fdb\u884c\u4e86":104,"\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u7684\u65b9\u6848":127,"\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u7684\u65b9\u6cd5":127,"\u8fdb\u884c\u524d\u5411\u8ba1\u7b97":122,"\u8fdb\u884c\u56de\u590d":109,"\u8fdb\u884c\u5e8f\u5217\u5316":122,"\u8fdb\u884c\u5f00\u53d1":109,"\u8fdb\u884c\u62c6\u89e3":104,"\u8fdb\u884c\u6fc0\u6d3b\u64cd\u4f5c":110,"\u8fdb\u884c\u7f16\u8bd1\u548c\u5b89\u88c5":136,"\u8fdb\u884c\u8bad\u7ec3":122,"\u8fdb\u884c\u8bbe\u7f6e":111,"\u8fdb\u884c\u94fe\u63a5":119,"\u8fdb\u884c\u9884\u6d4b\u4f9d\u8d56\u4e8e\u5c06":119,"\u8fdb\u884c\u9884\u6d4b\u65f6":122,"\u8fdb\u884cpython\u4e0ec":116,"\u8fdb\u9636\u6307\u5357":[101,135],"\u8fde\u63a5":106,"\u8fde\u63a5\u5230pserver\u7684\u7aef\u53e3":123,"\u8fde\u63a5\u5230pserver\u7684\u7aef\u53e3\u4e2a\u6570":123,"\u9000\u51fa\u5bb9\u5668":126,"\u9002\u4e2d":104,"\u9009":104,"\u9009\u62e9":104,"\u9009\u62e9\u4e0b\u8f7d\u4f7f\u7528\u4e0d\u540c\u7684blas\u5e93\u7684docker\u955c\u50cf":98,"\u9009\u62e9\u662f\u5426\u7f16\u8bd1mkl":62,"\u9009\u62e9\u76ee\u6807\u5206\u652f":109,"\u9009\u62e9\u8def\u5f84\u6765\u52a8\u6001\u52a0\u8f7dnvidia":132,"\u9009\u62e9\u9700\u8981\u53d1\u5e03\u7684\u7248\u672c":82,"\u9009\u9879":[97,108],"\u900f\u4f20\u7528\u6237\u8eab\u4efd\u7684\u529e\u6cd5":48,"\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":131,"\u901a\u5e38":[66,111,116],"\u901a\u5e38\u4f1a\u4f7f\u7528\u73af\u5883\u53d8\u91cf\u914d\u7f6ejob\u7684\u914d\u7f6e\u4fe1\u606f":127,"\u901a\u5e38\u4f1a\u4f7f\u7528mapreduce\u4efb\u52a1\u7684\u8f93\u51fa\u7ed3\u679c\u4f5c\u4e3a\u8bad\u7ec3\u7ed3\u679c":123,"\u901a\u5e38\u4f7f\u7528\u7a00\u758f\u8bad\u7ec3\u6765\u52a0\u901f\u8ba1\u7b97\u8fc7\u7a0b":134,"\u901a\u5e38\u4f7f\u7528cento":100,"\u901a\u5e38\u505a\u6cd5\u662f\u4ece\u4e00\u4e2a\u6bd4\u8f83\u5927\u7684learning_rate\u5f00\u59cb\u8bd5":96,"\u901a\u5e38\u5305\u542b\u4e00\u4e2acpu\u7248\u672c\u548c\u4e00\u4e2agpu\u7248\u672c":82,"\u901a\u5e38\u540d\u5b57\u662f":109,"\u901a\u5e38\u60c5\u51b5\u4e0b":117,"\u901a\u5e38\u6211\u4eec\u4f1a\u5b89\u88c5ceph\u7b49\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u6765\u5b58\u50a8\u8bad\u7ec3\u6570\u636e":126,"\u901a\u5e38\u6307\u5c06\u4e00\u4e2a\u6574\u4f53\u62c6\u5206\u6210\u591a\u4efd\u7684\u5176\u4e2d\u7684\u4e00\u4efd":32,"\u901a\u5e38\u6709\u4e24\u4e2a\u65b9\u6cd5\u6765\u6784\u5efa\u57fa\u4e8e":138,"\u901a\u5e38\u7528\u4e8e\u8868\u793a\u79bb\u6563\u7684\u7c7b\u522b\u6807\u7b7e":121,"\u901a\u5e38\u7684\u505a\u6cd5\u662f\u4f7f\u7528":107,"\u901a\u5e38\u7684\u505a\u6cd5\u662f\u5c06\u914d\u7f6e\u5b58\u4e8e":110,"\u901a\u5e38\u8981\u6c42\u65f6\u95f4\u6b65\u4e4b\u95f4\u5177\u6709\u4e00\u4e9b\u4f9d\u8d56\u6027":104,"\u901a\u5e38\u89c2\u5bdf\u70ed\u70b9\u51fd\u6570\u95f4\u7684\u8c03\u7528\u5173\u7cfb":116,"\u901a\u5e38\u90fd\u4f1a\u4f7f\u7528\u4e0b\u9762\u8fd9\u4e9b\u547d\u4ee4\u884c\u53c2\u6570":134,"\u901a\u5e38\u9700\u8981\u53bb\u6389\u7f51\u7edc\u4e2d\u7684":122,"\u901a\u7528":131,"\u901a\u77e5":104,"\u901a\u8fc7":[94,104,109,110,111,121],"\u901a\u8fc7\u4e24\u4e2a\u5d4c\u5957\u7684":106,"\u901a\u8fc7\u4f7f\u7528":97,"\u901a\u8fc7\u4f7f\u7528\u8fd9\u4e9bapi":61,"\u901a\u8fc7\u51fd\u6570":127,"\u901a\u8fc7\u547d\u4ee4\u884c\u53c2\u6570":94,"\u901a\u8fc7\u591a\u4e2a\u7ebf\u7a0b\u5171\u4eab\u540c\u4e00\u4e2a\u6a21\u578b\u6765\u51cf\u5c11\u5185\u5b58\u5f00\u9500":122,"\u901a\u8fc7\u5f15\u7528memory\u5f97\u5230\u8fd9\u4e2alayer\u4e0a\u4e00\u4e2a\u65f6\u523b\u7684\u8f93\u51fa":106,"\u901a\u8fc7\u5f15\u7528memory\u5f97\u5230\u8fd9\u4e2alayer\u4e0a\u4e00\u4e2a\u65f6\u523b\u8f93\u51fa":106,"\u901a\u8fc7\u6240\u6709\u5355\u5143\u6d4b\u8bd5":109,"\u901a\u8fc7\u6a21\u578b\u63a8\u65adapi\u7684\u5b9e\u73b0\u4f5c\u4e3a\u4e00\u4e2a\u6837\u4f8b":66,"\u901a\u8fc7\u7075\u6d3b\u4f7f\u7528\u4ee5\u4e0a\u4e24\u4e2a\u63a5\u53e3":122,"\u901a\u8fc7\u7ec4\u5408\u4e0d\u540c\u7684layer":101,"\u901a\u8fc7\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26\u6765\u6307\u5b9a":110,"\u901a\u8fc7\u8ba1\u7b97\u8282\u70b9\u548c\u53c2\u6570\u670d\u52a1\u5668\u7684\u5206\u5e03\u5f0f\u534f\u4f5c":123,"\u901a\u8fc7\u8be5\u53c2\u6570\u53ef\u83b7\u53d6\u5230\u8f93\u5165\u8f93\u51fa\u4ee5\u53ca\u5c5e\u6027":111,"\u901a\u8fc7\u8c03\u7528":[121,122],"\u901a\u8fc7\u8c03\u7528\u4ee5\u4e0b\u63a5\u53e3\u521b\u5efa\u7a00\u758f\u77e9\u9635":121,"\u901a\u8fc7data":106,"\u901a\u8fc7ssh\u7b49\u65b9\u5f0f\u767b\u5f55\u5230raspberri":138,"\u903b\u8f91\u4e0a\u9ad8\u4e8e\u4e8c\u7ef4\u7684\u6570\u636e":121,"\u903b\u8f91\u5212\u4e0a\u6587\u4ef6\u5206\u5757\u7684\u5355\u4f4d":48,"\u9047\u5230\u8be5\u9519\u8bef\u65f6":95,"\u9053\u6b49":104,"\u9069":104,"\u9075\u5b88\u4ee5\u4e0b\u7ea6\u5b9a":109,"\u9075\u5faa\u4ee5\u4e0b\u6d41\u7a0b":82,"\u90a3\u4e48":[66,106,110],"\u90a3\u4e480\u5c42\u5e8f\u5217\u5373\u4e3a\u4e00\u4e2a\u8bcd\u8bed":106,"\u90a3\u4e48\u4f1a\u643a\u5e26\u6709":121,"\u90a3\u4e48\u53ef\u4ee5\u8ba4\u4e3a\u8bad\u7ec3\u4e0d\u6536\u655b":96,"\u90a3\u4e48\u5728":111,"\u90a3\u4e48\u5982\u4f55\u5224\u65ad\u8bad\u7ec3\u4e0d\u6536\u655b\u5462":96,"\u90a3\u4e48\u5bf9\u5e94\u7684\u5185\u90e8\u5b58\u50a8\u4e5f\u4f1a\u4e0e\u5b83\u4eec\u5171\u4eab\u5185\u5b58":62,"\u90a3\u4e48\u5c31\u4f1a\u4f7f":62,"\u90a3\u4e48\u5e38\u6570\u8f93\u51fa\u6240\u80fd\u8fbe\u5230\u7684\u6700\u5c0fcost\u662f":96,"\u90a3\u4e48\u6211\u4eec\u4e5f\u5c31\u4e0d\u9700\u8981":108,"\u90a3\u4e48\u6211\u4eec\u53ef\u4ee5\u5224\u65ad\u4e3a\u8bad\u7ec3\u4e0d\u6536\u655b":96,"\u90a3\u4e48\u63a8\u8350\u4f7f\u7528":107,"\u90a3\u4e48\u63a8\u8350\u4f7f\u7528\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u65b9\u6cd5":107,"\u90a3\u4e48\u6536\u655b\u53ef\u80fd\u5f88\u6162":96,"\u90a3\u4e48\u6700\u597d\u5c06\u6570\u636e\u6587\u4ef6\u5728\u6bcf\u6b21\u8bfb\u53d6\u4e4b\u524d\u505a\u4e00\u6b21shuffl":94,"\u90a3\u4e48\u7528\u6237\u9700\u8981\u62c9\u53d6\u6240\u6709\u7684\u8fdc\u7a0b\u5206\u652f\u5230\u672c\u673a":91,"\u90a3\u4e48\u7f16\u8bd1\u8fc7\u7a0b\u53ea\u4f1a\u4ea7\u751f":108,"\u90a3\u4e48\u8bad\u7ec3\u6709\u53ef\u80fd\u4e0d\u6536\u655b":96,"\u90a3\u4e48\u8be5\u4f18\u5316\u7b97\u6cd5\u81f3\u5c11\u9700\u8981":94,"\u90a3\u4e48fc1\u548cfc2\u5c42\u5c06\u4f1a\u4f7f\u7528\u7b2c1\u4e2agpu\u6765\u8ba1\u7b97":134,"\u90a3\u4e5f\u5c31\u4e0d\u9700\u8981\u6025\u7740\u4f18\u5316\u6027\u80fd\u5566":117,"\u90a3\u4f30\u8ba1\u8fd9\u91cc\u7684\u6f5c\u529b\u5c31\u6ca1\u5565\u597d\u6316\u7684\u4e86":117,"\u90a3\u51cf\u5c11\u5b66\u4e60\u738710\u500d\u7ee7\u7eed\u8bd5\u9a8c":96,"\u90a3\u6211\u4f1a\u671f\u671b\u5206\u6790\u5de5\u5177\u7edf\u8ba1\u5230\u901f\u5ea6\u662f100gb":117,"\u90a3\u7a0b\u5e8f\u5206\u6790\u5de5\u5177\u662f\u5fc5\u4e0d\u53ef\u5c11\u7684\u5229\u5668":117,"\u90fd":104,"\u90fd\u4e0d\u4f1a\u60f3\u8981\u77e5\u9053next":62,"\u90fd\u4e0d\u9700\u8981":108,"\u90fd\u4f1a\u4ea7\u751f\u5f53\u524d\u5c42\u72b6\u6001\u7684\u6240\u6709\u7ee7\u627f\u7ed3\u679c":132,"\u90fd\u4f1a\u7ba1\u7406\u7ef4\u62a4\u4e00\u4efd\u8bad\u7ec3\u597d\u7684\u6a21\u578b":122,"\u90fd\u4f1a\u9020\u6210\u8bad\u7ec3\u4e2d\u7684\u6570\u636e\u4ecec":94,"\u90fd\u4f7f\u7528":121,"\u90fd\u53ea\u662f\u4ecb\u7ecd\u53cc\u5c42rnn\u7684api\u63a5\u53e3":104,"\u90fd\u53ef\u4ee5\u8fd0\u884c":108,"\u90fd\u53ef\u4ee5\u901a\u8fc7\u8c03\u7528\u4e0b\u9762\u7684\u63a5\u53e3\u4e3a\u539f\u6709\u7684\u6570\u636e\u8f93\u5165\u9644\u52a0\u4e0a\u5e8f\u5217\u4fe1\u606f":121,"\u90fd\u5e94\u4f7f\u7528c":121,"\u90fd\u662f\u4e94\u4f4d\u7684\u6570\u5b57":33,"\u90fd\u662f\u4ee5ext\u5f00\u5934":62,"\u90fd\u662f\u5bf9layer1\u5143\u7d20\u7684\u62f7\u8d1d":103,"\u90fd\u662f\u5c06\u6bcf\u4e00\u53e5\u5206\u597d\u8bcd\u540e\u7684\u53e5\u5b50":104,"\u90fd\u662fabi\u8c03\u7528\u6807\u51c6\u7684":65,"\u90fd\u7528":109,"\u90fd\u7ee7\u627f\u4e8epaddlepaddle\u7684\u57fa\u7c7b":61,"\u90fd\u9700\u8981\u5199\u63d0\u4ea4\u8bf4\u660e":109,"\u90fd\u9700\u8981\u8c03\u7528\u4e00\u6b21":110,"\u914d\u5236\u7f16\u8bd1\u9009\u9879":119,"\u914d\u7f6e\u6253\u5f00":117,"\u914d\u7f6e\u6587\u4ef6\u63a5\u53e3\u662ffc_layer":110,"\u914d\u7f6e\u6587\u4ef6\u91cc\u52a0\u4e24\u884c":108,"\u914d\u7f6e\u7684\u65b9\u6cd5\u53c2\u8003":48,"\u914d\u7f6e\u7b80\u5355\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u4f8b\u5b50":107,"\u914d\u7f6e\u7f51\u7edc\u5c42\u7684\u8f93\u5165":110,"\u914d\u7f6eapi":103,"\u9152\u5e97":104,"\u91c7\u7528\u5747\u5300\u5206\u5e03\u6216\u8005\u9ad8\u65af\u5206\u5e03\u521d\u59cb\u5316":132,"\u91c7\u7528multi":96,"\u91ca\u653e\u5bf9paramters\u5185\u5b58\u7684\u9501\u5b9a":32,"\u91cc":108,"\u91cc\u53ef\u4ee5\u6807\u51c6\u5316\u7f16\u8bd1\u73af\u5883":108,"\u91cc\u5b8c\u6210":111,"\u91cc\u6240\u6709\u7684\u7b26\u53f7\u90fd\u5199\u5165\u81ea\u5df1\u7684\u7a0b\u5e8f\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u91cc":65,"\u91cc\u7684":108,"\u91cc\u7684\u65e5\u5fd7":124,"\u91cc\u7684\u6e90\u7801":108,"\u91cc\u8fd0\u884c\u7684\u7f16\u8bd1\u5de5\u5177\u5b9e\u9645\u4e0a\u90fd\u662f\u5728\u672c\u673a\u7684":108,"\u91cc\u9009\u62e9\u9700\u8981\u53d1\u5e03\u7684\u5206\u652f":82,"\u91cc\u9762":111,"\u91cc\u9762\u6db5\u76d6\u4e86\u4ea4\u53c9\u7f16\u8bd1android\u7248paddlepaddle\u5e93\u9700\u8981\u7684\u6240\u6709\u7f16\u8bd1\u5de5\u5177":136,"\u91cc\u9762\u6dfb\u52a0":62,"\u91ccstep\u7684\u5185\u5bb9":94,"\u91cd\u5199\u7236\u7c7blayer\u7684":62,"\u91cd\u547d\u540d\u6210":65,"\u91cd\u65b0\u7f16\u8bd1paddlepaddl":117,"\u9488\u5bf9\u4e0d\u540c\u7684":137,"\u9488\u5bf9\u4efb\u52a1\u8fd0\u884c\u5b8c\u6210\u540e\u5bb9\u5668\u81ea\u52a8\u9000\u51fa\u7684\u573a\u666f":126,"\u9488\u5bf9\u5185\u5b58\u548c\u663e\u5b58":94,"\u94fe\u63a5":119,"\u94fe\u63a5\u4e2d\u627e\u5230":100,"\u94fe\u63a5\u4f55\u79cdblas\u5e93\u7b49":97,"\u94fe\u63a5\u5230\u81ea\u5df1\u7684\u7a0b\u5e8f\u91cc":65,"\u94fe\u63a5\u76f8\u5bf9\u5bb9\u6613":119,"\u94fe\u63a5\u9009\u9879":119,"\u94fe\u63a5\u9759\u6001\u5e93":119,"\u9519\u8bef":91,"\u9519\u8bef\u5904\u7406":65,"\u9519\u8bef\u5904\u7406\u65b9\u5f0f\u662f\u8fd4\u56de\u503c":65,"\u9519\u8bef\u5904\u7406\u7684\u65b9\u5f0f\u4e5f\u4e0d\u5c3d\u76f8\u540c":65,"\u9519\u8bef\u7684define_py_data_sources2\u7c7b\u4f3c":96,"\u952e\u6765\u542f\u52a8\u7f16\u8bd1\u4e86":108,"\u955c\u50cf\u91cc\u6709paddlepaddle\u7684\u6e90\u7801\u4e0edemo":126,"\u957f\u5ea6":94,"\u95e8\u63a7\u5faa\u73af\u5355\u5143\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570":107,"\u95e8\u63a7\u5faa\u73af\u5355\u5143\u7684\u8f93\u51fa\u88ab\u7528\u4f5c\u8f93\u51famemori":107,"\u9644\u52a0\u4e0a\u5e8f\u5217\u4fe1\u606f":121,"\u9650\u5236\u5957\u63a5\u5b57\u53d1\u9001\u7f13\u51b2\u533a\u7684\u5927\u5c0f":132,"\u9650\u5236\u5957\u63a5\u5b57\u63a5\u6536\u7f13\u51b2\u533a\u7684\u5927\u5c0f":132,"\u9664\u4e86\u53ef\u4ee5\u81ea\u52a8\u7f16\u8bd1\u6587\u6863":113,"\u9664\u4e86boot_lay":104,"\u9664\u6784\u9020\u67d0\u79cd\u7c7b\u578b\u7684\u51fd\u6570":66,"\u9664\u6b64\u4e4b\u5916":94,"\u9664\u96f6\u7b49\u95ee\u9898":94,"\u968f\u540e\u53ef\u4ee5\u7528\u8fd9\u4e2a\u5f00\u53d1\u955c\u50cf\u5f00\u59cbbuild":109,"\u968f\u673a\u6570\u7684\u79cd\u5b50":132,"\u968f\u673a\u6570seed":131,"\u9694\u5f00":123,"\u96c6\u6210\u5230":61,"\u96c6\u6210\u5230paddlepaddl":62,"\u96c6\u675f\u641c\u7d22\u4f7f\u7528\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u7684\u65b9\u5f0f\u6784\u5efa\u67e5\u627e\u6811":132,"\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2a\u5355\u673a\u4f7f\u7528cpu\u7684paddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":126,"\u96c6\u7fa4\u4e2d\u7684\u6bcf\u53f0\u8ba1\u7b97\u673a\u901a\u5e38\u88ab\u6210\u4e3a\u4e00\u4e2a":123,"\u96c6\u7fa4\u4efb\u52a1":124,"\u96c6\u7fa4\u4f5c\u4e1a\u5c06\u4f1a\u5728\u51e0\u79d2\u540e\u542f\u52a8":124,"\u96c6\u7fa4\u6d4b\u8bd5":131,"\u96c6\u7fa4\u7ba1\u7406\u5de5\u5177":123,"\u96c6\u7fa4\u8bad\u7ec3":131,"\u96c6\u7fa4\u8bad\u7ec3\u4e0e\u9884\u6d4b":93,"\u96c6\u7fa4\u8fdb\u7a0b":124,"\u9700\u52a0\u8be5\u6a21\u677f\u53c2\u6570":111,"\u9700\u5728nvvp\u754c\u9762\u4e2d\u9009\u4e0a\u624d\u80fd\u5f00\u542f":117,"\u9700\u6307\u5b9a":119,"\u9700\u63d0\u4f9b\u975e\u96f6\u5143\u7684\u503c":121,"\u9700\u6ce8\u610f":119,"\u9700\u8981":[33,108,111,122],"\u9700\u8981\u4e3a":111,"\u9700\u8981\u4f7f\u7528":94,"\u9700\u8981\u4f7f\u7528\u5176\u5236\u5b9a\u7684\u65b9\u5f0f\u6302\u8f7d\u540e\u5e76\u5bfc\u5165\u6570\u636e":127,"\u9700\u8981\u4f7f\u7528\u6700\u65b0\u7684pip":100,"\u9700\u8981\u4f7f\u7528\u8005\u81ea\u5df1\u4e86\u89e3\u5e76\u5b8c\u6210\u8f6c\u5316":121,"\u9700\u8981\u4fdd\u6301\u5f53\u524d\u5206\u652f\u76ee\u5f55":109,"\u9700\u8981\u4fee\u6539build":82,"\u9700\u8981\u521b\u5efa\u5e76\u586b\u5199":121,"\u9700\u8981\u5347\u7ea7pip\u7248\u672c\u5230\u6700\u65b0":[91,100],"\u9700\u8981\u5355\u72ec":98,"\u9700\u8981\u53ef\u4ee5\u8de8\u5e73\u53f0\u6267\u884c":48,"\u9700\u8981\u540c\u65f6\u63d0\u4f9b\u6bcf\u4e00\u4e2a\u5185\u5c42\u5e8f\u5217\u5728\u6574\u4e2a":121,"\u9700\u8981\u540c\u6b65\u539f\u4ed3\u5e93":109,"\u9700\u8981\u542f\u52a8\u7684\u8282\u70b9\u4e2a\u6570\u4ee5\u53ca":127,"\u9700\u8981\u548c\u8be5op\u7684\u540d\u5b57\u4e00\u6837":111,"\u9700\u8981\u54ea\u4e9b\u5c42\u7684\u8ba1\u7b97\u7ed3\u679c\u4f5c\u4e3a\u8f93\u51fa":122,"\u9700\u8981\u5728":111,"\u9700\u8981\u5728\u521b\u5efa\u5bb9\u5668\u524d\u6302\u8f7d\u5377\u4ee5\u4fbf\u6211\u4eec\u4fdd\u5b58\u8bad\u7ec3\u7ed3\u679c":126,"\u9700\u8981\u5728\u7cfb\u7edf\u91cc\u5148\u5b89\u88c5\u597ddocker\u5de5\u5177\u5305":113,"\u9700\u8981\u5728cmake\u7684\u65f6\u5019":66,"\u9700\u8981\u5728macos\u7cfb\u7edf\u4e0a\u8fdb\u884c":137,"\u9700\u8981\u5c06\u5176parameter\u8bbe\u7f6e\u6210":94,"\u9700\u8981\u5c06\u7f51\u7edc\u7ed3\u6784\u4f7f\u7528":122,"\u9700\u8981\u5c06bugfix\u7684\u5206\u652f\u540c\u65f6merge\u5230":82,"\u9700\u8981\u5c06cuda\u76f8\u5173\u7684\u5e93\u8bbe\u7f6e\u5230":119,"\u9700\u8981\u5c06paddl":119,"\u9700\u8981\u5f15\u7528":66,"\u9700\u8981\u5f3a\u8c03\u7684\u662f":108,"\u9700\u8981\u601d\u8003\u5b8c\u6210\u4ee5\u4e0b\u5de5\u4f5c":[121,122],"\u9700\u8981\u624b\u52a8\u8fdb\u884c\u89e3\u538b":122,"\u9700\u8981\u6267\u884c":[97,100,102],"\u9700\u8981\u6307\u5b9a":119,"\u9700\u8981\u6307\u5b9a\u4e0e\u67d0\u4e00\u4e2a\u8f93\u5165\u7684\u5e8f\u5217\u4fe1\u606f\u662f\u4e00\u81f4\u7684":104,"\u9700\u8981\u6307\u5b9alayer\u7684\u8f93\u5165\u6765\u6e90":101,"\u9700\u8981\u660e\u786e\u6307\u5b9a":132,"\u9700\u8981\u663e\u5f0f\u5730\u94fe\u63a5":119,"\u9700\u8981\u663e\u793a\u5730\u94fe\u63a5":119,"\u9700\u8981\u663e\u793a\u5730\u94fe\u63a5mkl\u7684\u52a8\u6001\u5e93":119,"\u9700\u8981\u6709\u7a33\u5b9a\u7684\u5bfc\u51fa\u7b26\u53f7":65,"\u9700\u8981\u6839\u636e\u4e0d\u540c\u7684\u5206\u5e03\u5f0f\u5b58\u50a8\u6765\u7ed1\u5b9a\u4e00\u4e2a":127,"\u9700\u8981\u6ce8\u610f":111,"\u9700\u8981\u6ce8\u610f\u7684\u662f":[62,82,94,132],"\u9700\u8981\u6ce8\u610f\u7684\u662f\u68af\u5ea6\u68c0\u67e5\u4ec5\u4ec5\u9a8c\u8bc1\u4e86\u68af\u5ea6\u7684\u8ba1\u7b97":110,"\u9700\u8981\u6ce8\u610f\u7684\u662fpaddlepaddle\u76ee\u524d\u53ea\u652f\u6301\u5b50\u5e8f\u5217\u6570\u76ee\u4e00\u6837\u7684\u591a\u8f93\u5165\u53cc\u5c42rnn":104,"\u9700\u8981\u7528\u5230\u7684\u7f16\u8bd1\u5de5\u5177\u548c\u7cfb\u7edf\u5e93":136,"\u9700\u8981\u7528\u6237\u663e\u5f0f\u8bbe\u5b9a":95,"\u9700\u8981\u7d2f\u52a0\u4e0d\u540clayer\u4f20\u8fc7\u6765\u7684\u68af\u5ea6":62,"\u9700\u8981\u81ea\u5df1\u94fe\u63a5mkl\u94fe\u63a5\u5e93":119,"\u9700\u8981\u88ab\u66b4\u9732\u5230\u5176\u4ed6\u8bed\u8a00":66,"\u9700\u8981\u8bf7\u7ba1\u7406\u5458\u5b89\u88c5\u548c\u914d\u7f6e\u597d":108,"\u9700\u8981\u9075\u5faa\u4ee5\u4e0b\u7ea6\u5b9a":106,"\u9700\u8981\u91cd\u547d\u540dwheel\u5305\u4e2dplatform\u76f8\u5173\u7684\u540e\u7f00":82,"\u9700\u8981\u989d\u5916\u6ce8\u610f\u7684\u662f":112,"\u9700\u9644\u52a0\u53cc\u5c42\u5e8f\u5217\u4fe1\u606f":121,"\u9700\u9644\u52a0\u5e8f\u5217\u4fe1\u606f":121,"\u975e\u5e38\u6570":110,"\u975e\u5e8f\u5217\u8f93\u5165\u4e0d\u643a\u5e26":121,"\u975e\u5e8f\u5217\u8f93\u5165\u65e0\u9700\u6784\u9020":121,"\u975e\u96f6\u5143\u4e2a\u6570":121,"\u975e\u96f6\u5143\u7d20\u7684\u503c":121,"\u975e\u96f6\u5143\u7d20\u7684\u5217\u53f7":121,"\u975e\u96f6\u6570\u5b57\u7684\u4e2a\u6570":110,"\u9762\u5411\u67b6\u6784\u4e3a32\u4f4darm\u67b6\u6784":136,"\u9762\u5411\u67b6\u6784\u4e3a64\u4f4darm64\u67b6\u6784":136,"\u9879\u76ee\u5728\u52aa\u529b\u5f00\u59cb\u652f\u6301\u5176\u4ed6\u4e0d\u9700\u8981":108,"\u987a\u5e8f":104,"\u9884\u63d0\u4ea4\u94a9\u5b50":109,"\u9884\u6d4b\u4ee3\u7801\u66f4\u591a\u8be6\u7ec6\u793a\u4f8b\u4ee3\u7801\u8bf7\u53c2\u8003":122,"\u9884\u6d4b\u4f7f\u7528\u7684\u7f51\u7edc\u7ed3\u6784\u5f80\u5f80\u4e0d\u540c\u4e8e\u8bad\u7ec3":122,"\u9884\u6d4b\u5e93":120,"\u9884\u6d4b\u65f6":122,"\u9884\u6d4b\u65f6\u53ea\u9700\u52a0\u8f7d\u4e00\u4e2a\u6587\u4ef6\u4fbf\u4e8e\u53d1\u5e03":122,"\u9884\u6d4b\u7a0b\u5e8f\u5f00\u53d1\u4e24\u5927\u90e8\u5206":122,"\u9996\u5148":[104,107,110],"\u9996\u5148\u5728\u7cfb\u7edf\u8def\u5f84":97,"\u9996\u5148\u5b89\u88c5\u5e76\u5728\u5f53\u524d\u76ee\u5f55\u8fd0\u884c\u5b83":109,"\u9996\u5148\u5b9a\u4e49":111,"\u9996\u5148\u5bf9\u8f93\u5165\u505a\u4e00\u4e2a\u5c0f\u7684\u6270\u52a8":110,"\u9996\u5148\u6211\u4eec\u9700\u8981\u63a8\u5bfc\u8be5\u7f51\u7edc\u5c42\u7684":110,"\u9996\u5148\u6784\u9020\u5934\u4fe1\u606f":96,"\u9996\u5148\u901a\u8fc7":109,"\u9996\u5148\u9700\u8981\u52a0\u8f7d\u76f8\u5e94\u7684python\u5e93":101,"\u9a71\u52a8":113,"\u9ad8\u4eae\u90e8\u5206":104,"\u9ad8\u5ea6":121,"\u9ad8\u5ea6\u652f\u6301\u7075\u6d3b\u548c\u9ad8\u6548\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":107,"\u9ad8\u65af\u5206\u5e03":96,"\u9ed8\u8ba4":132,"\u9ed8\u8ba40":123,"\u9ed8\u8ba41":123,"\u9ed8\u8ba4127":123,"\u9ed8\u8ba4256k":48,"\u9ed8\u8ba47164":123,"\u9ed8\u8ba4\u4e0d\u663e\u793a":132,"\u9ed8\u8ba4\u4e0d\u8bbe\u7f6e":106,"\u9ed8\u8ba4\u4e3a0":[132,134],"\u9ed8\u8ba4\u4e3a1":[121,134],"\u9ed8\u8ba4\u4e3a100":134,"\u9ed8\u8ba4\u4e3a4096mb":132,"\u9ed8\u8ba4\u4e3a\u7b2c\u4e00\u4e2a\u8f93\u5165":106,"\u9ed8\u8ba4\u4e3anull":132,"\u9ed8\u8ba4\u4f1a\u5c06a\u548cb":94,"\u9ed8\u8ba4\u4f7f\u7528concurrentremoteparameterupdat":132,"\u9ed8\u8ba4\u4f7f\u7528mkl":97,"\u9ed8\u8ba4\u503c":[97,103,134,137],"\u9ed8\u8ba4\u503c\u4e3a":[136,137,138],"\u9ed8\u8ba4\u503c\u4e3a\u73af\u5883\u53d8\u91cf":137,"\u9ed8\u8ba4\u521d\u59cb\u72b6\u4e3a0":106,"\u9ed8\u8ba4\u60c5\u51b5\u4e0b":[96,124],"\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u6309\u7167float\u7cbe\u5ea6\u8ba1\u7b97":96,"\u9ed8\u8ba4\u6307\u5b9a\u7b2c\u4e00\u4e2a\u8f93\u5165":104,"\u9ed8\u8ba4\u662f\u4f7f\u7528mkl\u7684\u955c\u50cf":98,"\u9ed8\u8ba4\u6ca1\u6709\u5b89\u88c5vim":98,"\u9ed8\u8ba4\u7684paddlepaddle\u751f\u4ea7\u73af\u5883\u955c\u50cf":126,"\u9ed8\u8ba4\u7f16\u8bd1\u6240\u6709\u67b6\u6784":137,"\u9ed8\u8ba4\u8bbe\u7f6e\u4e3a":61,"\u9ed8\u8ba4\u8bbe\u7f6e\u4e3a\u771f":134,"\u9ed8\u8ba4\u8bbe\u7f6e\u6210\u73af\u5883\u53d8\u91cf":[136,138],"\u9ed8\u8ba4\u8c03\u7528":108,"\u9ed8\u8ba4fals":123,"abi\u7684paddlepaddle\u5e93":136,"abstract":[40,47,51,72,81,83],"android\u5b98\u65b9\u63d0\u4f9b\u7684":136,"android\u5e73\u53f0\u4e0a\u4f7f\u7528\u7684c":136,"android\u5e73\u53f0\u53ef\u9009\u914d\u7f6e\u53c2\u6570":136,"android\u5e73\u53f0\u7f16\u8bd1\u6307\u5357":139,"android\u7684docker\u5f00\u53d1\u955c\u50cf\u5411\u7528\u6237\u63d0\u4f9b\u4e24\u4e2a\u53ef\u914d\u7f6e\u7684\u53c2\u6570":136,"api\u4e0d\u4f1a\u76f4\u63a5\u52a0\u8f7d":122,"api\u4e0d\u5c0f\u4e8e21":136,"api\u4e2d":121,"api\u4e2d\u4f7f\u7528":65,"api\u4e2d\u7684\u4e00\u7ef4\u6570\u7ec4":121,"api\u4e2d\u7684\u77e9\u9635\u6765\u8868\u793a":121,"api\u4e2d\u795e\u7ecf\u7f51\u7edc\u7684\u4e00\u4e2a\u8f93\u5165":122,"api\u4f7f\u7528\u4e2d\u7684\u4e00\u4e2a\u91cd\u8981\u6982\u5ff5":122,"api\u4f7f\u7528\u6d41\u7a0b\u793a\u610f\u56fe":122,"api\u4f7f\u7528\u793a\u4f8b":122,"api\u521b\u5efa\u7684gradientmachine\u7c7b\u7684\u5bf9\u8c61":122,"api\u53ef\u4ee5\u901a\u8fc7\u5206\u522b\u6307\u5b9a\u5e8f\u5217\u5316\u540e\u7684\u7f51\u7edc\u7ed3\u6784\u6587\u4ef6\u548c\u53c2\u6570\u76ee\u5f55\u6765\u52a0\u8f7d\u8bad\u7ec3\u597d\u7684\u6a21\u578b":122,"api\u53ef\u4ee5\u901a\u8fc7\u6307\u5b9a":122,"api\u5b8c\u6210\u5206\u5e03\u5f0f\u8bad\u7ec3":123,"api\u5bf9\u6bd4\u4ecb\u7ecd":105,"api\u5bfc\u51fa\u7684\u52a8\u6001\u5e93":66,"api\u5bfc\u51fa\u7684\u9759\u6001\u5e93":66,"api\u5e93\u5c06\u88ab\u5b89\u88c5\u5230":136,"api\u5f00\u53d1\u5305\u5e76\u5b89\u88c5":100,"api\u5f00\u53d1\u9884\u6d4b\u7a0b\u5e8f\u65f6":119,"api\u5f00\u53d1\u9884\u6d4b\u7a0b\u5e8f\u9700\u8981\u4e00\u4e2a\u8bad\u7ec3\u597d\u7684\u6a21\u578b":122,"api\u6240\u9700\u7684\u4f9d\u8d56":119,"api\u63a5\u53d7\u7684\u7c7b\u578b\u5168\u662f":66,"api\u63a5\u53e3":48,"api\u63a5\u53e3\u751f\u6210":111,"api\u63a5\u53e3\u7684\u53c2\u6570\u8f6c\u53d1\u7ed9":66,"api\u63a5\u53e3\u7684\u751f\u6210":111,"api\u63d0\u4f9b\u7684":122,"api\u652f\u6301\u7684\u6240\u6709\u8f93\u5165\u6570\u636e\u7c7b\u578b\u548c\u4ed6\u4eec\u7684\u7ec4\u7ec7\u65b9\u5f0f":122,"api\u6587\u6863":[136,137],"api\u65f6":66,"api\u65f6\u4e3a\u8f93\u51fa":122,"api\u65f6\u6240\u552f\u4e00\u9700\u8981\u5f15\u5165\u7684\u5934\u6587\u4ef6":66,"api\u662f\u591a\u8bed\u8a00api\u7684\u57fa\u7840\u90e8\u5206":66,"api\u66b4\u9732\u7684\u7c7b\u578b":66,"api\u6765\u9884\u6d4b":[136,137],"api\u751f\u6210\u7684\u4e8c\u8fdb\u5236\u6587\u4ef6\u4f1a\u88ab\u5b89\u88c5\u5230":66,"api\u7684\u5934\u6587\u4ef6":[136,137,138],"api\u7684\u5b9e\u4f8b":66,"api\u7684\u5b9e\u73b0\u7ec6\u8282":66,"api\u7684\u63a5\u53e3":66,"api\u7684\u65f6\u5019\u63a8\u8350paddle\u4e0d\u5d4c\u5165python\u89e3\u91ca\u5668":66,"api\u7684\u7f16\u8bd1\u9009\u9879\u9ed8\u8ba4\u5173\u95ed":66,"api\u76ee\u5f55\u7ed3\u6784\u5982\u4e0a\u56fe\u8868\u6240\u793a":66,"api\u76f8\u5173\u63a5\u53e3":121,"api\u7ea7\u522b":136,"api\u7ea7\u522b\u4e3a21":136,"api\u83b7\u5f97\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u53c2\u6570\u5b9e\u4f8b":66,"api\u8bad\u7ec3":122,"api\u9700\u8981\u521b\u5efa\u7684\u6570\u636e\u7c7b\u578b":121,"api\u9759\u6001\u5e93":137,"api\u9884\u6d4b\u5e93":137,"api\u9884\u6d4b\u65f6":122,"apis\u505a\u4e86\u5c01\u88c5":61,"app\u4e2d":[136,137],"apple\u5b98\u65b9\u4e3aios\u5f00\u53d1\u63d0\u4f9b\u4e86\u5b8c\u6574\u7684\u4ea4\u53c9\u7f16\u8bd1\u5de5\u5177\u548c\u96c6\u6210\u5f00\u53d1\u73af\u5883":137,"async_sgd\u8fdb\u884c\u8bad\u7ec3\u65f6":96,"avx\u662f\u4e00\u79cdcpu\u6307\u4ee4\u96c6":98,"avx\u7248\u672c":98,"avx\u7684\u955c\u50cf":98,"aws\u4e0a\u8fd0\u884ckubernetes\u96c6\u7fa4\u8bad\u7ec3":123,"batch\u4e2d\u5305\u542b":94,"batch\u7684\u6743\u91cd":94,"batches\u4e2a\u6279\u6b21\u4fdd\u5b58\u4e00\u6b21\u53c2\u6570":132,"batches\u6b21":132,"block\u6784\u6210\u4e00\u4e2amodel":32,"book\u4e00\u5b9a\u662f\u60a8\u6700\u597d\u7684\u9009\u62e9":98,"book\u4e2d\u6240\u6709\u7ae0\u8282\u529f\u80fd\u7684\u6b63\u786e\u6027":82,"book\u662f\u4e3a\u7528\u6237\u548c\u5f00\u53d1\u8005\u5236\u4f5c\u7684\u4e00\u4e2a\u4ea4\u4e92\u5f0f\u7684jupyt":98,"book\u7684":101,"book\u7684docker\u955c\u50cf":98,"boolean":[18,47,49,57,65],"break":[9,30,86,89,90],"bugfix\u5206\u652f\u4e5f\u662f\u5728\u5f00\u53d1\u8005\u81ea\u5df1\u7684fork\u7248\u672c\u5e93\u7ef4\u62a4":82,"bugfix\u5206\u652f\u9700\u8981\u5206\u522b\u7ed9\u4e3b\u7248\u672c\u5e93\u7684":82,"byte":[9,11,48,64,96],"c99\u662f\u76ee\u524dc\u6700\u5e7f\u6cdb\u7684\u4f7f\u7528\u6807\u51c6":65,"c\u6709\u6807\u51c6\u7684abi":65,"c\u8bed\u8a00\u662f\u6709\u5bfc\u51fa\u7b26\u53f7\u7684\u6807\u51c6\u7684":65,"case":[4,18,34,40,42,47,51,60,66,72,76,78,79,117,125,140],"cc\u4e2d\u7684":112,"cells\u7b49":95,"char":36,"ci\u73af\u5883\u4f7f\u7528":82,"ci\u7f16\u8bd1wheel\u5b8c\u6210\u540e\u4f1a\u81ea\u52a8\u5c06docker\u955c\u50cfpush\u5230dockerhub":82,"class":[1,2,3,4,5,6,7,9,10,13,14,15,18,21,25,26,29,40,41,42,45,46,50,51,52,53,55,56,58,60,65,69,70,74,75,79,80,81,83,84,85,87,89,96,110,111,112,118],"cmake\u4e2d\u5c06":117,"cmake\u5b98\u65b9\u5bf9android\u5e73\u53f0\u7684\u4ea4\u53c9\u7f16\u8bd1\u63d0\u4f9b\u4e86\u901a\u7528\u7684\u652f\u6301":136,"cmake\u627e\u5230\u7684python\u5e93\u548cpython\u89e3\u91ca\u5668\u7248\u672c\u53ef\u80fd\u6709\u4e0d\u4e00\u81f4\u73b0\u8c61":91,"cmake\u7cfb\u7edf\u5bf9\u4ea4\u53c9\u7f16\u8bd1\u63d0\u4f9b\u4e86\u652f\u6301":136,"cmake\u7f16\u8bd1\u65f6":97,"cmake\u7f16\u8bd1\u7684\u76ee\u6807\u5e73\u53f0":[136,137,138],"cmake\u914d\u7f6e\u4e2d\u5c06":117,"cmake\u914d\u7f6e\u5b8c\u6210\u540e":[136,137,138],"compute\u51fd\u6570":61,"const":[29,34,36,50,52,58,59,73,74,76,80,83,85,87,88,89,110,111,112],"container\u4e2d":126,"core\u4e2d\u7684\u6a21\u578b\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u53c2\u6570":66,"core\u4e2d\u8fd9\u4e00\u7c7b\u578b\u63a5\u53e3\u7684\u667a\u80fd\u6307\u9488":66,"core\u662f\u5426\u8fd8\u5728\u4f7f\u7528\u8fd9\u4e2a\u5b9e\u4f8b":66,"core\u6982\u5ff5":66,"cost\u63a5\u6536y_predict\u4e0ey\u4f5c\u4e3a\u8f93\u5165":101,"cost\u8fd8\u5927\u4e8e\u8fd9\u4e2a\u6570":96,"count\u4e2agpu\u4e0a\u4f7f\u7528\u6570\u636e\u5e76\u884c\u6765\u8ba1\u7b97\u67d0\u4e00\u5c42":134,"count\u548cgpu":134,"csr\u5b58\u50a8\u683c\u5f0f\u901a\u8fc7":121,"cuda\u5171\u4eabkernel\u5b9e\u73b0\u5728":111,"cuda\u5b9e\u73b0\u5171\u4eab\u540c\u4e00\u4e2a":111,"cuda\u5b9e\u73b0\u5728":111,"cuda\u5e93":132,"cuda\u7684\u4ee3\u7801\u53ef\u4ee5\u590d\u7528":111,"cuda\u76f8\u5173\u5e93\u4f1a\u5728\u9884\u6d4b\u7a0b\u5e8f\u8fd0\u884c\u65f6\u52a8\u6001\u88c5\u8f7d":119,"cudnn\u5e93":[97,132],"cumtime\u7684\u6bcf\u6b21\u8c03\u7528\u5e73\u5747\u65f6\u95f4":116,"data\u5230\u5206\u5e03\u5f0f\u5b58\u50a8\u8865\u5145\u8bad\u7ec3\u6570\u636e":33,"data\u63a5\u53e3\u5206\u914d\u5b9e\u9645\u7684\u5185\u5b58":112,"data\u76ee\u5f55\u4e2d\u5b58\u653e\u5207\u5206\u597d\u7684\u6570\u636e":127,"dataprovider\u5171\u8fd4\u56de\u4e24\u4e2a\u6570\u636e":104,"dataprovider\u5171\u8fd4\u56de\u4e24\u7ec4\u6570\u636e":104,"dataprovider\u7f13\u51b2\u6c60\u5185\u5b58":94,"decoder\u5faa\u73af\u5c55\u5f00\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u4f1a\u5f15\u7528\u5168\u90e8\u7ed3\u679c":106,"decoder\u63a5\u53d7\u4e24\u4e2a\u8f93\u5165":106,"decoder\u6bcf\u6b21\u9884\u6d4b\u4ea7\u751f\u4e0b\u4e00\u4e2a\u6700\u53ef\u80fd\u7684\u8bcd\u8bed":106,"decoer\u67b6\u6784":106,"default":[2,3,4,5,6,7,9,10,11,17,18,19,22,25,26,29,30,40,45,54,58,64,67,68,76,77,83,84,85,90,115,125,126,127,134,136,140],"device\u5c31\u80fd\u62ff\u5230\u6b63\u786e\u7684\u6570\u636e":62,"dist\u76ee\u5f55\u4e0b\u751f\u6210\u8f93\u51fa\u7684whl\u5305":97,"distributed\u5206\u5e03\u5f0f":123,"dnn\u4e09\u8005\u5173\u7cfb\u5982\u4e0b\u8868":62,"dnn\u4e2d\u7684":62,"dnn\u4e2d\u7684\u6392\u5217\u65b9\u5f0f\u4e0d\u6b62\u8fd9\u4e00\u79cd":62,"dnn\u4f1a\u4f5c\u4e3a\u7b2c\u4e09\u65b9\u5e93\u96c6\u6210\u8fdbpaddlepaddl":62,"dnn\u4f1a\u7528\u5230":62,"dnn\u5171\u540c\u4f7f\u7528":62,"dnn\u524d\u540e\u7684cnn\u7f51\u7edc\u6027\u80fd":62,"dnn\u5728\u53d1\u5e03":62,"dnn\u5b9e\u73b0":62,"dnn\u5e0c\u671b\u7684\u683c\u5f0f":62,"dnn\u6570\u5b66\u5e93":97,"dnn\u6570\u636e\u7684\u4e0d\u540c\u683c\u5f0f\u4ee5\u53ca\u76f8\u4e92\u4e4b\u95f4\u7684\u8f6c\u6362":62,"dnn\u7684":62,"dnn\u7684\u5e93\u76ee\u524d\u53ea\u6709\u52a8\u6001\u5e93":62,"dnn\u7684\u6027\u80fd":62,"dnn\u7684\u60c5\u51b5\u4e0b":62,"dnn\u7684\u64cd\u4f5c\u90fd\u662f\u76f4\u63a5\u8986\u76d6\u7684\u5f62\u5f0f":62,"dnn\u7684\u6d4b\u8bd5":62,"dnn\u7684\u73af\u5883\u4e0b":62,"dnn\u7684\u76f8\u5173\u529f\u80fd":62,"dnn\u7684\u7ed3\u679c":62,"dnn\u7684\u9ad8\u6027\u80fd\u683c\u5f0f\u4e0epaddlepaddle\u539f\u6709\u7684":62,"dnn\u7684layer":62,"dnn\u7684layers\u90fd\u4f1a\u7ee7\u627f\u4e8e":62,"docker\u5b89\u88c5\u65b9\u5f0f\u53ef\u4ee5\u8fdb\u5165docker\u5bb9\u5668\u6267\u884c":123,"docker\u5b89\u88c5\u8bf7\u53c2\u8003":113,"docker\u5b89\u88c5\u8bf7\u53c2\u8003docker\u7684\u5b98\u7f51":113,"docker\u5b98\u7f51":98,"docker\u5bb9\u5668\u4e2d\u5c06\u9ed8\u8ba4\u4f7f\u7528":136,"docker\u7684\u5b98\u7f51":113,"docker\u7f16\u8bd1\u73af\u5883\u955c\u50cf\u5b8c\u6210\u7f16\u8bd1":97,"docker\u80fd\u5728\u6240\u6709\u4e3b\u8981\u64cd\u4f5c\u7cfb\u7edf":136,"docker\u955c\u50cf":98,"docker\u955c\u50cf\u4e3a\u4e86\u51cf\u5c0f\u4f53\u79ef":98,"docker\u955c\u50cf\u9ed8\u8ba4":98,"dockerhub\u7f51\u7ad9":98,"double\u7c7b\u578b\u65f6\u4e3a8":96,"dropout\u7684\u6bd4\u4f8b":110,"eigenscalar\u7684\u8f6c\u6362":112,"encode\u6210\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":104,"encoder\u548cdecoder\u53ef\u4ee5\u662f\u80fd\u591f\u5904\u7406\u5e8f\u5217\u7684\u4efb\u610f\u795e\u7ecf\u7f51\u7edc\u5355\u5143":106,"encoder\u8f93\u51fa":106,"entropy\u4f5c\u4e3acost":96,"enum":[34,36,41,67,74,75,84,85,90],"export":[51,56,91,98,113,123],"f\u4ee3\u8868\u4e00\u4e2a\u6d6e\u70b9\u6570":101,"fabric\u96c6\u7fa4":123,"fc1\u548cfc2\u5c42\u5728gpu\u4e0a\u8ba1\u7b97":134,"fc3\u5c42\u4f7f\u7528cpu\u8ba1\u7b97":134,"final":[4,5,18,27,28,42,56,68,69,86,89],"flatten\u65b9\u6cd5\u662f\u628apaddle\u4e2d\u7684\u4e00\u4e2atensor\u8fdb\u884creshape\u64cd\u4f5c":112,"float":[2,3,4,6,9,18,19,45,50,58,85,87,88,111,112,117,121],"float\u7b49":134,"forward\u7684output\u7684\u503c":94,"from\u65b9\u6cd5\u662f\u628apaddle\u4e2d\u7684\u4e00\u7ef4tensor\u8f6c\u4e3aeigen\u7684\u4e00\u7ef4tensor":112,"from\u662feigentensor\u6a21\u677f\u63d0\u4f9b\u7684\u4e00\u4e2a\u63a5\u53e3":112,"full\u53c2\u6570\u63d0\u4ea4":92,"function":[4,5,9,18,19,23,26,28,29,31,35,36,37,39,40,41,42,45,46,50,52,55,58,63,68,69,72,73,74,75,76,78,79,80,81,83,85,89,107,115,116,140],"function\u4f7f\u7528":95,"git\u6d41\u5206\u652f\u6a21\u578b":109,"github\u9996\u9875":109,"glibc\u81f3\u5c11\u5305\u542bglibc_2":100,"golang\u53ef\u4ee5\u4f7f\u7528":65,"golang\u7684":65,"google\u5f00\u6e90\u7684\u5bb9\u5668\u96c6\u7fa4\u7684\u8c03\u5ea6\u6846\u67b6":123,"gpu\u4e8c\u8fdb\u5236\u6587\u4ef6":97,"gpu\u5219\u8fd8\u9700\u8981\u9ad8\u5e76\u884c\u6027":117,"gpu\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18":114,"gpu\u6267\u884c":112,"gpu\u6838\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u6307\u5b9a":132,"gpu\u7684docker\u955c\u50cf\u7684\u65f6\u5019":91,"gpu\u7b49":82,"group\u6559\u7a0b":105,"group\u7684\u5b9e\u73b0\u65b9\u5f0f":95,"gru\u6216lstm":107,"h\u5e76\u4e0d\u56f0\u96be":65,"html\u5373\u53ef\u8bbf\u95ee\u672c\u5730\u6587\u6863":113,"i\u4ee3\u8868\u4e00\u4e2a\u6574\u6570":101,"id\u6307\u5b9a\u4f7f\u7528\u54ea\u4e2agpu\u6838":132,"id\u6307\u5b9a\u7684gpu":134,"id\u65e0\u6548":132,"image\u91cc":126,"images\u6570\u636e\u96c6\u4e0a\u4f20\u5230\u4e91\u7aef\u7684":33,"imikolov\u6570\u636e\u96c6":123,"import":[3,4,26,29,30,40,41,44,52,54,56,57,63,68,69,75,83,86,100,101,102,111,122,123,125],"infer\u63a5\u53e3\u7684\u8fd4\u56de\u503c\u662f\u4e00\u4e2apython":94,"ingress\u9700\u8981\u628apfsclient\u7684\u8eab\u4efd\u4fe1\u606f\u4f20\u7ed9pfsserv":48,"instance\u4e0e\u751f\u6210\u6570\u636e\u96c6\u65f6":33,"instance\u5305\u6db5\u4e24\u4e2a\u503c":33,"instance\u662f\u4e00\u6a21\u4e00\u6837\u7684":33,"int":[2,3,4,5,9,10,11,18,19,28,29,34,35,36,39,40,41,43,57,58,61,62,63,65,66,74,75,77,78,84,85,87,89,90,104,110,112,121,123,134],"interface\u6587\u4ef6\u7684\u5199\u6cd5\u975e\u5e38":65,"ios\u5e73\u53f0\u53ef\u9009\u914d\u7f6e\u53c2\u6570":137,"ios\u5e73\u53f0\u7f16\u8bd1\u6307\u5357":139,"ip\u548c\u4efb\u52a1\u8282\u70b9\u4e2a\u6570\u7b49":123,"issue\u7f16\u53f7":109,"job\u662f\u672c\u6b21\u8bad\u7ec3\u5bf9\u5e94\u7684job":127,"job\u7684\u540d\u5b57":127,"kernel\u5b9e\u73b0":111,"kernel\u6ce8\u518ccpu\u5b9e\u73b0\u5728":111,"kernel\u7684\u5b9e\u73b0\u57fa\u4e8eeigen":111,"kubernetes\u4e3a\u8fd9\u6b21\u8bad\u7ec3\u521b\u5efa\u4e863\u4e2apod\u5e76\u4e14\u8c03\u5ea6\u5230\u4e863\u4e2anode\u4e0a\u8fd0\u884c":127,"kubernetes\u5355\u673a":123,"kubernetes\u53ef\u4ee5\u901a\u8fc7yaml\u6587\u4ef6\u6765\u521b\u5efa\u76f8\u5173\u5bf9\u8c61":127,"kubernetes\u5c31\u4f1a\u521b\u5efa3\u4e2apod\u4f5c\u4e3apaddlepaddle\u8282\u70b9\u7136\u540e\u62c9\u53d6\u955c\u50cf":127,"kubernetes\u6709job\u7c7b\u578b\u7684\u8d44\u6e90\u6765\u652f\u6301":126,"label\u662f\u539f\u59cb\u6570\u636e\u4e2d\u5bf9\u4e8e\u6bcf\u4e00\u53e5\u8bdd\u7684\u5206\u7c7b\u6807\u7b7e":104,"labels\u662f\u6bcf\u7ec4\u5185\u6bcf\u4e2a\u53e5\u5b50\u7684\u6807\u7b7e":104,"layer1\u5fc5\u987b\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":103,"layer1\u5fc5\u987b\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":103,"layer\u4f5c\u4e3a\u4e00\u4e2a\u6574\u4f53\u6765\u5b9e\u73b0":95,"layer\u62ff\u5230\u7684\u7528\u6237\u8f93\u5165":106,"layer\u65f6":[62,95],"layer\u662f\u6211\u4eec\u7684\u79ef\u6728":101,"layer\u7684\u540e\u9762\u63a5\u6709cpu":62,"layer\u7c7b\u53ef\u4ee5\u81ea\u52a8\u8ba1\u7b97\u4e0a\u9762\u7684\u5bfc\u6570":110,"layer\u8ba1\u7b97\u7684\u8f93\u51fa":95,"linux\u4e2d":98,"list\u4e2d":122,"list\u4f5c\u4e3a\u68c0\u67e5\u5217\u8868":82,"list\u5982\u4e0b\u6240\u793a":134,"list\u6307\u5b9a\u6d4b\u8bd5\u7684\u6a21\u578b\u5217\u8868":134,"long":[4,5,9,18,41],"memory\u4e0d\u80fd\u72ec\u7acb\u5b58\u5728":106,"memory\u4e5f\u53ef\u4ee5\u5177\u6709":107,"memory\u4e5f\u53ef\u4ee5\u662f\u5e8f\u5217":107,"memory\u53ea\u80fd\u5728":106,"memory\u53ef\u4ee5\u7f13\u5b58\u4e0a\u4e00\u4e2a\u65f6\u523b\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u8f93\u51fa":104,"memory\u6307\u5411\u4e00\u4e2alay":106,"memory\u662f\u5728\u5355\u6b65\u51fd\u6570\u4e2d\u5faa\u73af\u4f7f\u7528\u7684\u72b6\u6001":107,"memory\u662fpaddlepaddle\u5b9e\u73b0rnn\u65f6\u5019\u4f7f\u7528\u7684\u4e00\u4e2a\u6982\u5ff5":104,"memory\u7684":107,"memory\u7684\u521d\u59cb\u72b6\u6001":106,"memory\u7684\u65f6\u95f4\u5e8f\u5217\u957f\u5ea6\u4e00\u81f4\u7684\u60c5\u51b5":104,"memory\u7684\u66f4\u591a\u8ba8\u8bba\u8bf7\u53c2\u8003\u8bba\u6587":106,"memory\u7684\u8f93\u51fa\u5b9a\u4e49\u5728":107,"memory\u7684i":106,"memory\u9ed8\u8ba4\u521d\u59cb\u5316\u4e3a0":106,"mkl\u5e93\u7684":61,"mklml\u4ee5\u53camkl":62,"mklml\u53ef\u4ee5\u4e0emkl":62,"mklml\u7684\u5e93\u76ee\u524d\u90fd\u662f\u52a8\u6001\u5e93":62,"mnist\u624b\u5199\u6570\u5b57\u8bc6\u522b\u76ee\u5f55":122,"mode\u4e0b\u7684\u7ed3\u679c":61,"model\u505a\u5206\u652f\u7ba1\u7406":82,"name\u7ec4\u5408\u53ef\u4ee5\u627e\u5230\u672c\u6b21\u8bad\u7ec3\u9700\u8981\u7684\u6587\u4ef6\u8def\u5f84":127,"ndarray\u7c7b\u578b\u7684\u503c\u548c\u6574\u578b\u7684\u503c":33,"ndk\u4e2d\u5305\u542b\u4e86\u6240\u6709android":136,"new":[4,9,18,27,28,29,30,31,34,35,36,37,38,41,42,45,50,51,60,61,63,67,69,72,77,78,79,81,85,86,89,109,110,125,140],"note\u7684\u4e66\u5199":82,"null":[56,110,121,132],"num\u51b3\u5b9a\u603b\u7aef\u53e3\u4e2a\u6570":123,"num_gradient_servers\u53c2\u6570":127,"num_samples_processed\u4e3a\u5df2\u8bad\u7ec3\u6837\u672c\u6570":96,"only\u7684\u4e8c\u8fdb\u5236":97,"op\u4e0d\u9700\u8981\u5b9a\u4e49opprotomak":111,"op\u5355\u5143\u6d4b\u8bd5\u7ee7\u627f\u81ea":111,"op\u5b9a\u4e49":111,"op\u6709\u8ba1\u7b97\u51fd\u6570":111,"op\u6ce8\u518c\u5b9e\u73b0\u5728":111,"op\u7684\u4fe1\u606f":62,"op\u8ba1\u7b97\u51fd\u6570\u7684\u57fa\u7c7b":111,"openmp\u7528\u4e8e\u63d0\u9ad8mklml\u7684\u6027\u80fd":62,"openmpi\u96c6\u7fa4":123,"opprotomake\u5b9a\u4e49":111,"org\u5de5\u5177\u7684\u8be6\u7ec6\u4fe1\u606f":113,"org\u76ee\u524d\u9075\u5faa":82,"outer_mem\u662f\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":104,"output\u53ef\u4ee5\u662f\u4efb\u610f\u7ef4\u5ea6\u7684tensor":112,"output\u6587\u4ef6\u5939\u5b58\u653e\u8bad\u7ec3\u7ed3\u679c\u4e0e\u65e5\u5fd7":127,"output\u7684\u539f\u6709shape\u4fe1\u606f\u4e0d\u53d8":112,"packages\u91cc\u9762":91,"packages\u91cc\u9762\u7684python\u5305":91,"packed\u4f18\u5316\u540elayer\u7684\u6d4b\u8bd5":61,"packed\u76f8\u5173\u529f\u80fd":61,"paddepaddle\u901a\u8fc7\u7f16\u8bd1\u65f6\u6307\u5b9a\u8def\u5f84\u6765\u5b9e\u73b0\u5f15\u7528\u5404\u79cdbla":97,"paddle\u4e00\u4e2a\u52a8\u6001\u5e93\u53ef\u4ee5\u5728\u4efb\u4f55linux\u7cfb\u7edf\u4e0a\u8fd0\u884c":65,"paddle\u4e2d\u7ecf\u5e38\u4f1a\u5c06\u65f6\u95f4\u5e8f\u5217\u6210\u4e3a":104,"paddle\u4e8c\u8fdb\u5236\u5728\u8fd0\u884c\u65f6\u6355\u83b7\u4e86\u6d6e\u70b9\u6570\u5f02\u5e38":94,"paddle\u5185\u5d4c\u7684python\u89e3\u91ca\u5668\u548c\u5916\u90e8\u4f7f\u7528\u7684python\u5982\u679c\u7248\u672c\u4e0d\u540c":65,"paddle\u5185\u90e8\u7684\u7c7b\u4e3ac":65,"paddle\u7684\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0\u5305\u62ec\u4e00\u4e0b\u51e0\u4e2a\u65b9\u9762":65,"paddle\u7684\u7c7b\u578b\u5168\u90e8\u9000\u5316\u6210":66,"paddle\u7684\u94fe\u63a5\u65b9\u5f0f\u6bd4\u8f83\u590d\u6742":65,"paddle\u7684c":66,"paddle\u8bad\u7ec3\u4efb\u52a1":33,"paddle\u8def\u5f84\u4e0b":66,"paddle\u9700\u8981\u4e00\u4e2a\u591a\u8bed\u8a00\u63a5\u53e3":65,"paddle\u9700\u8981\u66b4\u9732\u7684api\u5f88\u591a":66,"paddle\u9759\u6001\u5e93\u94fe\u63a5\u590d\u6742":65,"paddle_\u7c7b\u578b\u540d":66,"paddle_\u7c7b\u578b\u540d_\u51fd\u6570\u540d":66,"paddlepaddle\u4e2d":[103,106],"paddlepaddle\u4e2d\u4e00\u4e2a\u8ba1\u7b97\u5c42\u7684\u8f93\u51fa\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f\u548c\u8f93\u5165\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f\u5b8c\u5168\u76f8\u540c":121,"paddlepaddle\u4e2d\u7684\u8bb8\u591alayer\u5e76\u4e0d\u5728\u610f\u8f93\u5165\u662f\u5426\u662f\u65f6\u95f4\u5e8f\u5217":104,"paddlepaddle\u4e2d\u7684cudnn\u90e8\u5206\u4f7f\u7528\u7684\u4e5f\u662f":62,"paddlepaddle\u4e2d\u795e\u7ecf\u7f51\u7edc\u8ba1\u7b97\u5c42\u8f93\u5165":121,"paddlepaddle\u4e2d\u8fd8\u5305\u542b":95,"paddlepaddle\u4e2d\u901a\u8fc7reader\u6765\u52a0\u8f7d\u6570\u636e":101,"paddlepaddle\u4e3a\u4ea4\u53c9\u7f16\u8bd1\u63d0\u4f9b\u4e86\u5de5\u5177\u94fe\u914d\u7f6e\u6587\u6863":[136,137],"paddlepaddle\u4e3a\u6df1\u5ea6\u5b66\u4e60\u7814\u7a76\u4eba\u5458\u63d0\u4f9b\u4e86\u4e30\u5bcc\u7684api":101,"paddlepaddle\u4e3ano":98,"paddlepaddle\u4e3b\u8981\u4f7f\u7528":97,"paddlepaddle\u4f1a\u81ea\u52a8\u8bbe\u5b9a":95,"paddlepaddle\u4f7f\u7528\u540c\u6b65\u5c4f\u969c":123,"paddlepaddle\u4f7f\u7528\u5747\u503c0":96,"paddlepaddle\u4f7f\u7528avx":91,"paddlepaddle\u4f7f\u7528git":82,"paddlepaddle\u4fdd\u5b58\u7684\u6a21\u578b\u53c2\u6570\u6587\u4ef6\u5185\u5bb9\u753116\u5b57\u8282\u5934\u4fe1\u606f\u548c\u7f51\u7edc\u53c2\u6570\u4e24\u90e8\u5206\u7ec4\u6210":96,"paddlepaddle\u4fdd\u5b58\u7684\u6a21\u578b\u53c2\u6570\u6587\u4ef6\u524d16\u5b57\u8282\u4e3a\u5934\u4fe1\u606f":96,"paddlepaddle\u53d1\u5e03\u7684\u5b89\u88c5\u5305\u4f1a\u5c3d\u91cf\u5bf9\u9f50":100,"paddlepaddle\u53ef\u4ee5\u4f7f\u7528\u591a\u79cd\u5206\u5e03\u5f0f\u8ba1\u7b97\u5e73\u53f0\u6784\u5efa\u5206\u5e03\u5f0f\u8ba1\u7b97\u4efb\u52a1":123,"paddlepaddle\u53ef\u4ee5\u4f7f\u7528\u5e38\u7528\u7684python\u5305\u7ba1\u7406\u5de5\u5177":100,"paddlepaddle\u53ef\u4ee5\u4f7f\u7528cudnn":97,"paddlepaddle\u53ef\u4ee5\u540c\u65f6\u652f\u6301\u540c\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":123,"paddlepaddle\u53ef\u4ee5\u6bd4\u8f83\u7b80\u5355\u7684\u5224\u65ad\u54ea\u4e9b\u8f93\u51fa\u662f\u5e94\u8be5\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684":104,"paddlepaddle\u53ef\u4ee5\u901a\u8fc7\u8be5\u673a\u5236\u5224\u65ad\u662f\u5426\u5df2\u7ecf\u6536\u96c6\u9f50\u6240\u6709\u7684\u68af\u5ea6":110,"paddlepaddle\u5728\u5b9e\u73b0rnn\u7684\u65f6\u5019":104,"paddlepaddle\u5728\u6fc0\u6d3b\u51fd\u6570\u91cc\u5b9e\u73b0dropout":95,"paddlepaddle\u5728\u7f16\u8bd1\u65f6":97,"paddlepaddle\u5b58\u7684\u662f\u6709\u503c\u4f4d\u7f6e\u7684\u7d22\u5f15":101,"paddlepaddle\u5b89\u88c5\u5305\u7531\u4e8e\u4e0d\u4ec5\u4ec5\u5305\u542b":100,"paddlepaddle\u5c06\u4f1a\u6839\u636e":137,"paddlepaddle\u5c06\u4f1a\u81ea\u52a8\u9009\u62e9":137,"paddlepaddle\u5c06\u6839\u636e":136,"paddlepaddle\u5c06\u81ea\u52a8\u4e0b\u8f7d\u548c\u7f16\u8bd1\u6240\u6709\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93":[136,137,138],"paddlepaddle\u5e93\u5df2\u7ecf\u5b89\u88c5\u5b8c\u6210":137,"paddlepaddle\u5f00\u53d1\u8fc7\u7a0b\u4f7f\u7528":82,"paddlepaddle\u63d0\u4f9b":99,"paddlepaddle\u63d0\u4f9b\u4e13\u7528\u7684":33,"paddlepaddle\u63d0\u4f9b\u7684":95,"paddlepaddle\u652f\u6301":97,"paddlepaddle\u652f\u6301\u4e0d\u540c\u7c7b\u578b\u7684\u8f93\u5165\u6570\u636e":101,"paddlepaddle\u652f\u6301\u4f7f\u7528pip\u5feb\u901f\u5b89\u88c5":102,"paddlepaddle\u652f\u6301\u975e\u5e38\u591a\u7684\u4f18\u5316\u7b97\u6cd5":94,"paddlepaddle\u652f\u6301sparse\u7684\u8bad\u7ec3":94,"paddlepaddle\u6587\u6863\u4f7f\u7528":113,"paddlepaddle\u662f\u6e90\u4e8e\u767e\u5ea6\u7684\u4e00\u4e2a\u6df1\u5ea6\u5b66\u4e60\u5e73\u53f0":101,"paddlepaddle\u6bcf\u6b21\u53d1\u65b0\u7684\u7248\u672c":82,"paddlepaddle\u6bcf\u6b21\u53d1\u7248\u672c\u9996\u5148\u8981\u4fdd\u8bc1paddlepaddl":82,"paddlepaddle\u7684":126,"paddlepaddle\u7684\u4e3b\u7248\u672c\u5e93\u9075\u5faa":82,"paddlepaddle\u7684\u5185\u5b58\u5360\u7528\u4e3b\u8981\u5206\u4e3a\u5982\u4e0b\u51e0\u4e2a\u65b9\u9762":94,"paddlepaddle\u7684\u53c2\u6570\u4f7f\u7528\u540d\u5b57":96,"paddlepaddle\u7684\u5404\u7248\u672c\u955c\u50cf\u53ef\u4ee5\u53c2\u8003":126,"paddlepaddle\u7684\u5b89\u88c5\u53ef\u4ee5\u53c2\u8003":123,"paddlepaddle\u7684\u5df2\u7ecf\u5b89\u88c5\u5b8c\u6210":136,"paddlepaddle\u7684\u6240\u6709layer\u90fd\u6709\u552f\u4e00\u7684nam":95,"paddlepaddle\u7684\u6587\u6863\u5305\u62ec\u82f1\u6587\u6587\u6863":113,"paddlepaddle\u7684\u6587\u6863\u6784\u5efa\u6709\u4e09\u79cd\u65b9\u5f0f":113,"paddlepaddle\u7684\u6e90\u7801":109,"paddlepaddle\u7684\u7f16\u8bd1\u9009\u9879":97,"paddlepaddle\u7684activation\u4f1a\u76f4\u63a5\u4f7f\u7528":62,"paddlepaddle\u7684bas":110,"paddlepaddle\u7684c":136,"paddlepaddle\u7684cmake\u7cfb\u7edf\u4f1a\u81ea\u52a8\u7f16\u8bd1\u6240\u6709\u7684\u7b2c\u4e09\u65b9\u4f9d\u8d56\u5e93":137,"paddlepaddle\u7684cmake\u7cfb\u7edf\u5c06\u6839\u636e\u8be5\u503c\u81ea\u52a8\u63a8\u5bfc\u548c\u8bbe\u7f6e\u9700\u8981\u4f7f\u7528\u7684\u4ea4\u53c9\u7f16\u8bd1\u5668":136,"paddlepaddle\u7684cmake\u7cfb\u7edf\u5c06\u6839\u636e\u8be5\u503c\u81ea\u52a8\u8bbe\u7f6e\u9700\u8981\u4f7f\u7528\u7684\u4ea4\u53c9\u7f16\u8bd1\u5668":138,"paddlepaddle\u7684cmake\u7cfb\u7edf\u624d\u8ba4\u4e3a\u5728\u662f\u5728\u4ea4\u53c9\u7f16\u8bd1raspberri":138,"paddlepaddle\u7684cmake\u7cfb\u7edf\u624d\u8ba4\u4e3a\u662f\u5728\u4ea4\u53c9\u7f16\u8bd1android\u7cfb\u7edf\u7684\u7248\u672c":136,"paddlepaddle\u7684dock":126,"paddlepaddle\u7684softmax\u4e0d\u80fd\u6307\u5b9a\u8ba1\u7b97\u7ef4\u5ea6":95,"paddlepaddle\u76ee\u524d\u53ea\u652f\u6301\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e2d":104,"paddlepaddle\u76ee\u524d\u63d0\u4f9b\u4e24\u79cd\u53c2\u6570\u521d\u59cb\u5316\u7684\u65b9\u5f0f":96,"paddlepaddle\u76ee\u524d\u652f\u63018\u79cdlearning_rate_schedul":96,"paddlepaddle\u7f16\u8bd1\u9700\u8981\u4f7f\u7528\u5230\u4e0b\u9762\u7684\u4f9d\u8d56":97,"paddlepaddle\u82e5\u68c0\u6d4b\u5230\u7528\u6237\u4f7f\u7528\u7684cmake\u7248\u672c\u4e0d\u4f4e\u4e8e3":136,"paddlepaddle\u8d1f\u8d23\u5b8c\u6210\u4fe1\u606f\u548c\u68af\u5ea6\u5728\u65f6\u95f4\u5e8f\u5217\u4e0a\u7684\u4f20\u64ad":106,"paddlepaddle\u8d1f\u8d23\u5b8c\u6210\u4fe1\u606f\u548c\u8bef\u5dee\u5728\u65f6\u95f4\u5e8f\u5217\u4e0a\u7684\u4f20\u64ad":106,"paddlepaddle\u955c\u50cf\u9700\u8981\u63d0\u4f9b":127,"pass\u4e2a\u6a21\u578b\u5230\u7b2c":132,"pass\u5c06\u4e0d\u8d77\u4f5c\u7528":132,"pass\u8f6e\u5f00\u59cb\u8bad\u7ec3":132,"pass\u8f6e\u7684\u6a21\u578b\u7528\u4e8e\u6d4b\u8bd5":132,"passes\u8f6e":132,"patch\u53f7":82,"patch\u53f7\u52a0\u4e00":82,"path\u6307\u5b9a\u6d4b\u8bd5\u7684\u6a21\u578b":134,"perftools\u6765\u8fdb\u884c\u6027\u80fd\u5206\u6790":116,"period\u4e2a\u6279\u6b21\u5bf9\u6240\u6709\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5":132,"period\u4e2a\u6279\u6b21\u6253\u5370\u65e5\u5fd7\u8fdb\u5ea6":132,"period\u4e2a\u6279\u6b21\u8f93\u51fa\u53c2\u6570\u7edf\u8ba1":132,"period\u4e2a\u6279\u6b21\u8f93\u51fa\u7b26\u53f7":132,"period\u6574\u9664":132,"period\u8f6e\u4fdd\u5b58\u8bad\u7ec3\u53c2\u6570":132,"pfsclient\u9700\u8981\u548cingress\u4e4b\u95f4\u505a\u53cc\u5411\u9a8c\u8bc1":48,"pfsclient\u9700\u8981\u5728\u4f20\u8f93\u5b8c\u6bd5\u6700\u540e\u4e00\u4e2achunk\u7684\u65f6\u5019\u68c0\u67e5destination\u6587\u4ef6\u7684md5\u503c\u662f\u5426\u548csource\u6587\u4ef6\u4e00\u81f4":48,"pfsserver\u63d0\u4f9brest":48,"pi\u5e73\u53f0\u4e0a\u9002\u7528\u7684paddlepaddle\u7684\u65b9\u6cd5\u548c\u6b65\u9aa4":138,"pi\u5e73\u53f0\u7f16\u8bd1\u6307\u5357":139,"pi\u7248\u672c\u7684\u5e93":138,"pi\u7248\u672cpaddlepaddle\u5e93\u65f6":138,"pi\u7684\u914d\u7f6e\u4fe1\u606f\u5728":138,"pi\u7cfb\u7edf\u4e0a\u6765\u6784\u5efa":138,"pi\u7cfb\u7edf\u7684\u7248\u672c":138,"pip\u548cdocker\u7684\u5b89\u88c5\u65b9\u5f0f":99,"pserver\u5730\u5740\u7b49\u53c2\u6570\u4f7ftrainer\u53ef\u4ee5\u6b63\u786e\u8fde\u63a5\u5230pserv":123,"pserver\u76d1\u542c\u7684\u8d77\u59cb\u7aef\u53e3":123,"public":[10,18,29,50,53,58,74,80,83,85,86,87,89,110,111,112,125,126],"pwd\u53d8\u91cf\u4f1a\u5c55\u5f00\u4e3a\u5f53\u524d\u8def\u5f84\u7684\u7edd\u5bf9\u8def\u5f84":98,"py\u4e2d":82,"py\u7a0b\u5e8f":100,"pydataprovider\u4f7f\u7528\u7684\u662f\u5f02\u6b65\u52a0\u8f7d":94,"pypi\u4e0a\u7684package\u540d\u79f0\u4e3apaddlepaddle\u548cpaddlepaddl":82,"pypi\u4e0d\u652f\u6301\u8986\u76d6\u4e0a\u4f20":82,"pypi\u5b89\u88c5\u5305\u53ef\u4ee5\u5728":100,"python\u5b89\u88c5\u5305\u652f\u6301linux":91,"python\u5c01\u88c5\u7684\u5b9e\u73b0\u4f7f\u5f97\u6211\u4eec\u53ef\u4ee5\u5728\u914d\u7f6e\u6587\u4ef6\u4e2d\u4f7f\u7528\u65b0\u5b9e\u73b0\u7684\u7f51\u7edc\u5c42":110,"python\u5e93yep":116,"python\u6807\u51c6\u5e93\u4e2d\u63d0\u4f9b\u4e86\u6027\u80fd\u5206\u6790\u7684\u5de5\u5177\u5305":116,"reader\u7684\u4f7f\u7528\u65b9\u5f0f\u90fd\u662f\u4e00\u81f4\u7684":33,"reader\u8f93\u51fa\u7684data":33,"recommendation\u6587\u4ef6\u5939\u5185\u5b58\u653e\u8bad\u7ec3\u6587\u4ef6":127,"request\u524d":109,"request\u7684":109,"request\u88ab\u5408\u5e76\u540e":109,"resnet\u7684mkl":62,"return":[2,4,5,7,9,10,11,17,18,23,25,26,27,28,29,33,34,36,39,40,46,50,52,53,54,56,58,59,60,63,68,69,70,74,75,76,80,83,85,87,89,94,96,101,104,107,110,112,125,127],"rnn\u5373\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":104,"rnn\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u901a\u8fc7\u4e86\u4e00\u4e2alstm\u7f51\u7edc":104,"rnn\u603b\u662f\u5f15\u7528\u4e0a\u4e00\u65f6\u523b\u9884\u6d4b\u51fa\u7684\u8bcd\u7684\u8bcd\u5411\u91cf":106,"rnn\u76f8\u5173\u6a21\u578b":114,"rnn\u90e8\u5206\u4e2d":61,"rnn\u914d\u7f6e":105,"root\u66ff\u6362\u4e3apaddlepaddle\u9884\u6d4b\u5e93\u7684\u5b89\u88c5\u8def\u5f84":119,"s3\u4e4b\u7c7b\u7684\u5206\u5e03\u5f0f\u5b58\u50a8\u4e4b\u4e0a":33,"search\u7684\u65b9\u6cd5":132,"sentences\u662f\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u7684\u6570\u636e":104,"seq\u53c2\u6570\u5fc5\u987b\u4e3afals":106,"server\u4e2a\u6279\u6b21\u6253\u5370\u65e5\u5fd7\u8fdb\u5ea6":132,"server\u4e4b\u4e0a":32,"server\u4e4b\u95f4\u7684\u7f51\u7edc\u5e26\u5bbd":32,"server\u4f1a\u6682\u505c\u53c2\u6570\u66f4\u65b0\u5e76\u7b49\u5f85":32,"server\u4f1a\u83b7\u53d6parameters\u5185\u5b58\u7684":32,"server\u5185\u5b58\u4e2d\u7684\u6a21\u578b\u6570\u636e\u7684\u5b8c\u6574\u955c\u50cf":32,"server\u540c\u6b65\u7684\u4fdd\u5b58\u4e00\u4e2a\u7279\u5b9a\u65f6\u95f4\u70b9\u7684\u5168\u5c40\u68c0\u67e5\u70b9":32,"server\u5728\u96c6\u7fa4\u4e2d\u542f\u52a8\u540e":32,"server\u6545\u969c\u540e\u88abkubernetes\u91cd\u65b0\u542f\u52a8":32,"server\u6b64\u65f6\u8fd8\u9700\u8981\u901a\u8fc7\u7f51\u7edc\u8bbf\u95ee\u5206\u5e03\u5f0f\u5b58\u50a8\u4ee5\u4fdd\u5b58\u5feb\u7167":32,"server\u751f\u6210\u4e00\u4e2auuid":32,"server\u7684\u5355\u70b9\u6216\u591a\u70b9\u540c\u65f6\u6545\u969c":32,"server\u7684\u6570\u636e\u5feb\u7167":32,"server\u7684\u68c0\u67e5\u70b9\u5404\u81ea\u72ec\u7acb\u4fdd\u5b58":32,"server\u7b2c\u4e00\u6b21\u542f\u52a8\u6216\u4efb\u610f\u65f6\u95f4paramet":32,"short":[4,5,50,54,77,83,86,89],"simd\u6307\u4ee4\u63d0\u9ad8cpu\u6267\u884c\u6548\u7387":91,"size\u4e3a512":132,"size\u53ef\u80fd\u4f1a\u5bf9\u8bad\u7ec3\u7ed3\u679c\u4ea7\u751f\u5f71\u54cd":94,"size\u672c\u8eab\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u8d85\u53c2\u6570":94,"softmax\u6fc0\u6d3b\u7684\u8f93\u51fa\u7684\u548c\u603b\u662f1":110,"sparse\u8bad\u7ec3\u9700\u8981\u8bad\u7ec3\u7279\u5f81\u662f":94,"static":[25,36,66,83,85,125,140],"step\u51fd\u6570\u4e2d\u7684memori":106,"step\u51fd\u6570\u5185\u90e8\u53ef\u4ee5\u81ea\u7531\u7ec4\u5408paddlepaddle\u652f\u6301\u7684\u5404\u79cdlay":106,"store\u4e0b\u8f7d\u5b89\u88c5xcode\u5373\u53ef":137,"subseq\u7684\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":103,"super":[77,110],"swig\u652f\u6301\u7684\u8bed\u8a00\u6216\u8005\u89e3\u91ca\u5668\u6709\u5c40\u9650":65,"swig\u66b4\u9732\u7684\u63a5\u53e3\u4fdd\u7559\u4e86c":65,"swig\u751f\u6210\u7684\u4ee3\u7801\u4e0d\u80fd\u4fdd\u8bc1\u591a\u8bed\u8a00\u4ee3\u7801\u98ce\u683c\u7684\u4e00\u81f4\u6027":65,"swig\u76f4\u63a5\u8bfb\u53d6c":65,"swig\u9700\u8981\u5199\u4e00\u4e2ainterface\u6587\u4ef6":65,"switch":[29,66,125],"tag\u4e3a":82,"tag\u53ef\u4ee5\u662flatest\u6216latest":82,"tag\u7684\u66f4\u65b0\u65f6\u95f4\u662f\u5426\u5728\u4e0a\u8ff0\u7f16\u8bd1wheel\u5305\u5b8c\u6210\u540e\u662f\u5426\u6700\u65b0":82,"tensor\u5230\u5bf9eigentensor\u7684\u8f6c\u6362":112,"tensor\u5230eigentensor":112,"tensor\u5b9a\u4e49\u5728framework\u76ee\u5f55\u4e0b":112,"tensor\u662f\u4e00\u4e2a\u6b63\u5728\u5f00\u53d1\u4e2d\u7684\u6a21\u5757":112,"tensor\u6a21\u5757\u5bf9el":112,"tensor\u6a21\u5757\u6765\u5b9e\u73b0":111,"tensor\u6a21\u5757\u7684\u6587\u6863\u8f83\u5c11":112,"tensor\u6a21\u5757\u7684\u8be6\u7ec6\u4ecb\u7ecd\u8bf7\u53c2\u8003":112,"tests\u7684paddlepaddl":109,"tflops\u4e86":117,"throw":125,"tottime\u7684\u6bcf\u6b21\u8c03\u7528\u5e73\u5747\u65f6\u95f4":116,"trainer\u542f\u52a8\u9700\u8981\u4f20\u5165\u7aef\u53e3":123,"trainer\u63a5\u6536\u4e09\u4e2a\u53c2\u6570":101,"trainer\u8282\u70b9\u4e2a\u6570":123,"trainer\u9700\u8981\u548cpserver\u4fdd\u6301\u7f51\u7edc\u8054\u901a\u4ee5\u5b8c\u6210\u8bad\u7ec3":123,"true":[2,3,4,5,6,7,9,11,17,18,19,21,25,26,28,29,34,51,57,61,70,75,76,77,78,82,85,89,94,96,104,107,110,121,122,125,127,134],"true\u8868\u793a\u53cd\u5411\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":107,"try":[30,31,34,35,36,51,56,60,63,78,83,86,91],"type\u5b57\u6bb5\u5747\u4e0d\u5c3d\u76f8\u540c":66,"type\u6307\u5b9a\u4e3a":116,"ubuntu\u4e0b\u5b89\u88c5\u547d\u4ee4\u4e3a":116,"unit\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u8ba1\u7b97\u5f97\u5230\u7684\u4e2d\u95f4\u503c":95,"unsupported\u6a21\u5757":111,"update\u53c2\u6570\u65f6\u624d\u6709\u6548":132,"v1\u7248\u672c":91,"var":[17,18,28,29,40,45,52,53,55,57,70,75,76,77,79,83,88,89,113],"vector\u662frank\u4e3a1\u7684tensor":112,"void":[29,34,36,47,50,52,53,58,63,64,65,66,75,76,84,85,87,88,110,111,112],"wheel\u5305":82,"while":[2,4,9,29,38,41,51,56,59,60,69,72,73,78,81,83,87,127],"wise\u8ba1\u7b97\u63d0\u4f9b\u4e86\u5f3a\u5927\u7684\u652f\u6301":112,"wmt14\u6570\u636e\u7684\u63d0\u4f9b\u6587\u4ef6\u5728":107,"words\u5373\u4e3a\u8fd9\u4e2a\u6570\u636e\u4e2d\u7684\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":104,"words\u662f\u539f\u59cb\u6570\u636e\u4e2d\u7684\u6bcf\u4e00\u53e5\u8bdd":104,"x86_64\u548cmaco":91,"x\u4e0ey\u4e3a\u4e4b\u524d\u63cf\u8ff0\u7684\u8f93\u5165\u5c42":101,"x\u548cwindow":136,"y\u8868\u793a\u8f93\u5165\u6570\u636e\u662f\u4e00\u4e2a\u7ef4\u5ea6\u4e3a1\u7684\u7a20\u5bc6\u5411\u91cf":101,"yaml\u6587\u4ef6\u4e2d\u5404\u4e2a\u5b57\u6bb5\u7684\u5177\u4f53\u542b\u4e49":127,"yaml\u6587\u4ef6\u63cf\u8ff0\u4e86\u8fd9\u6b21\u8bad\u7ec3\u4f7f\u7528\u7684docker\u955c\u50cf":127,"zero\u4e09\u79cd\u64cd\u4f5c":132,AGE:[125,126],AWS:[9,33,129,130],Abs:18,Added:86,And:[3,4,6,9,10,11,18,25,27,34,38,39,47,54,56,67,71,74,78,83,87,125],But:[4,5,9,18,27,53,59,67,74,83,91,140],EOS:4,For:[3,4,5,6,9,18,25,26,28,29,35,36,37,39,40,42,45,46,51,52,53,55,58,60,64,67,68,69,72,73,74,75,76,77,78,79,80,81,84,85,86,87,88,90,115,117,140],IDE:108,IDs:[10,18,38,41,69],IRs:42,Into:125,Its:[3,4,52,84,125],K8s:140,NMS:4,NOT:[18,77],Not:[26,31,60,86,140],OPs:[42,44],One:[3,5,18,25,27,38,64,67,83,86,88],Ops:[79,81,85],PFS:48,QoS:126,Such:[58,77,86,89],TLS:[26,48,125],That:[4,9,71],The:[1,2,3,4,5,6,9,10,11,17,18,19,22,25,26,27,28,30,31,35,37,38,39,41,42,44,45,46,49,50,52,56,59,60,63,64,66,68,69,71,72,74,75,76,77,78,81,83,84,85,86,87,88,89,90,110,111,112,115,118,121,125,127],Their:[4,31],Then:[4,5,18,40,42,53,58,60,71,74,76,115,125],There:[3,4,10,18,25,26,29,30,31,36,38,39,41,42,49,50,51,56,60,67,68,69,72,73,74,77,81,83,84,87,125],These:[3,11,18,28,29,45,50,55,70,81,84,85,86],Use:[3,9,18,26,43,49,78,79,86,115,125],Used:[5,21,79,87],Uses:60,Using:[18,31,51,72,78,79,81,83],VPS:125,Will:[9,25,101],With:[4,5,40,45,51,71,75,86,89],YES:39,Yes:[62,98],___embedding_0__:127,___embedding_1__:127,___fc_layer_0__:125,__align__:50,__cuda_align__:50,__device__:50,__doc__:85,__file__:39,__forceinline__:50,__fp16:50,__global__:50,__gradient_machines__:25,__hadd:50,__half:50,__half_raw:50,__impl__:85,__init__:[45,46,54,60,70,77,89,110,115,116],__main__:54,__name__:54,__param_conf__:25,__rnn_step__:107,__square_error_cost_0__:127,__tmp_params__:25,__va_args__:80,__x:50,_addup_repetitive_outputs_:28,_append_backward_ops_:[28,45],_append_backward_vars_:28,_binari:30,_create_global_var:77,_def:60,_dtype:56,_filer:63,_filter:63,_fwd:63,_fwd_pd:63,_input:63,_librari:30,_link:5,_live_in:60,_live_out:60,_loss:54,_op:[56,111],_output:63,_presucessor:60,_program:60,_proj:4,_recurrent_group:107,_remove_no_grad_branch_:28,_reorder_input:63,_source_language_embed:107,_src_input:63,_sucessor:60,_target_language_embed:107,_test:30,_update_op:46,_use:60,_value_index:56,a75:50,a_op:111,a_prev:86,aaaaa:33,aaaaaaaaaaaaa:125,abbrevi:11,abc:4,abil:54,abl:[4,26,28,41,42,58,70,74,77,140],about:[5,11,18,29,30,39,44,49,52,60,68,78,83,85,86,87,115,125],abov:[3,4,18,26,28,29,30,31,35,40,41,42,50,51,52,53,55,63,68,69,70,71,72,74,75,77,85,86,88,89,115,117,125,140],abs:[5,27,54,94],abs_numerical_grad:27,absolut:94,acc:42,acceler:[4,32,62,71,72],accept:[2,4,9,18,26,79],access:[4,5,18,26,30,35,38,39,40,42,77],accessmod:125,accessor:77,accord:[3,4,11,18,27,28,36,42,44,55,69,79,89],accordingli:[3,4],account:[79,140],accoust:86,accrodingli:34,accumul:[14,31,36,46,71,72,86],accur:[27,38,74],accuraci:[3,46,86],achiev:[44,71,72,86,87],acquir:51,across:[4,9,28,42,68,86],act1:56,act2:56,act:[4,5,18,19,29,42,56,69,77,89,94,101,102,104,107,118],act_output:85,act_typ:56,actgat:18,action:125,activ:[5,18,19,24,30,56,60,69,74,77,81,85,94,101,102,107],activi:5,actnod:18,actual:[4,18,34,45,51,54,56,63,67,72,85,87,88],actual_layout:63,adadelta:94,adagrad:[72,84],adagradoptim:[20,70],adam:[26,36,42,54,96],adamaxoptim:20,adamoptim:20,adapt:[3,6,18,25,74,88],add:[4,5,9,18,22,23,25,27,28,29,30,34,38,41,42,44,46,50,53,57,59,70,72,76,77,79,81,83,87,91,109,112,118],add_activ:77,add_bia:77,add_depend:30,add_execut:30,add_input:[68,110],add_memori:68,add_output:68,add_scalar:[29,69,75],add_sum:77,add_test:[30,110],add_to:95,add_two:[29,68],add_unittest_without_exec:110,addattr:[85,111],addbia:110,addcom:[85,111],added:[3,4,18,25,29,44,45,50,67,71,72,81,109],adding:81,addinput:[85,111],addit:[4,5,28,41,71,74,79,81,89],addition:68,addmemori:63,addop:53,addoutput:111,addprimit:63,addprimitivedesc:63,addr:31,address:[31,36,40,42,121,140],addrow:110,addtolay:4,addtyp:85,adjust:[28,45],admin:140,administr:[38,140],adopt:[50,54],advanc:27,advantag:[27,50,51,72,78],adversari:[54,78],affect:[4,18,29],affili:69,afford:35,aforement:30,after:[4,5,10,11,18,28,29,30,35,36,38,42,43,44,45,47,49,50,60,63,71,73,74,77,86,109,115,125],aftern:74,again:[26,31,72],against:125,age:[10,127],agg_level:[4,103,104],aggreg:[46,71,125],aggregatelevel:[103,104],ago:30,agre:[94,101],ahead:86,alex:18,alexnet_pass1:134,alexnet_pass2:134,algo:63,algo_hrnn_demo:104,algorithm:[4,6,18,28,35,45,60,63,69,72,81,86,88],alia:18,alias:18,align:[4,5,9],all:[2,3,4,17,18,19,25,26,28,29,30,31,34,36,38,39,40,41,42,43,45,47,49,51,54,55,56,59,60,63,64,66,67,68,69,70,71,72,74,75,77,79,85,86,87,91,94,101,106,118,125,127,140],all_output_nam:28,alloc:[2,36,39,60,63,87,112,118],allow:[26,36,40,42,45,51,72,81,125],allow_only_one_model_on_one_gpu:[131,132,134],allreduc:71,almost:18,along:[4,11,18,19],alpha:[18,30,81],alreadi:[18,22,30,31,51,63,77,83,91,125],also:[4,5,10,18,21,26,28,29,30,34,37,41,42,50,51,53,54,55,56,59,60,67,68,69,72,73,74,75,76,77,78,81,83,85,86,87,89,90,117,140],altern:115,although:[22,28,71],altogeth:140,alwai:[4,5,18,25,30,64,84,125,127],amazon:[125,126],amazonaw:125,amazonec2fullaccess:125,amazonelasticfilesystemfullaccess:125,amazonroute53domainsfullaccess:125,amazonroute53fullaccess:125,amazons3fullaccess:125,amazonvpcfullaccess:125,ambigu:[78,86],amd64:125,amd:67,amend:109,amodei:86,among:[18,125],amort:71,amount:18,analys:74,analysi:[74,115],analyz:60,ancestor:[75,77],andd:125,andrew:60,android:136,android_abi:136,android_api:136,android_arm_neon:136,android_native_api_level:136,android_standalone_toolchain:136,android_toolchain:136,androideabi:136,ani:[4,5,9,18,21,26,30,31,36,38,39,40,41,42,47,50,51,58,60,64,69,71,72,77,78,80,81,86,88,94,101,125],announc:50,anoth:[4,9,18,25,26,28,29,39,41,51,52,63,69,77,83,85,87,88,125],anroid_arm_mod:136,ans:125,answer:[40,51,125],anthor:18,anymor:71,anyth:[9,69,78,125],anytim:54,anywai:115,apach:[62,94,101],apart:18,api:[10,25,26,28,30,36,37,39,40,46,48,53,54,56,68,73,74,79,82,89,90,100,114,115,116,117,119,121,123,125,127,135,136,140],api_pydataprovider2:94,api_shar:30,api_test:30,api_trainer_config_helpers_lay:107,apiserv:125,apivers:[125,126,127],appar:28,appear:[40,51,55,87],appel:60,append:[18,25,28,45,46,69,77,78,86,104,107,123,127],append_backward:[28,70,115,116],append_batch_s:18,append_clip_op:45,append_gradient_machin:25,append_op:[45,59,77],append_oper:77,appleyard:117,appli:[4,18,23,54,55,71,74,83],applic:[22,40,41,50,51,52,55,77,79,94,101,115,117,125,126,140],applyl1:34,appreci:86,approach:[4,42,43,44,71,72,73,81,86,140],approxim:[18,72],apt:[98,115,116],arbitrari:[4,42,64],arch:136,archetectur:86,architectur:[50,86],archiv:[10,18,65,66,119],area:54,arg:[3,5,15,22,28,56,70,85,96,111,127],arg_nam:4,argmax:18,argpars:127,args_ext:127,argu:76,argument:[4,9,11,18,22,28,29,34,35,42,70,73,76,77,119,121,122,127,136],argumentpars:127,arithmet:50,arm64:[136,137],arm64_standalone_toolchain:136,arm:[50,136,137,138],arm_standalone_toolchain:136,armeabi:136,armv7:[50,137],armv8:50,arn:125,around:[4,38,60,77,125,140],arrai:[2,4,9,11,18,25,36,40,41,55,69,75,77,78,79,89,94,96,101,111,121],arrang:[18,89],arrari:[18,121],array_to_lod_tensor:60,arrow:54,articl:[18,52,55,109],artifact:[82,125],artifici:60,arxiv:[5,18,54,86],as_row_vector:4,as_step_input:29,asgd:72,ask:[28,31,38],asr:86,assgin:60,assign:[3,4,19,28,35,40,43,45,50,52,71,86,121,125,140],assigne:86,assignmemt:60,associ:[73,80],assum:[3,4,18,29,42,63],assumpt:42,ast:40,astyp:[78,111],asyc:31,async:[31,44,131],async_count:[131,132],async_lagged_grad_discard_ratio:132,async_lagged_ratio_default:[131,132],async_lagged_ratio_min:[131,132],asynchron:[31,41,71,74],atom:43,att_seq:5,attach:5,attend:5,attended_sequ:5,attenion:5,attent:[4,5,19],attr1:4,attr2:4,attr:[2,4,5,18,29,40,56,59,63,75,76,77,85,94,95,96,107,111],attr_map:85,attrdesc:75,attribu:63,attribut:[4,5,18,24,28,29,44,45,59,75,77,79,83,85,89],attributemap:111,attrproto:85,attrtyp:[75,85,111],attrvalu:85,auc:[46,131],audio:86,augment:86,authent:125,author:[48,86,94,101,125],auto:[29,34,43,52,63,65,76,79,83,88,89,97,110,111,112,117],autom:125,automat:[4,18,26,28,36,42,44,45,53,70,79,85,86,115,125],avail:[31,36,44,50,51,60,125,140],ave:22,averag:[3,4,7,14,18,22,25,35,94],average_test_period:[131,132],avg:[103,117],avg_cost:[42,118],avg_x:18,avgpool:4,avoid:[18,27,29,31,42,59,63,71,72,73,117],avx:98,awai:51,await:126,awar:[26,40,46,52,68,77,115,125],awk:128,awni:86,aws:48,aws_account_id:125,awsaccountid:125,awskeymanagementservicepowerus:125,axi:[4,18,94],axis:4,b363:126,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:126,ba5f:125,back:[4,18,25,28,31,42,50,54,72],background:[3,4,81,86],background_id:[3,4],backpropag:[27,28],backward:[1,4,5,18,23,27,29,34,36,45,54,61,62,70,72,73,76,80,81,110,111,118],backward_first:107,backward_op:27,backwardactiv:110,baidu:[18,51,86,126],bake:42,balanc:[44,71,125],bandwidth:[50,71],bare:[126,140],barrier:123,barrierstatset:117,basci:56,base:[3,4,7,9,10,18,26,35,45,46,50,51,58,63,67,70,71,72,74,79,80,81,87,89,108,115,118,125],baseactiv:5,baseerrorclipattr:45,baseev:25,baselin:86,basematrix:110,basenam:3,basepoolingtyp:[4,5],basestr:[2,3,4,5,7,25],bash:[97,98,108,109,123,125,126,127],basi:[94,101],basic:[4,25,42,56,63,74,75,79,80,86,89],batch:[4,5,9,11,14,18,19,25,26,29,31,33,34,41,42,46,47,51,54,57,67,68,69,71,72,86,89,94,101,121,125,126,127],batch_id:[25,54,94,101],batch_im:54,batch_images_from_tar:11,batch_label:54,batch_norm:[54,86],batch_norm_lay:5,batch_norm_typ:4,batch_read:[33,78],batch_ref:18,batch_siz:[9,18,42,54,61,69,94,101],batch_szi:54,batch_z:54,batchnorm:[18,54,86],batchsiz:[4,110],bazel:30,bbbbb:33,bbox:3,bcd:4,bcebo:10,bcm2708:138,bdist_wheel:82,beacus:56,beam:[4,18,107],beam_gen:[4,107],beam_search:[25,69,106,107],beam_siz:[4,18,69,107,131,132,134],becaus:[3,4,10,26,29,30,31,36,50,69,73,77,78,81,83,84,88,89,90,104,115,125],becom:[18,43,44,83,87],been:[4,5,18,28,30,35,41,51],befor:[4,5,18,28,31,38,41,45,49,52,55,67,72,73,74,78,81,91,94,111,115,125,140],begin:[3,4,18,22,28,34,36,46,49,55,69,71],beginiter:[25,26],beginn:107,beginpass:[25,26],begintrain:26,behavior:18,behind:[51,89],being:[18,28,38,45,51,76,78,115],belong:[3,4,42,83],below:[18,29,31,36,42,44,50,51,64,73,78,81,89,90,125],benchmark:[64,86],benefit:[5,38,39,69],besid:[4,10,21,42,60,67,71],best:[30,63],besteffort:126,beta1:6,beta2:6,beta:[18,54],better:[5,30,51,60,63,69,88,125,140],between:[3,4,11,18,25,28,30,31,36,42,44,50,51,63,66,71,73,80,83,125],bgr:11,bi_gru:5,bi_lstm:5,bia:[4,5,18,69,77,110],bias:[4,18],bias_attr:[4,5,18,77,94,96,104,107],bias_initi:18,bias_param_attr:5,biases_:110,biasparameter_:110,biassiz:110,bidi:126,bidirect:[4,5,86],bidirectional_lstm:95,big:[40,44,60,140],bigger:[18,31],bilinear:4,bilinear_interpol:4,bilinearfwdbwd:117,bin:[98,122,123,125,126,127],binari:[3,4,9,18,30,39,42,50,52,54,64,115,122,125],bind:[40,41,50,53,83,87],bioinf:18,bit:50,bitcod:137,black:54,blank:[4,18,125],block0:60,block1:60,block2:60,block:[4,18,28,32,34,36,40,41,42,43,44,45,46,47,51,58,60,67,68,70,87,90,112],block_expand:86,block_i:[4,18],block_id:[40,47],block_x:[4,18],blockdesc:[23,29,55,77,79],blockdescbind:58,blockingcount:43,blueprint:69,bn_bias_attr:5,bn_layer_attr:5,bn_param_attr:5,book:[10,79,86,98,107,113,118],bool:[2,3,4,5,6,7,9,11,17,18,25,29,50,57,59,61,62,63,76,77,84,85,89,90,110,121,132,134],boost:[67,86,87],boot:[4,18,106,107,140],boot_bia:4,boot_bias_active_typ:4,boot_lay:[104,107],boot_stat:89,boot_with_const_id:4,bootstrapp:140,borrow:[54,89],bos_id:[4,107],both:[1,2,4,5,11,18,22,26,29,30,31,38,42,44,50,51,54,58,60,67,69,71,74,76,84,86,87,125],bottl:71,bottleneck:74,bottom:[25,86],bound:[4,18,60],boundari:42,boundri:3,box:[4,54],brace:[29,55],brain:38,branch:[4,18,26,29,30,42,51,57,75,82,109],break_if:89,brief:[30,36,50,87,112],bring:[51,60],broadcast:[18,31,71,79,140],broken:109,browser:[115,125],bsd:[41,71,108],bsp:41,bucket_nam:125,buf:34,buf_siz:[9,42],buffer:[9,34,41,63,64,72,78,83,118],buffer_s:9,buffered_read:78,bufsiz:9,bug:[109,125],build:[4,10,17,30,39,42,55,56,60,62,72,81,82,85,86,91,97,108,109,113,115,116,119,123,125,127,129,130,136,137,138],build_dict:10,build_doc:113,build_model:54,buildtool:82,built:[30,40,42,50,52,60,67,71,85,86,89,115,116,117,140],bulk:41,bunch:64,button:125,c11:65,c703c041:109,c99:66,c99e:125,cach:[50,94],cache_pass_in_mem:94,cachetyp:94,cacul:[5,46],caff:[29,51],caffe2:[29,40,41,51],caffe_poli:96,calcul:[3,4,5,18,27,28,31,36,43,46,50,60],calcut:60,calendar:74,call:[3,4,5,9,18,22,25,26,27,28,29,34,35,36,37,39,40,41,42,45,52,54,55,60,68,69,70,74,77,79,80,83,85,87,89,115,116,117,125,127],callabl:[2,4,9,10,17],callback:[45,110],caller:[27,115,125],calrnn:104,can:[2,3,4,5,9,10,11,17,18,19,21,22,25,26,27,28,29,30,31,34,35,38,39,40,41,42,44,45,47,50,51,52,53,54,55,56,58,59,60,63,67,68,69,70,71,72,74,75,76,77,78,79,80,81,85,87,88,89,90,115,117,125,140],cancel:38,candid:[4,18,69,86],candidate_activ:18,cannot:[79,83,88,89,91],cantain:56,capabl:[50,73,79],capac:[81,125],capi:[65,119],capi_priv:119,capi_prvi:66,caption:69,captur:4,card:71,care:[5,39,60,78,86,87,140],carefulli:86,caret:25,carpedm20:54,carri:18,cast:[50,88],cast_to_op_attr:85,cat:[9,11,98,127,128],categori:[4,10,31],categorig:10,categoryfil:126,caus:[31,49],caution:125,cbla:[61,119],cc_:30,cc_binari:30,cc_test:30,cclient:37,cde:4,cdn:10,cduadevicecontext:[67,87],ceil:4,ceil_mod:4,cell:[4,5,18],cell_activ:18,cell_t_prev:18,cell_valu:18,center:11,center_crop:11,cento:[100,140],central:81,ceph:[9,33],cephf:[33,39,48],cer:86,certain:[18,59,67,70,74,83,87],certif:[26,48,91,125],cffi:65,cfg:[60,126],cgo:65,ch1:41,chain:[9,28,55],challeng:[4,31,51,57,87],chan:41,chanc:[26,50],chang:[4,10,30,35,39,42,51,63,73,75,78,80,82,83,86,109,125],changes:63,channel:[4,5,11,18,40,117],channel_shar:4,chapter:[68,69,86],chapter_data:68,chapter_out:68,charact:86,check:[9,28,29,30,45,63,76,79,91,96,109,110,121,125,132],check_align:9,check_attr:85,check_eq:110,check_grad:[27,111],check_l:110,check_output:111,check_sparse_distribution_batch:[131,132],check_sparse_distribution_in_pserv:[131,132],check_sparse_distribution_ratio:[131,132],check_sparse_distribution_unbalance_degre:[131,132],checker:79,checkgrad:132,checkgrad_ep:132,checkmark:140,checkout:109,checkpoint:[44,76],checksum:48,child:29,chip:51,chmod:125,choic:[18,30,51],choos:[18,59],chosen:[18,54,67],chunk:[18,35,48],chunk_ev:14,chunk_schem:[3,14,18],chunktyp:3,chw:11,circl:55,circular:41,circumst:87,claim:125,claimnam:[125,127],clang:[50,65,109,136],clarifi:[3,18],clariti:69,classdim:18,classic:[4,60,86],classif:[4,18,55],classifi:[4,54],classification_cost:[94,104],classification_error_evalu:3,classification_evalu:3,claster:125,clean:[29,30,47,73,79,91,109],clear:[3,22,30,69,73,83,88],clearer:[73,77],clearli:83,cli:125,click:[115,125],client:[18,34,37,79],clip:[2,5,132],clip_op:45,clip_op_desc:45,clipbynorm:18,clock:4,clone:[4,97,108,113,115,116,119,136,138],close:[78,109],cloud:[30,31,39,48,49,79,140],cloud_read:9,cludform:125,cluster:[9,25,26,29,31,36,42,86,123,124,127],cluster_test_fil:123,cluster_train:[94,124],cluster_train_fil:123,cluster_train_v2:[124,128],cm469:125,cmake:[66,91,97,108,109,111,113,115,117,119,136,137,138],cmake_build_typ:[115,136,137,138],cmake_c:[136,137],cmake_system_nam:[136,137,138],cmakefil:91,cmakelist:[30,61,62,110],cmatrix:[65,66],cmu:18,cname:125,cnn:[4,18,126],coars:53,code:[4,9,26,28,30,38,41,42,44,47,50,53,54,55,59,64,67,70,72,73,74,76,78,79,80,81,85,89,110,125,126],codebas:79,coded_stream:96,codedinputstream:96,coeff:4,colindic:121,collabor:31,collect:[4,10,25,74],collectbia:110,color:11,colour:10,colum:121,column:[3,4,18,55,78,115,121],column_evalu:3,com:[4,5,10,18,30,54,82,91,97,98,108,109,113,115,116,118,119,125,126,136,138,140],combin:[3,4,5,9,25,60,70,79,83],come:[42,46,60,75,86,89],comma:[18,22,25,36],command:[9,22,30,34,39,49,108,110,115,125,126,127,129,130,134],commandlin:[117,127],comment:[18,30,56,85,86,104,127],commit:[30,126],common:[11,33,81,87],commonli:[49,81,115],commun:[31,36,37,41,42,44,71,125],compani:51,compar:[27,30,40,79],comparison:[30,51],compat:[19,50,53,71],compil:[4,30,42,51,56,58,60,67,71,80,84,85,90,108,123,136,137,138],complaint:30,complet:[4,5,10,18,25,28,29,31,35,36,45,48,55,64,67,79,115,125,126,127,140],complex:[5,18,38,41,60,69,79],complianc:[94,101],complic:[4,42,53,78,88,89],compon:[41,42,56,86,89,90],compos:[9,19,26,41,53,56,68,77,79],composenotalign:9,composit:53,compress:[35,121],compris:28,comput:[4,5,14,18,19,22,26,27,31,41,42,44,47,50,51,52,56,60,64,67,70,71,72,74,80,83,86,87,88,90,111,112,115,118,125],computation:4,computationgraph:56,con:71,concat:[54,107],concaten:[4,5,18,54,68,89,94],concentr:79,concept:[3,26,40,41,51,53,54,56,63,68,69,72,73,75,83,89,90],conceptu:[41,47,51,54,56],concern:[26,41,46],concis:[54,89],conckerneltrac:22,concret:[79,87],concurr:[31,38,44,74],cond:[18,29,51,57,75],condit:[4,18,35,42,51,57,63,86,94,101,126],condtion:54,conf:[4,96,104,124,127],conf_paddle_gradient_num:[125,127],conf_paddle_n:[125,127],conf_paddle_port:[125,127],conf_paddle_ports_num:[125,127],conf_paddle_ports_num_spars:[125,127],confid:4,confidence_threshold:4,config:[2,4,22,33,49,69,101,110,119,125,126,127,131,132,134,140],config_:[34,132],config_arg:[131,132,134],config_bas:[3,4,25],config_lay:110,config_len:36,config_pars:[61,62,110],config_proto:36,configmap:42,configprotostr:96,configur:[4,18,25,28,34,36,38,39,42,44,51,56,59,77,86,87,88,102,110,140],confirm:49,conflict:[83,109],confus:[11,54,59],conll:10,connect:[5,18,39,40,42,44,86,92,125,126,140],connectionist:[4,18],consequ:[4,5],consid:[3,4,28,76,87,140],consider:[4,5,67,86],consist:[3,4,10,11,18,35,41,52,64,75,78,79,80,85,86,90],consol:125,consolid:29,constant:[4,18,56,58,59,67,96],constantiniti:[16,18],constraint:83,construct:[3,18,26,47,56,60,68,77,79,83,85],constructbackwardgraph:55,constructoptimizationgraph:55,constructor:[18,45,50,74,77,79,83,85],consum:[31,115],consumpt:60,contact:38,contain:[3,4,5,7,9,10,11,18,25,26,28,29,35,47,54,56,63,64,67,73,74,77,79,80,83,84,85,86,89,90,108,125,126,127],containerport:125,content:[18,36,49,64,69,113],content_dir:113,content_len:36,context:[4,5,10,18,19,45,63,83,84,87,94,107,111,112,118],context_attr:5,context_len:[4,5],context_proj_layer_nam:5,context_proj_param_attr:5,context_project:5,context_start:[4,5],contin:125,continu:[3,28,31,64,86],contrast:[4,18],contrib:81,contribut:[81,86],contributor:79,control:[2,29,40,41,125,126,140],controlflowgraph:60,conv2d:54,conv:[5,18,54,63,88],conv_act:5,conv_batchnorm_drop_r:5,conv_bias_attr:5,conv_filter_s:5,conv_fwd:63,conv_layer_attr:5,conv_num_filt:5,conv_op:4,conv_pad:5,conv_param_attr:5,conv_pool_2:42,conv_strid:5,conv_with_batchnorm:5,conveni:[26,28,56,70,85,86],convent:[18,28,36],convers:[50,51],convert:[10,18,33,42,43,44,50,51,52,63,78,80,86],convlay:4,convlut:86,convlution2d:18,convolut:[4,5,9,18,19,54,67,77,87],convolution2d:18,convolution_algorithm_opt:63,convoper:4,convproject:4,convtranslay:4,convtransproject:4,cool:109,cooper:86,coordin:[31,36],copi:[18,25,26,35,38,49,55,68,69,71,72,89,94,101,125],copy_from:45,copyright:[94,101],copyvariablewithtensor:88,core:[2,18,28,56,59,66,72,73,89,118],coreo:[125,140],corespond:18,corner:79,corpu:[10,86],correct:[4,18,27,28,50,71,125],correctli:[3,9,28,50,54],corresond:50,correspend:18,correspoind:26,correspond:[4,18,19,26,28,29,30,45,50,56,57,63,67,68,69,77,79,80,81,85,87,96,115],corss_entropi:26,cortex:50,cos:[4,85],cosin:[4,18,85],cosineop:85,cosineopproto:85,cosineopprotomak:85,cost:[18,25,26,28,42,55,70,71,75,76,88,94,101,118],cost_id:4,cost_np:76,could:[4,9,25,26,27,35,40,41,42,43,44,50,51,52,68,70,72,73,75,77,78,80,115,125],count:[3,18,31,39,46,76,78,86,117,123,126,132,134],counter:[14,22,31,35,43,55],cours:[3,39,67],covari:4,cover:[51,86],cp27:100,cp27m:[82,100],cp27mu:[82,100],cpp:[27,34,53,61,62,65,66,73,79,90,96,104,110,117,127],cprofil:[115,116],cprofilev:[115,116],cpu:[2,4,22,27,39,50,59,67,72,73,74,79,81,82,87,88,108,111,112,115,117,118,126,134],cpu_avx_mkl:100,cpu_avx_openbla:100,cpu_kernel:59,cpu_noavx_openbla:100,cpu_ns_:74,cpu_per_pserv:42,cpu_per_train:42,cpudevicecontext:[67,87,111],cpuelapsedu:74,cpuengin:62,cpuinfo:98,cpuplac:[22,42,59,63,67,87,88,111,112,118],cpusparsematrix:66,crash:[31,117],creat:[2,9,18,23,25,26,27,29,31,36,40,43,45,46,47,48,49,50,51,53,54,55,63,67,68,70,71,72,73,77,80,81,86,94,96,101,109,110,113,121,126,127,128,140],create_backward_pass:70,create_bias_paramet:110,create_block:77,create_doc_str:85,create_input_paramet:110,create_local_scop:47,create_oper:53,create_optimization_pass:70,create_paramet:77,create_python_ops_creatation_funct:85,create_rnn:29,create_rnn_op:68,create_tmp_var:77,create_tmp_vari:77,create_var:77,create_whileloop:89,creategradientoper:80,creatememori:63,createop:85,createoper:29,createprimitivedesc:63,createstack:125,createvari:29,creation:[53,125],creationd:125,creator:[9,10,33,79,80],creator_:80,credenti:49,crf:[87,88],critic:[54,115],crlf:109,crop:[11,87],crop_grad:87,crop_siz:11,crope:11,cropgradkernel:87,cropkernel:87,cross:[4,18,77,96,136,137,138],cross_entropi:[4,26,42,54,60,88],cross_entropy_with_selfnorm:4,crt:48,csc:110,csr:[110,121],csv:[22,96],ctc:[3,18],ctc_error_evalu:86,ctc_evalu:3,ctest:[97,108,109,111],ctor:77,ctrl:[108,124],ctx:[63,88,111,112],cubla:67,cublas_handle_:87,cublashandle_t:87,cuda7:[100,102],cuda8:[97,98,100],cuda:[22,30,52,67,74,79,87,108,111,117,132],cuda_context:52,cuda_dir:[131,132],cuda_fp16:50,cuda_so:[91,98],cuda_visible_devic:94,cudaconfigurecal:117,cudadevicecontext:[52,67,87,111],cudadevicegetattribut:117,cudaelapsedu:74,cudaevent_t:74,cudaeventcr:117,cudaeventcreatewithflag:117,cudafre:117,cudagetdevic:117,cudagetdevicecount:117,cudagetdeviceproperti:117,cudagetlasterror:117,cudahostalloc:117,cudalaunch:117,cudamalloc:117,cudamemcpi:117,cudaplac:[22,67,87,88],cudaprofilerstart:117,cudaprofilerstop:117,cudaprofilestop:117,cudaruntimegetvers:117,cudasetdevic:117,cudasetupargu:117,cudastream_t:87,cudastreamcr:117,cudastreamcreatewithflag:117,cudastreamsynchron:117,cudeviceget:117,cudevicegetattribut:117,cudevicegetcount:117,cudevicegetnam:117,cudevicetotalmem:117,cudnn:[4,7,18,30,59,63,67,87,88],cudnn_batch_norm:4,cudnn_conv:4,cudnn_conv_workspace_limit_in_mb:[131,132],cudnn_convt:4,cudnn_dir:[131,132],cudnn_kernel:59,cudnnavginclpadpool:4,cudnnavgpool:4,cudnnv5:97,cudrivergetvers:117,cuinit:117,cumtim:[115,116],cumul:4,cur_mem:69,curl:125,curli:[29,55],current:[4,18,28,29,30,31,34,36,40,44,46,51,59,67,68,69,72,73,74,77,83,88,89,113,125],current_block:[75,77],current_oper:75,current_word:[94,107],curv:26,custom:[26,39,50,54,69,72,79,86,125],custom_batch_read:78,custom_neg_class:18,cut:[9,89],cut_lin:9,cutoff:10,cv2:11,cxx:[136,137],cxx_compil:[136,137,138],cxx_flag:[136,137],cxxabi_1:100,cycl:31,cyclic:4,cython:65,d3e0:125,d_b0:54,d_b1:54,d_b2:54,d_block:54,d_f:54,d_g:54,d_h0:54,d_h0_bn:54,d_h0_relu:54,d_h1:54,d_h1_bn:54,d_h1_relu:54,d_h2:54,d_loss:54,d_loss_fak:54,d_loss_real:54,d_optim:54,d_step:54,d_t:54,d_w0:54,d_w1:54,d_w2:54,dandroid_abi:136,dandroid_arm_mod:136,dandroid_arm_neon:136,dandroid_standalone_toolchain:136,dario:86,darwin:125,dash:54,dat:33,data:[3,10,11,17,25,26,27,29,33,34,35,41,44,46,48,50,51,54,55,56,58,59,60,63,64,67,68,69,70,71,72,73,75,77,79,81,83,84,85,86,87,89,90,94,101,102,104,107,112,118,121,123,126,127,129,131],data_batch:94,data_feed:12,data_fil:11,data_i:54,data_lay:[34,94,104],data_layout:18,data_layout_:88,data_read:[9,78],data_reader_creator_random_imag:78,data_shar:89,data_typ:[9,10,64,84,86,88,90,95,101,102,107,121],data_type_:[59,67,88],data_x:54,databas:10,datacent:[33,49],datacenter1:33,datacenter2:33,datacenter_1:33,datacenter_2:33,datacenter_nam:33,datadim:4,datafeed:118,dataflow:56,dataflow_analysi:60,datalayout:88,dataparallel:42,dataprovid:[94,96,127],dataprovider_convert:86,datasci:4,dataset:[18,33,39,42,72,78,86,101,102,107,115,116,123],dataset_nam:11,datatransform:88,datatyp:[10,18,59,63,84,86,88,90],dcgan:54,dcmake_build_typ:[113,119],dcmake_install_prefix:[119,136,137,138],dcmake_system_nam:[136,137,138],dcuda_arch_nam:97,dcudnn_root:97,ddim:[67,87,112],dead:31,deal:[28,140],deb:109,debug:[27,28,42,49,51,77,113,115,116],debug_str:56,decai:[6,23],decar:9,decayedadagradoptim:20,decayr:34,decent:35,decid:[26,38,54,64,72,80,81,84],declar:[18,29,54,68],decod:[4,5,18,86,106,107],decoder_boot:107,decoder_dim:69,decoder_group_nam:107,decoder_input:[69,94,107],decoder_mem:[69,107],decoder_prev:5,decoder_s:[94,107],decoder_st:[5,107],deconv:[4,54],deconvolut:4,decor:9,decrement:43,decrementcount:43,decrypt:125,deduc:79,deep:[4,18,28,38,41,47,54,55,60,62,74,79,81,86,87,117],deeper:52,deepspeech2:61,def:[4,9,26,27,28,33,39,45,46,53,54,56,59,60,68,69,70,77,78,85,89,94,96,101,104,107,110,111,127],def_block:54,defalut:[18,22],default_block:54,default_decor:127,default_devic:134,default_initi:18,default_main_program:[17,118],default_param_attr:77,default_st:89,default_startup_program:118,default_valu:134,defaultdict:60,defaultinfervartyp:58,defect:73,defer:38,defin:[4,5,9,25,26,28,29,30,31,38,40,43,44,45,50,51,52,53,54,56,59,60,67,68,71,75,77,78,79,83,85,87,89,94,101,111,115,118],define_py_data_sources2:96,definit:[28,29,31,35,42,47,52,59,75,80,85,89,115,118],definiton:53,degener:18,degre:4,delai:[72,87],delet:[18,39,48,109],deletestack:125,delimit:[3,96],deliv:140,delta:[4,27],delv:4,demand:[31,87],demo:[4,10,79,126,129],denot:18,dens:[4,9,36,37,84,86,125],dense_arrai:[9,95],dense_vector:[9,101,102,121],dense_vector_sequ:[9,121],dense_vector_sub_sequ:121,densescann:86,dep:30,depart:86,depend:[18,29,30,31,39,42,44,56,71,76,84,140],dependent_var:76,deploi:[4,140],deploy:[56,64,79,125,140],deprec:[4,86],depth:[29,51,86],dequeu:44,deriv:[1,26,42,45,57,70],desc:[29,45,63,64,77,85,89],desc_:29,descend:[18,89],descent:[4,31,72],descproto:64,describ:[17,26,28,29,30,35,40,42,47,52,59,63,64,68,69,73,75,77,79,84,85,88,90,125,126],describestack:125,describestackev:125,describestackresourc:125,descripotor:63,descript:[3,29,30,58,62,64,67,80,84,86,88,90,125,127],descriptor:[41,63,88],deseri:[25,64,73],deserializ:79,desgin:55,design:[4,9,18,28,34,59,60,65,72,74,81,140],desir:[9,31,42,72,125,126],destin:[18,36,49],destroi:[29,47],destruct:83,destructor:74,det_output:3,detail:[2,3,4,5,6,18,27,28,35,39,42,44,49,51,54,56,60,63,64,67,68,74,77,81,83,87,88,89,90,115,125,140],detect:[18,58,109],detection_evalu:3,detection_output:3,determin:[4,9,18,29,42,60,67,79],dev:[79,91,98,108,109,115,116,136,140],dev_ctx:[29,63,74],devel:82,develop:[28,30,51,58,73,74,77,80,82,86,109,115,118,137],deviat:2,devic:[2,40,42,46,50,56,62,63,67,71,73,74,79,88,91,98,112,118,134],device_:74,device_context:[63,111],device_count:18,device_typ:18,devicecontext:[29,67,74,111],deviceid:[62,134],deviceid_:62,deviceplac:87,devid:4,devot:86,dhcp:140,diagon:18,diagram:68,diamond:54,dic:11,dict:[3,10,25,28,77,96,104,127],dict_dim:[94,104],dict_fil:[3,104],dict_siz:[10,18,34,69],dictionari:[3,4,10,18,25,26,27,77,94],did:73,diff:[94,109],diff_mat:27,differ:[3,4,18,22,25,28,29,30,31,36,38,42,43,44,45,46,47,50,51,54,56,57,60,63,67,69,71,72,74,76,80,83,86,88,89,90,115,125],differenti:53,difficult:[3,27,51],dig:125,digit:4,digraph:56,dilat:[4,18,63],dilation_h:18,dilation_i:4,dilation_w:18,dim0:111,dim1:111,dim:[4,9,18,19,21,34,63,64,68,79,84,87,90,110,111,112],dim_:[87,112],dimens:[1,4,5,7,9,18,19,21,54,79,84,86,87,89,94,112],dimension:[4,18,121],dimes:4,dios_arch:137,dios_enable_bitcod:137,dios_platform:137,dios_use_veclib_for_bla:137,dir:[91,127,136],direcit:86,direct:[4,5,11,18,51,60,72,86,115],directli:[5,30,37,39,42,50,59,73,85,88,89],directori:[4,17,30,33,38,48,49,87,109,113,117,126],dirnam:17,disabl:[18,74,96],disadvantag:[72,77],discard:[9,31,35,69,109,132],discexp:96,discount:4,discov:31,discoveri:125,discret:4,discrim:54,discuss:[26,29,35,36,37,42,63,86],disk:64,dispatch:[42,73],dispens:18,displac:18,displai:[39,49],dissimilar:18,dist:[82,91,97],dist_train:[26,39],distanc:[3,4,18],distinguish:30,distribut:[4,18,29,35,36,37,38,40,41,46,52,71,79,86,90,94,101,129,130,132,140],distribute_test:[131,132],distributedli:42,disucss:26,div:18,divid:[4,6,18,28,46,85,90,115],divisor:18,diy_beam_search_prob_so:[131,132],dnn:[63,86,91],dns:125,do_forward_backward:78,doc:[9,56,68,89,111,113,123,124,127],doc_cn:113,docker:[82,91,97,98,109,113,123,125,126,127,129,130,136,140],docker_build:26,docker_clust:[124,128],docker_push:26,dockerfil:[108,109,127,136,138],document:[4,5,18,27,42,48,55,68,69,74,79,86],doe:[5,18,31,35,36,38,39,40,42,44,47,50,56,60,68,73,77,79,80,81,118],doesn:[2,4,9,26,29,40,41,78,115],doing:[34,38,42,55],domain:125,don:[5,26,30,53,55,60,78,86,125],done:[3,4,5,28,30,31,35,36,42,43,58,60,64,72,80,81,86,109,115,117,125,127],dot:[4,5,19,111],dot_period:[127,132,134],dotmuloper:4,dotmulproject:4,doubl:[18,42,50,55,74,88,111,132],down:[86,117],download:[10,30,31,34,38,48,91,126,140],doxygen:109,dozen:30,dpython_execut:91,dpython_include_dir:91,dpython_librari:91,draw:69,drive:83,drop:[4,5,18,19,69],drop_fc:95,drop_rat:[2,95],drope:18,dropout:[2,5,19,95],dropout_prob:18,dropout_r:[4,18,19,95],drpi_arm_neon:138,drpi_toolchain:138,drwxr:126,ds2:86,dst:[36,63],dst_primitive_desc:63,dtoh:117,dtype:[18,41,42,56,77,96,118],due:[35,38,54,60,69,77,115,116],dummi:[25,35],dump:[64,122],dump_config:122,dump_v2_config:122,duplic:[18,44],durat:35,dure:[4,5,17,18,28,29,31,35,38,39,46,51,60,71,72,74,77,79,86,90,125,140],duse_eigen_for_bla:136,dwith_c_api:[66,119,136,137,138],dwith_doc:113,dwith_golang:119,dwith_gpu:[97,113,119,138],dwith_mkl:[113,119],dwith_profil:117,dwith_python:[66,119,138],dwith_swig_pi:[66,119,136,137,138],dwith_test:[97,111,137],dwith_tim:117,dynam:[18,36,66,68,77,78],dynamic_cast:110,dynamic_recurrent_op:89,dyogatam:18,e2e:140,each:[3,4,5,7,9,10,18,19,25,27,28,30,31,34,35,36,38,39,40,41,42,45,46,47,52,55,58,60,63,67,68,69,71,73,74,76,77,78,79,80,83,84,85,86,87,88,89,90,115,125,140],each_feature_vector:1,each_time_step_output:1,eager:51,earli:[50,52],eas:[9,58],easi:[27,28,69,72,78,79,81],easier:[26,44,50,51,78,89],easili:[26,54,71,74,78,80,83,87],echo:[91,98],edg:[11,60],edit:[3,18,41,125],editdist:18,editor:77,edu:[10,18,125,126],eeoi3ezpr86c:125,effect:[4,18,25,125],effici:[4,42,64,78,86,87],effort:[42,86],efg:4,efs:125,efs_dns_nam:125,efsvol:125,egd:60,eigen:[50,67,72,79,81,87,111],eigen_device_:87,eigen_use_gpu:111,eigenmatrix:112,eigentensor:112,eigenvector:112,either:[4,5,9,18,25,26,42,54,57,58,68,72,81,94,101],elabor:86,elb:125,elbapis:125,electr:60,electron:126,elem_dim:4,elememt:4,element:[3,4,5,9,11,18,25,27,35,41,44,56,69,79,111],element_typ:36,elementari:79,elementwis:[18,19],elif:[26,85],els:[26,34,39,41,42,44,45,51,54,57,58,59,60,83,85,98,104,110],elsewher:74,emac:108,emailweixu:30,emb1:[34,104],emb2:[34,104],emb:[94,96,104,126],emb_group:104,emb_para:96,emb_param_fil:96,emb_sum:94,embed:[26,29,34,44,58,69,84,89,96,107],embedding_lay:[34,94,104],embedding_nam:[4,107],embedding_s:[4,107],empir:[4,18],emplace_back:110,emploi:[28,45,85],empti:[3,9,18,28,31,69],emul:50,enabl:[2,4,18,29,30,35,40,44,45,56,74,108,117,125],enable_grad_shar:[131,132],enable_parallel_vector:132,enableonstart:22,enc_proj:[5,107],enc_seq:5,enc_vec:107,encapsul:36,encod:[5,35,69,104],encoded_proj:[5,107],encoded_sequ:[5,107],encoded_vector:107,encoder1:104,encoder1_expand:104,encoder1_last:104,encoder1_rep:104,encoder2:104,encoder2_rep:104,encoder_ctx:69,encoder_ctx_expand:69,encoder_ctx_proj:69,encoder_dim:69,encoder_last:4,encoder_out_seq:69,encoder_s:107,encount:[18,34],encourag:[42,47],encrypt:125,encrypt_decrypt:125,end2end:140,end:[3,4,18,22,25,28,29,42,45,52,56,60,69,73,74,78,83,86,107,109],end_id:18,end_pass:26,end_po:4,endforwardbackward:[25,94],endian:64,endif:[67,74],enditer:[25,26,94,101],endpass:[25,26,101],endpoint:[9,18,33,125],endtrain:26,engin:[39,62,63,86],english:[4,86],enough:[28,29,59,60,67],enqueu:44,ensembl:5,ensur:[31,63,71,83],enter:[29,47],enterpris:79,entir:[4,5,36,38],entiti:[3,29,83],entranc:47,entri:[9,18,35,39,58,125],entropi:[4,18,77],entry_point:39,enumer:[1,67,96],env:[94,113,115,116,125,127],environ:[26,42,91,115,117,125,126],environmenterror:123,eol:109,eos_id:[4,107],epoch:54,epol:41,epsilon:[4,6,18],equal:[4,5,18,19,31,89,104,111],equat:[3,4,5,6,18,60,111],equival:[26,29,40,45,51,57,85,140],erlang:41,error:[2,3,4,5,18,26,27,35,49,50,51,63,83,86,91,96,119,125,132],error_clip:45,error_clip_callback:45,error_clipping_threshold:[2,94],errorclipbyvalu:45,espeaci:18,especi:[4,5,17,62],essenc:[26,28],essenti:[4,26,47,50],establish:40,estim:[4,18,26,44,72],eta:126,etal:18,etc:[3,9,18,29,41,42,46,63,71,72,78,83,86,125,140],etcd:[9,25,31,35,36,38],etcd_addr:36,etcd_endpoint:9,eth0:[125,127],etyp:41,euclidean:4,eval:[3,29,46,54,79],eval_program:46,eval_result:46,evalu:[4,12,18,24,25,38,56,76,86,117,118,122],evaluate_difficult:3,even:[26,50,71,77,78],evenli:[36,125],event:[22,94,101,126],event_:74,event_block:74,event_handl:[25,26,94,101],eventkind:74,eventlist:74,eventu:[42,89],everi:[3,4,5,9,18,26,31,35,36,38,45,46,55,56,58,60,63,67,68,71,77,83,85,88,101,118],everyth:[42,44,54],evid:73,evolv:51,exactli:[4,5,94,125],exampl:[3,4,5,9,10,11,18,19,25,29,39,42,44,46,49,51,52,53,54,55,56,58,60,63,67,68,69,73,74,75,77,78,79,80,81,84,87,88,89,115,118,125],example_read:9,exc_path:91,exceed:4,except:[4,10,21,23,38,40,51,55,74,86,89,101],excess:60,exchang:73,exclud:4,exclude_mod:4,exclude_param:25,excluded_chunk_typ:[3,14,18],exclus:18,exconv:4,exconvt:4,exdb:10,exe:[42,118],execut:[4,18,22,30,31,35,39,40,41,42,46,47,52,54,56,60,63,71,74,80,90,115,125],executioncontext:[63,88,111,112],executor:[12,17,40,42,46,50,51,52,54,70,75,77,88,90,115,116,118],exist:[26,29,31,49,51,69,77,78,80,85,87,89,112,125],exit:[36,49,126],exp:96,expand:[18,69,104],expand_a:[4,103,104],expand_lay:104,expand_level:[4,103],expandconvlay:4,expandlevel:103,expans:4,expect:[4,88],expected_desc:63,expected_kernel_kei:88,experi:[64,86],expert:30,expir:31,explain:[3,18,31,40,51,53,55,115],explan:[4,18,27,39,40,42,83,88],explicit:[74,89,110],explicitli:[26,42,47],explod:45,explor:[4,69,81],expon:4,exponenti:[1,18],expos:[28,37,41,63,64,87,89,125],express:[26,44,46,56,60,94,101,125],extend:[3,72,89],extens:[38,44,69],extent:66,extern:[30,62,65,66,79,86],extern_mklml:91,external_librari:30,extingrad_:62,extinval_:62,extoutgrad_:62,extoutval_:62,extra:[2,4,5,21,42,81,87,140],extra_lay:25,extraattr:[2,134],extraattribut:4,extraattributenon:4,extract:[3,4,18,51,73,86,125],extralayerattribut:[2,5,94,95],extralayeroutput:5,extrem:[4,40,51],f1205:96,f120da72:126,f7e3:125,fa0wx:126,fabric:[123,124],face:[30,81],fact:[18,40,51,71,75,77],factor:[2,6,18],factor_s:4,factori:65,fail:[31,35,69,91,96,126,132],failur:[31,36],fake:54,fake_imag:78,faked_imag:54,fall:[50,76],falloc:48,fals:[2,3,4,5,6,9,18,27,28,29,51,57,59,61,68,75,76,78,84,90,94,101,102,104,107,110,111,121,123,126,134],false_block:[29,57,75],false_label:78,false_neg:46,false_posit:46,false_read:78,fan_in:18,faq:135,far:[45,89],fashion:42,fast:[4,35,51,117],faster:[4,5,18,31,51],fastest:51,father:28,fault:[25,35,79],fbd1f2bb71f4:126,fc1:[56,110,134],fc1_bia:56,fc1_weight:56,fc2:[56,134],fc3:[56,134],fc4:134,fc8a365:125,fc8a:125,fc_act:5,fc_attr:5,fc_bias_attr:5,fc_layer:[77,85,94,96,104,134],fc_layer_nam:5,fc_mat:25,fc_op:85,fc_out:[18,29],fc_output:85,fc_param_attr:5,fc_without_b:29,fclayer:110,fcop:53,fdata:104,feasibl:72,featur:[1,4,9,10,18,28,42,50,56,71,74,86,109],feed:[5,17,25,26,42,55,68,81,101,118],feed_dict:54,feed_list:[13,118],feed_target_nam:17,feeded_var_nam:17,feeder:[9,42,118],fetch:[10,31,34,42,76,91,109,118],fetch_list:[42,77,118],fetch_op:76,fetch_target:17,few:[30,31,41,42,60,72,78,84,86],fewer:[4,18,41,77],fft:86,fg0:4,field1:25,field2:25,field:[4,21,25,29,56,58,64,76,77,80,84,85,94,125],fifth:55,figur:[26,30,42,44,54,62,68,74,77,86],file:[3,4,9,10,11,22,25,26,28,30,31,33,35,36,38,39,41,48,49,51,52,56,64,66,78,79,86,87,90,94,101,109,111,118,140],file_nam:[96,104],file_typ:9,filelist:86,filenam:[11,33,77,94,115,116],fileoffset:48,filesystem:[38,39,42,48,125],fill:[4,31,35,67,77,121,125],fill_zero_grad:79,fill_zeros_like_op:28,filter:[4,5,17,18,45,63],filter_s:[4,5,18,19],filter_size_h:18,filter_size_i:4,filter_size_w:18,filter_strid:18,find:[4,18,29,31,38,41,50,56,63,69,83,88],find_var:27,findmemori:63,findop:29,findprimit:63,findprimitivedesc:63,findvar:[29,83],fine:[2,35,53],fingerprint:125,finish:[18,31,35,38,39,47,60,71,85,125,126],first:[4,18,22,25,26,28,29,31,35,38,39,40,42,47,49,51,54,55,56,63,68,69,75,76,77,79,84,85,86,87,89,111,112,121,125,140],first_n:18,first_seq:107,firstli:[3,4],firstn:9,firstseen:126,fit:[10,17,50,59,60,64,69,79],five:75,fix:[2,4,18,42,60,65,77,86,109,115,121],flag:[4,10,18,22,61,62,74],flatten0:56,flatten:[18,56,75,77,112],flatten_result:94,flexibl:[4,5,22,26,36,42,51,55,59,68,69,72,78,87,89],flip:11,flist:123,fliud:40,float16:41,float16_t:50,float32:[9,18,42,50,53,54,77,78,96,111,118],float64:18,float_16:18,float_to_half_rn:50,floor:[4,96],flow:[18,29,40,41,68,74,82],fluid:[0,13,14,15,16,17,18,19,20,21,22,23,28,42,44,47,67,74,77,87,88,115,116],fluid_cuda_create_tensor:52,fluid_cuda_mult:52,fluid_cuda_read:52,fly:28,fmt:96,fname:96,fnt03:125,focu:[41,56,115],folder:[30,33,39,49,125],follew:18,follow:[3,4,5,6,9,11,18,19,25,26,27,28,29,30,31,35,39,40,41,42,44,47,50,51,52,53,54,55,56,57,58,60,63,67,68,69,71,72,74,75,76,77,78,79,80,81,83,84,85,86,87,88,89,115,118,125,129,130,140],footprint:52,forbid:26,forc:[71,77,88],force_cpu:[18,59],force_cudnn:59,force_load:65,forest:29,forget:[6,18,26],forget_bia:18,fork:4,form:[4,5,18,41,46],formal:88,format:[3,9,10,11,18,22,25,27,35,42,50,51,67,69,86,89,102,109,110,121,125],former:[26,30,51,60,72],formul:18,formula:[4,5,6,18,27,60],formular:4,forth:54,forward:[1,4,5,18,27,28,29,34,36,45,51,54,61,62,63,64,70,73,75,78,79,80,81,84,110],forward_infer:63,forward_list:74,forward_op:27,forward_proj:18,forward_train:63,forwardactiv:110,forwardbackward:25,found:[50,75,81,83],four:[3,18,46,51,55,63,67],fourth:18,foward:76,fp16:[50,79,90],fp32:[67,79,88,90],fp64:[67,90],fparam:96,fpga:[67,118],fpgadevicecontext:87,fpgaengin:62,fpgaplac:[67,87],frac:18,frame:[3,47,79,86,89],framework:[26,28,29,41,45,46,50,51,56,67,71,72,74,75,79,81,83,85,87,111,115,116,118],free:[10,52,87,140],freememoryop:52,frequenc:[10,86],frequent:[35,78,79,81,87],fresh:38,friend:83,friendli:54,from:[3,4,5,9,10,11,14,17,18,22,25,27,28,29,30,31,33,34,35,36,40,41,42,44,45,46,49,50,51,53,54,55,56,57,59,60,63,68,69,70,71,73,75,77,78,79,80,83,86,87,88,89,91,106,111,112,115,116,117,122,125,126,140],from_no_sequ:[4,103],from_sequ:[4,103],from_tar:[25,101],fromfil:[78,96],fromstr:96,front:[56,60],fuction:22,fulfil:117,full:[4,18,31,38,68,71,72,140],full_matrix_project:[5,104,107],fulli:[18,42,44,86,140],fullmatrixproject:4,fullsiz:34,fully_matrix_project:5,fullyconnect:[56,77],fullyconnectedlay:110,func:[9,35,40,52,80],funciton:[5,18],functor:[53,56],fundament:[41,44,50,79],funtion:18,further:[4,85,140],furthermor:18,futur:[4,18,38,42,50,60,68,79],future_context_s:18,fvs:85,fwd_desc:63,fwd_op:80,fwd_primit:63,fwd_primitive_desc:63,fwd_var:45,g_b0:54,g_b1:54,g_b2:54,g_block:54,g_command_config_arg:[61,62],g_h0:54,g_h0_bn:54,g_h0_relu:54,g_h1:54,g_h1_bn:54,g_h1_relu:54,g_h2:54,g_im:54,g_loss:54,g_optim:54,g_program:77,g_state:74,g_step:54,g_w0:54,g_w1:54,g_w2:54,gain:4,gan:26,gangliao:30,gate:[4,5,18,19],gate_act:[4,5,104],gate_activ:18,gate_attr:4,gate_bias_attr:4,gate_param_attr:4,gate_recurr:4,gate_v:18,gatedrecurrentlay:61,gather:[4,18,28,60,71,73,111],gauss:2,gaussian_normal_random:54,gcc:[50,52,65,79,97,108,115,136,138],gcc_3:100,gcreators_:85,gemm:61,gen:4,gen_proto_pi:113,gen_rand_param:96,gender:[10,127],gendrated_id:69,gener:[3,4,5,9,25,26,27,28,29,30,31,33,35,36,38,40,42,51,53,58,60,63,67,71,72,75,76,77,78,79,80,84,85,86,87,89,101,117,121,125,127,134],generated_id:69,generated_scor:69,generated_word_embed:4,generatedinput:[4,106,107],genr:127,gereat:3,get:[3,4,10,17,18,25,27,28,29,30,31,35,36,38,39,48,51,54,56,59,60,61,62,63,67,68,69,74,77,79,80,83,85,88,89,94,98,110,115,116,121,124,125,126,128],get_all_op_proto:85,get_block:77,get_config_arg:134,get_data:126,get_dict:10,get_dim:27,get_embed:10,get_float_el:27,get_grad:[25,94],get_grad_op_desc:28,get_input_lay:110,get_lin:9,get_movie_title_dict:10,get_numeric_gradi:27,get_numerical_gradi:27,get_output:27,get_program:60,get_sample_from_lin:94,get_shap:25,get_support:[91,100],get_symbol:56,get_tensor:27,get_var:18,get_vari:29,get_word_dict:10,get_worker_addr:40,getactualkerneltyp:59,getattr:45,getbatchs:110,geteigendevic:112,getengin:63,getenv:[26,39,123,127],getexpectedkerneltyp:[59,63,88],gethostbynam:127,gethostnam:127,getidmap:127,getinfervartyp:58,getinput:110,getinputgrad:110,getinputvalu:110,getkerneltyp:50,getkerneltypeforvar:88,getlayeroutput:[25,94],getlibrari:63,getmat:34,getoptconfig:34,getoutputgrad:110,getoutputvalu:110,getparam:34,getparameterconfig:34,getparameterptr:110,getparameterspars:34,getparametersremot:34,getplac:[63,87,111,112],getpodlist:127,getsiz:110,gettask:35,gettempl:125,gettensor:88,gettranspos:110,getw:110,getweight:110,getwgrad:110,gflag:119,gflags_complet:119,gflags_declar:119,gist:5,git:[82,91,97,108,109,113,119,136,138],github:[5,18,30,54,67,82,91,97,108,109,113,115,116,118,119,136,138],give:[18,31,68,77,79,88,125],given:[4,9,18,19,25,28,36,38,41,44,45,51,53,54,69,78,81,89],glibc:[136,138],glibc_2:100,glibcxx_3:100,glide:30,global:[2,18,23,26,29,30,31,52,56,59,73,74,79,83,85,87,88,108,117,125],global_block:77,global_learning_r:2,global_pool:18,globalstat:117,globalstatinfo:117,glog:119,gnueabihf:138,go_librari:30,go_test:30,goal:[41,44,50,55,71,79,86],gob:35,godep:30,godoc:65,goe:[5,31,51,57,83,118],going:[28,53,72,115,140],golang:30,good:[41,54,72,77,78,81,115,140],googl:[18,26,74,79,96,115,116,119,136],googleapi:125,googlenet:62,goroutin:[40,41],got:[59,83],govern:[94,101],gpg2:125,gpg:125,gprof:116,gprotos_:85,gpu:[2,4,7,22,27,39,41,46,50,60,67,71,72,73,74,79,81,82,87,88,91,98,100,102,108,117,118,121,123,134,140],gpu_id:[94,132,134],gpu_per_train:42,gpudevic:87,gpugpu_id:131,gpukernel:79,gpustarttimestamp:22,grab:31,grad:[27,28,36,45,62,77,84,94,132],grad_info_map:28,grad_n:45,grad_nam:45,grad_op:45,grad_op_class:79,grad_op_desc:45,grad_op_maker_:80,grad_op_typ:[79,80],grad_op_type_:80,grad_s_block:28,grad_share_block_num:[131,132],grad_to_var:[28,45],grad_var_nam:27,gradient:[2,3,4,6,18,23,25,31,35,41,43,45,55,58,70,71,72,73,77,79,84,115,122,123,127,132],gradient_clip:21,gradient_clipping_threshold:[2,94],gradient_evalu:3,gradient_flat:27,gradient_machin:[25,66,119],gradientmachin:[25,66,73,127],gradientmachine_:34,gradopdescmak:[58,80],gradopdescmakerbas:80,gradopmak:80,grai:11,grain:53,gram:86,grandient:25,grant:125,graph:[4,18,25,28,29,30,31,40,41,42,43,44,46,51,54,68,71,72,75],great:[44,86,140],greater:[4,18,45,72,121],greaterthan:85,greedi:[18,86],green:[40,54],grep:[98,128],gridsize3d:22,groudtruth:107,ground:[3,4,18],group:[5,18,35,56,63,87,140],group_input1:107,group_input2:107,group_input:[104,107],grouplen:10,grpc:140,gru:[4,18,69,86],gru_bias_attr:5,gru_decod:107,gru_decoder_with_attent:107,gru_layer_attr:5,gru_memori:5,gru_out:69,gru_param_attr:5,gru_step:[69,107],gru_step_lay:5,grumemori:[5,95,107],gserver:[4,61,62,110],gsizex:117,gtx:60,guarante:[63,77],guard:34,guest:100,gui:115,guid:[22,48,60,79,125,126],gutmann10a:18,gzip:[35,126],h0_bn:54,h_0:18,h_f:18,h_prev:29,hadoop:26,half:[4,18,19,50,125],half_to_float:50,hand:[60,79,86,87],handi:30,handl:[9,26,28,39,40,42,56,60,63,67,73,78,83,87,89,118],handler:[25,29],hannun:86,happen:[18,35,85],hard:[42,51,69,86,89,125],hardshrink:18,hardsigmoid:18,hardwar:[51,52,87],has:[3,4,5,10,18,19,22,26,27,28,29,30,31,35,36,38,41,42,44,45,46,50,51,54,56,60,64,67,69,71,74,75,79,84,85,87,88,117,118,121,125,140],has_kei:[25,28,45],has_selected_colum:4,has_var_recurs:28,hasdependentvar:76,hash:[67,71],hasn:51,hassubseq:104,have:[4,5,9,18,19,22,26,27,28,29,30,31,35,36,38,39,41,42,44,45,47,50,51,52,53,54,55,59,60,63,64,67,68,69,71,72,73,74,75,77,78,79,80,83,84,86,87,88,90,125,140],haven:51,hdf:[9,33],head:[19,111,128],header:[36,64,66,79,87,96],headip:128,height:[4,9,11,18,29,65,78,96,110,111,121],height_:84,held:31,hello:26,help:[4,18,29,49,51,56,63,69,78,79,89,109,115],helper:[18,42,63,80,89],henc:[42,72,77,80,81,83],here:[2,3,4,5,9,18,19,21,26,30,31,37,41,44,45,47,49,51,55,56,63,67,68,78,81,85,121,125,140],heterogen:[42,44,74],heurist:[4,44,69],hidden:[4,5,18,70,77,95,96,125],hidden_a:96,hidden_b:96,hidden_dim:[18,104],hidden_out:29,hidden_s:5,hidden_t_prev:18,hidden_v:18,hidden_valu:18,hierach:106,hierarch:[4,75,77,79],hierarchi:79,high:[2,50,71,86,87,140],higher:[53,68,89],highest:[9,29],highli:[10,86,89],him:26,hint:[59,115],histor:53,histori:6,hl_get_sync_flag:110,hold:[26,28,31,35,37,41,50,54,56,58,60,83,85,87,88,112,125],holder_:[87,112],home:[33,49,98,115,116,125,126,127,128],honor:35,hook2:104,hook:[2,104],hookattr:2,hookattribut:2,horizont:[4,11],host:[30,39,74,125,126],host_c:[136,137,138],hostfil:128,hostnam:125,hostnetwork:127,hostpath:[126,127],hostport:125,hot:18,hous:[10,102],how:[2,4,18,26,29,31,35,40,41,42,47,49,51,53,56,59,63,68,69,73,74,81,85,88,115,125],howardjohnson:104,howev:[4,5,18,27,28,38,41,42,47,51,60,67,72,73,77,78,80,81,84,85,86,87,88,125],howto:[123,124,127],hpp:[50,65],html:10,htod:117,http:[4,5,10,18,30,39,54,82,91,94,97,98,101,108,109,113,115,116,118,119,125,126,136,138,140],hub:82,huber:4,huge:72,human:[4,74,86],hwc:11,hyp:18,hyper:[4,54],hyperparamet:[4,81],hyperplan:9,hypothesi:18,i1116:127,i1117:117,i386:137,iOS:137,iamfullaccess:125,iamusersshkei:125,icc:52,iclrworkshop2016:18,icml:86,ics:10,id_input:3,id_rsa:128,idea:[30,41,51,52,72,78,81,115],ideal:[42,88],ident:[4,18,80,125],identifi:[4,57,67],identityoffsetproject:4,identityproject:4,idmap:127,ids:[3,4,18,69,94,121],ids_arrai:121,idx:[35,54,60,110],ies:49,if_else_op:28,ifdef:[67,74],ifels:[29,75],ifelseop:75,ignor:[4,17,18],ignored_token:18,iii:86,iil:96,illustr:[3,18,31,36,42,53,68],im2col:18,im_siz:54,imag:[7,8,9,10,18,26,42,51,54,55,69,70,75,78,86,108,109,125,126,127,129,130,140],image_a:78,image_b:78,image_conv_lay:86,image_fil:78,image_h:18,image_lay:78,image_nam:26,image_path:78,image_reader_cr:78,image_w:18,imagenet:[4,33],imagepullpolici:[125,127],imageri:4,images_reader_cr:78,imagin:55,img2label:11,img:[4,5],img_conv_lay:5,img_pool_lay:5,imgsiz:117,imgsizei:117,imgsizex:117,immedi:[60,63,72,81,125],immutable_paramet:26,imper:40,imperfect:79,implement:[4,5,9,18,19,23,29,35,36,37,38,39,40,41,42,44,51,53,56,57,58,60,63,65,66,67,69,73,76,83,85,86,87,88,89],implemet:34,impli:[30,94,101],implicitli:40,imposs:[69,140],impractic:88,improv:[4,43,44,60,79,86,115,125],in_arg:121,in_fals:18,in_plac:18,in_tru:18,inarg:34,inbound:125,inc_path:91,includ:[3,4,5,10,11,18,26,29,30,36,39,41,50,51,54,56,60,65,66,68,69,74,75,77,79,85,109,111,115,117,119,125,136,137,138],inclus:[18,69],incom:[40,59],incorpor:4,incorrect:4,increas:[31,35,50,96],increment:[46,55,60],incupd:110,inde:[9,41],independ:[4,18,27,28,36,43,83,87,140],index:[3,4,7,9,10,18,25,27,28,29,31,35,40,75,77,89,104,125],indexslot:4,indiact:18,indic:[3,4,18,21,28,29,36,47,54,68,75,80,84,87,89,121,125],indice_map:89,indices_map:89,individu:[31,71,125],industri:[31,64,140],ineffici:[73,88],infer:[11,17,18,26,28,29,31,46,51,57,58,59,60,61,65,67,76,77,79,84,86,88,101,102],infer_shap:77,infer_var_type_:58,inferer:86,inferfac:58,inferior:38,infershap:[29,77,79,111,112],infershapecontext:[111,112],infervartypefn:58,info:[3,4,10,50,68,94,101,104,110,124,127,140],infom:4,inform:[4,10,18,25,29,39,49,56,59,60,63,64,67,68,71,77,81,83,84,115,125],infrastructur:[51,125],ingrad_:62,ingredi:[41,86],inherit:[22,29,70,79,87],ininst:26,init:[2,18,25,29,43,54,62,68,69,101,102,110,123,125,127],init_attr:77,init_batch_dim_idx:18,init_from_tar:25,init_hook:104,init_model_path:[131,132,134],init_valu:18,initi:[2,4,5,10,12,18,21,25,28,30,35,40,42,43,44,46,55,68,71,72,77,81,85,89,102,118,132],initial_max:[2,96],initial_mean:[2,4,96],initial_min:[2,96],initial_std:[2,4,96],initialize_op_attr:77,initrd:140,inlcud:5,inlin:[87,112,125],inner:[4,94,104,121],inner_:104,inner_mem:104,inner_param_attr:5,inner_pos_arrai:121,inner_rnn_output:104,inner_rnn_st:104,inner_rnn_state_:104,inner_seq_pos_arrai:121,inner_step:104,inner_step_impl:104,inproj_attr:4,inproj_bias_attr:4,inproj_param_attr:4,input0:112,input1:[4,5,112],input2:4,input:[1,3,4,5,7,9,11,14,18,19,25,27,28,29,34,38,40,42,43,44,45,46,50,51,52,53,54,55,56,58,59,60,62,63,67,68,69,72,73,76,77,78,79,80,83,85,86,87,88,89,94,95,96,101,102,103,104,106,107,110,111,112,118,121,127,134],input_conf:4,input_data:110,input_data_target:110,input_dim_idx:18,input_dtyp:18,input_featur:1,input_hassub_sequence_data:110,input_id:4,input_imag:5,input_index:110,input_label:110,input_lay:110,input_loc:4,input_nam:26,input_proj_bias_attr:5,input_proj_layer_attr:5,input_seg:89,input_seq:[4,18],input_sequence_data:110,input_sequence_label:110,input_sparse_float_value_data:110,input_sparse_non_value_data:110,input_t:110,input_to_check:27,input_typ:[94,104],input_valu:27,input_var:[27,77],inputbuff:34,inputdef:110,inputgradi:80,inputlayers_:110,inputs_to_check:27,inputsizechang:63,inputtyp:9,insert:[18,28,45,52,71,76,79,80,109],insid:[3,5,28,31,42,44,45,46,59,63,73,74,78,79,80,125],inspir:74,instal:[4,18,39,62,82,91,97,98,100,102,109,113,115,116,119,123,126,136,137,138],install_android:136,instanc:[4,18,27,29,31,33,37,40,42,43,45,47,52,57,63,68,69,72,77,79,80],instance_ip:125,instanti:[31,47,118],instead:[4,5,7,28,30,34,39,40,41,42,50,51,55,56,86],instrins:50,instruct:[29,55],int16:90,int32:[18,67,75,89,90,132],int64:[18,42,48,67,84,88,90],int64_t:74,int8:67,integ:[3,4,9,18,35,39,40,50,65,69,101],integer_sequ:94,integer_valu:[9,94,101,104,121],integer_value_sequ:[9,69,86,104,107,121],integer_value_sub_sequ:[104,121],integr:[3,18,140],intel:[51,67,87],intellig:60,inteloptimizedpaddl:62,intens:86,inter:[4,18,42],interact:[4,42,125],intercept:4,interchang:[55,79],interconnect:71,interest:[40,50,71],interfac:[2,4,5,22,25,29,35,39,49,56,71,73,79,80,86,87,125,140],intergr:4,intermedi:[18,42,49,52,54,60,70,86],intern:[4,5,25,50,86,115,116,125],internel:62,internet:[30,31,140],interpret:[3,18,47,51,52,90],interv:18,intrins:[40,47,50],introduc:[4,11,29,31,54,61,64,81,83,85,115],intuit:[38,79],inval_:62,invalid:[78,83],invent:51,invoc:[30,53,79],invok:[4,25,28,42,45,73,77,79,80,85,88,117,125],involv:69,iob:3,ioe:3,ios:137,ios_arch:137,ios_deployment_target:137,ios_development_root:137,ios_enable_bitcod:137,ios_platform:137,ios_sdk_root:137,ios_use_veclib_for_bla:137,ip_str:127,ips:[125,127],ipt:[4,77,85,96,104,107],ipx:140,ipython:26,is_bia:18,is_color:11,is_cpu_plac:63,is_inf:122,is_loc:25,is_mkldnn_librari:63,is_revers:18,is_seq:[4,107],is_spars:18,is_stat:[2,96],is_target:76,is_tensor:85,is_test:[18,63],is_traget:76,is_train:11,isbinari:121,isinst:[45,94,101],ismkldnnkernel:63,ispodallrun:127,isspars:110,issu:[18,30,54,86],issue_numb:109,issuecom:18,istag:82,item:[4,9,18,25,38,50,78,102,127,140],iter:[4,5,6,9,25,26,31,42,51,52,60,63,72,74,78,86,89],iter_multiple_input_and_param:77,its:[4,5,18,25,26,27,28,29,31,35,40,41,44,45,46,51,52,54,55,56,58,60,64,68,69,71,72,73,76,77,79,80,83,84,85,87,88,117,125],itself:[28,31,38,52,63,72,83],ivector:[121,122],ivs:85,java:[29,65,75,79],jeremi:117,jku:18,jmlr:18,job:[10,28,38,40,42,45,79,127,131,132,134],job_desc:42,job_dispatch_packag:124,job_id:10,job_nam:[39,125,127],job_namespac:[125,127],job_path:[125,127],job_path_output:127,job_workspac:124,jobdesc:42,jobnam:[42,127],jobpath:[125,127],jobport0:125,jobport1:125,jobport2:125,jobport3:125,jobselector:127,jobserv:39,join:[31,104],jointli:5,jpg:11,json:[56,86,125,126],jth:5,judg:4,juditski:72,jupyt:39,just:[1,3,4,5,10,18,30,35,36,40,42,51,52,54,58,63,72,73,77,78,79,80,81,83,84,125],jx4xr:125,jypyt:26,k8s:[40,127,140],k8s_data:[125,127],k8s_job:26,k8s_token:26,k8s_train:[125,127],k8s_user:26,kafka:33,kcpu:74,kcuda:74,kdisabl:74,kebilinearinterpbw:117,kebilinearinterpfw:117,keep:[4,9,11,18,31,41,51,52,55,69,72,77,83,85,140],keep_dim:18,keep_top_k:4,kei:[10,11,19,22,25,27,28,29,31,33,35,48,50,59,63,79,80,85,86,89,94,108,109,117,127],kenlm:86,kept:[4,60,77],kera:81,kernel:[4,18,22,27,41,50,52,59,62,72,74,81,84,86,87,88,111,112],kernel_hint:59,kernel_type_for_var:88,kerneltyp:[59,63],key1:132,key2:132,key_pair_nam:125,keyid:125,keymetadata:125,keypair:125,keyserv:125,keystat:125,keyusag:125,keyword:[18,77,127],kforcecpu:59,kill:[31,125],kind:[26,27,31,37,42,45,52,55,59,63,70,71,74,87,88,90,94,101,125,126,127],kind_:74,kitten:18,kmark:74,kms:125,knchw8c:67,knchw:67,knhwc:67,know:[18,26,35,40,60,64,115,125],knowledg:86,known:[28,29,41,51,53,68],kpoprang:74,kpushrang:74,kqueue:41,kriz:10,krizhevski:18,kselectedrow:84,ksimonyan:5,kstate:74,kube_cluster_tl:26,kube_ctrl_start_job:26,kube_get_workers_addr:40,kube_list_containers_in_job_and_return_current_containers_rank:26,kubeconfig:125,kubectl:[124,126,127,128],kuberent:[31,125],kubernet:[26,31,40,42,79,123,127,129,130,140],kubernetes_service_host:26,kusecudnn:59,kusemkldnn:59,kvp:22,kwarg:[5,6,9,14,18,21,46,56,77,85,104],kwd:[15,22],l1_rate:2,l1_regularization_op:81,l1decayregular:23,l2_rate:2,l2_regularization_op:81,l2_sim:4,l2decayregular:23,l2regular:94,l93:34,label:[3,4,9,10,11,14,18,25,42,46,51,54,55,56,70,75,78,86,88,94,101,104,118,126],label_dim:[4,104],label_fil:78,label_lay:78,label_path:78,labelselector:127,lag:132,lambda:[18,40,45],lambdacost:4,lambdarank:4,lan:123,languag:[4,10,19,40,41,51,55,60,74,79,83,86,94,101],larg:[7,10,18,42,44,45,60,64,72,86,109],larger:[2,3,4,60],larger_than:[29,57,75],largest:18,last:[3,4,5,18,28,45,60,68,74,75,103,104],last_seq:[69,104],last_time_step_output:4,lastseen:126,latenc:[4,50,86,125],latent:4,later:[30,79,81,86,87,112,125],latest:[4,29,30,31,38,82,91,98,109,113,126,127,136],latter:[72,89,115],launch:[63,125],launcher:26,law:[94,101],layer1:[4,5,94,103],layer2:[4,94,103],layer3:4,layer:[2,3,5,7,9,12,24,25,28,29,34,40,42,44,51,54,55,57,70,72,75,78,79,81,85,86,87,89,94,96,101,102,103,106,107,110,118,121,122],layer_0:110,layer_att:95,layer_attr:[4,94,95,107,134],layer_help:59,layer_nam:94,layer_num:134,layer_s:121,layer_typ:[4,61,62],layerbas:110,layerconfig:110,layergradutil:110,layerhelp:[18,59,77],layermap:110,layeroutout:4,layeroutput:5,layers_test:91,layout:[11,63,88],layout_:[59,67],layouttyp:59,lazi:[72,81],lbl:3,ld_library_path:119,lead:[60,67],leaki:54,leakyrelu:18,learing_r:70,learn:[2,3,4,5,6,10,19,26,28,36,38,41,42,44,47,54,55,60,62,69,71,72,74,78,79,81,87,98,117],learnabl:[18,19,25],learning_r:[2,21,36,42,94,96,118],learning_rate_arg:96,learning_rate_decay_a:96,learning_rate_decay_b:96,learning_rate_schedul:96,leas:31,least:[3,18,31],leav:[29,125],lectur:60,lecun:10,left:[4,18,29],left_right_flip:11,left_scor:94,legal:85,len:[4,18,36,40,48,51,77,102,104,110,127],length:[4,5,9,10,11,18,36,50,61,64,68,69,79,86,89,126],leran:60,less:[4,18,26,45,140],less_than:[26,60],lesser:18,let02:126,let:[3,4,18,26,29,38,40,52,53,55,59,63,67,68,69,70,80,87,88,115,125],level:[2,4,18,50,53,56,64,68,69,74,87,89,90,106,121],levenshtein:18,lgtest:30,lgtest_main:30,lib64:[91,98,132],lib:[66,97,115,116,119,136,137,138],lib_path:91,libapi:30,libari:66,libc:100,libcuda:[91,98],libgcc_:100,libgflag:119,libglog:119,libgoogl:[115,116],libiomp5:62,libmkldnn:62,libmklml_intel:62,libnvidia:[91,98],libopenbla:119,libpaddl:[65,66,79,109,115,116],libpaddle_capi:66,libpaddle_capi_engin:119,libpaddle_capi_lay:119,libpaddle_capi_shar:119,libpaddle_capi_whol:119,libpaddle_gserv:66,libpaddle_math:66,libprotobuf:[96,119],librari:[4,18,30,37,41,42,62,63,66,71,86,88,132],library_:67,library_type_:88,librarydevicecontext:67,librarytyp:88,libstdc:100,libz:119,licens:[62,71,94,101],life:31,lifecycl:[74,140],lifetim:83,lightweight:53,like:[3,4,9,10,18,28,29,30,31,34,39,40,41,47,51,52,53,54,55,56,58,63,67,71,72,77,78,79,80,81,83,84,86,88,89,115,118,125,140],limit:[4,9,18,51,60,64,69,79,81,94,96,101,117],linaro:138,line:[3,9,22,30,34,39,41,49,55,72,75,77,79,81,94,96,104,109,115,125,134],line_break:9,line_count:96,linear:[4,18,19,69,94,96,101,102],linearli:18,lineno:[115,116],link1:50,link2:50,link:[4,5,18,30,48,49,83,106,125,140],linux:[9,41,48,100,108,125,136,138],linux_x86_64:[82,91,100],lipo:137,list:[3,4,5,9,11,18,22,23,25,26,28,29,30,35,39,40,47,49,51,54,67,70,73,74,77,80,83,89,94,115,116,125,134],listdir:123,listen:[31,40,42],listen_and_do:40,listen_and_serv:18,listenanddo:40,lite:119,littl:[36,59,64],live:118,live_in:60,live_out:60,load:[11,17,26,31,42,54,71,77,101,125,127],load_and_transform:11,load_imag:11,load_image_byt:11,load_missing_parameter_strategi:[131,132,134],load_mnist:54,load_paramet:96,loadsave_parameters_in_pserv:[34,131,132],loc:3,local:[2,18,25,27,29,31,37,38,41,55,60,68,75,77,79,97,115,127,131,132],local_scop:27,localhost:[98,113],localip:127,localpath:49,locat:[4,18,25,30,51,67,74,87,89],lock:[30,31,35,36],lod:[18,41,64,68,84,89,90],lod_desc:[84,90],lod_expand:69,lod_level:[18,77,84,90],lod_rank_table_obj:18,lod_tensor:[18,68,84,90],lod_tensor_aarri:18,lod_tensor_arrai:18,lodrankt:18,lodtensor:[18,19,41,58,64,79,90],lodtensorarrai:18,lodtensordesc:[64,84],log:[35,42,49,54,92,96,100,110,123,124,125,126,127,128,132],log_barrier_abstract:[131,132],log_barrier_lowest_nod:[131,132],log_barrier_show_log:[131,132],log_clip:[131,132],log_error_clip:[131,132],log_period:[126,127,132,134],log_period_serv:[131,132],logarithm:[1,18],logger:[94,104],logic:[38,42,44,45,54,58,70,71,73,83,89],logist:18,logit:[18,54,88],longer:[31,42,60],look:[3,18,29,39,40,51,52,55,72,77,80,81,86,118,125],lookahead:[4,18,86],lookup:[18,58,69,118],lookup_t:60,loop:[27,29,51,60,74,78,83],loop_var:89,loss:[4,18,28,42,54,56,70,72,81,86],lot:[42,67,69,72,77,81,87,140],low:[4,70,71,86,87,89],low_rnn:68,lower:[4,18,50,68,69],lower_level_rnn:68,lpaddle_capi_engin:119,lpaddle_capi_lay:119,lpaddle_capi_shar:66,lpaddle_capi_whol:66,lrelu:54,lstm:[4,18,104,107,126],lstm_bias_attr:5,lstm_cell_attr:5,lstm_group:[5,104],lstm_group_input:104,lstm_input:104,lstm_last:104,lstm_layer_attr:5,lstm_nest_group:104,lstm_output:104,lstm_step:5,lstm_unit_op:18,lstmemori:[5,95,104,107],lstmemory_group:[4,95,104],lstmemory_unit:95,lstmlayer:61,lstmp:18,ltr:4,luckili:60,mac:[66,136],machin:[5,10,25,42,44,51,54,60,62,71,72,81,94,106,122,125,128,140],machine_transl:107,maco:[100,108],macro:[53,67,80],made:[31,36,51],mai:[4,5,18,22,27,29,42,46,50,52,59,60,63,71,74,78,79,83,86,88,94,101,125],main:[18,40,41,45,51,52,56,71,75,79,115,116,119,125],main_program:[17,18,28,46],mainli:[37,60,67,87],maintain:[4,29,35,72,77,79,125],majel:30,major:[42,50,88],make:[3,4,18,26,28,29,30,31,35,36,38,41,42,43,50,51,55,68,69,72,73,77,78,79,81,86,89,91,97,108,109,110,111,113,115,117,119,125,136,137,138,140],make_chan:41,make_ddim:112,make_function_oper:53,make_vari:85,maker:[79,80],malloc:87,man:48,manag:[25,31,36,37,40,41,42,49,74,83,87,113],mandarin:[4,86],mani:[5,11,28,30,35,40,41,51,54,59,60,69,73,74,77,79,80,83,84,85,88,89],manili:56,manipul:[51,77,80],manner:[4,72,81,86,87],mantain:60,manual:[42,70,72,80,96,140],manufactur:51,manylinux1:100,manylinux1_x86_64:[82,91,100],manylinux:82,map:[3,4,9,19,25,26,29,35,45,63,67,77,80,83,85,87,89,101,119,140],map_fn:89,map_read:9,mapper:9,mapreduc:26,margin:18,mark:[28,44,54,55,68,69,74,83,115,140],marker:74,market:50,mask:[2,4,18],master:[26,38,79,82,138],mastermind:30,mat:[65,66,121],mat_cache_row:34,mat_norm:34,mat_normal_shar:34,mat_param_attr:5,mat_sparse_row:34,mat_sparse_row_auto_grow:34,mat_sparse_row_id:34,mat_sparse_row_prefetch:34,mat_sparse_row_prefetch_full_s:34,mat_value_shar:34,match:[18,30,50,94],matchbox:140,math:[5,18,62,65,79,110,111,117],mathemat:81,matirx:4,matmul:[29,56,68,89,111],matric:18,matrix:[3,4,5,9,18,19,25,34,65,66,110,111,119,121,122],matrixptr:110,matrixtyp:66,mattyp:34,max:[2,4,9,10,18,19,22,27,43,45,60,77,96,103,117,134],max_diff:27,max_id:[4,25],max_job_id:10,max_length:[4,69,107],max_movie_id:10,max_norm:18,max_relative_error:[27,111],max_seq_len:18,max_sort_s:4,max_user_id:10,max_x:18,maxframe_evalu:3,maxid:3,maxid_evalu:3,maxim:[4,45],maximum:[3,4,10,18,22,29,36],maxinum:7,maxoutfunctor:87,maxpool:4,mayb:[29,63],mchw:18,md5:[10,32],mean:[2,3,4,5,6,7,9,11,22,25,28,30,42,43,45,56,69,76,78,83,86,88,94,115,118,125,132,140],mean_op:18,mean_var_nam:4,meant:89,measur:[18,46],mechan:[4,5,19,28,37,46,63,77,80,125],mem:[4,18,29,39,69,104],mem_per_pserv:42,mem_per_train:42,member:[4,10,26,45,55,56,67,73,77,83],memcpi:[73,117],memor:4,memori:[5,18,28,29,34,35,39,50,52,62,63,64,67,69,72,74,79,88,107,112,117,118,126],memory_boot:5,memory_nam:[4,95],memory_optim:60,memory_test:108,memory_threshold_on_load_data:[131,132],memoryalloc:87,memorydesc:63,mention:[18,28,30,35,42,44,51,68,71,72,74],mere:5,merg:[4,18,36,38,43,46,62,68,71,73,109,122],merge_model:122,merge_v2_model:122,merge_v2_modelss:122,messag:[18,29,40,41,47,51,52,55,64,74,75,76,77,79,80,84,90,91,109,126],metadata:[48,125,126,127],metal:140,metaphor:55,metaplotlib:26,method:[4,6,25,27,29,38,40,42,43,45,50,54,55,56,59,70,71,77,78,79,83,84,88,89,115,116],methodolog:72,metric:[46,74],mfs:127,microarchitectur:50,might:[4,29,30,40,41,51,60,75,86,115,125],million:10,min:[2,4,18,22,43,45,77,117,125,134],min_block:29,min_count:44,min_desc:29,min_pool_s:94,min_word_freq:10,mind:115,mini:[4,9,14,18,25,29,31,41,46,47,51,57,68,94],mini_batch:78,minibatch:[4,18,29,46,55,57,75],minim:[29,42,44,45,51,54,70,79,118],minimum:[4,18,22,86],minsizerel:[136,137,138],minu:80,minus_grad:80,minusgradop:80,minusop:80,minusopgradmak:80,minusopprotoandcheckermak:80,minut:[31,38,125],mip:136,mirror:30,mislead:36,mismatch:18,miss:54,mistak:51,mit:125,mix:[5,74,89,107],mixed_lay:[5,104],mixed_layer_attr:5,mixedlayertyp:4,mixtur:115,mkdir:[49,97,113,119,125,128],mkl:[63,79,87,88,91,97,119],mkl_packed_:61,mkldnn:[4,62,67,88],mkldnn_:62,mkldnn_batch_norm:4,mkldnnactiv:62,mkldnnbase:62,mkldnnlayer:62,mkldnnmatrix:62,mkldnnstream:62,mkldnntester:62,mklml:[62,91],mklml_lnx_2018:91,mklpack:61,mklpackedgatedrecurrentlay:61,mklpackedgemm:61,mklpackedlstmlay:61,mklpackedrecurrentlay:61,mlp:56,mnist:[33,42,54,55,75,78,79,115,116,122],mnist_random_image_batch_read:78,mnist_train:78,mnist_train_batch_read:78,mnist_v2:122,mnt:127,mobil:[50,51,60,79,113,135],mode:[4,22,25,50,61,71,109,127],model:[4,5,10,17,18,19,25,28,29,31,32,40,42,44,45,46,55,60,61,70,71,72,79,81,86,88,89,101,102,113,122,125,134],model_list:[132,134],model_path:134,modelparallel:42,modern:60,modif:86,modifi:[4,23,42,50,56,81,109,125],modul:[5,10,25,42,53,54,69,86,89,96,111,115,116],modular:69,modulo:4,moment:115,momentum:[2,18,83,94,101],momentumop:[115,116],momentumoptim:20,mon:126,monitor:[41,74],mono:4,month:30,more:[3,4,5,9,18,22,26,27,28,30,31,35,38,39,41,42,44,49,50,51,52,53,55,59,60,63,67,68,69,70,74,77,78,79,81,86,87,89,96,115,117,118,140],most:[4,9,25,26,28,30,38,41,42,52,55,56,67,69,72,74,78,81,86,87,115,118,140],mostli:[50,140],motiv:79,mount:[39,125],mountpath:[125,126,127],move:[4,31,35,49,51,72,125,140],movi:10,movidiu:51,movie_categori:10,movie_id:127,movie_info:10,movie_review:10,movieinfo:10,moving_average_fract:4,mpi:[41,71,128],mpirun:128,mse:[51,55,70,75],much:[4,18,31,51,63,70,78,81,89],mul:[53,60,77,110,111],mul_grad:111,mul_op:[18,111],mul_ratio:4,mul_result:77,mulgradkernel:111,mulkernel:111,mulop:[53,111],mulopgrad:111,mulopmak:111,mult:[40,52],multi:[4,19,46,71,73,88,115,140],multi_binary_label_cross_entropi:4,multidimension:18,multigradientmachin:73,multinomi:4,multip:19,multipl:[3,4,5,9,14,18,19,25,26,27,35,36,38,40,41,42,44,46,51,52,53,59,71,74,79,86,88,90,101,115,125],multiple_input:77,multiple_param_attr:77,multipli:[3,4,18,40],multiprocess:9,must:[1,3,4,5,9,11,18,28,36,45,60,63,64,67,74,76,77,78,79,85,90,94,110,111,112,123,125],mutabl:[87,112],mutable_data:[63,87,111,112],mutex:41,mutuable_data:87,mutual:18,mxnet:[29,40,41,51],my_cluster_nam:125,my_cost:96,my_external_dns_nam:125,my_lib:123,myerrorclip:45,myfil:9,mypaddl:[126,127],naiv:40,name:[2,3,4,5,7,11,17,18,21,22,25,26,27,28,29,31,33,34,36,39,40,42,46,50,53,56,59,62,63,64,66,67,69,74,75,77,79,82,84,85,89,90,96,101,102,104,107,110,117,118,126,127,129,130,134,140],name_:74,name_prefix:33,namespac:[29,57,65,77,110,111,126,127],nativ:[4,18,50],natur:[18,35,38,44,69,89],ncall:[115,116],nccl1:71,nccl2:71,ncclinit:71,nchw8:88,nchw8c:88,nchw:[4,18,62,67],ndarrai:[11,18,25,33,94],ndcg:4,ndcg_num:4,ndk:136,nearest:50,nearli:27,necess:89,necessari:[4,28,29,36,38,45,46,60,64,69,73,77,85,89],necessarili:40,neck:71,need:[3,4,5,9,17,18,19,23,26,27,28,30,34,35,36,38,39,41,42,44,45,46,49,51,52,53,54,59,60,63,67,69,70,71,72,73,74,76,77,79,80,81,83,84,85,86,87,89,91,117,125,127,140],need_tran:96,neg:[3,4,18],neg_distribut:4,neg_overlap:4,neg_pos_ratio:4,neglect:4,neighberhood:71,neither:4,neon:50,ner:3,nervana:51,nessesari:86,nest:[4,9,28,29,74,75,90,121],net:[4,5,12,18,29,54,68,83,122],netop:[29,79],network:[2,3,4,9,18,19,24,25,26,27,28,29,31,34,42,44,46,54,56,60,61,62,68,70,72,74,77,78,81,83,85,86,87,88,90,95,101,102,104,121,122,127,134,140],network_config:134,networkadministr:125,neural:[4,5,9,18,25,26,28,29,31,42,56,60,61,62,68,72,81,83,87,88,90,102,104,106],neuralnetwork:73,neuron:18,never:[9,60,78,83,125,126,127],new_block_idx:77,new_dim:18,new_op_desc:45,new_scop:88,new_stat:68,newblock:77,newbuff:63,newest:36,newli:[50,140],newop:29,newopdesc:77,newprogram:77,newscop:88,newvardesc:77,next:[4,10,28,31,37,41,45,69,71,89,115,125],nextlay:62,nfs4:125,nfs:[125,127],nfsdir:127,nfsver:125,ngram:10,nic:[127,131,132],nil:35,nine:10,nlp:4,nltk:10,nms_threshold:4,nms_top_k:4,nmt_without_attent:94,nnz:[110,121],no_grad_dict:28,no_grad_set:[27,28,111],no_gradi:28,no_sequ:[4,101],node0:127,node1ip:128,node2ip:128,node3ip:128,node:[4,30,38,40,42,44,56,60,69,71,79,125,126,127,128,140],node_0:[125,127],node_1:[125,127],node_2:[125,127],node_id:123,nodeattr:56,nodeentri:56,nodefil:124,nodesep:56,nohup:123,nois:[4,18,31,54],noisi:[4,54],non:[4,18,31,50,51,84,125],none:[2,3,4,5,6,7,11,13,14,17,18,19,21,22,23,25,26,27,28,29,45,46,54,56,57,68,69,70,75,77,85,89,107,118],noneedtran:63,nontranspos:18,nor:40,norm:[5,18,54,67],norm_by_tim:[4,18],normal:[4,5,10,18,21,72,86,126,127],normaliniti:16,normliz:18,notat:[4,60],note:[2,4,5,7,11,18,25,26,28,29,34,35,39,60,64,67,71,78,79,87,88,112,125],notebook:[39,98],noteworthi:51,noth:[1,25,59,77,83,109],notic:[4,45,51,71,80],notimplementederror:45,notin:88,notingradi:111,notion:89,notori:27,now:[9,28,30,31,44,54,64,67,72,79,80,81,83,106,125],np_arrai:9,nproc:108,nullptr:[63,74,80,83,110],num:[4,5,123,127,132],num_channel:[4,5],num_chunk_typ:[3,14,18],num_class:[4,5,18,56],num_col_dim:18,num_filt:[4,5,18,19],num_flatten_dim:18,num_gradient_serv:[123,131,132],num_head:19,num_hidden:56,num_neg_sampl:[4,18],num_or_sect:18,num_parameter_serv:26,num_pass:[25,101,126,127,131,132,134],num_per_batch:11,num_pserv:42,num_repeat:4,num_result:3,num_results_per_sampl:4,num_row:84,num_samples_process:96,num_shard:33,num_step:89,num_total_class:18,num_train:42,num_true_class:18,number:[3,4,5,9,10,11,14,18,19,22,29,31,33,44,46,60,72,74,78,79,85,89,115,125],numchunktyp:3,numdevices_:134,numer:4,numeric_grad:27,numerical_grad:27,numlogicaldevices_:134,numofallsampl:3,numofwrongpredict:3,numpi:[2,9,11,18,25,33,50,54,77,78,94,96,97,101,111],numreal:34,numsampl:117,numtagtyp:3,numtimeout:35,nv_:30,nv_gpu:108,nv_librari:30,nv_test:30,nvcc:[30,50,52],nvidia:[50,67,71,87,91,98,108],nvlink:71,nvprof:74,obei:3,obj:96,object:[2,4,5,9,18,25,26,34,42,45,46,54,56,60,65,70,74,77,79,81,83,117],observ:4,obtain:[4,18,38,72,87,94,101],obvious:[30,67,115],occup:[60,127],occupi:[50,74],occur:[10,25,60],occurr:29,oct:126,odd:4,odoti:18,off:[66,97,108,109,113,119,123,136,137,138,140],offer:[29,79,85],offici:[4,30,125],offlin:[31,33,140],offset:[4,18,34,121],often:[4,34,56,60,67,115],ograd:110,old:[27,36,38,69,79],older:[18,51],omega:81,omit:[18,94],omp_num_thread:[115,116],ompi_comm_world_rank:123,onc:[4,31,35,40,42,44,46,51,55,72,125],one:[1,3,4,5,7,9,18,22,25,26,27,28,29,31,34,35,36,38,39,40,42,45,46,47,50,51,52,53,54,56,58,59,63,64,67,68,69,70,71,72,73,75,76,77,78,79,80,83,84,86,87,88,89,118,121,125,140],onehotcrossentropyopkernel:111,ones:[53,54,79],onli:[3,4,5,7,11,18,25,26,27,28,30,34,35,36,37,38,39,40,42,44,45,46,47,49,50,51,54,55,60,63,68,69,70,71,73,74,77,79,84,85,86,87,88,89,104,106,121,125,140],onlin:[4,6,31,33,60,78],only_cpu:27,onnx:51,onto:[18,42,44,125],op1:[60,88],op1_2_op2:88,op1_to_op2:88,op2:[60,88],op3:60,op_:111,op_check:111,op_class:[79,85],op_desc:[45,58,76],op_info:118,op_kei:63,op_maker_class:[79,85],op_proto:85,op_registri:118,op_siz:45,op_test:111,op_typ:[79,111],op_unique_kei:63,opattrcheck:111,opcreat:85,opdesc:[29,45,55,75,76,77,79,80,85,90],opdescbind:[58,80],opdescbuild:29,open:[4,11,18,26,33,51,54,62,78,94,96,101,104,115,125],openbla:[97,98,119],opencv:11,openmp:115,openmpi:[123,128],opensourc:71,oper:[4,5,9,11,18,22,23,27,29,40,41,42,43,44,46,47,50,51,52,54,55,56,58,59,68,69,70,71,74,76,81,83,86,87,88,90,111,112,118,125],operand:[18,50],operartor:112,operator_grad:27,operator_list:74,operatorbas:[29,53,79,80,85,111],operatorwithkernel:[88,111],opinfo:[58,79,80],opinfomak:58,opinfomap:80,opkernel:[111,112],opkernelkei:79,opkerneltyp:[67,88],opmak:85,opposit:18,opproto:111,opprotoandcheckermak:[80,111],opprotomak:[85,111],opregist:85,opregistri:85,ops:[27,28,29,30,40,52,55,56,72,75,76,77,79,87,111,140],ops_:29,ops_test:30,opt:[26,70,76,85,97,127],opt_op_list:70,optest:111,optim:[2,12,23,24,25,27,28,42,43,44,52,54,71,72,73,75,79,81,84,86,94,96,101,115,118],optimis:70,optimize_op_attr:77,optimizer_mod:18,optimzi:94,option:[3,4,18,22,26,30,42,54,59,64,75,76,77,79,84,85,86,90,115,136,140],optmization_op_list:70,opts_np:76,optyp:[58,85],opwithkernel:84,order:[4,5,9,11,18,22,25,28,55,64,74,78,81,89,115,116,125,127,140],ordereddict:25,orderli:18,oregon:125,org:[3,4,5,10,18,33,48,54,94,101],organ:[3,4],orient:85,origin:[4,5,9,10,17,18,27,50,54,83,89,109],other:[3,4,5,9,18,22,29,31,36,40,49,50,51,52,58,60,63,67,68,72,76,81,83,85,86,87,88,115,118,125,140],otherchunktyp:3,otherwis:[4,9,10,11,18,22,25,26,28,31,36,38,54,58,63,78,86],our:[18,26,28,30,41,42,44,54,58,60,67,71,72,83,89,115,125],out:[4,18,25,26,29,30,35,38,42,45,51,56,60,63,68,69,77,88,94,104,106,107,111,112,115,116,125],out_dir:[125,127],out_fals:18,out_left:4,out_mem:107,out_memori:5,out_right:4,out_size_i:4,out_size_x:4,out_tru:18,outer:[4,104],outer_mem:104,outer_rnn_st:104,outer_rnn_state_:104,outer_step:104,outgrad_:62,outlier:4,outout_lay:25,outout_layer1:25,outout_layer2:25,output:[1,2,3,5,7,9,14,18,19,22,25,26,27,28,29,33,38,40,44,45,49,52,53,54,55,56,57,58,60,63,64,68,69,72,75,76,77,78,79,80,83,84,85,87,88,89,94,101,104,107,111,112,115,122,124,126,127,134],output_:[4,62],output_all_step:68,output_arg_nam:45,output_dim_idx:18,output_dtyp:18,output_fil:[22,122],output_height:18,output_id:4,output_lay:[25,94,101,102],output_max_index:7,output_mem:[4,107],output_mod:22,output_nam:27,output_num:68,output_path:33,output_s:18,output_seg:89,output_width:18,outputbuff:34,outputgradi:80,outputh:4,outputw:4,outsid:[4,5,42,83],outter:121,outter_pos_arrai:121,outter_seq_pos_arrai:121,outupt:89,outv:110,outval_:62,over:[4,5,18,25,26,51,60,71,72,89],overal:[54,72,74,140],overfit:[18,81],overflow:18,overlap:[3,4],overlap_threshold:[3,4],overload:[50,59],overrid:[29,31,49,63,87,111,112],overview:[35,36,37,87],overwrit:49,own:[4,18,28,36,38,45,47,56,58,70,71,72,81,85,125],pack:[89,96],packag:[9,10,35,39,40,53,62,82,91,115,116,125],pad:[5,18,63,86],pad_c:4,pad_h:4,pad_w:4,padding_attr:4,padding_down:18,padding_h:18,padding_i:4,padding_idx:18,padding_left:18,padding_right:18,padding_up:18,padding_w:18,padding_x:4,paddl:[1,2,3,4,5,6,7,9,10,11,13,14,15,16,17,18,19,20,21,22,23,25,26,29,30,31,33,39,42,49,52,53,54,57,61,62,63,64,65,66,68,69,73,75,79,81,82,85,86,87,89,94,96,97,98,100,101,102,107,108,109,110,111,113,115,116,117,118,119,121,122,123,124,125,126,127,128,134,136,140],paddle_arguments_get_sequence_start_po:121,paddle_arguments_set_id:121,paddle_arguments_set_sequence_start_po:121,paddle_arguments_set_valu:121,paddle_begin_init_param:36,paddle_capi:119,paddle_dir:111,paddle_doc:113,paddle_docs_cn:113,paddle_element_typ:36,paddle_element_type_float32:36,paddle_element_type_float64:36,paddle_element_type_int32:36,paddle_element_type_int64:36,paddle_element_type_uint32:36,paddle_element_type_uint64:36,paddle_enforc:[29,63],paddle_enforce_eq:[111,112],paddle_error:[65,66],paddle_exampl:39,paddle_finish_init_param:36,paddle_get_param:36,paddle_gradi:36,paddle_gradient_machine_create_shared_param:122,paddle_gradient_machine_forward:122,paddle_gradient_machine_load_parameter_from_disk:122,paddle_init:122,paddle_init_num_gradient_serv:123,paddle_init_param:36,paddle_init_port:123,paddle_init_ports_num:123,paddle_init_ports_num_for_spars:123,paddle_init_pserv:123,paddle_init_trainer_count:123,paddle_init_trainer_id:123,paddle_init_use_gpu:123,paddle_ivector:121,paddle_ivector_cr:121,paddle_job:39,paddle_manylinux_devel:97,paddle_matrix:[65,66,121,122],paddle_matrix_cr:[66,121],paddle_matrix_create_spars:121,paddle_matrix_get_row:121,paddle_matrix_get_shap:65,paddle_matrix_shap:65,paddle_matrix_sparse_copy_from:121,paddle_n:127,paddle_new_etcd_pserver_cli:36,paddle_new_pserver_cli:36,paddle_on_cloud:39,paddle_output:126,paddle_paramet:36,paddle_port:127,paddle_ports_num:127,paddle_ports_num_spars:127,paddle_process_by_paddl:127,paddle_pserver2:124,paddle_pserver_cli:36,paddle_pserver_client_releas:36,paddle_r:121,paddle_root:119,paddle_save_model:36,paddle_send_grad:36,paddle_server_num:127,paddle_train:[66,82,124,127],paddle_with_cuda:74,paddle_with_mkldnn:67,paddlepaddl:[4,5,9,10,11,18,25,30,31,33,36,37,38,39,40,42,48,49,53,54,55,57,59,64,68,69,70,73,74,77,78,79,83,89,90,94,97,98,100,101,102,107,108,109,114,115,116,117,121,122,123,124,126,127,129,130,136,138,140],paddlepaddle_gpu:100,paddlepaddlebook:98,paddlepaddlehub:98,page:125,pair:[3,18,19,22,23,28,29,42,55,70,74,79],pairwis:4,pakcag:30,paper:[4,18,54,86],para:34,paradigm:[40,47,79],paragraph:68,paragraph_data:68,paragraph_out:68,parallel:[18,40,41,42,44,71,74,79,88,117,125,126,127,134],parallel_for:40,parallel_nn:[2,131,132],paralleldo:43,parallelfor:40,paralleliz:86,param:[2,4,5,9,17,18,27,29,36,73,77,87,94,96,112],param_attr:[4,5,12,18,19,34,77,94,96,107],param_config_proto:36,param_fil:[96,122],param_initi:18,paramattr:[2,4,18,94,96,107],paramet:[3,5,6,7,9,17,18,19,23,24,27,28,29,30,32,34,38,40,42,43,45,47,49,51,52,54,55,56,58,64,68,70,71,75,78,83,85,86,89,94,96,101,102,118,121,123,124,127,132],parameter_block_s:[131,132],parameter_block_size_for_spars:[131,132],parameter_learning_r:2,parameter_list:[28,70],parameter_nam:[25,26],parameter_serv:26,parameter_valu:34,parameterattribut:[2,4,5,34],parameterclient2:127,parameterclient_:34,parametermap:110,parametermutex_:34,parameters_:110,parameters_and_grad:[23,70],parameterserver2:34,parameterset:26,parameterupdat:73,parameterupdater_:34,parametr:4,params_grad:70,params_pass_4:122,params_pass_90:101,params_pass_:101,paramt:125,paraspars:110,parent:[29,40,75,77,79],parent_:[29,83],parent_idx:77,parenthes:79,pars:[9,10,30,42,56,108,125],parse_known_arg:127,parsefromstr:96,parser:[9,127],part:[3,4,18,19,28,29,38,42,51,63,64,75,77,86,87,115,140],partial:[4,25],partial_sum:4,particular:[55,64,79,86,88],partit:[31,33,42,44,79,125],paserv:127,pass:[4,18,25,28,29,31,41,45,46,51,54,60,64,70,72,73,76,77,78,79,81,83,86,89,94,101,109,117,125,126,127,132,134],pass_gener:4,pass_id:[25,42,94,101],pass_idx:78,pass_manu:96,passtyp:110,past:[26,125],patch:[18,48],path:[3,9,10,11,17,25,31,35,36,39,60,69,78,86,119,125,126,127,132,136,137,138],path_to_paddlepaddle_working_directori:113,pattern:[10,31,65,72,81,125],paus:[31,38],pcie:71,pd_api:121,pdf:[5,18],peephol:18,peer:[71,92],pem:[26,33,125],pend:[31,35],pep425tag:[91,100],per:[3,4,10,11,18,31,36,71,72,78,81],percal:[115,116],perf_test:[115,116],perfectli:86,perform:[4,5,18,27,36,41,42,46,50,51,54,60,71,73,74,78,79,81,86,87,88,116,117,131],perftool:[74,115,116],period:[31,38,132],perm:18,permiss:[94,101,125],permut:18,peroid:[4,11],persist:[17,18,47,84,86,90,125],persistentvolum:125,persistentvolumeclaim:[125,127],person:[3,26,59],perspect:79,perturb:27,pex:140,pfs:[33,49],pfsclient:33,pfspath:49,pgp:125,phase:[18,63,69,71,72,78,80,86,140],philosophi:[72,81],photo:54,phrase:18,physic:140,pick:[18,125],pickl:[123,128],pictur:71,piec:[5,40,74],pil:11,pillow:39,pip:[82,91,97,100,102,109,113,115,116],pipe:9,pipelin:[46,86],piperead:9,pivot:63,pixel:[4,9,10,42],place:[13,15,18,22,28,29,31,38,42,44,47,59,63,71,79,88,112,118],place_:[59,67,87,88],placehold:[54,87,112],placement:44,plain:[3,4,9,39,64,66,67],plan:[31,40,63,79,86],platform:[29,52,63,67,74,87,88,100,111,112,118,125,136,137],pleas:[2,4,5,6,11,18,26,31,35,36,37,40,52,56,67,68,77,78,79,86,87,90,91,113,115,125,127],plot:26,plu:[4,27],plug:[71,72],pnpairvalid:131,pod:[33,39,40,125,126,127],pod_nam:125,podip:127,podlist:127,point:[18,29,31,39,41,50,60,63,71,87,112,115,117,121,140],pointer:[29,36,56,60,67,77,79,83,87,112,121],polar:10,poli:96,polici:[18,125],polit:18,poll:41,pollut:38,polyak:72,ponit:56,pool3:110,pool:[5,18,24,43,60,86],pool_attr:5,pool_bias_attr:5,pool_layer_attr:5,pool_pad:[5,18],pool_siz:[4,5,18,19],pool_size_i:4,pool_strid:[5,18,19],pool_typ:[4,5,18,19],pooled_height:4,pooled_width:4,pooling_lay:[5,94],pooling_typ:[4,94,103],poolingtyp:7,pop:[29,47],popul:36,popular:[30,54,56,74],port:[18,30,40,115,123,125,126,127,131,132],port_num:131,portabl:56,portal:113,ports_num:[123,127,132],ports_num_for_spars:[34,123,127,131,132,134],pose:31,posit:[3,4,5,18,121],positive_label:3,possibl:[26,29,35,41,44,60,77,81,90],post:[39,48],postpon:81,potenti:[50,117],pow:96,power:[50,60,71,86,140],ppo_workspac:113,pprof:[115,116],pre:[4,5,10,26,36,59,60,125],pre_activ:77,pre_bia:77,pre_id:18,pre_mem:18,pre_stat:[68,89],preambl:77,precis:[3,14,18,46,50,72],precision_evalu:3,precompil:47,pred:[56,60],predecessor:60,predetermin:4,predic:[10,17],predict:[3,4,18,25,42,81,94,102,122],predict_fil:[131,132],predict_lay:25,predict_output_dir:[131,132],prediction1:25,prediction2:25,prefer:[51,59],prefetch:[34,110],prefix:[3,5,18,31,33,69,86,125],pregel:41,pregrad:110,prepand:77,prepar:[27,39,73,86,123,128,129],prepend:[18,77],prepend_oper:77,preprocess:[10,11,86,89],present:[26,28,29,74,89,109],preserv:49,prev_batch_st:[131,132],prev_cel:18,prev_cell_data:18,prev_hidden:18,prev_hidden_data:18,prevent:[6,18,26,31,35,38,45,81,115],preview:79,previou:[4,5,18,22,25,28,31,44,49,68,69,115,125],previous:4,previous_memori:29,price:[10,79,102],prim:63,primari:[51,55],primarili:[72,81],primit:[50,62,63,71,89],primitive_desc:63,primitivedesc:63,principl:[18,26,30,67],print:[2,22,25,26,42,51,56,77,91,100,101,102,115,128],print_graphviz:56,print_phas:18,print_tensor_lod:18,print_tensor_nam:18,print_tensor_shap:18,print_tensor_typ:18,printallstatu:117,printer:3,printstatu:117,priorbox:4,prioriti:79,prite:3,privat:[29,66,74,77,83,84,85,87,89,109,112],privileg:125,pro:71,prob:[3,25,102],probabalist:18,probabilist:4,probabl:[3,4,18,25,69,86],problem:[4,26,27,30,38,51,54,55,72,79,81],proc:98,proce:[9,31,78,125],procedur:[29,64],proceed:18,process2:104,process:[2,4,5,9,18,26,28,29,33,34,35,38,40,41,42,46,47,51,52,56,60,62,64,71,81,85,88,94,96,104,115,125,127],process_num:9,processor:[50,117],prod:109,produc:[4,5,9,18,31,51,56,78],product:[4,5,18,19,39,51,101,125],productgraph:126,prof:[115,116],profil:[12,49,74,86,116,117],profilerst:74,profl:116,proflier:[74,117],prog:127,program:[9,13,17,18,22,26,28,33,36,38,42,44,47,55,57,60,70,71,74,78,79,83,90,115,117,127],programdesc:[40,42,47,51,60,64,76,77,80,90],programm:[42,51,77],progress:[31,35],proj:4,proj_activ:18,proj_dim:18,proj_out:18,proj_siz:18,project:[4,5,18,19,39,66,86],promis:[4,5,69],prompt:[49,51],prone:26,pronunc:86,prop_kind:63,propag:[4,6,28,51,72],proper:59,properli:59,properti:[56,81],propos:[18,29,43,44,69,70,71,72,89],proprietari:62,protect:[50,85,110,111],proto:[7,41,59,64,67,75,79,85,90,111],proto_:85,protobuf:[25,29,39,40,42,47,51,52,55,56,60,64,75,77,79,80,85,96,119,122],protocol:[3,118,140],protomak:111,provi:123,provid:[4,10,18,26,29,36,39,40,46,47,50,51,54,56,58,59,67,71,72,74,77,81,85,86,87,89,94,102,104,115,125,131,140],provis:[125,140],prune:[4,17,29],ps_desir:31,pserver:[25,34,36,37,39,79,123,124,125,127,131,132],pserver_addr:36,pserver_cpu:39,pserver_id:32,pserver_mem:39,pserver_num_thread:[34,131,132],pserver_spec:25,pseudo:[26,28,39,80,89],pseudocod:89,psize:110,ptr:[66,87],pub:[18,128],pull:[30,79,82,98,136],purpos:[4,31,42,44,59,117],push:[29,47,51,74,82,127],push_back:110,put:[30,31,34,44,60,63,77,87],pvc:125,pwd:[97,98,108,109,113,136],pxe:140,py_paddl:91,pybind:[29,41,50],pydataprovid:94,pydataprovider2:127,pyramid:4,pyramid_height:4,python2:[115,116],python:[18,25,26,29,37,41,46,47,51,53,54,55,56,59,65,69,73,74,79,82,87,89,91,94,97,100,102,107,108,109,110,111,113,116,118,122,123,128],pythonpath:91,pytorch:[51,74],qualcomm:50,queri:[3,4,19,125],query_id:3,question:[4,26,40,44,85,125],queue:[41,44],quick:56,quick_start:[39,125,126,127,129],quick_start_data:126,quickli:[69,77,79],quickstart:126,quit:69,r14b:136,r_h_val:18,r_t:4,rais:[9,18,19,23,45,56,123],rajathkmp:54,ran:[44,117],rand:[54,96,117,121,132,134],rand_max:121,random:[2,4,9,18,33,54,67,73,77,78,96,111],random_crop:11,random_imag:33,randomli:[11,18,38,121],rang:[4,9,18,33,40,42,50,54,60,74,78,85,127],rank0:71,rank1:71,rank:[4,18,26,89,125],rank_tabl:18,rankdir:56,ranktabl:18,rapid:80,raspberri:139,raspberrypi:138,raspbian:138,rasspberri:138,rate:[2,3,4,5,6,10,19,36,86,94,127],rather:[28,39,54,89,125],ratio:[4,132],raw:[4,18,64],rdma_tcp:[131,132],reach:[31,60,71],read:[9,11,18,25,26,28,31,33,40,41,42,44,51,52,78,79,86,89,96,125,140],read_from_arrai:60,read_from_realistic_imag:26,read_from_rng:26,read_lock:32,read_minibatch:51,read_mnist_imag:26,read_next_from_fil:94,read_paramet:96,read_ranking_model_data:26,readabl:[74,79,115],reader:[10,25,33,42,50,54,55,75,86,101,115,116,123],reader_cr:33,reader_creator_bool:78,reader_creator_random_imag:[9,78],reader_creator_random_image_and_label:[9,78],readi:[31,125,126,140],readlockguard:34,readm:[66,109],readwritebuffer_:34,readwritemani:125,real:[4,18,34,54,78],realist:26,realiti:86,realiz:[29,68],realli:[51,81],rearrang:18,reason:[5,26,27,31,41,51,126],recal:[3,14,18],receiv:[18,31,39,41,42,44,68],recent:[60,72],recognit:[4,86],recommend:[5,18,26,127],record:[9,22,35,63,74,85,125],recordev:74,recordio:[9,10,26,33,35],recov:[31,89],recover:79,recoveri:35,rectifi:4,recurr:[18,61,68,83,86,104,105],recurrent_group:[5,86,94,95,104,106,107],recurrent_lay:5,recurrent_op:89,recurrentgradientmachin:[66,69,89],recurrentgroup:3,recurrentlay:61,recurs:[28,29,30,49,60,79],recv:[40,42,44,71,125],recvparametertyp:34,red:[54,115],redirect:9,reduc:[4,18,44,50,71,79,115,116],reduce_by_kei:79,reduce_mean:54,ref:18,ref_batch_dim_idx:18,refactor:[42,44,55,69,72,73,77,81,89],refer:[2,4,5,6,11,18,19,22,27,29,31,35,36,37,40,50,56,63,67,68,71,75,77,79,81,83,87,89,90],referenc:35,refine_unknown_arg:127,reflect:35,reformul:18,reg:85,regard:[18,140],region:[4,83],regist:[41,60,67,80,87,88],register_gpu_profil:117,register_lay:110,register_op:[53,79,80,85,111],register_op_cpu_kernel:[87,111],register_op_cuda_kernel:[87,111],register_op_without_gradi:[79,111],register_oper:[58,80],register_tim:34,register_timer_info:117,registerop:85,registr:118,registri:[39,58,87,126,140],regress:4,regular:[2,12,18,21,28,94,125],reiniti:63,rel:[5,18,27,38,81],relat:[31,38,39,50,67,74,83,88,115,140],relationship:[80,87],releas:[82,86,91,119,125,136,137,138],reli:[27,40,69,70,72,81,115],reliabl:[31,81],relu1:56,relu2:56,relu:[4,54,56,60],relwithdebinfo:[115,116],remain:[18,89],remaind:18,rememb:4,remot:[2,30,34,42,79,109,125,132,134],remoteparameterupdat:[34,37],remov:[9,18,28,42,49,51,69,109],renam:[28,49,50],reorder:[18,63],reorder_primit:63,reorderlodtensorbyrankt:18,reorgan:4,repeat:[18,29,55,75,76,84,85,90,115],repeatedli:[55,60],replac:[18,30,35,58,72,80,86],replic:42,replicaset:39,repo:[30,138],report:[35,50,51,74],reportdataset:35,repositori:[4,113,136],reprenset:18,repres:[4,5,18,28,29,35,40,42,44,45,51,56,64,67,69,72,77,79,81,84,87,89,90,125],represent:[4,18,36,42,52,54,55,60,67,69,84],request:[30,31,34,38,40,79,82,125,126,140],requir:[3,4,26,28,31,36,38,39,42,44,45,49,50,56,60,62,68,72,74,75,76,79,81,84,85,86,90,94,101,113,125,140],requisit:60,research:[10,18,42,51],reserv:[18,49,94,101],reserveoutput:110,reset:[4,18,31,46,92],reset_program:46,resetingrad:62,resetinvalu:62,resetoutgrad:62,resetoutvalu:62,resetxxx:62,reshap:[27,78,96],reshape_s:4,resid:18,resiz:[11,34,87,111,112],resize_s:11,resize_short:11,resolv:[30,109,126],resourc:[42,47,71,74,87,125],respect:[18,19,27,45,50,54,68],respons:[4,34,41,42,46,54,71,72,73,81,125,126],rest:[18,29,39,48,52,88,140],restart:[31,36,125,126,140],restartpolici:[125,126,127],restor:[27,72],restrict:[81,83,115,116],result:[1,3,4,17,18,22,25,27,28,35,46,54,55,56,60,64,69,70,71,73,101,115,117,118,125],result_fil:3,resum:38,retran:125,retriev:[29,69,83,115],return_seq:5,reuqest:82,reus:[29,38,69,78,79],rev:108,revamp:42,reveal:[26,115],revers:[4,5,18,28,106,107],review:[10,40,109,126],reviews_electronics_5:126,rewrit:[30,41],rgb:[4,11],rho:6,rid:51,right:[4,27,28,29,30,39,46,60,79,81,94,101],right_scor:94,ring:71,risk:28,rkt:[39,108],rmsprop:[72,94],rmspropoptim:72,rnn:[4,5,18,29,51,54,69,77,79,83,86,106,107,131],rnn_bias_attr:107,rnn_layer_attr:107,rnn_out:107,rnn_output:89,rnn_state:104,rnn_state_:104,rnn_step:4,rnn_use_batch:[61,131,132],rnnalgorithm:69,rnnlm:10,rnnstep:89,roadmap:[86,89],robust:4,rocmplac:67,roi:4,role:[10,26,35,36,42,71,125],rollback:77,root:[6,7,28,71,125,126,127],rot:4,roughli:86,round:[50,71],routin:[50,62,71],row:[3,4,9,18,34,41,121],row_id:4,row_offset:121,rowoffset:121,rows_:84,rpc:35,rpcserver:35,rpi:138,rpi_arm_neon:138,rpi_toolchain:138,rsize:125,rstrip:127,rtk:140,rtype:9,rule:[3,18,28,42,45,51,55,125],run:[18,26,27,28,29,30,31,39,40,42,43,44,46,50,51,52,53,54,55,56,60,63,67,68,70,71,72,74,75,76,77,79,82,83,84,86,87,88,91,97,98,108,109,112,113,115,116,117,123,124,125,126,127,129,130,136,140],run_test:97,runinitfunct:[117,127],runnabl:44,running_on_cloud:39,runserv:113,runtim:[22,29,40,41,42,58,68,79,90,91],runtime_table_:29,s_block:28,safe:39,sai:[4,52,55,57,60,78],said:51,same:[3,4,5,18,19,23,25,26,27,35,36,38,40,41,42,53,54,56,59,60,68,69,71,77,79,80,83,86,88,89,104,112,125],samping_id:4,sampl:[3,9,10,18,46,54,77,85,121],sample_id:3,sample_num:3,sample_weight:18,sampler:54,satifi:[3,60],satisfi:[30,63,84,125],save:[4,9,17,25,31,33,35,36,39,40,42,55,56,60,64,72,84,90,125,126],save_dir:[126,127,132,134],save_only_on:[131,132],save_parameter_to_tar:[25,101],savetxt:96,saving_period:[127,131,132],saving_period_by_batch:[131,132,134],scalabl:79,scalar:[4,18,28,29,57,89],scale:[1,19,42,44,72,80,85,86,111],scale_a:18,scale_b:18,scaleop:111,scaleopmak:[79,111],scalingproject:4,scan:[18,28,35,60,79],scatter:[4,28,71],scenario:69,schdule:125,schedul:[35,39,44,125],scheduler_factor:2,scheme:[3,6,34,81],scienc:60,scope:[15,27,40,43,47,52,88,118],score:[3,4,14,18,69,94],score_diff:94,scorer:86,scp:128,script:[10,71,97,113,124,125,128,136],sdk:137,search:[4,18,31,83,107],second:[4,18,26,40,49,51,54,56,68,69,75,76,78,83,85,111],secret:125,section:[28,44,51,77,115,125],see:[4,5,18,26,28,31,40,41,44,50,51,77,86,94,96,101,115,125],seed:[18,96,117,132],seem:[30,41,50,51,86],seen:[19,81],segment:[3,18,68,89],sel_fc:4,selcet:4,select:[4,18,69,125],selected_generation_scor:69,selected_id:[4,69],selected_indic:4,selected_row:[84,90],selected_rows_desc:[84,90],selected_scor:69,selectedrow:[58,90],selectiv:4,selector:126,self:[27,45,46,54,56,60,61,62,64,70,77,89,110,111],self_addr:40,selfnorm:4,semant:[10,26,69,82],semaphor:41,semat:26,send:[31,36,40,42,44,59,71,79,85,125],send_back_parameter_typ:34,send_var:18,sendbackparameterspars:34,sendbackparametertyp:34,sendparameterrequest:34,sendparameterrespons:34,sens:[72,81,115],sensit:4,sent:[26,36,40,42,79,85,90,126],sentanc:94,sentenc:[4,10,51,68,69,89,104,107],sentence_input:89,sentence_last_state1:104,sentence_last_state2:104,separ:[3,18,22,36,42,53,72,80,81],seper:[18,89],seq0:18,seq1:18,seq2:18,seq3:18,seq:[4,10,104],seq_len:89,seq_po:121,seq_pool:[4,103],seq_pos_arrai:121,seq_silc:4,seq_text_print:3,seq_typ:9,seqlastin:104,seqtext_evalu:3,seqtoseq:[4,96],seqtoseq_net:4,sequenc:[1,3,4,5,7,9,10,18,28,29,40,47,51,55,61,70,75,86,89,94,101,104,106,121],sequence_group:4,sequence_layer_group:104,sequence_nest_group:4,sequence_nest_layer_group:104,sequence_start_posit:121,sequencegen:104,sequencesoftmaxop:18,sequencestartposit:4,sequencetextprint:3,sequencetyp:[4,101],sequenti:[4,29,40,41],seri:[5,104],serial:[25,29,35,64,73,79],serializ:[79,90],serv:[42,50,79,89,125],server:[18,26,30,34,37,38,42,52,71,79,92,97,123,124,127,132,140],serverless:31,servic:[115,140],sess:[54,56,70],session:[56,70,76],set:[2,3,4,5,9,10,11,18,19,21,22,23,25,26,28,31,39,54,58,60,63,67,68,69,74,76,77,79,80,83,86,87,89,94,96,101,104,108,111,112,113,115,117,121,125,126],set_active_typ:110,set_attr:45,set_default_parameter_nam:2,set_drop_r:110,set_float_el:27,set_input:[4,45],set_output:45,set_siz:110,set_typ:[45,110],setdatatyp:84,setdefault:111,setp:125,setq:108,settotalbyteslimit:96,setup:[42,72,82,110,111,140],seven:86,sever:[3,4,27,34,42,44,54,68,69,71,73,74,77,84,87,89,125],sexstant:140,sgd:[25,26,31,39,44,72,73,84,101,118,123,131],sgd_optim:118,sgdoptim:20,shall:[28,30],shape:[3,4,9,18,19,25,27,28,29,42,54,57,67,68,75,77,79,84,86,87,101,118],shard:[31,32,33,34,35,36,38,42,44,123,125],share:[4,18,30,54,66,73,77,79,81,86,87,89],shared_bia:5,shared_bias:4,shared_librari:30,shared_ptr:[63,65,66,83,87,112],shell:125,shift:[4,18],shorten:4,shorter:11,should:[2,3,4,9,11,18,19,22,25,26,27,28,29,36,39,41,42,45,46,50,52,53,54,58,59,63,67,68,69,70,72,73,74,75,78,79,80,81,84,85,86,88,89,90,106,111,113,125],should_be_fals:26,should_be_tru:26,should_shuffl:104,show:[3,6,28,29,31,49,51,57,60,64,68,71,72,75,89,108,125],show_check_sparse_distribution_log:[131,132],show_layer_stat:[131,132],show_parameter_stats_period:[126,131,132,134],shown:[4,18,26,42,46,71,74,86,125],shrink_rnn_memori:18,shrunk:45,shuf:94,shuffl:[9,42,94],sid:125,side:[4,18,25,42,46,60,73],sig:125,sigint:124,sigma:18,sigmod:85,sigmod_op:85,sigmod_output:85,sigmoid:[4,19,29,85,89],sigmoidactiv:[5,104],sigmoidcrossentropywithlogit:18,sign:[48,64,125],signatur:125,signific:86,similar:[4,18,29,40,41,42,44,47,51,69,72,74,78,79,81,86,87,88,89,115,125,140],similarli:[4,9,51,60],simpl:[1,3,4,5,9,10,18,25,40,44,50,52,55,56,60,68,72,75,81,83,85,86,89,127],simple_attent:107,simple_gru:107,simple_lstm:[4,95],simple_rnn:[4,107],simple_transform:11,simpler:73,simplest:125,simpli:[4,11,26,36,42],simplifi:[26,69,77,85,86],simul:[51,137],simultan:125,sinc:[4,5,18,31,35,37,38,41,42,43,44,51,58,60,63,67,72,77,78,80,81,89,125,140],singl:[3,5,9,18,28,31,42,44,46,50,59,71,79,83,86,115],singleton:[40,43],sinlg:25,sit:[18,42],site:[30,115,116,125],sitten:18,sittin:18,situat:[28,76,88],size:[3,4,5,9,10,11,18,19,25,31,33,34,36,41,42,50,54,60,64,69,72,77,78,84,85,86,87,89,94,96,101,102,104,107,110,111,112,118,121],size_a:4,size_b:4,size_in_byt:63,size_t:[34,87,89,110],sizeof:[29,121],skip:[28,78,96,109,125],sleep:127,slice0:18,slice1:18,slice2:18,slice3:18,slice:[18,40],sliceproject:4,slide:[4,6,10,31],slight:51,slightli:54,slope:[4,18],slopeinterceptlay:4,slowli:115,small:[4,10,18,27,40,52,54,62,69],small_messag:[131,132],smaller:[18,27,31,50,69],smart:83,smooth:4,snap:126,snapdragon:50,snapshot:[32,38,125],snippet:[53,70,125],sock:39,sock_recv_buf_s:[131,132],sock_send_buf_s:[131,132],socket:127,soft:18,soft_label:18,softmax:[4,5,18,26,29,42,44,51,56,57,69,75,94,107,110],softmax_param:96,softmax_param_attr:5,softmax_selfnorm_alpha:4,softmaxactiv:104,softmaxoutput:56,softrelu:18,softwar:[50,74,94,101,140],solid:54,solut:[71,140],solv:[26,28,60,79],some:[2,4,9,11,18,25,26,28,29,30,34,35,36,38,39,42,44,45,50,52,53,54,55,59,60,63,67,68,69,70,75,76,77,78,79,80,83,87,88,89,125,140],some_c_api_funct:66,some_inst:66,some_lay:18,some_op:[58,68,89],some_python_class:65,somecppclass:65,somedata:25,somegotyp:65,someth:[28,34,77,115],sometim:[4,74,78],somewhat:36,somewher:83,soon:31,sort:[4,10,18,22,89,115,125,127],sort_by_length:89,sortagrad:86,sorted_kei:22,sourc:[4,10,18,27,30,49,51,54,62,64,66,69,78,79,115,125],source_dict_dim:[69,107],source_dict_s:69,source_language_word:[69,107],space:[3,4,44,50,77,81,86],space_seperated_tokens_from_dictionary_according_to_seq:3,space_seperated_tokens_from_dictionary_according_to_sub_seq:3,span:74,spars:[2,4,6,9,18,34,41,94,110,121,123,125,127,132,134],sparse_binary_vector:[9,94,101,121],sparse_binary_vector_sequ:[9,121],sparse_binary_vector_sub_sequ:121,sparse_float_vector:[9,101],sparse_float_vector_sequ:9,sparse_non_value_slot:9,sparse_remot:34,sparse_upd:[2,34,94],sparse_value_slot:9,sparse_vector:[94,121],sparse_vector_sequ:121,sparse_vector_sub_sequ:121,sparseparam:110,sparseprefetchrowcpumatrix:110,spatial:4,spatial_scal:4,spec:[125,126,127],special:[4,18,28,36,42,50,52,58,67,69,70],specialvartypeinfer:58,specif:[18,19,25,28,30,31,42,45,49,52,69,79,83,87,94,101],specifi:[3,4,17,18,22,26,27,34,35,36,39,40,41,42,43,45,46,47,49,54,64,74,77,83,85,89,113,115,125],spectrogram:86,speech:[4,86],speed:[4,5,50,64,71,72,140],speedup:74,sphinx:[65,113],split:[4,9,19,38,40,43,51,57,69,79,89,104,123,125],split_count:[123,125,127],sport:18,spread:28,sqrt_x:18,squar:[4,6,7,56],square_error_cost:[101,118],squash:109,srand:[121,132],src:[30,63,91,123,124,127],src_backward:107,src_dict:96,src_dict_path:96,src_embed:[69,107],src_forward:107,src_primitive_desc:63,src_word_id:[69,107],src_word_vec:69,sreializ:90,srl:10,ssd:4,ssh:[125,128],ssh_server:124,sstabl:26,stabil:[4,18,27,60],stabl:[82,125],stack:[18,47,79,89,125],stackexchang:4,stage:[30,37,43,54,60,63,86,90,109],stale:31,stamp:91,stand:18,standalon:136,standard:[2,9,18,41,51,79,81,86,115],stanford:[10,27,126],star:30,start:[4,5,18,25,28,30,31,34,35,36,38,39,41,42,43,69,71,73,74,91,109,115,121,126,127,132],start_mpi_train:128,start_op_idx:28,start_paddl:127,start_pass:[131,132],start_po:4,start_pserv:[131,132],startpaddl:127,startup:[18,31,39,51,125],startup_program:18,stat:[117,132],state:[4,5,18,22,29,31,46,47,68,69,74,83,86,89,95,106,126],state_act:[4,5,104],statem:60,statement:[51,55,60,125],statfulset:127,static_cast:[63,112],staticinput:[4,106,107],statist:[4,18,46,74],statset:117,statu:[18,39,69,109,117,125,126,127],status:126,std:[25,30,34,56,58,59,63,65,66,74,76,79,80,83,85,87,110,111,112,132],stdbuf:123,stderr:124,stdout:[9,124],step1:18,step:[4,5,7,18,27,29,31,36,42,44,46,51,54,55,61,69,72,73,77,79,85,86,89,104,106,107,115,125,140],step_gradi:28,step_id:89,step_input:89,step_net:29,step_output:89,step_scop:79,stepnet:[29,68,79,83],stepout:104,still:[28,35,38,42,51,60,80],stirng:77,stmt1482205552000:125,stmt1482205746000:125,stochast:[6,31,35,38,72],stop:[4,77],stop_gradi:[18,77],storag:[48,50,125],store:[3,4,10,18,25,27,29,30,34,47,56,58,64,67,69,73,75,77,79,80,81,83,89,125],str:[11,18,25,28,39,89,127,134],straight:[75,78,84],straightforward:63,strategi:[7,31,77,132],stream:[9,42,63,74,87],stream_:87,streamid:22,street:4,strict:78,stride:[4,5,18,63,67,86],stride_h:18,stride_i:4,stride_w:18,stride_x:4,string:[3,4,9,11,18,22,25,28,29,35,49,56,59,64,74,75,76,77,79,80,83,84,85,90,110,111,125,132],strip:[96,104,115],struct:[35,36,48,50,58,59,66,67,74,80,85,88,96],structur:[28,29,35,51,54,64,69,75,77,79,84,125],sts:125,stuff:109,style:[4,79,85],sub:[3,4,9,18,26,28,38,40,44,54,60,68,71,73,77],sub_block:28,sub_nest_seq:4,sub_sequ:[4,101],subclass:77,subcommand:49,subgradi:6,subgraph:[44,54],submiss:42,submit:[63,79,125],subnet0:125,subnet:[26,125],subobjectpath:126,subscript:18,subseq:[103,106],subsequ:[4,71],subsequenceinput:[4,104],subset:18,substitut:18,succ:60,succeed:[35,126],success:[4,36,125,126],successfulcr:126,sucess:60,sucessor:60,sudo:[108,125],suffer:27,suffix:[39,123],suggest:[4,30],suit:140,suitabl:[84,87],sum:[4,6,19,28,29,32,43,58,77],sum_op:28,sum_x:18,sume:18,summar:[18,54,74],summari:74,summat:18,sumopgradmak:80,sumpool:94,supercomput:60,suppli:[18,84],support:[2,3,4,6,7,9,11,18,27,29,31,38,39,40,41,42,44,51,53,54,60,63,64,67,69,72,73,74,76,78,79,80,81,84,86,88,100,104,125,140],support_inplac:60,suppos:[5,18,19,30,40,53,84,121],suppress:[4,49],sure:[18,115,125],surpass:4,svs:85,swagger:48,swig:[37,65,66,97],switch_ord:95,switchop:29,sychron:71,symbol:[4,29,56,66],symbols_ready_:29,symbolt:[29,79],symlink:109,sync:[31,72,81],sync_with_cpp:[115,116],syncflag:110,synchron:[31,35,41,63,71,74,125],syntax:[40,47,51,69,78],sysroot:136,system:[29,30,31,36,38,41,42,44,48,53,54,60,62,86,94,115],t_max:18,t_min:18,tabl:[3,4,18,29,40,51,58,64,84,90],tablelookup:84,tablelookupgrad:84,tablelookupop:84,tableproject:4,tag:[3,10,82,91,98,109,123],tagtyp:3,tail:69,tainer_id:127,take:[3,4,5,9,18,25,26,28,29,30,31,38,40,41,42,45,47,50,52,54,55,57,58,60,63,67,72,75,76,77,78,79,80,87,88,89,115,125],taken:[4,45,56,60,67,89],talk:[36,52],tangl:115,tanh:[4,5,54,69,107,110],tanhactiv:[5,104],tanhshrink:18,tar:[11,25,91,101,122,125],tarbal:125,target:[4,10,18,25,28,29,30,45,47,54,56,70,76,79],target_block:[28,45],target_dict_dim:107,target_dict_s:69,target_dictionary_dim:4,target_language_embed:4,target_language_word:107,target_link_librari:30,target_var:17,target_word:69,targetinlink:[4,104],task13:86,task14:86,task:[3,4,18,42,64,69,74,85,122],task_queu:35,taskentri:35,taskqueu:35,tbd:[37,63,86,104],tcp:[125,132],tear:117,technic:[28,31],techniqu:[18,60,115],technolog:[18,51],tee:126,tell:[22,31,35,36,69,85],templat:[53,63,85,87,111,112,126,127,140],tempor:[4,18,86],temporari:[28,39,47,60,72,77],tempori:60,tensor:[19,27,30,40,41,43,44,50,51,52,54,56,58,59,63,64,67,68,69,84,89,90,111,118],tensor_arrai:40,tensor_array_read:89,tensor_array_s:89,tensor_array_stack:89,tensor_array_unstack:89,tensor_array_writ:89,tensor_data:64,tensor_in:88,tensor_s:27,tensor_test:30,tensor_to_check:27,tensorarrai:43,tensorarraydesc:89,tensordesc:[64,84],tensorflow:[29,40,41,42,44,51,54,57,81,89],term:[4,5,18,31,80,81,86],termin:126,terminolog:60,tessorarrai:89,test100:10,test10:10,test1:33,test:[4,9,10,11,18,25,26,27,30,56,66,72,78,82,102,109,110,111,112,117,118,121,123,128,132,134],test_:111,test_all_data_in_one_period:126,test_check_grad_ingore_i:111,test_check_grad_ingore_x:111,test_check_grad_norm:111,test_check_output:111,test_compar:91,test_comparespars:91,test_comparetwonet:91,test_comparetwoopt:91,test_config_pars:91,test_data_dir:123,test_fcgrad:110,test_gpuprofil:117,test_layergrad:110,test_list:96,test_mkldnn:62,test_mklpack:61,test_mul_op:[97,111],test_networkcompar:91,test_pass:[131,132,134],test_period:[131,132,134],test_predict:91,test_pydataprovid:91,test_pydataprovider2:91,test_pydataproviderwrapp:91,test_recurrent_machine_gener:91,test_recurrentgradientmachin:[91,104],test_swig_api:91,test_train:91,test_traineronepass:91,test_wait:[131,132],testa:26,testb:26,testbilinearfwdbwd:117,testconfig:110,testfcgrad:110,testfclay:110,testlayergrad:110,testmulop:111,testq:26,testresult:25,testutil:110,text1:49,text:[3,5,9,18,26,64,68,74,86,125],text_fil:9,tflop:117,tftp:140,tgz:[10,91,100],than:[2,3,4,5,18,28,31,39,40,45,51,52,53,54,77,79,81,89,96,121,125,140],the_step:51,theano:51,thehalf:18,thei:[4,18,26,28,30,31,36,38,40,41,44,45,49,51,54,55,59,60,69,70,74,77,79,85,89,90,117,125],them:[3,4,5,11,18,26,27,28,30,31,34,39,41,44,45,51,52,53,58,59,60,69,77,78,79,80,83,84,85,88,89,90,117,125],themselv:[28,30],theori:51,therefor:[28,60,72],therein:[4,18,29],theta:54,theta_d:54,theta_g:54,thi:[2,3,4,5,6,9,10,11,17,18,22,23,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,47,50,51,52,53,54,55,56,59,60,63,67,68,69,70,71,72,73,74,75,77,78,79,80,81,84,85,86,87,88,89,94,100,101,115,117,118,121,125,140],thin:58,thing:[42,54,79,87],think:[26,30],third:[4,18,31,56,115,121],third_parti:[4,62,91,119,136,137,138],those:[4,29,30,31,53,55,56,57,75],though:[89,140],thought:[18,30],thread:[40,41,43,74,115,117],thread_count:43,thread_id:74,thread_id_:74,thread_local_rand_use_global_se:[131,132],thread_pool:43,threadblocks:22,threadid:134,threadloc:117,threadpool:40,three:[3,4,18,19,27,28,31,41,46,50,51,52,55,63,69,70,73,74,75,78,86,87],threshold:[2,3,4,18,31,35,45,132],thresholdedrelu:18,through:[4,19,28,30,31,35,37,46,60,70,72,113,118],throughout:47,throughput:117,thrust:79,thu:[4,18,38,46,56,60,86,125],tier:126,time:[4,5,7,9,18,22,25,26,27,30,31,35,38,41,42,44,45,51,53,58,60,61,67,68,69,71,74,77,78,79,80,84,85,86,89,90,104,115,116,117,121,126,127,132,140],timelin:[4,74,79],timeo:125,timeout:[31,35],timeout_sec:9,timer:[22,117],timestamp:[4,32],timestep:[4,83],titan:60,titl:[10,127],tls:48,tmp:77,to_chw:11,to_no_sequ:[4,103],to_sequ:[4,103,104],to_tar:25,to_your_paddle_clone_path:113,todo:[3,9,10,29,31,35,38,69,85,86],toend:4,togeth:[4,5,9,25,28,89],token:[3,4,18,26,86,107],toler:[25,27],too:[10,27,40,41,45,63,88,89],took:140,tool:[74,113,115,125,127,136,138],toolchain:[115,136],toolkit:86,top:[3,18,25,68,69,86],top_k:[3,18,69],top_level_rnn:68,topic:63,topk_generated_scor:69,topk_id:69,topk_indic:18,topk_out:18,topk_scor:69,toplevel:108,topolog:[26,31,42,56,60,64,73],topoloi:56,topolopi:25,torch:[29,51],toronto:10,tostr:96,total:[18,22,25,31,44,46,71,74,78,115,117,126,140],total_pass:78,tottim:[115,116],touch:91,toward:51,trace:[29,52,54],track:[31,35,56,77,109],tractabl:4,tradit:[4,29,50,86],traffic:42,trail:9,train100:10,train10:10,train:[2,3,4,9,10,11,18,28,29,33,35,36,38,40,45,46,47,51,52,54,55,60,61,64,71,72,73,74,75,76,77,79,81,84,86,87,90,92,94,98,101,107,123,124,126,127,128,129,130,132,134],train_arg:127,train_args_dict:127,train_args_list:127,train_config_dir:[125,127],train_data:123,train_data_dir:123,train_i:101,train_id:125,train_list:[96,123],train_loop:51,train_read:[42,101],train_x:101,trainabl:[4,21,64,77],trainer:[26,32,33,34,35,37,42,44,52,61,62,72,73,79,101,110,123,127,132,134],trainer_config:[122,125,126,127],trainer_config_help:110,trainer_count:[94,102,123,125,126,127,131,132,134],trainer_cpu:39,trainer_cr:39,trainer_gpu:39,trainer_id:[123,125,127,132],trainer_intern:34,trainer_mem:39,trainer_packag:39,trainer_prog:42,trainerconfighelp:96,trainerid:[38,127],trainingjob:42,trainonebatch:34,tran:[63,110],trans_var:88,transact:[31,35],transcript:86,transfer:[60,74],transform:[4,5,11,18,79,86],transform_param_attr:5,transformed_st:5,translat:[4,5,60,94],translation_id:69,translation_scor:69,transpar:69,transpil:40,transpos:[4,11],transpose_i:18,transpose_x:18,transposedfullmatrixproject:4,travers:[28,55,60],travi:109,treat:[4,18,29,36,60],treatment:[36,50],tree:[4,29,40,47,51,77,118,127,138],trg_dic_siz:69,trg_embed:[69,107],trick:69,tricki:65,trigger:[38,73],trim:4,trivial:[69,89],true_block:[29,57,75],true_imag:78,true_label:78,true_neg:46,true_posit:46,true_read:78,truth:[3,4,18],tune:[2,86,115,116,131],tupl:[4,5,9,10,11,18,25,28,77,78],ture:4,turn:[4,18,77,78,106],tutori:[22,115,125,127,128,129,130],twice:[44,54],twine:82,two:[3,4,5,18,19,26,28,36,37,38,39,40,41,42,46,49,50,51,52,54,55,58,60,64,67,69,72,74,75,78,79,80,81,83,84,85,86,88,89,90,111,112,117,125],txt:[30,39,49,61,62,110,113,123,125,128],type:[3,4,5,7,9,10,18,23,26,28,29,31,34,35,38,39,42,48,49,50,52,58,59,63,64,65,66,68,69,75,76,77,78,79,80,81,84,85,86,87,88,90,101,102,104,107,110,111,112,121,125,126,134],type_nam:85,typedef:[36,50,65,66,67,87],typeerror:45,typeid:85,typenam:[53,85,87,111,112],typic:[3,42],ubuntu:[82,100,102,115],ubyt:78,uci:10,uci_h:102,ufldl:[4,18],uid:126,uint16_t:50,uint32:[48,64],uint32_t:74,uint64:[64,65],uint64_t:[65,121],unawar:36,unbound:60,unchang:18,unclear:38,uncreat:28,under:[18,30,35,44,71,88,94,101,125],underli:[18,69],understand:[51,77,86,115,140],understand_senti:107,undeterminist:117,uni:86,unidirect:[4,86],unifi:[47,56,84],uniform:[2,4,9,18,33,54,77,78],uniform_random:77,uniforminiti:16,uniniti:28,uninstal:[91,97],uniqu:[26,29,31,38,39,63,67,77,83,125],unique_nam:77,unique_name_gener:77,unique_ptr:[80,83,87,110],unit:[4,5,18,19,30,72,74,81,87],unitest:18,unittest:[66,91,111],unix:41,unk:[84,90],unknown:[4,18,23],unless:[18,94,101],unlik:[4,18,69],unnecessari:[28,86],unnorm:18,unordered_map:83,unpack:89,unrol:68,unscal:18,unseen:81,unseg:4,unsign:[36,50],unstack:89,unstack_from:89,unsupervis:54,unsupport:111,until:[31,36,43,44,51,60,83,125,127],untrack:109,unus:18,unzip:136,updat:[2,4,6,18,28,31,35,36,42,48,50,54,68,69,70,71,72,73,83,86,89,109,115,116,134],update_equ:[25,101],update_hook:2,update_memori:29,update_op:70,updatecallback:110,updatestack:125,upgrad:[71,91,100],upload:[31,39,41,48,82],upon:31,upper:4,upstream:[91,109],uri:125,url:[9,10],usag:[3,4,5,11,18,25,50,57,60,73,77,123,124,127],use:[2,3,4,5,7,9,10,11,18,22,25,26,27,29,30,31,37,42,43,44,47,50,54,56,58,59,60,63,67,69,70,71,73,74,77,83,84,85,86,88,89,90,94,101,109,111,115,117,121,123,125,127],use_cpu:59,use_cudnn:[18,19,59],use_eigen_bla:136,use_eigen_for_bla:[136,137],use_etcd:25,use_global_stat:4,use_gpu:[94,101,102,123,126,127,131,132,134],use_mkl_pack:61,use_mkldnn:[4,59,62],use_old_updat:[34,131,132],use_peephol:18,use_sparse_remote_updat:34,used:[3,4,5,6,7,9,10,11,18,22,25,26,27,29,30,31,37,38,42,45,47,50,51,54,56,60,68,69,72,73,74,77,78,79,81,83,85,87,88,89,115,117,125],useful:[4,5,27,50,60,77,83,88],usegpu:[110,121],user:[2,4,5,9,10,11,18,22,25,26,27,28,29,30,33,35,38,39,40,42,43,44,45,46,47,49,53,54,55,56,58,59,63,67,69,70,71,72,74,77,78,79,80,81,83,85,87,88,89,115,125,140],user_id:127,user_info:10,user_nam:33,usercert:33,userinfo:10,userkei:33,usernam:[33,109,136],uses:[4,18,31,38,40,41,42,50,60,67,68,69,73,74,87,88,125],using:[2,4,5,9,14,18,25,26,28,29,30,31,35,36,38,39,41,42,47,49,50,51,53,54,56,58,60,68,70,72,75,77,78,80,81,83,85,86,87,102,111,125],usr:[91,97,98,123,125,127,132],usual:[4,18,25,28,39,60,67,74,75,81,87,115,117,125],util:[42,61,62,71,117,122,127,140],uuid:[32,38],v7a:136,v8a:136,val:28,valgrind:116,valid:[4,11,18,78,79,83,125],valu:[2,3,4,7,9,10,11,18,19,22,25,27,28,29,31,40,41,45,46,56,57,60,62,64,68,69,70,72,73,75,79,83,84,85,89,90,94,110,121,125,127,134,136],value1:132,value2:132,value_:84,value_evalu:3,value_rang:9,valueerror:[18,19,56,94],values_:89,vanilla:107,var_nam:[28,88],var_recurs:45,vardesc:[29,55,75,77,79,84],vardescbuild:29,vari:125,variabl:[6,9,10,17,18,19,26,27,29,40,42,44,45,46,47,52,54,55,56,57,58,67,68,69,70,72,75,76,80,81,84,85,86,88,89,115,118,125,126],variablenamemap:111,varialbl:54,varianc:4,variant:[4,58,67,87,89],varibal:28,varibl:56,varienc:89,varient:89,variou:[29,41,50,60,81],varproto:85,vars_:[29,83],vartyp:[18,84,90],vartypeinfer:58,vec1:4,vec2:4,vec2seq:86,vec:96,veclib:137,vecter:18,vector:[4,5,9,10,18,26,29,34,36,56,57,63,68,69,74,77,79,80,84,86,89,119,121],vendor:30,verb:10,verbos:49,veri:[4,7,30,35,40,44,47,51,53,54,60,63,69,73,78,81,83,86,87,89,115],verifi:29,version:[4,5,28,30,39,42,45,49,52,54,56,57,64,69,82,86,94,101,109,115,117,123,125,131,132,137],versu:26,vertic:4,vgg:5,via:[18,28,31,67,109,125,140],view:[4,64,67],vim:98,virtual:[45,58,59,80,87],virtualenv:108,visibl:[38,83],visit:[25,28],visual:[4,69],vlog:34,vocabulari:86,volum:[113,126,127],volumemount:[125,126,127],volumn:125,vutbr:10,w_f:18,wai:[3,5,18,26,28,36,38,41,47,51,59,60,69,72,77,78,81,89],wait:[31,36,43,127],wang:18,wangkuiyi:30,want:[4,22,26,39,40,41,46,54,59,67,72,74,76,78,81,83,87,88,89,115],warn:[25,49,91,96,127],warp:[4,18],warp_ctc:86,warpctc:4,warranti:[94,101],wast:71,watch:31,wbia:125,web:115,weight:[3,4,5,6,18,19,21,23,61,64,81,110],weight_act:5,weightlist:110,weights_:110,weights_primitive_desc:63,weights_t:110,welcom:[30,86],well:[18,28,39,41,42,44,51,53,54,81,84,86,125],wer:86,were:[3,30,41,51],west:125,wget:[91,136],wgt:63,what:[2,4,30,51,54,69,77,85,88,109,115,140],wheel:100,when:[2,3,4,6,9,18,19,25,27,28,29,30,31,34,35,36,39,40,42,44,45,46,47,49,50,51,52,56,69,71,72,73,74,75,77,79,87,89,115,117,125,140],whenev:[18,77,86],where:[4,5,6,18,19,26,28,29,31,38,40,42,51,52,55,67,68,69,72,75,79,81,87,89,115,118],wherea:[18,29,35,53,57,87,90],whether:[3,4,11,18,25,27,28,29,47,74,78,84,89,121],which:[2,3,4,5,9,10,11,17,18,19,21,22,25,26,27,28,29,30,31,33,35,36,38,39,40,41,42,43,45,47,50,51,52,53,54,56,58,60,63,64,67,68,69,70,71,73,75,76,77,78,79,80,83,84,85,88,89,90,101,115,116,125,140],while_grad:60,while_loop:[69,89],while_op:[18,28],whileloop:89,whileop:29,white:86,whl:[97,100],who:[28,53,55,71,77],whoever:36,whole:[3,9,28,54,57,60,65,66,68,71,76,85,86,119,125,140],whose:[4,9,18,27,28,31,38,45,68,79,80,85,89],why:[5,27,66,117],wide:[30,45,54,124,128],width:[3,4,9,11,18,34,65,78,96,110,111,121],wiil:18,wiki:[4,30],wikipedia:[4,10],window:[4,7,10,72,86,108],wirt:56,wise:[4,11,18,44,79,86],with_avx:[97,109,123,136,137],with_bia:85,with_c_api:[97,119,136,137,138],with_doc:97,with_doubl:[97,110,123],with_dso:97,with_golang:[97,119,136],with_gpu:[97,108,109,119,123,136,137],with_mkl:[61,62,97,119,136],with_mkldnn:62,with_mklml:62,with_profil:117,with_python:[97,119,123,136,137],with_rdma:[123,136,137],with_style_check:[97,109],with_swig_pi:[97,119,136,137],with_test:[97,109,111],with_tim:[117,123],within:[4,18,35,42,51,86],without:[3,4,28,31,36,41,74,77,78,79,86,94,101,115],wloop:89,wmt14:107,wmt_shrinked_data:10,won:104,word2vec:[39,94,123,124],word:[3,4,10,28,44,55,58,60,68,69,79,85,86,89,94,104,106],word_dict:[104,123,128],word_dim:[96,104],word_id:94,word_idx:10,word_vector_dim:[4,69,107],wordcount:86,words_freq_sort:10,work:[4,9,18,26,29,30,31,42,47,50,51,59,70,72,74,77,98,104,109,113,115,125,126,127,140],worker:[44,90,125],workercount:125,workflow:[79,125],workspac:[123,124],worth:118,would:[22,25,29,30,31,38,41,42,43,44,51,53,54,55,63,70,72,73,77,78,84,86,89,115,125,140],wouldn:[51,55],wrap:[18,51,53,54,71,140],wrapper:[5,30,41,53,71,72,80,89,117],write:[9,18,26,31,38,40,42,44,50,51,52,53,56,58,63,70,72,77,78,79,80,87,89,94,96,101,125],write_lock:32,write_to_arrai:60,writer:[26,77],written:[18,22,28,29,40,44,47,54,64,72,79,80,84,115],wrong:78,wrote:56,wsize:125,www:[10,18,94,101],x64:138,x86:[136,137],x86_64:[136,137],x_first_step:18,x_last_step:18,x_neg:27,x_num_col_dim:18,x_po:27,x_reshap:18,x_t:18,x_t_data:18,x_transpos:18,xarg:[3,91,98,110,128],xavier:18,xavieriniti:[16,18],xcode:137,xcodebuild:137,xgbe0:132,xgbe1:132,xmap_read:9,xpu:51,xrang:[27,51,54,74,78,101,102,110],xx_layer:59,xxx:[26,89],xxxx:32,xxxxxxxxx:125,xxxxxxxxxx:125,xxxxxxxxxxxxx:125,xxxxxxxxxxxxxxxxxxx:125,y_dim:54,y_neg:27,y_num_col_dim:18,y_po:27,y_predict:[18,101,102,118],yaml:[30,124,125,126,127,128,140],yancey1989:39,yann:10,yapf:109,year:51,yeild:25,yep:[74,115,116],yet:[51,86,140],yield:[9,26,33,78,94,101,104],you:[2,4,5,9,18,19,22,25,27,39,42,50,83,94,101,115,125,140],your:[4,9,25,26,30,34,39,49,79,91,125,136,137,138,140],your_access_key_id:125,your_param_nam:96,your_repo:127,your_secrete_access_kei:125,your_source_root:66,yuang:51,yuyang18:[9,10],yuyang:[115,116],z_dim:54,z_size:54,zero:[2,4,5,6,9,10,27,28,31,54,69,73,77,84,125,132],zip:[10,77,127,136],zlib:119,zone:125,zxf:91,zxvf:125},titles:["API","Activation","Parameter Attribute","Evaluators","Layers","Networks","Optimizer","Pooling","Data Reader Interface and DataSets","Data Reader Interface","Dataset","Image Interface","Fluid","data_feeder","evaluator","executor","initializer","io","layers","nets","optimizer","param_attr","profiler","regularizer","Model Configuration","Training and Inference","PaddlePaddle Design Doc","Auto Gradient Checker Design","Backward Building","Design Doc: Block and Scope","Required CMake Function","Design Doc: Distributed Training","\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9\uff08Checkpointing\uff09","\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1","Alalysis of large model distributed training in Paddle","Design Doc: Master Server","Design Doc: The Client Library of Parameter Server","Design Doc: Remote Parameter Updater for Cluster Train","Design Doc: Save Model","Submit a Distributed Training Job","Design Doc: Concurrent Programming with Fluid","Design Doc: CSP in PaddlePaddle Fluid","Design Doc: Distributed Training Architecture","Design Doc: Execute the Program with Multi CPU","Design Doc: Parameter Server","Error Clip","Evaluator Design","Executor Design Doc","FileManager\u8bbe\u8ba1\u6587\u6863","PFSClient","Design Doc: float16","Design Doc: PaddlePaddle Fluid","PaddlePaddle Fluid: Towards a Compiled Programming Language","Design Doc: Functions, Operators, and Layers","Design for GAN","Design Doc: Computations as a Graph","Survey on Graph","The IfElse Operator","Design Doc: InferVarType","Problem","Memory Optimization","Intel\u00ae MKL Packed on PaddlePaddle: Design Doc","Intel\u00ae MKL-DNN on PaddlePaddle: Design Doc","Design Doc: Add MKLDNN Kernel in Fluid Operator","Design Doc: Model Format","Paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0","C-API \u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863","Design Doc: The Keys of Operator Kernel Type","RNNOp design","Design: Sequence Decoder Generating LoDTensors","Optimizer Design","Design Doc: NCCL support in Paddle Fluid","Averaging Parameter in PaddlePaddle","Design Doc: The C++ Class Parameters","Introduction","Design Doc: PaddlePaddle Programs","Prune","Design Doc: Python API","Python Data Reader Design Doc","Design Doc: Refactorization Overview","Design Doc: Gradient Operators Registration","Regularization in PaddlePaddle","PaddlePaddle\u53d1\u884c\u89c4\u8303","Design of Scope in Paddle","Design Doc: Selected Rows","Interaction between C++ and Python","DeepSpeech2 on PaddlePaddle: Design Doc","Design Doc: Supporting new Device/Library","Background","Design for TensorArray","Background","\u7f16\u8bd1\u5b89\u88c5\u4e0e\u5355\u5143\u6d4b\u8bd5","\u96c6\u7fa4\u8bad\u7ec3\u4e0e\u9884\u6d4b","FAQ","\u672c\u5730\u8bad\u7ec3\u4e0e\u9884\u6d4b","\u6a21\u578b\u914d\u7f6e","\u53c2\u6570\u8bbe\u7f6e","\u4ece\u6e90\u7801\u7f16\u8bd1","\u4f7f\u7528Docker\u5b89\u88c5\u8fd0\u884c","\u5b89\u88c5\u4e0e\u7f16\u8bd1","\u4f7f\u7528pip\u5b89\u88c5","\u57fa\u672c\u4f7f\u7528\u6982\u5ff5","\u65b0\u624b\u5165\u95e8","\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684Layer","\u5355\u53cc\u5c42RNN API\u5bf9\u6bd4\u4ecb\u7ecd","RNN\u76f8\u5173\u6a21\u578b","Recurrent Group\u6559\u7a0b","RNN\u914d\u7f6e","\u7528Docker\u7f16\u8bd1\u548c\u6d4b\u8bd5PaddlePaddle","\u5982\u4f55\u8d21\u732e\u4ee3\u7801","\u5b9e\u73b0\u65b0\u7684\u7f51\u7edc\u5c42","\u5982\u4f55\u5199\u65b0\u7684Operator","\u5728Paddle\u4e2d\u5982\u4f55\u4f7f\u7528Eigen","\u5982\u4f55\u8d21\u732e/\u4fee\u6539\u6587\u6863","\u8fdb\u9636\u6307\u5357","Profiling the Python Code","Python\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790","GPU\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18","PaddlePaddle Fluid Source Code Overview","\u7f16\u8bd1 PaddlePaddle \u9884\u6d4b\u5e93","PaddlePaddle C-API","\u8f93\u5165/\u8f93\u51fa\u6570\u636e\u7ec4\u7ec7","C-API \u4f7f\u7528\u6d41\u7a0b","\u5206\u5e03\u5f0f\u8bad\u7ec3","\u4f7f\u7528fabric\u542f\u52a8\u96c6\u7fa4\u8bad\u7ec3","Distributed PaddlePaddle Training on AWS with Kubernetes","Kubernetes\u5355\u673a\u8bad\u7ec3","Kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3","\u5728OpenMPI\u96c6\u7fa4\u4e2d\u63d0\u4ea4\u8bad\u7ec3\u4f5c\u4e1a","<no title>","<no title>","\u53c2\u6570\u6982\u8ff0","\u7ec6\u8282\u63cf\u8ff0","\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570","\u4f7f\u7528\u6848\u4f8b","PaddlePaddle \u6587\u6863","Android\u5e73\u53f0\u7f16\u8bd1\u6307\u5357","iOS\u5e73\u53f0\u7f16\u8bd1\u6307\u5357","Raspberry Pi\u5e73\u53f0\u7f16\u8bd1\u6307\u5357","MOBILE","Cluster bootstrapping tool survey"],titleterms:{"\u4e00\u4e9b\u7ec6\u8282\u7684\u8865\u5145":127,"\u4e0a\u4f20\u8bad\u7ec3\u6587\u4ef6":33,"\u4e0b\u8f7d\u6570\u636e":126,"\u4e0b\u8f7dmklml\u5e93\u5931\u8d25":91,"\u4e0d\u4f7f\u7528":65,"\u4e0d\u4f7f\u7528swig\u8fd9\u79cd\u4ee3\u7801\u751f\u6210\u5668":65,"\u4e0d\u540c\u7684":95,"\u4e0d\u5bfc\u51fapaddle\u5185\u90e8\u7684\u7ed3\u6784\u4f53":65,"\u4e0d\u5f15\u7528\u5176\u4ed6\u52a8\u6001\u5e93":65,"\u4e24\u79cd\u4f7f\u7528":95,"\u4e3a\u4ec0\u4e48\u8981":108,"\u4e3a\u4ec0\u4e48\u9700\u8981\u6027\u80fd\u5206\u6790":117,"\u4ec0\u4e48\u662f\u6027\u80fd\u5206\u6790":117,"\u4ec5\u4ec5\u4f7f\u7528void":65,"\u4ece\u5feb\u7167\u6062\u590d":32,"\u4ece\u6e90\u7801\u7f16\u8bd1":97,"\u4ee3\u7801\u8981\u6c42":109,"\u4f7f\u7528":[109,126],"\u4f7f\u7528\u5206\u5e03\u5f0f\u8ba1\u7b97\u5e73\u53f0\u6216\u5de5\u5177":123,"\u4f7f\u7528\u52a8\u6001\u5e93\u6765\u5206\u53d1paddl":65,"\u4f7f\u7528\u6848\u4f8b":134,"\u4f7f\u7528\u6a21\u578b\u521d\u59cb\u5316\u7f51\u7edc":134,"\u4f7f\u7528\u6d41\u7a0b":122,"\u4f7f\u7528\u73af\u5883\u53d8\u91cf":127,"\u4f7f\u7528\u8bf4\u660e":114,"\u4f7f\u7528\u8f6c\u6362\u5e93":33,"\u4f7f\u7528docker\u542f\u52a8paddlepaddl":98,"\u4f7f\u7528docker\u5b89\u88c5\u8fd0\u884c":98,"\u4f7f\u7528docker\u6267\u884cgpu\u8bad\u7ec3":98,"\u4f7f\u7528docker\u6784\u5efa":113,"\u4f7f\u7528fabric\u542f\u52a8\u96c6\u7fa4\u8bad\u7ec3":124,"\u4f7f\u7528paddlepaddl":113,"\u4f7f\u7528pip\u5b89\u88c5":100,"\u4fdd\u6301\u672c\u5730\u4ed3\u5e93\u6700\u65b0":109,"\u4fee\u6539\u542f\u52a8\u811a\u672c":126,"\u4fee\u6539\u6587\u6863":113,"\u514b\u9686":109,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5934\u6587\u4ef6":66,"\u5177\u4f53\u67d0\u79cd\u7c7b\u578b\u7684\u5b9e\u73b0\u6587\u4ef6":66,"\u5185\u7f6e\u5b9a\u65f6\u5668":117,"\u5199\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5":110,"\u51c6\u5907\u4e00\u4e2alinux\u96c6\u7fa4":124,"\u51c6\u5907\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883":[136,137],"\u51c6\u5907\u6570\u636e\u96c6":123,"\u51c6\u5907\u8bad\u7ec3\u6570\u636e":127,"\u51c6\u5907\u8bad\u7ec3\u7a0b\u5e8f":123,"\u51c6\u5907\u9884\u6d4b\u6a21\u578b":122,"\u51c6\u5907openmpi\u96c6\u7fa4":128,"\u51cf\u5c11\u6570\u636e\u8f7d\u5165\u7684\u8017\u65f6":94,"\u51cf\u5c11dataprovider\u7f13\u51b2\u6c60\u5185\u5b58":94,"\u51fa\u73b0":95,"\u5206\u5757\u6587\u4ef6\u4f20\u8f93":48,"\u5206\u5e03\u5f0f\u8bad\u7ec3":123,"\u5206\u652f\u89c4\u8303":82,"\u521b\u5efa\u672c\u5730\u5206\u652f":109,"\u521b\u5efa\u795e\u7ecf\u7f51\u7edc\u8f93\u5165":122,"\u521b\u5efajob":127,"\u521b\u5efapaddlepaddl":126,"\u521d\u59cb\u5316paddlepaddle\u8fd0\u884c\u73af\u5883":122,"\u5220\u9664\u672c\u5730\u5206\u652f":109,"\u5220\u9664\u8fdc\u7a0b\u5206\u652f":109,"\u5229\u7528\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90":94,"\u5230\u8fdc\u7a0b\u4ed3\u5e93":109,"\u5236\u4f5c\u955c\u50cf":127,"\u5236\u4f5cdocker\u955c\u50cf":126,"\u524d\u5411\u8ba1\u7b97":122,"\u524d\u5411operator\u5355\u6d4b":111,"\u52a0\u8f7d\u6a21\u578b":122,"\u52a0\u8f7dpaddlepaddl":101,"\u52a0\u901f\u6267\u884c":32,"\u52a0\u901f\u8bad\u7ec3\u901f\u5ea6":94,"\u52a8\u6001\u5e93\u4e2d\u4e0d\u5d4c\u5165\u4efb\u4f55\u5176\u4ed6\u8bed\u8a00\u7684\u89e3\u91ca\u5668":65,"\u52a8\u6001\u6269\u5bb9":32,"\u5355\u5143\u6d4b\u8bd5":132,"\u5355\u53cc\u5c42rnn":104,"\u539f\u56e0":65,"\u539f\u56e0\u5217\u8868":65,"\u53c2\u6570\u5185\u5b58":94,"\u53c2\u6570\u670d\u52a1\u5668\u548c\u5206\u5e03\u5f0f\u901a\u4fe1":132,"\u53c2\u6570\u6982\u8ff0":131,"\u53c2\u6570\u8bbe\u7f6e":96,"\u53c2\u8003\u6587\u6863":48,"\u53c2\u8003\u8d44\u6599":117,"\u53cc\u5c42rnn":104,"\u53cc\u5c42rnn\u4ecb\u7ecd":106,"\u53cc\u5c42rnn\u7684\u4f7f\u7528":106,"\u53cd\u5411operator\u5355\u6d4b":111,"\u53d1\u5e03docker\u955c\u50cf":82,"\u53d1\u5e03wheel\u5305\u5230pypi":82,"\u53ef\u80fd\u78b0\u5230\u7684\u95ee\u9898":108,"\u5404\u4e2a\u7248\u672c\u6700\u65b0\u7684whl\u5305":100,"\u540d\u8bcd\u89e3\u91ca":48,"\u5411\u91cf":132,"\u542f\u52a8\u4efb\u52a1":127,"\u542f\u52a8\u53c2\u6570\u670d\u52a1\u5668":123,"\u542f\u52a8\u53c2\u6570\u8bf4\u660e":123,"\u542f\u52a8\u8ba1\u7b97\u8282\u70b9":123,"\u542f\u52a8\u96c6\u7fa4\u4f5c\u4e1a":[124,128],"\u5440":108,"\u548c":103,"\u5728\u4e0d\u540c\u8bbe\u5907\u4e0a\u6307\u5b9a\u5c42":134,"\u5728\u4e0d\u540c\u96c6\u7fa4\u4e2d\u8fd0\u884c":123,"\u5728docker\u4e2d\u6267\u884cpaddlepaddle\u8bad\u7ec3\u7a0b\u5e8f":98,"\u5728openmpi\u96c6\u7fa4\u4e2d\u63d0\u4ea4\u8bad\u7ec3\u4f5c\u4e1a":128,"\u5728paddle\u4e2d\u5982\u4f55\u4f7f\u7528eigen":112,"\u57fa\u4e8edocker\u5bb9\u5668\u7684\u7f16\u8bd1\u65b9\u5f0f":136,"\u57fa\u4e8elinux\u4ea4\u53c9\u7f16\u8bd1\u73af\u5883\u7684\u7f16\u8bd1\u65b9\u5f0f":136,"\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":[101,121],"\u57fa\u672c\u539f\u7406":106,"\u57fa\u672c\u8981\u6c42":65,"\u5982\u4f55\u4e66\u5199\u6587\u6863":113,"\u5982\u4f55\u4f7f\u7528":95,"\u5982\u4f55\u5171\u4eab\u53c2\u6570":96,"\u5982\u4f55\u5199\u65b0\u7684oper":111,"\u5982\u4f55\u51cf\u5c11\u5185\u5b58\u5360\u7528":94,"\u5982\u4f55\u521d\u59cb\u5316\u53c2\u6570":96,"\u5982\u4f55\u52a0\u8f7d\u9884\u8bad\u7ec3\u53c2\u6570":96,"\u5982\u4f55\u52a0\u901f\u8bad\u7ec3\u901f\u5ea6":94,"\u5982\u4f55\u548c\u660e\u6587\u8fdb\u884c\u76f8\u4e92\u8f6c\u5316":96,"\u5982\u4f55\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u83b7\u5f97\u53c2\u6570\u7684\u6743\u91cd\u548c\u68af\u5ea6":94,"\u5982\u4f55\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u83b7\u5f97\u67d0\u4e00\u4e2alayer\u7684output":94,"\u5982\u4f55\u6307\u5b9agpu\u8bbe\u5907":94,"\u5982\u4f55\u66f4\u65b0www":113,"\u5982\u4f55\u6784\u5efa\u6587\u6863":113,"\u5982\u4f55\u8bbe\u7f6e\u5b66\u4e60\u7387\u9000\u706b":96,"\u5982\u4f55\u8c03\u7528":94,"\u5982\u4f55\u8d21\u732e":113,"\u5982\u4f55\u8d21\u732e\u4ee3\u7801":109,"\u5982\u4f55\u8fdb\u884c\u6027\u80fd\u5206\u6790":117,"\u5982\u4f55\u9009\u62e9sgd\u7b97\u6cd5\u7684\u5b66\u4e60\u7387":96,"\u5b50\u5e8f\u5217\u95f4\u65e0memori":104,"\u5b50\u5e8f\u5217\u95f4\u6709memori":104,"\u5b58\u50a8\u7684\u53c2\u6570\u683c\u5f0f\u662f\u4ec0\u4e48":96,"\u5b89\u88c5":100,"\u5b89\u88c5\u4e0e\u7f16\u8bd1":99,"\u5b89\u88c5\u4ea4\u53c9\u7f16\u8bd1\u5668":138,"\u5b89\u88c5\u6d41\u7a0b":99,"\u5b9a\u4e49operator\u7c7b":111,"\u5b9a\u4e49opkernel\u7c7b":111,"\u5b9a\u4e49protomaker\u7c7b":111,"\u5b9e\u73b0":65,"\u5b9e\u73b0\u5355\u5143\u6d4b\u8bd5":111,"\u5b9e\u73b0\u65b0\u7684\u7f51\u7edc\u5c42":110,"\u5b9e\u73b0\u65b9\u5f0f":66,"\u5b9e\u73b0\u8ba1\u7b97":112,"\u5b9e\u73b0c":[110,111],"\u5b9e\u73b0python\u5c01\u88c5":110,"\u5bfb\u627e\u6027\u80fd\u74f6\u9888":116,"\u5bfc\u51fac":65,"\u5c06\u547d\u4ee4\u53c2\u6570\u4f20\u7ed9\u7f51\u7edc\u914d\u7f6e":134,"\u5de5\u5177":117,"\u5e38\u89c1\u95ee\u9898\u548c\u89e3\u51b3\u65b9\u6cd5":100,"\u5e38\u89c1\u95ee\u9898\u89e3\u7b54":99,"\u5e76\u5b8c\u6210":109,"\u5efa\u7acb":109,"\u5f00\u53d1\u6807\u51c6":114,"\u5f00\u59cb\u5f00\u53d1":109,"\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":132,"\u5feb\u7167\u4fdd\u5b58\u7684\u8bbe\u8ba1\u5982\u4e0b":32,"\u5feb\u901f\u5b89\u88c5":102,"\u5feb\u901f\u5f00\u59cb":102,"\u6027\u80fd\u4f18\u5316":114,"\u6027\u80fd\u5206\u6790\u5c0f\u6280\u5de7":117,"\u6027\u80fd\u5206\u6790\u5de5\u5177\u4ecb\u7ecd":117,"\u6027\u80fd\u8c03\u4f18":132,"\u603b\u4f53\u6d41\u7a0b":108,"\u603b\u7ed3":121,"\u6216\u8005\u662f":91,"\u6267\u884c\u5355\u5143\u6d4b\u8bd5":97,"\u627e\u5230\u7684pythonlibs\u548cpythoninterp\u7248\u672c\u4e0d\u4e00\u81f4":91,"\u62a5importerror":91,"\u6307\u9488\u4f5c\u4e3a\u7c7b\u578b\u7684\u53e5\u67c4":65,"\u63a5\u53e3\u8f93\u51fa\u591a\u4e2alayer\u7684\u9884\u6d4b\u7ed3\u679c":94,"\u63a8\u5bfc\u65b9\u7a0b":110,"\u63a8\u6d4b\u6267\u884c":32,"\u63d0\u4ea4":109,"\u63d0\u4ea4\u4ee3\u7801\u7684\u4e00\u4e9b\u7ea6\u5b9a":109,"\u63d0\u4ea4\u955c\u50cf":126,"\u642d\u5efa\u795e\u7ecf\u7f51\u7edc":101,"\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684layer":103,"\u652f\u6301\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u6570\u636e\u9884\u5904\u7406job":33,"\u6570\u636e\u652f\u6301":132,"\u6574\u4f53\u65b9\u6848":127,"\u6587\u4ef6\u4f20\u8f93\u4f18\u5316":48,"\u6587\u4ef6\u8bbf\u95ee\u65b9\u5f0f":33,"\u6587\u4ef6\u8bbf\u95ee\u7684\u6743\u9650":33,"\u6587\u4ef6\u9884\u5904\u7406":33,"\u6587\u6863":135,"\u65b0\u624b\u5165\u95e8":102,"\u65e5\u5fd7\u4e2d\u4fdd\u5b58\u5747\u4e3a\u7f51\u7edc\u901a\u4fe1\u7c7b\u9519\u8bef":92,"\u65f6\u95f4\u5e8f\u5217":104,"\u65f6\u95f4\u6b65":104,"\u66b4\u9732\u63a5\u53e3\u539f\u5219":66,"\u672c\u5730\u6d4b\u8bd5":134,"\u672c\u5730\u8bad\u7ec3":134,"\u672c\u5730\u8bad\u7ec3\u4e0e\u9884\u6d4b":94,"\u672f\u8bed":32,"\u6784\u5efa\u548c\u6d4b\u8bd5":109,"\u6784\u5efapaddlepaddle\u7684android\u5f00\u53d1\u955c\u50cf":136,"\u67b6\u6784\u56fe":48,"\u67e5\u770b\u6027\u80fd\u5206\u6790\u6587\u4ef6":116,"\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c":126,"\u67e5\u770b\u8f93\u51fa":127,"\u6846\u67b6\u751f\u6210":48,"\u6848\u4f8b\u4e00":134,"\u6848\u4f8b\u4e8c":134,"\u68c0\u67e5\u6a21\u578b\u8f93\u51fa":124,"\u68c0\u67e5\u96c6\u7fa4\u8bad\u7ec3\u7ed3\u679c":124,"\u6982\u5ff5\u7b80\u4ecb":111,"\u6982\u5ff5\u89e3\u91ca":33,"\u6982\u8ff0":[103,106,119,123],"\u6a21\u5757":48,"\u6a21\u578b\u53c2\u6570\u68c0\u67e5\u70b9":32,"\u6a21\u578b\u63a8\u65ad\u5b9e\u73b0\u6587\u6863":66,"\u6a21\u578b\u914d\u7f6e":[95,104,114],"\u6a21\u578b\u914d\u7f6e\u7684\u6a21\u578b\u914d\u7f6e":104,"\u6ce8\u518coper":111,"\u6ce8\u610f\u4e8b\u9879":[111,122],"\u6d41\u7a0b\u4ecb\u7ecd":33,"\u6d4b\u8bd5":132,"\u6df7\u5408\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790":116,"\u6e05\u7406":122,"\u73af\u5883\u51c6\u5907":123,"\u751f\u6210\u5e8f\u5217":107,"\u751f\u6210\u6027\u80fd\u5206\u6790\u6587\u4ef6":116,"\u751f\u6210\u6d41\u7a0b\u7684\u4f7f\u7528\u65b9\u6cd5":106,"\u751f\u6210sparse\u6587\u4ef6":48,"\u7528\u6237\u4f7f\u7528\u6d41\u7a0b":48,"\u7528docker\u7f16\u8bd1\u548c\u6d4b\u8bd5paddlepaddl":108,"\u7684\u533a\u522b":95,"\u7684\u53c2\u6570":95,"\u7684\u65b9\u6cd5\u6709\u4f55\u533a\u522b":95,"\u76ee\u5f55\u7ed3\u6784":66,"\u76ee\u6807":48,"\u76f4\u63a5\u6784\u5efa":113,"\u76f8\u5173\u6982\u5ff5":106,"\u77e9\u9635":132,"\u793a\u4f8b1":104,"\u793a\u4f8b2":104,"\u793a\u4f8b3":104,"\u793a\u4f8b4":104,"\u793a\u4f8b\u7a0b\u5e8f":33,"\u795e\u7ecf\u5143\u6fc0\u6d3b\u5185\u5b58":94,"\u7a00\u758f\u8bad\u7ec3":134,"\u7aef\u6570\u636e\u7c7b\u578b\u8bf4\u660e":121,"\u7b26\u53f7":65,"\u7b80\u5355\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":107,"\u7c7b":[65,110,111],"\u7ebf\u6027\u56de\u5f52\u5b8c\u6574\u793a\u4f8b":101,"\u7ec4\u7ec7\u5e8f\u5217\u4fe1\u606f":121,"\u7ec4\u7ec7\u8f93\u5165\u6570\u636e":[121,122],"\u7ec6\u8282\u63cf\u8ff0":132,"\u7ec8\u6b62\u96c6\u7fa4\u4f5c\u4e1a":124,"\u7ed1\u5b9apython":111,"\u7f16\u5199\u9884\u6d4b\u4ee3\u7801":122,"\u7f16\u5199yaml\u6587\u4ef6":126,"\u7f16\u8bd1":[111,119],"\u7f16\u8bd1\u4f9d\u8d56":97,"\u7f16\u8bd1\u548c\u5b89\u88c5":[136,137,138],"\u7f16\u8bd1\u548c\u6267\u884c":111,"\u7f16\u8bd1\u5b89\u88c5\u4e0e\u5355\u5143\u6d4b\u8bd5":91,"\u7f16\u8bd1\u5b89\u88c5\u540e\u6267\u884c":91,"\u7f16\u8bd1\u65b9\u6cd5":97,"\u7f16\u8bd1\u6d41\u7a0b":99,"\u7f16\u8bd1\u9009\u9879":[66,97],"\u7f16\u8bd1\u9009\u9879\u7684\u8bbe\u7f6e":97,"\u7f16\u8bd1\u9009\u9879\u8bf4\u660e":97,"\u7f16\u8bd1paddlepaddl":136,"\u7f29\u5bb9":32,"\u800c\u662f\u624b\u5199\u591a\u8bed\u8a00\u7ed1\u5b9a":65,"\u80cc\u666f":65,"\u81ea\u7136\u8bed\u8a00\u5904\u7406":132,"\u83b7\u53d6paddlepaddle\u7684docker\u955c\u50cf":98,"\u8986\u76d6\u4e0d\u4e00\u81f4\u7684\u90e8\u5206":48,"\u8bad\u7ec3":132,"\u8bad\u7ec3\u56e0\u6b64\u9000\u51fa\u600e\u4e48\u529e":94,"\u8bad\u7ec3\u6570\u636e\u5b58\u50a8":33,"\u8bad\u7ec3\u6570\u636e\u7684\u5b58\u50a8\u548c\u5206\u53d1":33,"\u8bad\u7ec3\u6a21\u578b":101,"\u8bad\u7ec3\u6d41\u7a0b\u7684\u4f7f\u7528\u65b9\u6cd5":106,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u51fa\u73b0":94,"\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570":133,"\u8bcd\u6c47\u8868":104,"\u8be6\u7ec6\u6559\u7a0b":117,"\u8bfb\u53d6\u53cc\u5c42\u5e8f\u5217\u6570\u636e":104,"\u8f6c\u6362\u5e93":33,"\u8f93\u5165":[106,121],"\u8f93\u5165\u4e0d\u7b49\u957f":104,"\u8f93\u5165\u793a\u4f8b":106,"\u8f93\u51fa":106,"\u8f93\u51fa\u6570\u636e":121,"\u8f93\u51fa\u6570\u636e\u7c7b\u578b":121,"\u8f93\u51fa\u6570\u636e\u7ec4\u7ec7":121,"\u8fd0\u884c\u5bb9\u5668":126,"\u8fd0\u884c\u73af\u5883\u4f9d\u8d56":100,"\u8fd0\u884cdocker":91,"\u8fd9\u4e2a\u52a8\u6001\u5e93\u4f7f\u7528c99\u6807\u51c6\u7684\u5934\u6587\u4ef6\u5bfc\u51fa\u4e00\u4e9b\u51fd\u6570":65,"\u8fdb\u884c\u8bad\u7ec3":[33,126],"\u8fdb\u9636\u6307\u5357":114,"\u901a\u7528":132,"\u9047\u5230":91,"\u914d\u7f6e\u4ea4\u53c9\u7f16\u8bd1\u53c2\u6570":[136,137,138],"\u914d\u7f6e\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":107,"\u914d\u7f6e\u7f51\u7edc":101,"\u94a9\u5b50":109,"\u94fe\u63a5\u8bf4\u660e":119,"\u9519\u8bef\u600e\u4e48\u529e":95,"\u968f\u673a\u6570":132,"\u96c6\u7fa4\u591a\u8282\u70b9\u8bad\u7ec3":92,"\u96c6\u7fa4\u8bad\u7ec3":134,"\u96c6\u7fa4\u8bad\u7ec3\u4e0e\u9884\u6d4b":92,"\u9700\u8981\u7684\u8f6f\u786c\u4ef6":108,"\u975e\u6cd5\u6307\u4ee4":91,"\u9884\u6d4b\u5e93":119,"abstract":[42,43,44,71,140],"android\u5e73\u53f0\u7f16\u8bd1\u6307\u5357":136,"api\u5bf9\u6bd4\u4ecb\u7ecd":104,"api\u5e93":136,"beam_search\u7684\u751f\u6210":104,"book\u4e2d\u6240\u6709\u7ae0\u8282":82,"book\u6559\u7a0b":98,"case":28,"class":[54,73,77],"cmake\u6e90\u7801\u7f16\u8bd1":91,"filemanager\u8bbe\u8ba1\u6587\u6863":48,"final":59,"float":94,"function":[30,53,54,77],"gpu\u548ccpu\u6df7\u5408\u4f7f\u7528":134,"gpu\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18":117,"gpu\u955c\u50cf\u51fa\u73b0":91,"group\u6559\u7a0b":106,"import":91,"ios\u5e73\u53f0\u7f16\u8bd1\u6307\u5357":137,"kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3":127,"kubernetes\u5355\u673a\u8bad\u7ec3":126,"new":87,"org\u5de5\u5177":113,"paddle\u52a8\u6001\u5e93\u4e2d":65,"paddle\u591a\u8bed\u8a00\u63a5\u53e3\u5b9e\u73b0":65,"paddle\u7248\u672c\u53f7\u4e3a0":91,"paddlepaddle\u53d1\u884c\u89c4\u8303":82,"paddlepaddle\u56de\u5f52\u6d4b\u8bd5\u5217\u8868":82,"paddlepaddle\u662f\u5426\u652f\u6301\u7ef4\u6570\u53ef\u53d8\u7684\u6570\u636e\u8f93\u5165":95,"paddlepaddle\u73af\u5883\u4f9d\u8d56":100,"paddlepaddle\u7684softmax\u80fd\u5426\u6307\u5b9a\u8ba1\u7b97\u7684\u7ef4\u5ea6":95,"paddlepaddle\u7f16\u8bd1\u4f9d\u8d56":97,"pi\u5e73\u53f0\u7f16\u8bd1\u6307\u5357":138,"pod\u95f4\u901a\u4fe1":127,"python\u4e0ec":116,"python\u4ee3\u7801\u7684\u6027\u80fd\u5206\u6790":116,"python\u76f8\u5173\u7684\u5355\u5143\u6d4b\u8bd5\u90fd\u8fc7\u4e0d\u4e86":91,"return":[77,78],"rnn\u76f8\u5173\u6a21\u578b":105,"rnn\u914d\u7f6e":107,"switch":[63,87],"tensor\u4f7f\u7528\u6837\u4f8b":112,"tensor\u5230eigentensor\u7684\u8f6c\u6362":112,"tensor\u6a21\u5757":112,"while":18,AWS:125,Abs:1,DNS:125,EFS:125,For:30,KMS:125,The:[29,36,40,47,51,54,55,57,58,67,70,73,79,80],Use:[29,75],Using:[30,36],With:39,about:54,abs:18,absolut:69,access:125,account:125,accuraci:[14,18],action:[61,62],activ:[1,4,62],actor:41,adadelta:6,adagrad:[6,20],adam:[6,20],adamax:[6,20],add:[60,63,125],address:125,addto:4,advanc:87,aggreg:4,aggregatelevel:4,alalysi:34,algorithm:[27,31,42,68,76],all:[83,89],analog:40,analysi:[42,60],anneal:96,api:[0,42,61,62,66,70,72,77,81,85,120,122],append_regularization_op:23,appendix:140,arbitrari:51,architectur:[42,74],argument:[49,78],arrai:27,array_length:18,array_read:18,array_to_lod_tensor:18,array_writ:18,asset:125,assign:18,associ:[83,125],assumpt:140,async:132,attent:107,attribut:[2,60,81],auc:3,auto:27,averag:72,avg:7,aws:125,backgraound:27,background:[44,61,87,88,89,90],backward:[28,51,55,79],base:[39,69],basepool:7,basic:[60,87,140],batch:78,batch_norm:[4,18],batch_siz:78,beam:[69,86],beam_search:[4,18],beam_search_decod:18,becaus:96,benchmark:[61,62],benefit:[44,79],between:[26,41,77,79,85,87],bidirectional_gru:5,bidirectional_lstm:5,big:96,bilinear_interp:4,binari:29,bla:97,block:[29,52,54,55,75,77,79],block_expand:4,blockdesc:75,blockguard:18,blockguardserv:18,blockguardwithcomplet:18,bootstrap:140,bottleneck:115,brelu:[1,18],bring:140,bucket:125,build:[28,54,79],can:83,capi:66,capi_priv:66,cast:18,ceil:18,challeng:[28,44,76],chang:69,channel:41,check:[4,27],checker:27,checkpoint:[31,32,38],choic:59,choos:[30,125],chunk:3,chunk_ev:18,chunkevalu:14,cifar:10,classif:3,classification_error:3,classification_error_print:3,client:36,clip:[4,18,45],clip_by_norm:18,clone:109,close:27,cloudform:125,cluster:[37,125,140],cmake:[30,61,62],code:[39,52,77,115,118],column_sum:3,commit:109,compar:140,comparis:77,compat:51,compil:[29,50,52,75,79,118],complet:51,compos:78,comput:[29,55,63,79,81],con:140,concat:[4,18],concept:[77,79,125],concern:62,conclus:[38,56,140],concurr:[40,41],condit:54,conditionalblock:18,configur:[24,125],conll05:10,connect:4,constant:16,construct:55,content:[61,62,66,86,91,92,94,95,96,103,117,125],context_project:4,control:[60,79],control_flow:18,contruct:60,conv2d:18,conv2d_transpos:18,conv:4,conv_oper:4,conv_project:4,conv_shift:4,convert:38,convolut:86,core:[27,77,125],corner:28,cos_sim:[4,18],cost:4,cpu:43,creat:[28,41,78,79,83,125],create_arrai:18,create_global_var:18,create_paramet:18,create_tensor:18,creation:[35,72,81],creator:78,credenti:125,crf:4,crf_decod:[4,18],cross_channel_norm:4,cross_entropi:18,cross_entropy_cost:4,cross_entropy_with_selfnorm_cost:4,csp:41,ctc:[4,86],ctc_error:3,ctc_greedy_decod:18,cuda:[50,91,97],cuda_profil:22,cudnn:97,cudnnavg:7,cudnnmax:7,current:[50,80],custom:78,data:[4,8,9,18,31,42,78,88,125],data_feed:13,datafeed:[9,13],dataflow:60,dataprovid:132,dataset:[8,10,31,35],datatyp:[9,67],decayedadagrad:[6,20],decod:69,decor:78,deep:[29,51],deepspeech2:86,defin:125,definit:90,delet:125,demo:[54,125],dens:38,depend:[54,86],deploi:39,describ:[51,70],descript:[49,79],design:[26,27,29,31,35,36,37,38,40,41,42,43,44,46,47,50,51,53,54,55,58,61,62,63,64,67,68,69,70,71,73,75,77,78,79,80,83,84,86,87,89],destroi:[83,125],detail:[34,86],detect:[3,4],detection_map:3,detection_output:4,develop:79,devic:[18,87],devicecontext:87,dictionari:78,differ:[79,87],directori:125,discrimin:54,discuss:[44,54],dispatch:[31,35],distribut:[26,31,34,39,42,44,125],dnn:62,doc:[26,29,31,35,36,37,38,40,41,42,43,44,47,50,51,53,55,58,61,62,63,64,67,71,73,75,77,78,79,80,84,86,87],docker:[39,108],doe:78,dot_prod:4,dot_product_attent:5,dotmul_oper:4,dotmul_project:4,down:125,download:125,driver:91,drop_out:95,dropout:[4,18],duplic:95,dure:[69,78],dylib:66,dynam:[31,89],dynamic_gru:18,dynamic_lstm:18,dynamic_lstmp:18,dynamicrnn:18,dynet:56,ec2:125,edit_dist:18,eigen:112,elast:125,elect:38,elementwise_add:18,elementwise_div:18,elementwise_max:18,elementwise_min:18,elementwise_mul:18,elementwise_pow:18,elementwise_sub:18,els:29,elu:18,embed:[4,18],engin:54,enough:27,entri:78,environ:39,eos:4,error:45,evalu:[3,14,46],event:[25,26,74],evolut:51,examin:115,exampl:[26,30,40,41,57,66],except:94,execut:[29,43,51,75,79],executor:[15,47],exp:[1,18],expand:[4,103],expandlevel:4,explain:27,extern:125,factor:4,factorization_machin:4,faq:93,fault:31,file:[29,115,125],fill_const:18,fill_constant_batch_size_lik:18,find:125,first_seq:[4,103],float16:50,floor:18,flow:60,fluid:[12,40,41,51,52,63,71,118],fork:109,format:[29,31,64],forward:55,frame:29,framework:[27,112],from:[26,38,85],full_matrix_project:4,fulli:4,functor:87,futur:[51,86],gan:54,gate:107,gated_unit:4,gener:[52,54,69,115,140],get_inference_program:17,get_output:4,get_plac:18,give:78,global:[75,77],global_scop:15,glu:19,gpu:132,grad_op:28,gradient:[27,28,36,62,80],gradient_print:3,graident:27,graph:[55,56,60,79,81],group:[4,125],gru:[5,132],gru_group:5,gru_step:4,gru_unit:[5,18],grumemori:4,handler:[26,65],happen:38,hard_shrink:18,hard_sigmoid:18,hardwar:50,helper:77,hierarchi:29,high:[70,72,81,85],how:[27,34,72,78,79,87],hsigmoid:4,huber_classification_cost:4,huber_regression_cost:4,iam:125,ident:1,identifi:115,identity_project:4,ifels:[18,57],ifelseop:29,illeg:91,im2sequ:18,imag:[4,5,11,39],imdb:10,img_cmrnorm:4,img_conv:4,img_conv_bn_pool:5,img_conv_group:5,img_pool:4,imikolov:10,implement:[27,28,30,34,43,45,46,50,64,68,71,72,77,78,79,80,81],increment:18,infer:[25,94],infershap:[75,84],infervartyp:58,ingredi:26,ingress:48,initi:[16,36,54,125],insid:83,inspect:125,instal:[125,140],instanc:125,instead:78,instruct:91,insuffici:91,integr:[87,125],intel:[61,62],interact:85,interfac:[8,9,11,27,31,36,37,47,70,78,83],intermedi:79,interpol:4,introduc:[69,89],introduct:[74,81],isn:78,issu:[50,109],job:[31,39,125,126],join:4,kei:[61,67,125],kernel:[63,67,79],kmax_sequence_scor:4,kube:125,kubectl:125,kubernet:[39,125,126],l1decai:23,l2_distanc:4,l2_normal:18,l2decai:23,lambda_cost:4,languag:[29,52],larg:34,last_seq:[4,103],layer:[4,18,26,53,61,62,77,95],layout:67,leaky_relu:18,learn:[29,51,96],learnabl:4,less_than:18,leval:85,level:[70,72,81,85],libpaddle_capi_shar:66,libpaddle_capi_whol:66,librari:[36,50,67,79,87],limit:42,linear:1,linear_chain_crf:18,linear_comb:4,list:[32,78],listenandserv:18,live:60,load:41,load_inference_model:17,load_param:17,load_persist:17,load_var:17,local:[42,83,125],lod:69,lod_rank_t:18,lod_tensor_to_arrai:18,lodtensor:[68,69,89],lodtensordesc:90,log:[1,18],logic:35,logsigmoid:18,look:115,low:[72,81,85],lstm:[5,132],lstm_step:4,lstm_unit:18,lstmemori:4,lstmemory_group:5,lstmemory_unit:5,machin:[4,69],macro:79,main:54,make:60,manag:30,map:[78,79],master:[31,35,39,40],math:[4,87],mathemat:27,matmul:18,matrix:62,max:7,max_sequence_len:18,maxframe_print:3,maxid:4,maxid_print:3,maxout:4,mean:18,member:54,memori:[4,60,68,87,95,104,106],merge_lod_tensor:18,messag:[85,96],method:69,might:54,migrat:79,mileston:79,mini:78,minibatch:[9,41],misc:4,mix:4,mkl:[61,62],mkldnn:63,mkldnn_helper:63,mkldnndevicecontext:63,mnist:10,mobil:139,model:[24,26,34,36,38,41,51,54,64,69,107],modul:[79,87,91],momentum:[6,20],more:54,motiv:[28,41,47,64,71,76],movielen:10,mul:18,multi:[43,52],multi_binary_label_cross_entropy_cost:4,multibox_loss:4,multipl:78,multiplex:[4,18],mxnet:56,name:[83,91,95,125],nativ:52,nccl:71,nce:[4,18],necess:77,necessari:79,need:78,nest:68,net:19,network:[5,79,107],neural:107,nlp:[5,132],norm:[4,81],normal:16,note:27,numer:27,numpi:27,nvprof:117,nvvp:117,object:31,offset:69,ones:18,onli:[78,83],op_mak:79,oper:[53,57,60,63,67,72,75,77,79,80,84,89],opinfomap:79,opkernel:[79,87],opproto:85,ops:[18,81],optim:[6,20,31,36,55,60,70,77],option:49,opwithkernel:79,order:49,org:113,origin:79,orthogon:83,other:62,out_prod:4,output:[4,125],overview:[38,45,47,61,62,79,83,86,118],pack:[61,69],packag:30,pad:4,paddl:[34,71,78,83,91,95,112],paddlejob:39,paddlepaddl:[26,29,41,51,52,61,62,72,75,81,82,86,91,113,118,119,120,125,135],pair:125,paradigm:51,parallel_nn:134,paralleldo:18,param_attr:21,paramattr:21,paramet:[2,4,25,26,31,36,37,39,41,44,62,72,73,77,81,125],parameteraverageoptim:72,parent:83,part:55,partit:36,path:[38,49],penalti:81,perform:[72,115,132],persist:35,pfsclient:[48,49],pfsserver:48,place:[60,67,87],placement:42,platform:91,pnpair:3,point:[61,94,125],polici:60,pool2d:18,pool:[4,7,103],pose:[58,80],potenti:59,pow:18,power:4,pre:109,precision_recal:3,prefetch:78,prelu:4,prepar:125,principl:63,print:[3,18],privat:125,pro:140,problem:[46,58,59,60,67,70,80,88],procedur:140,process:[31,36,39,70,79],profil:[22,115],program:[29,40,41,43,51,52,75,77],programdesc:[52,75],project:30,propos:[58,80,81],protobuf:84,protocol:96,provid:78,prune:76,pserver:38,pull:109,push:109,python:[27,39,42,61,62,68,70,72,77,78,81,85,90,115,121],qualiti:79,queue:[31,35],rank:3,rank_cost:4,raspberri:138,rate:96,reader:[8,9,26,78],realiz:79,reciproc:18,recoveri:31,recurr:[4,5,95,106,107],recurrent_group:4,recv:41,reduce_max:18,reduce_mean:18,reduce_min:18,reduce_sum:18,ref:27,refactor:79,refer:[42,44,60,61,62,86],region:125,regist:[58,79,85],registr:[79,80],registri:79,regular:[23,36,81],reject:96,rel:69,relat:[79,89],relu6:18,relu:[1,18],remot:37,remoteexecutor:42,render:125,reorder_lod_tensor_by_rank:18,repeat:4,represent:[29,79],request:109,requir:[30,54],reset_profil:22,reshap:[4,18],resiz:4,retri:35,reus:77,rmsprop:6,rnn:[68,89,104,132],rnnop:[29,68,79],roi_pool:4,rotat:4,round:18,route53:125,row:[84,86],row_conv:[4,18],row_l2_norm:4,rpc:41,run:[47,118],runtim:39,sampl:4,sampling_id:4,save:38,save_inference_model:17,save_param:17,save_persist:17,save_var:17,scale:[4,18,31],scale_shift:4,scaled_dot_product_attent:19,scaling_project:4,scope:[29,68,79,83],scope_guard:15,search:[69,86],secur:125,select:[36,41,84],selectedrow:84,selective_fc:4,send:[18,41],sentiment:10,separ:79,seq_concat:4,seq_reshap:4,seq_slic:4,seqtext_print:3,sequenc:[69,107],sequence_conv:18,sequence_conv_pool:[5,19],sequence_expand:18,sequence_first_step:18,sequence_last_step:18,sequence_pool:18,sequence_reshap:18,sequence_softmax:18,sequencesoftmax:1,server:[31,35,36,39,41,44,125],servic:125,setup:125,sextant:140,sgd:[20,132],shape:69,share:[26,28,60,83],should:83,shrink_memori:18,shuffl:78,sigmoid:[1,18],sigmoid_cross_entropy_with_logit:18,simpl:69,simple_attent:5,simple_gru2:5,simple_gru:5,simple_img_conv_pool:[5,19],simple_lstm:5,singl:78,slice:4,slice_project:4,slope_intercept:4,small_vgg:5,smooth_l1_cost:4,soft_relu:18,softmax:1,softplu:18,softrelu:1,softshrink:18,softsign:[1,18],solut:[58,59,60,61,67,76,80,88],sourc:118,spars:[36,37,38,84],split:18,split_lod_tensor:18,spp:4,sqrt:18,squar:[1,18],square_error_cost:[4,18],squarerootn:7,stack:29,stanh:[1,18],start:[26,125],statement:46,staticrnn:18,staticrnnmemorylink:18,step2:122,step:[68,122],storag:81,store:31,strategi:60,sub_nested_seq:4,sub_seq:4,subcommond:49,submit:39,suffici:78,suitabl:30,sulut:63,sum:[3,7,18],sum_cost:4,sum_to_one_norm:4,summar:[26,40],summari:64,support:[50,71,87,89,91],survei:[50,56,81,140],swish:18,switch_scop:15,synopsi:49,syntax:41,system:[51,125],tabl:[66,86],table_project:4,tanh:[1,18],tanh_shrink:18,task:[31,35,86],tear:125,tecton:140,templat:125,tensor:[4,18,79,87,112],tensorarrai:[69,89],tensordesc:90,tensorflow:56,test:[61,62,63],text_conv_pool:5,theori:27,thi:[83,91],think:54,three:89,thresholded_relu:18,time:118,timelin:38,todo:[32,33,43],togeth:83,toler:31,too:96,tool:[30,140],topic:87,topk:18,toward:52,train:[25,26,31,34,37,39,42,70,78,125],trainer:[25,31,36,38,39,41,125],tran:4,trans_full_matrix_project:4,transform:88,translat:69,transpil:[42,43,44,52,60,71],transpos:18,tune:132,ture:51,two:27,type:[41,67],uci_h:10,uniform:[16,89],unit:[61,62,63],unpack:69,updat:[26,37,38,125],usag:[28,45,68,69,78],use:[34,78],user:31,util:3,valu:77,value_print:3,vardesc:90,variabl:[28,60,77,79,83,90],verifi:125,version:[40,50,91],vgg_16_network:5,volum:125,vpc:125,warp_ctc:4,warpctc:18,weightnormparamattr:21,what:[34,38],wheel:91,when:[38,83],whileguard:18,whl:91,why:[50,51,72,78,79,89],wmt14:10,work:86,worker:40,xavier:16,zero:18}}) \ No newline at end of file diff --git a/develop/doc_cn/survey/cluster_bootstrapping_tools.html b/develop/doc_cn/survey/cluster_bootstrapping_tools.html index 299826e67e..983cd4d4ac 100644 --- a/develop/doc_cn/survey/cluster_bootstrapping_tools.html +++ b/develop/doc_cn/survey/cluster_bootstrapping_tools.html @@ -170,17 +170,17 @@
  • 训练与应用
  • Fluid
  • -- GitLab