Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
ef1aba39
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ef1aba39
编写于
2月 08, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Rewrite mixed_vector.h
上级
b1869f16
变更
24
显示空白变更内容
内联
并排
Showing
24 changed file
with
316 addition
and
268 deletion
+316
-268
.gitignore
.gitignore
+6
-0
cmake/cuda.cmake
cmake/cuda.cmake
+2
-1
paddle/framework/lod_tensor.h
paddle/framework/lod_tensor.h
+1
-23
paddle/framework/lod_tensor_test.cu
paddle/framework/lod_tensor_test.cu
+4
-5
paddle/framework/mixed_vector.h
paddle/framework/mixed_vector.h
+260
-139
paddle/framework/mixed_vector_test.cu
paddle/framework/mixed_vector_test.cu
+0
-59
paddle/framework/tensor.h
paddle/framework/tensor.h
+4
-0
paddle/framework/tensor_impl.h
paddle/framework/tensor_impl.h
+1
-1
paddle/operators/adagrad_op.cu
paddle/operators/adagrad_op.cu
+3
-3
paddle/operators/adam_op.h
paddle/operators/adam_op.h
+1
-1
paddle/operators/ctc_align_op.cu
paddle/operators/ctc_align_op.cu
+3
-2
paddle/operators/lookup_table_op.cu
paddle/operators/lookup_table_op.cu
+3
-1
paddle/operators/math/selected_rows_functor.cc
paddle/operators/math/selected_rows_functor.cc
+1
-1
paddle/operators/math/selected_rows_functor.cu
paddle/operators/math/selected_rows_functor.cu
+9
-6
paddle/operators/math/sequence2batch.cu
paddle/operators/math/sequence2batch.cu
+2
-2
paddle/operators/math/sequence_padding.cu
paddle/operators/math/sequence_padding.cu
+4
-4
paddle/operators/math/sequence_pooling.cu
paddle/operators/math/sequence_pooling.cu
+2
-1
paddle/operators/math/sequence_scale.cu
paddle/operators/math/sequence_scale.cu
+2
-1
paddle/operators/parallel_do_op.cc
paddle/operators/parallel_do_op.cc
+0
-9
paddle/operators/row_conv_op.cu
paddle/operators/row_conv_op.cu
+2
-2
paddle/operators/sequence_erase_op.cu
paddle/operators/sequence_erase_op.cu
+1
-2
paddle/operators/sgd_op.cu
paddle/operators/sgd_op.cu
+2
-2
paddle/operators/target_assign_op.h
paddle/operators/target_assign_op.h
+2
-2
paddle/testing/paddle_gtest_main.cc
paddle/testing/paddle_gtest_main.cc
+1
-1
未找到文件。
.gitignore
浏览文件 @
ef1aba39
paddle/operators/check_t.save
paddle/operators/check_tensor.ls
paddle/operators/tensor.save
python/paddle/v2/fluid/tests/book/image_classification_resnet.inference.model/
python/paddle/v2/fluid/tests/book/image_classification_vgg.inference.model/
python/paddle/v2/fluid/tests/book/label_semantic_roles.inference.model/
*.DS_Store
*.DS_Store
build/
build/
build_doc/
build_doc/
...
...
cmake/cuda.cmake
浏览文件 @
ef1aba39
...
@@ -181,7 +181,8 @@ elseif(CMAKE_BUILD_TYPE STREQUAL "Release")
...
@@ -181,7 +181,8 @@ elseif(CMAKE_BUILD_TYPE STREQUAL "Release")
elseif
(
CMAKE_BUILD_TYPE STREQUAL
"RelWithDebInfo"
)
elseif
(
CMAKE_BUILD_TYPE STREQUAL
"RelWithDebInfo"
)
list
(
APPEND CUDA_NVCC_FLAGS
${
CMAKE_CXX_FLAGS_RELWITHDEBINFO
}
)
list
(
APPEND CUDA_NVCC_FLAGS
${
CMAKE_CXX_FLAGS_RELWITHDEBINFO
}
)
elseif
(
CMAKE_BUILD_TYPE STREQUAL
"MinSizeRel"
)
elseif
(
CMAKE_BUILD_TYPE STREQUAL
"MinSizeRel"
)
list
(
APPEND CUDA_NVCC_FLAGS
${
CMAKE_CXX_FLAGS_MINSIZEREL
}
)
# nvcc 9 does not support -Os. Use Release flags instead
list
(
APPEND CUDA_NVCC_FLAGS
${
CMAKE_CXX_FLAGS_RELEASE
}
)
endif
()
endif
()
mark_as_advanced
(
CUDA_BUILD_CUBIN CUDA_BUILD_EMULATION CUDA_VERBOSE_BUILD
)
mark_as_advanced
(
CUDA_BUILD_CUBIN CUDA_BUILD_EMULATION CUDA_VERBOSE_BUILD
)
...
...
paddle/framework/lod_tensor.h
浏览文件 @
ef1aba39
...
@@ -46,29 +46,7 @@ namespace framework {
...
@@ -46,29 +46,7 @@ namespace framework {
* 0 2 4 7
* 0 2 4 7
* 0 2 5 7 10 12 15 20
* 0 2 5 7 10 12 15 20
*/
*/
struct
LoD
:
public
std
::
vector
<
Vector
<
size_t
>>
{
using
LoD
=
std
::
vector
<
Vector
<
size_t
>>
;
using
std
::
vector
<
Vector
<
size_t
>>::
vector
;
platform
::
Place
place
()
const
{
if
(
this
->
size
()
==
0
)
{
// Not Initialze Yet.
return
platform
::
CPUPlace
();
}
else
{
return
this
->
front
().
place
();
}
}
void
CopyFromCUDA
()
{
for
(
auto
it
=
this
->
begin
();
it
!=
this
->
end
();
++
it
)
{
it
->
CopyFromCUDA
();
}
}
void
CopyToPeer
(
platform
::
Place
place
)
{
for
(
auto
it
=
this
->
begin
();
it
!=
this
->
end
();
++
it
)
{
it
->
CopyToPeer
(
place
);
}
}
};
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
LoD
&
lod
);
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
LoD
&
lod
);
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
LoDTensor
&
t
);
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
LoDTensor
&
t
);
...
...
paddle/framework/lod_tensor_test.cu
浏览文件 @
ef1aba39
...
@@ -20,6 +20,7 @@
...
@@ -20,6 +20,7 @@
#include "paddle/platform/assert.h"
#include "paddle/platform/assert.h"
#include <gtest/gtest.h>
#include <gtest/gtest.h>
#include <paddle/platform/place.h>
__global__
void
test
(
size_t
*
a
,
int
size
)
{
__global__
void
test
(
size_t
*
a
,
int
size
)
{
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
size
;
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
size
;
...
@@ -36,10 +37,9 @@ TEST(LoD, data) {
...
@@ -36,10 +37,9 @@ TEST(LoD, data) {
lod
.
push_back
(
std
::
vector
<
size_t
>
({
0
,
1
,
6
,
8
,
10
,
11
}));
lod
.
push_back
(
std
::
vector
<
size_t
>
({
0
,
1
,
6
,
8
,
10
,
11
}));
auto
&
v
=
lod
[
0
];
auto
&
v
=
lod
[
0
];
test
<<<
1
,
1
>>>
(
v
.
cuda_data
(),
v
.
size
());
paddle
::
platform
::
CUDAPlace
gpu
(
0
);
test
<<<
1
,
1
>>>
(
v
.
CUDAMutableData
(
gpu
),
v
.
size
());
cudaDeviceSynchronize
();
cudaDeviceSynchronize
();
v
.
CopyFromCUDA
();
for
(
size_t
i
=
0
;
i
<
v
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
v
.
size
();
++
i
)
{
EXPECT_EQ
(
v
[
i
],
i
*
2
);
EXPECT_EQ
(
v
[
i
],
i
*
2
);
}
}
...
@@ -63,9 +63,8 @@ TEST(LoDTensor, LoDInGPU) {
...
@@ -63,9 +63,8 @@ TEST(LoDTensor, LoDInGPU) {
auto
lod
=
lod_tensor
.
lod
();
auto
lod
=
lod_tensor
.
lod
();
test
<<<
1
,
8
>>>
(
lod
[
0
].
cuda_data
(
),
lod
[
0
].
size
());
test
<<<
1
,
8
>>>
(
lod
[
0
].
CUDAMutableData
(
place
),
lod
[
0
].
size
());
cudaDeviceSynchronize
();
cudaDeviceSynchronize
();
lod
.
CopyFromCUDA
();
for
(
size_t
i
=
0
;
i
<
src_lod
[
0
].
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
src_lod
[
0
].
size
();
++
i
)
{
EXPECT_EQ
(
lod
[
0
].
data
()[
i
],
src_lod
[
0
].
data
()[
i
]
*
2
);
EXPECT_EQ
(
lod
[
0
].
data
()[
i
],
src_lod
[
0
].
data
()[
i
]
*
2
);
...
...
paddle/framework/mixed_vector.h
浏览文件 @
ef1aba39
...
@@ -17,176 +17,297 @@
...
@@ -17,176 +17,297 @@
#include <initializer_list>
#include <initializer_list>
#include <vector>
#include <vector>
#include "paddle/memory/memcpy.h"
#include "paddle/framework/tensor.h"
#include "paddle/memory/memory.h"
#include "paddle/framework/tensor_util.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/enforce.h"
#include "glog/logging.h"
#include "paddle/platform/place.h"
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
/**
* @brief Vector support both cpu and gpu.
* host vector lifetime is same with Vector
* device vector is lazily malloc and modified.
*/
template
<
typename
T
>
template
<
typename
T
>
class
Vector
:
public
std
::
vector
<
T
>
{
class
Vector
{
public:
public:
using
std
::
vector
<
T
>::
vector
;
using
value_type
=
T
;
Vector
()
{
size_
=
0
;
flag_
=
kDataInCPU
;
}
explicit
Vector
(
size_t
count
,
const
T
&
value
=
T
())
{
resize
(
count
);
T
*
ptr
=
begin
();
for
(
size_t
i
=
0
;
i
<
count
;
++
i
)
{
ptr
[
i
]
=
value
;
}
}
Vector
(
std
::
initializer_list
<
T
>
init
)
{
InitByIter
(
init
.
size
(),
init
.
begin
(),
init
.
end
());
}
template
<
typename
U
>
Vector
(
const
std
::
vector
<
U
>&
dat
)
{
// NOLINT
InitByIter
(
dat
.
size
(),
dat
.
begin
(),
dat
.
end
());
}
Vector
()
{}
Vector
(
const
Vector
<
T
>&
other
)
{
this
->
operator
=
(
other
);
}
Vector
(
const
std
::
vector
<
T
>
&
v
)
:
std
::
vector
<
T
>
(
v
)
{}
// NOLINT
inline
platform
::
Place
place
()
const
{
return
place_
;
}
Vector
<
T
>&
operator
=
(
const
Vector
<
T
>&
other
)
{
if
(
other
.
size
()
!=
0
)
{
this
->
InitByIter
(
other
.
size
(),
other
.
begin
(),
other
.
end
());
}
else
{
size_
=
0
;
flag_
=
kDataInCPU
;
}
return
*
this
;
}
/*! Return a pointer to constant memory block. */
Vector
(
Vector
<
T
>&&
other
)
{
inline
const
T
*
data
(
platform
::
Place
place
)
const
;
this
->
size_
=
other
.
size_
;
this
->
flag_
=
other
.
flag_
;
if
(
other
.
cuda_vec_
.
capacity
())
{
this
->
cuda_vec_
.
ShareDataWith
(
other
.
cuda_vec_
);
}
if
(
other
.
cpu_vec_
.
capacity
())
{
this
->
cpu_vec_
.
ShareDataWith
(
other
.
cpu_vec_
);
}
}
/*! Return a pointer to mutable memory block. */
T
&
operator
[](
size_t
i
)
{
inline
T
*
mutable_data
(
platform
::
Place
place
);
MutableCPU
();
return
const_cast
<
T
*>
(
cpu_vec_
.
data
<
T
>
())[
i
];
}
// TODO(dzhwinter): below interfaces should be removed
const
T
&
operator
[](
size_t
i
)
const
{
/* Get device vector */
ImmutableCPU
();
T
*
cuda_data
()
{
return
cpu_vec_
.
data
<
T
>
()[
i
];
CopyToCUDA
();
PADDLE_ENFORCE_NOT_NULL
(
cuda_ptr_
,
"No data or Insufficient CUDA memory to allocation"
);
return
static_cast
<
T
*>
(
cuda_ptr_
.
get
());
}
}
/* Get host vector */
size_t
size
()
const
{
return
size_
;
}
T
*
data
()
{
return
std
::
vector
<
T
>::
data
();
}
const
T
*
data
()
const
{
return
std
::
vector
<
T
>::
data
();
}
T
*
begin
()
{
return
&
this
->
operator
[](
0
);
}
T
*
end
()
{
return
&
this
->
operator
[](
size
());
}
T
&
front
()
{
return
*
begin
();
}
T
&
back
()
{
auto
it
=
end
();
--
it
;
return
*
it
;
}
const
T
*
begin
()
const
{
return
&
this
->
operator
[](
0
);
}
const
T
*
end
()
const
{
return
&
this
->
operator
[](
size
());
}
const
T
&
back
()
const
{
auto
it
=
end
();
--
it
;
return
*
it
;
}
const
T
&
front
()
const
{
return
*
begin
();
}
template
<
typename
Iter
>
void
assign
(
Iter
begin
,
Iter
end
)
{
InitByIter
(
end
-
begin
,
begin
,
end
);
}
T
*
data
()
{
return
begin
();
}
const
T
*
data
()
const
{
return
begin
();
}
void
push_back
(
T
elem
)
{
if
(
size_
+
1
>
capacity
())
{
reserve
((
size_
+
1
)
<<
1
);
}
*
end
()
=
elem
;
++
size_
;
}
void
resize
(
size_t
size
)
{
if
(
size
+
1
<
capacity
())
{
size_
=
size
;
}
else
{
MutableCPU
();
Tensor
cpu_tensor
;
platform
::
Place
cpu
=
platform
::
CPUPlace
();
T
*
ptr
=
cpu_tensor
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
size
)}),
cpu
);
const
T
*
old_ptr
=
cpu_vec_
.
capacity
()
==
0
?
nullptr
:
cpu_vec_
.
data
<
T
>
();
if
(
old_ptr
!=
nullptr
)
{
std
::
copy
(
old_ptr
,
old_ptr
+
size_
,
ptr
);
}
size_
=
size
;
cpu_vec_
.
ShareDataWith
(
cpu_tensor
);
}
}
const
T
*
CUDAData
(
platform
::
Place
place
)
const
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
place
),
"CUDA Data must on CUDA place"
);
ImmutableCUDA
(
place
);
return
cuda_vec_
.
data
<
T
>
();
}
T
*
CUDAMutableData
(
platform
::
Place
place
)
{
const
T
*
ptr
=
CUDAData
(
place
);
flag_
=
kDirty
|
kDataInCUDA
;
return
const_cast
<
T
*>
(
ptr
);
}
T
*
data
(
const
platform
::
Place
&
place
)
{
template
<
typename
It
>
if
(
platform
::
is_cpu_place
(
place
))
{
void
Extend
(
It
begin
,
It
end
)
{
size_t
pre_size
=
size_
;
resize
(
pre_size
+
(
end
-
begin
));
T
*
ptr
=
this
->
begin
()
+
pre_size
;
for
(;
begin
<
end
;
++
begin
,
++
ptr
)
{
*
ptr
=
*
begin
;
}
}
void
clear
()
{
size_
=
0
;
flag_
=
kDirty
|
kDataInCPU
;
}
size_t
capacity
()
const
{
return
cpu_vec_
.
capacity
()
/
SizeOfType
(
typeid
(
T
));
}
void
reserve
(
size_t
size
)
{
size_t
pre_size
=
size_
;
resize
(
size
);
resize
(
pre_size
);
}
const
T
*
Data
(
platform
::
Place
place
)
const
{
if
(
platform
::
is_gpu_place
(
place
))
{
return
CUDAData
(
place
);
}
else
{
return
data
();
return
data
();
}
}
T
*
MutableData
(
platform
::
Place
place
)
{
if
(
platform
::
is_gpu_place
(
place
))
{
return
CUDAMutableData
(
place
);
}
else
{
}
else
{
return
cuda_
data
();
return
data
();
}
}
}
}
/* Synchronize host vector to device vector */
operator
std
::
vector
<
T
>
()
const
{
void
CopyToCUDA
();
std
::
vector
<
T
>
result
;
/* Synchronize device vector to host vector */
result
.
resize
(
size
());
void
CopyFromCUDA
();
std
::
copy
(
begin
(),
end
(),
result
.
begin
());
/* Switch device vector location */
return
result
;
void
CopyToPeer
(
platform
::
Place
);
}
bool
operator
==
(
const
Vector
<
T
>&
other
)
const
{
if
(
size
()
!=
other
.
size
())
return
false
;
for
(
auto
it1
=
begin
(),
it2
=
other
.
begin
();
it1
<
end
();
++
it1
,
++
it2
)
{
if
(
*
it1
!=
*
it2
)
{
return
false
;
}
}
return
true
;
}
private:
private:
std
::
shared_ptr
<
void
>
cuda_ptr_
;
template
<
typename
Iter
>
size_t
cuda_size_
=
0
;
// device vector numel
void
InitByIter
(
size_t
size
,
Iter
begin
,
Iter
end
)
{
platform
::
CUDAPlace
place_
;
platform
::
Place
cpu
=
platform
::
CPUPlace
();
};
T
*
ptr
=
this
->
cpu_vec_
.
template
mutable_data
<
T
>(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
size
)}),
cpu
);
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
*
ptr
++
=
*
begin
++
;
}
flag_
=
kDataInCPU
|
kDirty
;
size_
=
size
;
}
template
<
typename
T
>
enum
DataFlag
{
kDataInCPU
=
0x01
,
kDataInCUDA
=
0x02
,
kDirty
=
0x10
};
inline
const
T
*
Vector
<
T
>::
data
(
platform
::
Place
place
)
const
{
if
(
platform
::
is_cpu_place
(
place
))
{
void
MutableCPU
()
{
return
std
::
vector
<
T
>::
data
();
if
(
IsInCUDA
()
&&
IsDirty
())
{
}
else
if
(
platform
::
is_gpu_place
(
place
))
{
// COPY GPU Data To CPU
if
(
cuda_ptr_
==
nullptr
)
{
Copy
(
cuda_vec_
,
platform
::
CPUPlace
(),
&
cpu_vec_
);
return
nullptr
;
WaitPlace
(
cuda_vec_
.
place
());
}
}
if
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
)
==
place_
)
{
flag_
=
kDirty
|
kDataInCPU
;
return
static_cast
<
const
T
*>
(
cuda_ptr_
.
get
());
}
void
ImmutableCUDA
(
platform
::
Place
place
)
const
{
if
(
IsDirty
())
{
if
(
IsInCPU
())
{
Copy
(
cpu_vec_
,
boost
::
get
<
platform
::
CUDAPlace
>
(
place
),
&
cuda_vec_
);
WaitPlace
(
place
);
UnsetFlag
(
kDirty
);
SetFlag
(
kDataInCUDA
);
}
else
if
(
IsInCUDA
()
&&
!
(
place
==
cuda_vec_
.
place
()))
{
framework
::
Tensor
tmp
;
Copy
(
cuda_vec_
,
boost
::
get
<
platform
::
CUDAPlace
>
(
place
),
&
tmp
);
WaitPlace
(
cuda_vec_
.
place
());
cuda_vec_
.
ShareDataWith
(
tmp
);
// Still dirty
}
else
{
}
else
{
PADDLE_THROW
(
// Dirty && DataInCUDA && Device is same
"Unmatched place. Please use `mutable_data` copy lod to the target "
// Do nothing
"Place first."
);
}
}
}
else
{
}
else
{
PADDLE_THROW
(
"Unsupport Place."
);
if
(
!
IsInCUDA
())
{
// Even data is not dirty. However, data is not in CUDA. Copy data.
Copy
(
cpu_vec_
,
boost
::
get
<
platform
::
CUDAPlace
>
(
place
),
&
cuda_vec_
);
WaitPlace
(
place
);
SetFlag
(
kDataInCUDA
);
}
else
if
(
!
(
place
==
cuda_vec_
.
place
()))
{
framework
::
Tensor
tmp
;
Copy
(
cuda_vec_
,
boost
::
get
<
platform
::
CUDAPlace
>
(
place
),
&
tmp
);
WaitPlace
(
cuda_vec_
.
place
());
cuda_vec_
.
ShareDataWith
(
tmp
);
}
else
{
// Not Dirty && DataInCUDA && Device is same
// Do nothing.
}
}
}
}
}
template
<
typename
T
>
void
ImmutableCPU
()
const
{
inline
T
*
Vector
<
T
>::
mutable_data
(
platform
::
Place
place
)
{
if
(
IsDirty
()
&&
if
(
platform
::
is_cpu_place
(
place
))
{
!
IsInCPU
())
{
// If data has been changed in CUDA, or CPU has no data.
return
std
::
vector
<
T
>::
data
();
Copy
(
cuda_vec_
,
platform
::
CPUPlace
(),
&
cpu_vec_
);
}
else
if
(
platform
::
is_gpu_place
(
place
))
{
WaitPlace
(
cuda_vec_
.
place
());
if
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
)
!=
place_
)
{
UnsetFlag
(
kDirty
);
place_
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
);
}
}
SetFlag
(
kDataInCPU
);
#ifdef PADDLE_WITH_CUDA
if
(
cuda_size_
<
this
->
size
()
||
cuda_ptr_
==
nullptr
)
{
cuda_ptr_
.
reset
(
memory
::
Alloc
<
platform
::
CUDAPlace
>
(
place_
,
this
->
size
()
*
sizeof
(
T
)),
memory
::
PlainDeleter
<
void
,
platform
::
CUDAPlace
>
(
place_
));
}
cuda_size_
=
this
->
size
();
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
ctx
=
pool
.
GetByPlace
(
place_
);
memory
::
Copy
(
place_
,
cuda_ptr_
.
get
(),
platform
::
CPUPlace
(),
static_cast
<
const
void
*>
(
this
->
data
()),
this
->
size
()
*
sizeof
(
T
),
ctx
->
stream
());
ctx
->
Wait
();
return
static_cast
<
T
*>
(
cuda_ptr_
.
get
());
#else
return
nullptr
;
#endif
}
else
{
PADDLE_THROW
(
"Unsupport Place."
);
}
}
}
template
<
typename
T
>
void
UnsetFlag
(
int
flag
)
const
{
flag_
&=
~
flag
;
}
void
Vector
<
T
>::
CopyToCUDA
()
{
void
SetFlag
(
int
flag
)
const
{
flag_
|=
flag
;
}
#ifdef PADDLE_WITH_CUDA
if
(
cuda_size_
<
this
->
size
()
||
cuda_ptr_
==
nullptr
)
{
cuda_ptr_
.
reset
(
memory
::
Alloc
<
platform
::
CUDAPlace
>
(
place_
,
this
->
size
()
*
sizeof
(
T
)),
memory
::
PlainDeleter
<
void
,
platform
::
CUDAPlace
>
(
place_
));
}
cuda_size_
=
this
->
size
();
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
ctx
=
pool
.
GetByPlace
(
place_
);
memory
::
Copy
(
place_
,
cuda_ptr_
.
get
(),
platform
::
CPUPlace
(),
static_cast
<
const
void
*>
(
this
->
data
()),
this
->
size
()
*
sizeof
(
T
),
ctx
->
stream
());
ctx
->
Wait
();
#endif
}
template
<
typename
T
>
bool
IsDirty
()
const
{
return
flag_
&
kDirty
;
}
void
Vector
<
T
>::
CopyFromCUDA
()
{
#ifdef PADDLE_WITH_CUDA
if
(
cuda_ptr_
==
nullptr
)
{
LOG
(
WARNING
)
<<
"No uncommitted cuda data."
;
return
;
}
this
->
resize
(
cuda_size_
);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
ctx
=
pool
.
GetByPlace
(
place_
);
memory
::
Copy
(
platform
::
CPUPlace
(),
static_cast
<
void
*>
(
this
->
data
()),
place_
,
static_cast
<
const
void
*>
(
cuda_ptr_
.
get
()),
this
->
size
()
*
sizeof
(
T
),
ctx
->
stream
());
ctx
->
Wait
();
#endif
}
template
<
typename
T
>
bool
IsInCUDA
()
const
{
return
flag_
&
kDataInCUDA
;
}
void
Vector
<
T
>::
CopyToPeer
(
platform
::
Place
place
)
{
#ifdef PADDLE_WITH_CUDA
bool
IsInCPU
()
const
{
return
flag_
&
kDataInCPU
;
}
if
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
)
!=
place_
)
{
place_
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
);
static
void
WaitPlace
(
const
platform
::
Place
place
)
{
}
if
(
platform
::
is_gpu_place
(
place
))
{
if
(
cuda_size_
<
this
->
size
()
||
cuda_ptr_
==
nullptr
)
{
platform
::
DeviceContextPool
::
Instance
()
cuda_ptr_
.
reset
(
.
Get
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
))
memory
::
Alloc
<
platform
::
CUDAPlace
>
(
place_
,
this
->
size
()
*
sizeof
(
T
)),
->
Wait
();
memory
::
PlainDeleter
<
void
,
platform
::
CUDAPlace
>
(
place_
));
}
}
}
cuda_size_
=
this
->
size
();
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
mutable
int
flag_
;
auto
*
ctx
=
pool
.
GetByPlace
(
place_
);
mutable
Tensor
cpu_vec_
;
memory
::
Copy
(
place_
,
cuda_ptr_
.
get
(),
platform
::
CPUPlace
(),
mutable
Tensor
cuda_vec_
;
static_cast
<
const
void
*>
(
this
->
data
()),
size_t
size_
;
this
->
size
()
*
sizeof
(
T
),
ctx
->
stream
());
};
ctx
->
Wait
();
#endif
}
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/framework/mixed_vector_test.cu
浏览文件 @
ef1aba39
...
@@ -11,62 +11,3 @@
...
@@ -11,62 +11,3 @@
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include <cuda.h>
#include <cuda_runtime.h>
#include "gtest/gtest.h"
#include "paddle/framework/init.h"
#include "paddle/framework/mixed_vector.h"
using
namespace
paddle
::
framework
;
using
namespace
paddle
::
platform
;
using
namespace
paddle
::
memory
;
template
<
typename
T
>
__global__
void
test
(
T
*
data
,
int
size
)
{
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
size
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
data
[
i
]
*=
2
;
}
}
TEST
(
Vector
,
Normal
)
{
// fill the device context pool.
InitDevices
();
Vector
<
size_t
>
vec
({
1
,
2
,
3
});
size_t
*
ptr
=
vec
.
data
();
for
(
size_t
i
=
0
;
i
<
vec
.
size
();
++
i
)
{
EXPECT_EQ
(
vec
[
i
],
*
(
ptr
+
i
));
}
vec
.
clear
();
vec
.
CopyFromCUDA
();
std
::
vector
<
size_t
>
v
=
{
1
,
2
,
3
};
for
(
size_t
i
=
0
;
i
<
v
.
size
();
++
i
)
{
EXPECT_EQ
(
v
[
i
],
vec
[
i
]);
}
}
TEST
(
Vector
,
MultipleCopy
)
{
InitDevices
();
Vector
<
size_t
>
vec
({
1
,
2
,
3
});
CUDAPlace
place
(
0
);
vec
.
mutable_data
(
place
);
auto
vec2
=
Vector
<
size_t
>
(
vec
);
{
const
size_t
*
ptr
=
vec2
.
data
(
CPUPlace
());
for
(
size_t
i
=
0
;
i
<
vec2
.
size
();
++
i
)
{
EXPECT_EQ
(
*
(
ptr
+
i
),
vec
[
i
]);
}
}
test
<
size_t
><<<
3
,
3
>>>
(
vec2
.
mutable_data
(
place
),
vec2
.
size
());
vec2
.
CopyFromCUDA
();
{
const
size_t
*
ptr
=
vec2
.
data
(
CPUPlace
());
for
(
size_t
i
=
0
;
i
<
vec2
.
size
();
++
i
)
{
EXPECT_EQ
(
*
(
ptr
+
i
),
vec
[
i
]
*
2
);
}
}
}
paddle/framework/tensor.h
浏览文件 @
ef1aba39
...
@@ -128,6 +128,10 @@ class Tensor {
...
@@ -128,6 +128,10 @@ class Tensor {
inline
void
set_layout
(
const
DataLayout
layout
)
{
layout_
=
layout
;
}
inline
void
set_layout
(
const
DataLayout
layout
)
{
layout_
=
layout
;
}
size_t
capacity
()
const
{
return
holder_
==
nullptr
?
0UL
:
holder_
->
size
()
-
offset_
;
}
private:
private:
friend
class
LoDTensor
;
friend
class
LoDTensor
;
...
...
paddle/framework/tensor_impl.h
浏览文件 @
ef1aba39
...
@@ -52,7 +52,7 @@ struct SizeOfTypeFunctor<HEAD, TAIL...> {
...
@@ -52,7 +52,7 @@ struct SizeOfTypeFunctor<HEAD, TAIL...> {
};
};
static
inline
size_t
SizeOfType
(
std
::
type_index
type
)
{
static
inline
size_t
SizeOfType
(
std
::
type_index
type
)
{
SizeOfTypeFunctor
<
int
,
float
,
double
,
int16_t
,
int64_t
,
bool
>
functor
;
SizeOfTypeFunctor
<
int
,
float
,
double
,
int16_t
,
int64_t
,
bool
,
size_t
>
functor
;
size_t
size
=
functor
(
type
);
size_t
size
=
functor
(
type
);
PADDLE_ENFORCE
(
size
!=
0UL
,
"Cannot get size of type %s"
,
type
.
name
());
PADDLE_ENFORCE
(
size
!=
0UL
,
"Cannot get size of type %s"
,
type
.
name
());
return
size
;
return
size
;
...
...
paddle/operators/adagrad_op.cu
浏览文件 @
ef1aba39
...
@@ -101,9 +101,9 @@ struct SparseAdagradFunctor<platform::CUDADeviceContext, T> {
...
@@ -101,9 +101,9 @@ struct SparseAdagradFunctor<platform::CUDADeviceContext, T> {
SparseAdagradFunctorKernel
<
SparseAdagradFunctorKernel
<
T
,
256
><<<
grid2
,
threads
,
0
,
T
,
256
><<<
grid2
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
grad_merge_data
,
merge_rows
.
cuda_data
(),
lr
,
.
stream
()
>>>
(
param_data
,
moment_data
,
grad_width
,
grad_merge_data
,
merge_rows
.
CUDAMutableData
(
context
.
GetPlace
()),
lr
,
epsilon
);
param_data
,
moment_data
,
grad_width
,
epsilon
);
}
}
};
};
...
...
paddle/operators/adam_op.h
浏览文件 @
ef1aba39
...
@@ -201,7 +201,7 @@ class AdamOpKernel : public framework::OpKernel<T> {
...
@@ -201,7 +201,7 @@ class AdamOpKernel : public framework::OpKernel<T> {
const
T
*
grad_data
=
grad_tensor
.
template
data
<
T
>();
const
T
*
grad_data
=
grad_tensor
.
template
data
<
T
>();
int64_t
*
rows
=
nullptr
;
int64_t
*
rows
=
nullptr
;
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
rows
=
grad_merge
.
mutable_rows
()
->
cuda_data
(
);
rows
=
grad_merge
.
mutable_rows
()
->
CUDAMutableData
(
ctx
.
GetPlace
()
);
}
else
{
}
else
{
rows
=
grad_merge
.
mutable_rows
()
->
data
();
rows
=
grad_merge
.
mutable_rows
()
->
data
();
}
}
...
...
paddle/operators/ctc_align_op.cu
浏览文件 @
ef1aba39
...
@@ -69,8 +69,9 @@ class CTCAlignOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -69,8 +69,9 @@ class CTCAlignOpCUDAKernel : public framework::OpKernel<T> {
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
MergeAndDelCudaKernel
<
T
><<<
1
,
1
,
0
,
stream
>>>
(
MergeAndDelCudaKernel
<
T
><<<
1
,
1
,
0
,
stream
>>>
(
num_tokens
,
tokens
,
num_seq
,
input_lod
[
level
].
cuda_data
(),
blank
,
num_tokens
,
tokens
,
num_seq
,
merge_repeated
,
dev_out_lod0_ptr
,
output_data
);
input_lod
[
level
].
CUDAMutableData
(
ctx
.
GetPlace
()),
blank
,
merge_repeated
,
dev_out_lod0_ptr
,
output_data
);
// set output lod
// set output lod
std
::
vector
<
size_t
>
host_out_lod0
(
dev_out_lod0
.
begin
(),
dev_out_lod0
.
end
());
std
::
vector
<
size_t
>
host_out_lod0
(
dev_out_lod0
.
begin
(),
dev_out_lod0
.
end
());
...
...
paddle/operators/lookup_table_op.cu
浏览文件 @
ef1aba39
...
@@ -125,7 +125,9 @@ class LookupTableGradCUDAKernel : public framework::OpKernel<T> {
...
@@ -125,7 +125,9 @@ class LookupTableGradCUDAKernel : public framework::OpKernel<T> {
new_rows
.
resize
(
ids_dim
[
0
]);
new_rows
.
resize
(
ids_dim
[
0
]);
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
());
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
());
memory
::
Copy
(
platform
::
CPUPlace
(),
new_rows
.
cuda_data
(),
gpu_place
,
// TODO(yuyang18): Strange code here.
memory
::
Copy
(
platform
::
CPUPlace
(),
new_rows
.
CUDAMutableData
(
context
.
GetPlace
()),
gpu_place
,
ids_data
,
ids_dim
[
0
]
*
sizeof
(
int64_t
),
stream
);
ids_data
,
ids_dim
[
0
]
*
sizeof
(
int64_t
),
stream
);
d_table
->
set_rows
(
new_rows
);
d_table
->
set_rows
(
new_rows
);
...
...
paddle/operators/math/selected_rows_functor.cc
浏览文件 @
ef1aba39
...
@@ -128,7 +128,7 @@ struct SelectedRowsAddTo<platform::CPUDeviceContext, T> {
...
@@ -128,7 +128,7 @@ struct SelectedRowsAddTo<platform::CPUDeviceContext, T> {
auto
*
in2_value
=
input2
->
mutable_value
();
auto
*
in2_value
=
input2
->
mutable_value
();
// concat rows
// concat rows
in2_rows
.
insert
(
in2_rows
.
end
(),
in1_rows
.
begin
(),
in1_rows
.
end
());
in2_rows
.
Extend
(
in1_rows
.
begin
(),
in1_rows
.
end
());
auto
in1_place
=
input1
.
place
();
auto
in1_place
=
input1
.
place
();
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
in1_place
));
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
in1_place
));
...
...
paddle/operators/math/selected_rows_functor.cu
浏览文件 @
ef1aba39
...
@@ -126,7 +126,8 @@ struct SelectedRowsAddTensor<platform::CUDADeviceContext, T> {
...
@@ -126,7 +126,8 @@ struct SelectedRowsAddTensor<platform::CUDADeviceContext, T> {
dim3
grid
(
1
,
in1_rows
.
size
());
dim3
grid
(
1
,
in1_rows
.
size
());
SelectedRowsAddTensorKernel
<
SelectedRowsAddTensorKernel
<
T
,
block_size
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
T
,
block_size
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
in1_data
,
in1_rows
.
cuda_data
(),
out_data
,
in1_row_numel
);
in1_data
,
in1_rows
.
CUDAData
(
context
.
GetPlace
()),
out_data
,
in1_row_numel
);
auto
out_eigen
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
output
);
auto
out_eigen
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
output
);
auto
in2_eigen
=
framework
::
EigenVector
<
T
>::
Flatten
(
input2
);
auto
in2_eigen
=
framework
::
EigenVector
<
T
>::
Flatten
(
input2
);
...
@@ -153,7 +154,7 @@ struct SelectedRowsAddTo<platform::CUDADeviceContext, T> {
...
@@ -153,7 +154,7 @@ struct SelectedRowsAddTo<platform::CUDADeviceContext, T> {
auto
*
in2_value
=
input2
->
mutable_value
();
auto
*
in2_value
=
input2
->
mutable_value
();
// concat rows
// concat rows
in2_rows
.
insert
(
in2_rows
.
end
(),
in1_rows
.
begin
(),
in1_rows
.
end
());
in2_rows
.
Extend
(
in1_rows
.
begin
(),
in1_rows
.
end
());
auto
in1_place
=
input1
.
place
();
auto
in1_place
=
input1
.
place
();
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
in1_place
));
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
in1_place
));
...
@@ -216,7 +217,8 @@ struct SelectedRowsAddToTensor<platform::CUDADeviceContext, T> {
...
@@ -216,7 +217,8 @@ struct SelectedRowsAddToTensor<platform::CUDADeviceContext, T> {
dim3
grid
(
1
,
in1_rows
.
size
());
dim3
grid
(
1
,
in1_rows
.
size
());
SelectedRowsAddToTensorKernel
<
SelectedRowsAddToTensorKernel
<
T
,
block_size
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
T
,
block_size
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
in1_data
,
in1_rows
.
cuda_data
(),
in2_data
,
in1_row_numel
);
in1_data
,
in1_rows
.
CUDAData
(
context
.
GetPlace
()),
in2_data
,
in1_row_numel
);
}
}
};
};
...
@@ -283,8 +285,9 @@ struct MergeAdd<platform::CUDADeviceContext, T> {
...
@@ -283,8 +285,9 @@ struct MergeAdd<platform::CUDADeviceContext, T> {
MergeAddKernel
<
MergeAddKernel
<
T
,
256
><<<
grid1
,
threads
,
0
,
T
,
256
><<<
grid1
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
input_data
,
input_rows
.
cuda_data
(),
out_data
,
.
stream
()
>>>
(
out
.
mutable_rows
()
->
cuda_data
(),
input_data
,
input_rows
.
CUDAData
(
context
.
GetPlace
()),
out_data
,
out
.
mutable_rows
()
->
CUDAMutableData
(
context
.
GetPlace
()),
out
.
rows
().
size
(),
input_width
);
out
.
rows
().
size
(),
input_width
);
return
out
;
return
out
;
}
}
...
...
paddle/operators/math/sequence2batch.cu
浏览文件 @
ef1aba39
...
@@ -45,7 +45,6 @@ class CopyMatrixRowsFunctor<platform::CUDADeviceContext, T> {
...
@@ -45,7 +45,6 @@ class CopyMatrixRowsFunctor<platform::CUDADeviceContext, T> {
const
framework
::
Tensor
&
src
,
const
framework
::
Tensor
&
src
,
framework
::
Vector
<
size_t
>
index_lod
,
framework
::
Tensor
&
dst
,
framework
::
Vector
<
size_t
>
index_lod
,
framework
::
Tensor
&
dst
,
bool
is_src_index
)
{
bool
is_src_index
)
{
size_t
*
index
=
index_lod
.
cuda_data
();
auto
src_dims
=
src
.
dims
();
auto
src_dims
=
src
.
dims
();
auto
dst_dims
=
dst
.
dims
();
auto
dst_dims
=
dst
.
dims
();
PADDLE_ENFORCE_EQ
(
src_dims
.
size
(),
2
,
PADDLE_ENFORCE_EQ
(
src_dims
.
size
(),
2
,
...
@@ -63,7 +62,8 @@ class CopyMatrixRowsFunctor<platform::CUDADeviceContext, T> {
...
@@ -63,7 +62,8 @@ class CopyMatrixRowsFunctor<platform::CUDADeviceContext, T> {
dim3
grid
(
8
,
1
);
dim3
grid
(
8
,
1
);
auto
stream
=
context
.
stream
();
auto
stream
=
context
.
stream
();
CopyMatrixRowsKernel
<
T
,
128
,
8
,
8
><<<
grid
,
threads
,
0
,
stream
>>>
(
CopyMatrixRowsKernel
<
T
,
128
,
8
,
8
><<<
grid
,
threads
,
0
,
stream
>>>
(
src_data
,
dst_data
,
index
,
height
,
width
,
is_src_index
);
src_data
,
dst_data
,
index_lod
.
CUDAData
(
context
.
GetPlace
()),
height
,
width
,
is_src_index
);
}
}
};
};
...
...
paddle/operators/math/sequence_padding.cu
浏览文件 @
ef1aba39
...
@@ -121,12 +121,12 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
...
@@ -121,12 +121,12 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
if
(
norm_by_times
)
{
if
(
norm_by_times
)
{
SequencePaddingKernel
<
T
,
1
,
1
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
SequencePaddingKernel
<
T
,
1
,
1
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
padding_data
,
const_cast
<
T
*>
(
seq_data
),
padding_data
,
const_cast
<
T
*>
(
seq_data
),
abs_offset_lod
[
level
].
cuda_data
(
),
sequence_width
,
abs_offset_lod
[
level
].
CUDAData
(
context
.
GetPlace
()
),
sequence_width
,
max_sequence_length
,
num_sequences
);
max_sequence_length
,
num_sequences
);
}
else
{
}
else
{
SequencePaddingKernel
<
T
,
0
,
1
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
SequencePaddingKernel
<
T
,
0
,
1
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
padding_data
,
const_cast
<
T
*>
(
seq_data
),
padding_data
,
const_cast
<
T
*>
(
seq_data
),
abs_offset_lod
[
level
].
cuda_data
(
),
sequence_width
,
abs_offset_lod
[
level
].
CUDAData
(
context
.
GetPlace
()
),
sequence_width
,
max_sequence_length
,
num_sequences
);
max_sequence_length
,
num_sequences
);
}
}
}
}
...
@@ -196,12 +196,12 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
...
@@ -196,12 +196,12 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
if
(
norm_by_times
)
{
if
(
norm_by_times
)
{
SequencePaddingKernel
<
T
,
1
,
0
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
SequencePaddingKernel
<
T
,
1
,
0
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
const_cast
<
T
*>
(
padding_data
),
seq_data
,
const_cast
<
T
*>
(
padding_data
),
seq_data
,
abs_offset_lod
[
level
].
cuda_data
(
),
sequence_width
,
abs_offset_lod
[
level
].
CUDAData
(
context
.
GetPlace
()
),
sequence_width
,
max_sequence_length
,
num_sequences
);
max_sequence_length
,
num_sequences
);
}
else
{
}
else
{
SequencePaddingKernel
<
T
,
0
,
0
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
SequencePaddingKernel
<
T
,
0
,
0
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
const_cast
<
T
*>
(
padding_data
),
seq_data
,
const_cast
<
T
*>
(
padding_data
),
seq_data
,
abs_offset_lod
[
level
].
cuda_data
(
),
sequence_width
,
abs_offset_lod
[
level
].
CUDAData
(
context
.
GetPlace
()
),
sequence_width
,
max_sequence_length
,
num_sequences
);
max_sequence_length
,
num_sequences
);
}
}
}
}
...
...
paddle/operators/math/sequence_pooling.cu
浏览文件 @
ef1aba39
...
@@ -73,7 +73,8 @@ class MaxSeqPoolFunctor<platform::CUDADeviceContext, T> {
...
@@ -73,7 +73,8 @@ class MaxSeqPoolFunctor<platform::CUDADeviceContext, T> {
dim3
grid
(
num_seq
,
1
);
dim3
grid
(
num_seq
,
1
);
auto
stream
=
context
.
stream
();
auto
stream
=
context
.
stream
();
KeMaxSequencePool
<
T
><<<
grid
,
threads
,
0
,
stream
>>>
(
KeMaxSequencePool
<
T
><<<
grid
,
threads
,
0
,
stream
>>>
(
in_data
,
starts
.
cuda_data
(),
out_data
,
max_index
,
num_seq
,
dim
);
in_data
,
starts
.
CUDAData
(
context
.
GetPlace
()),
out_data
,
max_index
,
num_seq
,
dim
);
}
}
};
};
...
...
paddle/operators/math/sequence_scale.cu
浏览文件 @
ef1aba39
...
@@ -46,7 +46,8 @@ class ScaleLoDTensorFunctor<platform::CUDADeviceContext, T> {
...
@@ -46,7 +46,8 @@ class ScaleLoDTensorFunctor<platform::CUDADeviceContext, T> {
SequenceScaleKernel
<
T
,
PADDLE_CUDA_NUM_THREADS
><<<
SequenceScaleKernel
<
T
,
PADDLE_CUDA_NUM_THREADS
><<<
num_seq
,
PADDLE_CUDA_NUM_THREADS
,
0
,
context
.
stream
()
>>>
(
num_seq
,
PADDLE_CUDA_NUM_THREADS
,
0
,
context
.
stream
()
>>>
(
seq_data
,
abs_offset_lod
[
level
].
cuda_data
(),
scales
,
seq_width
);
seq_data
,
abs_offset_lod
[
level
].
CUDAMutableData
(
context
.
GetPlace
()),
scales
,
seq_width
);
}
}
};
};
...
...
paddle/operators/parallel_do_op.cc
浏览文件 @
ef1aba39
...
@@ -79,9 +79,6 @@ inline void CopyOrShare(const framework::Variable &src,
...
@@ -79,9 +79,6 @@ inline void CopyOrShare(const framework::Variable &src,
dst
->
GetMutable
<
LoDTensor
>
()
->
set_lod
(
src
.
Get
<
LoDTensor
>
().
lod
());
dst
->
GetMutable
<
LoDTensor
>
()
->
set_lod
(
src
.
Get
<
LoDTensor
>
().
lod
());
}
else
{
}
else
{
Copy
(
src
.
Get
<
LoDTensor
>
(),
dst_place
,
dst
->
GetMutable
<
LoDTensor
>
());
Copy
(
src
.
Get
<
LoDTensor
>
(),
dst_place
,
dst
->
GetMutable
<
LoDTensor
>
());
framework
::
LoD
lod
(
src
.
Get
<
LoDTensor
>
().
lod
());
lod
.
CopyToPeer
(
dst_place
);
dst
->
GetMutable
<
LoDTensor
>
()
->
set_lod
(
lod
);
}
}
}
else
if
(
src
.
IsType
<
SelectedRows
>
())
{
}
else
if
(
src
.
IsType
<
SelectedRows
>
())
{
auto
&
src_sr
=
src
.
Get
<
SelectedRows
>
();
auto
&
src_sr
=
src
.
Get
<
SelectedRows
>
();
...
@@ -92,9 +89,6 @@ inline void CopyOrShare(const framework::Variable &src,
...
@@ -92,9 +89,6 @@ inline void CopyOrShare(const framework::Variable &src,
dst_sr
->
set_rows
(
src_sr
.
rows
());
dst_sr
->
set_rows
(
src_sr
.
rows
());
}
else
{
}
else
{
Copy
(
src_sr
.
value
(),
dst_place
,
dst_sr
->
mutable_value
());
Copy
(
src_sr
.
value
(),
dst_place
,
dst_sr
->
mutable_value
());
framework
::
Vector
<
int64_t
>
lod
(
src_sr
.
rows
());
lod
.
CopyToPeer
(
dst_place
);
dst_sr
->
set_rows
(
lod
);
}
}
}
else
{
}
else
{
PADDLE_THROW
(
"Expect LoDTensor/SelectedRows, get %s"
,
src
.
Type
().
name
());
PADDLE_THROW
(
"Expect LoDTensor/SelectedRows, get %s"
,
src
.
Type
().
name
());
...
@@ -152,9 +146,6 @@ class ParallelDoOp : public framework::OperatorBase {
...
@@ -152,9 +146,6 @@ class ParallelDoOp : public framework::OperatorBase {
auto
*
sub_scope
=
sub_scopes
[
i
];
auto
*
sub_scope
=
sub_scopes
[
i
];
auto
*
dst
=
sub_scope
->
Var
(
param
)
->
GetMutable
<
LoDTensor
>
();
auto
*
dst
=
sub_scope
->
Var
(
param
)
->
GetMutable
<
LoDTensor
>
();
framework
::
Copy
(
src
,
place
,
dst
);
framework
::
Copy
(
src
,
place
,
dst
);
framework
::
LoD
lod
(
src
.
lod
());
lod
.
CopyToPeer
(
place
);
dst
->
set_lod
(
lod
);
}
}
}
}
WaitOnPlaces
(
places
);
WaitOnPlaces
(
places
);
...
...
paddle/operators/row_conv_op.cu
浏览文件 @
ef1aba39
...
@@ -307,7 +307,7 @@ class RowConvKernel<platform::CUDADeviceContext, T>
...
@@ -307,7 +307,7 @@ class RowConvKernel<platform::CUDADeviceContext, T>
int
input_dim
=
X
->
dims
()[
1
];
int
input_dim
=
X
->
dims
()[
1
];
int
num_sequence
=
batch_indices
.
size
()
-
1
;
int
num_sequence
=
batch_indices
.
size
()
-
1
;
int
future_context
=
Filter
->
dims
()[
0
];
int
future_context
=
Filter
->
dims
()[
0
];
size_t
*
idx
=
batch_indices
.
cuda_data
(
);
size_t
*
idx
=
batch_indices
.
CUDAMutableData
(
context
.
GetPlace
()
);
auto
stream
=
context
.
cuda_device_context
().
stream
();
auto
stream
=
context
.
cuda_device_context
().
stream
();
if
(
future_context
<=
32
)
{
if
(
future_context
<=
32
)
{
...
@@ -345,7 +345,7 @@ class RowConvGradKernel<platform::CUDADeviceContext, T>
...
@@ -345,7 +345,7 @@ class RowConvGradKernel<platform::CUDADeviceContext, T>
int
input_dim
=
X
->
dims
()[
1
];
int
input_dim
=
X
->
dims
()[
1
];
int
num_sequence
=
batch_indices
.
size
()
-
1
;
int
num_sequence
=
batch_indices
.
size
()
-
1
;
int
future_context
=
Filter
->
dims
()[
0
];
int
future_context
=
Filter
->
dims
()[
0
];
size_t
*
idx
=
batch_indices
.
cuda_data
(
);
size_t
*
idx
=
batch_indices
.
CUDAMutableData
(
context
.
GetPlace
()
);
auto
&
device_ctx
=
context
.
cuda_device_context
();
auto
&
device_ctx
=
context
.
cuda_device_context
();
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
zero
;
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
zero
;
...
...
paddle/operators/sequence_erase_op.cu
浏览文件 @
ef1aba39
...
@@ -87,8 +87,7 @@ class SequenceEraseOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -87,8 +87,7 @@ class SequenceEraseOpCUDAKernel : public framework::OpKernel<T> {
// Copy LoD to GPU
// Copy LoD to GPU
auto
lod0
=
lod
[
0
];
auto
lod0
=
lod
[
0
];
auto
lod_len
=
lod0
.
size
();
auto
lod_len
=
lod0
.
size
();
thrust
::
device_vector
<
size_t
>
dev_in_lod
=
lod0
;
const
size_t
*
dev_in_lod_ptr
=
lod0
.
CUDAData
(
ctx
.
GetPlace
());
size_t
*
dev_in_lod_ptr
=
thrust
::
raw_pointer_cast
(
dev_in_lod
.
data
());
// Calc output LoD
// Calc output LoD
thrust
::
device_vector
<
size_t
>
dev_out_lod
(
lod_len
);
thrust
::
device_vector
<
size_t
>
dev_out_lod
(
lod_len
);
...
...
paddle/operators/sgd_op.cu
浏览文件 @
ef1aba39
...
@@ -102,8 +102,8 @@ class SGDOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -102,8 +102,8 @@ class SGDOpCUDAKernel : public framework::OpKernel<T> {
dim3
grid
(
1
,
in_rows
.
size
());
dim3
grid
(
1
,
in_rows
.
size
());
SparseSGDFunctorKernel
<
SparseSGDFunctorKernel
<
T
,
256
><<<
grid
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
T
,
256
><<<
grid
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
in_data
,
in_rows
.
cuda_data
(),
learning_rate
->
data
<
T
>
(),
out_data
,
in_data
,
in_rows
.
CUDAData
(
ctx
.
GetPlace
()),
learning_rate
->
data
<
T
>
()
,
in_row_numel
);
out_data
,
in_row_numel
);
}
else
{
}
else
{
PADDLE_THROW
(
"Unsupported Variable Type of Grad"
);
PADDLE_THROW
(
"Unsupported Variable Type of Grad"
);
...
...
paddle/operators/target_assign_op.h
浏览文件 @
ef1aba39
...
@@ -137,8 +137,8 @@ class TargetAssignKernel : public framework::OpKernel<T> {
...
@@ -137,8 +137,8 @@ class TargetAssignKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_EQ
(
gt_lod
.
data
()[
i
],
gt_label_lod
.
data
()[
i
]);
PADDLE_ENFORCE_EQ
(
gt_lod
.
data
()[
i
],
gt_label_lod
.
data
()[
i
]);
}
}
size_t
*
gt_lod_data
=
gt_lod
.
d
ata
(
ctx
.
GetPlace
());
size_t
*
gt_lod_data
=
gt_lod
.
MutableD
ata
(
ctx
.
GetPlace
());
size_t
*
neg_lod_data
=
neg_lod
.
d
ata
(
ctx
.
GetPlace
());
size_t
*
neg_lod_data
=
neg_lod
.
MutableD
ata
(
ctx
.
GetPlace
());
TargetAssignFunctor
<
T
>
functor
(
box_data
,
label_data
,
match_idx_data
,
TargetAssignFunctor
<
T
>
functor
(
box_data
,
label_data
,
match_idx_data
,
gt_lod_data
,
background_label
,
num
,
gt_lod_data
,
background_label
,
num
,
...
...
paddle/testing/paddle_gtest_main.cc
浏览文件 @
ef1aba39
...
@@ -20,6 +20,7 @@ limitations under the License. */
...
@@ -20,6 +20,7 @@ limitations under the License. */
#include "paddle/memory/memory.h"
#include "paddle/memory/memory.h"
int
main
(
int
argc
,
char
**
argv
)
{
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
std
::
vector
<
char
*>
new_argv
;
std
::
vector
<
char
*>
new_argv
;
std
::
string
gflags_env
;
std
::
string
gflags_env
;
for
(
int
i
=
0
;
i
<
argc
;
++
i
)
{
for
(
int
i
=
0
;
i
<
argc
;
++
i
)
{
...
@@ -35,7 +36,6 @@ int main(int argc, char** argv) {
...
@@ -35,7 +36,6 @@ int main(int argc, char** argv) {
int
new_argc
=
static_cast
<
int
>
(
new_argv
.
size
());
int
new_argc
=
static_cast
<
int
>
(
new_argv
.
size
());
char
**
new_argv_address
=
new_argv
.
data
();
char
**
new_argv_address
=
new_argv
.
data
();
google
::
ParseCommandLineFlags
(
&
new_argc
,
&
new_argv_address
,
false
);
google
::
ParseCommandLineFlags
(
&
new_argc
,
&
new_argv_address
,
false
);
testing
::
InitGoogleTest
(
&
argc
,
argv
);
paddle
::
memory
::
Used
(
paddle
::
platform
::
CPUPlace
());
paddle
::
memory
::
Used
(
paddle
::
platform
::
CPUPlace
());
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录