Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
e4cc6a28
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e4cc6a28
编写于
8月 27, 2020
作者:
myq406450149
提交者:
GitHub
8月 27, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Norm op support 2-axis (#26492)
上级
dc56c898
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
311 addition
and
99 deletion
+311
-99
paddle/fluid/operators/p_norm_op.cc
paddle/fluid/operators/p_norm_op.cc
+13
-3
paddle/fluid/operators/p_norm_op.cu
paddle/fluid/operators/p_norm_op.cu
+4
-2
paddle/fluid/operators/p_norm_op.h
paddle/fluid/operators/p_norm_op.h
+14
-8
paddle/fluid/operators/top_k_v2_op.cu
paddle/fluid/operators/top_k_v2_op.cu
+0
-1
paddle/fluid/operators/top_k_v2_op.h
paddle/fluid/operators/top_k_v2_op.h
+13
-0
python/paddle/fluid/tests/unittests/test_norm_all.py
python/paddle/fluid/tests/unittests/test_norm_all.py
+89
-36
python/paddle/tensor/linalg.py
python/paddle/tensor/linalg.py
+178
-49
未找到文件。
paddle/fluid/operators/p_norm_op.cc
浏览文件 @
e4cc6a28
...
...
@@ -42,6 +42,11 @@ class PnormOpMaker : public framework::OpProtoAndCheckerMaker {
"keepdim"
,
"(bool, default false) Whether to keep the dimensions as the input."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"asvector"
,
"(bool, default false) as vector norm when axis is None and "
"input is matrix, "
)
.
SetDefault
(
false
);
AddOutput
(
"Out"
,
"(Tensor) Output result tensor of p-norm"
);
AddComment
(
R"DOC(
Pnorm Operator.
...
...
@@ -96,11 +101,16 @@ class PnormOp : public framework::OperatorWithKernel {
"Current Input(X)'s shape is=[%s]."
,
axis
,
x_rank
,
x_dim
));
if
(
axis
<
0
)
axis
=
x_dim
.
size
()
+
axis
;
std
::
vector
<
int
>
reduce_dims
;
bool
asvector
=
ctx
->
Attrs
().
Get
<
bool
>
(
"asvector"
);
if
(
asvector
)
{
reduce_dims
.
emplace_back
(
1
);
}
else
{
if
(
axis
<
0
)
axis
=
x_dim
.
size
()
+
axis
;
for
(
int
i
=
0
;
i
<
x_dim
.
size
();
++
i
)
{
if
(
i
!=
axis
)
reduce_dims
.
emplace_back
(
x_dim
[
i
]);
}
}
x_dim
[
axis
]
=
1
;
if
(
keepdim
)
{
...
...
paddle/fluid/operators/p_norm_op.cu
浏览文件 @
e4cc6a28
...
...
@@ -129,9 +129,10 @@ class PnormCUDAKernel : public framework::OpKernel<T> {
auto
ndim
=
out_norm
->
dims
();
float
porder
=
ctx
.
Attr
<
float
>
(
"porder"
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
bool
asvector
=
ctx
.
Attr
<
bool
>
(
"asvector"
);
if
(
axis
<
0
)
axis
=
xdim
.
size
()
+
axis
;
int
pre
,
n
,
post
;
GetDims
(
xdim
,
axis
,
&
pre
,
&
n
,
&
post
);
GetDims
(
xdim
,
axis
,
&
pre
,
&
n
,
&
post
,
asvector
);
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
...
...
@@ -230,9 +231,10 @@ class PnormGradCUDAKernel : public framework::OpKernel<T> {
float
porder
=
ctx
.
Attr
<
float
>
(
"porder"
);
T
eps
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
bool
asvector
=
ctx
.
Attr
<
bool
>
(
"asvector"
);
if
(
axis
<
0
)
axis
=
xdim
.
size
()
+
axis
;
int
pre
,
n
,
post
;
GetDims
(
xdim
,
axis
,
&
pre
,
&
n
,
&
post
);
GetDims
(
xdim
,
axis
,
&
pre
,
&
n
,
&
post
,
asvector
);
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
...
...
paddle/fluid/operators/p_norm_op.h
浏览文件 @
e4cc6a28
...
...
@@ -20,16 +20,20 @@ namespace paddle {
namespace
operators
{
inline
void
GetDims
(
const
framework
::
DDim
&
dim
,
int
axis
,
int
*
pre
,
int
*
n
,
int
*
post
)
{
int
*
post
,
bool
asvector
)
{
*
pre
=
1
;
*
post
=
1
;
*
n
=
dim
[
axis
];
if
(
asvector
)
{
*
n
=
product
(
dim
);
}
else
{
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
(
*
pre
)
*=
dim
[
i
];
}
for
(
int
i
=
axis
+
1
;
i
<
dim
.
size
();
++
i
)
{
(
*
post
)
*=
dim
[
i
];
}
}
}
template
<
typename
DeviceContext
,
typename
T
>
...
...
@@ -43,9 +47,10 @@ class PnormKernel : public framework::OpKernel<T> {
auto
xdim
=
in_x
->
dims
();
float
porder
=
ctx
.
Attr
<
float
>
(
"porder"
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
bool
asvector
=
ctx
.
Attr
<
bool
>
(
"asvector"
);
if
(
axis
<
0
)
axis
=
xdim
.
size
()
+
axis
;
int
pre
,
n
,
post
;
GetDims
(
xdim
,
axis
,
&
pre
,
&
n
,
&
post
);
GetDims
(
xdim
,
axis
,
&
pre
,
&
n
,
&
post
,
asvector
);
auto
*
place
=
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
...
...
@@ -91,9 +96,10 @@ class PnormGradKernel : public framework::OpKernel<T> {
float
porder
=
ctx
.
Attr
<
float
>
(
"porder"
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
bool
asvector
=
ctx
.
Attr
<
bool
>
(
"asvector"
);
if
(
axis
<
0
)
axis
=
xdim
.
size
()
+
axis
;
int
pre
,
n
,
post
;
GetDims
(
xdim
,
axis
,
&
pre
,
&
n
,
&
post
);
GetDims
(
xdim
,
axis
,
&
pre
,
&
n
,
&
post
,
asvector
);
Eigen
::
DSizes
<
int
,
3
>
shape
(
pre
,
n
,
post
);
Eigen
::
DSizes
<
int
,
3
>
rshape
(
pre
,
1
,
post
);
...
...
paddle/fluid/operators/top_k_v2_op.cu
浏览文件 @
e4cc6a28
...
...
@@ -14,7 +14,6 @@
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/p_norm_op.h"
#include "paddle/fluid/operators/top_k_function_cuda.h"
#include "paddle/fluid/operators/top_k_v2_op.h"
...
...
paddle/fluid/operators/top_k_v2_op.h
浏览文件 @
e4cc6a28
...
...
@@ -33,6 +33,19 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
inline
void
GetDims
(
const
framework
::
DDim
&
dim
,
int
axis
,
int
*
pre
,
int
*
n
,
int
*
post
)
{
*
pre
=
1
;
*
post
=
1
;
*
n
=
dim
[
axis
];
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
(
*
pre
)
*=
dim
[
i
];
}
for
(
int
i
=
axis
+
1
;
i
<
dim
.
size
();
++
i
)
{
(
*
post
)
*=
dim
[
i
];
}
}
template
<
typename
T
,
typename
Type
>
static
void
FullTopK
(
Type
input_height
,
Type
input_width
,
int
input_dim
,
const
framework
::
Tensor
*
input
,
T
*
t_out
,
Type
*
t_indices
,
...
...
python/paddle/fluid/tests/unittests/test_norm_all.py
浏览文件 @
e4cc6a28
...
...
@@ -22,9 +22,40 @@ import paddle.fluid as fluid
def
p_norm
(
x
,
axis
,
porder
,
keepdims
=
False
):
if
axis
is
None
:
axis
=
-
1
r
=
[]
if
axis
is
None
:
x
=
x
.
flatten
()
if
porder
==
np
.
inf
:
r
=
np
.
amax
(
np
.
abs
(
x
))
elif
porder
==
-
np
.
inf
:
r
=
np
.
amin
(
np
.
abs
(
x
))
else
:
r
=
np
.
linalg
.
norm
(
x
,
ord
=
porder
)
elif
isinstance
(
axis
,
list
or
tuple
)
and
len
(
axis
)
==
2
:
if
porder
==
np
.
inf
:
axis
=
tuple
(
axis
)
r
=
np
.
amax
(
np
.
abs
(
x
),
axis
=
axis
,
keepdims
=
keepdims
)
elif
porder
==
-
np
.
inf
:
axis
=
tuple
(
axis
)
r
=
np
.
amin
(
np
.
abs
(
x
),
axis
=
axis
,
keepdims
=
keepdims
)
elif
porder
==
0
:
axis
=
tuple
(
axis
)
r
=
x
.
astype
(
bool
)
r
=
np
.
sum
(
r
,
axis
)
elif
porder
==
1
:
axis
=
tuple
(
axis
)
r
=
np
.
sum
(
np
.
abs
(
x
),
axis
)
else
:
axis
=
tuple
(
axis
)
xp
=
np
.
power
(
np
.
abs
(
x
),
porder
)
s
=
np
.
sum
(
xp
,
axis
=
axis
,
keepdims
=
keepdims
)
r
=
np
.
power
(
s
,
1.0
/
porder
)
else
:
if
isinstance
(
axis
,
list
):
axis
=
tuple
(
axis
)
r
=
np
.
linalg
.
norm
(
x
,
ord
=
porder
,
axis
=
axis
,
keepdims
=
keepdims
).
astype
(
x
.
dtype
)
return
r
...
...
@@ -186,22 +217,10 @@ class TestPnormOp5(TestPnormOp):
self
.
check_grad
([
'X'
],
'Out'
,
user_defined_grads
=
self
.
gradient
)
def
run_out
(
self
,
p
,
axis
,
shape_x
,
shape_y
,
dtype
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
data1
=
fluid
.
data
(
name
=
"X"
,
shape
=
shape_x
,
dtype
=
dtype
)
data2
=
fluid
.
data
(
name
=
"Y"
,
shape
=
shape_y
,
dtype
=
dtype
)
out
=
paddle
.
norm
(
input
=
data1
,
p
=
p
,
axis
=
axis
,
out
=
data2
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
result
=
exe
.
run
(
feed
=
{
"X"
:
np
.
random
.
rand
(
*
shape_x
).
astype
(
dtype
)},
fetch_list
=
[
data2
,
out
])
self
.
assertEqual
((
result
[
0
]
==
result
[
1
]).
all
(),
True
)
def
run_fro
(
self
,
p
,
axis
,
shape_x
,
dtype
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
fluid
.
data
(
name
=
"X"
,
shape
=
shape_x
,
dtype
=
dtype
)
out
=
paddle
.
norm
(
input
=
data
,
p
=
p
,
axis
=
axis
)
out
=
paddle
.
norm
(
x
=
data
,
p
=
p
,
axis
=
axis
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
np_input
=
(
np
.
random
.
rand
(
*
shape_x
)
+
1.0
).
astype
(
dtype
)
...
...
@@ -213,7 +232,7 @@ def run_fro(self, p, axis, shape_x, dtype):
def
run_pnorm
(
self
,
p
,
axis
,
shape_x
,
dtype
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
fluid
.
data
(
name
=
"X"
,
shape
=
shape_x
,
dtype
=
dtype
)
out
=
paddle
.
norm
(
input
=
data
,
p
=
p
,
axis
=
axis
)
out
=
paddle
.
norm
(
x
=
data
,
p
=
p
,
axis
=
axis
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
np_input
=
(
np
.
random
.
rand
(
*
shape_x
)
+
1.0
).
astype
(
dtype
)
...
...
@@ -222,26 +241,64 @@ def run_pnorm(self, p, axis, shape_x, dtype):
self
.
assertEqual
((
np
.
abs
(
result
-
expected_result
)
<
1e-6
).
all
(),
True
)
class
API_NormTest
(
unittest
.
TestCase
):
def
test_output_result
(
self
):
run_out
(
self
,
p
=
2
,
axis
=
1
,
shape_x
=
[
3
,
4
],
shape_y
=
[
3
],
dtype
=
"float32"
)
run_out
(
self
,
p
=
'fro'
,
axis
=
None
,
shape_x
=
[
3
,
4
],
shape_y
=
[
1
],
dtype
=
"float32"
)
def
run_graph
(
self
,
p
,
axis
,
shape_x
,
dtype
):
paddle
.
disable_static
()
shape
=
[
2
,
3
,
4
]
np_input
=
np
.
arange
(
24
).
astype
(
'float32'
)
-
12
np_input
=
np_input
.
reshape
(
shape
)
x
=
paddle
.
to_tensor
(
np_input
)
#[[[-12. -11. -10. -9.] [ -8. -7. -6. -5.] [ -4. -3. -2. -1.]]
# [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 8. 9. 10. 11.]]]
out_pnorm
=
paddle
.
norm
(
x
,
p
=
2
,
axis
=-
1
)
# compute frobenius norm along last two dimensions.
out_fro
=
paddle
.
norm
(
x
,
p
=
'fro'
)
out_fro
=
paddle
.
norm
(
x
,
p
=
'fro'
,
axis
=
[
0
,
1
])
# compute 2-order norm along [0,1] dimension.
out_pnorm
=
paddle
.
norm
(
x
,
p
=
2
,
axis
=
[
0
,
1
])
out_pnorm
=
paddle
.
norm
(
x
,
p
=
2
)
#out_pnorm = [17.43559577 16.91153453 16.73320053 16.91153453]
# compute inf-order norm
out_pnorm
=
paddle
.
norm
(
x
,
p
=
np
.
inf
)
#out_pnorm = [12.]
out_pnorm
=
paddle
.
norm
(
x
,
p
=
np
.
inf
,
axis
=
0
)
#out_pnorm = [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]]
# compute -inf-order norm
out_pnorm
=
paddle
.
norm
(
x
,
p
=-
np
.
inf
)
#out_pnorm = [0.]
out_pnorm
=
paddle
.
norm
(
x
,
p
=-
np
.
inf
,
axis
=
0
)
# out_fro = [17.43559577 16.91153453 16.73320053 16.91153453]
paddle
.
enable_static
()
class
API_NormTest
(
unittest
.
TestCase
):
def
test_basic
(
self
):
run_fro
(
self
,
p
=
'fro'
,
axis
=
None
,
shape_x
=
[
3
,
3
,
4
],
dtype
=
"float32"
)
run_fro
(
self
,
p
=
'fro'
,
axis
=
[
0
,
1
],
shape_x
=
[
3
,
3
,
4
],
dtype
=
"float64"
)
run_fro
(
self
,
p
=
'fro'
,
axis
=
None
,
shape_x
=
[
2
,
3
,
4
],
dtype
=
"float32"
)
run_fro
(
self
,
p
=
'fro'
,
axis
=
[
0
,
1
],
shape_x
=
[
2
,
3
,
4
],
dtype
=
"float64"
)
run_pnorm
(
self
,
p
=
2
,
axis
=
None
,
shape_x
=
[
3
,
4
],
dtype
=
"float32"
)
run_pnorm
(
self
,
p
=
2
,
axis
=
1
,
shape_x
=
[
3
,
4
],
dtype
=
"float64"
)
run_pnorm
(
self
,
p
=
np
.
inf
,
axis
=
1
,
shape_x
=
[
3
,
4
],
dtype
=
"float32"
)
run_pnorm
(
self
,
p
=-
np
.
inf
,
axis
=
1
,
shape_x
=
[
3
,
4
],
dtype
=
"float64"
)
run_pnorm
(
self
,
p
=
np
.
inf
,
axis
=
0
,
shape_x
=
[
2
,
3
,
4
],
dtype
=
"float32"
)
run_pnorm
(
self
,
p
=
np
.
inf
,
axis
=
None
,
shape_x
=
[
2
,
3
,
4
],
dtype
=
"float32"
)
run_pnorm
(
self
,
p
=-
np
.
inf
,
axis
=
0
,
shape_x
=
[
2
,
3
,
4
],
dtype
=
"float64"
)
run_pnorm
(
self
,
p
=-
np
.
inf
,
axis
=
None
,
shape_x
=
[
2
,
3
,
4
],
dtype
=
"float64"
)
run_pnorm
(
self
,
p
=
0
,
axis
=
1
,
shape_x
=
[
3
,
4
],
dtype
=
"float64"
)
run_pnorm
(
self
,
p
=
1
,
axis
=
1
,
shape_x
=
[
3
,
4
],
dtype
=
"float64"
)
run_pnorm
(
self
,
p
=
0
,
axis
=
None
,
shape_x
=
[
3
,
4
],
dtype
=
"float64"
)
run_pnorm
(
self
,
p
=
2
,
axis
=
[
0
,
1
],
shape_x
=
[
2
,
3
,
4
],
dtype
=
"float64"
)
run_pnorm
(
self
,
p
=
2
,
axis
=-
1
,
shape_x
=
[
2
,
3
,
4
],
dtype
=
"float64"
)
run_pnorm
(
self
,
p
=
1
,
axis
=
[
0
,
1
],
shape_x
=
[
2
,
3
,
4
],
dtype
=
"float64"
)
run_pnorm
(
self
,
p
=
0
,
axis
=
[
0
,
1
],
shape_x
=
[
2
,
3
,
4
],
dtype
=
"float64"
)
run_pnorm
(
self
,
p
=
np
.
inf
,
axis
=
[
0
,
1
],
shape_x
=
[
2
,
3
,
4
],
dtype
=
"float64"
)
run_pnorm
(
self
,
p
=-
np
.
inf
,
axis
=
[
0
,
1
],
shape_x
=
[
2
,
3
,
4
],
dtype
=
"float64"
)
def
test_dygraph
(
self
):
run_graph
(
self
,
p
=
'fro'
,
axis
=
None
,
shape_x
=
[
2
,
3
,
4
],
dtype
=
"float32"
)
def
test_name
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
x
=
fluid
.
data
(
name
=
"x"
,
shape
=
[
10
,
10
],
dtype
=
"float32"
)
...
...
@@ -268,11 +325,7 @@ class API_NormTest(unittest.TestCase):
self
.
assertRaises
(
ValueError
,
paddle
.
norm
,
data
,
p
=
"unsupport norm"
)
self
.
assertRaises
(
ValueError
,
paddle
.
norm
,
data
,
p
=
[
1
])
self
.
assertRaises
(
ValueError
,
paddle
.
norm
,
data
,
p
=
[
1
],
axis
=-
1
)
self
.
assertRaises
(
ValueError
,
paddle
.
norm
,
data
,
p
=
'unspport'
,
axis
=
[
-
2
,
-
1
])
data
=
fluid
.
data
(
name
=
"data_3d"
,
shape
=
[
2
,
2
,
2
],
dtype
=
"float64"
)
self
.
assertRaises
(
ValueError
,
paddle
.
norm
,
data
,
p
=
'unspport'
,
axis
=
[
-
2
,
-
1
])
self
.
assertRaises
(
ValueError
,
paddle
.
norm
,
data
,
p
=
'unspport'
,
axis
=
[
-
3
,
-
2
,
-
1
])
...
...
python/paddle/tensor/linalg.py
浏览文件 @
e4cc6a28
...
...
@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
from
paddle.common_ops_import
import
*
from
..fluid.layer_helper
import
LayerHelper
from
..fluid.data_feeder
import
check_variable_and_dtype
,
check_type
...
...
@@ -170,7 +171,7 @@ def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
return
out
def
norm
(
input
,
p
=
'fro'
,
axis
=
None
,
keepdim
=
False
,
out
=
Non
e
,
name
=
None
):
def
norm
(
x
,
p
=
'fro'
,
axis
=
None
,
keepdim
=
Fals
e
,
name
=
None
):
"""
:alias_main: paddle.norm
:alias: paddle.norm,paddle.tensor.norm,paddle.tensor.linalg.norm
...
...
@@ -179,20 +180,19 @@ def norm(input, p='fro', axis=None, keepdim=False, out=None, name=None):
or 2-norm, and in general the p-norm for p > 0) of a given tensor.
Args:
input (Variable
): The input tensor could be N-D tensor, and the input data
x (Tensor
): The input tensor could be N-D tensor, and the input data
type could be float32 or float64.
p (float|string, optional): Order of the norm. Supported values are `fro`, `1`, `2`,
and any positive real number yielding the corresponding p-norm.
axis (int|list, optional): The axis on which to apply norm operation. If axis is int
or list with only one element, the vector norm is computed over the axis.
If axis is a list with two elements, the matrix
norm is computed over the axis.
p (float|string, optional): Order of the norm. Supported values are `fro`, `
0`, `
1`, `2`,
`inf`,`-inf`
and any positive real number yielding the corresponding p-norm.
Not supported: ord < 0, nuclear norm.
axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
or list(int)/tuple(int) with only one element, the vector
norm is computed over the axis.
If `axis < 0`, the dimension to norm operation is rank(input) + axis.
If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
keepdim (bool, optional): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have fewer dimension
than the :attr:`input` unless :attr:`keepdim` is true, default
value is False.
out (Variable, optional): The output tensor, default value is None. It's data type
must be the same as the input Tensor.
name (str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
...
...
@@ -208,29 +208,57 @@ def norm(input, p='fro', axis=None, keepdim=False, out=None, name=None):
.. code-block:: python
import paddle
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[2, 3, 5], dtype='float64')
import numpy as np
paddle.disable_static()
shape=[2, 3, 4]
np_input = np.arange(24).astype('float32') - 12
np_input = np_input.reshape(shape)
x = paddle.to_tensor(np_input)
#[[[-12. -11. -10. -9.] [ -8. -7. -6. -5.] [ -4. -3. -2. -1.]]
# [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 8. 9. 10. 11.]]]
# compute frobenius norm along last two dimensions.
out_fro = paddle.norm(x, p='fro', axis=[1,2])
out_fro = paddle.norm(x, p='fro', axis=[0,1])
# out_fro.numpy() [17.435596 16.911535 16.7332 16.911535]
# compute 2-order vector norm along last dimension.
out_pnorm = paddle.norm(x, p=2, axis=-1)
#out_pnorm.numpy(): [[21.118711 13.190906 5.477226]
# [ 3.7416575 11.224972 19.131126]]
# compute 2-order norm along [0,1] dimension.
out_pnorm = paddle.norm(x, p=2, axis=[0,1])
#out_pnorm.numpy(): [17.435596 16.911535 16.7332 16.911535]
# compute inf-order norm
out_pnorm = paddle.norm(x, p=np.inf)
#out_pnorm.numpy() = [12.]
out_pnorm = paddle.norm(x, p=np.inf, axis=0)
#out_pnorm.numpy(): [[12. 11. 10. 9.] [8. 7. 6. 7.] [8. 9. 10. 11.]]
# compute -inf-order norm
out_pnorm = paddle.norm(x, p=-np.inf)
#out_pnorm.numpy(): [0.]
out_pnorm = paddle.norm(x, p=-np.inf, axis=0)
#out_pnorm.numpy(): [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]]
"""
def
frobenius_norm
(
input
,
dim
=
None
,
keepdim
=
False
,
out
=
None
,
name
=
None
):
def
frobenius_norm
(
input
,
dim
=
None
,
keepdim
=
False
,
name
=
None
):
"""
The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
Args:
input (Variable): Tensor, data type float32, float64.
dim (list, optional): None for last two dimensions.
keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
out (Variable, optional): The tensor variable storing the output.
"""
if
dim
is
not
None
and
not
(
isinstance
(
dim
,
list
)
and
len
(
dim
)
==
2
):
raise
ValueError
(
"The dim of frobenius norm op should be None or two elements list!"
)
if
in_dygraph_mode
():
if
dim
is
None
:
dim
=
[
-
1
]
return
core
.
ops
.
frobenius_norm
(
input
,
'dim'
,
dim
,
'keepdim'
,
keepdim
)
attrs
=
{
'dim'
:
dim
if
dim
!=
None
else
[
-
2
,
-
1
],
'keep_dim'
:
keepdim
,
...
...
@@ -242,16 +270,8 @@ def norm(input, p='fro', axis=None, keepdim=False, out=None, name=None):
'frobenius_norm'
)
helper
=
LayerHelper
(
'frobenius_norm'
,
**
locals
())
if
out
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
else
:
check_type
(
out
,
'out'
,
(
Variable
),
'frobenius_norm'
)
check_dtype
(
out
.
dtype
,
out
.
name
,
convert_dtype
(
input
.
dtype
),
'frobenius_norm'
,
'(The out data type in frobenius_norm must be the same with input data type.)'
)
helper
.
append_op
(
type
=
'frobenius_norm'
,
...
...
@@ -264,7 +284,7 @@ def norm(input, p='fro', axis=None, keepdim=False, out=None, name=None):
porder
=
None
,
axis
=
None
,
keepdim
=
False
,
out
=
Non
e
,
asvector
=
Fals
e
,
name
=
None
):
"""
Calculate the p-order vector norm for certain dimension of Tensor `input`.
...
...
@@ -273,32 +293,28 @@ def norm(input, p='fro', axis=None, keepdim=False, out=None, name=None):
porder (float, optional): None for porder=2.0.
axis (int, optional): None for last dimension.
keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
out (Variable, optional): The tensor variable storing the output.
"""
if
in_dygraph_mode
():
if
axis
is
None
:
axis
=
-
1
return
core
.
ops
.
p_norm
(
input
,
'porder'
,
porder
,
'axis'
,
axis
,
'keepdim'
,
keepdim
,
'asvector'
,
asvector
)
if
porder
is
not
None
:
check_type
(
porder
,
'porder'
,
(
float
,
int
),
'p_norm'
)
if
axis
is
not
None
:
check_type
(
axis
,
'axis'
,
(
int
),
'p_norm'
)
check_variable_and_dtype
(
input
,
'input'
,
[
'float32'
,
'float64'
],
'p_norm'
)
attrs
=
{
'axis'
:
axis
if
axis
is
not
None
else
-
1
,
'porder'
:
float
(
porder
)
if
porder
is
not
None
else
2.0
,
'keepdim'
:
keepdim
,
'asvector'
:
asvector
,
'epsilon'
:
1e-12
,
}
check_variable_and_dtype
(
input
,
'input'
,
[
'float32'
,
'float64'
],
'p_norm'
)
helper
=
LayerHelper
(
'p_norm'
,
**
locals
())
if
out
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
else
:
check_type
(
out
,
'out'
,
(
Variable
),
'p_norm'
)
check_dtype
(
out
.
dtype
,
out
.
name
,
convert_dtype
(
input
.
dtype
),
'p_norm'
,
'(The out data type in p_norm must be the same with input data type.)'
)
helper
.
append_op
(
type
=
'p_norm'
,
...
...
@@ -307,21 +323,126 @@ def norm(input, p='fro', axis=None, keepdim=False, out=None, name=None):
attrs
=
attrs
)
return
out
def
inf_norm
(
input
,
porder
=
None
,
axis
=
axis
,
keepdim
=
False
,
asvector
=
False
,
name
=
None
):
helper
=
LayerHelper
(
'frobenius_norm'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'abs'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
out
})
reduce_out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
reduce_all
=
True
if
axis
==
None
or
axis
==
[]
or
asvector
==
True
else
False
axis
=
axis
if
axis
!=
None
and
axis
!=
[]
else
[
0
]
reduce_type
=
'reduce_max'
if
porder
==
np
.
float
(
'inf'
)
else
'reduce_min'
helper
.
append_op
(
type
=
reduce_type
,
inputs
=
{
'X'
:
out
},
outputs
=
{
'Out'
:
reduce_out
},
attrs
=
{
'dim'
:
axis
,
'keep_dim'
:
keepdim
,
'reduce_all'
:
reduce_all
})
return
reduce_out
def
p0_matrix_norm
(
input
,
porder
=
0.
,
axis
=
axis
,
keepdim
=
False
,
name
=
None
):
block
=
LayerHelper
(
'norm'
,
**
locals
())
out
=
block
.
create_variable_for_type_inference
(
dtype
=
block
.
input_dtype
())
cast_out
=
block
.
create_variable_for_type_inference
(
dtype
=
bool
)
block
.
append_op
(
type
=
'cast'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
cast_out
},
attrs
=
{
'in_dtype'
:
input
.
dtype
,
'out_dtype'
:
int
(
core
.
VarDesc
.
VarType
.
BOOL
)
})
cast_out2
=
block
.
create_variable_for_type_inference
(
dtype
=
bool
)
block
.
append_op
(
type
=
'cast'
,
inputs
=
{
'X'
:
cast_out
},
outputs
=
{
'Out'
:
cast_out2
},
attrs
=
{
'in_dtype'
:
cast_out
.
dtype
,
'out_dtype'
:
int
(
core
.
VarDesc
.
VarType
.
FP32
)
})
sum_out
=
block
.
create_variable_for_type_inference
(
dtype
=
block
.
input_dtype
())
block
.
append_op
(
type
=
'reduce_sum'
,
inputs
=
{
'X'
:
cast_out2
},
outputs
=
{
'Out'
:
sum_out
},
attrs
=
{
'dim'
:
axis
,
'keep_dim'
:
keepdim
,
'reduce_all'
:
True
if
axis
is
None
else
False
})
return
sum_out
def
p_matrix_norm
(
input
,
porder
=
1.
,
axis
=
axis
,
keepdim
=
False
,
name
=
None
):
block
=
LayerHelper
(
'norm'
,
**
locals
())
out
=
block
.
create_variable_for_type_inference
(
dtype
=
block
.
input_dtype
())
abs_out
=
block
.
create_variable_for_type_inference
(
dtype
=
block
.
input_dtype
())
block
.
append_op
(
type
=
'abs'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
abs_out
})
pow_out
=
block
.
create_variable_for_type_inference
(
dtype
=
block
.
input_dtype
())
block
.
append_op
(
type
=
'pow'
,
inputs
=
{
'X'
:
abs_out
},
outputs
=
{
'Out'
:
pow_out
},
attrs
=
{
'factor'
:
porder
})
sum_out
=
block
.
create_variable_for_type_inference
(
dtype
=
block
.
input_dtype
())
block
.
append_op
(
type
=
'reduce_sum'
,
inputs
=
{
'X'
:
pow_out
},
outputs
=
{
'Out'
:
sum_out
},
attrs
=
{
'dim'
:
axis
,
'keep_dim'
:
keepdim
,
'reduce_all'
:
True
if
axis
is
None
else
False
})
porder
block
.
append_op
(
type
=
'pow'
,
inputs
=
{
'X'
:
sum_out
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'factor'
:
float
(
1.
/
porder
)})
return
out
if
axis
is
None
and
p
is
not
None
:
if
isinstance
(
p
,
str
):
if
p
==
"fro"
:
return
frobenius_norm
(
input
,
dim
=
axis
,
keepdim
=
keepdim
,
out
=
out
,
name
=
name
)
return
frobenius_norm
(
x
,
dim
=
axis
,
keepdim
=
keepdim
,
name
=
name
)
else
:
raise
ValueError
(
"only valid string values are 'fro', found {}"
.
format
(
p
))
elif
isinstance
(
p
,
(
int
,
float
)):
return
vector_norm
(
input
,
porder
=
p
,
axis
=
axis
,
keepdim
=
keepdim
,
out
=
out
,
name
=
name
)
x
,
porder
=
p
,
axis
=
axis
,
keepdim
=
keepdim
,
asvector
=
True
,
name
=
name
)
else
:
raise
ValueError
(
"only valid p type is string or float, found {}"
.
format
(
type
(
p
)))
if
isinstance
(
axis
,
tuple
):
axis
=
list
(
axis
)
if
isinstance
(
axis
,
list
)
and
len
(
axis
)
==
1
:
axis
=
axis
[
0
]
...
...
@@ -329,7 +450,12 @@ def norm(input, p='fro', axis=None, keepdim=False, out=None, name=None):
if
isinstance
(
axis
,
int
):
if
isinstance
(
p
,
(
int
,
float
)):
return
vector_norm
(
input
,
axis
=
axis
,
porder
=
p
,
keepdim
=
keepdim
,
out
=
out
,
name
=
name
)
x
,
axis
=
axis
,
porder
=
p
,
keepdim
=
keepdim
,
asvector
=
False
,
name
=
name
)
else
:
raise
ValueError
(
"unspport p for p-order vector norm. except float, found {}"
.
...
...
@@ -337,11 +463,14 @@ def norm(input, p='fro', axis=None, keepdim=False, out=None, name=None):
#calculate matrix norm, where axis is list with two integers
elif
isinstance
(
axis
,
list
)
and
len
(
axis
)
==
2
:
if
p
==
"fro"
:
return
frobenius_norm
(
input
,
dim
=
axis
,
keepdim
=
keepdim
,
out
=
out
,
name
=
name
)
return
frobenius_norm
(
x
,
dim
=
axis
,
keepdim
=
keepdim
,
name
=
name
)
elif
p
==
0
:
return
p0_matrix_norm
(
x
,
axis
=
axis
,
keepdim
=
keepdim
,
name
=
name
)
elif
p
==
np
.
inf
or
p
==
-
np
.
inf
:
return
inf_norm
(
x
,
porder
=
p
,
axis
=
axis
,
keepdim
=
keepdim
,
name
=
name
)
else
:
r
aise
ValueError
(
"unspport p for matrix norm, expcept 'fro', found {}"
.
format
(
p
)
)
r
eturn
p_matrix_norm
(
x
,
porder
=
p
,
axis
=
axis
,
keepdim
=
keepdim
,
name
=
name
)
else
:
raise
ValueError
(
"except axis type int or list (length of list <=2), found {}"
.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录