Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
e196fa36
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e196fa36
编写于
12月 17, 2018
作者:
T
tangwei12
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update ut, test=develop
上级
723f6872
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
271 addition
and
0 deletion
+271
-0
python/paddle/fluid/tests/unittests/test_nce_remote_table_op.py
.../paddle/fluid/tests/unittests/test_nce_remote_table_op.py
+271
-0
未找到文件。
python/paddle/fluid/tests/unittests/test_nce_remote_table_op.py
0 → 100644
浏览文件 @
e196fa36
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
signal
import
time
import
unittest
from
multiprocessing
import
Process
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
from
paddle.fluid.framework
import
Program
,
program_guard
def
run_pserver
(
pserver_id
,
use_cuda
,
sync_mode
):
scope
=
fluid
.
core
.
Scope
()
program
=
Program
()
with
fluid
.
scope_guard
(
scope
):
with
program_guard
(
program
,
startup_program
=
Program
()):
# create table parameter in scope
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
# create and initialize Param Variable
param
=
scope
.
var
(
'table'
).
get_tensor
()
param_array
=
np
.
ones
((
5
,
8
)).
astype
(
"float32"
)
for
i
in
range
(
len
(
param_array
)):
param_array
[
i
]
*=
param_array
[
i
]
*
i
+
pserver_id
*
10
+
1
param
.
set
(
param_array
,
place
)
optimize_block
=
program
.
_create_block
(
program
.
global_block
().
idx
)
program
.
global_block
().
append_op
(
type
=
"listen_and_serv"
,
inputs
=
{
'X'
:
[]},
outputs
=
{},
attrs
=
{
"optimize_blocks"
:
[
optimize_block
],
"endpoint"
:
'127.0.0.1:0'
,
"Fanin"
:
1
,
"sync_mode"
:
True
,
"grad_to_block_id"
:
[]
})
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
program
)
class
TestListenAndServOp
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
ps_timeout
=
5
def
_start_pserver
(
self
,
pserver_id
,
use_cuda
,
sync_mode
,
pserver_func
):
p
=
Process
(
target
=
pserver_func
,
args
=
(
pserver_id
,
use_cuda
,
sync_mode
))
p
.
daemon
=
True
p
.
start
()
return
p
def
_wait_ps_ready
(
self
,
pid
):
start_left_time
=
self
.
ps_timeout
sleep_time
=
0.5
while
True
:
assert
start_left_time
>=
0
,
"wait ps ready failed"
time
.
sleep
(
sleep_time
)
try
:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os
.
stat
(
"/tmp/paddle.%d.port"
%
pid
)
return
except
os
.
error
:
start_left_time
-=
sleep_time
def
_get_pserver_port
(
self
,
pid
):
with
open
(
"/tmp/paddle.%d.port"
%
pid
,
'r'
)
as
f
:
port
=
int
(
f
.
read
().
strip
())
return
port
def
_run_nce_op_one_pserver
(
self
,
place
,
port
):
scope
=
fluid
.
core
.
Scope
()
program
=
Program
()
with
fluid
.
scope_guard
(
scope
):
with
program_guard
(
program
,
startup_program
=
Program
()):
x
=
scope
.
var
(
'X'
).
get_tensor
()
x_array
=
np
.
random
.
random
((
4
,
8
)).
astype
(
"float32"
)
*
2
x
.
set
(
x_array
,
place
)
# create and initialize Param Variable
param
=
scope
.
var
(
'W'
).
get_tensor
()
param_array
=
np
.
zeros
((
5
,
8
)).
astype
(
"float32"
)
*
2
param
.
set
(
param_array
,
place
)
path_table
=
scope
.
var
(
'PathTable'
).
get_tensor
()
path_table_array
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
2
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
(
0
,
2
,
-
1
,
-
1
,
-
1
)]).
astype
(
"int64"
)
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
path_table
.
set
(
path_table_array
,
place
)
path_code
=
scope
.
var
(
'PathCode'
).
get_tensor
()
path_code_array
=
np
.
array
(
[(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)]).
astype
(
"int64"
)
#np.array to store
path_code
.
set
(
path_code_array
,
place
)
label
=
scope
.
var
(
'Label'
).
get_tensor
()
label_array
=
np
.
array
([
0
,
1
,
4
,
5
])
label
.
set
(
label_array
,
place
)
bias
=
scope
.
var
(
'Bias'
).
get_tensor
()
bias_array
=
np
.
random
.
random
((
5
,
1
)).
astype
(
"float32"
)
bias
.
set
(
bias_array
,
place
)
out
=
scope
.
var
(
'Out'
).
get_tensor
()
pre_out
=
scope
.
var
(
'PreOut'
).
get_tensor
w_out
=
scope
.
var
(
'W_Out'
).
get_tensor
()
w_out
.
set
(
param_array
,
place
)
emaps
=
[
'127.0.0.1:'
+
str
(
port
)]
table_names
=
[
'table'
]
height_sections
=
[
2
]
# create and run sgd operator
hsigmoid_op
=
Operator
(
"hierarchical_sigmoid"
,
X
=
'X'
,
W
=
'W'
,
PathTable
=
'PathTable'
,
PathCode
=
'PathCode'
,
Label
=
'Label'
,
Bias
=
'Bias'
,
Out
=
'Out'
,
PreOut
=
'PreOut'
,
W_Out
=
'W_Out'
,
remote_prefetch
=
True
,
epmap
=
emaps
,
table_names
=
table_names
,
height_sections
=
height_sections
)
hsigmoid_op
.
run
(
scope
,
place
)
# get and compare result
result_array
=
np
.
array
(
w_out
)
self
.
assertEqual
(
list
(
result_array
.
shape
),
[
5
,
8
])
correct
=
None
for
i
in
range
(
5
):
if
i
!=
3
:
correct
=
np
.
full
((
1
,
8
),
i
+
1
).
astype
(
"float32"
)
self
.
assertTrue
((
result_array
[
i
]
==
correct
).
all
())
else
:
correct
=
np
.
full
((
1
,
8
),
0
).
astype
(
"float32"
)
self
.
assertTrue
((
result_array
[
i
]
==
correct
).
all
())
def
_run_nce_op_two_pserver
(
self
,
place
,
port0
,
port1
):
scope
=
fluid
.
core
.
Scope
()
program
=
Program
()
with
fluid
.
scope_guard
(
scope
):
with
program_guard
(
program
,
startup_program
=
Program
()):
x
=
scope
.
var
(
'X'
).
get_tensor
()
x_array
=
np
.
random
.
random
((
4
,
8
)).
astype
(
"float32"
)
*
2
x
.
set
(
x_array
,
place
)
# create and initialize Param Variable
param
=
scope
.
var
(
'W'
).
get_tensor
()
param_array
=
np
.
zeros
((
5
,
8
)).
astype
(
"float32"
)
*
2
param
.
set
(
param_array
,
place
)
path_table
=
scope
.
var
(
'PathTable'
).
get_tensor
()
path_table_array
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
3
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
(
0
,
2
,
-
1
,
-
1
,
-
1
)]).
astype
(
"int64"
)
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
path_table
.
set
(
path_table_array
,
place
)
path_code
=
scope
.
var
(
'PathCode'
).
get_tensor
()
path_code_array
=
np
.
array
(
[(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)]).
astype
(
"int64"
)
#np.array to store
path_code
.
set
(
path_code_array
,
place
)
label
=
scope
.
var
(
'Label'
).
get_tensor
()
label_array
=
np
.
array
([
0
,
1
,
4
,
5
])
label
.
set
(
label_array
,
place
)
bias
=
scope
.
var
(
'Bias'
).
get_tensor
()
bias_array
=
np
.
random
.
random
((
5
,
1
)).
astype
(
"float32"
)
bias
.
set
(
bias_array
,
place
)
out
=
scope
.
var
(
'Out'
).
get_tensor
()
pre_out
=
scope
.
var
(
'PreOut'
).
get_tensor
w_out
=
scope
.
var
(
'W_Out'
).
get_tensor
()
w_out
.
set
(
param_array
,
place
)
emaps
=
[
'127.0.0.1:'
+
str
(
port0
),
'127.0.0.1:'
+
str
(
port1
)]
table_names
=
[
'table'
,
'table'
]
height_sections
=
[
2
,
3
]
# create and run sgd operator
hsigmoid_op
=
Operator
(
"hierarchical_sigmoid"
,
X
=
'X'
,
W
=
'W'
,
PathTable
=
'PathTable'
,
PathCode
=
'PathCode'
,
Label
=
'Label'
,
Bias
=
'Bias'
,
Out
=
'Out'
,
PreOut
=
'PreOut'
,
W_Out
=
'W_Out'
,
remote_prefetch
=
True
,
epmap
=
emaps
,
table_names
=
table_names
,
height_sections
=
height_sections
)
hsigmoid_op
.
run
(
scope
,
place
)
# get and compare result
result_array
=
np
.
array
(
w_out
)
self
.
assertEqual
(
list
(
result_array
.
shape
),
[
5
,
8
])
correct
=
None
for
i
in
range
(
5
):
if
i
<
2
:
correct
=
np
.
full
((
1
,
8
),
i
+
1
).
astype
(
"float32"
)
self
.
assertTrue
((
result_array
[
i
]
==
correct
).
all
())
else
:
correct
=
np
.
full
((
1
,
8
),
i
+
9
).
astype
(
"float32"
)
self
.
assertTrue
((
result_array
[
i
]
==
correct
).
all
())
def
test_nce_op_remote
(
self
):
os
.
environ
[
'PADDLE_ENABLE_REMOTE_PREFETCH'
]
=
"1"
# run pserver on CPU in sync mode
p0
=
self
.
_start_pserver
(
0
,
False
,
True
,
run_pserver
)
self
.
_wait_ps_ready
(
p0
.
pid
)
port0
=
self
.
_get_pserver_port
(
p0
.
pid
)
p1
=
self
.
_start_pserver
(
1
,
False
,
True
,
run_pserver
)
self
.
_wait_ps_ready
(
p1
.
pid
)
port1
=
self
.
_get_pserver_port
(
p1
.
pid
)
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
_run_nce_op_one_pserver
(
place
,
port0
)
self
.
_run_nce_op_two_pserver
(
place
,
port0
,
port1
)
# raise SIGTERM to pserver
os
.
kill
(
p0
.
pid
,
signal
.
SIGINT
)
p0
.
join
()
os
.
kill
(
p1
.
pid
,
signal
.
SIGINT
)
p1
.
join
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录