Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
ed2a1852
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ed2a1852
编写于
11月 24, 2019
作者:
G
gongweibao
提交者:
GitHub
11月 24, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimize nhwc for tensor core in ConvOp and ConvGradOp (#20597)
上级
c918788b
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
329 addition
and
75 deletion
+329
-75
paddle/fluid/operators/conv_cudnn_op.cu
paddle/fluid/operators/conv_cudnn_op.cu
+191
-64
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+8
-6
paddle/fluid/operators/conv_op.h
paddle/fluid/operators/conv_op.h
+30
-0
paddle/fluid/platform/cudnn_desc.h
paddle/fluid/platform/cudnn_desc.h
+45
-3
python/paddle/fluid/tests/unittests/test_conv2d_op.py
python/paddle/fluid/tests/unittests/test_conv2d_op.py
+55
-2
未找到文件。
paddle/fluid/operators/conv_cudnn_op.cu
浏览文件 @
ed2a1852
...
@@ -40,6 +40,10 @@ using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
...
@@ -40,6 +40,10 @@ using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using
ScopedConvolutionDescriptor
=
platform
::
ScopedConvolutionDescriptor
;
using
ScopedConvolutionDescriptor
=
platform
::
ScopedConvolutionDescriptor
;
using
DataLayout
=
platform
::
DataLayout
;
using
DataLayout
=
platform
::
DataLayout
;
static
inline
bool
IsVoltaOrLater
(
const
platform
::
CUDADeviceContext
&
dev_ctx
)
{
return
dev_ctx
.
GetComputeCapability
()
>=
70
;
}
template
<
typename
T
>
template
<
typename
T
>
class
CUDNNConvOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
CUDNNConvOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
...
@@ -68,11 +72,27 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
...
@@ -68,11 +72,27 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
const
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
const
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
const
bool
channel_last
=
(
data_format
==
"NHWC"
||
data_format
==
"NDHWC"
);
const
bool
channel_last
=
(
data_format
==
"NHWC"
||
data_format
==
"NDHWC"
);
auto
dtype
=
platform
::
CudnnDataType
<
T
>::
type
;
// Tensor Core introduced from Volta GPUs supports more faster conv op
// with FP16 in NHWC data format.
const
bool
compute_in_nhwc
=
dtype
==
CUDNN_DATA_HALF
&&
IsVoltaOrLater
(
dev_ctx
);
// We will only do data format conversion from NHWC to NCHW.
// cudnn will convert NCHW to NHWC automatically on Tensor Core.
auto
compute_format
=
compute_in_nhwc
&&
channel_last
?
DataLayout
::
kNHWC
:
DataLayout
::
kNCHW
;
VLOG
(
3
)
<<
"Compute ConvOp with cuDNN:"
<<
" data_format="
<<
data_format
<<
" compute_format="
<<
(
compute_format
==
DataLayout
::
kNHWC
?
"NHWC"
:
"NCHW"
);
// ------------ transformed tensor -----------
// ------------ transformed tensor -----------
Tensor
transformed_input_channel
(
input
->
type
());
Tensor
transformed_input_channel
(
input
->
type
());
Tensor
transformed_output
(
output
->
type
());
Tensor
transformed_output
(
output
->
type
());
Tensor
transformed_filter_channel
(
filter
->
type
());
T
*
output_data
=
nullptr
;
T
*
output_data
=
nullptr
;
if
(
channel_last
)
{
if
(
channel_last
&&
compute_format
==
DataLayout
::
kNCHW
)
{
VLOG
(
3
)
<<
"Transform input tensor from NHWC to NCHW."
;
ResizeToChannelFirst
<
platform
::
CUDADeviceContext
,
T
>
(
ResizeToChannelFirst
<
platform
::
CUDADeviceContext
,
T
>
(
ctx
,
input
,
&
transformed_input_channel
);
ctx
,
input
,
&
transformed_input_channel
);
TransToChannelFirst
<
platform
::
CUDADeviceContext
,
T
>
(
TransToChannelFirst
<
platform
::
CUDADeviceContext
,
T
>
(
...
@@ -82,19 +102,36 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
...
@@ -82,19 +102,36 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
&
transformed_output
);
&
transformed_output
);
}
else
{
}
else
{
transformed_input_channel
=
*
input
;
transformed_input_channel
.
ShareDataWith
(
*
input
);
transformed_output
=
*
output
;
transformed_output
.
ShareDataWith
(
*
output
);
}
if
(
compute_format
==
DataLayout
::
kNHWC
)
{
VLOG
(
3
)
<<
"Transform filter tensor from NCHW to NHWC."
;
ResizeToChannelLast
<
platform
::
CUDADeviceContext
,
T
>
(
ctx
,
filter
,
&
transformed_filter_channel
);
TransToChannelLast
<
platform
::
CUDADeviceContext
,
T
>
(
ctx
,
filter
,
&
transformed_filter_channel
);
}
else
{
transformed_filter_channel
.
ShareDataWith
(
*
filter
);
}
}
output_data
=
transformed_output
.
data
<
T
>
();
output_data
=
transformed_output
.
data
<
T
>
();
// update padding and dilation
// update padding and dilation
auto
in_dims
=
transformed_input_channel
.
dims
();
auto
in_dims
=
transformed_input_channel
.
dims
();
auto
filter_dims
=
filter
->
dims
();
auto
filter_dims
=
transformed_filter_channel
.
dims
();
framework
::
DDim
in_data_dims
;
framework
::
DDim
in_data_dims
;
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
())
;
framework
::
DDim
filter_data_dims
;
framework
::
DDim
filter_data_dims
=
if
(
compute_format
==
DataLayout
::
kNCHW
)
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
filter_data_dims
=
framework
::
slice_ddim
(
filter_dims
,
2
,
filter_dims
.
size
());
framework
::
slice_ddim
(
filter_dims
,
2
,
filter_dims
.
size
());
}
else
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
1
,
in_dims
.
size
()
-
1
);
filter_data_dims
=
framework
::
slice_ddim
(
filter_dims
,
1
,
filter_dims
.
size
()
-
1
);
}
std
::
vector
<
int
>
ksize
=
framework
::
vectorize
<
int
>
(
filter_data_dims
);
std
::
vector
<
int
>
ksize
=
framework
::
vectorize
<
int
>
(
filter_data_dims
);
UpdatePaddingAndDilation
(
&
paddings
,
&
dilations
,
padding_algorithm
,
UpdatePaddingAndDilation
(
&
paddings
,
&
dilations
,
padding_algorithm
,
in_data_dims
,
strides
,
ksize
);
in_data_dims
,
strides
,
ksize
);
...
@@ -108,17 +145,33 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
...
@@ -108,17 +145,33 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
padding_diff
(
data_dim
);
std
::
vector
<
int
>
padding_diff
(
data_dim
);
std
::
vector
<
int
>
new_input_shape_vec
(
data_dim
+
2
);
std
::
vector
<
int
>
new_input_shape_vec
(
data_dim
+
2
);
new_input_shape_vec
[
0
]
=
transformed_input_channel
.
dims
()[
0
];
new_input_shape_vec
[
0
]
=
transformed_input_channel
.
dims
()[
0
];
if
(
compute_format
==
DataLayout
::
kNCHW
)
{
new_input_shape_vec
[
1
]
=
transformed_input_channel
.
dims
()[
1
];
new_input_shape_vec
[
1
]
=
transformed_input_channel
.
dims
()[
1
];
}
else
{
new_input_shape_vec
[
data_dim
+
1
]
=
transformed_input_channel
.
dims
()[
data_dim
+
1
];
}
std
::
vector
<
int
>
input_pad
(
transformed_input_channel
.
dims
().
size
()
*
2
,
std
::
vector
<
int
>
input_pad
(
transformed_input_channel
.
dims
().
size
()
*
2
,
0
);
0
);
for
(
size_t
i
=
0
;
i
<
data_dim
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
data_dim
;
++
i
)
{
padding_diff
[
i
]
=
std
::
abs
(
paddings
[
2
*
i
]
-
paddings
[
2
*
i
+
1
]);
padding_diff
[
i
]
=
std
::
abs
(
paddings
[
2
*
i
]
-
paddings
[
2
*
i
+
1
]);
padding_common
[
i
]
=
std
::
min
(
paddings
[
2
*
i
],
paddings
[
2
*
i
+
1
]);
padding_common
[
i
]
=
std
::
min
(
paddings
[
2
*
i
],
paddings
[
2
*
i
+
1
]);
if
(
compute_format
==
DataLayout
::
kNCHW
)
{
new_input_shape_vec
[
i
+
2
]
=
new_input_shape_vec
[
i
+
2
]
=
transformed_input_channel
.
dims
()[
i
+
2
]
+
padding_diff
[
i
];
transformed_input_channel
.
dims
()[
i
+
2
]
+
padding_diff
[
i
];
}
else
{
new_input_shape_vec
[
i
+
1
]
=
transformed_input_channel
.
dims
()[
i
+
1
]
+
padding_diff
[
i
];
}
if
(
compute_format
==
DataLayout
::
kNCHW
)
{
input_pad
[
2
*
i
+
4
]
=
paddings
[
2
*
i
]
-
padding_common
[
i
];
input_pad
[
2
*
i
+
4
]
=
paddings
[
2
*
i
]
-
padding_common
[
i
];
input_pad
[
2
*
i
+
4
+
1
]
=
paddings
[
2
*
i
+
1
]
-
padding_common
[
i
];
input_pad
[
2
*
i
+
4
+
1
]
=
paddings
[
2
*
i
+
1
]
-
padding_common
[
i
];
}
else
{
input_pad
[
2
*
i
+
2
]
=
paddings
[
2
*
i
]
-
padding_common
[
i
];
input_pad
[
2
*
i
+
2
+
1
]
=
paddings
[
2
*
i
+
1
]
-
padding_common
[
i
];
}
}
}
framework
::
DDim
new_input_shape
(
framework
::
DDim
new_input_shape
(
framework
::
make_ddim
(
new_input_shape_vec
));
framework
::
make_ddim
(
new_input_shape_vec
));
...
@@ -147,7 +200,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
...
@@ -147,7 +200,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
}
}
}
else
{
}
else
{
transformed_input
=
transformed_input_channel
;
transformed_input
.
ShareDataWith
(
transformed_input_channel
)
;
if
(
paddings
.
size
()
==
data_dim
)
{
if
(
paddings
.
size
()
==
data_dim
)
{
for
(
size_t
i
=
0
;
i
<
data_dim
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
data_dim
;
++
i
)
{
padding_common
[
i
]
=
paddings
[
i
];
padding_common
[
i
]
=
paddings
[
i
];
...
@@ -160,18 +213,20 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
...
@@ -160,18 +213,20 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
}
}
const
T
*
input_data
=
transformed_input
.
data
<
T
>
();
const
T
*
input_data
=
transformed_input
.
data
<
T
>
();
const
T
*
filter_data
=
filter
->
data
<
T
>
();
const
T
*
filter_data
=
transformed_filter_channel
.
data
<
T
>
();
// ------------------- cudnn descriptors ---------------------
// ------------------- cudnn descriptors ---------------------
ConvArgs
args
{
&
transformed_input
,
filter
,
&
transformed_output
,
strides
,
ConvArgs
args
{
&
transformed_input
,
&
transformed_filter_channel
,
&
transformed_output
,
strides
,
padding_common
,
dilations
};
padding_common
,
dilations
};
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
workspace_handle
=
dev_ctx
.
cudnn_workspace_handle
();
auto
workspace_handle
=
dev_ctx
.
cudnn_workspace_handle
();
auto
dtype
=
platform
::
CudnnDataType
<
T
>::
type
;
DataLayout
layout
=
compute_format
==
DataLayout
::
kNHWC
?
DataLayout
::
kNHWC
DataLayout
layout
=
DataLayout
::
kNCHW
;
:
DataLayout
::
kNCHW
;
if
(
transformed_input_channel
.
dims
().
size
()
==
5
)
{
if
(
transformed_input
.
dims
().
size
()
==
5
)
{
layout
=
DataLayout
::
kNCDHW
;
layout
=
compute_format
==
DataLayout
::
kNHWC
?
DataLayout
::
kNDHWC
:
DataLayout
::
kNCDHW
;
}
}
auto
layout_format
=
GetCudnnTensorFormat
(
layout
);
auto
layout_format
=
GetCudnnTensorFormat
(
layout
);
...
@@ -186,21 +241,27 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
...
@@ -186,21 +241,27 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
args
.
cdesc
.
desc
(),
groups
));
args
.
cdesc
.
desc
(),
groups
));
groups
=
1
;
groups
=
1
;
#endif
#endif
args
.
idesc
.
set
(
transformed_input
,
groups
);
args
.
idesc
.
set
(
transformed_input
,
layout_format
);
args
.
wdesc
.
set
(
transformed_filter_channel
,
layout_format
,
groups
);
args
.
wdesc
.
set
(
*
filter
,
layout_format
,
groups
);
args
.
odesc
.
set
(
transformed_output
,
layout_format
);
args
.
odesc
.
set
(
transformed_output
,
groups
);
int
i_n
,
i_c
,
i_d
,
i_h
,
i_w
;
int
i_n
,
i_c
,
i_d
,
i_h
,
i_w
;
int
o_n
,
o_c
,
o_d
,
o_h
,
o_w
;
if
(
compute_format
==
DataLayout
::
kNHWC
)
{
GetNCDHW
(
transformed_input
.
dims
(),
DataLayout
::
kNHWC
,
&
i_n
,
&
i_c
,
&
i_d
,
&
i_h
,
&
i_w
);
GetNCDHW
(
transformed_output
.
dims
(),
DataLayout
::
kNHWC
,
&
o_n
,
&
o_c
,
&
o_d
,
&
o_h
,
&
o_w
);
}
else
{
GetNCDHW
(
transformed_input
.
dims
(),
DataLayout
::
kNCHW
,
&
i_n
,
&
i_c
,
&
i_d
,
GetNCDHW
(
transformed_input
.
dims
(),
DataLayout
::
kNCHW
,
&
i_n
,
&
i_c
,
&
i_d
,
&
i_h
,
&
i_w
);
&
i_h
,
&
i_w
);
int
o_n
,
o_c
,
o_d
,
o_h
,
o_w
;
GetNCDHW
(
transformed_output
.
dims
(),
DataLayout
::
kNCHW
,
&
o_n
,
&
o_c
,
&
o_d
,
GetNCDHW
(
transformed_output
.
dims
(),
DataLayout
::
kNCHW
,
&
o_n
,
&
o_c
,
&
o_d
,
&
o_h
,
&
o_w
);
&
o_h
,
&
o_w
);
}
int
group_offset_in
=
i_c
/
groups
*
i_h
*
i_w
*
i_d
;
int
group_offset_in
=
i_c
/
groups
*
i_h
*
i_w
*
i_d
;
int
group_offset_out
=
o_c
/
groups
*
o_h
*
o_w
*
o_d
;
int
group_offset_out
=
o_c
/
groups
*
o_h
*
o_w
*
o_d
;
int
group_offset_filter
=
filter
->
numel
()
/
groups
;
int
group_offset_filter
=
transformed_filter_channel
.
numel
()
/
groups
;
// ------------------- cudnn conv workspace ---------------------
// ------------------- cudnn conv workspace ---------------------
size_t
workspace_size
=
0
;
// final workspace to allocate.
size_t
workspace_size
=
0
;
// final workspace to allocate.
// ------------------- cudnn conv algorithm ---------------------
// ------------------- cudnn conv algorithm ---------------------
...
@@ -225,7 +286,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
...
@@ -225,7 +286,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
workspace_size
);
workspace_size
);
}
}
if
(
channel_last
)
{
if
(
channel_last
&&
compute_format
==
DataLayout
::
kNCHW
)
{
TransToChannelLast
<
paddle
::
platform
::
CUDADeviceContext
,
T
>
(
TransToChannelLast
<
paddle
::
platform
::
CUDADeviceContext
,
T
>
(
ctx
,
&
transformed_output
,
output
);
ctx
,
&
transformed_output
,
output
);
}
}
...
@@ -245,7 +306,6 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -245,7 +306,6 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
auto
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
filter_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
auto
filter_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
const
T
*
filter_data
=
filter
->
data
<
T
>
();
if
(
input_grad
)
{
if
(
input_grad
)
{
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
}
...
@@ -269,12 +329,25 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -269,12 +329,25 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
const
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
const
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
const
bool
channel_last
=
(
data_format
==
"NHWC"
||
data_format
==
"NDHWC"
);
const
bool
channel_last
=
(
data_format
==
"NHWC"
||
data_format
==
"NDHWC"
);
auto
dtype
=
platform
::
CudnnDataType
<
T
>::
type
;
const
bool
compute_in_nhwc
=
dtype
==
CUDNN_DATA_HALF
&&
IsVoltaOrLater
(
dev_ctx
);
auto
compute_format
=
compute_in_nhwc
&&
channel_last
?
DataLayout
::
kNHWC
:
DataLayout
::
kNCHW
;
VLOG
(
3
)
<<
"Compute ConvGradOp with cuDNN:"
<<
" data_format="
<<
data_format
<<
" compute_format="
<<
(
compute_format
==
DataLayout
::
kNHWC
?
"NHWC"
:
"NCHW"
);
// transform Tensor
// transform Tensor
Tensor
transformed_input_channel
(
input
->
type
());
Tensor
transformed_input_channel
(
input
->
type
());
Tensor
transformed_output_grad_channel
(
output_grad
->
type
());
Tensor
transformed_output_grad_channel
(
output_grad
->
type
());
Tensor
transformed_input_grad_channel
(
input
->
type
());
Tensor
transformed_input_grad_channel
(
input
->
type
());
Tensor
transformed_filter_channel
(
filter
->
type
());
Tensor
transformed_filter_grad_channel
(
filter
->
type
());
if
(
channel_last
)
{
if
(
channel_last
&&
compute_format
==
DataLayout
::
kNCHW
)
{
VLOG
(
3
)
<<
"Transform input, output_grad, input_grad and tensor from "
"NHWC to NCHW."
;
ResizeToChannelFirst
<
platform
::
CUDADeviceContext
,
T
>
(
ResizeToChannelFirst
<
platform
::
CUDADeviceContext
,
T
>
(
ctx
,
input
,
&
transformed_input_channel
);
ctx
,
input
,
&
transformed_input_channel
);
TransToChannelFirst
<
platform
::
CUDADeviceContext
,
T
>
(
TransToChannelFirst
<
platform
::
CUDADeviceContext
,
T
>
(
...
@@ -289,22 +362,46 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -289,22 +362,46 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
ResizeToChannelFirst
<
platform
::
CUDADeviceContext
,
T
>
(
ResizeToChannelFirst
<
platform
::
CUDADeviceContext
,
T
>
(
ctx
,
input_grad
,
&
transformed_input_grad_channel
);
ctx
,
input_grad
,
&
transformed_input_grad_channel
);
}
}
}
else
{
}
else
{
transformed_input_channel
=
*
input
;
transformed_input_channel
.
ShareDataWith
(
*
input
)
;
transformed_output_grad_channel
=
*
output_grad
;
transformed_output_grad_channel
.
ShareDataWith
(
*
output_grad
)
;
if
(
input_grad
)
{
if
(
input_grad
)
{
transformed_input_grad_channel
.
ShareDataWith
(
*
input_grad
);
transformed_input_grad_channel
.
ShareDataWith
(
*
input_grad
);
}
}
}
}
if
(
compute_format
==
DataLayout
::
kNHWC
)
{
VLOG
(
3
)
<<
"Transform filter and filter_grad tensor from NCHW to NHWC."
;
ResizeToChannelLast
<
platform
::
CUDADeviceContext
,
T
>
(
ctx
,
filter
,
&
transformed_filter_channel
);
TransToChannelLast
<
platform
::
CUDADeviceContext
,
T
>
(
ctx
,
filter
,
&
transformed_filter_channel
);
if
(
filter_grad
)
{
ResizeToChannelLast
<
platform
::
CUDADeviceContext
,
T
>
(
ctx
,
filter_grad
,
&
transformed_filter_grad_channel
);
}
}
else
{
transformed_filter_channel
.
ShareDataWith
(
*
filter
);
if
(
filter_grad
)
{
transformed_filter_grad_channel
.
ShareDataWith
(
*
filter_grad
);
}
}
// update paddings
// update paddings
auto
in_dims
=
transformed_input_channel
.
dims
();
auto
in_dims
=
transformed_input_channel
.
dims
();
auto
filter_dims
=
filter
->
dims
();
auto
filter_dims
=
transformed_filter_channel
.
dims
();
framework
::
DDim
in_data_dims
;
framework
::
DDim
in_data_dims
;
framework
::
DDim
filter_data_dims
;
if
(
compute_format
==
DataLayout
::
kNCHW
)
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
framework
::
DDim
filter_data_dims
=
filter_data_dims
=
framework
::
slice_ddim
(
filter_dims
,
2
,
filter_dims
.
size
());
framework
::
slice_ddim
(
filter_dims
,
2
,
filter_dims
.
size
());
}
else
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
1
,
in_dims
.
size
()
-
1
);
filter_data_dims
=
framework
::
slice_ddim
(
filter_dims
,
1
,
filter_dims
.
size
()
-
1
);
}
std
::
vector
<
int
>
ksize
=
framework
::
vectorize
<
int
>
(
filter_data_dims
);
std
::
vector
<
int
>
ksize
=
framework
::
vectorize
<
int
>
(
filter_data_dims
);
UpdatePaddingAndDilation
(
&
paddings
,
&
dilations
,
padding_algorithm
,
UpdatePaddingAndDilation
(
&
paddings
,
&
dilations
,
padding_algorithm
,
in_data_dims
,
strides
,
ksize
);
in_data_dims
,
strides
,
ksize
);
...
@@ -323,15 +420,30 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -323,15 +420,30 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
padding_diff
(
data_dim
);
std
::
vector
<
int
>
padding_diff
(
data_dim
);
std
::
vector
<
int
>
new_input_shape_vec
(
data_dim
+
2
);
std
::
vector
<
int
>
new_input_shape_vec
(
data_dim
+
2
);
new_input_shape_vec
[
0
]
=
transformed_input_channel
.
dims
()[
0
];
new_input_shape_vec
[
0
]
=
transformed_input_channel
.
dims
()[
0
];
if
(
compute_format
==
DataLayout
::
kNCHW
)
{
new_input_shape_vec
[
1
]
=
transformed_input_channel
.
dims
()[
1
];
new_input_shape_vec
[
1
]
=
transformed_input_channel
.
dims
()[
1
];
}
else
{
new_input_shape_vec
[
data_dim
+
1
]
=
transformed_input_channel
.
dims
()[
data_dim
+
1
];
}
for
(
size_t
i
=
0
;
i
<
data_dim
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
data_dim
;
++
i
)
{
padding_diff
[
i
]
=
std
::
abs
(
paddings
[
2
*
i
]
-
paddings
[
2
*
i
+
1
]);
padding_diff
[
i
]
=
std
::
abs
(
paddings
[
2
*
i
]
-
paddings
[
2
*
i
+
1
]);
padding_common
[
i
]
=
std
::
min
(
paddings
[
2
*
i
],
paddings
[
2
*
i
+
1
]);
padding_common
[
i
]
=
std
::
min
(
paddings
[
2
*
i
],
paddings
[
2
*
i
+
1
]);
if
(
compute_format
==
DataLayout
::
kNCHW
)
{
new_input_shape_vec
[
i
+
2
]
=
new_input_shape_vec
[
i
+
2
]
=
transformed_input_channel
.
dims
()[
i
+
2
]
+
padding_diff
[
i
];
transformed_input_channel
.
dims
()[
i
+
2
]
+
padding_diff
[
i
];
}
else
{
new_input_shape_vec
[
i
+
1
]
=
transformed_input_channel
.
dims
()[
i
+
1
]
+
padding_diff
[
i
];
}
if
(
compute_format
==
DataLayout
::
kNCHW
)
{
input_pad
[
2
*
i
+
4
]
=
paddings
[
2
*
i
]
-
padding_common
[
i
];
input_pad
[
2
*
i
+
4
]
=
paddings
[
2
*
i
]
-
padding_common
[
i
];
input_pad
[
2
*
i
+
4
+
1
]
=
paddings
[
2
*
i
+
1
]
-
padding_common
[
i
];
input_pad
[
2
*
i
+
4
+
1
]
=
paddings
[
2
*
i
+
1
]
-
padding_common
[
i
];
}
else
{
input_pad
[
2
*
i
+
2
]
=
paddings
[
2
*
i
]
-
padding_common
[
i
];
input_pad
[
2
*
i
+
2
+
1
]
=
paddings
[
2
*
i
+
1
]
-
padding_common
[
i
];
}
}
}
framework
::
DDim
new_input_shape
(
framework
::
DDim
new_input_shape
(
framework
::
make_ddim
(
new_input_shape_vec
));
framework
::
make_ddim
(
new_input_shape_vec
));
...
@@ -384,42 +496,51 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -384,42 +496,51 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
const
T
*
input_data
=
transformed_input
.
data
<
T
>
();
const
T
*
input_data
=
transformed_input
.
data
<
T
>
();
const
T
*
output_grad_data
=
transformed_output_grad_channel
.
data
<
T
>
();
const
T
*
output_grad_data
=
transformed_output_grad_channel
.
data
<
T
>
();
const
T
*
filter_data
=
transformed_filter_channel
.
data
<
T
>
();
T
*
filter_grad_data
=
nullptr
;
T
*
filter_grad_data
=
nullptr
;
T
*
input_grad_data
=
nullptr
;
T
*
input_grad_data
=
nullptr
;
T
*
transformed_input_grad_data
=
nullptr
;
T
*
transformed_input_grad_data
=
nullptr
;
ConvArgs
args1
{
&
transformed_input_grad
,
ConvArgs
args1
{
&
transformed_input_grad
,
filter
,
&
transformed_filter_channel
,
&
transformed_output_grad_channel
,
&
transformed_output_grad_channel
,
strides
,
strides
,
padding_common
,
padding_common
,
dilations
};
dilations
};
ConvArgs
args2
{
&
transformed_input
,
ConvArgs
args2
{
&
transformed_input
,
filter_grad
,
&
transformed_filter_grad_channel
,
&
transformed_output_grad_channel
,
&
transformed_output_grad_channel
,
strides
,
strides
,
padding_common
,
padding_common
,
dilations
};
dilations
};
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
dtype
=
platform
::
CudnnDataType
<
T
>::
type
;
DataLayout
layout
=
compute_format
==
DataLayout
::
kNHWC
?
DataLayout
::
kNHWC
DataLayout
layout
=
DataLayout
::
kNCHW
;
:
DataLayout
::
kNCHW
;
if
(
input
->
dims
().
size
()
==
5
)
{
if
(
transformed_input
.
dims
().
size
()
==
5
)
{
layout
=
DataLayout
::
kNCDHW
;
layout
=
compute_format
==
DataLayout
::
kNHWC
?
DataLayout
::
kNDHWC
:
DataLayout
::
kNCDHW
;
}
}
auto
layout_tensor
=
GetCudnnTensorFormat
(
layout
);
auto
layout_tensor
=
GetCudnnTensorFormat
(
layout
);
auto
workspace_handle
=
dev_ctx
.
cudnn_workspace_handle
();
auto
workspace_handle
=
dev_ctx
.
cudnn_workspace_handle
();
int
i_n
,
i_c
,
i_d
,
i_h
,
i_w
;
int
i_n
,
i_c
,
i_d
,
i_h
,
i_w
;
int
o_n
,
o_c
,
o_d
,
o_h
,
o_w
;
if
(
compute_format
==
DataLayout
::
kNHWC
)
{
GetNCDHW
(
transformed_input
.
dims
(),
DataLayout
::
kNHWC
,
&
i_n
,
&
i_c
,
&
i_d
,
&
i_h
,
&
i_w
);
GetNCDHW
(
transformed_output_grad_channel
.
dims
(),
DataLayout
::
kNHWC
,
&
o_n
,
&
o_c
,
&
o_d
,
&
o_h
,
&
o_w
);
}
else
{
GetNCDHW
(
transformed_input
.
dims
(),
DataLayout
::
kNCHW
,
&
i_n
,
&
i_c
,
&
i_d
,
GetNCDHW
(
transformed_input
.
dims
(),
DataLayout
::
kNCHW
,
&
i_n
,
&
i_c
,
&
i_d
,
&
i_h
,
&
i_w
);
&
i_h
,
&
i_w
);
int
o_n
,
o_c
,
o_d
,
o_h
,
o_w
;
GetNCDHW
(
transformed_output_grad_channel
.
dims
(),
DataLayout
::
kNCHW
,
&
o_n
,
GetNCDHW
(
transformed_output_grad_channel
.
dims
(),
DataLayout
::
kNCHW
,
&
o_n
,
&
o_c
,
&
o_d
,
&
o_h
,
&
o_w
);
&
o_c
,
&
o_d
,
&
o_h
,
&
o_w
);
}
int
group_offset_in
=
i_c
/
groups
*
i_h
*
i_w
*
i_d
;
int
group_offset_in
=
i_c
/
groups
*
i_h
*
i_w
*
i_d
;
int
group_offset_out
=
o_c
/
groups
*
o_h
*
o_w
*
o_d
;
int
group_offset_out
=
o_c
/
groups
*
o_h
*
o_w
*
o_d
;
int
group_offset_filter
=
filter
->
numel
()
/
groups
;
int
group_offset_filter
=
transformed_filter_channel
.
numel
()
/
groups
;
// ------------------- cudnn backward algorithm ---------------------
// ------------------- cudnn backward algorithm ---------------------
cudnnConvolutionBwdDataAlgo_t
data_algo
=
cudnnConvolutionBwdDataAlgo_t
data_algo
=
static_cast
<
cudnnConvolutionBwdDataAlgo_t
>
(
0
);
static_cast
<
cudnnConvolutionBwdDataAlgo_t
>
(
0
);
...
@@ -439,9 +560,9 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -439,9 +560,9 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
input_grad_data
=
input_grad
->
data
<
T
>
();
input_grad_data
=
input_grad
->
data
<
T
>
();
transformed_input_grad_data
=
transformed_input_grad
.
data
<
T
>
();
transformed_input_grad_data
=
transformed_input_grad
.
data
<
T
>
();
args1
.
handle
=
handle
;
args1
.
handle
=
handle
;
args1
.
idesc
.
set
(
transformed_input_grad
,
iwo_groups
);
args1
.
idesc
.
set
(
transformed_input_grad
,
layout_tensor
);
args1
.
wdesc
.
set
(
*
filter
,
layout_tensor
,
iwo_groups
);
args1
.
wdesc
.
set
(
transformed_filter_channel
,
layout_tensor
,
iwo_groups
);
args1
.
odesc
.
set
(
transformed_output_grad_channel
,
iwo_groups
);
args1
.
odesc
.
set
(
transformed_output_grad_channel
,
layout_tensor
);
args1
.
cdesc
.
set
(
dtype
,
padding_common
,
strides
,
dilations
,
c_groups
);
args1
.
cdesc
.
set
(
dtype
,
padding_common
,
strides
,
dilations
,
c_groups
);
using
search1
=
SearchAlgorithm
<
cudnnConvolutionBwdDataAlgoPerf_t
>
;
using
search1
=
SearchAlgorithm
<
cudnnConvolutionBwdDataAlgoPerf_t
>
;
...
@@ -453,11 +574,12 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -453,11 +574,12 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
if
(
filter_grad
)
{
if
(
filter_grad
)
{
// ------------------- cudnn descriptors ---------------------
// ------------------- cudnn descriptors ---------------------
filter_grad_data
=
filter_grad
->
data
<
T
>
();
filter_grad_data
=
transformed_filter_grad_channel
.
data
<
T
>
();
args2
.
handle
=
handle
;
args2
.
handle
=
handle
;
args2
.
idesc
.
set
(
transformed_input
,
iwo_groups
);
args2
.
idesc
.
set
(
transformed_input
,
layout_tensor
);
args2
.
wdesc
.
set
(
*
filter_grad
,
layout_tensor
,
iwo_groups
);
args2
.
wdesc
.
set
(
transformed_filter_grad_channel
,
layout_tensor
,
args2
.
odesc
.
set
(
transformed_output_grad_channel
,
iwo_groups
);
iwo_groups
);
args2
.
odesc
.
set
(
transformed_output_grad_channel
,
layout_tensor
);
args2
.
cdesc
.
set
(
dtype
,
padding_common
,
strides
,
dilations
,
c_groups
);
args2
.
cdesc
.
set
(
dtype
,
padding_common
,
strides
,
dilations
,
c_groups
);
using
search2
=
SearchAlgorithm
<
cudnnConvolutionBwdFilterAlgoPerf_t
>
;
using
search2
=
SearchAlgorithm
<
cudnnConvolutionBwdFilterAlgoPerf_t
>
;
...
@@ -506,7 +628,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -506,7 +628,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
}
}
}
}
if
(
channel_last
)
{
if
(
channel_last
&&
compute_format
==
DataLayout
::
kNCHW
)
{
TransToChannelLast
<
paddle
::
platform
::
CUDADeviceContext
,
T
>
(
TransToChannelLast
<
paddle
::
platform
::
CUDADeviceContext
,
T
>
(
ctx
,
&
transformed_input_grad_channel
,
input_grad
);
ctx
,
&
transformed_input_grad_channel
,
input_grad
);
}
}
...
@@ -527,6 +649,11 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -527,6 +649,11 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
},
},
workspace_size
);
workspace_size
);
}
}
if
(
compute_format
==
DataLayout
::
kNHWC
)
{
TransToChannelFirst
<
paddle
::
platform
::
CUDADeviceContext
,
T
>
(
ctx
,
&
transformed_filter_grad_channel
,
filter_grad
);
}
}
}
}
}
};
};
...
...
paddle/fluid/operators/conv_op.cc
浏览文件 @
ed2a1852
...
@@ -97,13 +97,15 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -97,13 +97,15 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
filter_dims
[
0
],
filter_dims
,
groups
);
filter_dims
[
0
],
filter_dims
,
groups
);
framework
::
DDim
in_data_dims
;
framework
::
DDim
in_data_dims
;
framework
::
DDim
filter_data_dims
;
if
(
channel_last
)
{
if
(
channel_last
)
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
1
,
in_dims
.
size
()
-
1
);
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
1
,
in_dims
.
size
()
-
1
);
}
else
{
}
else
{
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
in_data_dims
=
framework
::
slice_ddim
(
in_dims
,
2
,
in_dims
.
size
());
}
}
framework
::
DDim
filter_data_dims
=
framework
::
slice_ddim
(
filter_dims
,
2
,
filter_dims
.
size
());
filter_data_dims
=
framework
::
slice_ddim
(
filter_dims
,
2
,
filter_dims
.
size
());
std
::
vector
<
int
>
ksize
=
framework
::
vectorize
<
int
>
(
filter_data_dims
);
std
::
vector
<
int
>
ksize
=
framework
::
vectorize
<
int
>
(
filter_data_dims
);
UpdatePaddingAndDilation
(
&
paddings
,
&
dilations
,
padding_algorithm
,
UpdatePaddingAndDilation
(
&
paddings
,
&
dilations
,
padding_algorithm
,
in_data_dims
,
strides
,
ksize
);
in_data_dims
,
strides
,
ksize
);
...
@@ -117,9 +119,9 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -117,9 +119,9 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
(
in_data_dims
[
i
]
<=
0
||
filter_dims
[
i
+
2
]
<=
0
))
{
(
in_data_dims
[
i
]
<=
0
||
filter_dims
[
i
+
2
]
<=
0
))
{
output_shape
.
push_back
(
-
1
);
output_shape
.
push_back
(
-
1
);
}
else
{
}
else
{
output_shape
.
push_back
(
ConvOutputSize
(
in_data_dims
[
i
],
filter_dims
[
i
+
2
],
output_shape
.
push_back
(
dilations
[
i
],
paddings
[
2
*
i
],
ConvOutputSize
(
in_data_dims
[
i
],
filter_data_dims
[
i
],
dilations
[
i
],
paddings
[
2
*
i
+
1
],
strides
[
i
]));
paddings
[
2
*
i
],
paddings
[
2
*
i
+
1
],
strides
[
i
]));
}
}
}
}
if
(
channel_last
)
{
if
(
channel_last
)
{
...
@@ -335,7 +337,7 @@ parameters is checked in the infer-shape.
...
@@ -335,7 +337,7 @@ parameters is checked in the infer-shape.
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
size, C is the number of channels, H is the height of the feature, and W is
size, C is the number of channels, H is the height of the feature, and W is
the width of the feature.
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
Filters(Input) is MCHW format
format
. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
Parameters(strides, paddings, dilations) are two elements. These two elements represent
...
...
paddle/fluid/operators/conv_op.h
浏览文件 @
ed2a1852
...
@@ -154,6 +154,36 @@ inline void ResizeToChannelFirst(const framework::ExecutionContext& context,
...
@@ -154,6 +154,36 @@ inline void ResizeToChannelFirst(const framework::ExecutionContext& context,
}
}
}
}
template
<
typename
DeviceContext
,
typename
T
>
inline
void
ResizeToChannelLast
(
const
framework
::
ExecutionContext
&
context
,
const
Tensor
*
input
,
Tensor
*
transformed_input
)
{
int
dim
=
input
->
dims
().
size
()
-
2
;
if
(
dim
==
3
)
{
// input
transformed_input
->
Resize
(
input
->
dims
());
auto
in_dims_vec
=
framework
::
vectorize
(
input
->
dims
());
in_dims_vec
[
1
]
=
input
->
dims
()[
2
];
in_dims_vec
[
2
]
=
input
->
dims
()[
3
];
in_dims_vec
[
3
]
=
input
->
dims
()[
4
];
in_dims_vec
[
4
]
=
input
->
dims
()[
1
];
transformed_input
->
Resize
(
framework
::
make_ddim
(
in_dims_vec
));
transformed_input
->
mutable_data
<
T
>
(
context
.
GetPlace
());
}
else
if
(
dim
==
2
)
{
// input
transformed_input
->
Resize
(
input
->
dims
());
auto
in_dims_vec
=
framework
::
vectorize
(
input
->
dims
());
in_dims_vec
[
1
]
=
input
->
dims
()[
2
];
in_dims_vec
[
2
]
=
input
->
dims
()[
3
];
in_dims_vec
[
3
]
=
input
->
dims
()[
1
];
transformed_input
->
Resize
(
framework
::
make_ddim
(
in_dims_vec
));
transformed_input
->
mutable_data
<
T
>
(
context
.
GetPlace
());
}
}
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
inline
void
TransToChannelFirst
(
const
framework
::
ExecutionContext
&
context
,
inline
void
TransToChannelFirst
(
const
framework
::
ExecutionContext
&
context
,
const
Tensor
*
input
,
const
Tensor
*
input
,
...
...
paddle/fluid/platform/cudnn_desc.h
浏览文件 @
ed2a1852
...
@@ -34,6 +34,29 @@ inline cudnnDataType_t ToCudnnDataType(const T& t) {
...
@@ -34,6 +34,29 @@ inline cudnnDataType_t ToCudnnDataType(const T& t) {
return
ToCudnnDataType
(
type
);
return
ToCudnnDataType
(
type
);
}
}
inline
std
::
vector
<
int
>
TransformDimOrder
(
const
std
::
vector
<
int
>&
dims
)
{
std
::
vector
<
int
>
transformed_dims
(
dims
.
begin
(),
dims
.
end
());
int
H
,
W
,
D
,
C
;
if
(
dims
.
size
()
==
4
)
{
H
=
dims
[
1
];
W
=
dims
[
2
];
C
=
dims
[
3
];
transformed_dims
[
1
]
=
C
;
transformed_dims
[
2
]
=
H
;
transformed_dims
[
3
]
=
W
;
}
else
{
D
=
dims
[
1
];
H
=
dims
[
2
];
W
=
dims
[
3
];
C
=
dims
[
4
];
transformed_dims
[
1
]
=
C
;
transformed_dims
[
2
]
=
D
;
transformed_dims
[
3
]
=
H
;
transformed_dims
[
4
]
=
W
;
}
return
transformed_dims
;
}
template
<
>
template
<
>
inline
cudnnDataType_t
ToCudnnDataType
(
inline
cudnnDataType_t
ToCudnnDataType
(
const
framework
::
proto
::
VarType
::
Type
&
t
)
{
const
framework
::
proto
::
VarType
::
Type
&
t
)
{
...
@@ -117,6 +140,19 @@ class TensorDescriptor {
...
@@ -117,6 +140,19 @@ class TensorDescriptor {
dims_with_group
.
data
(),
strides
.
data
()));
dims_with_group
.
data
(),
strides
.
data
()));
}
}
void
set
(
const
Tensor
&
tensor
,
const
cudnnTensorFormat_t
format
)
{
auto
dims
=
framework
::
vectorize
<
int
>
(
tensor
.
dims
());
std
::
vector
<
int
>
transformed_dims
;
if
(
format
==
CUDNN_TENSOR_NHWC
)
{
transformed_dims
=
TransformDimOrder
(
dims
);
}
else
{
transformed_dims
=
dims
;
}
CUDNN_ENFORCE
(
dynload
::
cudnnSetTensorNdDescriptorEx
(
desc_
.
get
(),
format
,
ToCudnnDataType
(
tensor
.
type
()),
transformed_dims
.
size
(),
transformed_dims
.
data
()));
}
private:
private:
std
::
unique_ptr
<
T
,
Deleter
>
desc_
;
std
::
unique_ptr
<
T
,
Deleter
>
desc_
;
};
};
...
@@ -143,12 +179,18 @@ class FilterDescriptor {
...
@@ -143,12 +179,18 @@ class FilterDescriptor {
void
set
(
const
Tensor
&
tensor
,
const
cudnnTensorFormat_t
format
,
void
set
(
const
Tensor
&
tensor
,
const
cudnnTensorFormat_t
format
,
const
int
groups
=
1
)
{
const
int
groups
=
1
)
{
auto
dims
=
framework
::
vectorize
<
int
>
(
tensor
.
dims
());
auto
dims
=
framework
::
vectorize
<
int
>
(
tensor
.
dims
());
std
::
vector
<
int
>
transformed_dims
;
if
(
format
==
CUDNN_TENSOR_NHWC
)
{
transformed_dims
=
TransformDimOrder
(
dims
);
}
else
{
transformed_dims
=
dims
;
}
if
(
groups
>
1
)
{
if
(
groups
>
1
)
{
dims
[
1
]
=
dims
[
1
]
/
groups
;
transformed_dims
[
1
]
=
transformed_
dims
[
1
]
/
groups
;
}
}
CUDNN_ENFORCE
(
dynload
::
cudnnSetFilterNdDescriptor
(
CUDNN_ENFORCE
(
dynload
::
cudnnSetFilterNdDescriptor
(
desc_
.
get
(),
ToCudnnDataType
(
tensor
.
type
()),
format
,
dims
.
size
(),
desc_
.
get
(),
ToCudnnDataType
(
tensor
.
type
()),
format
,
dims
.
data
()));
transformed_dims
.
size
(),
transformed_
dims
.
data
()));
}
}
private:
private:
...
...
python/paddle/fluid/tests/unittests/test_conv2d_op.py
浏览文件 @
ed2a1852
...
@@ -81,7 +81,6 @@ def conv2d_forward_naive(input,
...
@@ -81,7 +81,6 @@ def conv2d_forward_naive(input,
if
len
(
pad
)
==
4
:
if
len
(
pad
)
==
4
:
pad_h_0
,
pad_h_1
=
pad
[
0
],
pad
[
1
]
pad_h_0
,
pad_h_1
=
pad
[
0
],
pad
[
1
]
pad_w_0
,
pad_w_1
=
pad
[
2
],
pad
[
3
]
pad_w_0
,
pad_w_1
=
pad
[
2
],
pad
[
3
]
out_h
=
1
+
(
in_h
+
pad_h_0
+
pad_h_1
-
(
dilation
[
0
]
*
out_h
=
1
+
(
in_h
+
pad_h_0
+
pad_h_1
-
(
dilation
[
0
]
*
(
f_h
-
1
)
+
1
))
//
stride
[
0
]
(
f_h
-
1
)
+
1
))
//
stride
[
0
]
out_w
=
1
+
(
in_w
+
pad_w_0
+
pad_w_1
-
(
dilation
[
1
]
*
out_w
=
1
+
(
in_w
+
pad_w_0
+
pad_w_1
-
(
dilation
[
1
]
*
...
@@ -204,6 +203,50 @@ def create_test_cudnn_channel_last_class(parent):
...
@@ -204,6 +203,50 @@ def create_test_cudnn_channel_last_class(parent):
globals
()[
cls_name
]
=
TestCudnnChannelLastCase
globals
()[
cls_name
]
=
TestCudnnChannelLastCase
def
create_test_cudnn_channel_last_fp16_class
(
parent
,
grad_check
=
True
):
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestCudnnChannelLastFp16
(
parent
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
2e-2
)
def
test_check_grad_no_filter
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
)
and
grad_check
:
self
.
check_grad_with_place
(
place
,
[
'Input'
],
'Output'
,
max_relative_error
=
0.02
,
no_grad_set
=
set
([
'Filter'
]))
def
test_check_grad_no_input
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
)
and
grad_check
:
self
.
check_grad_with_place
(
place
,
[
'Filter'
],
'Output'
,
max_relative_error
=
0.02
,
no_grad_set
=
set
([
'Input'
]))
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_test_case_2
(
self
):
N
,
C
,
H
,
W
=
self
.
input_size
self
.
input_size
=
[
N
,
H
,
W
,
C
]
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"CudnnChannelLastFp16"
)
TestCudnnChannelLastFp16
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestCudnnChannelLastFp16
def
create_test_padding_SAME_class
(
parent
):
def
create_test_padding_SAME_class
(
parent
):
class
TestPaddingSMAECase
(
parent
):
class
TestPaddingSMAECase
(
parent
):
def
init_paddings
(
self
):
def
init_paddings
(
self
):
...
@@ -699,7 +742,6 @@ class TestConv2dOp_v2(OpTest):
...
@@ -699,7 +742,6 @@ class TestConv2dOp_v2(OpTest):
self
.
init_dilation
()
self
.
init_dilation
()
self
.
init_data_format
()
self
.
init_data_format
()
self
.
init_test_case
()
self
.
init_test_case
()
self
.
init_paddings
()
self
.
init_paddings
()
self
.
init_test_case_2
()
self
.
init_test_case_2
()
...
@@ -1195,6 +1237,17 @@ create_test_cudnn_channel_last_class(TestWithStride_AsyPadding)
...
@@ -1195,6 +1237,17 @@ create_test_cudnn_channel_last_class(TestWithStride_AsyPadding)
create_test_cudnn_channel_last_class
(
TestWithGroup_AsyPadding
)
create_test_cudnn_channel_last_class
(
TestWithGroup_AsyPadding
)
create_test_cudnn_channel_last_class
(
TestWithDilation_AsyPadding
)
create_test_cudnn_channel_last_class
(
TestWithDilation_AsyPadding
)
create_test_cudnn_channel_last_fp16_class
(
TestConv2dOp_AsyPadding
,
grad_check
=
False
)
create_test_cudnn_channel_last_fp16_class
(
TestWithPad_AsyPadding
,
grad_check
=
False
)
create_test_cudnn_channel_last_fp16_class
(
TestWithStride_AsyPadding
,
grad_check
=
False
)
create_test_cudnn_channel_last_fp16_class
(
TestWithGroup_AsyPadding
,
grad_check
=
False
)
create_test_cudnn_channel_last_fp16_class
(
TestWithDilation_AsyPadding
,
grad_check
=
False
)
# --------- test python API ---------------
# --------- test python API ---------------
class
TestConv2dAPI
(
OpTest
):
class
TestConv2dAPI
(
OpTest
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录