未验证 提交 edbaa027 编写于 作者: L littletomatodonkey 提交者: GitHub

fix pad api (#28045)

* fix pad api

* fix init
上级 77eddf91
......@@ -606,20 +606,6 @@ class TestBilinearInterpOpAPI(unittest.TestCase):
self.assertTrue(np.allclose(res, expect_res))
class TestUpsampleBilinear2dInterpOpAPI2_0(unittest.TestCase):
def test_case(self):
# dygraph
x_data = np.random.random((1, 3, 6, 6)).astype("float32")
upsample = paddle.nn.UpsamplingBilinear2d(scale_factor=[2, 2])
with fluid.dygraph.guard():
x = fluid.dygraph.to_variable(x_data)
interp = upsample(x)
expect = bilinear_interp_np(
x_data, out_h=12, out_w=12, align_corners=True)
self.assertTrue(np.allclose(interp.numpy(), expect))
class TestBilinearInterpOpAPI_dy(unittest.TestCase):
def test_case(self):
import paddle
......
......@@ -316,23 +316,6 @@ class TestLayer(LayerTest):
self.assertTrue(np.allclose(static_ret, dy_ret_value))
def test_pad2d(self):
with self.static_graph():
t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
ret = layers.pad2d(t, paddings=[1, 1, 1, 1])
static_ret = self.get_static_graph_result(
feed={'t': np.ones(
[3, 3, 5, 5], dtype='float32')},
fetch_list=[ret])[0]
with self.dynamic_graph():
t = np.ones([3, 3, 5, 5], dtype='float32')
my_pad2d = paddle.nn.layer.Pad2D(paddings=1)
dy_ret = my_pad2d(base.to_variable(t))
dy_ret_value = dy_ret.numpy()
self.assertTrue(np.allclose(static_ret, dy_ret_value))
def test_matmul(self):
with self.static_graph():
t = layers.data(name='t', shape=[3, 3], dtype='float32')
......
......@@ -526,20 +526,6 @@ class TestNearestAPI(unittest.TestCase):
self.assertTrue(np.allclose(results[i + 1], expect_res))
class TestUpsampleNearest2dInterpOpAPI2_0(unittest.TestCase):
def test_case(self):
# dygraph
x_data = np.random.random((1, 3, 6, 6)).astype("float32")
upsample = paddle.nn.UpsamplingNearest2d(scale_factor=[2, 2])
with fluid.dygraph.guard():
x = fluid.dygraph.to_variable(x_data)
interp = upsample(x)
expect = nearest_neighbor_interp_np(
x_data, out_h=12, out_w=12, align_corners=False)
self.assertTrue(np.allclose(interp.numpy(), expect))
class TestNearestInterpException(unittest.TestCase):
def test_exception(self):
input = fluid.data(name="input", shape=[1, 3, 6, 6], dtype="float32")
......
......@@ -314,7 +314,6 @@ class TestPadAPI(unittest.TestCase):
def test_dygraph_1(self):
paddle.disable_static()
input_shape = (1, 2, 3, 4, 5)
pad = [1, 2, 1, 1, 3, 4]
mode = "constant"
......@@ -342,7 +341,6 @@ class TestPadAPI(unittest.TestCase):
def test_dygraph_2(self):
paddle.disable_static()
input_shape = (2, 3, 4, 5)
pad = [1, 1, 3, 4]
mode = "constant"
......@@ -370,38 +368,8 @@ class TestPadAPI(unittest.TestCase):
self.assertTrue(np.allclose(y1.numpy(), np_out1))
self.assertTrue(np.allclose(y2.numpy(), np_out2))
def test_dygraph_2(self):
paddle.disable_static()
input_shape = (2, 3, 4, 5)
pad = [1, 1, 3, 4]
mode = "constant"
value = 100
input_data = np.random.rand(*input_shape).astype(np.float32)
np_out1 = self._get_numpy_out(
input_data, pad, mode, value, data_format="NCHW")
np_out2 = self._get_numpy_out(
input_data, pad, mode, value, data_format="NHWC")
tensor_data = paddle.to_tensor(input_data)
tensor_pad = paddle.to_tensor(pad, dtype="int32")
y1 = F.pad(tensor_data,
pad=tensor_pad,
mode=mode,
value=value,
data_format="NCHW")
y2 = F.pad(tensor_data,
pad=tensor_pad,
mode=mode,
value=value,
data_format="NHWC")
self.assertTrue(np.allclose(y1.numpy(), np_out1))
self.assertTrue(np.allclose(y2.numpy(), np_out2))
def test_dygraph_3(self):
paddle.disable_static()
input_shape = (3, 4, 5)
pad = [3, 4]
mode = "constant"
......@@ -455,6 +423,8 @@ class TestPad1dAPI(unittest.TestCase):
out = np.pad(input_data, pad, mode=mode)
elif mode == "replicate":
out = np.pad(input_data, pad, mode="edge")
elif mode == "circular":
out = np.pad(input_data, pad, mode="wrap")
return out
......@@ -471,9 +441,10 @@ class TestPad1dAPI(unittest.TestCase):
value = 100
input_data = np.random.rand(*input_shape).astype(np.float32)
pad_reflection = nn.ReflectionPad1d(padding=pad)
pad_replication = nn.ReplicationPad1d(padding=pad)
pad_constant = nn.ConstantPad1d(padding=pad, value=value)
pad_reflection = nn.Pad1D(padding=pad, mode="reflect")
pad_replication = nn.Pad1D(padding=pad, mode="replicate")
pad_constant = nn.Pad1D(padding=pad, mode="constant", value=value)
pad_circular = nn.Pad1D(padding=pad, mode="circular")
data = paddle.to_tensor(input_data)
......@@ -492,6 +463,11 @@ class TestPad1dAPI(unittest.TestCase):
input_data, pad, "constant", value=value, data_format="NCL")
self.assertTrue(np.allclose(output.numpy(), np_out))
output = pad_circular(data)
np_out = self._get_numpy_out(
input_data, pad, "circular", value=value, data_format="NCL")
self.assertTrue(np.allclose(output.numpy(), np_out))
class TestPad2dAPI(unittest.TestCase):
def _get_numpy_out(self,
......@@ -521,6 +497,8 @@ class TestPad2dAPI(unittest.TestCase):
out = np.pad(input_data, pad, mode=mode)
elif mode == "replicate":
out = np.pad(input_data, pad, mode="edge")
elif mode == "circular":
out = np.pad(input_data, pad, mode="wrap")
return out
......@@ -537,10 +515,10 @@ class TestPad2dAPI(unittest.TestCase):
value = 100
input_data = np.random.rand(*input_shape).astype(np.float32)
pad_reflection = nn.ReflectionPad2d(padding=pad)
pad_replication = nn.ReplicationPad2d(padding=pad)
pad_constant = nn.ConstantPad2d(padding=pad, value=value)
pad_zero = nn.ZeroPad2d(padding=pad)
pad_reflection = nn.Pad2D(padding=pad, mode="reflect")
pad_replication = nn.Pad2D(padding=pad, mode="replicate")
pad_constant = nn.Pad2D(padding=pad, mode="constant", value=value)
pad_circular = nn.Pad2D(padding=pad, mode="circular")
data = paddle.to_tensor(input_data)
......@@ -559,9 +537,9 @@ class TestPad2dAPI(unittest.TestCase):
input_data, pad, "constant", value=value, data_format="NCHW")
self.assertTrue(np.allclose(output.numpy(), np_out))
output = pad_zero(data)
output = pad_circular(data)
np_out = self._get_numpy_out(
input_data, pad, "constant", value=0, data_format="NCHW")
input_data, pad, "circular", data_format="NCHW")
self.assertTrue(np.allclose(output.numpy(), np_out))
......@@ -595,6 +573,8 @@ class TestPad3dAPI(unittest.TestCase):
out = np.pad(input_data, pad, mode=mode)
elif mode == "replicate":
out = np.pad(input_data, pad, mode="edge")
elif mode == "circular":
out = np.pad(input_data, pad, mode="wrap")
return out
......@@ -611,11 +591,18 @@ class TestPad3dAPI(unittest.TestCase):
value = 100
input_data = np.random.rand(*input_shape).astype(np.float32)
pad_replication = nn.ReplicationPad3d(padding=pad)
pad_constant = nn.ConstantPad3d(padding=pad, value=value)
pad_reflection = nn.Pad3D(padding=pad, mode="reflect")
pad_replication = nn.Pad3D(padding=pad, mode="replicate")
pad_constant = nn.Pad3D(padding=pad, mode="constant", value=value)
pad_circular = nn.Pad3D(padding=pad, mode="circular")
data = paddle.to_tensor(input_data)
output = pad_reflection(data)
np_out = self._get_numpy_out(
input_data, pad, "reflect", data_format="NCDHW")
self.assertTrue(np.allclose(output.numpy(), np_out))
output = pad_replication(data)
np_out = self._get_numpy_out(
input_data, pad, "replicate", data_format="NCDHW")
......@@ -626,6 +613,11 @@ class TestPad3dAPI(unittest.TestCase):
input_data, pad, "constant", value=value, data_format="NCDHW")
self.assertTrue(np.allclose(output.numpy(), np_out))
output = pad_circular(data)
np_out = self._get_numpy_out(
input_data, pad, "circular", data_format="NCDHW")
self.assertTrue(np.allclose(output.numpy(), np_out))
class TestPad3dOpError(unittest.TestCase):
def test_errors(self):
......@@ -673,32 +665,30 @@ class TestPad3dOpError(unittest.TestCase):
class TestPadDataformatError(unittest.TestCase):
def test_errors(self):
def test_ncl():
paddle.disable_static(paddle.CPUPlace())
input_shape = (1, 2, 3, 4)
pad = paddle.to_tensor(np.array([2, 1, 2, 1]).astype('int32'))
data = np.arange(
np.prod(input_shape), dtype=np.float64).reshape(input_shape) + 1
my_pad = nn.ReplicationPad1d(padding=pad, data_format="NCL")
my_pad = nn.Pad1D(padding=pad, mode="replicate", data_format="NCL")
data = paddle.to_tensor(data)
result = my_pad(data)
def test_nchw():
paddle.disable_static(paddle.CPUPlace())
input_shape = (1, 2, 4)
pad = paddle.to_tensor(np.array([2, 1, 2, 1]).astype('int32'))
data = np.arange(
np.prod(input_shape), dtype=np.float64).reshape(input_shape) + 1
my_pad = nn.ReplicationPad1d(padding=pad, data_format="NCHW")
my_pad = nn.Pad1D(padding=pad, mode="replicate", data_format="NCHW")
data = paddle.to_tensor(data)
result = my_pad(data)
def test_ncdhw():
paddle.disable_static(paddle.CPUPlace())
input_shape = (1, 2, 3, 4)
pad = paddle.to_tensor(np.array([2, 1, 2, 1]).astype('int32'))
data = np.arange(
np.prod(input_shape), dtype=np.float64).reshape(input_shape) + 1
my_pad = nn.ReplicationPad1d(padding=pad, data_format="NCDHW")
my_pad = nn.Pad1D(
padding=pad, mode="replicate", data_format="NCDHW")
data = paddle.to_tensor(data)
result = my_pad(data)
......
......@@ -71,22 +71,14 @@ from .layer.activation import Tanhshrink #DEFINE_ALIAS
from .layer.activation import ThresholdedReLU #DEFINE_ALIAS
from .layer.activation import LogSoftmax #DEFINE_ALIAS
from .layer.activation import Maxout #DEFINE_ALIAS
from .layer.common import ReflectionPad1d #DEFINE_ALIAS
from .layer.common import ReplicationPad1d #DEFINE_ALIAS
from .layer.common import ConstantPad1d #DEFINE_ALIAS
from .layer.common import ReflectionPad2d #DEFINE_ALIAS
from .layer.common import ReplicationPad2d #DEFINE_ALIAS
from .layer.common import ConstantPad2d #DEFINE_ALIAS
from .layer.common import ZeroPad2d #DEFINE_ALIAS
from .layer.common import ReplicationPad3d #DEFINE_ALIAS
from .layer.common import ConstantPad3d #DEFINE_ALIAS
from .layer.common import Pad1D #DEFINE_ALIAS
from .layer.common import Pad2D #DEFINE_ALIAS
from .layer.common import Pad3D #DEFINE_ALIAS
from .layer.common import CosineSimilarity #DEFINE_ALIAS
from .layer.common import Embedding #DEFINE_ALIAS
from .layer.common import Linear #DEFINE_ALIAS
from .layer.common import Flatten #DEFINE_ALIAS
from .layer.common import Upsample #DEFINE_ALIAS
from .layer.common import UpsamplingNearest2d #DEFINE_ALIAS
from .layer.common import UpsamplingBilinear2d #DEFINE_ALIAS
from .layer.common import Bilinear #DEFINE_ALIAS
from .layer.common import Dropout #DEFINE_ALIAS
from .layer.common import Dropout2d #DEFINE_ALIAS
......
......@@ -44,23 +44,14 @@ from .activation import LogSoftmax #DEFINE_ALIAS
from .common import BilinearTensorProduct #DEFINE_ALIAS
from .common import Bilinear #DEFINE_ALIAS
from .common import Pool2D #DEFINE_ALIAS
from .common import Pad1D #DEFINE_ALIAS
from .common import Pad2D #DEFINE_ALIAS
from .common import ReflectionPad1d #DEFINE_ALIAS
from .common import ReplicationPad1d #DEFINE_ALIAS
from .common import ConstantPad1d #DEFINE_ALIAS
from .common import ReflectionPad2d #DEFINE_ALIAS
from .common import ReplicationPad2d #DEFINE_ALIAS
from .common import ConstantPad2d #DEFINE_ALIAS
from .common import ZeroPad2d #DEFINE_ALIAS
from .common import ReplicationPad3d #DEFINE_ALIAS
from .common import ConstantPad3d #DEFINE_ALIAS
from .common import Pad3D #DEFINE_ALIAS
from .common import CosineSimilarity #DEFINE_ALIAS
from .common import Embedding #DEFINE_ALIAS
from .common import Linear #DEFINE_ALIAS
from .common import Flatten #DEFINE_ALIAS
from .common import Upsample #DEFINE_ALIAS
from .common import UpsamplingNearest2d #DEFINE_ALIAS
from .common import UpsamplingBilinear2d #DEFINE_ALIAS
from .common import Dropout #DEFINE_ALIAS
from .common import Dropout2d #DEFINE_ALIAS
from .common import Dropout3d #DEFINE_ALIAS
......
......@@ -27,18 +27,9 @@ __all__ = [
'Embedding',
'Linear',
'Upsample',
'Pad1D',
'Pad2D',
'UpsamplingNearest2d',
'UpsamplingBilinear2d',
'ReflectionPad1d',
'ReplicationPad1d',
'ConstantPad1d',
'ReflectionPad2d',
'ReplicationPad2d',
'ConstantPad2d',
'ZeroPad2d',
'ConstantPad3d',
'ReplicationPad3d',
'Pad3D',
'CosineSimilarity',
'Dropout',
'Dropout2d',
......@@ -559,84 +550,6 @@ class UpsamplingBilinear2d(layers.Layer):
return out
class Pad2D(layers.Layer):
"""
This interface is used to construct a callable object of the ``Pad2D`` class.
The Pad2D layer pads the input tensor boundaries according to 'paddings' and 'mode'.
If mode is 'reflect', paddings[0] and paddings[1] must be no greater
than height-1. And the width dimension has the same condition.
Parameters:
paddings (int | List[int32]): The padding size. If padding is a int, uses the same
padding in all boundaries, if padding is a List, it must contain four integers,
(padding_top, padding_bottom, padding_left, padding_right).
Default is [0, 0, 0, 0].
mode (str): Three modes: 'constant' (default), 'reflect', 'edge' .
When in 'constant' mode, this op uses a constant value to pad the input tensor.
When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
When in 'edge' mode, uses input boundaries to pad the input tensor.
Default is 'constant'
pad_value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
data_format (str): An string from: "NHWC", "NCHW". Specify the data format of
the input data.
Default is "NCHW"
Returns:
None
Examples:
.. code-block:: text
Input = [[[[1., 2., 3.],
[4., 5., 6.]]]]
Case 0:
paddings = [0, 1, 2, 3],
mode = 'constant'
pad_value = 0
Out = [[[[0., 0., 1., 2., 3., 0., 0., 0.],
[0., 0., 4., 5., 6., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]]]]
Case 1:
paddings = [0, 1, 2, 1],
mode = 'reflect'
Out = [[[[3., 2., 1., 2., 3., 2.],
[6., 5., 4., 5., 6., 5.],
[3., 2., 1., 2., 3., 2.]]]]
Case 2:
paddings = [0, 1, 2, 1],
mode = 'edge'
Out = [[[[1., 1., 1., 2., 3., 3.],
[4., 4., 4., 5., 6., 6.],
[4., 4., 4., 5., 6., 6.]]]]
Code Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.nn as nn
import numpy as np
data = np.ones((2, 2, 2, 2)).astype('float32')
my_pad = nn.layer.Pad2D(paddings=[1, 1, 1, 1])
with fluid.dygraph.guard():
data = fluid.dygraph.to_variable(data)
result = my_pad(data)
"""
def __init__(self,
paddings=0,
mode='constant',
pad_value=0.0,
data_format="NCHW"):
super(Pad2D, self).__init__()
self._mode = mode
self._pad_value = pad_value
self._data_format = data_format
self._paddings = [paddings] * 4 if isinstance(paddings,
int) else paddings
def forward(self, input):
return paddle.fluid.layers.pad2d(
input,
paddings=self._paddings,
mode=self._mode,
pad_value=self._pad_value,
data_format=self._data_format)
class Bilinear(layers.Layer):
"""
......@@ -960,176 +873,64 @@ class AlphaDropout(layers.Layer):
return out
class ReflectionPad1d(layers.Layer):
class Pad1D(layers.Layer):
"""
This interface is used to construct a callable object of the ``ReflectionPad1d`` class.
Uses reflection of the input boundaries to pad the input tensor.
Parameters:
padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
of input will be padded. The pad has the form (pad_left, pad_right).
data_format (str): An string from: "NCL", "NLC". Specify the data format of the input data.
Default is "NCL"
name (str, optional) : The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
None
Examples:
.. code-block:: text
x = [[[1., 2., 3.],
[4., 5., 6.]]]
padding = [1, 2],
Out = [[[2. 1. 2. 3. 2. 1.]
[5. 4. 5. 6. 5. 4.]]]
Code Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import numpy as np
paddle.disable_static()
input_shape = (1, 2, 3)
pad = [1, 2]
data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
my_pad = nn.ReflectionPad1d(padding=pad)
data = paddle.to_tensor(data)
result = my_pad(data)
print(result.numpy())
# [[[2. 1. 2. 3. 2. 1.]
# [5. 4. 5. 6. 5. 4.]]]
"""
def __init__(self, padding, data_format="NCL", name=None):
super(ReflectionPad1d, self).__init__()
self._mode = "reflect"
self._data_format = data_format
self._pad = padding
self._name = name
def forward(self, x):
return F.pad(x,
pad=self._pad,
mode=self._mode,
data_format=self._data_format,
name=self._name)
class ReplicationPad1d(layers.Layer):
"""
This interface is used to construct a callable object of the ``ReplicationPad1d`` class.
Uses input boundaries to pad the input tensor.
Parameters:
padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
of input will be padded. The pad has the form (pad_left, pad_right).
data_format (str): An string from: "NCL", "NLC". Specify the data format of the input data.
Default is "NCL"
name (str, optional) : The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
None
Examples:
.. code-block:: text
x = [[[1., 2., 3.],
[4., 5., 6.]]]
padding = [1, 2],
Out = [[[2. 1. 2. 3. 2. 1.]
[5. 4. 5. 6. 5. 4.]]]
Code Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import numpy as np
paddle.disable_static()
input_shape = (1, 2, 3)
pad = [1, 2]
data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
my_pad = nn.ReplicationPad1d(padding=pad)
data = paddle.to_tensor(data)
result = my_pad(data)
print(result.numpy())
# [[[1. 1. 2. 3. 3. 3.]
# [1. 4. 5. 6. 6. 6.]]]
"""
def __init__(self, padding, data_format="NCL", name=None):
super(ReplicationPad1d, self).__init__()
self._mode = "replicate"
self._data_format = data_format
self._pad = padding
self._name = name
def forward(self, x):
return F.pad(x,
pad=self._pad,
mode=self._mode,
data_format=self._data_format,
name=self._name)
class ConstantPad1d(layers.Layer):
"""
This interface is used to construct a callable object of the ``ConstantPad1d`` class.
Uses a constant value to pad the input tensor.
This interface is used to construct a callable object of the ``Pad1D`` class.
Pad tensor according to 'pad', 'mode' and 'value'.
If mode is 'reflect', pad[0] and pad[1] must be no greater than width-1.
Parameters:
padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
of input will be padded. The pad has the form (pad_left, pad_right).
mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
When in 'constant' mode, this op uses a constant value to pad the input tensor.
When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
When in 'replicate' mode, uses input boundaries to pad the input tensor.
When in 'circular' mode, uses circular input to pad the input tensor.
Default is 'constant'.
value (float32): The value to fill the padded areas. Default is 0.0
data_format (str): An string from: "NCL", "NLC". Specify the data format of the input data.
Default is "NCL"
name (str, optional) : The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
None
Examples:
.. code-block:: text
x = [[[1., 2., 3.],
[4., 5., 6.]]]
padding = [1, 2],
mode = "constant"
value = 0.0
Out = [[[0. 1. 2. 3. 0. 0.]
[0. 4. 5. 6. 0. 0.]]]
Code Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import numpy as np
paddle.disable_static()
input_shape = (1, 2, 3)
pad = [1, 2]
data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
my_pad = nn.ConstantPad1d(padding=pad)
data = paddle.to_tensor(data)
mode = "constant"
data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1
my_pad = nn.Pad1D(padding=pad, mode=mode)
result = my_pad(data)
print(result.numpy())
# [[[0. 1. 2. 3. 0. 0.]
# [0. 4. 5. 6. 0. 0.]]]
"""
def __init__(self, padding, value=0.0, data_format="NCL", name=None):
super(ConstantPad1d, self).__init__()
self._mode = "constant"
self._data_format = data_format
def __init__(self,
padding,
mode='constant',
value=0.0,
data_format="NCL",
name=None):
super(Pad1D, self).__init__()
self._pad = padding
self._mode = mode
self._value = value
self._data_format = data_format
self._name = name
def forward(self, x):
......@@ -1141,46 +942,48 @@ class ConstantPad1d(layers.Layer):
name=self._name)
class ConstantPad2d(layers.Layer):
class Pad2D(layers.Layer):
"""
This interface is used to construct a callable object of the ``ConstantPad2d`` class.
Uses a constant value to pad the input tensor.
This interface is used to construct a callable object of the ``Pad2D`` class.
Pad tensor according to 'pad', 'mode' and 'value'.
If mode is 'reflect', pad[0] and pad[1] must be no greater
than width-1. The height dimension has the same condition.
Parameters:
padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
When in 'constant' mode, this op uses a constant value to pad the input tensor.
When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
When in 'replicate' mode, uses input boundaries to pad the input tensor.
When in 'circular' mode, uses circular input to pad the input tensor.
Default is 'constant'.
value (float32): The value to fill the padded areas. Default is 0.0
data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
Default is "NCHW"
name (str, optional) : The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
None
Examples:
.. code-block:: text
x = [[[[1., 2., 3.],
[4., 5., 6.]]]]
padding = [1, 1, 0, 0]
mode = "constant"
value = 0.0
Out = [[[[0. 1. 2. 3. 0.]
[0. 4. 5. 6. 0.]]]]
Code Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import numpy as np
paddle.disable_static()
input_shape = (1, 1, 2, 3)
pad = [1, 0, 1, 2]
data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
my_pad = nn.ConstantPad2d(padding=pad)
data = paddle.to_tensor(data)
mode = "constant"
data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1
my_pad = nn.Pad2D(padding=pad, mode=mode)
result = my_pad(data)
print(result.numpy())
# [[[[0. 0. 0. 0.]
......@@ -1190,251 +993,69 @@ class ConstantPad2d(layers.Layer):
# [0. 0. 0. 0.]]]]
"""
def __init__(self, padding, value=0.0, data_format="NCHW", name=None):
super(ConstantPad2d, self).__init__()
self._mode = "constant"
self._data_format = data_format
def __init__(self,
padding,
mode='constant',
value=0.0,
data_format="NCHW",
name=None):
super(Pad2D, self).__init__()
self._pad = padding
self._mode = mode
self._value = value
self._name = name
def forward(self, x):
return F.pad(x,
pad=self._pad,
mode=self._mode,
value=self._value,
data_format=self._data_format,
name=self._name)
class ZeroPad2d(layers.Layer):
"""
This interface is used to construct a callable object of the ``ZeroPad2d`` class.
Uses 0 to pad the input tensor.
Parameters:
padding (Variable | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
Default is "NCHW"
name (str, optional) : The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
None
Examples:
.. code-block:: text
x = [[[[1., 2., 3.],
[4., 5., 6.]]]]
padding = [1, 1, 0, 0]
Out = [[[[0. 1. 2. 3. 0.]
[0. 4. 5. 6. 0.]]]]
Code Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import numpy as np
paddle.disable_static()
input_shape = (1, 1, 2, 3)
pad = [1, 0, 1, 2]
data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
my_pad = nn.ZeroPad2d(padding=pad)
data = paddle.to_tensor(data)
result = my_pad(data)
print(result.numpy())
# [[[[0. 0. 0. 0.]
# [0. 1. 2. 3.]
# [0. 4. 5. 6.]
# [0. 0. 0. 0.]
# [0. 0. 0. 0.]]]]
"""
def __init__(self, padding, data_format="NCHW", name=None):
super(ZeroPad2d, self).__init__()
self._mode = "constant"
self._data_format = data_format
self._pad = padding
self._name = name
def forward(self, x):
return F.pad(x,
pad=self._pad,
mode=self._mode,
data_format=self._data_format,
name=self._name)
class ReplicationPad2d(layers.Layer):
"""
This interface is used to construct a callable object of the ``ReplicationPad2d`` class.
Uses input boundaries to pad the input tensor.
Parameters:
padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
Default is "NCHW"
name (str, optional) : The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
None
Examples:
.. code-block:: text
x = [[[[1., 2., 3.],
[4., 5., 6.]]]]
padding = [1, 1, 0, 0]
Out = [[[[1. 1. 2. 3. 3.]
[4. 4. 5. 6. 6.]]]]
Code Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import numpy as np
paddle.disable_static()
input_shape = (1, 1, 2, 3)
pad = [1, 0, 1, 2]
data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
my_pad = nn.ReplicationPad2d(padding=pad)
data = paddle.to_tensor(data)
result = my_pad(data)
print(result.numpy())
# [[[[1. 1. 2. 3.]
# [1. 1. 2. 3.]
# [4. 4. 5. 6.]
# [4. 4. 5. 6.]
# [4. 4. 5. 6.]]]]
"""
def __init__(self, padding, data_format="NCHW", name=None):
super(ReplicationPad2d, self).__init__()
self._mode = "replicate"
self._data_format = data_format
self._pad = padding
self._name = name
def forward(self, x):
return F.pad(x,
pad=self._pad,
mode=self._mode,
data_format=self._data_format,
name=self._name)
class ReflectionPad2d(layers.Layer):
"""
This interface is used to construct a callable object of the ``ReflectionPad2d`` class.
Uses reflection of the input boundaries to pad the input tensor.
Parameters:
padding (Variable | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
Default is "NCHW"
name (str, optional) : The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
None
Examples:
.. code-block:: text
x = [[[[1., 2., 3.],
[4., 5., 6.]]]]
padding = [1, 1, 0, 0]
Out = [[[[2. 1. 2. 3. 2.]
[5. 4. 5. 6. 5.]]]]
Code Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import numpy as np
paddle.disable_static()
input_shape = (1, 1, 4, 3)
pad = [1, 0, 1, 2]
data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
my_pad = nn.ReflectionPad2d(padding=pad)
data = paddle.to_tensor(data)
result = my_pad(data)
print(result.numpy())
# [[[[ 5. 4. 5. 6.]
# [ 2. 1. 2. 3.]
# [ 5. 4. 5. 6.]
# [ 8. 7. 8. 9.]
# [11. 10. 11. 12.]
# [ 8. 7. 8. 9.]
# [ 5. 4. 5. 6.]]]]
"""
def __init__(self, padding, data_format="NCHW", name=None):
super(ReflectionPad2d, self).__init__()
self._mode = "reflect"
self._data_format = data_format
self._pad = padding
self._name = name
def forward(self, x):
return F.pad(x,
pad=self._pad,
mode=self._mode,
value=self._value,
data_format=self._data_format,
name=self._name)
class ConstantPad3d(layers.Layer):
class Pad3D(layers.Layer):
"""
This interface is used to construct a callable object of the ``ConstantPad3d`` class.
Uses a constant value to pad the input tensor.
This interface is used to construct a callable object of the ``Pad3D`` class.
Pad tensor according to 'pad', 'mode' and 'value'.
If mode is 'reflect', pad[0] and pad[1] must be no greater
than width-1. The height and depth dimension has the same condition.
Parameters:
padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
When in 'constant' mode, this op uses a constant value to pad the input tensor.
When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
When in 'replicate' mode, uses input boundaries to pad the input tensor.
When in 'circular' mode, uses circular input to pad the input tensor.
Default is 'constant'.
value (float32): The value to fill the padded areas. Default is 0.0
data_format (str): An string from: "NCDHW", "NDHWC". Specify the data format of the input data.
Default is "NCDHW"
name (str, optional) : The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
None
Examples:
.. code-block:: text
x = [[[[[1., 2., 3.],
[4., 5., 6.]]]]]
padding = [1, 2, 0, 0, 0, 0]
mode = "constant"
value = 0.0
Out = [[[[[0. 1. 2. 3. 0. 0.]
[0. 4. 5. 6. 0. 0.]]]]]
Code Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import numpy as np
paddle.disable_static()
input_shape = (1, 1, 1, 2, 3)
pad = [1, 0, 1, 2, 0, 0]
data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
my_pad = nn.ConstantPad3d(padding=pad)
data = paddle.to_tensor(data)
mode = "constant"
data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1
my_pad = nn.Pad3D(padding=pad, mode=mode)
result = my_pad(data)
print(result.numpy())
# [[[[[0. 0. 0. 0.]
......@@ -1444,81 +1065,24 @@ class ConstantPad3d(layers.Layer):
# [0. 0. 0. 0.]]]]]
"""
def __init__(self, padding, value=0.0, data_format="NCDHW", name=None):
super(ConstantPad3d, self).__init__()
self._mode = "constant"
self._data_format = data_format
def __init__(self,
padding,
mode='constant',
value=0.0,
data_format="NCDHW",
name=None):
super(Pad3D, self).__init__()
self._pad = padding
self._mode = mode
self._value = value
self._name = name
def forward(self, x):
return F.pad(x,
pad=self._pad,
mode=self._mode,
value=self._value,
data_format=self._data_format,
name=self._name)
class ReplicationPad3d(layers.Layer):
"""
This interface is used to construct a callable object of the ``ReplicationPad3d`` class.
Uses input boundaries to pad the input tensor.
Parameters:
padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
data_format (str): An string from: "NCDHW", "NDHWC". Specify the data format of the input data.
Default is "NCDHW"
name (str, optional) : The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
None
Examples:
.. code-block:: text
x = [[[[[1., 2., 3.],
[4., 5., 6.]]]]]
padding = [1, 2, 0, 0, 0, 0]
Out = [[[[[1. 1. 2. 3. 3. 3.]
[4. 4. 5. 6. 6. 6.]]]]]
Code Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import numpy as np
paddle.disable_static()
input_shape = (1, 1, 1, 2, 3)
pad = [1, 0, 1, 2, 0, 0]
data = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) + 1
my_pad = nn.ReplicationPad3d(padding=pad)
data = paddle.to_tensor(data)
result = my_pad(data)
print(result.numpy())
# [[[[[1. 1. 2. 3.]
# [1. 1. 2. 3.]
# [4. 4. 5. 6.]
# [4. 4. 5. 6.]
# [4. 4. 5. 6.]]]]]
"""
def __init__(self, padding, data_format="NCDHW", name=None):
super(ReplicationPad3d, self).__init__()
self._mode = "replicate"
self._data_format = data_format
self._pad = padding
self._name = name
def forward(self, x):
return F.pad(x,
pad=self._pad,
mode=self._mode,
value=self._value,
data_format=self._data_format,
name=self._name)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册