提交 e2d75bd3 编写于 作者: W wanghaoshuang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into crop_op

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ExpandConvBaseLayer.h"
#include "paddle/utils/Logging.h"
namespace paddle {
bool ExpandConvBaseLayer::init(const LayerMap &layerMap,
const ParameterMap &parameterMap) {
/* Initialize the basic convolutional parent class */
ConvBaseLayer::init(layerMap, parameterMap);
int index = 0;
for (auto &inputConfig : config_.inputs()) {
const ConvConfig &conf = inputConfig.conv_conf();
/* Consistent caffe mode for multiple input */
caffeMode_ = conf.caffe_mode();
// create a new weight
size_t height, width;
height = filterPixels_[index] * filterChannels_[index];
width = (!isDeconv_) ? numFilters_ : channels_[index];
CHECK_EQ(parameters_[index]->getSize(), width * height);
Weight *w = new Weight(height, width, parameters_[index]);
weights_.emplace_back(w);
index++;
}
if (biasParameter_.get()) {
if (sharedBiases_) {
CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
biases_ =
std::unique_ptr<Weight>(new Weight(numFilters_, 1, biasParameter_));
} else {
biases_ =
std::unique_ptr<Weight>(new Weight(getSize(), 1, biasParameter_));
}
}
getOutputSize();
return true;
}
size_t ExpandConvBaseLayer::getOutputSize() {
CHECK_NE(inputLayers_.size(), 0UL);
size_t layerSize = ConvBaseLayer::calOutputSize();
return layerSize;
}
void ExpandConvBaseLayer::addSharedBias() {
size_t mapW = getOutputSize() / numFilters_;
size_t mapH = getOutputValue()->getElementCnt() / mapW;
MatrixPtr out =
Matrix::create(getOutputValue()->getData(), mapH, mapW, false, useGpu_);
Matrix::resizeOrCreate(transOutValue_, mapW, mapH, false, useGpu_);
out->transpose(transOutValue_, false); // false means no memory allocation
transOutValue_->reshape(transOutValue_->getElementCnt() / numFilters_,
numFilters_);
MatrixPtr bias = Matrix::create(biases_->getW()->getData(),
1,
biases_->getW()->getElementCnt(),
false,
useGpu_);
transOutValue_->addBias(*bias, 1.0f);
transOutValue_->reshape(mapW, mapH);
transOutValue_->transpose(out, false); // false means no memory allocation
out->clear();
bias->clear();
}
void ExpandConvBaseLayer::addUnsharedBias() {
MatrixPtr outValue = getOutputValue();
MatrixPtr bias = Matrix::create(biases_->getW()->getData(),
1,
biases_->getW()->getElementCnt(),
false,
useGpu_);
outValue->addBias(*bias, 1.0f);
}
void ExpandConvBaseLayer::bpropSharedBias(MatrixPtr biases, MatrixPtr v) {
size_t mapW = getOutputSize() / numFilters_;
size_t mapH = v->getElementCnt() / mapW;
MatrixPtr vTmp = Matrix::create(v->getData(), mapH, mapW, false, useGpu_);
Matrix::resizeOrCreate(transOutValue_, mapW, mapH, false, useGpu_);
vTmp->transpose(transOutValue_, false); // false means no memory allocation
transOutValue_->reshape(transOutValue_->getElementCnt() / numFilters_,
numFilters_);
biases->collectBias(*transOutValue_, 1.0f);
}
void ExpandConvBaseLayer::bpropBiases(MatrixPtr v) {
MatrixPtr biases = Matrix::create(biases_->getWGrad()->getData(),
1,
biases_->getWGrad()->getElementCnt(),
false,
useGpu_);
if (sharedBiases_) {
bpropSharedBias(biases, v);
} else {
biases->collectBias(*v, 1.0f);
}
biases->clear();
}
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "ConvBaseLayer.h"
#include "paddle/math/Matrix.h"
namespace paddle {
/**
* @brief A subclass of ConvBaseLayer that is a superclass of both
* ExpandConvLayer and ExpandConvTransLayer
*/
class ExpandConvBaseLayer : public ConvBaseLayer {
protected:
/// The transpose of output, which is an auxiliary matrix.
MatrixPtr transOutValue_;
public:
explicit ExpandConvBaseLayer(const LayerConfig& config)
: ConvBaseLayer(config) {}
~ExpandConvBaseLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
size_t getOutputSize();
/**
* Add shared bias.
*/
void addSharedBias();
/**
* Add unshared bias.
*/
void addUnsharedBias();
void bpropSharedBias(MatrixPtr biases, MatrixPtr v);
void bpropBiases(MatrixPtr v);
};
} // namespace paddle
...@@ -36,7 +36,36 @@ inline bool isDepthwiseConv(int channels, int groups) { ...@@ -36,7 +36,36 @@ inline bool isDepthwiseConv(int channels, int groups) {
bool ExpandConvLayer::init(const LayerMap &layerMap, bool ExpandConvLayer::init(const LayerMap &layerMap,
const ParameterMap &parameterMap) { const ParameterMap &parameterMap) {
/* Initialize the basic convolutional parent class */ /* Initialize the basic convolutional parent class */
ExpandConvBaseLayer::init(layerMap, parameterMap); ConvBaseLayer::init(layerMap, parameterMap);
int index = 0;
for (auto &inputConfig : config_.inputs()) {
const ConvConfig &conf = inputConfig.conv_conf();
/* Consistent caffe mode for multiple input */
caffeMode_ = conf.caffe_mode();
// create a new weight
size_t height, width;
height = filterPixels_[index] * filterChannels_[index];
width = (!isDeconv_) ? numFilters_ : channels_[index];
CHECK_EQ(parameters_[index]->getSize(), width * height);
Weight *w = new Weight(height, width, parameters_[index]);
weights_.emplace_back(w);
index++;
}
if (biasParameter_.get()) {
if (sharedBiases_) {
CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
biases_ = std::unique_ptr<Weight>(
new Weight(1, numFilters_, biasParameter_, 0));
} else {
biases_ =
std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_, 0));
}
}
getOutputSize();
size_t numInputs = config_.inputs_size(); size_t numInputs = config_.inputs_size();
inputShape_.resize(numInputs); inputShape_.resize(numInputs);
...@@ -108,6 +137,12 @@ bool ExpandConvLayer::init(const LayerMap &layerMap, ...@@ -108,6 +137,12 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
return true; return true;
} }
size_t ExpandConvLayer::getOutputSize() {
CHECK_NE(inputLayers_.size(), 0UL);
size_t layerSize = ConvBaseLayer::calOutputSize();
return layerSize;
}
// i is the index of input layers // i is the index of input layers
#define BACKWARD_INPUT(i, inputs, outputs) \ #define BACKWARD_INPUT(i, inputs, outputs) \
backward_[2 * i]->calc(inputs, outputs) backward_[2 * i]->calc(inputs, outputs)
...@@ -155,11 +190,7 @@ void ExpandConvLayer::forward(PassType passType) { ...@@ -155,11 +190,7 @@ void ExpandConvLayer::forward(PassType passType) {
/* add the bias-vector */ /* add the bias-vector */
if (biases_.get()) { if (biases_.get()) {
if (sharedBiases_) { output_.value->addBias(*biases_->getW(), 1.0, sharedBiases_);
addSharedBias();
} else {
addUnsharedBias();
}
} }
/* activation */ /* activation */
...@@ -171,7 +202,7 @@ void ExpandConvLayer::backward(const UpdateCallback &callback) { ...@@ -171,7 +202,7 @@ void ExpandConvLayer::backward(const UpdateCallback &callback) {
MatrixPtr outGrad = getOutputGrad(); MatrixPtr outGrad = getOutputGrad();
if (biases_ && biases_->getWGrad()) { if (biases_ && biases_->getWGrad()) {
bpropBiases(outGrad); biases_->getWGrad()->collectBias(*getOutputGrad(), 1, sharedBiases_);
/* Increasing the number of gradient */ /* Increasing the number of gradient */
biases_->getParameterPtr()->incUpdate(callback); biases_->getParameterPtr()->incUpdate(callback);
} }
......
...@@ -15,7 +15,7 @@ limitations under the License. */ ...@@ -15,7 +15,7 @@ limitations under the License. */
#pragma once #pragma once
#include <vector> #include <vector>
#include "ExpandConvBaseLayer.h" #include "ConvBaseLayer.h"
#include "paddle/math/Matrix.h" #include "paddle/math/Matrix.h"
namespace paddle { namespace paddle {
...@@ -28,10 +28,9 @@ namespace paddle { ...@@ -28,10 +28,9 @@ namespace paddle {
* The config file api is img_conv_layer. * The config file api is img_conv_layer.
*/ */
class ExpandConvLayer : public ExpandConvBaseLayer { class ExpandConvLayer : public ConvBaseLayer {
public: public:
explicit ExpandConvLayer(const LayerConfig& config) explicit ExpandConvLayer(const LayerConfig& config) : ConvBaseLayer(config) {}
: ExpandConvBaseLayer(config) {}
~ExpandConvLayer() {} ~ExpandConvLayer() {}
...@@ -41,6 +40,8 @@ public: ...@@ -41,6 +40,8 @@ public:
void forward(PassType passType) override; void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override; void backward(const UpdateCallback& callback) override;
size_t getOutputSize();
protected: protected:
std::vector<TensorShape> inputShape_; std::vector<TensorShape> inputShape_;
std::vector<TensorShape> filterShape_; std::vector<TensorShape> filterShape_;
......
...@@ -63,7 +63,9 @@ class SequenceAvgPoolGradOp : public framework::OperatorWithKernel { ...@@ -63,7 +63,9 @@ class SequenceAvgPoolGradOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext& ctx) const override { void InferShape(const framework::InferShapeContext& ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")), PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Gradient of Out should not be null"); "Gradient of Out should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"The input X should not be null.");
auto og_dims = auto og_dims =
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))->dims(); ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))->dims();
auto x_dims = ctx.Input<framework::LoDTensor>("X")->dims(); auto x_dims = ctx.Input<framework::LoDTensor>("X")->dims();
......
...@@ -21,6 +21,9 @@ namespace operators { ...@@ -21,6 +21,9 @@ namespace operators {
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor; using LoDTensor = framework::LoDTensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor, template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex> typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>; using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
...@@ -43,8 +46,8 @@ class SequenceAvgPoolKernel : public framework::OpKernel { ...@@ -43,8 +46,8 @@ class SequenceAvgPoolKernel : public framework::OpKernel {
static_cast<int>(lod[0][i + 1])); static_cast<int>(lod[0][i + 1]));
Tensor out_t = out->Slice<T>(i, i + 1); Tensor out_t = out->Slice<T>(i, i + 1);
int64_t h = static_cast<int64_t>(lod[0][i + 1] - lod[0][i]); int64_t h = static_cast<int64_t>(lod[0][i + 1] - lod[0][i]);
auto in_e = EigenMatrix<T>::From(in_t, {h, w}); auto in_e = EigenMatrix<T>::From(in_t, framework::make_ddim({h, w}));
auto out_e = EigenMatrix<T>::From(out_t, {h, w}); auto out_e = EigenVector<T>::Flatten(out_t);
out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}})); out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
} }
} }
...@@ -54,9 +57,9 @@ template <typename Place, typename T> ...@@ -54,9 +57,9 @@ template <typename Place, typename T>
class SequenceAvgPoolGradKernel : public framework::OpKernel { class SequenceAvgPoolGradKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Output<LoDTensor>("X"); auto* in = context.Input<LoDTensor>("X");
auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out")); auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
auto dims = in->dims(); auto dims = in->dims();
auto lod = in->lod(); auto lod = in->lod();
...@@ -71,7 +74,7 @@ class SequenceAvgPoolGradKernel : public framework::OpKernel { ...@@ -71,7 +74,7 @@ class SequenceAvgPoolGradKernel : public framework::OpKernel {
int64_t h = static_cast<int64_t>(lod[0][i + 1] - lod[0][i]); int64_t h = static_cast<int64_t>(lod[0][i + 1] - lod[0][i]);
auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w}); auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w});
auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w}); auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w});
Eigen::DSizes<int, 2> bcast(h, w); Eigen::DSizes<int, 2> bcast(h, 1);
in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast); in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
} }
} }
......
...@@ -47,17 +47,24 @@ def set_input(scope, op, inputs, place): ...@@ -47,17 +47,24 @@ def set_input(scope, op, inputs, place):
if in_name in inputs: if in_name in inputs:
if in_dup: if in_dup:
sub_in = inputs[in_name] sub_in = inputs[in_name]
for sub_in_name, sub_in_array in sub_in: for sub_in_name, sub_in_val in sub_in:
var = scope.find_var(sub_in_name) var = scope.find_var(sub_in_name)
tensor = var.get_tensor() tensor = var.get_tensor()
sub_in_array = sub_in_val[0] \
if isinstance(sub_in_val, tuple) else sub_in_val
tensor.set_dims(sub_in_array.shape) tensor.set_dims(sub_in_array.shape)
tensor.set(sub_in_array, place) tensor.set(sub_in_array, place)
if isinstance(sub_in_val, tuple):
tensor.set_lod(sub_in_val[1])
else: else:
var = scope.find_var(in_name) var = scope.find_var(in_name)
tensor = var.get_tensor() tensor = var.get_tensor()
arr = inputs[in_name] in_val = inputs[in_name]
tensor.set_dims(arr.shape) in_array = in_val[0] if isinstance(in_val, tuple) else in_val
tensor.set(arr, place) tensor.set_dims(in_array.shape)
tensor.set(in_array, place)
if isinstance(in_val, tuple):
tensor.set_lod(in_val[1])
def set_output_grad(scope, op, outputs, place): def set_output_grad(scope, op, outputs, place):
......
import unittest
import numpy as np
from op_test import OpTest
class TestSeqAvgPool1D(OpTest):
def setUp(self):
self.op_type = 'sequence_avg_pool'
# one level, batch size is 4
x = np.random.uniform(0.1, 1, [11, 23]).astype('float32')
lod = [[0, 4, 5, 8, 11]]
out = np.zeros((4, 23)).astype('float32')
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = sub_x.mean(axis=0)
self.inputs = {'X': (x, lod)}
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
class TestSeqAvgPool2D(OpTest):
def setUp(self):
self.op_type = 'sequence_avg_pool'
# one level, batch size is 4
x = np.random.uniform(0.1, 1, [13, 3, 17]).astype('float32')
lod = [[0, 4, 5, 8, 13]]
out = np.zeros((4, 3, 17)).astype('float32')
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(sub_x.mean(axis=0), (3, 17))
self.inputs = {'X': (x, lod)}
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册