未验证 提交 e5af650b 编写于 作者: L LielinJiang 提交者: GitHub

Add double grad for conv_transpose (#29706)

* add double grad for conv_transpose
上级 224f3bcb
......@@ -551,6 +551,487 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
}
};
/*
* Inputs: I, W, dO, ddI, ddW
* Outputs: ddO, dW, dI
* ddo = conv_bp_data(W, ddI) + conv_bp_data(ddW, I)
* dW = conv_bp_filter(dO, ddI)
* dI = conv(dO, ddW)
*/
template <typename T>
class CUDNNConvTransposeDoubleGradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
PADDLE_ENFORCE_EQ(
platform::is_gpu_place(ctx.GetPlace()), true,
paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
auto X = ctx.Input<Tensor>("Input");
auto W = ctx.Input<Tensor>("Filter");
auto dO = ctx.Input<Tensor>("DOutput");
auto ddX = ctx.Input<Tensor>("DDInput");
auto ddW = ctx.Input<Tensor>("DDFilter");
auto ddO = ctx.Output<Tensor>("DDOutput");
auto dW = ctx.Output<Tensor>("DFilter");
auto dX = ctx.Output<Tensor>("DInput");
if (ddO) {
ddO->mutable_data<T>(ctx.GetPlace());
math::SetConstant<platform::CUDADeviceContext, T> set_zero;
set_zero(dev_ctx, ddO, static_cast<T>(0));
}
if (dW) {
dW->mutable_data<T>(ctx.GetPlace());
}
if (dX) {
dX->mutable_data<T>(ctx.GetPlace());
}
const T* dy = dO->data<T>();
const T* w = W->data<T>();
const T* ddx = nullptr;
const T* ddw = nullptr;
T *dw, *dx, *ddy;
dw = dx = ddy = nullptr;
T* transformed_dx = nullptr;
const std::vector<int>& strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
int groups = ctx.Attr<int>("groups");
bool deterministic = FLAGS_cudnn_deterministic;
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
const std::string data_format = ctx.Attr<std::string>("data_format");
const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
// transform Tensors to channel first-----------
Tensor transformed_X_channel(X->type());
Tensor transformed_dO_channel(dO->type());
Tensor transformed_ddX_channel(X->type());
Tensor transformed_ddO_channel(dO->type());
Tensor transformed_dX_channel(X->type());
if (channel_last) {
ResizeToChannelFirst<platform::CUDADeviceContext, T>(
ctx, X, &transformed_X_channel);
TransToChannelFirst<platform::CUDADeviceContext, T>(
ctx, X, &transformed_X_channel);
ResizeToChannelFirst<platform::CUDADeviceContext, T>(
ctx, dO, &transformed_dO_channel);
TransToChannelFirst<platform::CUDADeviceContext, T>(
ctx, dO, &transformed_dO_channel);
if (ddX) {
ResizeToChannelFirst<platform::CUDADeviceContext, T>(
ctx, ddX, &transformed_ddX_channel);
TransToChannelFirst<platform::CUDADeviceContext, T>(
ctx, ddX, &transformed_ddX_channel);
}
if (ddO) {
ResizeToChannelFirst<platform::CUDADeviceContext, T>(
ctx, ddO, &transformed_ddO_channel);
}
if (dX) {
ResizeToChannelFirst<platform::CUDADeviceContext, T>(
ctx, dX, &transformed_dX_channel);
transformed_dX_channel.mutable_data<T>(ctx.GetPlace());
}
} else {
transformed_X_channel = *X;
transformed_dO_channel = *dO;
if (ddX) {
transformed_ddX_channel = *ddX;
}
if (dX) {
transformed_dX_channel = *dX;
}
}
std::vector<int> output_vec =
framework::vectorize<int>(transformed_dO_channel.dims());
auto in_dims = transformed_X_channel.dims();
auto filter_dims = W->dims();
framework::DDim in_data_dims =
framework::slice_ddim(in_dims, 2, in_dims.size());
framework::DDim filter_data_dims =
framework::slice_ddim(filter_dims, 2, filter_dims.size());
std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
in_data_dims, strides, ksize);
int data_dim = strides.size(); // 2d or 3d
bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
Tensor transformed_X(X->type());
Tensor transformed_ddX(X->type());
Tensor transformed_dO(dO->type());
std::vector<int> padding_common(data_dim, 0);
std::vector<int> input_pad(X->dims().size() * 2, 0);
if (!is_sys_pad) {
// get pad
std::vector<int> padding_diff(data_dim);
std::vector<int> new_input_shape_vec(data_dim + 2);
std::vector<int> new_output_grad_shape_vec(data_dim + 2);
new_input_shape_vec[0] = transformed_X_channel.dims()[0];
new_input_shape_vec[1] = transformed_X_channel.dims()[1];
new_output_grad_shape_vec[0] = transformed_dO_channel.dims()[0];
new_output_grad_shape_vec[1] = transformed_dO_channel.dims()[1];
for (size_t i = 0; i < data_dim; ++i) {
padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
new_input_shape_vec[i + 2] =
transformed_X_channel.dims()[i + 2] + padding_diff[i];
new_output_grad_shape_vec[i + 2] =
transformed_dO_channel.dims()[i + 2] + padding_diff[i];
input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
}
framework::DDim new_input_shape(
framework::make_ddim(new_input_shape_vec));
transformed_X.Resize(new_input_shape);
transformed_ddX.Resize(new_input_shape);
framework::DDim new_output_grad_shape(
framework::make_ddim(new_output_grad_shape_vec));
transformed_dO.Resize(new_output_grad_shape);
transformed_dO =
ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
new_output_grad_shape, dev_ctx);
transformed_X =
ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
new_input_shape, dev_ctx);
if (ddX) {
transformed_ddX =
ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
new_input_shape, dev_ctx);
}
// pad for input
const int rank = X->dims().size();
T pad_value(0.0);
switch (rank) {
case 4: {
math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
if (dO) {
math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
ctx, input_pad, transformed_dO_channel, pad_value,
&transformed_dO);
}
if (ddX) {
math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
ctx, input_pad, transformed_ddX_channel, pad_value,
&transformed_ddX);
}
} break;
case 5: {
math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
if (ddX) {
math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
ctx, input_pad, transformed_ddX_channel, pad_value,
&transformed_ddX);
}
} break;
default:
PADDLE_THROW(platform::errors::InvalidArgument(
"ConvOp only support tensors with 4 or 5 dimensions."));
}
} else {
transformed_X = transformed_X_channel;
transformed_dO = transformed_dO_channel;
if (ddX) {
transformed_ddX = transformed_ddX_channel;
}
if (paddings.size() == data_dim) {
for (size_t i = 0; i < data_dim; ++i) {
padding_common[i] = paddings[i];
}
} else {
for (size_t i = 0; i < data_dim; ++i) {
padding_common[i] = paddings[2 * i];
}
}
}
std::vector<int64_t> starts(data_dim, 0);
std::vector<int64_t> ends(data_dim, 0);
std::vector<int64_t> axes(data_dim, 0);
for (size_t i = 0; i < data_dim; ++i) {
starts[i] = input_pad[2 * i + 4] * (strides[i] + 1);
ends[i] = starts[i] + output_vec[i + 2];
axes[i] = i + 2;
}
std::vector<int> transformed_output_vec = output_vec;
for (size_t i = 0; i < data_dim; ++i) {
transformed_output_vec[i + 2] =
output_vec[i + 2] +
(input_pad[2 * i + 4] + input_pad[2 * i + 5]) * strides[i] -
2 * padding_common[i] + paddings[2 * i] + paddings[2 * i + 1];
}
if (!is_sys_pad) {
DDim transformed_output_shape(
framework::make_ddim(transformed_output_vec));
transformed_ddO_channel.mutable_data<T>(transformed_output_shape,
ctx.GetPlace());
} else {
ddO->mutable_data<T>(ctx.GetPlace());
transformed_ddO_channel = *ddO;
transformed_ddO_channel.Resize(
framework::make_ddim(transformed_output_vec));
}
const T* x = transformed_X.data<T>();
int iwo_group = groups;
int c_group = 1;
#if CUDNN_VERSION_MIN(7, 0, 1)
iwo_group = 1;
c_group = groups;
groups = 1;
#endif
auto dtype = platform::CudnnDataType<T>::type;
auto handle = dev_ctx.cudnn_handle();
ConvArgs args1{&transformed_ddO_channel,
W,
&transformed_ddX,
strides,
padding_common,
dilations,
dtype};
ConvArgs args2{&transformed_ddO_channel, ddW, &transformed_X, strides,
padding_common, dilations, dtype};
ConvArgs args3{&transformed_dO,
dW,
&transformed_ddX_channel,
strides,
padding_common,
dilations,
dtype};
ConvArgs args4{
&transformed_dO, ddW, &transformed_dX_channel, strides, padding_common,
dilations, dtype};
cudnnConvolutionBwdDataAlgo_t bwd_algo1 =
static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
cudnnConvolutionBwdDataAlgo_t bwd_algo2 =
static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
cudnnConvolutionFwdAlgo_t data_algo =
static_cast<cudnnConvolutionFwdAlgo_t>(0);
cudnnConvolutionBwdFilterAlgo_t filter_algo =
static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
auto layout = GetCudnnTensorFormat(DataLayout::kNCHW);
// ddo = conv(ddI, W) + conv(I, ddW)
size_t workspace_size = 0;
T* transformed_ddy_channel = nullptr;
if (ddO) {
ddy = ddO->data<T>();
transformed_ddy_channel = transformed_ddO_channel.data<T>();
if (ddX) {
args1.handle = handle;
args1.idesc.set(transformed_ddO_channel, iwo_group);
args1.wdesc.set(*W, layout, iwo_group);
args1.odesc.set(transformed_ddX, iwo_group);
args1.cdesc.set(dtype, padding_common, strides, dilations, c_group);
using search1 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
bwd_algo1 = search1::Find<T>(args1, false, deterministic, ctx);
workspace_size = search1::GetWorkspaceSize(args1, bwd_algo1);
}
if (ddW) {
ddw = ddW->data<T>();
args2.handle = handle;
args2.idesc.set(transformed_ddO_channel, iwo_group);
args2.wdesc.set(*ddW, layout, iwo_group);
args2.odesc.set(transformed_X, iwo_group);
args2.cdesc.set(dtype, padding_common, strides, dilations, c_group);
using search2 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
bwd_algo2 = search2::Find<T>(args2, false, deterministic, ctx);
workspace_size = std::max(workspace_size,
search2::GetWorkspaceSize(args2, bwd_algo2));
}
}
if (dW && ddX) {
dw = dW->data<T>();
args3.handle = handle;
args3.idesc.set(transformed_dO, iwo_group);
args3.wdesc.set(*dW, layout, iwo_group);
args3.odesc.set(transformed_ddX_channel, iwo_group);
args3.cdesc.set(dtype, padding_common, strides, dilations, c_group);
using search3 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
filter_algo = search3::Find<T>(args3, false, deterministic, ctx);
workspace_size = std::max(workspace_size,
search3::GetWorkspaceSize(args3, filter_algo));
}
if (ddW && dX) {
transformed_dx = transformed_dX_channel.data<T>();
args4.handle = handle;
args4.idesc.set(transformed_dO, iwo_group);
args4.wdesc.set(*ddW, layout, iwo_group);
args4.odesc.set(transformed_dX_channel, iwo_group);
args4.cdesc.set(dtype, padding_common, strides, dilations, c_group);
using search4 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
data_algo = search4::Find<T>(args4, false, deterministic, ctx);
workspace_size =
std::max(workspace_size, search4::GetWorkspaceSize(args4, data_algo));
}
int i_n, i_c, i_d, i_h, i_w;
GetNCDHW(transformed_X.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h,
&i_w);
int o_n, o_c, o_d, o_h, o_w;
GetNCDHW(transformed_dO.dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d, &o_h,
&o_w);
int group_offset_in =
transformed_X.numel() / transformed_X.dims()[0] / groups;
int group_offset_out =
transformed_dO.numel() / transformed_dO.dims()[0] / groups;
int group_offset_filter = W->numel() / groups;
ScalingParamType<T> alpha = 1.0f;
ScalingParamType<T> beta = 0.0f;
auto wkspace_handle = dev_ctx.cudnn_workspace_handle();
if (ddO) {
if (ddX) {
ddx = transformed_ddX.data<T>();
for (int i = 0; i < groups; i++) {
wkspace_handle.RunFunc(
[&](void* workspace_ptr) {
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cudnnConvolutionBackwardData(
handle, &alpha, args1.wdesc.desc(),
w + i * group_offset_filter, args1.odesc.desc(),
ddx + i * group_offset_in, args1.cdesc.desc(),
bwd_algo1, workspace_ptr, workspace_size, &beta,
args1.idesc.desc(),
transformed_ddy_channel + i * group_offset_out));
},
workspace_size);
}
}
if (ddW) {
for (int i = 0; i < groups; i++) {
wkspace_handle.RunFunc(
[&](void* workspace_ptr) {
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cudnnConvolutionBackwardData(
handle, &alpha, args2.wdesc.desc(),
ddw + i * group_offset_filter, args2.odesc.desc(),
x + i * group_offset_in, args2.cdesc.desc(), bwd_algo2,
workspace_ptr, workspace_size, &alpha,
args2.idesc.desc(),
transformed_ddy_channel + i * group_offset_out));
},
workspace_size);
}
}
if ((!is_sys_pad) && (!channel_last)) {
if (strides.size() == 2U) {
Slice<paddle::platform::CUDADeviceContext, T, 4>(
ctx, &transformed_ddO_channel, ddO, starts, ends, axes);
} else if (!is_sys_pad && strides.size() == 3U) {
Slice<paddle::platform::CUDADeviceContext, T, 5>(
ctx, &transformed_ddO_channel, ddO, starts, ends, axes);
}
} else if ((!is_sys_pad) && (channel_last)) {
if (strides.size() == 2U) {
Slice<paddle::platform::CUDADeviceContext, T, 4>(
ctx, &transformed_ddO_channel, &transformed_ddO_channel, starts,
ends, axes);
} else if (!is_sys_pad && strides.size() == 3U) {
Slice<paddle::platform::CUDADeviceContext, T, 5>(
ctx, &transformed_ddO_channel, &transformed_ddO_channel, starts,
ends, axes);
}
TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
ctx, &transformed_ddO_channel, ddO);
}
}
T* transformed_dy_channel = transformed_dO.data<T>();
if (dW && ddX) {
ddx = transformed_ddX_channel.data<T>();
for (int i = 0; i < groups; i++) {
wkspace_handle.RunFunc(
[&](void* workspace_ptr) {
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cudnnConvolutionBackwardFilter(
handle, &alpha, args3.idesc.desc(),
transformed_dy_channel + i * group_offset_out,
args3.odesc.desc(), ddx + i * group_offset_in,
args3.cdesc.desc(), filter_algo, workspace_ptr,
workspace_size, &beta, args3.wdesc.desc(),
dw + i * group_offset_filter));
},
workspace_size);
}
}
if (dX && ddW) {
ddw = ddW->data<T>();
for (int i = 0; i < groups; i++) {
wkspace_handle.RunFunc(
[&](void* workspace_ptr) {
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cudnnConvolutionForward(
handle, &alpha, args4.idesc.desc(),
transformed_dy_channel + i * group_offset_out,
args4.wdesc.desc(), ddw + i * group_offset_filter,
args4.cdesc.desc(), data_algo, workspace_ptr,
workspace_size, &beta, args4.odesc.desc(),
transformed_dx + i * group_offset_in));
},
workspace_size);
}
if (channel_last) {
TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
ctx, &transformed_dX_channel, dX);
}
}
}
};
} // namespace operators
} // namespace paddle
......@@ -565,6 +1046,11 @@ REGISTER_OP_KERNEL(conv2d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
ops::CUDNNConvTransposeGradOpKernel<plat::float16>,
ops::CUDNNConvTransposeGradOpKernel<float>,
ops::CUDNNConvTransposeGradOpKernel<double>);
REGISTER_OP_KERNEL(
conv2d_transpose_grad_grad, CUDNN, plat::CUDAPlace,
paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<float>,
paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<double>,
paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv3d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
ops::CUDNNConvTransposeOpKernel<plat::float16>,
......
......@@ -513,6 +513,85 @@ class ConvTransposeGradOpMaker : public framework::SingleGradOpMaker<T> {
}
};
/*
* Inputs: I, W, dO, ddI, ddW
* Outputs: ddO, dW, dI
*/
template <typename T>
class ConvTransposeDoubleGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
void Apply(GradOpPtr<T> op) const override {
op->SetType(this->ForwardOpType() + "_grad");
// I, W, dO, ddI, ddW
op->SetInput("Input", this->Input("Input"));
op->SetInput("Filter", this->Input("Filter"));
op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
op->SetInput("DDFilter",
this->OutputGrad(framework::GradVarName("Filter")));
// ddO, dI, dW
// Unlike grad op, double grad op does not use name@GRAD@GRAD
// as key of ops' inputs and outputs.
auto ddx = this->OutputGrad(framework::GradVarName("Input"));
auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
op->SetOutput("DDOutput",
ddx.empty()
? this->EmptyInputGrad()
: this->InputGrad(framework::GradVarName("Output")));
op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
: this->InputGrad("Filter"));
op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
: this->InputGrad("Input"));
op->SetAttrMap(this->Attrs());
}
};
void ConvTransposeOpDoubleGrad::InferShape(
framework::InferShapeContext* ctx) const {
auto x_dims = ctx->GetInputDim("Input");
auto w_dims = ctx->GetInputDim("Filter");
auto do_dims = ctx->GetInputDim("DOutput");
if (ctx->HasOutput("DDOutput") &&
(ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
ctx->SetOutputDim("DDOutput", do_dims);
}
if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
ctx->SetOutputDim("DFilter", w_dims);
}
if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
ctx->SetOutputDim("DInput", x_dims);
}
}
framework::OpKernelType ConvTransposeOpDoubleGrad::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
bool use_cudnn = ctx.Attr<bool>("use_cudnn");
use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
if (platform::is_gpu_place(ctx.GetPlace())) {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
}
#endif
framework::LibraryType library_;
if (use_cudnn) {
library_ = framework::LibraryType::kCUDNN;
} else {
library_ = framework::LibraryType::kPlain;
}
framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
layout_, library_);
}
} // namespace operators
} // namespace paddle
......@@ -523,7 +602,11 @@ REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp,
ops::Conv2DTransposeOpMaker,
ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_transpose_grad, ops::ConvTransposeOpGrad);
REGISTER_OPERATOR(
conv2d_transpose_grad, ops::ConvTransposeOpGrad,
ops::ConvTransposeDoubleGradMaker<paddle::framework::OpDesc>,
ops::ConvTransposeDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_transpose_grad_grad, ops::ConvTransposeOpDoubleGrad);
REGISTER_OP_CPU_KERNEL(
conv2d_transpose,
......
......@@ -24,6 +24,9 @@ REGISTER_OP_CUDA_KERNEL(conv2d_transpose,
REGISTER_OP_CUDA_KERNEL(conv2d_transpose_grad,
ops::GemmConvTransposeGradKernel<CUDA, float>,
ops::GemmConvTransposeGradKernel<CUDA, double>);
REGISTER_OP_CUDA_KERNEL(conv2d_transpose_grad_grad,
ops::GemmConvTransposeGradKernel<CUDA, float>,
ops::GemmConvTransposeGradKernel<CUDA, double>);
// conv3d
REGISTER_OP_CUDA_KERNEL(conv3d_transpose,
......
......@@ -114,6 +114,16 @@ class ConvTransposeOpGrad : public framework::OperatorWithKernel {
const framework::ExecutionContext& ctx) const override;
};
class ConvTransposeOpDoubleGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override;
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override;
};
template <typename DeviceContext, typename T>
class GemmConvTransposeKernel : public framework::OpKernel<T> {
public:
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker
from decorator_helper import prog_scope
class TestConvTransposeDoubleGradCheck(unittest.TestCase):
@prog_scope()
def func(self, place):
shape = [2, 4, 3, 3]
eps = 0.005
dtype = np.float64
x = layers.data('x', shape, False, dtype)
y = layers.conv2d_transpose(
x, 2, filter_size=1, groups=1, bias_attr=False)
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
w = fluid.default_main_program().global_block().all_parameters()
w_arr = []
for p in w:
w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
gradient_checker.double_grad_check(
[x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)
def test_grad(self):
places = []
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestConvTranspose2DoubleGradCheck_AsyPadding(
TestConvTransposeDoubleGradCheck):
@prog_scope()
def func(self, place):
shape = [2, 2, 3, 3]
eps = 0.005
dtype = np.float64
x = layers.data('x', shape, False, dtype)
y = layers.conv2d_transpose(
input=x,
num_filters=2,
filter_size=1,
padding=[1, 0, 0, 1],
bias_attr=False,
use_cudnn=True)
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
w = fluid.default_main_program().global_block().all_parameters()
w_arr = []
for p in w:
w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
gradient_checker.double_grad_check(
[x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)
class TestConvTranspose2DoubleGradCheck_PaddingSAME(
TestConvTransposeDoubleGradCheck):
@prog_scope()
def func(self, place):
shape = [2, 2, 3, 3]
eps = 0.005
dtype = np.float64
x = layers.data('x', shape, False, dtype)
y = layers.conv2d_transpose(
input=x,
num_filters=2,
filter_size=1,
padding="SAME",
bias_attr=False,
use_cudnn=True)
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
w = fluid.default_main_program().global_block().all_parameters()
w_arr = []
for p in w:
w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
gradient_checker.double_grad_check(
[x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)
class TestConvTranspose2DoubleGradCheck_PaddingVALID(
TestConvTransposeDoubleGradCheck):
@prog_scope()
def func(self, place):
shape = [2, 2, 3, 3]
eps = 0.005
dtype = np.float64
x = layers.data('x', shape, False, dtype)
y = layers.conv2d_transpose(
input=x,
num_filters=2,
filter_size=1,
padding="VALID",
bias_attr=False,
use_cudnn=True)
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
w = fluid.default_main_program().global_block().all_parameters()
w_arr = []
for p in w:
w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
gradient_checker.double_grad_check(
[x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)
class TestConvTranspose2DoubleGradCheck_ChannelLast(
TestConvTransposeDoubleGradCheck):
@prog_scope()
def func(self, place):
shape = [2, 3, 3, 2]
eps = 0.005
dtype = np.float64
x = layers.data('x', shape, False, dtype)
y = layers.conv2d_transpose(
input=x,
num_filters=2,
filter_size=1,
padding=[1, 1],
bias_attr=False,
use_cudnn=True,
groups=1,
data_format="NHWC")
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
w = fluid.default_main_program().global_block().all_parameters()
w_arr = []
for p in w:
w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
gradient_checker.double_grad_check(
[x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)
if __name__ == "__main__":
unittest.main()
......@@ -108,6 +108,7 @@ STATIC_MODE_TESTING_LIST = [
'test_conv3d_transpose_layer',
'test_conv3d_transpose_part2_op',
'test_conv_nn_grad',
'test_conv_transpose_nn_grad',
'test_conv_shift_op',
'test_cos_sim_op',
'test_create_global_var',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册