From e68a217f343f604c379796cc9d71f18c8bae874f Mon Sep 17 00:00:00 2001 From: zhouxiao-coder Date: Tue, 31 Oct 2017 18:09:37 +0800 Subject: [PATCH] Add optional inputs and outputs to enable updating;Add weight to match original implementation --- paddle/operators/positive_negative_pair_op.cc | 124 ++++++++++++++---- paddle/operators/positive_negative_pair_op.h | 65 ++++++--- .../tests/test_positive_negative_pair_op.py | 111 ++++++++++++++-- 3 files changed, 238 insertions(+), 62 deletions(-) diff --git a/paddle/operators/positive_negative_pair_op.cc b/paddle/operators/positive_negative_pair_op.cc index 5b6581ccac..b234e9c0de 100644 --- a/paddle/operators/positive_negative_pair_op.cc +++ b/paddle/operators/positive_negative_pair_op.cc @@ -26,8 +26,8 @@ class PositiveNegativePairOp : public framework::OperatorWithKernel { ctx->HasInput("Label"), "Input(Label) of PositiveNegativePairOp should not be null."); PADDLE_ENFORCE( - ctx->HasInput("QueryId"), - "Input(QueryId) of PositiveNegativePairOp should not be null."); + ctx->HasInput("QueryID"), + "Input(QueryID) of PositiveNegativePairOp should not be null."); PADDLE_ENFORCE( ctx->HasOutput("PositivePair"), "Output(PositivePair) of PositiveNegativePairOp should not be null."); @@ -37,21 +37,51 @@ class PositiveNegativePairOp : public framework::OperatorWithKernel { PADDLE_ENFORCE( ctx->HasOutput("NeutralPair"), "Output(NeutralPair) of PositiveNegativePairOp should not be null."); + auto scalar_dim = framework::make_ddim({1}); + if (ctx->HasInput("AccumulatePositivePair") || + ctx->HasInput("AccumulateNegativePair") || + ctx->HasInput("AccumulateNeutralPair")) { + PADDLE_ENFORCE(ctx->HasInput("AccumulatePositivePair") && + ctx->HasInput("AccumulateNegativePair") && + ctx->HasInput("AccumulateNeutralPair"), + "All optional inputs(AccumulatePositivePair, " + "AccumulateNegativePair, AccumulateNeutralPair) of " + "PositiveNegativePairOp are required if one of them is " + "specified."); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("AccumulatePositivePair"), scalar_dim, + "Shape of AccumulatePositivePair should be {1}."); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("AccumulateNegativePair"), scalar_dim, + "Shape of AccumulateNegativePair should be {1}."); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("AccumulateNeutralPair"), scalar_dim, + "Shape of AccumulateNeutralPair should be {1}."); + } auto score_dim = ctx->GetInputDim("Score"); auto label_dim = ctx->GetInputDim("Label"); - auto query_dim = ctx->GetInputDim("QueryId"); - - PADDLE_ENFORCE(score_dim == label_dim, - "Shape of Score must be the same as Label's shape."); - PADDLE_ENFORCE(query_dim == label_dim, - "Shape of QueryId must be the same as Label's shape."); + auto query_dim = ctx->GetInputDim("QueryID"); + PADDLE_ENFORCE_EQ(score_dim.size(), 2, "Score should be a 2-D tensor."); + PADDLE_ENFORCE_EQ(label_dim.size(), 2, "Label should be a 2-D tensor."); + PADDLE_ENFORCE_EQ( + label_dim[0], score_dim[0], + "Tensor Score and Label should have the same height (batch size)."); + PADDLE_ENFORCE_EQ(label_dim[1], 1, + "The width of Label should be 1, i.e. each item should " + "have a scalar label."); PADDLE_ENFORCE(query_dim == label_dim, - "Shape of QueryId must be the same as Label's shape."); + "QueryID should have the same shape as Label."); + if (ctx->HasInput("Weight")) { + PADDLE_ENFORCE(ctx->GetInputDim("Weight") == label_dim, + "Weight should have the same shape as Label."); + } + int column = ctx->Attrs().Get("column"); + auto depth = score_dim[1]; + PADDLE_ENFORCE(column < depth && column >= -depth, + "Attribute column should be in the range of [-%l, %l)", + depth, depth); - ctx->SetOutputDim("PositivePair", {1}); - ctx->SetOutputDim("NegativePair", {1}); - ctx->SetOutputDim("NeutralPair", {1}); + ctx->SetOutputDim("PositivePair", scalar_dim); + ctx->SetOutputDim("NegativePair", scalar_dim); + ctx->SetOutputDim("NeutralPair", scalar_dim); } protected: @@ -67,27 +97,62 @@ class PositiveNegativePairOpMaker : public framework::OpProtoAndCheckerMaker { framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Score", - "(Tensor, float) Output score of the network on " - "pair."); + "(Tensor, float) Model Score on an item (with " + "respect to QueryID). It's a 2-D tensor with shape [batch_size, " + "depth], where the column specified by the attribute \"column\" " + "is used as item score."); AddInput("Label", - "(Tensor, float or int) Label of current pair."); - AddInput("QueryId", - "(Tensor, int) query id of current pair."); + "(Tensor, float) Label of an item (with repsect to " + "QueryId). It's a 2-D tensor with shape [batch_size, 1]."); + AddInput("QueryID", + "(Tensor, int) Query ID that indicates the context. Its shape " + "should be the same as Label."); + AddInput( + "AccumulatePositivePair", + "(float) Optional. The accumulated number of positive pairs over a " + "stream of data. If provided, the output PositivePair will be " + "initialized with this number rather than 0. it won't be modified " + "in place.") + .AsDispensable(); + AddInput( + "AccumulateNegativePair", + "(float) Optional. The accumulated number of negative pairs over a " + "stream of data. If provided, the output NegativePair will be " + "initialized with this number rather than 0. it won't be modified " + "in place.") + .AsDispensable(); + AddInput("AccumulateNeutralPair", + "(float) Optional. The accumulated number of neutral pairs over a " + "stream of data. If provided, the output NeutralPair will be " + "initialized with this number rather than 0. it won't be modified " + "in place.") + .AsDispensable(); + AddInput("Weight", + "(float) Optional. Weight of current item. If specified, its " + "shape should be the same as Label.") + .AsDispensable(); AddOutput("PositivePair", - "(float) Number of positive ranking pairs, i.e. the pairs of " - "documents that are ranked correctly"); + "(float) Number of positive pairs, i.e. the pairs of " + "items that are ranked correctly."); AddOutput("NegativePair", - "(float) Number of negative ranking pairs, i.e. the pairs of " - "documents that are ranked incorrectly"); + "(float) Number of negative pairs, i.e. the pairs of " + "items that are ranked incorrectly."); AddOutput("NeutralPair", - "(float) Number of neutral ranking pairs. A pair of document " - "(doc#1, doc#2) is classified as \"neutral\" if their scores are " - "the same."); + "(float) Number of neutral pairs, i.e. the pairs of items " + "that have the same score.") + .AsDispensable(); + AddAttr( + "column", + "(int, default -1) The column position of Score used to rank items in " + "descending order. It must be in the range of [-rank(Score), " + "rank(Score)). " + "If `dim < 0`, the dim to reduce is `rank + dim`. " + "Noting that reducing on the first dim will make the LoD info lost.") + .SetDefault(0); AddComment(R"DOC( - PositiveNegativePairOp can be used to evaluate Learning To Rank(LTR) model performance. Its outputs are usually - further summarized as positive-negative-ratio: PositivePair/NegativePair. - Its 3 inputs can be viewd as a series of 3 tuples: (predicition score, golden label, query id). - For each unique query id, a list of are collected and positive/negative pairs are accumulated to its output. + PositiveNegativePairOp can be used to evaluate Learning To Rank(LTR) model performance. + Within some context, e.g. the "query", a LTR model generates scores for a list of items, which gives a partial order of the items. + PositiveNegativePairOp takes a list of reference rank order (Input("Label")) and the model generated scores (Input(Score)) as inputs and counts the pairs that ranked correctly and incorrectly. )DOC"); } }; @@ -101,4 +166,5 @@ REGISTER_OP_WITHOUT_GRADIENT(positive_negative_pair, ops::PositiveNegativePairOpMaker); REGISTER_OP_CPU_KERNEL( positive_negative_pair, - ops::PositiveNegativePairKernel); + ops::PositiveNegativePairKernel, + ops::PositiveNegativePairKernel); diff --git a/paddle/operators/positive_negative_pair_op.h b/paddle/operators/positive_negative_pair_op.h index 08e994b728..a8cacbe1a8 100644 --- a/paddle/operators/positive_negative_pair_op.h +++ b/paddle/operators/positive_negative_pair_op.h @@ -14,6 +14,7 @@ limitations under the License. */ #include #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" +#include "paddle/utils/Logging.h" namespace paddle { namespace operators { @@ -24,64 +25,86 @@ using LoDTensor = framework::LoDTensor; template class PositiveNegativePairKernel : public framework::OpKernel { public: + struct PredictionResult { + PredictionResult(T score, T label, T weight) + : score(score), label(label), weight(weight) {} + T score; + T label; + T weight; + }; + void Compute(const framework::ExecutionContext& context) const override { auto score_t = context.Input("Score"); auto label_t = context.Input("Label"); - auto query_t = context.Input("QueryId"); + auto query_t = context.Input("QueryID"); + auto acc_positive_t = context.Input("AccumulatePositivePair"); + auto acc_negative_t = context.Input("AccumulateNegativePair"); + auto acc_neutral_t = context.Input("AccumulateNeutralPair"); auto positive_t = context.Output("PositivePair"); auto negative_t = context.Output("NegativePair"); auto neutral_t = context.Output("NeutralPair"); + auto weight_t = context.Input("Weight"); - auto score = score_t->data(); - auto label = label_t->data(); + auto score = score_t->data(); + auto label = label_t->data(); auto query = query_t->data(); - + const T* weight = nullptr; + auto has_weight = weight_t != nullptr; + if (has_weight) { + weight = weight_t->data(); + } T* positive = positive_t->mutable_data(context.GetPlace()); T* negative = negative_t->mutable_data(context.GetPlace()); T* neutral = neutral_t->mutable_data(context.GetPlace()); auto score_dim = score_t->dims(); - PADDLE_ENFORCE_GE(score_dim.size(), 1L, - "Rank of Score must be at least 1."); - PADDLE_ENFORCE_LE(score_dim.size(), 2L, - "Rank of Score must be less or equal to 2."); auto batch_size = score_dim[0]; - auto width = score_dim.size() > 1 ? score_dim[1] : 1; + auto width = score_dim[1]; + auto column = context.Attr("column"); + if (column < 0) { + column += width; + } // construct document instances for each query: Query => List[, ...] - std::unordered_map>> predictions; + std::unordered_map> predictions; for (auto i = 0; i < batch_size; ++i) { if (predictions.find(query[i]) == predictions.end()) { predictions.emplace( - std::make_pair(query[i], std::vector>())); + std::make_pair(query[i], std::vector())); } - predictions[query[i]].push_back( - std::make_pair(score[i * width + width - 1], label[i])); + predictions[query[i]].push_back(PredictionResult( + score[i * width + column], label[i], has_weight ? weight[i] : 1.0)); } // for each query, accumulate pair counts T pos = 0, neg = 0, neu = 0; + if (acc_positive_t != nullptr && acc_negative_t != nullptr && + acc_neutral_t != nullptr) { + pos = acc_positive_t->data()[0]; + neg = acc_negative_t->data()[0]; + neu = acc_neutral_t->data()[0]; + } auto evaluate_one_list = [&pos, &neg, - &neu](std::vector> vec) { + &neu](std::vector vec) { for (auto ite1 = vec.begin(); ite1 != vec.end(); ++ite1) { for (auto ite2 = ite1 + 1; ite2 != vec.end(); ++ite2) { - if (ite1->second == ite2->second) { // labels are equal, ignore. + if (ite1->label == ite2->label) { // labels are equal, ignore. continue; } - if (ite1->first == ite2->first) { - ++neu; + T w = (ite1->weight + ite2->weight) * 0.5; + if (ite1->score == ite2->score) { + neu += w; } - (ite1->first - ite2->first) * (ite1->second - ite2->second) > 0.0 - ? pos++ - : neg++; + (ite1->score - ite2->score) * (ite1->label - ite2->label) > 0.0 + ? pos += w + : neg += w; } } }; for (auto prediction : predictions) { evaluate_one_list(prediction.second); } - *positive = pos; *negative = neg; *neutral = neu; diff --git a/python/paddle/v2/framework/tests/test_positive_negative_pair_op.py b/python/paddle/v2/framework/tests/test_positive_negative_pair_op.py index 314c17f00e..64438c09a6 100644 --- a/python/paddle/v2/framework/tests/test_positive_negative_pair_op.py +++ b/python/paddle/v2/framework/tests/test_positive_negative_pair_op.py @@ -4,30 +4,36 @@ import numpy as np from op_test import OpTest -def py_pnpair_op(score, label, query): +def py_pnpair_op(score, label, query, column=-1, weight=None): # group by query id predictions = {} - for s, l, q in zip(score, label, query): - if type(s) is list: - s = s[-1] - q = q[0] + batch_size = label.shape[0] + print "batch_size=", batch_size + if weight is None: + weight = np.ones(shape=(batch_size, 1)).astype('float32') + for s, l, q, w in zip(score, label, query, weight): + # s = s[column] + # q = q[0] + # w = w[0] + s, l, q, w = s[column], l[0], q[0], w[0] if q not in predictions: predictions[q] = [] - predictions[q].append((s, l)) + predictions[q].append((s, l, w)) # accumulate statistics pos, neg, neu = 0, 0, 0 for _, ranks in predictions.items(): for e1, e2 in itertools.combinations(ranks, 2): - s1, s2, l1, l2 = e1[0][0], e2[0][0], e1[1][0], e2[1][0] + s1, s2, l1, l2, w1, w2 = e1[0], e2[0], e1[1], e2[1], e1[2], e2[2] + w = (w1 + w2) * 0.5 if l1 == l2: continue if s1 == s2: - neu += 1 + neu += w elif (s1 - s2) * (l1 - l2) > 0: - pos += 1 + pos += w else: - neg += 1 + neg += w return np.array(pos).astype('float32'), np.array(neg).astype( 'float32'), np.array(neu).astype('float32') @@ -45,8 +51,8 @@ class TestPositiveNegativePairOp(OpTest): query = np.reshape(query, newshape=(batch_size, 1)).astype('int32') pos, neg, neu = py_pnpair_op(score, label, query) - self.inputs = {} - self.inputs = {'Score': score, 'Label': label, 'QueryId': query} + self.inputs = {'Score': score, 'Label': label, 'QueryID': query} + self.attrs = {'column': -1} self.outputs = { 'PositivePair': pos, 'NegativePair': neg, @@ -57,5 +63,86 @@ class TestPositiveNegativePairOp(OpTest): self.check_output() +class TestPositiveNegativePairOpAccumulate(OpTest): + def setUp(self): + self.op_type = 'positive_negative_pair' + batch_size = 20 + max_query_id = 5 + max_random_num = 2 << 15 + score = np.random.normal(size=(batch_size, 2)).astype('float32') + label = np.random.normal(size=(batch_size, 1)).astype('float32') + query = np.array( + [np.random.randint(max_query_id) for i in range(batch_size)]) + query = np.reshape(query, newshape=(batch_size, 1)).astype('int32') + acc_pos = np.reshape( + np.random.randint(max_random_num), newshape=(1)).astype('float32') + acc_neg = np.reshape( + np.random.randint(max_random_num), newshape=(1)).astype('float32') + acc_neu = np.reshape( + np.random.randint(max_random_num), newshape=(1)).astype('float32') + column = 0 + + pos, neg, neu = py_pnpair_op(score, label, query, column=column) + self.inputs = { + 'Score': score, + 'Label': label, + 'QueryID': query, + 'AccumulatePositivePair': acc_pos, + 'AccumulateNegativePair': acc_neg, + 'AccumulateNeutralPair': acc_neu, + } + self.attrs = {'column': column} + self.outputs = { + 'PositivePair': pos + acc_pos, + 'NegativePair': neg + acc_neg, + 'NeutralPair': neu + acc_neu + } + + def test_check_output(self): + self.check_output() + + +class TestPositiveNegativePairOpAccumulateWeight(OpTest): + def setUp(self): + self.op_type = 'positive_negative_pair' + batch_size = 20 + max_query_id = 5 + max_random_num = 2 << 15 + score = np.random.normal(size=(batch_size, 2)).astype('float32') + label = np.random.normal(size=(batch_size, 1)).astype('float32') + weight = np.random.normal(size=(batch_size, 1)).astype('float32') + query = np.array( + [np.random.randint(max_query_id) for i in range(batch_size)]) + query = np.reshape(query, newshape=(batch_size, 1)).astype('int32') + acc_pos = np.reshape( + np.random.randint(max_random_num), newshape=(1)).astype('float32') + acc_neg = np.reshape( + np.random.randint(max_random_num), newshape=(1)).astype('float32') + acc_neu = np.reshape( + np.random.randint(max_random_num), newshape=(1)).astype('float32') + column = 0 + + pos, neg, neu = py_pnpair_op( + score, label, query, column=column, weight=weight) + self.inputs = { + 'Score': score, + 'Label': label, + 'QueryID': query, + 'AccumulatePositivePair': acc_pos, + 'AccumulateNegativePair': acc_neg, + 'AccumulateNeutralPair': acc_neu, + 'Weight': weight + } + self.attrs = {'column': column} + self.outputs = { + 'PositivePair': pos + acc_pos, + 'NegativePair': neg + acc_neg, + 'NeutralPair': neu + acc_neu + } + + def test_check_output(self): + self.check_output() + + if __name__ == '__main__': unittest.main() -- GitLab