Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
e802471c
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e802471c
编写于
11月 07, 2016
作者:
L
luotao1
提交者:
GitHub
11月 07, 2016
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
abstract outputSize function in CNN-related layers (#314)
上级
f9849ac9
变更
11
显示空白变更内容
内联
并排
Showing
11 changed file
with
139 addition
and
184 deletion
+139
-184
paddle/gserver/layers/ConvBaseLayer.cpp
paddle/gserver/layers/ConvBaseLayer.cpp
+4
-5
paddle/gserver/layers/ConvBaseLayer.h
paddle/gserver/layers/ConvBaseLayer.h
+1
-25
paddle/gserver/layers/ConvOperator.cpp
paddle/gserver/layers/ConvOperator.cpp
+22
-50
paddle/gserver/layers/ConvProjection.h
paddle/gserver/layers/ConvProjection.h
+5
-7
paddle/gserver/layers/CudnnPoolLayer.cpp
paddle/gserver/layers/CudnnPoolLayer.cpp
+10
-10
paddle/gserver/layers/PoolLayer.h
paddle/gserver/layers/PoolLayer.h
+1
-10
paddle/gserver/layers/PoolProjectionLayer.cpp
paddle/gserver/layers/PoolProjectionLayer.cpp
+14
-15
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+27
-29
paddle/math/MathUtils.cpp
paddle/math/MathUtils.cpp
+13
-6
paddle/math/MathUtils.h
paddle/math/MathUtils.h
+16
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+26
-27
未找到文件。
paddle/gserver/layers/ConvBaseLayer.cpp
浏览文件 @
e802471c
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/utils/Logging.h"
#include "ConvBaseLayer.h"
namespace
paddle
{
...
...
@@ -78,10 +77,10 @@ size_t ConvBaseLayer::calOutputSize() {
imgSizeH_
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
img_size
();
if
(
imgSizeW_
[
i
]
==
0
)
imgSizeW_
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
img_size
();
outputH_
.
push_back
(
outputSize
(
imgSizeH_
[
i
],
filterSizeY_
[
i
],
paddingY_
[
i
],
strideY_
[
i
]
));
outputW_
.
push_back
(
outputSize
(
imgSizeW_
[
i
],
filterSize_
[
i
],
padding_
[
i
],
stride_
[
i
]
));
outputH_
.
push_back
(
outputSize
(
imgSizeH_
[
i
],
filterSizeY_
[
i
],
paddingY_
[
i
],
strideY_
[
i
],
caffeMode_
));
outputW_
.
push_back
(
outputSize
(
imgSizeW_
[
i
],
filterSize_
[
i
],
padding_
[
i
],
stride_
[
i
],
caffeMode_
));
CHECK_EQ
(
outputH_
[
i
],
outputH_
[
0
]);
CHECK_EQ
(
outputW_
[
i
],
outputW_
[
0
]);
}
...
...
paddle/gserver/layers/ConvBaseLayer.h
浏览文件 @
e802471c
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#pragma once
#include "Layer.h"
#include "paddle/math/MathUtils.h"
namespace
paddle
{
/**
...
...
@@ -87,31 +88,6 @@ public:
virtual
size_t
calOutputSize
();
Weight
&
getWeight
(
int
idx
)
{
return
*
weights_
[
idx
];
}
/**
* Calculate output size based on caffeMode_.
* - input(+padding): 0123456789
* - imageSize(+padding) = 10;
* - filterSize = 3;
* - stride = 2;
* - caffeMode_ is true:
- output: (012), (234), (456), (678)
- outputSize = 4;
* - caffeMode_ is false:
* - output: (012), (234), (456), (678), (9)
* - outputSize = 5;
*/
int
outputSize
(
int
imageSize
,
int
filterSize
,
int
padding
,
int
stride
)
{
int
outputSize
;
if
(
!
caffeMode_
)
{
outputSize
=
(
imageSize
-
filterSize
+
2
*
padding
+
stride
-
1
)
/
stride
+
1
;
}
else
{
outputSize
=
(
imageSize
-
filterSize
+
2
*
padding
)
/
stride
+
1
;
}
CHECK_GE
(
outputSize
,
1
);
return
outputSize
;
}
};
}
// namespace paddle
paddle/gserver/layers/ConvOperator.cpp
浏览文件 @
e802471c
...
...
@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/math/Matrix.h"
#include "paddle/math/MathUtils.h"
#include "Operator.h"
namespace
paddle
{
...
...
@@ -83,33 +83,6 @@ private:
filterSize_
*
filterSizeY_
*
channels_
*
numFilters_
);
}
/**
* Calculate output size.
*/
int
outputSize
(
int
imageSize
,
int
filterSize
,
int
padding
,
int
stride
)
{
int
outputSize
;
if
(
!
caffeMode_
)
{
/* input(+padding): 0123456789
* imageSize(+padding) = 10;
* filterSize = 3;
* stride = 2;
* output: (012), (234), (456), (678), (9)
* outputSize = 5;
*/
outputSize
=
(
imageSize
-
filterSize
+
2
*
padding
+
stride
-
1
)
/
stride
+
1
;
}
else
{
/* input(+padding): 0123456789
* imageSize(+padding) = 10;
* filterSize = 3;
* stride = 2;
* output: (012), (234), (456), (678)
* outputSize = 4;
*/
outputSize
=
(
imageSize
-
filterSize
+
2
*
padding
)
/
stride
+
1
;
}
return
outputSize
;
}
/// Most of member variables are same with CudnnConvLayer.
/// There is no explanation here.
int
imageH_
,
imageW_
,
outputH_
,
outputW_
;
...
...
@@ -129,7 +102,7 @@ private:
int
fwdAlgo_
,
bwdFilterAlgo_
,
bwdDataAlgo_
;
size_t
fwdLimitBytes_
,
bwdDataLimitBytes_
,
bwdFilterLimitBytes_
;
size_t
workSpaceInBytes_
;
void
*
workSpace_
;
void
*
workSpace_
;
bool
isSelectAlgo_
;
};
...
...
@@ -168,14 +141,13 @@ void ConvOperator::allocConvWorkSpace(size_t maxWorkSpace) {
}
}
void
ConvOperator
::
reshape
(
int
batchSize
)
{
imageH_
=
ins_
[
0
]
->
getFrameHeight
();
imageW_
=
ins_
[
0
]
->
getFrameWidth
();
if
(
imageH_
==
0
)
imageH_
=
imgSize_
;
if
(
imageW_
==
0
)
imageW_
=
imgSize_
;
outputH_
=
outputSize
(
imageH_
,
filterSizeY_
,
paddingY_
,
strideY_
);
outputW_
=
outputSize
(
imageW_
,
filterSize_
,
padding_
,
stride_
);
outputH_
=
outputSize
(
imageH_
,
filterSizeY_
,
paddingY_
,
strideY_
,
caffeMode_
);
outputW_
=
outputSize
(
imageW_
,
filterSize_
,
padding_
,
stride_
,
caffeMode_
);
out_
->
setFrameHeight
(
outputH_
);
out_
->
setFrameWidth
(
outputW_
);
...
...
@@ -183,10 +155,10 @@ void ConvOperator::reshape(int batchSize) {
reshapeImageDescriptors
();
if
(
!
isSelectAlgo_
)
{
hl_conv_workspace
(
inputDesc_
,
outputDesc_
,
filterDesc_
,
convDesc_
,
&
fwdAlgo_
,
&
fwdLimitBytes
_
,
&
bwdDataAlgo_
,
&
bwdDataLimitBytes
_
,
&
bwdFilterAlgo_
,
&
bwdFilterLimitBytes_
);
hl_conv_workspace
(
inputDesc_
,
outputDesc_
,
filterDesc_
,
convDesc_
,
&
fwdAlgo_
,
&
fwdLimitBytes_
,
&
bwdDataAlgo
_
,
&
bwdDataLimitBytes_
,
&
bwdFilterAlgo
_
,
&
bwdFilterLimitBytes_
);
size_t
maxWorkSpace
=
0
;
maxWorkSpace
=
std
::
max
(
fwdLimitBytes_
,
bwdDataLimitBytes_
);
...
...
@@ -202,7 +174,8 @@ void ConvOperator::computeConvSizes() {
hl_create_filter_descriptor
(
&
filterDesc_
,
channels_
,
numFilters_
,
filterSizeY_
,
filterSize_
);
hl_create_tensor_descriptor
(
&
inputDesc_
);
int
outputX
=
outputSize
(
imgSize_
,
filterSize_
,
padding_
,
stride_
);
int
outputX
=
outputSize
(
imgSize_
,
filterSize_
,
padding_
,
stride_
,
caffeMode_
);
CHECK_EQ
(
outputX
,
outputX_
);
hl_create_tensor_descriptor
(
&
outputDesc_
);
hl_create_convolution_descriptor
(
&
convDesc_
,
inputDesc_
,
filterDesc_
,
...
...
@@ -211,13 +184,13 @@ void ConvOperator::computeConvSizes() {
void
ConvOperator
::
reshapeImageDescriptors
()
{
hl_tensor_reshape
(
inputDesc_
,
1
,
channels_
,
imageH_
,
imageW_
,
channels_
*
imageH_
*
imageW_
,
imageH_
*
imageW_
,
imageW_
,
1
);
channels_
*
imageH_
*
imageW_
,
imageH_
*
imageW_
,
imageW_
,
1
);
hl_tensor_reshape
(
outputDesc_
,
1
,
numFilters_
,
outputH_
,
outputW_
,
numFilters_
*
outputH_
*
outputW_
,
outputH_
*
outputW_
,
outputW_
,
1
);
hl_reset_convolution_descriptor
(
convDesc_
,
inputDesc_
,
filterDesc_
,
padding
Y_
,
padding
_
,
strideY_
,
stride_
);
hl_reset_convolution_descriptor
(
convDesc_
,
inputDesc_
,
filterDesc_
,
paddingY_
,
padding_
,
strideY_
,
stride_
);
inputOffset_
=
channels_
*
imageH_
*
imageW_
;
outputOffset_
=
numFilters_
*
outputH_
*
outputW_
;
weightOffset_
=
numFilters_
*
channels_
*
filterSize_
*
filterSize_
;
...
...
@@ -273,18 +246,17 @@ void ConvOperator::backward() {
real
*
weightGrad
=
ins_
[
1
]
->
grad
->
getData
()
+
weightOffset_
*
batchId
;
hl_convolution_backward_filter
(
inputDesc_
,
inputData
,
outputDesc_
,
outGrad
,
filterDesc_
,
weightGrad
,
convDesc_
,
workSpace_
,
workSpaceInBytes_
,
bwdFilterAlgo_
);
convDesc_
,
workSpace_
,
workSpaceInBytes_
,
bwdFilterAlgo_
);
}
MatrixPtr
preGrad
=
ins_
[
0
]
->
grad
;
if
(
NULL
!=
preGrad
)
{
real
*
inputGrad
=
preGrad
->
getData
()
+
inputOffset_
*
batchId
;
real
*
wgtData
=
ins_
[
1
]
->
value
->
getData
()
+
weightOffset_
*
batchId
;
hl_convolution_backward_data
(
inputDesc_
,
inputGrad
,
outputDesc_
,
outGrad
,
filterDesc_
,
wgtData
,
convDesc_
,
workSpace_
,
workSpaceInBytes_
,
bwdDataAlgo_
);
hl_convolution_backward_data
(
inputDesc_
,
inputGrad
,
outputDesc_
,
outGrad
,
filterDesc_
,
wgtData
,
convDesc_
,
workSpace_
,
workSpaceInBytes_
,
bwdDataAlgo_
);
}
}
}
...
...
paddle/gserver/layers/ConvProjection.h
浏览文件 @
e802471c
...
...
@@ -12,10 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Projection.h"
#include "paddle/math/MathUtils.h"
namespace
paddle
{
...
...
@@ -42,17 +42,15 @@ protected:
void
reshapeTensorDesc
(
int
batchSize
);
void
reshape
(
int
batchSize
);
int
outputSize
(
int
imageSize
,
int
filterSize
,
int
padding
,
int
stride
)
{
return
(
imageSize
-
filterSize
+
2
*
padding
)
/
stride
+
1
;
}
size_t
calOutputSize
()
{
imageH_
=
in_
->
getFrameHeight
();
imageW_
=
in_
->
getFrameWidth
();
if
(
imageH_
==
0
)
imageH_
=
configImgH_
;
if
(
imageW_
==
0
)
imageW_
=
configImgW_
;
outputH_
=
outputSize
(
imageH_
,
filterH_
,
paddingH_
,
strideH_
);
outputW_
=
outputSize
(
imageW_
,
filterW_
,
paddingW_
,
strideW_
);
outputH_
=
outputSize
(
imageH_
,
filterH_
,
paddingH_
,
strideH_
,
/* caffeMode */
true
);
outputW_
=
outputSize
(
imageW_
,
filterW_
,
paddingW_
,
strideW_
,
/* caffeMode */
true
);
const_cast
<
Argument
*>
(
out_
)
->
setFrameHeight
(
outputH_
);
const_cast
<
Argument
*>
(
out_
)
->
setFrameWidth
(
outputW_
);
...
...
paddle/gserver/layers/CudnnPoolLayer.cpp
浏览文件 @
e802471c
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "paddle/math/Matrix.h"
...
...
@@ -62,9 +61,9 @@ bool CudnnPoolLayer::init(const LayerMap &layerMap,
strideHeight
=
strideY_
;
strideWidth
=
stride_
;
hl_create_pooling_descriptor
(
&
poolingDesc_
,
mode_
,
windowHeight
,
windowWidth
,
heightPadding
,
widthPadding
,
stride
Height
,
stride
Width
);
hl_create_pooling_descriptor
(
&
poolingDesc_
,
mode_
,
windowHeight
,
windowWidth
,
heightPadding
,
widthPadding
,
strideHeight
,
strideWidth
);
return
true
;
}
...
...
@@ -80,8 +79,10 @@ void CudnnPoolLayer::reshape(int batchSize) {
}
CHECK_EQ
(
inputLayers_
[
0
]
->
getOutput
().
value
->
getWidth
(),
channels_
*
imageH_
*
imageW_
);
outputH_
=
outputSize
(
imageH_
,
sizeY_
,
confPaddingY_
,
strideY_
);
outputW_
=
outputSize
(
imageW_
,
sizeX_
,
confPadding_
,
stride_
);
outputH_
=
outputSize
(
imageH_
,
sizeY_
,
confPaddingY_
,
strideY_
,
/* caffeMode */
false
);
outputW_
=
outputSize
(
imageW_
,
sizeX_
,
confPadding_
,
stride_
,
/* caffeMode */
false
);
getOutput
().
setFrameHeight
(
outputH_
);
getOutput
().
setFrameWidth
(
outputW_
);
...
...
@@ -99,8 +100,7 @@ void CudnnPoolLayer::forward(PassType passType) {
real
*
inputData
=
getInputValue
(
0
)
->
getData
();
real
*
outData
=
getOutputValue
()
->
getData
();
hl_pooling_forward
(
inputDesc_
,
inputData
,
outputDesc_
,
outData
,
poolingDesc_
);
hl_pooling_forward
(
inputDesc_
,
inputData
,
outputDesc_
,
outData
,
poolingDesc_
);
}
void
CudnnPoolLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
...
...
@@ -113,8 +113,8 @@ void CudnnPoolLayer::backward(const UpdateCallback &callback) {
real
*
inputGrad
=
getInputGrad
(
0
)
->
getData
();
real
*
outData
=
getOutputValue
()
->
getData
();
real
*
outGrad
=
getOutputGrad
()
->
getData
();
hl_pooling_backward
(
inputDesc_
,
inputData
,
inputGrad
,
outputDesc_
,
out
Data
,
out
Grad
,
poolingDesc_
);
hl_pooling_backward
(
inputDesc_
,
inputData
,
inputGrad
,
outputDesc_
,
outData
,
outGrad
,
poolingDesc_
);
}
CudnnPoolLayer
::~
CudnnPoolLayer
()
{
...
...
paddle/gserver/layers/PoolLayer.h
浏览文件 @
e802471c
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/MathUtils.h"
#include <vector>
namespace
paddle
{
...
...
@@ -47,16 +48,6 @@ public:
static
Layer
*
create
(
const
LayerConfig
&
config
);
virtual
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
/**
* Calculate output size according window size and padding size.
*/
int
outputSize
(
int
imageSize
,
int
windowSize
,
int
padding
,
int
stride
)
{
int
outputSize
;
outputSize
=
(
imageSize
-
windowSize
+
2
*
padding
+
stride
-
1
)
/
stride
+
1
;
return
outputSize
;
}
};
}
// namespace paddle
paddle/gserver/layers/PoolProjectionLayer.cpp
浏览文件 @
e802471c
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "PoolProjectionLayer.h"
...
...
@@ -31,8 +30,10 @@ size_t PoolProjectionLayer::getSize() {
imgSizeW_
=
imgSize_
;
}
outputH_
=
outputSize
(
imgSizeH_
,
sizeY_
,
confPaddingY_
,
strideY_
);
outputW_
=
outputSize
(
imgSizeW_
,
sizeX_
,
confPadding_
,
stride_
);
outputH_
=
outputSize
(
imgSizeH_
,
sizeY_
,
confPaddingY_
,
strideY_
,
/* caffeMode */
false
);
outputW_
=
outputSize
(
imgSizeW_
,
sizeX_
,
confPadding_
,
stride_
,
/* caffeMode */
false
);
layerSize
=
outputH_
*
outputW_
*
channels_
;
...
...
@@ -53,9 +54,9 @@ void MaxPoolProjectionLayer::forward(PassType passType) {
MatrixPtr
outV
=
getOutputValue
();
outV
->
maxPoolForward
(
*
input
,
imgSizeH_
,
imgSizeW_
,
channels_
,
s
izeX_
,
sizeY_
,
strideY_
,
stride
_
,
outputH_
,
outputW_
,
confPaddingY_
,
confPadding_
);
outV
->
maxPoolForward
(
*
input
,
imgSizeH_
,
imgSizeW_
,
channels_
,
sizeX_
,
sizeY_
,
s
trideY_
,
stride_
,
outputH_
,
outputW_
,
confPaddingY
_
,
confPadding_
);
}
void
MaxPoolProjectionLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
...
...
@@ -72,9 +73,8 @@ void MaxPoolProjectionLayer::backward(const UpdateCallback& callback) {
MatrixPtr
inputGrad
=
getInputGrad
(
0
);
inputGrad
->
maxPoolBackward
(
*
inputV
,
imgSizeH_
,
imgSizeW_
,
*
outGrad
,
*
outV
,
sizeX_
,
sizeY_
,
strideY_
,
stride_
,
outputH_
,
outputW_
,
1
,
1
,
confPaddingY_
,
confPadding_
);
sizeX_
,
sizeY_
,
strideY_
,
stride_
,
outputH_
,
outputW_
,
1
,
1
,
confPaddingY_
,
confPadding_
);
}
void
AvgPoolProjectionLayer
::
forward
(
PassType
passType
)
{
...
...
@@ -89,9 +89,9 @@ void AvgPoolProjectionLayer::forward(PassType passType) {
MatrixPtr
outV
=
getOutputValue
();
outV
->
avgPoolForward
(
*
input
,
imgSizeH_
,
imgSizeW_
,
channels_
,
s
izeX_
,
sizeY_
,
strideY_
,
stride
_
,
outputH_
,
outputW_
,
confPaddingY_
,
confPadding_
);
outV
->
avgPoolForward
(
*
input
,
imgSizeH_
,
imgSizeW_
,
channels_
,
sizeX_
,
sizeY_
,
s
trideY_
,
stride_
,
outputH_
,
outputW_
,
confPaddingY
_
,
confPadding_
);
}
void
AvgPoolProjectionLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
...
...
@@ -103,9 +103,8 @@ void AvgPoolProjectionLayer::backward(const UpdateCallback& callback) {
/* Do derivation */
MatrixPtr
outputGrad
=
getOutputGrad
();
MatrixPtr
inputGrad
=
getInputGrad
(
0
);
inputGrad
->
avgPoolBackward
(
*
outputGrad
,
imgSizeH_
,
imgSizeW_
,
sizeX_
,
sizeY_
,
strideY_
,
stride_
,
outputH_
,
outputW_
,
1
,
1
,
inputGrad
->
avgPoolBackward
(
*
outputGrad
,
imgSizeH_
,
imgSizeW_
,
sizeX_
,
sizeY_
,
strideY_
,
stride_
,
outputH_
,
outputW_
,
1
,
1
,
confPaddingY_
,
confPadding_
);
}
}
// namespace paddle
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
e802471c
...
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include "paddle/gserver/layers/DataLayer.h"
#include "ModelConfig.pb.h"
#include "paddle/trainer/Trainer.h"
#include "paddle/math/MathUtils.h"
#include "TestUtil.h"
#include "LayerGradUtil.h"
...
...
@@ -134,7 +135,6 @@ TEST(Projection, identity) {
}
}
#ifndef PADDLE_ONLY_CPU
TEST
(
Projection
,
conv
)
{
const
int
NUM_FILTERS
=
16
;
...
...
@@ -158,21 +158,23 @@ TEST(Projection, conv) {
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
conv
->
channels
()
/
conv
->
groups
());
conv
->
set_img_size
(
IMAGE_SIZE
);
int
outputSize
=
(
2
*
conv
->
padding
()
+
conv
->
img_size
()
-
conv
->
filter_size
())
/
conv
->
stride
()
+
1
;
int
outputSizeY
=
(
2
*
conv
->
padding_y
()
+
conv
->
img_size
()
-
conv
->
filter_size_y
())
/
conv
->
stride_y
()
+
1
;
conv
->
set_output_x
(
outputSize
);
int
output_x
=
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
);
int
output_y
=
outputSize
(
conv
->
img_size
(),
conv
->
filter_size_y
(),
conv
->
padding_y
(),
conv
->
stride_y
(),
/* caffeMode */
true
);
conv
->
set_output_x
(
output_x
);
conf
.
set_input_size
(
IMAGE_SIZE
*
IMAGE_SIZE
*
CHANNELS
);
conf
.
set_output_size
(
output
Size
*
outputSizeY
*
NUM_FILTERS
);
conf
.
set_output_size
(
output
_x
*
output_y
*
NUM_FILTERS
);
testProjectionGrad
(
conf
,
INPUT_DATA
,
testProjectionGrad
(
conf
,
INPUT_DATA
,
/* parameterSize */
NUM_FILTERS
*
CHANNELS
*
FILTER_SIZE
*
FILTER_SIZE_Y
,
/* batchSize */
100
,
true
,
false
,
NUM_FILTERS
,
true
);
}
#endif
TEST
(
Layer
,
concat
)
{
TestConfig
config
;
config
.
biasSize
=
0
;
...
...
@@ -293,10 +295,9 @@ void testConvLayer(const string& type, bool trans, bool useGpu) {
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
conv
->
channels
()
/
conv
->
groups
());
conv
->
set_img_size
(
16
);
conv
->
set_output_x
(
(
2
*
conv
->
padding
()
+
conv
->
img_size
()
-
conv
->
filter_size
())
/
((
float
)
conv
->
stride
())
+
1.5
);
conv
->
set_output_x
(
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
));
config
.
layerConfig
.
set_size
(
conv
->
output_x
()
*
conv
->
output_x
()
*
config
.
layerConfig
.
num_filters
());
...
...
@@ -329,15 +330,13 @@ TEST(Layer, blockExpandLayer) {
blockExpand
->
set_stride_x
(
2
);
blockExpand
->
set_stride_y
(
2
);
blockExpand
->
set_output_x
(
1
+
(
2
*
blockExpand
->
padding_x
()
+
blockExpand
->
img_size_x
()
-
blockExpand
->
block_x
()
+
blockExpand
->
stride_x
()
-
1
)
/
blockExpand
->
stride_x
());
outputSize
(
blockExpand
->
img_size_x
(),
blockExpand
->
block_x
(),
blockExpand
->
padding_x
(),
blockExpand
->
stride_x
(),
/* caffeMode */
false
));
blockExpand
->
set_output_y
(
1
+
(
2
*
blockExpand
->
padding_y
()
+
blockExpand
->
img_size_y
()
-
blockExpand
->
block_y
()
+
blockExpand
->
stride_y
()
-
1
)
/
blockExpand
->
stride_y
());
outputSize
(
blockExpand
->
img_size_y
(),
blockExpand
->
block_y
(),
blockExpand
->
padding_y
(),
blockExpand
->
stride_y
(),
/* caffeMode */
false
));
config
.
layerConfig
.
set_size
(
blockExpand
->
block_x
()
*
blockExpand
->
block_y
()
*
blockExpand
->
channels
());
...
...
@@ -862,8 +861,8 @@ void setPoolConfig(TestConfig* config, PoolConfig* pool,
pool
->
set_stride
(
sw
);
pool
->
set_stride_y
(
sh
);
int
ow
=
(
pool
->
img_size
()
-
kw
+
2
*
pw
+
sw
-
1
)
/
sw
+
1
;
int
oh
=
(
pool
->
img_size_y
()
-
kh
+
2
*
ph
+
sh
-
1
)
/
sh
+
1
;
int
ow
=
outputSize
(
pool
->
img_size
(),
kw
,
pw
,
sw
,
/* caffeMode */
false
)
;
int
oh
=
outputSize
(
pool
->
img_size_y
(),
kh
,
ph
,
sh
,
/* caffeMode */
false
)
;
pool
->
set_output_x
(
ow
);
pool
->
set_output_y
(
oh
);
}
...
...
@@ -1255,12 +1254,11 @@ TEST(Operator, conv) {
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
conv
->
channels
()
/
conv
->
groups
());
conv
->
set_img_size
(
IMAGE_SIZE
);
int
outputSize
=
int
(
1.0
*
(
2
*
conv
->
padding
()
+
conv
->
img_size
()
-
conv
->
filter_size
())
/
conv
->
stride
())
+
1
;
conv
->
set_output_x
(
outputSize
);
config
.
layerConfig
.
set_size
(
outputSize
*
outputSize
*
int
output_x
=
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
);
conv
->
set_output_x
(
output_x
);
config
.
layerConfig
.
set_size
(
output_x
*
output_x
*
config
.
layerConfig
.
num_filters
());
config
.
layerConfig
.
set_size
(
conv
->
output_x
()
*
conv
->
output_x
()
*
NUM_FILTERS
);
...
...
paddle/math/MathUtils.cpp
浏览文件 @
e802471c
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MathUtils.h"
#include <algorithm>
#include "paddle/utils/Logging.h"
...
...
@@ -24,11 +23,7 @@ namespace paddle {
* major is rows and minor is cols, according to
* major value to initialize minor value"
*/
void
sparseRand
(
int
*
major
,
int
*
minor
,
int
nnz
,
int
majorLen
,
int
minorMax
,
void
sparseRand
(
int
*
major
,
int
*
minor
,
int
nnz
,
int
majorLen
,
int
minorMax
,
bool
useGpu
)
{
CHECK
(
size_t
(
nnz
)
>
size_t
(
1
));
int
*
cpuMajor
;
...
...
@@ -72,5 +67,17 @@ void sparseRand(int* major,
}
}
int
outputSize
(
int
imageSize
,
int
filterSize
,
int
padding
,
int
stride
,
bool
caffeMode
)
{
int
outputSize
;
if
(
!
caffeMode
)
{
outputSize
=
(
imageSize
-
filterSize
+
2
*
padding
+
stride
-
1
)
/
stride
+
1
;
}
else
{
outputSize
=
(
imageSize
-
filterSize
+
2
*
padding
)
/
stride
+
1
;
}
CHECK_GE
(
outputSize
,
1
);
return
outputSize
;
}
}
// namespace paddle
paddle/math/MathUtils.h
浏览文件 @
e802471c
...
...
@@ -44,4 +44,20 @@ namespace paddle {
void
sparseRand
(
int
*
major
,
int
*
minor
,
int
nnz
,
int
majorLen
,
int
minorMax
,
bool
useGpu
);
/**
* Calculate output size based on caffeMode_.
* - input(+padding): 0123456789
* - imageSize(+padding) = 10;
* - filterSize = 3;
* - stride = 2;
* - caffeMode is true:
- output: (012), (234), (456), (678)
- outputSize = 4;
* - caffeMode is false:
* - output: (012), (234), (456), (678), (9)
* - outputSize = 5;
*/
int
outputSize
(
int
imageSize
,
int
filterSize
,
int
padding
,
int
stride
,
bool
caffeMode
);
}
// namespace paddle
python/paddle/trainer/config_parser.py
浏览文件 @
e802471c
...
...
@@ -1006,6 +1006,17 @@ def TestData(data_config, async_load_data=None):
" Data definition"
)
g_config
.
test_data_config
.
async_load_data
=
async_load_data
'''
caffe_mode: compute the output size using floor instead of ceil,
which is consistent of caffe and CuDNN's convention.
'''
def
cnn_output_size
(
img_size
,
filter_size
,
padding
,
stride
,
caffe_mode
):
output
=
(
2
*
padding
+
img_size
-
filter_size
)
/
float
(
stride
)
if
caffe_mode
:
return
1
+
int
(
math
.
floor
(
output
))
else
:
return
1
+
int
(
math
.
ceil
(
output
))
def
parse_pool
(
pool
,
input_layer_name
,
pool_conf
):
pool_conf
.
pool_type
=
pool
.
pool_type
config_assert
(
pool
.
pool_type
in
[
'max-projection'
,
'avg-projection'
,
...
...
@@ -1036,12 +1047,10 @@ def parse_pool(pool, input_layer_name, pool_conf):
if
pool
.
padding
is
not
None
:
pool_conf
.
padding
=
pool
.
padding
pool_conf
.
padding_y
=
default
(
pool
.
padding_y
,
pool_conf
.
padding
)
pool_conf
.
output_x
=
int
(
math
.
ceil
((
pool_conf
.
img_size
+
\
2
*
pool_conf
.
padding
-
pool_conf
.
size_x
)
/
\
float
(
pool_conf
.
stride
)))
+
1
pool_conf
.
output_y
=
int
(
math
.
ceil
((
pool_conf
.
img_size_y
+
\
2
*
pool_conf
.
padding_y
-
pool_conf
.
size_y
)
/
\
float
(
pool_conf
.
stride_y
)))
+
1
pool_conf
.
output_x
=
cnn_output_size
(
pool_conf
.
img_size
,
pool_conf
.
size_x
,
pool_conf
.
padding
,
pool_conf
.
stride
,
False
)
pool_conf
.
output_y
=
cnn_output_size
(
pool_conf
.
img_size_y
,
pool_conf
.
size_y
,
pool_conf
.
padding_y
,
pool_conf
.
stride_y
,
False
)
def
parse_image
(
image
,
input_layer_name
,
image_conf
):
image_conf
.
channels
=
image
.
channels
...
...
@@ -1072,10 +1081,7 @@ def parse_norm(norm, input_layer_name, norm_conf):
norm_conf
.
scale
/=
norm
.
size
else
:
norm_conf
.
scale
/=
norm
.
size
**
2
'''
caffe_mode: compute the output size using floor instead of ceil,
which is consistent of caffe and CuDNN's convention.
'''
def
parse_conv
(
conv
,
input_layer_name
,
conv_conf
):
conv_conf
.
filter_size
=
conv
.
filter_size
conv_conf
.
filter_size_y
=
conv
.
filter_size_y
...
...
@@ -1096,14 +1102,9 @@ def parse_conv(conv, input_layer_name, conv_conf):
(
"Input layer %s: Incorrect input image size %d for input "
+
"image pixels %d"
)
%
(
input_layer_name
,
conv_conf
.
img_size
,
img_pixels
))
if
conv
.
caffe_mode
:
conv_conf
.
output_x
=
\
1
+
int
(
math
.
floor
((
2
*
conv
.
padding
+
conv_conf
.
img_size
\
-
conv
.
filter_size
)
/
float
(
conv
.
stride
)))
else
:
conv_conf
.
output_x
=
\
1
+
int
(
math
.
ceil
((
2
*
conv
.
padding
+
conv_conf
.
img_size
\
-
conv
.
filter_size
)
/
float
(
conv
.
stride
)))
conv_conf
.
output_x
=
cnn_output_size
(
conv_conf
.
img_size
,
conv_conf
.
filter_size
,
conv_conf
.
padding
,
conv_conf
.
stride
,
conv_conf
.
caffe_mode
)
def
parse_block_expand
(
block_expand
,
input_layer_name
,
block_expand_conf
):
block_expand_conf
.
channels
=
block_expand
.
channels
...
...
@@ -1118,18 +1119,16 @@ def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
if
block_expand_conf
.
img_size_x
==
0
:
block_expand_conf
.
output_x
=
0
else
:
block_expand_conf
.
output_x
=
\
1
+
\
int
(
math
.
ceil
((
2
*
block_expand
.
padding_x
+
block_expand
.
img_size_x
\
-
block_expand
.
block_x
)
/
float
(
block_expand
.
stride_x
)))
block_expand_conf
.
output_x
=
cnn_output_size
(
block_expand
.
img_size_x
,
block_expand
.
block_x
,
block_expand
.
padding_x
,
block_expand
.
stride_x
,
False
)
if
block_expand_conf
.
img_size_y
==
0
:
block_expand_conf
.
output_y
=
0
else
:
block_expand_conf
.
output_y
=
\
1
+
\
int
(
math
.
ceil
((
2
*
block_expand
.
padding_y
+
block_expand
.
img_size_y
\
-
block_expand
.
block_y
)
/
float
(
block_expand
.
stride_y
)))
block_expand_conf
.
output_y
=
cnn_output_size
(
block_expand
.
img_size_y
,
block_expand
.
block_y
,
block_expand
.
padding_y
,
block_expand
.
stride_y
,
False
)
def
parse_maxout
(
maxout
,
input_layer_name
,
maxout_conf
):
maxout_conf
.
channels
=
maxout
.
channels
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录