diff --git a/doc_cn/ui/predict/swig_py_paddle.rst b/doc_cn/ui/predict/swig_py_paddle.rst index f9750d80c92c84194e5b98caac8279ab9b4d3865..4c0a0de820b7a51319ae0e9b1daac48387852084 100644 --- a/doc_cn/ui/predict/swig_py_paddle.rst +++ b/doc_cn/ui/predict/swig_py_paddle.rst @@ -25,26 +25,9 @@ PaddlePaddle使用swig对常用的预测接口进行了封装,通过编译会 如下是一段使用mnist model来实现手写识别的预测代码。完整的代码见 ``src_root/doc/ui/predict/predict_sample.py`` 。mnist model可以通过 ``src_root\demo\mnist`` 目录下的demo训练出来。 -.. code-block:: python - - from py_paddle import swig_paddle, DataProviderConverter - from paddle.trainer.PyDataProvider2 import dense_vector - from paddle.trainer.config_parser import parse_config - - TEST_DATA = [...] - - def main(): - conf = parse_config("./mnist_model/trainer_config.py", "") - network = swig_paddle.GradientMachine.createFromConfigProto(conf.model_config) - assert isinstance(network, swig_paddle.GradientMachine) # For code hint. - network.loadParameters("./mnist_model/") - converter = DataProviderConverter([dense_vector(784)]) - inArg = converter(TEST_DATA) - print network.forwardTest(inArg) - - if __name__ == '__main__': - swig_paddle.initPaddle("--use_gpu=0") - main() +.. literalinclude:: ../../../doc/ui/predict/predict_sample.py + :language: python + :lines: 15-18,121-136 Demo预测输出如下,其中value即为softmax层的输出。由于TEST_DATA包含两条预测数据,所以输出的value包含两个向量 。