提交 ec8e2108 编写于 作者: L liaogang

Merge conflict with develop branch

......@@ -57,7 +57,7 @@ before_install:
- if [[ "$JOB" == "PRE_COMMIT" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
# protobuf version.
- pip install numpy wheel 'protobuf==3.1' sphinx recommonmark sphinx_rtd_theme virtualenv pre-commit requests==2.9.2 LinkChecker
- pip install numpy wheel 'protobuf==3.1' sphinx recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit requests==2.9.2 LinkChecker
script:
- paddle/scripts/travis/main.sh
notifications:
......
......@@ -20,26 +20,42 @@ def main():
adam_optimizer = paddle.optimizer.Adam(learning_rate=0.01)
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=adam_optimizer)
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
if event.batch_id % 1000 == 0:
result = trainer.test(reader=paddle.reader.batched(
paddle.dataset.mnist.test(), batch_size=256))
print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics,
result.metrics)
else:
pass
trainer = paddle.trainer.SGD(update_equation=adam_optimizer)
trainer.train(
reader=paddle.reader.batched(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=8192),
batch_size=32),
cost=cost,
event_handler=event_handler)
# output is a softmax layer. It returns probabilities.
# Shape should be (100, 10)
probs = paddle.infer(
output=inference,
parameters=parameters,
event_handler=event_handler,
reader_dict={images.name: 0,
label.name: 1})
reader=paddle.reader.batched(
paddle.reader.firstn(
paddle.reader.map_readers(lambda item: (item[0], ),
paddle.dataset.mnist.test()),
n=100),
batch_size=32))
print probs.shape
if __name__ == '__main__':
......
......@@ -10,6 +10,7 @@
usage/cmd_parameter/index_cn.rst
usage/concepts/use_concepts_cn.rst
usage/cluster/cluster_train_cn.md
usage/k8s/k8s_basis_cn.md
usage/k8s/k8s_cn.md
usage/k8s/k8s_distributed_cn.md
......
......@@ -6,7 +6,7 @@
在本文中,我们将阐释如何在集群上运行分布式 Paddle 训练作业。我们将以[推荐系统](https://github.com/baidu/Paddle/tree/develop/demo/recommendation)为例创建分布式的单进程训练。
在本文中使用的[脚本](https://github.com/baidu/Paddle/tree/develop/paddle/scripts/cluster_train)通过 SSH 运行分布式作业。 它们还可以供那些运行更复杂的集群管理系统(如 MPI 和 [Kubernetes](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/k8s) )的用户参考。
在本文中使用的[脚本](https://github.com/baidu/Paddle/tree/develop/paddle/scripts/cluster_train)通过 SSH 运行分布式作业。 它们还可以供那些运行更复杂的集群管理系统(如 MPI 和 [Kubernetes](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/k8s) )的用户参考。
## 前提条件
......
......@@ -2,7 +2,7 @@
In this article, we explain how to run distributed Paddle training jobs on clusters. We will create the distributed version of the single-process training example, [recommendation](https://github.com/baidu/Paddle/tree/develop/demo/recommendation).
[Scripts](https://github.com/baidu/Paddle/tree/develop/paddle/scripts/cluster_train) used in this article launch distributed jobs via SSH. They also work as a reference for users running more sophisticated cluster management systems like MPI and [Kubernetes](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/k8s).
[Scripts](https://github.com/baidu/Paddle/tree/develop/paddle/scripts/cluster_train) used in this article launch distributed jobs via SSH. They also work as a reference for users running more sophisticated cluster management systems like MPI and [Kubernetes](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/k8s).
## Prerequisite
......
# Kubernetes 简介
[*Kubernetes*](http://kubernetes.io/)是Google开源的容器集群管理系统,其提供应用部署、维护、扩展机制等功能,利用Kubernetes能方便地管理跨机器运行容器化的应用。Kubernetes可以在物理机或虚拟机上运行,且支持部署到[AWS](http://kubernetes.io/docs/getting-started-guides/aws)[Azure](http://kubernetes.io/docs/getting-started-guides/azure/)[GCE](http://kubernetes.io/docs/getting-started-guides/gce)等多种公有云环境。介绍分布式训练之前,需要对[Kubernetes](http://kubernetes.io/)有一个基本的认识,下面先简要介绍一下本文用到的几个Kubernetes概念。
- [*Node*](http://kubernetes.io/docs/admin/node/) 表示一个Kubernetes集群中的一个工作节点,这个节点可以是物理机或者虚拟机,Kubernetes集群就是由node节点与master节点组成的。
- [*Pod*](http://kubernetes.io/docs/user-guide/pods/) 是一组(一个或多个)容器,pod是Kubernetes的最小调度单元,一个pod中的所有容器会被调度到同一个node上。Pod中的容器共享NET,PID,IPC,UTS等Linux namespace。由于容器之间共享NET namespace,所以它们使用同一个IP地址,可以通过*localhost*互相通信。不同pod之间可以通过IP地址访问。
- [*Job*](http://kubernetes.io/docs/user-guide/jobs/) 描述Kubernetes上运行的作业,一次作业称为一个job,通常每个job包括一个或者多个pods,job启动后会创建这些pod并开始执行一个程序,等待这个程序执行成功并返回0则成功退出,如果执行失败,也可以配置不同的重试机制。
- [*Volume*](http://kubernetes.io/docs/user-guide/volumes/) 存储卷,是pod内的容器都可以访问的共享目录,也是容器与node之间共享文件的方式,因为容器内的文件都是暂时存在的,当容器因为各种原因被销毁时,其内部的文件也会随之消失。通过volume,就可以将这些文件持久化存储。Kubernetes支持多种volume,例如hostPath(宿主机目录),gcePersistentDisk,awsElasticBlockStore等。
- [*Namespaces*](https://kubernetes.io/docs/user-guide/namespaces/) 命名空间,在kubernetes中创建的所有资源对象(例如上文的pod,job)等都属于一个命名空间,在同一个命名空间中,资源对象的名字是唯一的,不同空间的资源名可以重复,命名空间主要为了对象进行逻辑上的分组便于管理。本文只使用了默认命名空间。
- [*PersistentVolume*](https://kubernetes.io/docs/user-guide/persistent-volumes/): 和[*PersistentVolumeClaim*](https://kubernetes.io/docs/user-guide/persistent-volumes/#persistentvolumeclaims)结合,将外部的存储服务在Kubernetes中描述成为统一的资源形式,便于存储资源管理和Pod引用。
# 部署Kubernetes集群
Kubernetes提供了多种集群部署的方案,本文档内不重复介绍。这里给出集中常见的部署方法:
- [*minikube*](https://kubernetes.io/docs/getting-started-guides/minikube/): 快速在本地启动一个单机的kubernetes服务器,便于本地验证和测试。
- [*kubeadm*](http://kubernetes.io/docs/getting-started-guides/kubeadm/): 在不同操作系统,不同主机(Bare-Metal, AWS, GCE)条件下,快速部署集群。
- [*AWS EC2*](https://kubernetes.io/docs/getting-started-guides/aws/): 在aws上快速部署集群。
- [*Bare-Metal*](https://kubernetes.io/docs/getting-started-guides/centos/centos_manual_config/): 在物理机上手动部署。
可以参考[这个表格](https://kubernetes.io/docs/getting-started-guides/#table-of-solutions)选择适合您的场景的合适方案。
# 选择存储方案
容器不会保留在运行时生成的数据,job或者应用程序在容器中运行时生成的数据会在容器销毁时消失。为了完成分布式机器学习训练任务,需要有一个外部的存储服务来保存训练所需数据和训练输出。
常见的可选存储服务包括:
- [*NFS*](https://github.com/kubernetes/kubernetes/tree/master/examples/volumes/nfs): 可以将磁盘上某个目录共享给网络中其他机器访问。部署和配置比较简单,可以用于小量数据的验证。不提供分布式存储,高可用,冗余等功能。NFS的部署方法可以参考[这里](http://www.tecmint.com/how-to-setup-nfs-server-in-linux/)
- [*GlusterFS*](http://gluster.readthedocs.io/en/latest/Quick-Start-Guide/Quickstart/): 网络分布式文件系统,可以在Kubernetes中按照[这个](https://github.com/kubernetes/kubernetes/tree/master/examples/volumes/glusterfs)例子使用。
- [*Ceph*](http://docs.ceph.com/docs/master/): 分布式文件系统,支持rbd,POSIX API接口(ceph fs)和对象存储API,参考[这里](https://kubernetes.io/docs/user-guide/volumes/#rbd)
- [*MooseFS*](https://moosefs.com/documentation.html): 一个分布式的存储系统。需要先挂载到服务器Node上再通过kubernetes hostPath Volume挂载到容器中。
# 配置kubectl
## 安装kubectl
```
# OS X
curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/darwin/amd64/kubectl
# Linux
curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/linux/amd64/kubectl
# Windows
curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/windows/amd64/kubectl.exe
```
## 配置kubectl访问你的kubernetes集群
编辑`~/.kube/config`这个配置文件,修改`Master-IP`的地址。如果使用SSL认证,则需要配置`certificate-authority``users`中的用户证书。如果是使用非SSL方式访问(比如通过8080端口),也可以去掉这些证书的配置。
```
apiVersion: v1
clusters:
- cluster:
certificate-authority: /path/to/ca.crt
server: https://[Master-IP]:443
name: minikube
contexts:
- context:
cluster: minikube
user: minikube
name: minikube
current-context: minikube
kind: Config
preferences: {}
users:
- name: minikube
user:
client-certificate: /path/to/apiserver.crt
client-key: /Users/wuyi/.minikube/apiserver.key
```
......@@ -2,168 +2,50 @@
前一篇文章介绍了如何在Kubernetes集群上启动一个单机PaddlePaddle训练作业 (Job)。在这篇文章里,我们介绍如何在Kubernetes集群上进行分布式PaddlePaddle训练作业。关于PaddlePaddle的分布式训练,文章 [Cluster Training](https://github.com/baidu/Paddle/blob/develop/doc/cluster/opensource/cluster_train.md)介绍了一种通过SSH远程分发任务,进行分布式训练的方法,与此不同的是,本文将介绍在Kubernetes容器管理平台上快速构建PaddlePaddle容器集群,进行分布式训练的方案。
## Kubernetes 基本概念
[*Kubernetes*](http://kubernetes.io/)是Google开源的容器集群管理系统,其提供应用部署、维护、 扩展机制等功能,利用Kubernetes能方便地管理跨机器运行容器化的应用。Kubernetes可以在物理机或虚拟机上运行,且支持部署到[AWS](http://kubernetes.io/docs/getting-started-guides/aws)[Azure](http://kubernetes.io/docs/getting-started-guides/azure/)[GCE](http://kubernetes.io/docs/getting-started-guides/gce)等多种公有云环境。介绍分布式训练之前,需要对[Kubernetes](http://kubernetes.io/)有一个基本的认识,下面先简要介绍一下本文用到的几个Kubernetes概念。
- [*Node*](http://kubernetes.io/docs/admin/node/) 表示一个Kubernetes集群中的一个工作节点,这个节点可以是物理机或者虚拟机,Kubernetes集群就是由node节点与master节点组成的。
- [*Pod*](http://kubernetes.io/docs/user-guide/pods/) 是一组(一个或多个)容器,pod是Kubernetes的最小调度单元,一个pod中的所有容器会被调度到同一个node上。Pod中的容器共享NET,PID,IPC,UTS等Linux namespace。由于容器之间共享NET namespace,所以它们使用同一个IP地址,可以通过*localhost*互相通信。不同pod之间可以通过IP地址访问。
- [*Job*](http://kubernetes.io/docs/user-guide/jobs/) 是Kubernetes上运行的作业,一次作业称为一个job,通常每个job包括一个或者多个pods。
- [*Volume*](http://kubernetes.io/docs/user-guide/volumes/) 存储卷,是pod内的容器都可以访问的共享目录,也是容器与node之间共享文件的方式,因为容器内的文件都是暂时存在的,当容器因为各种原因被销毁时,其内部的文件也会随之消失。通过volume,就可以将这些文件持久化存储。Kubernetes支持多种volume,例如hostPath(宿主机目录),gcePersistentDisk,awsElasticBlockStore等。
- [*Namespaces*](http://kubernetes.io/docs/user-guide/volumes/) 命名空间,在kubernetes中创建的所有资源对象(例如上文的pod,job)等都属于一个命名空间,在同一个命名空间中,资源对象的名字是唯一的,不同空间的资源名可以重复,命名空间主要为了对象进行逻辑上的分组便于管理。本文只使用了默认命名空间。
有关Kubernetes相关概念以及如何搭建和配置Kubernetes集群,可以参考[k8s_basis](./k8s_basis_cn.md)
## 整体方案
### 部署Kubernetes集群
首先,我们需要拥有一个Kubernetes集群,在这个集群中所有node与pod都可以互相通信。关于Kubernetes集群搭建,可以参考[官方文档](http://kubernetes.io/docs/getting-started-guides/kubeadm/),在以后的文章中我们也会介绍AWS上搭建的方案。本文假设大家能找到几台物理机,并且可以按照官方文档在上面部署Kubernetes。在本文的环境中,Kubernetes集群中所有node都挂载了一个[MFS](http://moosefs.org/)(Moose filesystem,一种分布式文件系统)共享目录,我们通过这个目录来存放训练文件与最终输出的模型。关于MFS的安装部署,可以参考[MooseFS documentation](https://moosefs.com/documentation.html)。在训练之前,用户将配置与训练数据切分好放在MFS目录中,训练时,程序从此目录拷贝文件到容器内进行训练,将结果保存到此目录里。整体的结构图如下:
在训练之前,用户将配置与训练数据切分好放在分布式文件系统预先分配好的目录中(不同的分布式文件系统,需要使用其制定的方式挂载后并导入数据),训练时,程序从此目录拷贝文件到容器内进行训练,将结果保存到此目录里。整体的结构图如下:
![paddle on kubernetes结构图](src/k8s-paddle-arch.png)
上图描述了一个3节点的分布式训练场景,Kubernetes集群的每个node上都挂载了一个MFS目录,这个目录可以通过volume的形式挂载到容器中。Kubernetes为这次训练创建了3个pod并且调度到了3个node上运行,每个pod包含一个PaddlePaddle容器。在容器创建后,会启动pserver与trainer进程,读取volume中的数据进行这次分布式训练。
### 使用 Job
我们使用Kubernetes中的job这个概念来代表一次分布式训练。Job表示一次性作业,在作业完成后,Kubernetes会销毁job产生的容器并且释放相关资源。
在Kubernetes中,可以通过编写一个YAML文件,来描述这个job,在这个文件中,主要包含了一些配置信息,例如PaddlePaddle的节点个数,`paddle pserver`开放的端口个数与端口号,使用的网卡设备等,这些信息通过环境变量的形式传递给容器内的程序使用。
上图描述了一个3节点的分布式训练场景,在每个Pod上都通过volume方式挂载分布式文件系统的一个目录用于保存训练数据和输出结果。Kubernetes为这次训练创建了3个pod并且调度到了3个node上运行,每个pod包含一个PaddlePaddle容器。在容器创建后,会启动pserver与trainer进程,读取volume中的数据进行这次分布式训练。
在一次分布式训练中,用户确定好本次训练需要的PaddlePaddle节点个数,将切分好的训练数据与配置文件上传到MFS共享目录中。然后编写这次训练的job YAML文件,提交给Kubernetes集群创建并开始作业。
根据前文的描述,要在已有的Kubernetes集群上进行PaddlePaddle的分布式训练,按照下面步骤即可:
### 创建PaddlePaddle节点
当Kubernetes master收到请求,解析完YAML文件后,会创建出多个pod(个数为PaddlePaddle节点数),Kubernetes会把这些pod调度到集群的node上运行。一个pod就代表一个PaddlePaddle节点,当pod被成功分配到一台物理/虚拟机上后,Kubernetes会启动pod内的容器,这个容器会根据YAML文件中的环境变量,启动`paddle pserver``paddle train`进程。
### 启动训练
在容器启动后,会通过脚本来启动这次分布式训练,我们知道`paddle train`进程启动时需要知道其他节点的IP地址以及本节点的trainer_id,由于PaddlePaddle本身不提供类似服务发现的功能,所以在本文的启动脚本中,每个节点会根据job name向Kubernetes apiserver查询这个job对应的所有pod信息(Kubernetes默认会在每个容器的环境变量中写入apiserver的地址)。
根据这些pod信息,就可以通过某种方式,为每个pod分配一个唯一的trainer_id。本文把所有pod的IP地址进行排序,将顺序作为每个PaddlePaddle节点的trainer_id。启动脚本的工作流程大致如下:
1. 查询Kubernetes apiserver获取pod信息,根据IP分配trainer_id
1. 从MFS共享目录中拷贝训练文件到容器内
1. 根据环境变量,解析出`paddle pserver``paddle train`的启动参数,启动进程
1. 训练时,PaddlePaddle会自动将结果保存在trainer_id为0的节点上,将输出路径设置为MFS目录,保存输出的文件
## 搭建过程
根据前文的描述,要在已有的Kubernetes集群上进行PaddlePaddle的分布式训练,主要分为以下几个步骤:
1. 制作PaddlePaddle镜像
1. 将训练文件与切分好的数据上传到共享存储
1. 编写本次训练的YAML文件,创建一个Kubernetes job
1. 训练结束后查看输出结果
1. [制作PaddlePaddle镜像](#制作镜像)
1. [将训练文件与切分好的数据上传到共享存储](#上传训练文件)
1. [编写本次训练的YAML文件,创建一个Kubernetes job](#创建Job)
1. [训练结束后查看输出结果](#查看输出)
下面就根据这几个步骤分别介绍。
### 制作镜像
PaddlePaddle镜像需要提供`paddle pserver``paddle train`进程的运行环境,用这个镜像创建的容器需要有以下两个功能:
- 拷贝训练文件到容器内
- 生成`paddle pserver``paddle train`进程的启动参数,并且启动训练
因为官方镜像 `paddledev/paddle:cpu-latest` 内已经包含PaddlePaddle的执行程序但是还没上述功能,所以我们可以在这个基础上,添加启动脚本,制作新镜像来完成以上的工作。镜像的*Dockerfile*如下:
```Dockerfile
FROM paddledev/paddle:cpu-latest
MAINTAINER zjsxzong89@gmail.com
COPY start.sh /root/
COPY start_paddle.py /root/
CMD ["bash"," -c","/root/start.sh"]
```
[start.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/usage/cluster/k8s/start.sh)文件拷贝训练文件到容器内,然后执行[start_paddle.py](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/usage/cluster/k8s/start_paddle.py)脚本启动训练,前文提到的获取其他节点IP地址,分配`trainer_id`等都在`start_paddle.py`脚本中完成。
`start_paddle.py`脚本开始时,会先进行参数的初始化与解析。
```python
parser = argparse.ArgumentParser(prog="start_paddle.py",
description='simple tool for k8s')
args, train_args_list = parser.parse_known_args()
train_args = refine_unknown_args(train_args_list)
train_args_dict = dict(zip(train_args[:-1:2], train_args[1::2]))
podlist = getPodList()
```
然后通过函数`getPodList()`访问Kubernetes的接口来查询此job对应的所有pod信息。当所有pod都处于running状态(容器运行都运行)时,再通过函数`getIdMap(podlist)`获取trainer_id。
```python
podlist = getPodList()
# need to wait until all pods are running
while not isPodAllRunning(podlist):
time.sleep(10)
podlist = getPodList()
idMap = getIdMap(podlist)
```
在函数`getIdMap(podlist)`内部,我们通过读取`podlist`中每个pod的IP地址,将IP排序生成的序号作为trainer_id。
```python
def getIdMap(podlist):
'''
generate tainer_id by ip
'''
ips = []
for pod in podlist["items"]:
ips.append(pod["status"]["podIP"])
ips.sort()
idMap = {}
for i in range(len(ips)):
idMap[ips[i]] = i
return idMap
```
在得到`idMap`后,通过函数`startPaddle(idMap, train_args_dict)`构造`paddle pserver``paddle train`的启动参数并执行进程。
在函数`startPaddle`中,最主要的工作就是解析出`paddle pserver``paddle train`的启动参数。例如`paddle train`参数的解析,解析环境变量得到`PADDLE_NIC``PADDLE_PORT``PADDLE_PORTS_NUM`等参数,然后通过自身的IP地址在`idMap`中获取`trainerId`
```python
program = 'paddle train'
args = " --nics=" + PADDLE_NIC
args += " --port=" + str(PADDLE_PORT)
args += " --ports_num=" + str(PADDLE_PORTS_NUM)
args += " --comment=" + "paddle_process_by_paddle"
ip_string = ""
for ip in idMap.keys():
ip_string += (ip + ",")
ip_string = ip_string.rstrip(",")
args += " --pservers=" + ip_string
args_ext = ""
for key, value in train_args_dict.items():
args_ext += (' --' + key + '=' + value)
localIP = socket.gethostbyname(socket.gethostname())
trainerId = idMap[localIP]
args += " " + args_ext + " --trainer_id=" + \
str(trainerId) + " --save_dir=" + JOB_PATH_OUTPUT
```
使用 `docker build` 构建镜像:
因为官方镜像 `paddledev/paddle:cpu-latest` 内已经包含PaddlePaddle的执行程序但是还没上述功能,所以我们可以在这个基础上,添加启动脚本,制作新镜像来完成以上的工作。参考镜像的[*Dockerfile*](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/usage/cluster/k8s/src/k8s_train/Dockerfile)
```bash
docker build -t your_repo/paddle:mypaddle .
$ cd doc/howto/usage/k8s/src/k8s_train
$ docker build -t [YOUR_REPO]/paddle:mypaddle .
```
然后将构建成功的镜像上传到镜像仓库。
```bash
docker push your_repo/paddle:mypaddle
docker push [YOUR_REPO]/paddle:mypaddle
```
注意上述命令中`your_repo`表示读者所使用的Docker镜像仓库地址,读者需要替换成自己使用的仓库地址。下文使用`your_repo/paddle:mypaddle`这个地址来表示此步骤所构建出的镜像。
注意上述命令中`[YOUR_REPO]`表示读者所使用的Docker镜像仓库地址,读者需要替换成自己使用的仓库地址。下文使用`[YOUR_REPO]/paddle:mypaddle`这个地址来表示此步骤所构建出的镜像。
### 上传训练文件
本文使用PaddlePaddle官方的[recommendation demo](http://www.paddlepaddle.org/doc/demo/index.html#recommendation)作为这次训练的内容,我们将训练文件与数据放在一个job name命名的目录中,上传到MFS共享存储。完成后MFS上的文件内容大致如下:
本文使用PaddlePaddle官方的[recommendation demo](http://www.paddlepaddle.org/doc/demo/index.html#recommendation)作为这次训练的内容,我们将训练文件与数据放在一个job name命名的目录中,上传到volume所在的共享存储(使用不同分布式存储会有不同的挂载方式,需要要先挂载这个目录,然后拷贝数据)。完成后volume中的文件内容大致如下:
```bash
[root@paddle-kubernetes-node0 mfs]# tree -d
......@@ -205,7 +87,7 @@ spec:
path: /home/work/mfs
containers:
- name: trainer
image: your_repo/paddle:mypaddle
image: [YOUR_REPO]/paddle:mypaddle
command: ["bin/bash", "-c", "/root/start.sh"]
env:
- name: JOB_NAME
......@@ -310,3 +192,90 @@ I1116 09:10:18.019492 50 ParameterClient2.cpp:122] pserver 3 192.168.223.143:
I1116 09:10:18.019716 50 ParameterClient2.cpp:122] pserver 4 192.168.129.71:7164
I1116 09:10:18.019836 50 ParameterClient2.cpp:122] pserver 5 192.168.129.71:7165
```
## 一些细节的补充
### 使用环境变量
使用容器方式运行训练任务的Kubernetes Job,通常会使用环境变量配置Job的配置信息`start_paddle.py`提供了一个启动脚本,将环境变量转换成paddle的命令行参数:
```
API = "/api/v1/namespaces/"
JOBSELECTOR = "labelSelector=job-name="
JOB_PATH = os.getenv("JOB_PATH") + "/" + os.getenv("JOB_NAME")
JOB_PATH_OUTPUT = JOB_PATH + "/output"
JOBNAME = os.getenv("JOB_NAME")
NAMESPACE = os.getenv("JOB_NAMESPACE")
PADDLE_NIC = os.getenv("CONF_PADDLE_NIC")
PADDLE_PORT = os.getenv("CONF_PADDLE_PORT")
PADDLE_PORTS_NUM = os.getenv("CONF_PADDLE_PORTS_NUM")
PADDLE_PORTS_NUM_SPARSE = os.getenv("CONF_PADDLE_PORTS_NUM_SPARSE")
PADDLE_SERVER_NUM = os.getenv("CONF_PADDLE_GRADIENT_NUM")
```
### Pod间通信
`start_paddle.py`脚本开始时,会先进行参数的初始化与解析。
```python
parser = argparse.ArgumentParser(prog="start_paddle.py",
description='simple tool for k8s')
args, train_args_list = parser.parse_known_args()
train_args = refine_unknown_args(train_args_list)
train_args_dict = dict(zip(train_args[:-1:2], train_args[1::2]))
podlist = getPodList()
```
然后通过函数`getPodList()`访问Kubernetes的接口来查询此job对应的所有pod信息。当所有pod都处于running状态(容器运行都运行)时,再通过函数`getIdMap(podlist)`获取trainer_id。
```python
podlist = getPodList()
# need to wait until all pods are running
while not isPodAllRunning(podlist):
time.sleep(10)
podlist = getPodList()
idMap = getIdMap(podlist)
```
* *注意*: `getPodList()`会获取当前namespace下的所有pod,如果已经有pod运行,可能会导致出错。这种集群节点管理方式会在将来使用[statfulsets](https://kubernetes.io/docs/concepts/abstractions/controllers/statefulsets/)代替。
在函数`getIdMap(podlist)`内部,我们通过读取`podlist`中每个pod的IP地址,将IP排序生成的序号作为trainer_id。
```python
def getIdMap(podlist):
'''
generate tainer_id by ip
'''
ips = []
for pod in podlist["items"]:
ips.append(pod["status"]["podIP"])
ips.sort()
idMap = {}
for i in range(len(ips)):
idMap[ips[i]] = i
return idMap
```
在得到`idMap`后,通过函数`startPaddle(idMap, train_args_dict)`构造`paddle pserver``paddle train`的启动参数并执行进程。
### 启动任务
在函数`startPaddle`中,最主要的工作就是解析出`paddle pserver``paddle train`的启动参数。例如`paddle train`参数的解析,解析环境变量得到`PADDLE_NIC``PADDLE_PORT``PADDLE_PORTS_NUM`等参数,然后通过自身的IP地址在`idMap`中获取`trainerId`
```python
program = 'paddle train'
args = " --nics=" + PADDLE_NIC
args += " --port=" + str(PADDLE_PORT)
args += " --ports_num=" + str(PADDLE_PORTS_NUM)
args += " --comment=" + "paddle_process_by_paddle"
ip_string = ""
for ip in idMap.keys():
ip_string += (ip + ",")
ip_string = ip_string.rstrip(",")
args += " --pservers=" + ip_string
args_ext = ""
for key, value in train_args_dict.items():
args_ext += (' --' + key + '=' + value)
localIP = socket.gethostbyname(socket.gethostname())
trainerId = idMap[localIP]
args += " " + args_ext + " --trainer_id=" + \
str(trainerId) + " --save_dir=" + JOB_PATH_OUTPUT
```
......@@ -47,6 +47,9 @@ void setUseGpu(bool useGpu);
/// Return true if this py_paddle is compiled in GPU Version
bool isGpuVersion();
/// Return FLAGS_trainer_count
int getTrainerCount();
/// The Error of IO Operation. Such as file not found, etc.
class IOError {};
......
......@@ -54,5 +54,7 @@ bool isGpuVersion() {
#endif
}
int getTrainerCount() { return FLAGS_trainer_count; }
static_assert(NUM_PARAMETER_TYPES == paddle::NUM_PARAMETER_TYPES,
"The Parameter Type should be same in core/api and core/common");
......@@ -26,6 +26,15 @@ class IScanner(object):
if not isinstance(self.input_type, dp2.InputType):
raise ValueError("input type should be dataprovider2.InputType")
self.pos = pos
# data_in_gpu is used to indicate whether to create argument on GPU
# or not in GPU mode. Now if using one thread (trainer_count=1),
# trainer uses NeuralNetwork which needs to create argument on GPU
# before calling forward function. So, set data_in_gpu to True.
# Otherwise, trainer uses MultiGradientMachine which will transfer
# data from CPU to GPU in the forward function, set data_in_gpu to
# False in this case.
self.data_in_gpu = swig_paddle.isUsingGpu(
) and swig_paddle.getTrainerCount() == 1
def scan(self, dat):
pass
......@@ -53,7 +62,8 @@ class DenseScanner(IScanner):
assert isinstance(argument, swig_paddle.Arguments)
if self.__mat__.dtype != numpy.float32:
self.__mat__ = self.__mat__.astype(numpy.float32)
m = swig_paddle.Matrix.createDenseFromNumpy(self.__mat__, True, False)
m = swig_paddle.Matrix.createDenseFromNumpy(self.__mat__, True,
self.data_in_gpu)
argument.setSlotValue(self.pos, m)
......@@ -75,10 +85,13 @@ class SparseBinaryScanner(IScanner):
def finish_scan(self, argument):
assert isinstance(argument, swig_paddle.Arguments)
m = swig_paddle.Matrix.createSparse(self.__height__,
m = swig_paddle.Matrix.createSparse(
self.__height__,
self.input_type.dim,
len(self.__cols__),
len(self.__value__) == 0)
len(self.__value__) == 0,
False, # trans
False) # TODO supoort GPU
assert isinstance(m, swig_paddle.Matrix)
m.sparseCopyFrom(self.__rows__, self.__cols__, self.__value__)
argument.setSlotValue(self.pos, m)
......@@ -102,7 +115,7 @@ class IndexScanner(IScanner):
self.__ids__.append(dat)
def finish_scan(self, argument):
ids = swig_paddle.IVector.create(self.__ids__)
ids = swig_paddle.IVector.create(self.__ids__, self.data_in_gpu)
assert isinstance(argument, swig_paddle.Arguments)
argument.setSlotIds(self.pos, ids)
......
......@@ -5,38 +5,50 @@ ARG DEBIAN_FRONTEND=noninteractive
ARG UBUNTU_MIRROR
RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ubuntu.com#${UBUNTU_MIRROR}#g' /etc/apt/sources.list; fi'
# ENV variables
ARG BUILD_WOBOQ
ARG BUILD_AND_INSTALL
ARG WITH_AVX
ARG WITH_DOC
ARG WITH_STYLE_CHECK
ENV BUILD_WOBOQ=${BUILD_WOBOQ:-OFF}
ENV BUILD_AND_INSTALL=${BUILD_AND_INSTALL:-OFF}
ENV WITH_GPU=OFF
ENV WITH_AVX=${WITH_AVX:-ON}
ENV WITH_DOC=${WITH_DOC:-OFF}
ENV WITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF}
ENV HOME /root
# Add bash enhancements
COPY ./paddle/scripts/docker/root/ /root/
RUN apt-get update && \
apt-get install -y git python-pip python-dev openssh-server bison && \
apt-get install -y wget unzip tar xz-utils bzip2 gzip coreutils && \
apt-get install -y curl sed grep graphviz libjpeg-dev zlib1g-dev && \
apt-get install -y python-numpy python-matplotlib gcc g++ gfortran && \
apt-get install -y automake && \
apt-get install -y automake locales clang-format-3.8 && \
apt-get clean -y
# git credential to skip password typing
RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8
RUN pip install --upgrade pip && \
pip install -U "protobuf==3.1.0" && \
pip install -U 'protobuf==3.1.0' && \
pip install -U wheel pillow BeautifulSoup && \
pip install -U docopt PyYAML sphinx && \
pip install -U sphinx_rtd_theme recommonmark jupyter
pip install -U sphinx-rtd-theme==0.1.9 recommonmark && \
pip install -U pre-commit 'requests==2.9.2' jupyter
RUN curl -sSL https://cmake.org/files/v3.4/cmake-3.4.1.tar.gz | tar -xz && \
cd cmake-3.4.1 && ./bootstrap && make -j `nproc` && make install && \
cd .. && rm -rf cmake-3.4.1
ARG BUILD_WOBOQ
ARG BUILD_AND_INSTALL
ARG WITH_AVX
ARG WITH_DOC
ARG WITH_STYLE_CHECK
ENV BUILD_WOBOQ=${BUILD_WOBOQ:-OFF}
ENV BUILD_AND_INSTALL=${BUILD_AND_INSTALL:-OFF}
ENV WITH_GPU=OFF
ENV WITH_AVX=${WITH_AVX:-ON}
ENV WITH_DOC=${WITH_DOC:-OFF}
ENV WITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF}
RUN mkdir /paddle
COPY . /paddle/
RUN /paddle/paddle/scripts/docker/build.sh
VOLUME ["/usr/share/nginx/html/data", "/usr/share/nginx/html/paddle"]
......@@ -53,7 +65,6 @@ RUN mkdir /notes/
WORKDIR "/notes"
EXPOSE 8888
RUN mkdir -p /opt/bin
COPY ./paddle/scripts/docker/entrypoint /opt/bin/
CMD ["/opt/bin/entrypoint"]
......@@ -5,38 +5,50 @@ ARG DEBIAN_FRONTEND=noninteractive
ARG UBUNTU_MIRROR
RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ubuntu.com#${UBUNTU_MIRROR}#g' /etc/apt/sources.list; fi'
# ENV variables
ARG BUILD_WOBOQ
ARG BUILD_AND_INSTALL
ARG WITH_AVX
ARG WITH_DOC
ARG WITH_STYLE_CHECK
ENV BUILD_WOBOQ=${BUILD_WOBOQ:-OFF}
ENV BUILD_AND_INSTALL=${BUILD_AND_INSTALL:-OFF}
ENV WITH_GPU=ON
ENV WITH_AVX=${WITH_AVX:-ON}
ENV WITH_DOC=${WITH_DOC:-OFF}
ENV WITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF}
ENV HOME /root
# Add bash enhancements
COPY ./paddle/scripts/docker/root/ /root/
RUN apt-get update && \
apt-get install -y git python-pip python-dev openssh-server bison && \
apt-get install -y wget unzip tar xz-utils bzip2 gzip coreutils && \
apt-get install -y curl sed grep graphviz libjpeg-dev zlib1g-dev && \
apt-get install -y python-numpy python-matplotlib gcc g++ gfortran && \
apt-get install -y automake && \
apt-get install -y automake locales clang-format-3.8 && \
apt-get clean -y
# git credential to skip password typing
RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8
RUN pip install --upgrade pip && \
pip install -U "protobuf==3.1.0" && \
pip install -U 'protobuf==3.1.0' && \
pip install -U wheel pillow BeautifulSoup && \
pip install -U docopt PyYAML sphinx && \
pip install -U sphinx_rtd_theme recommonmark jupyter
pip install -U sphinx-rtd-theme==0.1.9 recommonmark && \
pip install -U pre-commit 'requests==2.9.2' jupyter
RUN curl -sSL https://cmake.org/files/v3.4/cmake-3.4.1.tar.gz | tar -xz && \
cd cmake-3.4.1 && ./bootstrap && make -j `nproc` && make install && \
cd .. && rm -rf cmake-3.4.1
ARG BUILD_WOBOQ
ARG BUILD_AND_INSTALL
ARG WITH_AVX
ARG WITH_DOC
ARG WITH_STYLE_CHECK
ENV BUILD_WOBOQ=${BUILD_WOBOQ:-OFF}
ENV BUILD_AND_INSTALL=${BUILD_AND_INSTALL:-OFF}
ENV WITH_GPU=ON
ENV WITH_AVX=${WITH_AVX:-ON}
ENV WITH_DOC=${WITH_DOC:-OFF}
ENV WITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF}
RUN mkdir /paddle
COPY . /paddle/
RUN /paddle/paddle/scripts/docker/build.sh
VOLUME ["/usr/share/nginx/html/data", "/usr/share/nginx/html/paddle"]
......@@ -53,7 +65,6 @@ RUN mkdir /notes/
WORKDIR "/notes"
EXPOSE 8888
RUN mkdir -p /opt/bin
COPY ./paddle/scripts/docker/entrypoint /opt/bin/
CMD ["/opt/bin/entrypoint"]
# Locales
export LC_ALL=en_US.UTF-8
export LANG=en_US.UTF-8
export LANGUAGE=en_US.UTF-8
# Aliases
alias rm='rm -i'
alias cp='cp -i'
alias mv='mv -i'
alias ls='ls -hFG'
alias l='ls -lF'
alias ll='ls -alF'
alias lt='ls -ltrF'
alias ll='ls -alF'
alias lls='ls -alSrF'
alias llt='ls -altrF'
# Colorize directory listing
alias ls="ls -ph --color=auto"
# Colorize grep
if echo hello|grep --color=auto l >/dev/null 2>&1; then
export GREP_OPTIONS="--color=auto" GREP_COLOR="1;31"
fi
# Shell
export CLICOLOR="1"
YELLOW="\[\033[1;33m\]"
NO_COLOUR="\[\033[0m\]"
GREEN="\[\033[1;32m\]"
WHITE="\[\033[1;37m\]"
source ~/.scripts/git-prompt.sh
export PS1="\[\033[1;33m\]λ $WHITE\h $GREEN\w$YELLOW\$(__git_ps1 \" \[\033[35m\]{\[\033[36m\]%s\[\033[35m\]}\")$NO_COLOUR "
# Git
source ~/.scripts/git-completion.sh
[user]
name =
email =
[alias]
st = status --branch --short
ci = commit
br = branch
co = checkout
df = diff
l = log --pretty=format:\"%h %ad | %s%d [%an]\" --graph --date=short
ll = log --stat
[merge]
tool = vimdiff
[core]
excludesfile = ~/.gitignore
editor = vim
[color]
branch = auto
diff = auto
status = auto
[color "branch"]
current = yellow reverse
local = yellow
remote = green
[color "diff"]
meta = yellow bold
frag = magenta bold
old = red bold
new = green bold
[color "status"]
added = yellow
changed = green
untracked = cyan
[push]
default = matching
\ No newline at end of file
此差异已折叠。
# bash/zsh git prompt support
#
# Copyright (C) 2006,2007 Shawn O. Pearce <spearce@spearce.org>
# Distributed under the GNU General Public License, version 2.0.
#
# This script allows you to see repository status in your prompt.
#
# To enable:
#
# 1) Copy this file to somewhere (e.g. ~/.git-prompt.sh).
# 2) Add the following line to your .bashrc/.zshrc:
# source ~/.git-prompt.sh
# 3a) Change your PS1 to call __git_ps1 as
# command-substitution:
# Bash: PS1='[\u@\h \W$(__git_ps1 " (%s)")]\$ '
# ZSH: setopt PROMPT_SUBST ; PS1='[%n@%m %c$(__git_ps1 " (%s)")]\$ '
# the optional argument will be used as format string.
# 3b) Alternatively, for a slightly faster prompt, __git_ps1 can
# be used for PROMPT_COMMAND in Bash or for precmd() in Zsh
# with two parameters, <pre> and <post>, which are strings
# you would put in $PS1 before and after the status string
# generated by the git-prompt machinery. e.g.
# Bash: PROMPT_COMMAND='__git_ps1 "\u@\h:\w" "\\\$ "'
# will show username, at-sign, host, colon, cwd, then
# various status string, followed by dollar and SP, as
# your prompt.
# ZSH: precmd () { __git_ps1 "%n" ":%~$ " "|%s" }
# will show username, pipe, then various status string,
# followed by colon, cwd, dollar and SP, as your prompt.
# Optionally, you can supply a third argument with a printf
# format string to finetune the output of the branch status
#
# The repository status will be displayed only if you are currently in a
# git repository. The %s token is the placeholder for the shown status.
#
# The prompt status always includes the current branch name.
#
# In addition, if you set GIT_PS1_SHOWDIRTYSTATE to a nonempty value,
# unstaged (*) and staged (+) changes will be shown next to the branch
# name. You can configure this per-repository with the
# bash.showDirtyState variable, which defaults to true once
# GIT_PS1_SHOWDIRTYSTATE is enabled.
#
# You can also see if currently something is stashed, by setting
# GIT_PS1_SHOWSTASHSTATE to a nonempty value. If something is stashed,
# then a '$' will be shown next to the branch name.
#
# If you would like to see if there're untracked files, then you can set
# GIT_PS1_SHOWUNTRACKEDFILES to a nonempty value. If there're untracked
# files, then a '%' will be shown next to the branch name. You can
# configure this per-repository with the bash.showUntrackedFiles
# variable, which defaults to true once GIT_PS1_SHOWUNTRACKEDFILES is
# enabled.
#
# If you would like to see the difference between HEAD and its upstream,
# set GIT_PS1_SHOWUPSTREAM="auto". A "<" indicates you are behind, ">"
# indicates you are ahead, "<>" indicates you have diverged and "="
# indicates that there is no difference. You can further control
# behaviour by setting GIT_PS1_SHOWUPSTREAM to a space-separated list
# of values:
#
# verbose show number of commits ahead/behind (+/-) upstream
# legacy don't use the '--count' option available in recent
# versions of git-rev-list
# git always compare HEAD to @{upstream}
# svn always compare HEAD to your SVN upstream
#
# By default, __git_ps1 will compare HEAD to your SVN upstream if it can
# find one, or @{upstream} otherwise. Once you have set
# GIT_PS1_SHOWUPSTREAM, you can override it on a per-repository basis by
# setting the bash.showUpstream config variable.
#
# If you would like to see more information about the identity of
# commits checked out as a detached HEAD, set GIT_PS1_DESCRIBE_STYLE
# to one of these values:
#
# contains relative to newer annotated tag (v1.6.3.2~35)
# branch relative to newer tag or branch (master~4)
# describe relative to older annotated tag (v1.6.3.1-13-gdd42c2f)
# default exactly matching tag
#
# If you would like a colored hint about the current dirty state, set
# GIT_PS1_SHOWCOLORHINTS to a nonempty value. The colors are based on
# the colored output of "git status -sb" and are available only when
# using __git_ps1 for PROMPT_COMMAND or precmd.
# stores the divergence from upstream in $p
# used by GIT_PS1_SHOWUPSTREAM
__git_ps1_show_upstream ()
{
local key value
local svn_remote svn_url_pattern count n
local upstream=git legacy="" verbose=""
svn_remote=()
# get some config options from git-config
local output="$(git config -z --get-regexp '^(svn-remote\..*\.url|bash\.showupstream)$' 2>/dev/null | tr '\0\n' '\n ')"
while read -r key value; do
case "$key" in
bash.showupstream)
GIT_PS1_SHOWUPSTREAM="$value"
if [[ -z "${GIT_PS1_SHOWUPSTREAM}" ]]; then
p=""
return
fi
;;
svn-remote.*.url)
svn_remote[$((${#svn_remote[@]} + 1))]="$value"
svn_url_pattern+="\\|$value"
upstream=svn+git # default upstream is SVN if available, else git
;;
esac
done <<< "$output"
# parse configuration values
for option in ${GIT_PS1_SHOWUPSTREAM}; do
case "$option" in
git|svn) upstream="$option" ;;
verbose) verbose=1 ;;
legacy) legacy=1 ;;
esac
done
# Find our upstream
case "$upstream" in
git) upstream="@{upstream}" ;;
svn*)
# get the upstream from the "git-svn-id: ..." in a commit message
# (git-svn uses essentially the same procedure internally)
local -a svn_upstream
svn_upstream=($(git log --first-parent -1 \
--grep="^git-svn-id: \(${svn_url_pattern#??}\)" 2>/dev/null))
if [[ 0 -ne ${#svn_upstream[@]} ]]; then
svn_upstream=${svn_upstream[${#svn_upstream[@]} - 2]}
svn_upstream=${svn_upstream%@*}
local n_stop="${#svn_remote[@]}"
for ((n=1; n <= n_stop; n++)); do
svn_upstream=${svn_upstream#${svn_remote[$n]}}
done
if [[ -z "$svn_upstream" ]]; then
# default branch name for checkouts with no layout:
upstream=${GIT_SVN_ID:-git-svn}
else
upstream=${svn_upstream#/}
fi
elif [[ "svn+git" = "$upstream" ]]; then
upstream="@{upstream}"
fi
;;
esac
# Find how many commits we are ahead/behind our upstream
if [[ -z "$legacy" ]]; then
count="$(git rev-list --count --left-right \
"$upstream"...HEAD 2>/dev/null)"
else
# produce equivalent output to --count for older versions of git
local commits
if commits="$(git rev-list --left-right "$upstream"...HEAD 2>/dev/null)"
then
local commit behind=0 ahead=0
for commit in $commits
do
case "$commit" in
"<"*) ((behind++)) ;;
*) ((ahead++)) ;;
esac
done
count="$behind $ahead"
else
count=""
fi
fi
# calculate the result
if [[ -z "$verbose" ]]; then
case "$count" in
"") # no upstream
p="" ;;
"0 0") # equal to upstream
p="=" ;;
"0 "*) # ahead of upstream
p=">" ;;
*" 0") # behind upstream
p="<" ;;
*) # diverged from upstream
p="<>" ;;
esac
else
case "$count" in
"") # no upstream
p="" ;;
"0 0") # equal to upstream
p=" u=" ;;
"0 "*) # ahead of upstream
p=" u+${count#0 }" ;;
*" 0") # behind upstream
p=" u-${count% 0}" ;;
*) # diverged from upstream
p=" u+${count#* }-${count% *}" ;;
esac
fi
}
# Helper function that is meant to be called from __git_ps1. It
# injects color codes into the appropriate gitstring variables used
# to build a gitstring.
__git_ps1_colorize_gitstring ()
{
if [[ -n ${ZSH_VERSION-} ]]; then
local c_red='%F{red}'
local c_green='%F{green}'
local c_lblue='%F{blue}'
local c_clear='%f'
else
# Using \[ and \] around colors is necessary to prevent
# issues with command line editing/browsing/completion!
local c_red='\[\e[31m\]'
local c_green='\[\e[32m\]'
local c_lblue='\[\e[1;34m\]'
local c_clear='\[\e[0m\]'
fi
local bad_color=$c_red
local ok_color=$c_green
local flags_color="$c_lblue"
local branch_color=""
if [ $detached = no ]; then
branch_color="$ok_color"
else
branch_color="$bad_color"
fi
c="$branch_color$c"
z="$c_clear$z"
if [ "$w" = "*" ]; then
w="$bad_color$w"
fi
if [ -n "$i" ]; then
i="$ok_color$i"
fi
if [ -n "$s" ]; then
s="$flags_color$s"
fi
if [ -n "$u" ]; then
u="$bad_color$u"
fi
r="$c_clear$r"
}
# __git_ps1 accepts 0 or 1 arguments (i.e., format string)
# when called from PS1 using command substitution
# in this mode it prints text to add to bash PS1 prompt (includes branch name)
#
# __git_ps1 requires 2 or 3 arguments when called from PROMPT_COMMAND (pc)
# in that case it _sets_ PS1. The arguments are parts of a PS1 string.
# when two arguments are given, the first is prepended and the second appended
# to the state string when assigned to PS1.
# The optional third parameter will be used as printf format string to further
# customize the output of the git-status string.
# In this mode you can request colored hints using GIT_PS1_SHOWCOLORHINTS=true
__git_ps1 ()
{
local pcmode=no
local detached=no
local ps1pc_start='\u@\h:\w '
local ps1pc_end='\$ '
local printf_format=' (%s)'
case "$#" in
2|3) pcmode=yes
ps1pc_start="$1"
ps1pc_end="$2"
printf_format="${3:-$printf_format}"
;;
0|1) printf_format="${1:-$printf_format}"
;;
*) return
;;
esac
local repo_info rev_parse_exit_code
repo_info="$(git rev-parse --git-dir --is-inside-git-dir \
--is-bare-repository --is-inside-work-tree \
--short HEAD 2>/dev/null)"
rev_parse_exit_code="$?"
if [ -z "$repo_info" ]; then
if [ $pcmode = yes ]; then
#In PC mode PS1 always needs to be set
PS1="$ps1pc_start$ps1pc_end"
fi
return
fi
local short_sha
if [ "$rev_parse_exit_code" = "0" ]; then
short_sha="${repo_info##*$'\n'}"
repo_info="${repo_info%$'\n'*}"
fi
local inside_worktree="${repo_info##*$'\n'}"
repo_info="${repo_info%$'\n'*}"
local bare_repo="${repo_info##*$'\n'}"
repo_info="${repo_info%$'\n'*}"
local inside_gitdir="${repo_info##*$'\n'}"
local g="${repo_info%$'\n'*}"
local r=""
local b=""
local step=""
local total=""
if [ -d "$g/rebase-merge" ]; then
read b 2>/dev/null <"$g/rebase-merge/head-name"
read step 2>/dev/null <"$g/rebase-merge/msgnum"
read total 2>/dev/null <"$g/rebase-merge/end"
if [ -f "$g/rebase-merge/interactive" ]; then
r="|REBASE-i"
else
r="|REBASE-m"
fi
else
if [ -d "$g/rebase-apply" ]; then
read step 2>/dev/null <"$g/rebase-apply/next"
read total 2>/dev/null <"$g/rebase-apply/last"
if [ -f "$g/rebase-apply/rebasing" ]; then
read b 2>/dev/null <"$g/rebase-apply/head-name"
r="|REBASE"
elif [ -f "$g/rebase-apply/applying" ]; then
r="|AM"
else
r="|AM/REBASE"
fi
elif [ -f "$g/MERGE_HEAD" ]; then
r="|MERGING"
elif [ -f "$g/CHERRY_PICK_HEAD" ]; then
r="|CHERRY-PICKING"
elif [ -f "$g/REVERT_HEAD" ]; then
r="|REVERTING"
elif [ -f "$g/BISECT_LOG" ]; then
r="|BISECTING"
fi
if [ -n "$b" ]; then
:
elif [ -h "$g/HEAD" ]; then
# symlink symbolic ref
b="$(git symbolic-ref HEAD 2>/dev/null)"
else
local head=""
if ! read head 2>/dev/null <"$g/HEAD"; then
if [ $pcmode = yes ]; then
PS1="$ps1pc_start$ps1pc_end"
fi
return
fi
# is it a symbolic ref?
b="${head#ref: }"
if [ "$head" = "$b" ]; then
detached=yes
b="$(
case "${GIT_PS1_DESCRIBE_STYLE-}" in
(contains)
git describe --contains HEAD ;;
(branch)
git describe --contains --all HEAD ;;
(describe)
git describe HEAD ;;
(* | default)
git describe --tags --exact-match HEAD ;;
esac 2>/dev/null)" ||
b="$short_sha..."
b="($b)"
fi
fi
fi
if [ -n "$step" ] && [ -n "$total" ]; then
r="$r $step/$total"
fi
local w=""
local i=""
local s=""
local u=""
local c=""
local p=""
if [ "true" = "$inside_gitdir" ]; then
if [ "true" = "$bare_repo" ]; then
c="BARE:"
else
b="GIT_DIR!"
fi
elif [ "true" = "$inside_worktree" ]; then
if [ -n "${GIT_PS1_SHOWDIRTYSTATE-}" ] &&
[ "$(git config --bool bash.showDirtyState)" != "false" ]
then
git diff --no-ext-diff --quiet --exit-code || w="*"
if [ -n "$short_sha" ]; then
git diff-index --cached --quiet HEAD -- || i="+"
else
i="#"
fi
fi
if [ -n "${GIT_PS1_SHOWSTASHSTATE-}" ] &&
[ -r "$g/refs/stash" ]; then
s="$"
fi
if [ -n "${GIT_PS1_SHOWUNTRACKEDFILES-}" ] &&
[ "$(git config --bool bash.showUntrackedFiles)" != "false" ] &&
git ls-files --others --exclude-standard --error-unmatch -- '*' >/dev/null 2>/dev/null
then
u="%${ZSH_VERSION+%}"
fi
if [ -n "${GIT_PS1_SHOWUPSTREAM-}" ]; then
__git_ps1_show_upstream
fi
fi
local z="${GIT_PS1_STATESEPARATOR-" "}"
# NO color option unless in PROMPT_COMMAND mode
if [ $pcmode = yes ] && [ -n "${GIT_PS1_SHOWCOLORHINTS-}" ]; then
__git_ps1_colorize_gitstring
fi
local f="$w$i$s$u"
local gitstring="$c${b##refs/heads/}${f:+$z$f}$r$p"
if [ $pcmode = yes ]; then
if [[ -n ${ZSH_VERSION-} ]]; then
gitstring=$(printf -- "$printf_format" "$gitstring")
else
printf -v gitstring -- "$printf_format" "$gitstring"
fi
PS1="$ps1pc_start$gitstring$ps1pc_end"
else
printf -- "$printf_format" "$gitstring"
fi
}
......@@ -24,12 +24,14 @@ from . import dataset
from . import reader
import attr
import pooling
import inferencer
import networks
import py_paddle.swig_paddle as api
__all__ = [
'optimizer', 'layer', 'activation', 'parameters', 'init', 'trainer',
'event', 'data_type', 'attr', 'pooling', 'data_feeder', 'dataset', 'reader',
'topology'
'topology', 'networks', 'inferencer', 'infer'
]
......@@ -39,3 +41,6 @@ def init(**kwargs):
args.append('--%s=%s' % (key, str(kwargs[key])))
api.initPaddle(*args)
infer = inferencer.infer
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
import paddle.trainer_config_helpers as conf_helps
class Layer(object):
def __init__(self, name=None, parent_layers=None):
assert isinstance(parent_layers, dict)
self.name = name
self.__parent_layers__ = parent_layers
def to_proto(self, context):
"""
function to set proto attribute
"""
kwargs = dict()
for layer_name in self.__parent_layers__:
if not isinstance(self.__parent_layers__[layer_name],
collections.Sequence):
v1_layer = self.__parent_layers__[layer_name].to_proto(
context=context)
else:
v1_layer = map(lambda x: x.to_proto(context=context),
self.__parent_layers__[layer_name])
kwargs[layer_name] = v1_layer
if self.name is None:
return self.to_proto_impl(**kwargs)
elif self.name not in context:
context[self.name] = self.to_proto_impl(**kwargs)
return context[self.name]
def to_proto_impl(self, **kwargs):
raise NotImplementedError()
def __convert_to_v2__(method_name, parent_names, is_default_name=True):
if is_default_name:
wrapper = wrap_name_default(name_prefix=method_name)
else:
wrapper = None
class V2LayerImpl(Layer):
def __init__(self, **kwargs):
parent_layers = dict()
other_kwargs = dict()
for pname in parent_names:
if kwargs.has_key(pname):
parent_layers[pname] = kwargs[pname]
for key in kwargs.keys():
if key not in parent_names:
other_kwargs[key] = kwargs[key]
name = kwargs.get('name', None)
super(V2LayerImpl, self).__init__(name, parent_layers)
self.__other_kwargs__ = other_kwargs
if wrapper is not None:
__init__ = wrapper(__init__)
def to_proto_impl(self, **kwargs):
args = dict()
for each in kwargs:
args[each] = kwargs[each]
for each in self.__other_kwargs__:
args[each] = self.__other_kwargs__[each]
return getattr(conf_helps, method_name)(**args)
return V2LayerImpl
......@@ -32,3 +32,10 @@ def download(url, module_name, md5sum):
shutil.copyfileobj(r.raw, f)
return filename
def dict_add(a_dict, ele):
if ele in a_dict:
a_dict[ele] += 1
else:
a_dict[ele] = 1
# /usr/bin/env python
# -*- coding:utf-8 -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
IMDB dataset: http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz
"""
import paddle.v2.dataset.common
import tarfile
import Queue
import re
import string
import threading
__all__ = ['build_dict', 'train', 'test']
URL = 'http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz'
MD5 = '7c2ac02c03563afcf9b574c7e56c153a'
# Read files that match pattern. Tokenize and yield each file.
def tokenize(pattern):
with tarfile.open(paddle.v2.dataset.common.download(URL, 'imdb',
MD5)) as tarf:
# Note that we should use tarfile.next(), which does
# sequential access of member files, other than
# tarfile.extractfile, which does random access and might
# destroy hard disks.
tf = tarf.next()
while tf != None:
if bool(pattern.match(tf.name)):
# newline and punctuations removal and ad-hoc tokenization.
yield tarf.extractfile(tf).read().rstrip("\n\r").translate(
None, string.punctuation).lower().split()
tf = tarf.next()
def build_dict(pattern, cutoff):
word_freq = {}
for doc in tokenize(pattern):
for word in doc:
paddle.v2.dataset.common.dict_add(word_freq, word)
# Not sure if we should prune less-frequent words here.
word_freq = filter(lambda x: x[1] > cutoff, word_freq.items())
dictionary = sorted(word_freq, key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*dictionary))
word_idx = dict(zip(words, xrange(len(words))))
word_idx['<unk>'] = len(words)
return word_idx
def reader_creator(pos_pattern, neg_pattern, word_idx, buffer_size):
UNK = word_idx['<unk>']
qs = [Queue.Queue(maxsize=buffer_size), Queue.Queue(maxsize=buffer_size)]
def load(pattern, queue):
for doc in tokenize(pattern):
queue.put(doc)
queue.put(None)
def reader():
# Creates two threads that loads positive and negative samples
# into qs.
t0 = threading.Thread(
target=load, args=(
pos_pattern,
qs[0], ))
t0.daemon = True
t0.start()
t1 = threading.Thread(
target=load, args=(
neg_pattern,
qs[1], ))
t1.daemon = True
t1.start()
# Read alternatively from qs[0] and qs[1].
i = 0
doc = qs[i].get()
while doc != None:
yield [word_idx.get(w, UNK) for w in doc], i % 2
i += 1
doc = qs[i % 2].get()
# If any queue is empty, reads from the other queue.
i += 1
doc = qs[i % 2].get()
while doc != None:
yield [word_idx.get(w, UNK) for w in doc], i % 2
doc = qs[i % 2].get()
return reader()
def train(word_idx):
return reader_creator(
re.compile("aclImdb/train/pos/.*\.txt$"),
re.compile("aclImdb/train/neg/.*\.txt$"), word_idx, 1000)
def test(word_idx):
return reader_creator(
re.compile("aclImdb/test/pos/.*\.txt$"),
re.compile("aclImdb/test/neg/.*\.txt$"), word_idx, 1000)
"""
imikolov's simple dataset: http://www.fit.vutbr.cz/~imikolov/rnnlm/
"""
import paddle.v2.dataset.common
import tarfile
__all__ = ['train', 'test']
URL = 'http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz'
MD5 = '30177ea32e27c525793142b6bf2c8e2d'
def word_count(f, word_freq=None):
add = paddle.v2.dataset.common.dict_add
if word_freq == None:
word_freq = {}
for l in f:
for w in l.strip().split():
add(word_freq, w)
add(word_freq, '<s>')
add(word_freq, '<e>')
return word_freq
def build_dict(train_filename, test_filename):
with tarfile.open(
paddle.v2.dataset.common.download(
paddle.v2.dataset.imikolov.URL, 'imikolov',
paddle.v2.dataset.imikolov.MD5)) as tf:
trainf = tf.extractfile(train_filename)
testf = tf.extractfile(test_filename)
word_freq = word_count(testf, word_count(trainf))
TYPO_FREQ = 50
word_freq = filter(lambda x: x[1] > TYPO_FREQ, word_freq.items())
dictionary = sorted(word_freq, key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*dictionary))
word_idx = dict(zip(words, xrange(len(words))))
word_idx['<unk>'] = len(words)
return word_idx
word_idx = {}
def reader_creator(filename, n):
global word_idx
if len(word_idx) == 0:
word_idx = build_dict('./simple-examples/data/ptb.train.txt',
'./simple-examples/data/ptb.valid.txt')
def reader():
with tarfile.open(
paddle.v2.dataset.common.download(
paddle.v2.dataset.imikolov.URL, 'imikolov',
paddle.v2.dataset.imikolov.MD5)) as tf:
f = tf.extractfile(filename)
UNK = word_idx['<unk>']
for l in f:
l = ['<s>'] + l.strip().split() + ['<e>']
if len(l) >= n:
l = [word_idx.get(w, UNK) for w in l]
for i in range(n, len(l) + 1):
yield tuple(l[i - n:i])
return reader
def train(n):
return reader_creator('./simple-examples/data/ptb.train.txt', n)
def test(n):
return reader_creator('./simple-examples/data/ptb.valid.txt', n)
......@@ -9,9 +9,9 @@ __all__ = ['train', 'test']
URL_PREFIX = 'http://yann.lecun.com/exdb/mnist/'
TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz'
TEST_IMAGE_MD5 = '25e3cc63507ef6e98d5dc541e8672bb6'
TEST_IMAGE_MD5 = '9fb629c4189551a2d022fa330f9573f3'
TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz'
TEST_LABEL_MD5 = '4e9511fe019b2189026bd0421ba7b688'
TEST_LABEL_MD5 = 'ec29112dd5afa0611ce80d1b7f02629c'
TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz'
TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873'
TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz'
......@@ -35,6 +35,7 @@ def reader_creator(image_filename, label_filename, buffer_size):
l = subprocess.Popen([zcat_cmd, label_filename], stdout=subprocess.PIPE)
l.stdout.read(8) # skip some magic bytes
try: # reader could be break.
while True:
labels = numpy.fromfile(
l.stdout, 'ubyte', count=buffer_size).astype("int")
......@@ -50,7 +51,7 @@ def reader_creator(image_filename, label_filename, buffer_size):
for i in xrange(buffer_size):
yield images[i, :], int(labels[i])
finally:
m.terminate()
l.terminate()
......
import paddle.v2.dataset.imdb
import unittest
import re
TRAIN_POS_PATTERN = re.compile("aclImdb/train/pos/.*\.txt$")
TRAIN_NEG_PATTERN = re.compile("aclImdb/train/neg/.*\.txt$")
TRAIN_PATTERN = re.compile("aclImdb/train/.*\.txt$")
TEST_POS_PATTERN = re.compile("aclImdb/test/pos/.*\.txt$")
TEST_NEG_PATTERN = re.compile("aclImdb/test/neg/.*\.txt$")
TEST_PATTERN = re.compile("aclImdb/test/.*\.txt$")
class TestIMDB(unittest.TestCase):
word_idx = None
def test_build_dict(self):
if self.word_idx == None:
self.word_idx = paddle.v2.dataset.imdb.build_dict(TRAIN_PATTERN,
150)
self.assertEqual(len(self.word_idx), 7036)
def check_dataset(self, dataset, expected_size):
if self.word_idx == None:
self.word_idx = paddle.v2.dataset.imdb.build_dict(TRAIN_PATTERN,
150)
sum = 0
for l in dataset(self.word_idx):
self.assertEqual(l[1], sum % 2)
sum += 1
self.assertEqual(sum, expected_size)
def test_train(self):
self.check_dataset(paddle.v2.dataset.imdb.train, 25000)
def test_test(self):
self.check_dataset(paddle.v2.dataset.imdb.test, 25000)
if __name__ == '__main__':
unittest.main()
import paddle.v2.dataset.imikolov
import unittest
class TestMikolov(unittest.TestCase):
def check_reader(self, reader, n):
for l in reader():
self.assertEqual(len(l), n)
def test_train(self):
n = 5
self.check_reader(paddle.v2.dataset.imikolov.train(n), n)
def test_test(self):
n = 5
self.check_reader(paddle.v2.dataset.imikolov.test(n), n)
if __name__ == '__main__':
unittest.main()
......@@ -11,7 +11,10 @@ There are:
TODO(yuyang18): Complete it!
"""
import py_paddle.swig_paddle as api
__all__ = ['EndIteration', 'BeginIteration', 'BeginPass', 'EndPass']
__all__ = [
'EndIteration', 'BeginIteration', 'BeginPass', 'EndPass', 'TestResult'
]
class WithMetric(object):
......@@ -30,6 +33,11 @@ class WithMetric(object):
return retv
class TestResult(WithMetric):
def __init__(self, evaluator):
super(TestResult, self).__init__(evaluator)
class BeginPass(object):
"""
Event On One Pass Training Start.
......
import py_paddle.swig_paddle as api
import topology
from data_feeder import DataFeeder
import itertools
import numpy
__all__ = ['Inference', 'infer']
class Inference(object):
def __init__(self, output, parameters):
topo = topology.Topology(output)
gm = api.GradientMachine.createFromConfigProto(
topo.proto(), api.CREATE_MODE_TESTING, [api.PARAMETER_VALUE])
for param in gm.getParameters():
val = param.getBuf(api.PARAMETER_VALUE)
name = param.getName()
assert isinstance(val, api.Vector)
val.copyFromNumpyArray(parameters.get(name).flatten())
self.__gradient_machine__ = gm
self.__data_types__ = topo.data_type()
def iter_infer(self, reader, reader_dict=None):
if reader_dict is None:
reader_dict = self.default_reader_dict()
feeder = DataFeeder(self.__data_types__, reader_dict)
self.__gradient_machine__.start()
for data_batch in reader():
yield self.__gradient_machine__.forwardTest(feeder(data_batch))
self.__gradient_machine__.finish()
def iter_infer_field(self, field, **kwargs):
for result in self.iter_infer(**kwargs):
yield [each_result[field] for each_result in result]
def infer(self, field='value', **kwargs):
retv = None
for result in self.iter_infer_field(field=field, **kwargs):
if retv is None:
retv = [[]] * len(result)
for i, item in enumerate(result):
retv[i].append(item)
retv = [numpy.concatenate(out) for out in retv]
if len(retv) == 1:
return retv[0]
else:
return retv
def default_reader_dict(self):
reader_dict = dict()
for i, tp in enumerate(self.__data_types__):
reader_dict[tp[0]] = i
return reader_dict
def infer(output, parameters, reader, reader_dict=None, field='value'):
inferer = Inference(output=output, parameters=parameters)
return inferer.infer(field=field, reader=reader, reader_dict=reader_dict)
......@@ -65,10 +65,7 @@ to be in a Python function but could be anywhere.
Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
import collections
import inspect
from config_base import Layer, __convert_to_v2__
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as __parse__
......@@ -107,74 +104,6 @@ def parse_network(*outputs):
return __parse__(__real_func__)
class Layer(object):
def __init__(self, name=None, parent_layers=None):
assert isinstance(parent_layers, dict)
self.name = name
self.__parent_layers__ = parent_layers
def to_proto(self, context):
"""
function to set proto attribute
"""
kwargs = dict()
for layer_name in self.__parent_layers__:
if not isinstance(self.__parent_layers__[layer_name],
collections.Sequence):
v1_layer = self.__parent_layers__[layer_name].to_proto(
context=context)
else:
v1_layer = map(lambda x: x.to_proto(context=context),
self.__parent_layers__[layer_name])
kwargs[layer_name] = v1_layer
if self.name is None:
return self.to_proto_impl(**kwargs)
elif self.name not in context:
context[self.name] = self.to_proto_impl(**kwargs)
return context[self.name]
def to_proto_impl(self, **kwargs):
raise NotImplementedError()
def __convert_to_v2__(method_name, parent_names, is_default_name=True):
if is_default_name:
wrapper = wrap_name_default(name_prefix=method_name)
else:
wrapper = None
class V2LayerImpl(Layer):
def __init__(self, **kwargs):
parent_layers = dict()
other_kwargs = dict()
for pname in parent_names:
if kwargs.has_key(pname):
parent_layers[pname] = kwargs[pname]
for key in kwargs.keys():
if key not in parent_names:
other_kwargs[key] = kwargs[key]
name = kwargs.get('name', None)
super(V2LayerImpl, self).__init__(name, parent_layers)
self.__other_kwargs__ = other_kwargs
if wrapper is not None:
__init__ = wrapper(__init__)
def to_proto_impl(self, **kwargs):
args = dict()
for each in kwargs:
args[each] = kwargs[each]
for each in self.__other_kwargs__:
args[each] = self.__other_kwargs__[each]
return getattr(conf_helps, method_name)(**args)
return V2LayerImpl
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.trainer_config_helpers.networks as conf_nw
import inspect
from config_base import __convert_to_v2__
__all__ = []
def __initialize__():
for each_subnetwork in conf_nw.__all__:
if each_subnetwork in ['inputs', 'outputs']:
continue
func = getattr(conf_nw, each_subnetwork)
if hasattr(func, 'argspec'):
argspec = func.argspec
else:
argspec = inspect.getargspec(func)
if each_subnetwork == 'simple_attention':
parents = ['encoded_sequence', 'encoded_proj', 'decoder_state']
else:
parents = filter(lambda x: x.startswith('input'), argspec.args)
assert len(parents) != 0, each_subnetwork
v2_subnet = __convert_to_v2__(
each_subnetwork,
parent_names=parents,
is_default_name='name' in argspec.args)
globals()[each_subnetwork] = v2_subnet
global __all__
__all__.append(each_subnetwork)
__initialize__()
......@@ -14,13 +14,13 @@
__all__ = [
'map_readers', 'buffered', 'compose', 'chain', 'shuffle',
'ComposeNotAligned', 'batched'
'ComposeNotAligned', 'batched', 'firstn'
]
from Queue import Queue
from threading import Thread
import itertools
import random
from Queue import Queue
from threading import Thread
def map_readers(func, *readers):
......@@ -213,3 +213,20 @@ def batched(reader, batch_size):
yield batch
return batched_reader
def firstn(reader, n):
"""
Limit the max number of samples that reader could return.
"""
# TODO(yuyang18): Check if just drop the reader, could clean the opened
# resource or not?
def firstn_reader():
for i, item in enumerate(reader()):
if i == n:
break
yield item
return firstn_reader
......@@ -235,4 +235,8 @@ class DataFeederTest(unittest.TestCase):
if __name__ == '__main__':
api.initPaddle("--use_gpu=0")
suite = unittest.TestLoader().loadTestsFromTestCase(DataFeederTest)
unittest.TextTestRunner().run(suite)
if api.isGpuVersion():
api.setUseGpu(True)
unittest.main()
......@@ -18,6 +18,7 @@ import paddle.v2.attr as attr
import paddle.v2.data_type as data_type
import paddle.v2.layer as layer
import paddle.v2.pooling as pooling
import paddle.v2.networks as networks
pixel = layer.data(name='pixel', type=data_type.dense_vector(128))
label = layer.data(name='label', type=data_type.integer_value(10))
......@@ -251,5 +252,13 @@ class ProjOpTest(unittest.TestCase):
print layer.parse_network(conv1)
class NetworkTests(unittest.TestCase):
def test_vgg(self):
img = layer.data(name='pixel', type=data_type.dense_vector(784))
vgg_out = networks.small_vgg(
input_image=img, num_channels=1, num_classes=2)
print layer.parse_network(vgg_out)
if __name__ == '__main__':
unittest.main()
......@@ -21,6 +21,28 @@ import layer as v2_layer
__all__ = ['Topology']
def __flatten__(lis):
"""
Given a list, possibly nested to any level, return it flattened.
"""
new_lis = []
for item in lis:
if isinstance(item, collections.Sequence):
new_lis.extend(__flatten__(item))
else:
new_lis.append(item)
return new_lis
def __bfs_travel__(callback, *layers):
layers = __flatten__(layers)
for each_layer in layers:
__break__ = callback(each_layer)
if __break__:
return
__bfs_travel__(callback, *each_layer.__parent_layers__.values())
class Topology(object):
"""
Topology is used to store the information about all layers
......@@ -46,21 +68,17 @@ class Topology(object):
:param name:
:return:
"""
result_layer = []
def find_layer_by_name(layer, layer_name):
if len(result_layer) == 1:
return
elif layer.name == layer_name:
result_layer.append(layer)
else:
for parent_layer in layer.__parent_layers__.values():
find_layer_by_name(parent_layer, layer_name)
result_layer = [None]
for layer in self.layers:
find_layer_by_name(layer, name)
def __impl__(l):
if l.name == name:
result_layer[0] = l
return True # break
return False
assert len(result_layer) == 1
__bfs_travel__(__impl__, *self.layers)
if result_layer[0] is None:
raise ValueError("No such layer %s" % name)
return result_layer[0]
def data_layers(self):
......@@ -68,17 +86,13 @@ class Topology(object):
get all data layer
:return:
"""
data_layers = set()
def find_data_layer(layer):
if isinstance(layer, v2_layer.DataLayerV2):
data_layers.add(layer)
for parent_layer in layer.__parent_layers__.values():
find_data_layer(parent_layer)
data_layers = dict()
for layer in self.layers:
find_data_layer(layer)
def __impl__(l):
if isinstance(l, v2_layer.DataLayerV2):
data_layers[l.name] = l
__bfs_travel__(__impl__, *self.layers)
return data_layers
def data_type(self):
......@@ -86,8 +100,9 @@ class Topology(object):
get data_type from proto, such as:
[('image', dense_vector(768)), ('label', integer_value(10))]
"""
return [(data_layer.name, data_layer.type)
for data_layer in self.data_layers()]
data_layers = self.data_layers()
return [(nm, data_layers[nm].type)
for nm in self.proto().input_layer_names]
def __check_layer_type__(layer):
......
......@@ -42,25 +42,35 @@ class ITrainer(object):
class SGD(ITrainer):
def __init__(self, update_equation):
def __init__(self, cost, parameters, update_equation):
"""
Simple SGD Trainer.
:param update_equation: The optimizer object.
:type update_equation: v2_optimizer.Optimizer
"""
if not isinstance(parameters, v2_parameters.Parameters):
raise TypeError('parameters should be parameters')
if not isinstance(update_equation, v2_optimizer.Optimizer):
raise ValueError("update equation parameter must be "
raise TypeError("update equation parameter must be "
"paddle.v2.optimizer.Optimizer")
topology = Topology(cost)
self.__optimizer__ = update_equation
self.__topology__ = topology
self.__parameters__ = parameters
self.__topology_in_proto__ = topology.proto()
self.__data_types__ = topology.data_type()
gm = api.GradientMachine.createFromConfigProto(
self.__topology_in_proto__, api.CREATE_MODE_NORMAL,
self.__optimizer__.enable_types())
assert isinstance(gm, api.GradientMachine)
parameters.append_gradient_machine(gm)
self.__gradient_machine__ = gm
self.__gradient_machine__.randParameters()
def train(self,
reader,
cost,
parameters,
num_passes=1,
event_handler=None,
reader_dict=None):
def train(self, reader, num_passes=1, event_handler=None, reader_dict=None):
"""
Training method. Will train num_passes of input data.
......@@ -76,27 +86,22 @@ class SGD(ITrainer):
if event_handler is None:
event_handler = default_event_handler
topology = Topology(cost)
if reader_dict is None:
reader_dict = self.default_reader_dict()
__check_train_args__(**locals())
gm = api.GradientMachine.createFromConfigProto(
topology.proto(), api.CREATE_MODE_NORMAL,
self.__optimizer__.enable_types())
assert isinstance(gm, api.GradientMachine)
parameters.append_gradient_machine(gm)
gm.randParameters()
updater = self.__optimizer__.create_local_updater()
updater.init(gm)
updater.init(self.__gradient_machine__)
gm.start()
batch_evaluator = gm.makeEvaluator()
self.__gradient_machine__.start()
batch_evaluator = self.__gradient_machine__.makeEvaluator()
assert isinstance(batch_evaluator, api.Evaluator)
pass_evaluator = gm.makeEvaluator()
pass_evaluator = self.__gradient_machine__.makeEvaluator()
assert isinstance(pass_evaluator, api.Evaluator)
out_args = api.Arguments.createArguments(0)
feeder = DataFeeder(topology.data_type(), reader_dict)
feeder = DataFeeder(self.__data_types__, reader_dict)
for pass_id in xrange(num_passes):
event_handler(v2_event.BeginPass(pass_id))
......@@ -104,16 +109,19 @@ class SGD(ITrainer):
updater.startPass()
for batch_id, data_batch in enumerate(reader()):
pass_type = updater.startBatch(len(data_batch))
gm.forwardBackward(feeder(data_batch), out_args, pass_type)
self.__gradient_machine__.forwardBackward(
feeder(data_batch), out_args, pass_type)
batch_evaluator.start()
event_handler(
v2_event.BeginIteration(
pass_id=pass_id, batch_id=batch_id))
pass_type = updater.startBatch(len(data_batch))
gm.forwardBackward(feeder(data_batch), out_args, pass_type)
gm.eval(pass_evaluator)
gm.eval(batch_evaluator)
for each_param in gm.getNonStaticParameters():
self.__gradient_machine__.forwardBackward(
feeder(data_batch), out_args, pass_type)
self.__gradient_machine__.eval(pass_evaluator)
self.__gradient_machine__.eval(batch_evaluator)
for each_param in self.__gradient_machine__.getNonStaticParameters(
):
updater.update(each_param)
# Get cost. We use numpy to calculate total cost for this batch.
cost_vec = out_args.getSlotValue(0)
......@@ -131,22 +139,37 @@ class SGD(ITrainer):
updater.finishPass()
pass_evaluator.finish()
event_handler(v2_event.EndPass(pass_id, evaluator=pass_evaluator))
gm.finish()
self.__gradient_machine__.finish()
def default_reader_dict(self):
reader_dict = dict()
for i, tp in enumerate(self.__data_types__):
reader_dict[tp[0]] = i
return reader_dict
def test(self, reader, reader_dict=None):
if reader_dict is None:
reader_dict = self.default_reader_dict()
feeder = DataFeeder(self.__data_types__, reader_dict)
evaluator = self.__gradient_machine__.makeEvaluator()
out_args = api.Arguments.createArguments(0)
evaluator.start()
for data_batch in reader():
self.__gradient_machine__.forward(
feeder(data_batch), out_args, api.PASS_TEST)
self.__gradient_machine__.eval(evaluator)
evaluator.finish()
return v2_event.TestResult(evaluator=evaluator)
def __check_train_args__(reader, topology, parameters, event_handler, **kwargs):
def __check_train_args__(reader, event_handler, **kwargs):
"""
Check train function's argument types
"""
if not callable(reader) or not isinstance(reader(), collections.Iterator):
raise TypeError('train_data_reader should be a function, '
'which can return a iterator')
if not isinstance(topology, Topology):
raise TypeError('topology should be a model config')
if not isinstance(parameters, v2_parameters.Parameters):
raise TypeError('parameters should be a parameter pool')
if not callable(event_handler):
raise TypeError('event handler should be a function')
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册