未验证 提交 ede4b230 编写于 作者: T tensor-tang 提交者: GitHub

Merge pull request #13553 from jczaja/prv-fused_embedding_fc_lstm_op

Adding fused_embedding_fc_lstm op
......@@ -34,6 +34,7 @@ endif ()
pass_library(attention_lstm_fuse_pass inference)
pass_library(infer_clean_graph_pass inference)
pass_library(fc_lstm_fuse_pass inference)
pass_library(embedding_fc_lstm_fuse_pass inference)
pass_library(fc_gru_fuse_pass inference)
pass_library(seq_concat_fc_fuse_pass inference)
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/embedding_fc_lstm_fuse_pass.h"
#include <algorithm>
#include <string>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace paddle {
namespace framework {
namespace ir {
static int BuildFusion(Graph* graph, const std::string& name_scope,
Scope* scope, bool with_fc_bias) {
GraphPatternDetector gpd;
auto* pattern = gpd.mutable_pattern();
// Build pattern
PDNode* x = pattern->NewNode(patterns::PDNodeName(name_scope, "x"))
->assert_is_op_input("lookup_table")
->assert_var_not_persistable();
patterns::Embedding embedding_pattern(pattern, name_scope);
// TODO(jczaja): Intermediate can only be for val that are not used anywhere
// but lookup table output may go into other LSTM (for reverse
// direction)
auto* embedding_out = embedding_pattern(x);
patterns::FC fc_pattern(pattern, name_scope);
// fc_out is a tmp var, will be removed after fuse, so marked as intermediate.
auto* fc_out = fc_pattern(embedding_out, with_fc_bias)->AsIntermediate();
patterns::LSTM lstm_pattern(pattern, name_scope);
lstm_pattern(fc_out);
// Create New OpDesc
auto embedding_lstm_creator = [&](Node* embedding, Node* W, Node* lstm,
Node* input, Node* weight_x, Node* weight_h,
Node* bias, Node* hidden, Node* cell,
Node* xx, Node* fc_bias) {
OpDesc op_desc;
op_desc.SetType("fused_embedding_fc_lstm");
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()});
SET_IN(Ids, input);
SET_IN(WeightH, weight_h);
// Neet to have this passed as We need Wc data for peephole connections
SET_IN(Bias, bias);
#undef SET_IN
// Multiply embeddings with Weights
PADDLE_ENFORCE(scope);
const std::string& embeddings = patterns::UniqueKey("Embeddings");
auto* embeddings_var = scope->Var(embeddings);
PADDLE_ENFORCE(embeddings_var);
auto* embeddings_tensor =
embeddings_var->GetMutable<framework::LoDTensor>();
// Get WeightX size: [single_embedding, fc_size]
// and embedding size: [dict_size, single_embedding]
// and create new size of embeddings eg. [dict_size , hidden_size]
auto* embedding_var = scope->FindVar(W->Name());
PADDLE_ENFORCE(embedding_var);
const auto& embedding_tensor = embedding_var->Get<framework::LoDTensor>();
const auto& weightx_tensor =
scope->FindVar(weight_x->Name())->Get<framework::LoDTensor>();
embeddings_tensor->Resize(
{embedding_tensor.dims()[0], weightx_tensor.dims()[1]});
// Multiplie embeddings via WeightsX and add bias
auto embedding_data = embedding_tensor.data<float>();
auto weightx_data = weightx_tensor.data<float>();
auto embeddings_data =
embeddings_tensor->mutable_data<float>(platform::CPUPlace());
// Adding biases to GEMM result to be
auto* lstm_bias_var = scope->FindVar(bias->Name());
PADDLE_ENFORCE(lstm_bias_var);
const auto& lstm_bias_tensor = lstm_bias_var->Get<framework::LoDTensor>();
auto alpha = 1.0f;
auto beta = 1.0f;
int m = embedding_tensor.dims()[0];
int n = weightx_tensor.dims()[1];
int k = embedding_tensor.dims()[1];
// Copy only gate biases values (only actual bias data, not peephole
// weights)
std::vector<float> combined_biases;
combined_biases.reserve(n);
std::copy_n(lstm_bias_tensor.data<float>(), n,
std::back_inserter(combined_biases));
if (with_fc_bias) {
// Add FC-bias with LSTM-bias (into GEMM result to be)
auto* fc_bias_var = scope->FindVar(fc_bias->Name());
const auto& fc_bias_tensor = fc_bias_var->Get<framework::LoDTensor>();
for (int i = 0; i < fc_bias_tensor.numel(); i++) {
combined_biases[i] += fc_bias_tensor.data<float>()[i];
}
}
// broadcast biases
std::vector<float> ones(m, 1.0f);
paddle::operators::math::CBlas<float>::GEMM(
CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, 1, alpha, &ones[0], 1,
&combined_biases[0], n, 0.0f, embeddings_data, n);
// Wx*embeddings + biases
paddle::operators::math::CBlas<float>::GEMM(
CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, k, alpha,
embedding_data, k, weightx_data, n, beta, embeddings_data, n);
op_desc.SetInput("Embeddings", {embeddings});
// Create temp variables.
const std::string BatchedInput = patterns::UniqueKey("BatchedInput");
const std::string BatchedCellPreAct =
patterns::UniqueKey("BatchedCellPreAct");
const std::string BatchedGate = patterns::UniqueKey("BatchedGate");
scope->Var(BatchedInput)->GetMutable<framework::LoDTensor>();
scope->Var(BatchedCellPreAct)->GetMutable<framework::LoDTensor>();
scope->Var(BatchedGate)->GetMutable<framework::LoDTensor>();
op_desc.SetInput("H0", {});
op_desc.SetInput("C0", {});
op_desc.SetOutput("Hidden", {hidden->Name()});
op_desc.SetOutput("Cell", {cell->Name()});
op_desc.SetOutput("XX", {xx->Name()});
op_desc.SetOutput("BatchedGate", {BatchedGate});
op_desc.SetOutput("BatchCellPreAct", {BatchedCellPreAct});
op_desc.SetOutput("BatchedInput", {BatchedInput});
op_desc.SetAttr("is_reverse", lstm->Op()->GetAttr("is_reverse"));
op_desc.SetAttr("use_peepholes", lstm->Op()->GetAttr("use_peepholes"));
// TODO(TJ): get from attr
op_desc.SetAttr("use_seq", true);
PADDLE_ENFORCE(graph->Has(kParamScopeAttr));
auto* scope = graph->Get<Scope*>(kParamScopeAttr);
#define OP_SET_OUT(x) \
const std::string x = patterns::UniqueKey(#x); \
op_desc.SetOutput(#x, {x}); \
scope->Var(x)->GetMutable<LoDTensor>()
OP_SET_OUT(BatchedCell);
OP_SET_OUT(BatchedHidden);
OP_SET_OUT(ReorderedH0);
OP_SET_OUT(ReorderedC0);
#undef OP_SET_OUT
auto* op = graph->CreateOpNode(&op_desc);
IR_NODE_LINK_TO(input, op);
IR_NODE_LINK_TO(weight_x, op);
IR_NODE_LINK_TO(weight_h, op);
IR_NODE_LINK_TO(bias, op);
IR_NODE_LINK_TO(op, hidden);
return op;
};
int fusion_count{0};
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
GET_IR_NODE_FROM_SUBGRAPH(lstm, lstm, lstm_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, lstm_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, lstm_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Cell, Cell, lstm_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, lstm_pattern);
GET_IR_NODE_FROM_SUBGRAPH(lookup_table, lookup_table, embedding_pattern);
GET_IR_NODE_FROM_SUBGRAPH(W, W, embedding_pattern);
GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern);
// TODO(jczaja): Add support for is_sparse / is_distributed
auto is_sparse = boost::get<bool>(lookup_table->Op()->GetAttr("is_sparse"));
auto is_distributed =
boost::get<bool>(lookup_table->Op()->GetAttr("is_distributed"));
if (is_sparse == true || is_distributed == true) {
return;
}
if (with_fc_bias) {
GET_IR_NODE_FROM_SUBGRAPH(fc_out, Out, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern);
embedding_lstm_creator(lookup_table, W, lstm, subgraph.at(x), w, Weight,
Bias, Hidden, Cell, fc_out, fc_bias);
// Remove unneeded nodes.
// TODO(jczaja): Proper removing of lookup table
std::unordered_set<const Node*> marked_nodes(
//{lookup_table, mul, lstm, elementwise_add, fc_bias, W});
{mul, lstm, elementwise_add, fc_bias});
GraphSafeRemoveNodes(graph, marked_nodes);
} else {
GET_IR_NODE_FROM_SUBGRAPH(fc_out, mul_out, fc_pattern);
embedding_lstm_creator(lookup_table, W, lstm, subgraph.at(x), w, Weight,
Bias, Hidden, Cell, fc_out, nullptr);
// Remove unneeded nodes.
// TODO(jczaja): Proper removing of lookup table
// std::unordered_set<const Node*> marked_nodes({lookup_table, W, mul,
// lstm});
std::unordered_set<const Node*> marked_nodes({mul, lstm});
GraphSafeRemoveNodes(graph, marked_nodes);
}
++fusion_count;
};
gpd(graph, handler);
return fusion_count;
}
std::unique_ptr<ir::Graph> EmbeddingFCLSTMFusePass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
FusePassBase::Init(name_scope_, graph.get());
int fusion_count = BuildFusion(graph.get(), name_scope_, param_scope(),
true /*with_fc_bias*/);
AddStatis(fusion_count);
return graph;
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(embedding_fc_lstm_fuse_pass,
paddle::framework::ir::EmbeddingFCLSTMFusePass);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace paddle {
namespace framework {
namespace ir {
// Fusing of Embedding , FC and LSTM op
// Just FC without bias
class EmbeddingFCLSTMFusePass : public FusePassBase {
public:
virtual ~EmbeddingFCLSTMFusePass() {}
protected:
std::unique_ptr<ir::Graph> ApplyImpl(std::unique_ptr<ir::Graph> graph) const;
const std::string name_scope_{"embedding_fc_lstm_fuse"};
};
} // namespace ir
} // namespace framework
} // namespace paddle
......@@ -692,6 +692,24 @@ PDNode *patterns::FC::operator()(paddle::framework::ir::PDNode *x,
}
}
PDNode *patterns::Embedding::operator()(PDNode *x) {
x->assert_is_op_input("lookup_table", "Ids");
auto *lookup_table_op =
pattern->NewNode(lookup_table_repr())->assert_is_op("lookup_table");
#define NEW_NODE(arg__, io__) \
auto *arg__ = pattern->NewNode(arg__##_repr()) \
->assert_is_op_##io__("lookup_table", #arg__);
NEW_NODE(W, input);
NEW_NODE(Out, output);
#undef NEW_NODE
lookup_table_op->LinksFrom({x, W});
lookup_table_op->LinksTo({Out});
return Out;
}
PDNode *patterns::LSTM::operator()(PDNode *x) {
x->assert_is_op_input("lstm", "Input");
auto *lstm_op = pattern->NewNode(lstm_repr())->assert_is_op("lstm");
......
......@@ -418,6 +418,23 @@ struct FC : public PatternBase {
PATTERN_DECL_NODE(Out);
};
// Embedding
struct Embedding : public PatternBase {
Embedding(PDPattern* pattern, const std::string& name_scope)
: PatternBase(pattern, name_scope, "embedding") {}
PDNode* operator()(PDNode* x);
// declare operator node's name
PATTERN_DECL_NODE(lookup_table);
// Inputs
//
PATTERN_DECL_NODE(Ids);
PATTERN_DECL_NODE(W); // embeddings
// Outputs
PATTERN_DECL_NODE(Out);
};
struct LSTM : public PatternBase {
LSTM(PDPattern* pattern, const std::string& name_scope)
: PatternBase(pattern, name_scope, "lstm") {}
......
......@@ -66,6 +66,7 @@ class Analyzer : public OrderedRegistry<PassManager> {
// Manual update the passes here.
"infer_clean_graph_pass", //
"attention_lstm_fuse_pass", //
"embedding_fc_lstm_fuse_pass", //
"fc_lstm_fuse_pass", //
"mul_lstm_fuse_pass", //
"fc_gru_fuse_pass", //
......
......@@ -263,7 +263,7 @@ struct AnalysisConfig : public NativeConfig {
bool enable_ir_optim = true;
// Manually determine the IR passes to run.
IrPassMode ir_mode{IrPassMode::kExclude};
std::vector<std::string> ir_passes;
std::vector<std::string> ir_passes{"embedding_fc_lstm_fuse_pass"};
// NOT stable yet.
bool use_feed_fetch_ops{true};
......
......@@ -104,5 +104,18 @@ TEST(Analyzer_Text_Classification, compare) {
CompareNativeAndAnalysis(cfg, input_slots_all);
}
TEST(Analyzer_Text_Classification, compare_against_embedding_fc_lstm_fused) {
AnalysisConfig cfg;
SetConfig(&cfg);
// Enable embedding_fc_lstm_fuse_pass (disabled by default)
auto it = std::find(cfg.ir_passes.begin(), cfg.ir_passes.end(),
"embedding_fc_lstm_fuse_pass");
if (it != cfg.ir_passes.end()) cfg.ir_passes.erase(it);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareNativeAndAnalysis(cfg, input_slots_all);
}
} // namespace inference
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fused_embedding_fc_lstm_op.h"
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace paddle {
namespace operators {
void FusedEmbeddingFCLSTMOp::InferShape(
framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("Embeddings"),
"Assert only one Input(Embeddings) of LSTM.");
PADDLE_ENFORCE(ctx->HasInput("WeightH"),
"Assert only one Input(WeightH) of LSTM.");
PADDLE_ENFORCE(ctx->HasInput("Bias"), "Assert only one Input(Bias) of LSTM.");
PADDLE_ENFORCE(ctx->HasOutput("XX"), "Assert only one Output(XX) of LSTM.");
PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
"Assert only one Output(Hidden) of LSTM.");
PADDLE_ENFORCE(ctx->HasOutput("Cell"),
"Assert only one Output(Cell) of LSTM.");
PADDLE_ENFORCE(ctx->HasInput("Ids"),
"Input(Ids) of LookupTableOp should not be null.");
auto table_dims = ctx->GetInputDim("Embeddings");
auto ids_dims = ctx->GetInputDim("Ids");
int ids_rank = ids_dims.size();
PADDLE_ENFORCE_EQ(table_dims.size(), 2);
PADDLE_ENFORCE_EQ(ids_dims[ids_rank - 1], 1,
"The last dimension of the 'Ids' tensor must be 1.");
auto x_dims = ctx->GetInputDim("Ids");
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(Ids)'s rank must be 2.");
if (ctx->HasInput("H0")) {
PADDLE_ENFORCE(ctx->HasInput("C0"),
"Input(Cell) and Input(Hidden) of LSTM should not "
"be null at the same time.");
auto h_dims = ctx->GetInputDim("H0");
auto c_dims = ctx->GetInputDim("C0");
PADDLE_ENFORCE(h_dims == c_dims,
"The dimension of Input(H0) and Input(C0) "
"should be the same.");
}
auto embeddings_dims = ctx->GetInputDim("Embeddings");
PADDLE_ENFORCE_EQ(embeddings_dims.size(), 2,
"The rank of Input(Embeddings) should be 2.");
auto wh_dims = ctx->GetInputDim("WeightH");
int frame_size = wh_dims[1] / 4;
PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
"The rank of Input(WeightH) should be 2.");
PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
"The first dimension of Input(WeightH) "
"should be %d.",
frame_size);
PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
"The second dimension of Input(WeightH) "
"should be 4 * %d.",
frame_size);
auto b_dims = ctx->GetInputDim("Bias");
PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
PADDLE_ENFORCE_EQ(b_dims[0], 1,
"The first dimension of Input(Bias) should be 1.");
PADDLE_ENFORCE_EQ(
b_dims[1], (ctx->Attrs().Get<bool>("use_peepholes") ? 7 : 4) * frame_size,
"The second dimension of Input(Bias) should be "
"7 * %d if enable peepholes connection or"
"4 * %d if disable peepholes",
frame_size, frame_size);
framework::DDim out_dims({x_dims[0], frame_size});
ctx->SetOutputDim("Hidden", out_dims);
ctx->SetOutputDim("Cell", out_dims);
ctx->ShareLoD("Ids", "Hidden");
ctx->ShareLoD("Ids", "Cell");
int xx_width;
if (ctx->Attrs().Get<bool>("use_seq")) {
xx_width = wh_dims[1];
} else {
xx_width = x_dims[1] > wh_dims[1] ? wh_dims[1] : x_dims[1];
PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
"Assert only one Output(BatchedInput) of LSTM.");
PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"),
"Assert only one Output(BatchedHidden) of LSTM.");
PADDLE_ENFORCE(ctx->HasOutput("BatchedCell"),
"Assert only one Output(BatchedCell) of LSTM.");
PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
"Assert only one Output(ReorderedH0) of LSTM");
PADDLE_ENFORCE(ctx->HasOutput("ReorderedC0"),
"Assert only one Output(ReorderedC0) of LSTM.");
ctx->SetOutputDim("BatchedInput", {x_dims[0], wh_dims[1]});
ctx->SetOutputDim("BatchedHidden", out_dims);
ctx->SetOutputDim("BatchedCell", out_dims);
}
ctx->SetOutputDim("XX", {x_dims[0], xx_width});
ctx->ShareLoD("Ids", "XX");
}
framework::OpKernelType FusedEmbeddingFCLSTMOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
return framework::OpKernelType(
framework::ToDataType(
ctx.Input<framework::LoDTensor>("Embeddings")->type()),
ctx.device_context());
}
void FusedEmbeddingFCLSTMOpMaker::Make() {
AddInput("Ids",
"An input with type int32 or int64 "
"contains the ids to be looked up in W. "
"The last dimension size must be 1.");
AddInput("Embeddings",
"(Tensor) the learnable weights of X."
" - The shape is (M x 4D), where M is the dim size of x, D is the "
"hidden size. "
" - Weight = {W_cx, W_ix, W_fx, W_ox}");
AddInput("WeightH",
"(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
" - The shape is (D x 4D), where D is the hidden size. "
" - Weight = {W_ch, W_ih, W_fh, W_oh}");
AddInput("Bias",
"(Tensor) the learnable weights. Almost same as LSTMOp"
"Note: we should add the fc bias into this (1x4D) in bias."
"input-hidden bias weight and peephole connections weight if "
"setting `use_peepholes` True. "
"1. `use_peepholes = False` "
" - The shape is (1 x 4D). "
" - Bias = {b_c, b_i, b_f, b_o}."
"2. `use_peepholes = True` "
" - The shape is (1 x 7D). "
" - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
AddInput("H0",
"(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
"optional "
"input. This is a tensor with shape (N x D), where N is the "
"batch size and D is the hidden size.")
.AsDispensable();
AddInput("C0",
"(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
"optional "
"input. This is a tensor with shape (N x D), where N is the "
"batch size. `H0` and `C0` can be NULL but only at the same time.")
.AsDispensable();
AddOutput("Hidden",
"(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
"The shape is (T x D), and lod is the same with the `Input`.");
AddOutput("Cell",
"(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
"The shape is (T x D), and lod is the same with the `Input`.");
AddOutput("XX",
"(LoDTensor) the result after X * WeightX (size is T x 4D)"
" or batched_X (size is T x M), this will be automatically chosen,"
" where T is the total time steps in this mini-batch,"
" D is the hidden size, M is the dim size of x input.")
.AsIntermediate();
AddOutput("BatchedInput", "(LoDTensor) (T x 4D).").AsIntermediate();
AddOutput("BatchedHidden", "(LoDTensor) (T x D).").AsIntermediate();
AddOutput("BatchedCell", "(LoDTensor) (T x D).").AsIntermediate();
AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate();
AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate();
AddAttr<bool>("use_peepholes",
"(bool, defalut: True) "
"whether to enable diagonal/peephole connections.")
.SetDefault(true);
AddAttr<bool>("is_reverse",
"(bool, defalut: False) "
"whether to compute reversed LSTM.")
.SetDefault(false);
AddAttr<bool>("use_seq",
"(bool, defalut: True) "
"whether to use seq mode to compute.")
.SetDefault(true);
AddAttr<std::string>("gate_activation",
"(string, default: sigmoid)"
"The activation for input gate, forget gate and output "
"gate, `sigmoid` by default.")
.SetDefault("sigmoid")
.InEnum({"sigmoid", "tanh", "relu", "identity"});
AddAttr<std::string>("cell_activation",
"(string, default: tanh)"
"The activation for cell output, `tanh` by defalut.")
.SetDefault("tanh")
.InEnum({"sigmoid", "tanh", "relu", "identity"});
AddAttr<std::string>("candidate_activation",
"(string, default: tanh)"
"The activation for candidate hidden state, "
"`tanh` by default.")
.SetDefault("tanh")
.InEnum({"sigmoid", "tanh", "relu", "identity"});
AddComment(R"DOC(
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
)DOC");
}
template <typename T>
class FusedEmbeddingFCLSTMKernel : public framework::OpKernel<T> {
public:
#define INIT_VEC_FUNC \
std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand; \
auto& act_gate_str = ctx.Attr<std::string>("gate_activation"); \
auto& act_cell_str = ctx.Attr<std::string>("cell_activation"); \
auto& act_cand_str = ctx.Attr<std::string>("candidate_activation"); \
if (platform::jit::MayIUse(platform::jit::avx)) { \
math::VecActivations<T, platform::jit::avx> act_functor; \
act_gate = act_functor(act_gate_str); \
act_cell = act_functor(act_cell_str); \
act_cand = act_functor(act_cand_str); \
} else { \
math::VecActivations<T, platform::jit::isa_any> act_functor; \
act_gate = act_functor(act_gate_str); \
act_cell = act_functor(act_cell_str); \
act_cand = act_functor(act_cand_str); \
}
#define INIT_BASE_INPUT_OUTPUT \
auto* ids = ctx.Input<LoDTensor>("Ids"); \
auto* h0 = ctx.Input<Tensor>("H0"); \
auto* c0 = ctx.Input<Tensor>("C0"); \
auto* embeddings = ctx.Input<Tensor>("Embeddings"); \
auto* wh = ctx.Input<Tensor>("WeightH"); \
auto* bias = ctx.Input<Tensor>("Bias"); \
auto* xx = ctx.Output<LoDTensor>("XX"); \
auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
auto* cell_out = ctx.Output<LoDTensor>("Cell"); \
bool is_reverse = ctx.Attr<bool>("is_reverse"); \
bool use_peepholes = ctx.Attr<bool>("use_peepholes");
#define INIT_BASE_SIZES \
auto ids_dims = ids->dims(); /* T x M*/ \
auto ids_numel = ids->numel(); /* T x 1*/ \
auto wh_dims = wh->dims(); /* D x 4D*/ \
const int D = wh_dims[0]; \
const int D2 = D * 2; \
const int D3 = D * 3; \
int64_t row_number = embeddings->dims()[0]; \
int64_t row_width = embeddings->dims()[1]; \
const int D4 = wh_dims[1];
#define INIT_BASE_INPUT_DATAS \
const int64_t* ids_data = ids->data<int64_t>(); \
const T* embeddings_data = embeddings->data<T>(); \
const T* wh_data = wh->data<T>(); \
/* diagonal weight*/ \
const T* wc_data = bias->data<T>() + D4; \
/* for peephole only*/ \
Tensor checked_cell; \
T* checked_cell_data = nullptr; \
auto place = ctx.GetPlace(); \
if (use_peepholes) { \
/* w_ic * Ct-1, w_fc * Ct-1 ; w_oc * Ct => ih*/ \
checked_cell_data = checked_cell.mutable_data<T>({2, D}, place); \
}
/// Compute LSTM
#define GEMM_WH_ADDON(bs, prev, out) \
blas.GEMM(CblasNoTrans, CblasNoTrans, bs, D4, D, static_cast<T>(1), prev, D, \
wh_data, D4, static_cast<T>(1), out, D4)
// gates: W_ch, W_ih, W_fh, W_oh
#define GET_Ct(ct_1, gates, ct) \
/* C_t = C_t-1 * fgated + cand_gated * igated*/ \
act_cand(D, gates, gates); \
blas.VMUL(D, gates, gates + D, gates + D); \
blas.VMUL(D, ct_1, gates + D2, gates + D2); \
blas.VADD(D, gates + D, gates + D2, ct)
#define GET_Ht(ct, gates, ht) \
/* H_t = act_cell(C_t) * ogated */ \
act_cell(D, ct, gates + D2); \
blas.VMUL(D, gates + D2, gates + D3, ht)
#define GET_Ct_NOH0C0(gates, ct) \
/* C_t = igated * cgated*/ \
act_gate(D, gates + D, gates + D); \
act_cand(D, gates, gates); \
blas.VMUL(D, gates, gates + D, ct)
#define COMPUTE_CtHt_NOH0C0(gates, ct, ht) \
GET_Ct_NOH0C0(gates, ct); \
act_gate(D, gates + D3, gates + D3); \
GET_Ht(ct, gates, ht)
#define COMPUTE_CtHt_PEEPHOLE_NOH0C0(gates, ct, ht) \
GET_Ct_NOH0C0(gates, ct); \
/* get outgated, put W_oc * C_t on igated */ \
blas.VMUL(D, wc_data + D2, ct, gates + D); \
blas.VADD(D, gates + D, gates + D3, gates + D3); \
act_gate(D, gates + D3, gates + D3); \
GET_Ht(ct, gates, ht)
#define COMPUTE_CtHt(gates, ct_1, ct, ht) \
act_gate(D3, gates + D, gates + D); \
GET_Ct(ct_1, gates, ct); \
GET_Ht(ct, gates, ht)
#define COMPUTE_CtHt_PEEPHOLE(gates, ct_1, ct, ht) \
/* get fgated and igated*/ \
blas.VMUL(D, wc_data, ct_1, checked_cell_data); \
blas.VMUL(D, wc_data + D, ct_1, checked_cell_data + D); \
blas.VADD(D2, checked_cell_data, gates + D, gates + D); \
act_gate(D2, gates + D, gates + D); \
GET_Ct(ct_1, gates, ct); \
/* get ogated*/ \
blas.VMUL(D, wc_data + D2, ct, gates + D); \
blas.VADD(D, gates + D, gates + D3, gates + D3); \
act_gate(D, gates + D3, gates + D3); \
GET_Ht(ct, gates, ht)
void SeqCompute(const framework::ExecutionContext& ctx) const {
using DeviceContext = paddle::platform::CPUDeviceContext;
INIT_BASE_INPUT_OUTPUT
INIT_BASE_SIZES
INIT_VEC_FUNC
INIT_BASE_INPUT_DATAS
// std::cout << "====> SeqCompute" << std::endl;
auto ids_lod = ids->lod();
const int total_T = ids_dims[0];
const int N = ids_lod[0].size() - 1;
const T* h0_data = h0 ? h0->data<T>() : nullptr;
const T* c0_data = c0 ? c0->data<T>() : nullptr;
T* xx_data = xx->mutable_data<T>(place);
T* h_out_data = hidden_out->mutable_data<T>(place);
T* c_out_data = cell_out->mutable_data<T>(place);
auto blas = math::GetBlas<DeviceContext, T>(ctx);
for (int64_t i = 0; i < ids_numel; ++i) {
PADDLE_ENFORCE_LT(ids_data[i], row_number);
PADDLE_ENFORCE_GE(ids_data[i], 0, "ids %d", i);
memcpy(xx_data + i * row_width, embeddings_data + ids_data[i] * row_width,
row_width * sizeof(T));
}
int xx_offset = D4;
int gate_offset = D;
if (is_reverse) {
const int offset = (total_T - 1) * D;
xx_data = xx_data + offset * 4;
h_out_data = h_out_data + offset;
c_out_data = c_out_data + offset;
xx_offset = -D4;
gate_offset = -D;
}
#define MOVE_ONE_STEP \
prev_h_data = h_out_data; \
prev_c_data = c_out_data; \
xx_data = xx_data + xx_offset; \
h_out_data = h_out_data + gate_offset; \
c_out_data = c_out_data + gate_offset
#define PROCESS_H0C0_DEFINES \
int bid = is_reverse ? N - 1 - i : i; \
int seq_len = ids_lod[0][bid + 1] - ids_lod[0][bid]; \
const T* prev_c_data = nullptr; \
const T* prev_h_data = nullptr; \
int tstart = 0
#define PROCESS_H0C0_PEEPHOLE \
PROCESS_H0C0_DEFINES; \
if (h0_data) { \
prev_h_data = h0_data + bid * D; \
prev_c_data = c0_data + bid * D; \
} else { \
COMPUTE_CtHt_PEEPHOLE_NOH0C0(xx_data, c_out_data, h_out_data); \
MOVE_ONE_STEP; \
tstart = 1; \
}
#define PROCESS_H0C0 \
PROCESS_H0C0_DEFINES; \
if (h0_data) { \
prev_h_data = h0_data + bid * D; \
prev_c_data = c0_data + bid * D; \
} else { \
COMPUTE_CtHt_NOH0C0(xx_data, c_out_data, h_out_data); \
MOVE_ONE_STEP; \
tstart = 1; \
}
if (use_peepholes) {
for (int i = 0; i < N; ++i) {
PROCESS_H0C0_PEEPHOLE
for (int step = tstart; step < seq_len; ++step) {
GEMM_WH_ADDON(1, prev_h_data, xx_data);
COMPUTE_CtHt_PEEPHOLE(xx_data, prev_c_data, c_out_data, h_out_data);
MOVE_ONE_STEP;
}
}
} else {
for (int i = 0; i < N; ++i) {
PROCESS_H0C0
for (int step = tstart; step < seq_len; ++step) {
GEMM_WH_ADDON(1, prev_h_data, xx_data);
COMPUTE_CtHt(xx_data, prev_c_data, c_out_data, h_out_data);
MOVE_ONE_STEP;
}
}
}
#undef PROCESS_H0C0_DEFINES
#undef PROCESS_H0C0_PEEPHOLE
#undef PROCESS_H0C0
#undef MOVE_ONE_STEP
}
void BatchCompute(const framework::ExecutionContext& ctx) const {
using DeviceContext = platform::CPUDeviceContext;
INIT_BASE_INPUT_OUTPUT
if (ids->lod()[0].size() == 2) {
SeqCompute(ctx);
return;
}
INIT_BASE_SIZES
INIT_VEC_FUNC
INIT_BASE_INPUT_DATAS
// std::cout << "===> Batch Compute" << std::endl;
auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
auto* reordered_c0 = ctx.Output<Tensor>("ReorderedC0");
auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
auto* batched_c_out = ctx.Output<LoDTensor>("BatchedCell");
auto* batched_h_out = ctx.Output<LoDTensor>("BatchedHidden");
T* xx_data = xx->mutable_data<T>(place);
T* batched_input_data = batched_input->mutable_data<T>(place);
T* batched_c_out_data = batched_c_out->mutable_data<T>(place);
T* batched_h_out_data = batched_h_out->mutable_data<T>(place);
hidden_out->mutable_data<T>(place);
cell_out->mutable_data<T>(place);
math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
auto& dev_ctx = ctx.template device_context<DeviceContext>();
auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
for (int64_t i = 0; i < ids_numel; ++i) {
PADDLE_ENFORCE_LT(ids_data[i], row_number);
PADDLE_ENFORCE_GE(ids_data[i], 0, "ids %d", i);
memcpy(xx_data + i * row_width, embeddings_data + ids_data[i] * row_width,
row_width * sizeof(T));
}
to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
auto batched_lod = batched_input->lod();
const auto& seq_order = batched_lod[2];
const int max_bs = seq_order.size();
reordered_h0->Resize({max_bs, D});
reordered_c0->Resize({max_bs, D});
int tstart = 0;
T* prev_h_data = nullptr;
T* prev_c_data = nullptr;
if (h0) {
// reorder h0, c0
T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
T* reordered_c0_data = reordered_c0->mutable_data<T>(place);
const T* h0_data = h0->data<T>();
const T* c0_data = c0->data<T>();
prev_h_data = reordered_h0_data;
prev_c_data = reordered_c0_data;
size_t sz = sizeof(T) * D;
for (int i = 0; i < max_bs; ++i) {
std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
std::memcpy(reordered_c0_data, c0_data + seq_order[i] * D, sz);
reordered_h0_data += D;
reordered_c0_data += D;
}
} else {
// compute without h0, c0
T* cur_in_data = batched_input_data;
T* cur_h_out_data = batched_h_out_data;
T* cur_c_out_data = batched_c_out_data;
for (int i = 0; i < max_bs; ++i) {
GET_Ct_NOH0C0(cur_in_data, cur_c_out_data);
if (use_peepholes) {
blas.VMUL(D, wc_data + D2, cur_c_out_data, cur_in_data + D);
blas.VADD(D, cur_in_data + D, cur_in_data + D3, cur_in_data + D3);
}
act_gate(D, cur_in_data + D3, cur_in_data + D3);
GET_Ht(cur_c_out_data, cur_in_data, cur_h_out_data);
cur_in_data += D4;
cur_c_out_data += D;
cur_h_out_data += D;
}
tstart = 1;
prev_h_data = batched_h_out_data;
prev_c_data = batched_c_out_data;
}
const auto& batch_starts = batched_lod[0];
const int max_seq_len = batch_starts.size() - 1;
const int offset = tstart * max_bs * D;
batched_input_data = batched_input_data + offset * 4;
batched_h_out_data = batched_h_out_data + offset;
batched_c_out_data = batched_c_out_data + offset;
#define DEFINE_CUR \
T* cur_in_data = batched_input_data; \
T* cur_prev_c_data = prev_c_data; \
T* cur_c_out_data = batched_c_out_data; \
T* cur_h_out_data = batched_h_out_data
#define MOVE_ONE_BATCH \
cur_in_data += D4; \
cur_prev_c_data += D; \
cur_c_out_data += D; \
cur_h_out_data += D
#define MOVE_ONE_STEP \
prev_c_data = batched_c_out_data; \
prev_h_data = batched_h_out_data; \
batched_c_out_data = cur_c_out_data; \
batched_h_out_data = cur_h_out_data; \
batched_input_data = cur_in_data
if (use_peepholes) {
for (int step = tstart; step < max_seq_len; ++step) {
const int cur_bs = batch_starts[step + 1] - batch_starts[step];
GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data);
DEFINE_CUR;
for (int i = 0; i < cur_bs; ++i) {
COMPUTE_CtHt_PEEPHOLE(cur_in_data, cur_prev_c_data, cur_c_out_data,
cur_h_out_data);
MOVE_ONE_BATCH;
}
MOVE_ONE_STEP;
}
} else {
for (int step = tstart; step < max_seq_len; ++step) {
const int cur_bs = batch_starts[step + 1] - batch_starts[step];
GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data);
DEFINE_CUR;
for (int i = 0; i < cur_bs; ++i) {
COMPUTE_CtHt(cur_in_data, cur_prev_c_data, cur_c_out_data,
cur_h_out_data);
MOVE_ONE_BATCH;
}
MOVE_ONE_STEP;
}
}
#undef MOVE_ONE_STEP
#undef MOVE_ONE_BATCH
#undef DEFINE_CUR
math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
batched_h_out->set_lod(batched_lod);
to_seq(dev_ctx, *batched_h_out, hidden_out);
batched_c_out->set_lod(batched_lod);
to_seq(dev_ctx, *batched_c_out, cell_out);
}
void Compute(const framework::ExecutionContext& ctx) const override {
if (ctx.Attr<bool>("use_seq")) {
SeqCompute(ctx);
} else {
BatchCompute(ctx);
}
}
#undef COMPUTE_CtHt_PEEPHOLE
#undef COMPUTE_CtHt
#undef GET_Ct_NOH0C0
#undef COMPUTE_CtHt_NOH0C0
#undef COMPUTE_CtHt_PEEPHOLE_NOH0C0
#undef GET_Ht
#undef GET_Ct
#undef GEMM_WH_ADDON
#undef INIT_BASE_INPUT_DATAS
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
#undef INIT_VEC_FUNC
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(fused_embedding_fc_lstm, ops::FusedEmbeddingFCLSTMOp,
ops::FusedEmbeddingFCLSTMOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OP_CPU_KERNEL(fused_embedding_fc_lstm,
ops::FusedEmbeddingFCLSTMKernel<float>,
ops::FusedEmbeddingFCLSTMKernel<double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;
class FusedEmbeddingFCLSTMOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override;
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override;
};
class FusedEmbeddingFCLSTMOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override;
};
} // namespace operators
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册