未验证 提交 eaa3fd45 编写于 作者: S sneaxiy 提交者: GitHub

add more int type support for softmax_with_cross_entropy (#39409)

上级 8d87b3bc
...@@ -30,59 +30,90 @@ template <typename T, int MajorType = Eigen::RowMajor, ...@@ -30,59 +30,90 @@ template <typename T, int MajorType = Eigen::RowMajor,
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>; using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename T> template <typename T>
class CrossEntropyFunctor<platform::CPUDeviceContext, T> { struct HardLabelCrossEntropyCPUFunctorImpl {
public: HardLabelCrossEntropyCPUFunctorImpl(framework::Tensor* out,
void operator()(const platform::CPUDeviceContext& ctx, framework::Tensor* out,
const framework::Tensor* prob, const framework::Tensor* prob,
const framework::Tensor* labels, const bool softLabel, const framework::Tensor* labels,
const int ignore_index, const int axis_dim) { const int ignore_index,
const int batch_size = prob->dims()[0]; const int axis_dim)
const int num_classes = prob->dims()[1]; : out_(out),
const int num_remain = num_classes / axis_dim; prob_(prob),
labels_(labels),
ignore_index_(ignore_index),
axis_dim_(axis_dim) {}
Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain); template <typename U>
void apply() const {
const int batch_size = prob_->dims()[0];
const int num_classes = prob_->dims()[1];
const int num_remain = num_classes / axis_dim_;
if (softLabel) { const T* prob_data = prob_->template data<T>();
auto in = EigenMatrix<T>::From(*prob); T* loss_data = out_->template data<T>();
auto lbl = EigenMatrix<T>::From(*labels);
auto loss = EigenMatrix<T>::From(*out);
loss.device(*ctx.eigen_device()) = const auto* label_data = labels_->template data<U>();
-((lbl * in.log().unaryExpr(math::TolerableValue<T>()))
.reshape(batch_axis_remain)
.sum(Eigen::DSizes<int, 1>(1)));
} else {
const T* prob_data = prob->data<T>();
T* loss_data = out->data<T>();
const int64_t* label_data = labels->data<int64_t>();
for (int i = 0; i < batch_size; ++i) { for (int i = 0; i < batch_size; ++i) {
for (int j = 0; j < num_remain; j++) { for (int j = 0; j < num_remain; j++) {
int lbl = label_data[i * num_remain + j]; int lbl = static_cast<int>(label_data[i * num_remain + j]);
if (lbl != ignore_index) { if (lbl != ignore_index_) {
PADDLE_ENFORCE_GE(lbl, 0, PADDLE_ENFORCE_GE(lbl, 0,
platform::errors::OutOfRange( platform::errors::OutOfRange(
"label value should >= 0 when label " "label value should >= 0 when label "
"value(%f) not equal to ignore_index(%f)", "value(%f) not equal to ignore_index(%f)",
lbl, ignore_index)); lbl, ignore_index_));
PADDLE_ENFORCE_LT( PADDLE_ENFORCE_LT(
lbl, axis_dim, lbl, axis_dim_,
platform::errors::OutOfRange( platform::errors::OutOfRange(
"label value should less than the shape of axis dimension " "label value should less than the shape of axis dimension "
"when label value(%f) not equal to ignore_index(%f), But " "when label value(%f) not equal to ignore_index(%f), But "
"received label value as %ld and shape of axis dimension " "received label value as %ld and shape of axis dimension "
"is %d", "is %d",
lbl, ignore_index, lbl, axis_dim)); lbl, ignore_index_, lbl, axis_dim_));
} }
int index = i * num_classes + lbl * num_remain + j; int index = i * num_classes + lbl * num_remain + j;
int loss_idx = i * num_remain + j; int loss_idx = i * num_remain + j;
loss_data[loss_idx] = loss_data[loss_idx] =
lbl == ignore_index lbl == ignore_index_
? 0 ? 0
: -math::TolerableValue<T>()(std::log(prob_data[index])); : -math::TolerableValue<T>()(std::log(prob_data[index]));
} }
} }
} }
private:
framework::Tensor* out_;
const framework::Tensor* prob_;
const framework::Tensor* labels_;
const int ignore_index_;
const int axis_dim_;
};
template <typename T>
class CrossEntropyFunctor<platform::CPUDeviceContext, T> {
public:
void operator()(const platform::CPUDeviceContext& ctx, framework::Tensor* out,
const framework::Tensor* prob,
const framework::Tensor* labels, const bool softLabel,
const int ignore_index, const int axis_dim) {
if (softLabel) {
const int batch_size = prob->dims()[0];
const int num_classes = prob->dims()[1];
const int num_remain = num_classes / axis_dim;
Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
auto in = EigenMatrix<T>::From(*prob);
auto lbl = EigenMatrix<T>::From(*labels);
auto loss = EigenMatrix<T>::From(*out);
loss.device(*ctx.eigen_device()) =
-((lbl * in.log().unaryExpr(math::TolerableValue<T>()))
.reshape(batch_axis_remain)
.sum(Eigen::DSizes<int, 1>(1)));
} else {
HardLabelCrossEntropyCPUFunctorImpl<T> functor_impl(
out, prob, labels, ignore_index, axis_dim);
framework::VisitIntDataType(labels->type(), functor_impl);
}
} }
}; };
......
...@@ -21,18 +21,19 @@ namespace paddle { ...@@ -21,18 +21,19 @@ namespace paddle {
namespace operators { namespace operators {
namespace math { namespace math {
template <typename T> template <typename T, typename LabelT>
__global__ void CrossEntropyKernel(T* Y, const T* X, const int64_t* label, __global__ void CrossEntropyKernel(T* Y, const T* X, const LabelT* label,
const int N, const int D, const int N, const int D,
const int ignore_index) { const int ignore_index) {
CUDA_KERNEL_LOOP(i, N) { CUDA_KERNEL_LOOP(i, N) {
PADDLE_ENFORCE(label[i] >= 0 && label[i] < D || label[i] == ignore_index, auto lbl = static_cast<int64_t>(label[i]);
PADDLE_ENFORCE(lbl >= 0 && lbl < D || lbl == ignore_index,
"The value of label[%d] expected >= 0 and < %ld, or == %ld, " "The value of label[%d] expected >= 0 and < %ld, or == %ld, "
"but got %ld. Please check input value.", "but got %ld. Please check input value.",
i, D, ignore_index, label[i]); i, D, ignore_index, lbl);
Y[i] = ignore_index == label[i] Y[i] = ignore_index == lbl
? static_cast<T>(0) ? static_cast<T>(0)
: -math::TolerableValue<T>()(real_log(X[i * D + label[i]])); : -math::TolerableValue<T>()(real_log(X[i * D + lbl]));
} }
} }
...@@ -54,6 +55,43 @@ __global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label, ...@@ -54,6 +55,43 @@ __global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label,
} }
} }
template <typename T>
struct HardLabelCrossEntropyCUDAFunctorImpl {
public:
HardLabelCrossEntropyCUDAFunctorImpl(T* loss_data, const T* prob_data,
const void* label_data,
const int batch_size,
const int class_num,
const int ignore_index,
const int block_size, gpuStream_t stream)
: loss_data_(loss_data),
prob_data_(prob_data),
label_data_(label_data),
batch_size_(batch_size),
class_num_(class_num),
ignore_index_(ignore_index),
block_size_(block_size),
stream_(stream) {}
template <typename U>
void apply() const {
int grid_size = (batch_size_ + block_size_ - 1) / block_size_;
CrossEntropyKernel<T, U><<<grid_size, block_size_, 0, stream_>>>(
loss_data_, prob_data_, static_cast<const U*>(label_data_), batch_size_,
class_num_, ignore_index_);
}
private:
T* loss_data_;
const T* prob_data_;
const void* label_data_;
const int batch_size_;
const int class_num_;
const int ignore_index_;
const int block_size_;
gpuStream_t stream_;
};
template <typename T> template <typename T>
class CrossEntropyFunctor<platform::CUDADeviceContext, T> { class CrossEntropyFunctor<platform::CUDADeviceContext, T> {
public: public:
...@@ -81,12 +119,10 @@ class CrossEntropyFunctor<platform::CUDADeviceContext, T> { ...@@ -81,12 +119,10 @@ class CrossEntropyFunctor<platform::CUDADeviceContext, T> {
SoftCrossEntropyKernel<T><<<batch_size, block, 0, ctx.stream()>>>( SoftCrossEntropyKernel<T><<<batch_size, block, 0, ctx.stream()>>>(
loss_data, prob_data, label_data, class_num); loss_data, prob_data, label_data, class_num);
} else { } else {
const int64_t* label_data = labels->data<int64_t>(); HardLabelCrossEntropyCUDAFunctorImpl<T> functor(
int block = kMaxBlockDim; loss_data, prob_data, labels->data(), batch_size, class_num,
int grid = (batch_size + block - 1) / block; ignore_index, kMaxBlockDim, ctx.stream());
CrossEntropyKernel<T><<<grid, block, 0, ctx.stream()>>>( framework::VisitDataType(labels->type(), functor);
loss_data, prob_data, label_data, batch_size, class_num,
ignore_index);
} }
} }
}; };
......
...@@ -24,6 +24,48 @@ namespace operators { ...@@ -24,6 +24,48 @@ namespace operators {
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
template <typename T, typename Visitor>
struct SoftmaxWithCrossEntropyFunctor {
public:
SoftmaxWithCrossEntropyFunctor(const framework::ExecutionContext& context,
const framework::Tensor& labels,
const bool soft_label, const Visitor& visitor)
: context_(context),
labels_(labels),
soft_label_(soft_label),
visitor_(visitor) {}
template <typename U>
void apply() const {
visitor_.template Apply<U>(context_, labels_, soft_label_);
}
private:
const framework::ExecutionContext& context_;
const framework::Tensor& labels_;
const bool soft_label_;
const Visitor& visitor_;
};
template <typename T, typename Visitor>
static void RunSoftmaxWithCrossEntropyFunctor(
const framework::ExecutionContext& context, const Visitor& visitor) {
const auto* labels = context.Input<framework::Tensor>("Label");
const bool soft_label = context.Attr<bool>("soft_label");
SoftmaxWithCrossEntropyFunctor<T, Visitor> functor(context, *labels,
soft_label, visitor);
auto dtype = labels->type();
if (soft_label) {
PADDLE_ENFORCE_EQ(
dtype, framework::DataTypeTrait<T>::DataType(),
platform::errors::InvalidArgument("The Input(Label) should be with the "
"same data type as Input(Logits)."));
functor.template apply<T>();
} else {
framework::VisitIntDataType(dtype, functor);
}
}
template <typename T> template <typename T>
class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> { class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> {
public: public:
...@@ -32,14 +74,14 @@ class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> { ...@@ -32,14 +74,14 @@ class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> {
platform::is_cpu_place(context.GetPlace()), true, platform::is_cpu_place(context.GetPlace()), true,
platform::errors::Unimplemented("This kernel only runs on CPU.")); platform::errors::Unimplemented("This kernel only runs on CPU."));
const bool use_softmax = context.Attr<bool>("use_softmax"); const bool use_softmax = context.Attr<bool>("use_softmax");
const Tensor* labels = context.Input<Tensor>("Label");
const bool soft_label = context.Attr<bool>("soft_label");
// do not with softmax op, and input is softmax // do not with softmax op, and input is softmax
if (!use_softmax) { if (!use_softmax) {
const Tensor* softmax = context.Input<Tensor>("Logits"); const Tensor* softmax = context.Input<Tensor>("Logits");
const Tensor* labels = context.Input<Tensor>("Label");
Tensor* softmax_out = context.Output<Tensor>("Softmax"); Tensor* softmax_out = context.Output<Tensor>("Softmax");
Tensor* loss = context.Output<Tensor>("Loss"); Tensor* loss = context.Output<Tensor>("Loss");
const bool soft_label = context.Attr<bool>("soft_label");
const int rank = softmax->dims().size(); const int rank = softmax->dims().size();
const int axis = CanonicalAxis(context.Attr<int>("axis"), rank); const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
int axis_dim = softmax->dims()[axis]; int axis_dim = softmax->dims()[axis];
...@@ -86,10 +128,8 @@ class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> { ...@@ -86,10 +128,8 @@ class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> {
} }
const Tensor* logits = context.Input<Tensor>("Logits"); const Tensor* logits = context.Input<Tensor>("Logits");
const Tensor* labels = context.Input<Tensor>("Label");
Tensor* softmax = context.Output<Tensor>("Softmax"); Tensor* softmax = context.Output<Tensor>("Softmax");
Tensor* loss = context.Output<Tensor>("Loss"); Tensor* loss = context.Output<Tensor>("Loss");
const bool soft_label = context.Attr<bool>("soft_label");
const int rank = logits->dims().size(); const int rank = logits->dims().size();
const int axis = CanonicalAxis(context.Attr<int>("axis"), rank); const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
...@@ -132,9 +172,14 @@ template <typename T> ...@@ -132,9 +172,14 @@ template <typename T>
class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> { class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
RunSoftmaxWithCrossEntropyFunctor<T>(context, *this);
}
template <typename LabelT>
static void Apply(const framework::ExecutionContext& context,
const framework::Tensor& labels, const bool soft_label) {
const Tensor* out_grad = const Tensor* out_grad =
context.Input<Tensor>(framework::GradVarName("Loss")); context.Input<Tensor>(framework::GradVarName("Loss"));
const Tensor* labels = context.Input<Tensor>("Label");
Tensor* logit_grad = Tensor* logit_grad =
context.Output<Tensor>(framework::GradVarName("Logits")); context.Output<Tensor>(framework::GradVarName("Logits"));
const Tensor* softmax = context.Input<Tensor>("Softmax"); const Tensor* softmax = context.Input<Tensor>("Softmax");
...@@ -143,7 +188,6 @@ class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> { ...@@ -143,7 +188,6 @@ class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> {
framework::TensorCopy(*softmax, context.GetPlace(), framework::TensorCopy(*softmax, context.GetPlace(),
context.device_context(), logit_grad); context.device_context(), logit_grad);
} }
const bool soft_label = context.Attr<bool>("soft_label");
auto ignore_index = context.Attr<int>("ignore_index"); auto ignore_index = context.Attr<int>("ignore_index");
const int rank = logit_grad->dims().size(); const int rank = logit_grad->dims().size();
...@@ -166,7 +210,7 @@ class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> { ...@@ -166,7 +210,7 @@ class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> {
const int d = SizeFromAxis(axis, logit_grad->dims()); const int d = SizeFromAxis(axis, logit_grad->dims());
Tensor logit_grad_2d, labels_2d, out_grad_2d; Tensor logit_grad_2d, labels_2d, out_grad_2d;
logit_grad_2d.ShareDataWith(*logit_grad).Resize({n, d}); logit_grad_2d.ShareDataWith(*logit_grad).Resize({n, d});
labels_2d.ShareDataWith(*labels).Resize({n, labels->numel() / n}); labels_2d.ShareDataWith(labels).Resize({n, labels.numel() / n});
out_grad_2d.ShareDataWith(*out_grad).Resize({n, d / axis_dim}); out_grad_2d.ShareDataWith(*out_grad).Resize({n, d / axis_dim});
auto out_grad_mat = framework::EigenMatrix<T>::From(out_grad_2d); auto out_grad_mat = framework::EigenMatrix<T>::From(out_grad_2d);
auto logit_grad_mat = framework::EigenMatrix<T>::From(logit_grad_2d); auto logit_grad_mat = framework::EigenMatrix<T>::From(logit_grad_2d);
...@@ -183,23 +227,24 @@ class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> { ...@@ -183,23 +227,24 @@ class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> {
logit_grad_mat; logit_grad_mat;
} else { } else {
// use_softmax step2 // use_softmax step2
const int64_t* label_data = labels->data<int64_t>(); const auto* label_data = labels.template data<LabelT>();
T* logit_grad_data = logit_grad->data<T>(); T* logit_grad_data = logit_grad->template data<T>();
const T* out_grad_data = out_grad->data<T>(); const T* out_grad_data = out_grad->template data<T>();
const int remain = d / axis_dim; const int remain = d / axis_dim;
for (int i = 0; i < n; ++i) { // for each sample_1_dim for (int i = 0; i < n; ++i) { // for each sample_1_dim
for (int j = 0; j < remain; j++) { // for each sample_other_dims for (int j = 0; j < remain; j++) { // for each sample_other_dims
int idx = i * remain + j; // this sample's label_idx. for 1d case, int idx = i * remain + j; // this sample's label_idx. for 1d case,
// remain=1 and j=0, so, idx = i // remain=1 and j=0, so, idx = i
if (label_data[idx] == ignore_index) { auto lbl = static_cast<int64_t>(label_data[idx]);
if (lbl == ignore_index) {
for (int k = 0; k < axis_dim; ++k) { // for each class id's label for (int k = 0; k < axis_dim; ++k) { // for each class id's label
logit_grad_data[i * d + k * remain + j] = 0; logit_grad_data[i * d + k * remain + j] = 0;
} }
} else { } else {
// only for this sample's label_idx, the label is 1, others is 0, // only for this sample's label_idx, the label is 1, others is 0,
// so, only compute this label_idx's class // so, only compute this label_idx's class
logit_grad_data[i * d + label_data[idx] * remain + j] = logit_grad_data[i * d + lbl * remain + j] =
(-1 / logit_grad_data[i * d + label_data[idx] * remain + j]) * (-1 / logit_grad_data[i * d + lbl * remain + j]) *
out_grad_data[idx]; out_grad_data[idx];
for (int k = 0; k < axis_dim; ++k) { // for each class id's label for (int k = 0; k < axis_dim; ++k) { // for each class id's label
if (k != if (k !=
...@@ -233,15 +278,16 @@ class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> { ...@@ -233,15 +278,16 @@ class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> {
logit_grad_mat * // element_wise multiply logit_grad_mat * // element_wise multiply
out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, axis_dim)); out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, axis_dim));
const int64_t* label_data = labels->data<int64_t>(); const auto* label_data = labels.template data<LabelT>();
T* logit_grad_data = logit_grad->data<T>(); T* logit_grad_data = logit_grad->template data<T>();
const T* out_grad_data = out_grad->data<T>(); const T* out_grad_data = out_grad->template data<T>();
const int remain = d / axis_dim; const int remain = d / axis_dim;
for (int i = 0; i < n; ++i) { // for each sample_1_dim for (int i = 0; i < n; ++i) { // for each sample_1_dim
for (int j = 0; j < remain; j++) { // for each sample_other_dims for (int j = 0; j < remain; j++) { // for each sample_other_dims
int idx = i * remain + j; // this sample's label_idx. for 1d case, int idx = i * remain + j; // this sample's label_idx. for 1d case,
// remain=1 and j=0, so, idx = i // remain=1 and j=0, so, idx = i
if (label_data[idx] == ignore_index) { auto lbl = static_cast<int64_t>(label_data[idx]);
if (lbl == ignore_index) {
for (int k = 0; k < axis_dim; ++k) { // for each class id's label for (int k = 0; k < axis_dim; ++k) { // for each class id's label
logit_grad_data[i * d + k * remain + j] = 0; logit_grad_data[i * d + k * remain + j] = 0;
} }
...@@ -258,8 +304,7 @@ class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> { ...@@ -258,8 +304,7 @@ class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> {
// out_grad_data[idx] // out_grad_data[idx]
// means: dy/dp * dy= ( p - y ) * dy // means: dy/dp * dy= ( p - y ) * dy
logit_grad_data[i * d + label_data[idx] * remain + j] -= logit_grad_data[i * d + lbl * remain + j] -= out_grad_data[idx];
out_grad_data[idx];
} }
} }
} }
......
...@@ -16,6 +16,7 @@ from __future__ import print_function ...@@ -16,6 +16,7 @@ from __future__ import print_function
import unittest import unittest
import numpy as np import numpy as np
import paddle
import paddle.fluid.core as core import paddle.fluid.core as core
from op_test import OpTest from op_test import OpTest
...@@ -58,6 +59,9 @@ class TestSoftmaxWithCrossEntropyOp(OpTest): ...@@ -58,6 +59,9 @@ class TestSoftmaxWithCrossEntropyOp(OpTest):
self.shape = [41, 37] self.shape = [41, 37]
self.use_softmax = True self.use_softmax = True
def hard_label_dtype(self):
return "int64"
def setUp(self): def setUp(self):
self.initParams() self.initParams()
...@@ -72,7 +76,8 @@ class TestSoftmaxWithCrossEntropyOp(OpTest): ...@@ -72,7 +76,8 @@ class TestSoftmaxWithCrossEntropyOp(OpTest):
else: else:
axis_dim = self.shape[self.axis] axis_dim = self.shape[self.axis]
self.shape[self.axis] = 1 self.shape[self.axis] = 1
labels = np.random.randint(0, axis_dim, self.shape, dtype="int64") labels = np.random.randint(
0, axis_dim, self.shape, dtype=self.hard_label_dtype())
loss = cross_entropy(softmax, labels, self.soft_label, self.axis, loss = cross_entropy(softmax, labels, self.soft_label, self.axis,
self.ignore_index) self.ignore_index)
...@@ -107,6 +112,26 @@ class TestSoftmaxWithCrossEntropyOp(OpTest): ...@@ -107,6 +112,26 @@ class TestSoftmaxWithCrossEntropyOp(OpTest):
self.check_grad(["Logits"], "Loss", numeric_grad_delta=0.001) self.check_grad(["Logits"], "Loss", numeric_grad_delta=0.001)
class TestSoftmaxWithCrossEntropyOpInt32(TestSoftmaxWithCrossEntropyOp):
def hard_label_dtype(self):
return "int32"
class TestSoftmaxWithCrossEntropyOpInt16(TestSoftmaxWithCrossEntropyOp):
def hard_label_dtype(self):
return "int16"
class TestSoftmaxWithCrossEntropyOpInt8(TestSoftmaxWithCrossEntropyOp):
def hard_label_dtype(self):
return "int8"
class TestSoftmaxWithCrossEntropyOpUInt8(TestSoftmaxWithCrossEntropyOp):
def hard_label_dtype(self):
return "uint8"
class TestSoftmaxWithCrossEntropyOp_NotWithSoftmax_SoftLabel_1D( class TestSoftmaxWithCrossEntropyOp_NotWithSoftmax_SoftLabel_1D(
TestSoftmaxWithCrossEntropyOp): TestSoftmaxWithCrossEntropyOp):
def initParams(self): def initParams(self):
...@@ -711,4 +736,5 @@ class TestSoftmaxWithCrossEntropyOpBoundary1(TestSoftmaxWithCrossEntropyOp): ...@@ -711,4 +736,5 @@ class TestSoftmaxWithCrossEntropyOpBoundary1(TestSoftmaxWithCrossEntropyOp):
if __name__ == "__main__": if __name__ == "__main__":
paddle.enable_static()
unittest.main() unittest.main()
...@@ -1783,7 +1783,8 @@ def cross_entropy(input, ...@@ -1783,7 +1783,8 @@ def cross_entropy(input,
fluid.data_feeder.check_variable_and_dtype( fluid.data_feeder.check_variable_and_dtype(
input, 'input', ['float32', 'float64'], 'softmax_cross_entropy') input, 'input', ['float32', 'float64'], 'softmax_cross_entropy')
fluid.data_feeder.check_variable_and_dtype( fluid.data_feeder.check_variable_and_dtype(
label, 'label', ['int32', 'int64', 'float32', 'float64'], label, 'label',
['uint8', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'],
'softmax_cross_entropy') 'softmax_cross_entropy')
attrs = { attrs = {
'soft_label': soft_label, 'soft_label': soft_label,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册