Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
e42c3854
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e42c3854
编写于
2月 08, 2017
作者:
Z
zhuoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
follow helin's comments
上级
cf437a89
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
17 addition
and
9 deletion
+17
-9
demo/mnist/light_mnist.py
demo/mnist/light_mnist.py
+17
-9
未找到文件。
demo/mnist/light_mnist.py
浏览文件 @
e42c3854
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.trainer_config_helpers
import
*
is_predict
=
get_config_arg
(
"is_predict"
,
bool
,
False
)
...
...
@@ -13,11 +27,6 @@ if not is_predict:
obj
=
'process'
)
######################Algorithm Configuration #############
# settings(
# batch_size=128,
# learning_rate=0.1 / 128.0,
# learning_method=MomentumOptimizer(0.9),
# regularization=L2Regularization(0.0005 * 128))
settings
(
batch_size
=
50
,
learning_rate
=
0.001
,
learning_method
=
AdamOptimizer
())
#######################Network Configuration #############
...
...
@@ -26,11 +35,10 @@ data_size = 1 * 28 * 28
label_size
=
10
img
=
data_layer
(
name
=
'pixel'
,
size
=
data_size
)
# small_vgg is predined in trainer_config_helpers.network
# predict = small_vgg(input_image=img, num_channels=1, num_classes=label_size)
# light cnn
# A shallower cnn model: [CNN, BN, ReLU, Max-Pooling] x4 + FC x1
# Easier to train for mnist dataset and quite efficient
# Final performance is close to deeper ones on tasks such as digital and character classification
def
light_cnn
(
input_image
,
num_channels
,
num_classes
):
def
__light__
(
ipt
,
num_filter
=
128
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录