diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml
index 89c620bb2f7ef634fa80b64eec7037e8cb9a190c..6140340890c0e5025eb08209e8ea78df918b4dc0 100644
--- a/.pre-commit-config.yaml
+++ b/.pre-commit-config.yaml
@@ -1,3 +1,4 @@
+repos:
- repo: https://github.com/Lucas-C/pre-commit-hooks.git
sha: v1.0.1
hooks:
@@ -25,6 +26,14 @@
entry: bash ./.clang_format.hook -i
language: system
files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto)$
+- repo: local
+ hooks:
+ - id: cpplint-cpp-source
+ name: cpplint
+ description: Check C++ code style using cpplint.py.
+ entry: bash ./tools/codestyle/cpplint_pre_commit.hook
+ language: system
+ files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx)$
- repo: https://github.com/PaddlePaddle/pre-commit-golang
sha: 8337620115c25ff8333f1b1a493bd031049bd7c0
hooks:
diff --git a/.travis.yml b/.travis.yml
index bf6a41d13c4eabc2d8543ab821ce0ff747a061df..929c847bd36d64e79a199b2634ebf68c3225429b 100644
--- a/.travis.yml
+++ b/.travis.yml
@@ -34,7 +34,7 @@ addons:
- automake
- libtool
- ccache
- ssh_known_hosts: 52.76.173.135
+ ssh_known_hosts: 13.229.163.131
before_install:
- if [[ "$JOB" == "check_style" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 1e11f86d0ee836f65e69c8398fb26c3b6a1070f6..c649aafeddaf9f28c213d086236c3779d3137d92 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -53,8 +53,7 @@ option(WITH_COVERAGE "Compile PaddlePaddle with code coverage" OFF)
option(COVERALLS_UPLOAD "Package code coverage data to coveralls" OFF)
option(ON_TRAVIS "Exclude special unit test on Travis CI" OFF)
option(WITH_C_API "Compile PaddlePaddle with C-API(Prediction)" OFF)
-# TODO: Only compile PaddlePaddle fluid version by WITH_FLUID option.
-option(WITH_FLUID "Compile PaddlePaddle fluid only(TODO)" OFF)
+option(WITH_FLUID_ONLY "Compile PaddlePaddle fluid only" OFF)
option(WITH_GOLANG "Compile PaddlePaddle with GOLANG" OFF)
option(GLIDE_INSTALL "Download and install go dependencies " ON)
option(USE_NNPACK "Compile PaddlePaddle with NNPACK library" OFF)
@@ -109,7 +108,7 @@ if (WITH_C_API AND WITH_PYTHON)
endif()
if (WITH_C_API)
- set(WITH_FLUID OFF CACHE STRING "Disable install fluid when compile the C_API" FORCE)
+ set(WITH_FLUID_ONLY OFF CACHE STRING "Disable install fluid when compile the C_API" FORCE)
endif()
if(MOBILE_INFERENCE)
@@ -147,6 +146,7 @@ include(external/cares)
include(external/grpc)
include(external/snappy) # download snappy
include(external/snappystream)
+include(external/threadpool)
include(cudnn) # set cudnn libraries, must before configure
include(cupti)
diff --git a/benchmark/cluster/README.md b/benchmark/cluster/README.md
index b619613ea7a5b6e940ec735314e8e47338b2c600..64816098a524f064ec12474a736cd4c721227a70 100644
--- a/benchmark/cluster/README.md
+++ b/benchmark/cluster/README.md
@@ -36,11 +36,41 @@
- Trainer Count: 100
- Metrics: mini-batch / sec
-| Batch Size | 32 | 64 | 128 | 256 |
-| -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid | - | - | - | - |
-| PaddlePaddle v2 | - | - | - | - |
-| TensorFlow | - | - | - | - |
+
+
+
+
+Batch Size |
+ 32 |
+64 |
+128 |
+256 |
+
+
+
+
+ PaddlePaddle Fluid |
+- |
+- |
+- |
+- |
+
+
+PaddlePaddle v2 |
+- |
+- |
+- |
+- |
+
+
+TensorFlow |
+- |
+- |
+- |
+- |
+
+
+
### Measure the Performance for Different PServer Count
@@ -48,11 +78,41 @@
- Batch Size: 64
- Metrics: mini-batch / sec
-| PServer Count | 10 | 20 | 40 | 60 |
-| -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid | - | - | - | - |
-| PaddlePaddle v2 | - | - | - | - |
-| TensorFlow | - | - | - | - |
+
+
+
+
+PServer Count |
+10 |
+20 |
+40 |
+60 |
+
+
+
+
+ PaddlePaddle Fluid |
+- |
+- |
+- |
+- |
+
+
+PaddlePaddle v2 |
+- |
+- |
+- |
+- |
+
+
+TensorFlow |
+- |
+- |
+- |
+- |
+
+
+
### Measure Parallel Efficiency By Increasing Trainer Count
@@ -67,11 +127,69 @@ The parallel efficiency is:
$E = \div(S, N)$
-| Trainer Counter | 1 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
-| -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid | - | - | - | - | - | - | - | - | - | - | - |
-| PaddlePaddle v2 | - | - | - | - | - | - | - | - | - | - | - | - |
-| TensorFlow | - | - | - | - | - | - | - | - | - | - | - | - | - |
+
+
+
+Trainer Counter |
+1 |
+10 |
+20 |
+30 |
+40 |
+50 |
+60 |
+70 |
+80 |
+90 |
+100 |
+
+
+
+
+ PaddlePaddle Fluid |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+
+
+PaddlePaddle v2 |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+
+
+TensorFlow |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+- |
+
+
+
+
## Reproduce the benchmark
diff --git a/benchmark/cluster/vgg16/README.md b/benchmark/cluster/vgg16/README.md
index cd681a1a282d9a26eac1c267bfa26967f8c3c9fd..d56a912b9b03986e32693363f82df05a34b779e9 100644
--- a/benchmark/cluster/vgg16/README.md
+++ b/benchmark/cluster/vgg16/README.md
@@ -16,11 +16,41 @@ Setting environment variable: `MKL_NUM_THREADS=1`.
- Metrics: samples / sec
-| Batch Size | 32 | 64 | 128 | 256 |
-| -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid | 15.44 | 16.32 | 16.74 | 16.79 |
-| PaddlePaddle v2 | 15.97 | 17.04 | 17.60 | 17.83 |
-| TensorFlow | 9.09 | 9.10 | 9.24 | 8.66 |
+
+
+
+Batch Size |
+ 32 |
+64 |
+128 |
+256 |
+
+
+
+
+ PaddlePaddle Fluid |
+ 15.44 |
+ 16.32 |
+ 16.74 |
+ 16.79 |
+
+
+PaddlePaddle v2 |
+ 15.97 |
+ 17.04 |
+ 17.60 |
+ 17.83 |
+
+
+TensorFlow |
+ 9.09 |
+ 9.10 |
+ 9.24 |
+ 8.66 |
+
+
+
+
### Different Batch Size
@@ -28,12 +58,40 @@ Setting environment variable: `MKL_NUM_THREADS=1`.
- Trainer Count: 20
- Metrics: samples / sec
-| Batch Size | 32 | 64 | 128 | 256 |
-| -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid | 190.20 | 222.15 | 247.40 | 258.18 |
-| PaddlePaddle v2 | 170.96 | 233.71 | 256.14 | 329.23 |
-| TensorFlow | - | - | - | - |
-
+
+
+
+Batch Size |
+ 32 |
+64 |
+128 |
+256 |
+
+
+
+
+ PaddlePaddle Fluid |
+ 190.20 |
+ 222.15 |
+ 247.40 |
+ 258.18 |
+
+
+PaddlePaddle v2 |
+ 170.96 |
+ 233.71 |
+ 256.14 |
+ 329.23 |
+
+
+TensorFlow |
+ - |
+ - |
+ - |
+ - |
+
+
+
### Accelerate Rate
@@ -41,11 +99,41 @@ Setting environment variable: `MKL_NUM_THREADS=1`.
- Batch Size: 128
- Metrics: samples / sec
-| Trainer Count | 20 | 40 | 80 | 100 |
-| -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid | 263.29 (78.64%) | 518.80 (77.47%) | 836.26 (62.44%) | 1019.29 (60.89%) |
-| PaddlePaddle v2 (need more tests) | 326.85 (92.85%) | 534.58 (75.93%) | 853.30 (60.60%) | 1041.99 (59.20%) |
-| TensorFlow | - | - | - | - |
+
+
+
+Trainer Count |
+20 |
+40 |
+80 |
+100 |
+
+
+
+
+ PaddlePaddle Fluid |
+ 263.29 (78.64%) |
+ 518.80 (77.47%) |
+ 836.26 (62.44%) |
+ 1019.29 (60.89%) |
+
+
+PaddlePaddle v2 (need more tests) |
+ 326.85 (92.85%) |
+ 534.58 (75.93%) |
+ 853.30 (60.60%) |
+ 1041.99 (59.20%) |
+
+
+TensorFlow |
+ - |
+ - |
+ - |
+ - |
+
+
+
+
### Different Pserver Count
@@ -53,11 +141,41 @@ Setting environment variable: `MKL_NUM_THREADS=1`.
- Batch Size: 128
- Metrics: samples/ sec
-| PServer Count | 3 | 6 |10 | 20 |
-| -- | -- | -- | -- | -- |
-| PaddlePaddle Fluid(should fix in next PR) | 589.1 | 592.6 | 656.4 | 655.8 |
-| PaddlePaddle v2 | 593.4 | 791.3 | 729.7 | 821.7 |
-| TensorFlow | - | - | - | - |
+
+
+
+PServer Count |
+3 |
+6 |
+10 |
+20 |
+
+
+
+
+ PaddlePaddle Fluid(should fix in next PR) |
+ 589.1 |
+ 592.6 |
+ 656.4 |
+ 655.8 |
+
+
+PaddlePaddle v2 (need more tests) |
+ 593.4 |
+ 791.3 |
+ 729.7 |
+ 821.7 |
+
+
+TensorFlow |
+ - |
+ - |
+ - |
+ - |
+
+
+
+
*The performance gap between Fuild and v2 comes from the network interference.*
diff --git a/benchmark/fluid/machine_translation.py b/benchmark/fluid/machine_translation.py
new file mode 100644
index 0000000000000000000000000000000000000000..cc31d098328bc237c018ebf8f158bdab5c37bff1
--- /dev/null
+++ b/benchmark/fluid/machine_translation.py
@@ -0,0 +1,349 @@
+# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""seq2seq model for fluid."""
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import numpy as np
+import argparse
+import time
+import distutils.util
+
+import paddle.v2 as paddle
+import paddle.fluid as fluid
+import paddle.fluid.core as core
+import paddle.fluid.framework as framework
+from paddle.fluid.executor import Executor
+
+parser = argparse.ArgumentParser(description=__doc__)
+parser.add_argument(
+ "--embedding_dim",
+ type=int,
+ default=512,
+ help="The dimension of embedding table. (default: %(default)d)")
+parser.add_argument(
+ "--encoder_size",
+ type=int,
+ default=512,
+ help="The size of encoder bi-rnn unit. (default: %(default)d)")
+parser.add_argument(
+ "--decoder_size",
+ type=int,
+ default=512,
+ help="The size of decoder rnn unit. (default: %(default)d)")
+parser.add_argument(
+ "--batch_size",
+ type=int,
+ default=16,
+ help="The sequence number of a mini-batch data. (default: %(default)d)")
+parser.add_argument(
+ "--dict_size",
+ type=int,
+ default=30000,
+ help="The dictionary capacity. Dictionaries of source sequence and "
+ "target dictionary have same capacity. (default: %(default)d)")
+parser.add_argument(
+ "--pass_num",
+ type=int,
+ default=2,
+ help="The pass number to train. (default: %(default)d)")
+parser.add_argument(
+ "--learning_rate",
+ type=float,
+ default=0.0002,
+ help="Learning rate used to train the model. (default: %(default)f)")
+parser.add_argument(
+ "--infer_only", action='store_true', help="If set, run forward only.")
+parser.add_argument(
+ "--beam_size",
+ type=int,
+ default=3,
+ help="The width for beam searching. (default: %(default)d)")
+parser.add_argument(
+ "--use_gpu",
+ type=distutils.util.strtobool,
+ default=True,
+ help="Whether to use gpu. (default: %(default)d)")
+parser.add_argument(
+ "--max_length",
+ type=int,
+ default=250,
+ help="The maximum length of sequence when doing generation. "
+ "(default: %(default)d)")
+
+
+def lstm_step(x_t, hidden_t_prev, cell_t_prev, size):
+ def linear(inputs):
+ return fluid.layers.fc(input=inputs, size=size, bias_attr=True)
+
+ forget_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
+ input_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
+ output_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
+ cell_tilde = fluid.layers.tanh(x=linear([hidden_t_prev, x_t]))
+
+ cell_t = fluid.layers.sums(input=[
+ fluid.layers.elementwise_mul(
+ x=forget_gate, y=cell_t_prev), fluid.layers.elementwise_mul(
+ x=input_gate, y=cell_tilde)
+ ])
+
+ hidden_t = fluid.layers.elementwise_mul(
+ x=output_gate, y=fluid.layers.tanh(x=cell_t))
+
+ return hidden_t, cell_t
+
+
+def seq_to_seq_net(embedding_dim, encoder_size, decoder_size, source_dict_dim,
+ target_dict_dim, is_generating, beam_size, max_length):
+ """Construct a seq2seq network."""
+
+ def bi_lstm_encoder(input_seq, gate_size):
+ # Linear transformation part for input gate, output gate, forget gate
+ # and cell activation vectors need be done outside of dynamic_lstm.
+ # So the output size is 4 times of gate_size.
+ input_forward_proj = fluid.layers.fc(input=input_seq,
+ size=gate_size * 4,
+ act=None,
+ bias_attr=False)
+ forward, _ = fluid.layers.dynamic_lstm(
+ input=input_forward_proj, size=gate_size * 4, use_peepholes=False)
+ input_reversed_proj = fluid.layers.fc(input=input_seq,
+ size=gate_size * 4,
+ act=None,
+ bias_attr=False)
+ reversed, _ = fluid.layers.dynamic_lstm(
+ input=input_reversed_proj,
+ size=gate_size * 4,
+ is_reverse=True,
+ use_peepholes=False)
+ return forward, reversed
+
+ src_word_idx = fluid.layers.data(
+ name='source_sequence', shape=[1], dtype='int64', lod_level=1)
+
+ src_embedding = fluid.layers.embedding(
+ input=src_word_idx,
+ size=[source_dict_dim, embedding_dim],
+ dtype='float32')
+
+ src_forward, src_reversed = bi_lstm_encoder(
+ input_seq=src_embedding, gate_size=encoder_size)
+
+ encoded_vector = fluid.layers.concat(
+ input=[src_forward, src_reversed], axis=1)
+
+ encoded_proj = fluid.layers.fc(input=encoded_vector,
+ size=decoder_size,
+ bias_attr=False)
+
+ backward_first = fluid.layers.sequence_pool(
+ input=src_reversed, pool_type='first')
+
+ decoder_boot = fluid.layers.fc(input=backward_first,
+ size=decoder_size,
+ bias_attr=False,
+ act='tanh')
+
+ def lstm_decoder_with_attention(target_embedding, encoder_vec, encoder_proj,
+ decoder_boot, decoder_size):
+ def simple_attention(encoder_vec, encoder_proj, decoder_state):
+ decoder_state_proj = fluid.layers.fc(input=decoder_state,
+ size=decoder_size,
+ bias_attr=False)
+ decoder_state_expand = fluid.layers.sequence_expand(
+ x=decoder_state_proj, y=encoder_proj)
+ concated = fluid.layers.concat(
+ input=[encoder_proj, decoder_state_expand], axis=1)
+ attention_weights = fluid.layers.fc(input=concated,
+ size=1,
+ act='tanh',
+ bias_attr=False)
+ attention_weights = fluid.layers.sequence_softmax(
+ input=attention_weights)
+ weigths_reshape = fluid.layers.reshape(
+ x=attention_weights, shape=[-1])
+ scaled = fluid.layers.elementwise_mul(
+ x=encoder_vec, y=weigths_reshape, axis=0)
+ context = fluid.layers.sequence_pool(input=scaled, pool_type='sum')
+ return context
+
+ rnn = fluid.layers.DynamicRNN()
+
+ cell_init = fluid.layers.fill_constant_batch_size_like(
+ input=decoder_boot,
+ value=0.0,
+ shape=[-1, decoder_size],
+ dtype='float32')
+ cell_init.stop_gradient = False
+
+ with rnn.block():
+ current_word = rnn.step_input(target_embedding)
+ encoder_vec = rnn.static_input(encoder_vec)
+ encoder_proj = rnn.static_input(encoder_proj)
+ hidden_mem = rnn.memory(init=decoder_boot, need_reorder=True)
+ cell_mem = rnn.memory(init=cell_init)
+ context = simple_attention(encoder_vec, encoder_proj, hidden_mem)
+ decoder_inputs = fluid.layers.concat(
+ input=[context, current_word], axis=1)
+ h, c = lstm_step(decoder_inputs, hidden_mem, cell_mem, decoder_size)
+ rnn.update_memory(hidden_mem, h)
+ rnn.update_memory(cell_mem, c)
+ out = fluid.layers.fc(input=h,
+ size=target_dict_dim,
+ bias_attr=True,
+ act='softmax')
+ rnn.output(out)
+ return rnn()
+
+ if not is_generating:
+ trg_word_idx = fluid.layers.data(
+ name='target_sequence', shape=[1], dtype='int64', lod_level=1)
+
+ trg_embedding = fluid.layers.embedding(
+ input=trg_word_idx,
+ size=[target_dict_dim, embedding_dim],
+ dtype='float32')
+
+ prediction = lstm_decoder_with_attention(trg_embedding, encoded_vector,
+ encoded_proj, decoder_boot,
+ decoder_size)
+ label = fluid.layers.data(
+ name='label_sequence', shape=[1], dtype='int64', lod_level=1)
+ cost = fluid.layers.cross_entropy(input=prediction, label=label)
+ avg_cost = fluid.layers.mean(x=cost)
+
+ feeding_list = ["source_sequence", "target_sequence", "label_sequence"]
+
+ return avg_cost, feeding_list
+
+
+def to_lodtensor(data, place):
+ seq_lens = [len(seq) for seq in data]
+ cur_len = 0
+ lod = [cur_len]
+ for l in seq_lens:
+ cur_len += l
+ lod.append(cur_len)
+ flattened_data = np.concatenate(data, axis=0).astype("int64")
+ flattened_data = flattened_data.reshape([len(flattened_data), 1])
+ lod_t = core.LoDTensor()
+ lod_t.set(flattened_data, place)
+ lod_t.set_lod([lod])
+ return lod_t, lod[-1]
+
+
+def lodtensor_to_ndarray(lod_tensor):
+ dims = lod_tensor.get_dims()
+ ndarray = np.zeros(shape=dims).astype('float32')
+ for i in xrange(np.product(dims)):
+ ndarray.ravel()[i] = lod_tensor.get_float_element(i)
+ return ndarray
+
+
+def train():
+ avg_cost, feeding_list = seq_to_seq_net(
+ args.embedding_dim,
+ args.encoder_size,
+ args.decoder_size,
+ args.dict_size,
+ args.dict_size,
+ False,
+ beam_size=args.beam_size,
+ max_length=args.max_length)
+
+ # clone from default main program
+ inference_program = fluid.default_main_program().clone()
+
+ optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
+ optimizer.minimize(avg_cost)
+
+ fluid.memory_optimize(fluid.default_main_program())
+
+ train_batch_generator = paddle.batch(
+ paddle.reader.shuffle(
+ paddle.dataset.wmt14.train(args.dict_size), buf_size=1000),
+ batch_size=args.batch_size)
+
+ test_batch_generator = paddle.batch(
+ paddle.reader.shuffle(
+ paddle.dataset.wmt14.test(args.dict_size), buf_size=1000),
+ batch_size=args.batch_size)
+
+ place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace()
+ exe = Executor(place)
+ exe.run(framework.default_startup_program())
+
+ def do_validation():
+ total_loss = 0.0
+ count = 0
+ for batch_id, data in enumerate(test_batch_generator()):
+ src_seq = to_lodtensor(map(lambda x: x[0], data), place)[0]
+ trg_seq = to_lodtensor(map(lambda x: x[1], data), place)[0]
+ lbl_seq = to_lodtensor(map(lambda x: x[2], data), place)[0]
+
+ fetch_outs = exe.run(inference_program,
+ feed={
+ feeding_list[0]: src_seq,
+ feeding_list[1]: trg_seq,
+ feeding_list[2]: lbl_seq
+ },
+ fetch_list=[avg_cost],
+ return_numpy=False)
+
+ total_loss += lodtensor_to_ndarray(fetch_outs[0])[0]
+ count += 1
+
+ return total_loss / count
+
+ for pass_id in xrange(args.pass_num):
+ pass_start_time = time.time()
+ words_seen = 0
+ for batch_id, data in enumerate(train_batch_generator()):
+ src_seq, word_num = to_lodtensor(map(lambda x: x[0], data), place)
+ words_seen += word_num
+ trg_seq, word_num = to_lodtensor(map(lambda x: x[1], data), place)
+ words_seen += word_num
+ lbl_seq, _ = to_lodtensor(map(lambda x: x[2], data), place)
+
+ fetch_outs = exe.run(framework.default_main_program(),
+ feed={
+ feeding_list[0]: src_seq,
+ feeding_list[1]: trg_seq,
+ feeding_list[2]: lbl_seq
+ },
+ fetch_list=[avg_cost])
+
+ avg_cost_val = np.array(fetch_outs[0])
+ print('pass_id=%d, batch_id=%d, train_loss: %f' %
+ (pass_id, batch_id, avg_cost_val))
+
+ pass_end_time = time.time()
+ test_loss = do_validation()
+ time_consumed = pass_end_time - pass_start_time
+ words_per_sec = words_seen / time_consumed
+ print("pass_id=%d, test_loss: %f, words/s: %f, sec/pass: %f" %
+ (pass_id, test_loss, words_per_sec, time_consumed))
+
+
+def infer():
+ pass
+
+
+if __name__ == '__main__':
+ args = parser.parse_args()
+ if args.infer_only:
+ infer()
+ else:
+ train()
diff --git a/benchmark/fluid/mnist.py b/benchmark/fluid/mnist.py
new file mode 100644
index 0000000000000000000000000000000000000000..7f7afaeb11447d936b65a1d83701b0176ecbc111
--- /dev/null
+++ b/benchmark/fluid/mnist.py
@@ -0,0 +1,205 @@
+# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import numpy as np
+import argparse
+import time
+
+import paddle.v2 as paddle
+import paddle.fluid as fluid
+import paddle.fluid.profiler as profiler
+
+SEED = 1
+DTYPE = "float32"
+
+# random seed must set before configuring the network.
+# fluid.default_startup_program().random_seed = SEED
+
+
+def parse_args():
+ parser = argparse.ArgumentParser("mnist model benchmark.")
+ parser.add_argument(
+ '--batch_size', type=int, default=128, help='The minibatch size.')
+ parser.add_argument(
+ '--iterations', type=int, default=35, help='The number of minibatches.')
+ parser.add_argument(
+ '--pass_num', type=int, default=5, help='The number of passes.')
+ parser.add_argument(
+ '--device',
+ type=str,
+ default='GPU',
+ choices=['CPU', 'GPU'],
+ help='The device type.')
+ parser.add_argument(
+ '--infer_only', action='store_true', help='If set, run forward only.')
+ parser.add_argument(
+ '--use_cprof', action='store_true', help='If set, use cProfile.')
+ parser.add_argument(
+ '--use_nvprof',
+ action='store_true',
+ help='If set, use nvprof for CUDA.')
+ args = parser.parse_args()
+ return args
+
+
+def print_arguments(args):
+ vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
+ vars(args)['device'] == 'GPU')
+ print('----------- Configuration Arguments -----------')
+ for arg, value in sorted(vars(args).iteritems()):
+ print('%s: %s' % (arg, value))
+ print('------------------------------------------------')
+
+
+def cnn_model(data):
+ conv_pool_1 = fluid.nets.simple_img_conv_pool(
+ input=data,
+ filter_size=5,
+ num_filters=20,
+ pool_size=2,
+ pool_stride=2,
+ act="relu")
+ conv_pool_2 = fluid.nets.simple_img_conv_pool(
+ input=conv_pool_1,
+ filter_size=5,
+ num_filters=50,
+ pool_size=2,
+ pool_stride=2,
+ act="relu")
+
+ # TODO(dzhwinter) : refine the initializer and random seed settting
+ SIZE = 10
+ input_shape = conv_pool_2.shape
+ param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
+ scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5
+
+ predict = fluid.layers.fc(
+ input=conv_pool_2,
+ size=SIZE,
+ act="softmax",
+ param_attr=fluid.param_attr.ParamAttr(
+ initializer=fluid.initializer.NormalInitializer(
+ loc=0.0, scale=scale)))
+ return predict
+
+
+def eval_test(exe, batch_acc, batch_size_tensor, inference_program):
+ test_reader = paddle.batch(
+ paddle.dataset.mnist.test(), batch_size=args.batch_size)
+ test_pass_acc = fluid.average.WeightedAverage()
+ for batch_id, data in enumerate(test_reader()):
+ img_data = np.array(map(lambda x: x[0].reshape([1, 28, 28]),
+ data)).astype(DTYPE)
+ y_data = np.array(map(lambda x: x[1], data)).astype("int64")
+ y_data = y_data.reshape([len(y_data), 1])
+
+ acc, weight = exe.run(inference_program,
+ feed={"pixel": img_data,
+ "label": y_data},
+ fetch_list=[batch_acc, batch_size_tensor])
+ test_pass_acc.add(value=acc, weight=weight)
+ pass_acc = test_pass_acc.eval()
+ return pass_acc
+
+
+def run_benchmark(model, args):
+ if args.use_cprof:
+ pr = cProfile.Profile()
+ pr.enable()
+ start_time = time.time()
+ # Input data
+ images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
+ label = fluid.layers.data(name='label', shape=[1], dtype='int64')
+
+ # Train program
+ predict = model(images)
+ cost = fluid.layers.cross_entropy(input=predict, label=label)
+ avg_cost = fluid.layers.mean(x=cost)
+
+ # Evaluator
+ batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
+ batch_acc = fluid.layers.accuracy(
+ input=predict, label=label, total=batch_size_tensor)
+
+ # inference program
+ inference_program = fluid.default_main_program().clone()
+ with fluid.program_guard(inference_program):
+ inference_program = fluid.io.get_inference_program(
+ target_vars=[batch_acc, batch_size_tensor])
+
+ # Optimization
+ opt = fluid.optimizer.AdamOptimizer(
+ learning_rate=0.001, beta1=0.9, beta2=0.999)
+ opt.minimize(avg_cost)
+
+ fluid.memory_optimize(fluid.default_main_program())
+
+ # Initialize executor
+ place = fluid.CPUPlace() if args.device == 'CPU' else fluid.CUDAPlace(0)
+ exe = fluid.Executor(place)
+
+ # Parameter initialization
+ exe.run(fluid.default_startup_program())
+
+ # Reader
+ train_reader = paddle.batch(
+ paddle.dataset.mnist.train(), batch_size=args.batch_size)
+
+ accuracy = fluid.average.WeightedAverage()
+ for pass_id in range(args.pass_num):
+ accuracy.reset()
+ pass_start = time.time()
+ for batch_id, data in enumerate(train_reader()):
+ img_data = np.array(
+ map(lambda x: x[0].reshape([1, 28, 28]), data)).astype(DTYPE)
+ y_data = np.array(map(lambda x: x[1], data)).astype("int64")
+ y_data = y_data.reshape([len(y_data), 1])
+
+ start = time.time()
+ outs = exe.run(
+ fluid.default_main_program(),
+ feed={"pixel": img_data,
+ "label": y_data},
+ fetch_list=[avg_cost, batch_acc, batch_size_tensor]
+ ) # The accuracy is the accumulation of batches, but not the current batch.
+ accuracy.add(value=outs[1], weight=outs[2])
+ end = time.time()
+ loss = np.array(outs[0])
+ acc = np.array(outs[1])
+ print("pass=%d, batch=%d, loss=%f, error=%f, elapse=%f" %
+ (pass_id, batch_id, loss, 1 - acc, (end - start) / 1000))
+
+ pass_end = time.time()
+
+ train_avg_acc = accuracy.eval()
+ test_avg_acc = eval_test(exe, batch_acc, batch_size_tensor,
+ inference_program)
+
+ print("pass=%d, train_avg_acc=%f, test_avg_acc=%f, elapse=%f" %
+ (pass_id, train_avg_acc, test_avg_acc,
+ (pass_end - pass_start) / 1000))
+
+
+if __name__ == '__main__':
+ args = parse_args()
+ print_arguments(args)
+ if args.use_nvprof and args.device == 'GPU':
+ with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
+ run_benchmark(cnn_model, args)
+ else:
+ run_benchmark(cnn_model, args)
diff --git a/benchmark/fluid/resnet.py b/benchmark/fluid/resnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..f0f1db979fa7fb640679beacafd66dfbe1f62ab8
--- /dev/null
+++ b/benchmark/fluid/resnet.py
@@ -0,0 +1,323 @@
+# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import argparse
+import functools
+import numpy as np
+import time
+
+import cProfile, pstats, StringIO
+
+import paddle.v2 as paddle
+import paddle.fluid as fluid
+import paddle.fluid.core as core
+import paddle.fluid.profiler as profiler
+
+
+def parse_args():
+ parser = argparse.ArgumentParser('Convolution model benchmark.')
+ parser.add_argument(
+ '--model',
+ type=str,
+ choices=['resnet_imagenet', 'resnet_cifar10'],
+ default='resnet_imagenet',
+ help='The model architecture.')
+ parser.add_argument(
+ '--batch_size', type=int, default=32, help='The minibatch size.')
+ parser.add_argument(
+ '--use_fake_data',
+ action='store_true',
+ help='use real data or fake data')
+ parser.add_argument(
+ '--skip_batch_num',
+ type=int,
+ default=5,
+ help='The first num of minibatch num to skip, for better performance test'
+ )
+ parser.add_argument(
+ '--iterations', type=int, default=80, help='The number of minibatches.')
+ parser.add_argument(
+ '--pass_num', type=int, default=100, help='The number of passes.')
+ parser.add_argument(
+ '--data_format',
+ type=str,
+ default='NCHW',
+ choices=['NCHW', 'NHWC'],
+ help='The data data_format, now only support NCHW.')
+ parser.add_argument(
+ '--device',
+ type=str,
+ default='GPU',
+ choices=['CPU', 'GPU'],
+ help='The device type.')
+ parser.add_argument(
+ '--data_set',
+ type=str,
+ default='flowers',
+ choices=['cifar10', 'flowers'],
+ help='Optional dataset for benchmark.')
+ parser.add_argument(
+ '--infer_only', action='store_true', help='If set, run forward only.')
+ parser.add_argument(
+ '--use_cprof', action='store_true', help='If set, use cProfile.')
+ parser.add_argument(
+ '--use_nvprof',
+ action='store_true',
+ help='If set, use nvprof for CUDA.')
+ parser.add_argument(
+ '--with_test',
+ action='store_true',
+ help='If set, test the testset during training.')
+ args = parser.parse_args()
+ return args
+
+
+def print_arguments(args):
+ vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
+ vars(args)['device'] == 'GPU')
+ print('----------- Configuration Arguments -----------')
+ for arg, value in sorted(vars(args).iteritems()):
+ print('%s: %s' % (arg, value))
+ print('------------------------------------------------')
+
+
+def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
+ conv1 = fluid.layers.conv2d(
+ input=input,
+ filter_size=filter_size,
+ num_filters=ch_out,
+ stride=stride,
+ padding=padding,
+ act=None,
+ bias_attr=False)
+ return fluid.layers.batch_norm(input=conv1, act=act)
+
+
+def shortcut(input, ch_out, stride):
+ ch_in = input.shape[1] if args.data_format == 'NCHW' else input.shape[-1]
+ if ch_in != ch_out:
+ return conv_bn_layer(input, ch_out, 1, stride, 0, None)
+ else:
+ return input
+
+
+def basicblock(input, ch_out, stride):
+ short = shortcut(input, ch_out, stride)
+ conv1 = conv_bn_layer(input, ch_out, 3, stride, 1)
+ conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, act=None)
+ return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
+
+
+def bottleneck(input, ch_out, stride):
+ short = shortcut(input, ch_out * 4, stride)
+ conv1 = conv_bn_layer(input, ch_out, 1, stride, 0)
+ conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1)
+ conv3 = conv_bn_layer(conv2, ch_out * 4, 1, 1, 0, act=None)
+ return fluid.layers.elementwise_add(x=short, y=conv3, act='relu')
+
+
+def layer_warp(block_func, input, ch_out, count, stride):
+ res_out = block_func(input, ch_out, stride)
+ for i in range(1, count):
+ res_out = block_func(res_out, ch_out, 1)
+ return res_out
+
+
+def resnet_imagenet(input, class_dim, depth=50, data_format='NCHW'):
+
+ cfg = {
+ 18: ([2, 2, 2, 1], basicblock),
+ 34: ([3, 4, 6, 3], basicblock),
+ 50: ([3, 4, 6, 3], bottleneck),
+ 101: ([3, 4, 23, 3], bottleneck),
+ 152: ([3, 8, 36, 3], bottleneck)
+ }
+ stages, block_func = cfg[depth]
+ conv1 = conv_bn_layer(input, ch_out=64, filter_size=7, stride=2, padding=3)
+ pool1 = fluid.layers.pool2d(
+ input=conv1, pool_type='avg', pool_size=3, pool_stride=2)
+ res1 = layer_warp(block_func, pool1, 64, stages[0], 1)
+ res2 = layer_warp(block_func, res1, 128, stages[1], 2)
+ res3 = layer_warp(block_func, res2, 256, stages[2], 2)
+ res4 = layer_warp(block_func, res3, 512, stages[3], 2)
+ pool2 = fluid.layers.pool2d(
+ input=res4,
+ pool_size=7,
+ pool_type='avg',
+ pool_stride=1,
+ global_pooling=True)
+ out = fluid.layers.fc(input=pool2, size=class_dim, act='softmax')
+ return out
+
+
+def resnet_cifar10(input, class_dim, depth=32, data_format='NCHW'):
+ assert (depth - 2) % 6 == 0
+
+ n = (depth - 2) // 6
+
+ conv1 = conv_bn_layer(
+ input=input, ch_out=16, filter_size=3, stride=1, padding=1)
+ res1 = layer_warp(basicblock, conv1, 16, n, 1)
+ res2 = layer_warp(basicblock, res1, 32, n, 2)
+ res3 = layer_warp(basicblock, res2, 64, n, 2)
+ pool = fluid.layers.pool2d(
+ input=res3, pool_size=8, pool_type='avg', pool_stride=1)
+ out = fluid.layers.fc(input=pool, size=class_dim, act='softmax')
+ return out
+
+
+def run_benchmark(model, args):
+ if args.use_cprof:
+ pr = cProfile.Profile()
+ pr.enable()
+
+ if args.data_set == "cifar10":
+ class_dim = 10
+ if args.data_format == 'NCHW':
+ dshape = [3, 32, 32]
+ else:
+ dshape = [32, 32, 3]
+ else:
+ class_dim = 102
+ if args.data_format == 'NCHW':
+ dshape = [3, 224, 224]
+ else:
+ dshape = [224, 224, 3]
+
+ input = fluid.layers.data(name='data', shape=dshape, dtype='float32')
+ label = fluid.layers.data(name='label', shape=[1], dtype='int64')
+ predict = model(input, class_dim)
+ cost = fluid.layers.cross_entropy(input=predict, label=label)
+ avg_cost = fluid.layers.mean(x=cost)
+
+ batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
+ batch_acc = fluid.layers.accuracy(
+ input=predict, label=label, total=batch_size_tensor)
+
+ inference_program = fluid.default_main_program().clone()
+ with fluid.program_guard(inference_program):
+ inference_program = fluid.io.get_inference_program(
+ target_vars=[batch_acc, batch_size_tensor])
+
+ optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
+ opts = optimizer.minimize(avg_cost)
+
+ fluid.memory_optimize(fluid.default_main_program())
+
+ train_reader = paddle.batch(
+ paddle.reader.shuffle(
+ paddle.dataset.cifar.train10()
+ if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
+ buf_size=5120),
+ batch_size=args.batch_size)
+ test_reader = paddle.batch(
+ paddle.dataset.cifar.test10()
+ if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
+ batch_size=args.batch_size)
+
+ def test(exe):
+ test_accuracy = fluid.average.WeightedAverage()
+ for batch_id, data in enumerate(test_reader()):
+ img_data = np.array(map(lambda x: x[0].reshape(dshape),
+ data)).astype("float32")
+ y_data = np.array(map(lambda x: x[1], data)).astype("int64")
+ y_data = y_data.reshape([-1, 1])
+
+ acc, weight = exe.run(inference_program,
+ feed={"data": img_data,
+ "label": y_data},
+ fetch_list=[batch_acc, batch_size_tensor])
+ test_accuracy.add(value=acc, weight=weight)
+
+ return test_accuracy.eval()
+
+ place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
+ exe = fluid.Executor(place)
+ exe.run(fluid.default_startup_program())
+ accuracy = fluid.average.WeightedAverage()
+ if args.use_fake_data:
+ data = train_reader().next()
+ image = np.array(map(lambda x: x[0].reshape(dshape), data)).astype(
+ 'float32')
+ label = np.array(map(lambda x: x[1], data)).astype('int64')
+ label = label.reshape([-1, 1])
+
+ iters, num_samples, start_time = 0, 0, time.time()
+ for pass_id in range(args.pass_num):
+ accuracy.reset()
+ train_accs = []
+ train_losses = []
+ for batch_id, data in enumerate(train_reader()):
+ if iters == args.skip_batch_num:
+ start_time = time.time()
+ num_samples = 0
+ if iters == args.iterations:
+ break
+ if not args.use_fake_data:
+ image = np.array(map(lambda x: x[0].reshape(dshape),
+ data)).astype('float32')
+ label = np.array(map(lambda x: x[1], data)).astype('int64')
+ label = label.reshape([-1, 1])
+ loss, acc, weight = exe.run(
+ fluid.default_main_program(),
+ feed={'data': image,
+ 'label': label},
+ fetch_list=[avg_cost, batch_acc, batch_size_tensor])
+ iters += 1
+ num_samples += label[0]
+ accuracy.add(value=acc, weight=weight)
+ train_losses.append(loss)
+ train_accs.append(acc)
+ print("Pass: %d, Iter: %d, Loss: %f, Accuracy: %f" %
+ (pass_id, iters, loss, acc))
+ pass_train_acc = accuracy.eval()
+ # evaluation
+ if args.with_test:
+ pass_test_acc = test(exe)
+ train_elapsed = time.time() - start_time
+ print("Pass: %d, Loss: %f, Train Accuray: %f\n" %
+ (pass_id, np.mean(train_losses), np.mean(train_accs)))
+
+ examples_per_sec = num_samples / train_elapsed
+
+ print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
+ (num_samples, train_elapsed, examples_per_sec))
+
+ if args.use_cprof:
+ pr.disable()
+ s = StringIO.StringIO()
+ sortby = 'cumulative'
+ ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
+ ps.print_stats()
+ print(s.getvalue())
+
+
+if __name__ == '__main__':
+ model_map = {
+ 'resnet_imagenet': resnet_imagenet,
+ 'resnet_cifar10': resnet_cifar10
+ }
+ args = parse_args()
+ print_arguments(args)
+ if args.data_format == 'NHWC':
+ raise ValueError('Only support NCHW data_format now.')
+ if args.use_nvprof and args.device == 'GPU':
+ with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
+ run_benchmark(model_map[args.model], args)
+ else:
+ run_benchmark(model_map[args.model], args)
diff --git a/benchmark/fluid/run.sh b/benchmark/fluid/run.sh
new file mode 100644
index 0000000000000000000000000000000000000000..663e2efd5392a6cd1a71f51fa0d017070b489341
--- /dev/null
+++ b/benchmark/fluid/run.sh
@@ -0,0 +1,49 @@
+#!/bin/bash
+# This script benchmarking the PaddlePaddle Fluid on
+# single thread single GPU.
+export CUDNN_PATH=/paddle/cudnn_v5/cuda/lib
+
+# disable openmp and mkl parallel
+#https://github.com/PaddlePaddle/Paddle/issues/7199
+export MKL_NUM_THREADS=1
+export OMP_NUM_THREADS=1
+ht=`lscpu |grep "per core"|awk -F':' '{print $2}'|xargs`
+if [ $ht -eq 1 ]; then # HT is OFF
+ if [ -z "$KMP_AFFINITY" ]; then
+ export KMP_AFFINITY="granularity=fine,compact,0,0"
+ fi
+ if [ -z "$OMP_DYNAMIC" ]; then
+ export OMP_DYNAMIC="FALSE"
+ fi
+else # HT is ON
+ if [ -z "$KMP_AFFINITY" ]; then
+ export KMP_AFFINITY="granularity=fine,compact,1,0"
+ fi
+fi
+# disable multi-gpu if have more than one
+export CUDA_VISIBLE_DEVICES=0
+export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
+export LD_LIBRARY_PATH=$CUDNN_PATH:$LD_LIBRARY_PATH
+
+
+# vgg16
+# cifar10 gpu cifar10 128
+FLAGS_benchmark=true python fluid/vgg.py \
+ --device=GPU \
+ --batch_size=128 \
+ --skip_batch_num=5 \
+ --iterations=30 \
+ 2>&1 > vgg16_gpu_128.log
+
+# resnet50
+# resnet50 gpu cifar10 128
+FLAGS_benchmark=true python fluid/resnet.py \
+ --device=GPU \
+ --batch_size=128 \
+ --data_set=cifar10 \
+ --model=resnet_cifar10 \
+ --skip_batch_num=5 \
+ --iterations=30 \
+ 2>&1 > resnet50_gpu_128.log
+
+# lstm
diff --git a/benchmark/fluid/stacked_dynamic_lstm.py b/benchmark/fluid/stacked_dynamic_lstm.py
new file mode 100644
index 0000000000000000000000000000000000000000..4e063549e0239abf9d946ed8735f0306203509d0
--- /dev/null
+++ b/benchmark/fluid/stacked_dynamic_lstm.py
@@ -0,0 +1,209 @@
+# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import argparse
+import cPickle
+import os
+import random
+import time
+
+import numpy
+import paddle.v2 as paddle
+import paddle.v2.dataset.imdb as imdb
+import paddle.fluid as fluid
+from paddle.v2 import batch
+import paddle.fluid.profiler as profiler
+
+
+def parse_args():
+ parser = argparse.ArgumentParser("Understand Sentiment by Dynamic RNN.")
+ parser.add_argument(
+ '--batch_size',
+ type=int,
+ default=32,
+ help='The sequence number of a batch data. (default: %(default)d)')
+ parser.add_argument(
+ '--emb_dim',
+ type=int,
+ default=512,
+ help='Dimension of embedding table. (default: %(default)d)')
+ parser.add_argument(
+ '--hidden_dim',
+ type=int,
+ default=512,
+ help='Hidden size of lstm unit. (default: %(default)d)')
+ parser.add_argument(
+ '--pass_num',
+ type=int,
+ default=100,
+ help='Epoch number to train. (default: %(default)d)')
+ parser.add_argument(
+ '--device',
+ type=str,
+ default='CPU',
+ choices=['CPU', 'GPU'],
+ help='The device type.')
+ parser.add_argument(
+ '--crop_size',
+ type=int,
+ default=int(os.environ.get('CROP_SIZE', '1500')),
+ help='The max sentence length of input. Since this model use plain RNN,'
+ ' Gradient could be explored if sentence is too long')
+ args = parser.parse_args()
+ return args
+
+
+word_dict = imdb.word_dict()
+
+
+def crop_sentence(reader, crop_size):
+ unk_value = word_dict['']
+
+ def __impl__():
+ for item in reader():
+ if len([x for x in item[0] if x != unk_value]) < crop_size:
+ yield item
+
+ return __impl__
+
+
+def main():
+ args = parse_args()
+ lstm_size = args.hidden_dim
+
+ data = fluid.layers.data(
+ name="words", shape=[1], lod_level=1, dtype='int64')
+ sentence = fluid.layers.embedding(
+ input=data, size=[len(word_dict), args.emb_dim])
+
+ sentence = fluid.layers.fc(input=sentence, size=lstm_size, act='tanh')
+
+ rnn = fluid.layers.DynamicRNN()
+ with rnn.block():
+ word = rnn.step_input(sentence)
+ prev_hidden = rnn.memory(value=0.0, shape=[lstm_size])
+ prev_cell = rnn.memory(value=0.0, shape=[lstm_size])
+
+ def gate_common(
+ ipt,
+ hidden,
+ size, ):
+ gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True)
+ gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False)
+ gate = fluid.layers.sums(input=[gate0, gate1])
+ return gate
+
+ forget_gate = fluid.layers.sigmoid(
+ x=gate_common(word, prev_hidden, lstm_size))
+ input_gate = fluid.layers.sigmoid(
+ x=gate_common(word, prev_hidden, lstm_size))
+ output_gate = fluid.layers.sigmoid(
+ x=gate_common(word, prev_hidden, lstm_size))
+ cell_gate = fluid.layers.tanh(
+ x=gate_common(word, prev_hidden, lstm_size))
+
+ cell = fluid.layers.sums(input=[
+ fluid.layers.elementwise_mul(
+ x=forget_gate, y=prev_cell), fluid.layers.elementwise_mul(
+ x=input_gate, y=cell_gate)
+ ])
+
+ hidden = fluid.layers.elementwise_mul(
+ x=output_gate, y=fluid.layers.tanh(x=cell))
+
+ rnn.update_memory(prev_cell, cell)
+ rnn.update_memory(prev_hidden, hidden)
+ rnn.output(hidden)
+
+ last = fluid.layers.sequence_pool(rnn(), 'last')
+ logit = fluid.layers.fc(input=last, size=2, act='softmax')
+ loss = fluid.layers.cross_entropy(
+ input=logit,
+ label=fluid.layers.data(
+ name='label', shape=[1], dtype='int64'))
+ loss = fluid.layers.mean(x=loss)
+
+ # add acc
+ batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
+ batch_acc = fluid.layers.accuracy(input=logit, label=fluid.layers.data(name='label', \
+ shape=[1], dtype='int64'), total=batch_size_tensor)
+
+ inference_program = fluid.default_main_program().clone()
+ with fluid.program_guard(inference_program):
+ inference_program = fluid.io.get_inference_program(
+ target_vars=[batch_acc, batch_size_tensor])
+
+ adam = fluid.optimizer.Adam()
+ adam.minimize(loss)
+
+ fluid.memory_optimize(fluid.default_main_program())
+
+ place = fluid.CPUPlace() if args.device == 'CPU' else fluid.CUDAPlace(0)
+ exe = fluid.Executor(place)
+ exe.run(fluid.default_startup_program())
+
+ def train_loop(pass_num, crop_size):
+ with profiler.profiler(args.device, 'total') as prof:
+ for pass_id in range(pass_num):
+ train_reader = batch(
+ paddle.reader.shuffle(
+ crop_sentence(imdb.train(word_dict), crop_size),
+ buf_size=25000),
+ batch_size=args.batch_size)
+ word_nums = 0
+ pass_start_time = time.time()
+ for batch_id, data in enumerate(train_reader()):
+ tensor_words = to_lodtensor([x[0] for x in data], place)
+ for x in data:
+ word_nums += len(x[0])
+ label = numpy.array([x[1] for x in data]).astype("int64")
+ label = label.reshape((-1, 1))
+ loss_np, acc, weight = exe.run(
+ fluid.default_main_program(),
+ feed={"words": tensor_words,
+ "label": label},
+ fetch_list=[loss, batch_acc, batch_size_tensor])
+ print("pass_id=%d, batch_id=%d, loss=%f, acc=%f" %
+ (pass_id, batch_id, loss_np, acc))
+
+ pass_end_time = time.time()
+ time_consumed = pass_end_time - pass_start_time
+ words_per_sec = word_nums / time_consumed
+ print("pass_id=%d, sec/pass: %f, words/s: %f" %
+ (pass_id, time_consumed, words_per_sec))
+
+ train_loop(args.pass_num, args.crop_size)
+
+
+def to_lodtensor(data, place):
+ seq_lens = [len(seq) for seq in data]
+ cur_len = 0
+ lod = [cur_len]
+ for l in seq_lens:
+ cur_len += l
+ lod.append(cur_len)
+ flattened_data = numpy.concatenate(data, axis=0).astype("int64")
+ flattened_data = flattened_data.reshape([len(flattened_data), 1])
+ res = fluid.LoDTensor()
+ res.set(flattened_data, place)
+ res.set_lod([lod])
+ return res
+
+
+if __name__ == '__main__':
+ main()
diff --git a/benchmark/fluid/vgg.py b/benchmark/fluid/vgg.py
new file mode 100644
index 0000000000000000000000000000000000000000..3bf78e4cf08d43127a05c740fa30ca6d2bc416b0
--- /dev/null
+++ b/benchmark/fluid/vgg.py
@@ -0,0 +1,220 @@
+# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""VGG16 benchmark in Fluid"""
+from __future__ import print_function
+
+import sys
+import time
+import numpy as np
+import paddle.v2 as paddle
+import paddle.fluid as fluid
+import paddle.fluid.core as core
+import argparse
+import functools
+
+parser = argparse.ArgumentParser(description=__doc__)
+parser.add_argument(
+ '--batch_size', type=int, default=128, help="Batch size for training.")
+parser.add_argument(
+ '--skip_batch_num',
+ type=int,
+ default=5,
+ help='The first num of minibatch num to skip, for better performance test')
+parser.add_argument(
+ '--iterations', type=int, default=80, help='The number of minibatches.')
+parser.add_argument(
+ '--learning_rate',
+ type=float,
+ default=1e-3,
+ help="Learning rate for training.")
+parser.add_argument('--pass_num', type=int, default=50, help="No. of passes.")
+parser.add_argument(
+ '--device',
+ type=str,
+ default='GPU',
+ choices=['CPU', 'GPU'],
+ help="The device type.")
+parser.add_argument(
+ '--data_format',
+ type=str,
+ default='NCHW',
+ choices=['NCHW', 'NHWC'],
+ help='The data order, now only support NCHW.')
+parser.add_argument(
+ '--data_set',
+ type=str,
+ default='cifar10',
+ choices=['cifar10', 'flowers'],
+ help='Optional dataset for benchmark.')
+parser.add_argument(
+ '--with_test',
+ action='store_true',
+ help='If set, test the testset during training.')
+args = parser.parse_args()
+
+
+def vgg16_bn_drop(input):
+ def conv_block(input, num_filter, groups, dropouts):
+ return fluid.nets.img_conv_group(
+ input=input,
+ pool_size=2,
+ pool_stride=2,
+ conv_num_filter=[num_filter] * groups,
+ conv_filter_size=3,
+ conv_act='relu',
+ conv_with_batchnorm=True,
+ conv_batchnorm_drop_rate=dropouts,
+ pool_type='max')
+
+ conv1 = conv_block(input, 64, 2, [0.3, 0])
+ conv2 = conv_block(conv1, 128, 2, [0.4, 0])
+ conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
+ conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
+ conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
+
+ drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
+ fc1 = fluid.layers.fc(input=drop, size=512, act=None)
+ bn = fluid.layers.batch_norm(input=fc1, act='relu')
+ drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
+ fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
+ return fc2
+
+
+def main():
+ if args.data_set == "cifar10":
+ classdim = 10
+ if args.data_format == 'NCHW':
+ data_shape = [3, 32, 32]
+ else:
+ data_shape = [32, 32, 3]
+ else:
+ classdim = 102
+ if args.data_format == 'NCHW':
+ data_shape = [3, 224, 224]
+ else:
+ data_shape = [224, 224, 3]
+
+ # Input data
+ images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
+ label = fluid.layers.data(name='label', shape=[1], dtype='int64')
+
+ # Train program
+ net = vgg16_bn_drop(images)
+ predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
+ cost = fluid.layers.cross_entropy(input=predict, label=label)
+ avg_cost = fluid.layers.mean(x=cost)
+
+ # Evaluator
+ batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
+ batch_acc = fluid.layers.accuracy(
+ input=predict, label=label, total=batch_size_tensor)
+
+ # inference program
+ inference_program = fluid.default_main_program().clone()
+ with fluid.program_guard(inference_program):
+ inference_program = fluid.io.get_inference_program(
+ target_vars=[batch_acc, batch_size_tensor])
+
+ # Optimization
+ optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
+ opts = optimizer.minimize(avg_cost)
+
+ fluid.memory_optimize(fluid.default_main_program())
+
+ # Initialize executor
+ place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
+ exe = fluid.Executor(place)
+
+ # Parameter initialization
+ exe.run(fluid.default_startup_program())
+
+ # data reader
+ train_reader = paddle.batch(
+ paddle.reader.shuffle(
+ paddle.dataset.cifar.train10()
+ if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
+ buf_size=5120),
+ batch_size=args.batch_size)
+ test_reader = paddle.batch(
+ paddle.dataset.cifar.test10()
+ if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
+ batch_size=args.batch_size)
+
+ # test
+ def test(exe):
+ test_accuracy = fluid.average.WeightedAverage()
+ for batch_id, data in enumerate(test_reader()):
+ img_data = np.array(map(lambda x: x[0].reshape(data_shape),
+ data)).astype("float32")
+ y_data = np.array(map(lambda x: x[1], data)).astype("int64")
+ y_data = y_data.reshape([-1, 1])
+
+ acc, weight = exe.run(inference_program,
+ feed={"pixel": img_data,
+ "label": y_data},
+ fetch_list=[batch_acc, batch_size_tensor])
+ test_accuracy.add(value=acc, weight=weight)
+ return test_accuracy.eval()
+
+ iters, num_samples, start_time = 0, 0, time.time()
+ accuracy = fluid.average.WeightedAverage()
+ for pass_id in range(args.pass_num):
+ accuracy.reset()
+ train_accs = []
+ train_losses = []
+ for batch_id, data in enumerate(train_reader()):
+ if iters == args.skip_batch_num:
+ start_time = time.time()
+ num_samples = 0
+ if iters == args.iterations:
+ break
+ img_data = np.array(map(lambda x: x[0].reshape(data_shape),
+ data)).astype("float32")
+ y_data = np.array(map(lambda x: x[1], data)).astype("int64")
+ y_data = y_data.reshape([-1, 1])
+
+ loss, acc, weight = exe.run(
+ fluid.default_main_program(),
+ feed={"pixel": img_data,
+ "label": y_data},
+ fetch_list=[avg_cost, batch_acc, batch_size_tensor])
+ accuracy.add(value=acc, weight=weight)
+ iters += 1
+ num_samples += len(data)
+ print(
+ "Pass = %d, Iter = %d, Loss = %f, Accuracy = %f" %
+ (pass_id, iters, loss, acc)
+ ) # The accuracy is the accumulation of batches, but not the current batch.
+
+ pass_train_acc = accuracy.eval()
+ train_losses.append(loss)
+ train_accs.append(acc)
+ # evaluation
+ if args.with_test:
+ pass_test_acc = test(exe)
+ train_elapsed = time.time() - start_time
+ print("Pass: %d, Loss: %f, Train Accuray: %f\n" %
+ (pass_id, np.mean(train_losses), np.mean(train_accs)))
+
+
+def print_arguments():
+ print('----------- Configuration Arguments -----------')
+ for arg, value in sorted(vars(args).iteritems()):
+ print('%s: %s' % (arg, value))
+ print('------------------------------------------------')
+
+
+if __name__ == "__main__":
+ print_arguments()
+ main()
diff --git a/cmake/external/threadpool.cmake b/cmake/external/threadpool.cmake
new file mode 100644
index 0000000000000000000000000000000000000000..0159815fed81bdff6de3e561af569e9edc75f947
--- /dev/null
+++ b/cmake/external/threadpool.cmake
@@ -0,0 +1,30 @@
+INCLUDE(ExternalProject)
+
+SET(THREADPOOL_SOURCE_DIR ${THIRD_PARTY_PATH}/threadpool)
+SET(THREADPOOL_INCLUDE_DIR ${THREADPOOL_SOURCE_DIR}/src/extern_threadpool)
+INCLUDE_DIRECTORIES(${THREADPOOL_INCLUDE_DIR})
+
+ExternalProject_Add(
+ extern_threadpool
+ ${EXTERNAL_PROJECT_LOG_ARGS}
+ GIT_REPOSITORY "https://github.com/progschj/ThreadPool.git"
+ GIT_TAG 9a42ec1329f259a5f4881a291db1dcb8f2ad9040
+ PREFIX ${THREADPOOL_SOURCE_DIR}
+ UPDATE_COMMAND ""
+ CONFIGURE_COMMAND ""
+ BUILD_COMMAND ""
+ INSTALL_COMMAND ""
+ TEST_COMMAND ""
+)
+
+if (${CMAKE_VERSION} VERSION_LESS "3.3.0")
+ set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/threadpool_dummy.c)
+ file(WRITE ${dummyfile} "const char *dummy_threadpool = \"${dummyfile}\";")
+ add_library(simple_threadpool STATIC ${dummyfile})
+else()
+ add_library(simple_threadpool INTERFACE)
+endif()
+
+add_dependencies(simple_threadpool extern_threadpool)
+
+LIST(APPEND external_project_dependencies simple_threadpool)
diff --git a/cmake/generic.cmake b/cmake/generic.cmake
index c749c97f13649fe8432091414b56f7d0ea8ace8b..3fe750f47efc149bb1af6086841bffd5dd8e85fd 100644
--- a/cmake/generic.cmake
+++ b/cmake/generic.cmake
@@ -587,6 +587,9 @@ function(grpc_library TARGET_NAME)
get_filename_component(PROTO_WE ${grpc_library_PROTO} NAME_WE)
get_filename_component(PROTO_PATH ${ABS_PROTO} PATH)
+ #FIXME(putcn): the follwoing line is supposed to generate *.pb.h and cc, but
+ # somehow it didn't. line 602 to 604 is to patching this. Leaving this here
+ # for now to enable dist CI.
protobuf_generate_cpp(grpc_proto_srcs grpc_proto_hdrs "${ABS_PROTO}")
set(grpc_grpc_srcs "${CMAKE_CURRENT_BINARY_DIR}/${PROTO_WE}.grpc.pb.cc")
set(grpc_grpc_hdrs "${CMAKE_CURRENT_BINARY_DIR}/${PROTO_WE}.grpc.pb.h")
@@ -597,6 +600,9 @@ function(grpc_library TARGET_NAME)
COMMAND ${PROTOBUF_PROTOC_EXECUTABLE}
ARGS --grpc_out "${CMAKE_CURRENT_BINARY_DIR}" -I "${PROTO_PATH}"
--plugin=protoc-gen-grpc="${GRPC_CPP_PLUGIN}" "${ABS_PROTO}"
+ COMMAND ${PROTOBUF_PROTOC_EXECUTABLE}
+ ARGS --cpp_out "${CMAKE_CURRENT_BINARY_DIR}" -I "${PROTO_PATH}"
+ "${ABS_PROTO}"
DEPENDS "${ABS_PROTO}" ${PROTOBUF_PROTOC_EXECUTABLE} extern_grpc)
# FIXME(typhoonzero): grpc generated code do not generate virtual-dtor, mark it
diff --git a/doc/CMakeLists.txt b/doc/CMakeLists.txt
index a9b27933a5307aabeaf150aeb859e869197229f5..7066637a7cb27b83724cb4030c29a1019981f52b 100644
--- a/doc/CMakeLists.txt
+++ b/doc/CMakeLists.txt
@@ -1,2 +1,9 @@
+add_custom_target(paddle_apis ALL
+ DEPENDS paddle_v2_apis paddle_fluid_apis)
+
+add_custom_target(paddle_docs ALL
+ DEPENDS paddle_v2_docs paddle_v2_docs_cn
+ paddle_fluid_docs paddle_fluid_docs_cn)
+
add_subdirectory(v2)
add_subdirectory(fluid)
diff --git a/doc/design/images/parallel_executor_overview.dot b/doc/design/images/parallel_executor_overview.dot
new file mode 100644
index 0000000000000000000000000000000000000000..40753cb140540c08d9d4c449b8d377e315280436
--- /dev/null
+++ b/doc/design/images/parallel_executor_overview.dot
@@ -0,0 +1,83 @@
+digraph G {
+ subgraph cluster_init {
+ label="Initialization"
+ startup_program [label="startup", shape=box]
+ node_w_g0 [label="W\nGPU0"]
+ startup_program -> node_w_g0 [label="Initialize"]
+ node_w_g1 [label="W\nGPU1"]
+ node_w_g0 -> node_w_g1 [label="broadcast"]
+ }
+
+ subgraph cluster_train {
+ label="forward_backward"
+
+ subgraph cluster_gpu0 {
+ label="GPU0"
+ fc_0 [label="fc\nGPU0", shape=box]
+ hidden_0 [label="hidden\nGPU0"]
+ node_w_g0 -> fc_0
+ fc_0 -> hidden_0
+ loss0 [label="loss\nGPU0"]
+ hidden_0 -> loss0 [label="many ops omitted"]
+ scale_loss_0 [label="scale_loss_gradient\nGPU0", shape=box]
+ loss_g0 [label="loss_grad\nGPU0"]
+ scale_loss_0->loss_g0
+
+ fc_g_0 [label="w_grad\nGPU0", shape=box]
+ loss0 -> fc_g_0
+ loss_g0 -> fc_g_0
+ hidden_0 -> fc_g_0
+ }
+
+ subgraph cluster_gpu1 {
+ label="GPU1"
+ fc_1 [label="fc\nGPU1", shape=box]
+ hidden_1 [label="hidden\nGPU1"]
+ node_w_g1 -> fc_1
+ fc_1 -> hidden_1
+ loss1 [label="loss\nGPU1"]
+ hidden_1 -> loss1 [label="many ops omitted"]
+ scale_loss_1 [label="scale_loss_gradient\nGPU1", shape=box]
+ loss_g1 [label="loss_grad\nGPU1"]
+ scale_loss_1->loss_g1
+
+ fc_g_1 [label="w_grad\nGPU1", shape=box]
+ loss1 -> fc_g_1
+ loss_g1 -> fc_g_1
+ hidden_1 -> fc_g_1
+ }
+ }
+
+ all_reduce_w [label="Merge Gradients(AllReduce)", shape=box]
+ fc_g_0 -> all_reduce_w
+ fc_g_1 -> all_reduce_w
+
+ fc_g_0_merged [label="w_grad\nMerged\nGPU0"]
+ fc_g_1_merged [label="w_grad\nMerged\nGPU1"]
+ all_reduce_w -> fc_g_0_merged
+ all_reduce_w -> fc_g_1_merged
+
+ subgraph cluster_optimization {
+ label="Optimization"
+ subgraph cluster_opt_gpu0 {
+ label="GPU0"
+ sgd_0 [label="SGD Op\nGPU0", shape=box]
+
+ fc_g_0_merged -> sgd_0
+ node_w_g0 -> sgd_0
+ optimized_w_0 [label="Optimized W\nGPU0"]
+ sgd_0 -> optimized_w_0
+ }
+ subgraph cluster_opt_gpu1 {
+ label="GPU1"
+ sgd_1 [label="SGD Op\nGPU1", shape=box]
+
+ fc_g_1_merged -> sgd_1
+ node_w_g1 -> sgd_1
+ optimized_w_1 [label="Optimized W\nGPU0"]
+ sgd_1 -> optimized_w_1
+ }
+ }
+
+
+}
diff --git a/doc/design/images/parallel_executor_overview.png b/doc/design/images/parallel_executor_overview.png
new file mode 100644
index 0000000000000000000000000000000000000000..d890c0ffee3b38dc7cb74a2b56c2ab4831532211
Binary files /dev/null and b/doc/design/images/parallel_executor_overview.png differ
diff --git a/doc/design/parallel_executor.md b/doc/design/parallel_executor.md
new file mode 100644
index 0000000000000000000000000000000000000000..9aed3b059a1595ba3971d7d5acfc0d16a731584b
--- /dev/null
+++ b/doc/design/parallel_executor.md
@@ -0,0 +1,104 @@
+# ParallelExecutor
+
+## Background
+
+Neural network models are defined as a `ProgramDesc` in Fluid. The `ProgramDesc` can be executed by an interpreter(i.e. the `executor` concept in Fluid). The instructions or operators in a `Program` will be executed, and the results will be fetched in Python side.
+
+The executor is a very naive interpreter. It runs operators one by one. We can use `Parallel.Do` to support data parallelism, however, lacking device information in `ProgramDesc`; it is not possible to optimize the performance of `Parallel.Do`.
+
+We want a `ProgramDesc` can be run on different nodes. It is better not to contain device information in `ProgramDesc`. However, we can write a high-performance interpreter, which can hold an alternative intermediate representation of `ProgramDesc`, to take full usage of Multi-GPUs.
+
+ParallelExecutor is an interpreter of `ProgramDesc` which will [out-of-order execute](https://en.wikipedia.org/wiki/Out-of-order_execution) `Program` in data parallelism mode and maximise the utility of Multi-GPUs.
+
+
+## Overview of MultiGPUs logic
+
+The ParallelExecutor takes the startup program and main program as inputs. The parameters will be initialised on `GPU0` by startup program and will broadcast to multi-GPUs. The main program will be duplicated into multi-GPUs. The gradient will be merged during each iteration, and each device will optimize parameters independently. Since the gradients on each device will be merged before parameter optimization, the parameters will be the same on each device and it does not need to be broadcast the parameters.
+
+![alt](images/parallel_executor_overview.png)
+
+There are several optimizations for this logic.
+
+1. We use an alternate representation in ParallelExecutor. It because the device information is critical for performance optimization.
+2. The execution is out-of-order, i.e., an operator will be executed whenever the inputs of the operator are ready.
+ * GPU is a high-performance device; only one CPU thread cannot fulfil one GPU. So there is a thread pool to execute operators.
+ * Out-of-order also helps transpilers to generate `ProgramDesc`. It is no need to concern about the best order of performance when implementing a transpiler.
+3. The streams of computation, merge gradients and fetch data are different.
+
+The performance of `ResNeXt152` on `TitanX` which `batch_size=12` is shown below.
+
+| Number of GPUs | 1 | 2 | 3 | 4|
+| --- | --- | --- | --- | --- |
+| Image/Sec | 17.9906 | 25.771 | 36.911 | 48.8428 |
+| Speed Up | N/A | 1.43247029 | 2.05168255 | 2.71490667 |
+
+
+## Static single assignment Graph
+
+[Static single assignment form](https://en.wikipedia.org/wiki/Static_single_assignment_form)(`SSA` for short) is a common form for compiler optimization. To implement concurrent execution, we uses an `SSA` graph as an intermedia representation of `ProgramDesc`.
+
+The `Program` is a directed acyclic graph, since a variable can be assigned multiple times. We enforce a variable will be assigned once, by adding version number to varaibles. We parsing the `Program` into a `SSA` graph. Also, ProgramExecutor duplicate `Program` into multi-devices. We also add a device number to varaibles and insert `NCCLAllReduce` into Graph.
+
+The data structure of `SSA` graph is:
+
+```c++
+struct VarHandleBase {
+ OpHandleBase* generated_op_;
+ vector pending_ops_;
+
+ string name;
+ Place place;
+ size_t version;
+};
+
+struct OpHandleBase {
+ vector inputs_;
+ vector outputs_;
+};
+
+struct SSAGraph {
+ // vars on each devices.
+ // * the vars in each map in vector is on different device.
+ // * the map is mapping a variable name to variable handles
+ // with different versions
+ vector>> vars_;
+
+ // All ops
+ vector ops_;
+};
+```
+The variable handles are the wrapper of `Variables`. The operator handles are the wrapper of `OperatorBase`. Some `OpHandle` is not an `OperatorBase`, such as `NCCLAllReduceOpHandle`, because `AllReduceOpHandle` will use new device contexts.
+
+When the `ProgramDesc` converted into an `SSA` Graph, the [data hazard](https://en.wikipedia.org/wiki/Hazard_(computer_architecture)) problem is also need to be taken care. The dummy variables, which represent the dependency between operators, will be manually inserted into SSA graph to resolve the [data hazard](https://en.wikipedia.org/wiki/Hazard_(computer_architecture)) problem.
+
+## Execute SSA Graph
+
+The SSA graph can be out-of-order executed by an approximate [topological sorting](https://en.wikipedia.org/wiki/Topological_sorting) algorithm. The algorithm is
+
+1. Maintaining a map of an operator and its needed input number.
+2. If a variable is not generated by an operator, i.e., `var.generated_op == nullptr`, decrease the needed input number of its pending operators.
+3. If there is an operator which needed input number is decreased to zero, just run this operator.
+4. After run this operator, just mark the variables are generated and repeat step 2 until all variables are generated.
+
+Running an operator can be asynchronized. There is a thread pool to execute an `SSA` graph.
+
+## Synchronize GPU Kernels
+
+The GPU is a non-blocking device. The different streams need be synchronized when switing streams. In current implementation, the synchronization based on the following algorithm:
+
+1. `OpHandle` will record `DeviceContext` that it is used.
+2. In `OpHandle::Run`, if the `DeviceContext` of current operator is different from `DeviceContext` of any input variable, just wait the generate operator of this input variable.
+
+The `wait` are implemented by two strategies:
+
+1. Invoke `DeviceContext->Wait()`, It will wait all operators on this device contexts complete.
+2. Uses `cudaStreamWaitEvent` to sending a event to the stream. It is a non-blocking call. The wait operators will be executed in GPU.
+
+Generally, the `cudaStreamWaitEvent` will have a better perforamnce. However, `DeviceContext->Wait()` strategy is easier to debug. The strategy can be changed in runtime.
+
+## What's next?
+
+* Merging gradient of dense parameters has been done. However, the merging of sparse parameters has not been done.
+* The CPU version of Parallel Executor has not been implemented. The out-of-order logic will make CPU compuatation faster, too.
+* A better strategy to merge gradients can be introduced. We can shrink the gradients from `float32` to `int8` or `int4` while merging. It will significantly speed up multi-GPUs training without much loss of precision.
+* Combine multi-Nodes implementation. By the benifit of out-of-order, sending and recving operator can be an blocking operator, and the transpiler does not need to concern about the best position of operator.
diff --git a/doc/fluid/CMakeLists.txt b/doc/fluid/CMakeLists.txt
index cc999f5a8d70a2239ea3b130e9da172d5f681c65..9fe79323ef9377a459d8405cfa74c88c52ce9346 100644
--- a/doc/fluid/CMakeLists.txt
+++ b/doc/fluid/CMakeLists.txt
@@ -27,6 +27,8 @@ sphinx_add_target(paddle_fluid_docs
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
+add_dependencies(paddle_fluid_docs gen_proto_py)
+
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_build")
@@ -47,3 +49,7 @@ sphinx_add_target(paddle_fluid_docs_cn
${SPHINX_CACHE_DIR_CN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_CN})
+
+add_dependencies(paddle_fluid_docs_cn gen_proto_py)
+
+add_subdirectory(api)
diff --git a/doc/fluid/api/CMakeLists.txt b/doc/fluid/api/CMakeLists.txt
new file mode 100644
index 0000000000000000000000000000000000000000..ca40dfb9644cea69329be0ec231378506c138bc0
--- /dev/null
+++ b/doc/fluid/api/CMakeLists.txt
@@ -0,0 +1,22 @@
+# configured documentation tools and intermediate build results
+set(BINARY_BUILD_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_build")
+
+# Sphinx cache with pickled ReST documents
+set(SPHINX_CACHE_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_doctrees")
+
+# HTML output director
+set(SPHINX_HTML_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/html")
+
+configure_file(
+ "${CMAKE_CURRENT_SOURCE_DIR}/../../templates/conf.py.en.in"
+ "${BINARY_BUILD_DIR_EN}/conf.py"
+ @ONLY)
+
+sphinx_add_target(paddle_fluid_apis
+ html
+ ${BINARY_BUILD_DIR_EN}
+ ${SPHINX_CACHE_DIR_EN}
+ ${CMAKE_CURRENT_SOURCE_DIR}
+ ${SPHINX_HTML_DIR_EN})
+
+add_dependencies(paddle_fluid_apis gen_proto_py framework_py_proto copy_paddle_pybind)
diff --git a/doc/v2/api/fluid/data_feeder.rst b/doc/fluid/api/data_feeder.rst
similarity index 100%
rename from doc/v2/api/fluid/data_feeder.rst
rename to doc/fluid/api/data_feeder.rst
diff --git a/doc/v2/api/fluid/evaluator.rst b/doc/fluid/api/evaluator.rst
similarity index 100%
rename from doc/v2/api/fluid/evaluator.rst
rename to doc/fluid/api/evaluator.rst
diff --git a/doc/v2/api/fluid/executor.rst b/doc/fluid/api/executor.rst
similarity index 100%
rename from doc/v2/api/fluid/executor.rst
rename to doc/fluid/api/executor.rst
diff --git a/doc/v2/api/fluid/gen_doc.py b/doc/fluid/api/gen_doc.py
similarity index 100%
rename from doc/v2/api/fluid/gen_doc.py
rename to doc/fluid/api/gen_doc.py
diff --git a/doc/v2/api/fluid/gen_doc.sh b/doc/fluid/api/gen_doc.sh
similarity index 100%
rename from doc/v2/api/fluid/gen_doc.sh
rename to doc/fluid/api/gen_doc.sh
diff --git a/doc/v2/api/fluid/index.rst b/doc/fluid/api/index_en.rst
similarity index 100%
rename from doc/v2/api/fluid/index.rst
rename to doc/fluid/api/index_en.rst
diff --git a/doc/v2/api/fluid/initializer.rst b/doc/fluid/api/initializer.rst
similarity index 100%
rename from doc/v2/api/fluid/initializer.rst
rename to doc/fluid/api/initializer.rst
diff --git a/doc/v2/api/fluid/io.rst b/doc/fluid/api/io.rst
similarity index 100%
rename from doc/v2/api/fluid/io.rst
rename to doc/fluid/api/io.rst
diff --git a/doc/v2/api/fluid/layers.rst b/doc/fluid/api/layers.rst
similarity index 99%
rename from doc/v2/api/fluid/layers.rst
rename to doc/fluid/api/layers.rst
index ae35d8c53476b34cb18331364267dd7c8b94dd64..22e6fb13d7320986a60bc1ef5530187e0970c767 100644
--- a/doc/v2/api/fluid/layers.rst
+++ b/doc/fluid/api/layers.rst
@@ -494,6 +494,12 @@ reshape
.. autofunction:: paddle.fluid.layers.reshape
:noindex:
+pad
+---
+
+.. autofunction:: paddle.fluid.layers.pad
+ :noindex:
+
scale
-----
diff --git a/doc/v2/api/fluid/nets.rst b/doc/fluid/api/nets.rst
similarity index 100%
rename from doc/v2/api/fluid/nets.rst
rename to doc/fluid/api/nets.rst
diff --git a/doc/v2/api/fluid/optimizer.rst b/doc/fluid/api/optimizer.rst
similarity index 100%
rename from doc/v2/api/fluid/optimizer.rst
rename to doc/fluid/api/optimizer.rst
diff --git a/doc/v2/api/fluid/param_attr.rst b/doc/fluid/api/param_attr.rst
similarity index 100%
rename from doc/v2/api/fluid/param_attr.rst
rename to doc/fluid/api/param_attr.rst
diff --git a/doc/v2/api/fluid/profiler.rst b/doc/fluid/api/profiler.rst
similarity index 100%
rename from doc/v2/api/fluid/profiler.rst
rename to doc/fluid/api/profiler.rst
diff --git a/doc/v2/api/fluid/regularizer.rst b/doc/fluid/api/regularizer.rst
similarity index 100%
rename from doc/v2/api/fluid/regularizer.rst
rename to doc/fluid/api/regularizer.rst
diff --git a/doc/fluid/build_and_install/build_from_source_cn.rst b/doc/fluid/build_and_install/build_from_source_cn.rst
new file mode 120000
index 0000000000000000000000000000000000000000..ae4e8c7c48e584ec16a7be5466f83dd154ffb5fb
--- /dev/null
+++ b/doc/fluid/build_and_install/build_from_source_cn.rst
@@ -0,0 +1 @@
+../../v2/build_and_install/build_from_source_cn.rst
\ No newline at end of file
diff --git a/doc/fluid/build_and_install/build_from_source_en.rst b/doc/fluid/build_and_install/build_from_source_en.rst
new file mode 120000
index 0000000000000000000000000000000000000000..1ac828c973826bb8374c4aa8e17fda3ea1bb939f
--- /dev/null
+++ b/doc/fluid/build_and_install/build_from_source_en.rst
@@ -0,0 +1 @@
+../../v2/build_and_install/build_from_source_en.rst
\ No newline at end of file
diff --git a/doc/fluid/build_and_install/docker_install_cn.rst b/doc/fluid/build_and_install/docker_install_cn.rst
new file mode 120000
index 0000000000000000000000000000000000000000..965b2e20559291989422938c418fadbac16941b9
--- /dev/null
+++ b/doc/fluid/build_and_install/docker_install_cn.rst
@@ -0,0 +1 @@
+../../v2/build_and_install/docker_install_cn.rst
\ No newline at end of file
diff --git a/doc/fluid/build_and_install/docker_install_en.rst b/doc/fluid/build_and_install/docker_install_en.rst
new file mode 120000
index 0000000000000000000000000000000000000000..79d7341a7bbb9e477c773134f24983fd7607769a
--- /dev/null
+++ b/doc/fluid/build_and_install/docker_install_en.rst
@@ -0,0 +1 @@
+../../v2/build_and_install/docker_install_en.rst
\ No newline at end of file
diff --git a/doc/fluid/build_and_install/index_cn.rst b/doc/fluid/build_and_install/index_cn.rst
deleted file mode 100644
index 9276236f9fd511bde3570a8c88b437119911d60a..0000000000000000000000000000000000000000
--- a/doc/fluid/build_and_install/index_cn.rst
+++ /dev/null
@@ -1,2 +0,0 @@
-安装与使用
-------------
diff --git a/doc/fluid/build_and_install/index_cn.rst b/doc/fluid/build_and_install/index_cn.rst
new file mode 120000
index 0000000000000000000000000000000000000000..f697fcd8fac9131862ae7f8f51c5ebe93737ad2d
--- /dev/null
+++ b/doc/fluid/build_and_install/index_cn.rst
@@ -0,0 +1 @@
+../../v2/build_and_install/index_cn.rst
\ No newline at end of file
diff --git a/doc/fluid/build_and_install/index_en.rst b/doc/fluid/build_and_install/index_en.rst
deleted file mode 100644
index cc1e61a58a026a0f5c3b106875a8a86dc9cba613..0000000000000000000000000000000000000000
--- a/doc/fluid/build_and_install/index_en.rst
+++ /dev/null
@@ -1,2 +0,0 @@
-Build and Install
-------------
diff --git a/doc/fluid/build_and_install/index_en.rst b/doc/fluid/build_and_install/index_en.rst
new file mode 120000
index 0000000000000000000000000000000000000000..502f66a41319d4f41ae1774628ca36da9dca76ce
--- /dev/null
+++ b/doc/fluid/build_and_install/index_en.rst
@@ -0,0 +1 @@
+../../v2/build_and_install/index_en.rst
\ No newline at end of file
diff --git a/doc/fluid/build_and_install/pip_install_cn.rst b/doc/fluid/build_and_install/pip_install_cn.rst
new file mode 120000
index 0000000000000000000000000000000000000000..07deca84b82ff553e0c19324695089dcfb6be90e
--- /dev/null
+++ b/doc/fluid/build_and_install/pip_install_cn.rst
@@ -0,0 +1 @@
+../../v2/build_and_install/pip_install_cn.rst
\ No newline at end of file
diff --git a/doc/fluid/build_and_install/pip_install_en.rst b/doc/fluid/build_and_install/pip_install_en.rst
new file mode 120000
index 0000000000000000000000000000000000000000..7f39c998195b719b05443e96f1c4a6a8d44b98c9
--- /dev/null
+++ b/doc/fluid/build_and_install/pip_install_en.rst
@@ -0,0 +1 @@
+../../v2/build_and_install/pip_install_en.rst
\ No newline at end of file
diff --git a/doc/fluid/design/algorithm/index_cn.rst b/doc/fluid/design/algorithm/index_cn.rst
new file mode 100644
index 0000000000000000000000000000000000000000..0883a9dc9c457f393ac1bdc930cb47ebcb0a25d9
--- /dev/null
+++ b/doc/fluid/design/algorithm/index_cn.rst
@@ -0,0 +1,7 @@
+梯度更新算法
+------------
+
+.. toctree::
+ :maxdepth: 1
+
+ parameter_average.md
diff --git a/doc/fluid/design/algorithm/index_en.rst b/doc/fluid/design/algorithm/index_en.rst
new file mode 100644
index 0000000000000000000000000000000000000000..59fe68dcf79ce2ef90b9adc829a0db45a4f0b3dc
--- /dev/null
+++ b/doc/fluid/design/algorithm/index_en.rst
@@ -0,0 +1,7 @@
+Gradient Update Algorithm
+--------------------------------------
+
+.. toctree::
+ :maxdepth: 1
+
+ parameter_average.md
diff --git a/doc/fluid/design/algorithm/parameter_average.md b/doc/fluid/design/algorithm/parameter_average.md
index 2c4edee9fe31d502ea62b9fe5c8757c0a4c5e79f..53d601d3a9a37e8adad519833bb6fa2dc48023a0 100644
--- a/doc/fluid/design/algorithm/parameter_average.md
+++ b/doc/fluid/design/algorithm/parameter_average.md
@@ -7,7 +7,7 @@ Polyak and Juditsky (1992) showed that the test performance of simple average of
Hence, to accelerate the speed of Stochastic Gradient Descent, Averaged Stochastic Gradient Descent (ASGD) was proposed in Polyak and Juditsky (1992). For ASGD, the running average of parameters obtained by SGD, is used as the estimator for ![](./images/theta_star.gif)
. The averaging is done as follows:
-![](./images/asgd.gif)
+![](./images/asgd.gif)
We propose averaging for any optimizer similar to how ASGD performs it, as mentioned above.
diff --git a/doc/fluid/design/concepts/README.md b/doc/fluid/design/concepts/README.md
index bf0e4dddc1b640ecbce489f65820aaf8a4b3b1e7..8ded0ad22f4013a521bf3bee260565dc5cf855ae 100644
--- a/doc/fluid/design/concepts/README.md
+++ b/doc/fluid/design/concepts/README.md
@@ -2,15 +2,37 @@ A few months ago when we were trying to replace CMake with Bazel, @emailweixu su
Here are some initial thoughts. Your comments are welcome!
-### Required CMake Function
+# Required CMake Function
I think we need only the following few CMake functions to make a project description mean and clean:
-| C++ | CUDA C++ | Go |
-|---|---|---|
-| cc_library | nv_library | go_library |
-| cc_binary | nv_binary | go_binary |
-| cc_test | nv_test | go_test |
+
+
+
+C++ |
+CUDA C++ |
+Go |
+
+
+
+
+cc_library |
+nv_library |
+go_library |
+
+
+cc_binary |
+nv_binary |
+go_binary |
+
+
+ cc_test |
+ nv_test |
+ go_test |
+
+
+
+
- The `_library` functions generate .a files from source code.
- The `_binary` functions generate executable binary files.
@@ -25,7 +47,7 @@ Also,
- to describe external dependencies, we need `external_library`.
- to build shared libraries, we need `shared_library`.
-### An Example Project
+## An Example Project
Suppose that we have aforementioned functions defined in our `/cmake` directory. The following example `CMakeLists.txt` describes a project including the following source files:
@@ -102,11 +124,11 @@ shared_library(api
```
-### Implementation
+## Implementation
As above example CMakeLists.txt executes, each function invocation adds "nodes" to a dependency graph. It also use this graph to generate CMake commands including `add_executable`, `add_dependencies`, `target_link_libraries`, and `add_test`.
-### Using Package Manager For Go
+## Using Package Manager For Go
Building Go binaries and libraries need to satisfy their dependencies, generally
we can do `go get ./...` to download and compile all external dependencies. The
@@ -122,7 +144,7 @@ problems are:
at many cloud file hosting, so users what to compile paddle by themselves can
download this "vendor" package from a mirror site.
-#### Choose A Suitable Tool
+### Choose A Suitable Tool
As mentioned by @wangkuiyi, [Here](https://github.com/golang/go/wiki/PackageManagementTools)
list dozens of Go package managers. We choose the tool using following principles:
@@ -140,7 +162,7 @@ management tool has been started at: https://github.com/golang/dep to resolve
such problems, but it's currently at Alpha stage. So the best choice now is
glide obviously.
-#### Manage Go Packages
+### Manage Go Packages
- Dependencies: `go/glide.yaml` will store the dependencies and their versions which
is directly imported by paddle. `go/glide.lock` will store all dependencies recursively
diff --git a/doc/fluid/design/concepts/block.md b/doc/fluid/design/concepts/block.md
index 907a2def557fd472ac4d679c73447bd9107d1190..3b626bd89cd83a9428997abccfeeebbbbdbb3d38 100644
--- a/doc/fluid/design/concepts/block.md
+++ b/doc/fluid/design/concepts/block.md
@@ -14,11 +14,29 @@ In programming languages, a block is a pair of curly braces that includes local
Blocks work with control flow structures like `if`, `else`, and `for`, which have equivalents in deep learning:
-| programming languages | PaddlePaddle |
-|-----------------------|-----------------------|
-| for, while loop | RNN, WhileOp |
-| if, if-else, switch | IfElseOp, SwitchOp |
-| sequential execution | a sequence of layers |
+
+
+
+programming languages |
+PaddlePaddle |
+
+
+
+
+for, while loop |
+RNN, WhileOp |
+
+
+if, if-else, switch |
+IfElseOp, SwitchOp |
+
+
+sequential execution |
+a sequence of layers |
+
+
+
+
A key difference is that a C++ program describes a one pass computation, whereas a deep learning program describes both the forward and backward passes.
@@ -26,12 +44,33 @@ A key difference is that a C++ program describes a one pass computation, whereas
The existence of the backward pass makes the execution of a block of PaddlePaddle different from traditional programs:
-| programming languages | PaddlePaddle |
-|-----------------------|---------------------------------|
-| stack | scope hierarchy |
-| stack frame | scope |
-| push at entering block| push at entering block |
-| pop at leaving block | destroy when minibatch completes|
+
+
+
+programming languages |
+PaddlePaddle |
+
+
+
+
+stack |
+scope hierarchy |
+
+
+stack frame |
+scope |
+
+
+push at entering block |
+push at entering block |
+
+
+pop at leaving block |
+destroy when minibatch completes |
+
+
+
+
1. In traditional programs:
diff --git a/doc/fluid/design/concepts/cpp_data_feeding.md b/doc/fluid/design/concepts/cpp_data_feeding.md
index 8607b40ccbbe01db77afed72c1efa780b520744c..aabc1ba75a67c5767d409bd6e7e6240dec86b16c 100644
--- a/doc/fluid/design/concepts/cpp_data_feeding.md
+++ b/doc/fluid/design/concepts/cpp_data_feeding.md
@@ -113,7 +113,7 @@ To solve this problem, we introduce `ReaderHolder` as a wrapper. It acts as an e
To create and invoke readers, some new ops are introduced:
-### CreateReaderOp
+### Operators That Create Readers
Each reader has its creation op. File readers' creation ops have no input and yield the created file reader as its output. Decorated readers' creation ops take the underlying readers as inputs and then yield new decorated readers.
@@ -153,19 +153,52 @@ double_buffer_reader = create_double_buffer_op(batch_reader)
The forwarding ops of the corresponding `main_program` would be like this:
```
-while_op {
+not_completed = true
+pass_count = 0
+while_op(not_completed) {
has_next = has_next_op(double_buffer_reader)
if_else_op(has_next) {
batch_data = read_op(double_buffer_reader)
... (subsequent training ops)
} else {
reset_op(double_buffer_reader)
+ increase_op(pass_count)
+ not_completed = less_than_op(pass_count, reqiured_pass_num)
}
}
```
-Two important considerations for these programs are as follows:
+A few important considerations for these programs are as follows:
-1. The multiple\_reader is the batch\_reader's underlying reader, and the batch\_reader is the double\_buffer\_reader's underlying reader. `read_op`, `has_next_op` and other reader related ops will only invoke the top-most reader. In this case, it's the double\_buffer\_reader.
+1. `not_completed`, `pass_count` and other variables shown above are all Fluid Variables.
-2. All readers exist in both `startup_program` and `main_program`. And they are persistable.
+2. The multiple\_reader is the batch\_reader's underlying reader, and the batch\_reader is the double\_buffer\_reader's underlying reader. `read_op`, `has_next_op` and other reader related ops will only invoke the top-most reader. In this case, it's the double\_buffer\_reader.
+
+3. All readers exist in both `startup_program` and `main_program`. And they are persistable.
+
+### Simplify Configuration by MultiPassReader
+
+The Program configuration mentioned above is complicated. Users need to be very familiar to concepts of Program and Block to prevent making mistakes in their code. To make the usage of C++ readers more friendly to new users, we introduce `MultiPassReader`.
+
+`MultiPassReader` is a decorated reader. A multi-pass reader is used to continuously yield data for several training passes. It takes the number of passes to run as one of its attributes('pass_num') and maintains a counter to record how many passes it has completed. Each time its underlying reader reaches the EOF, the multi-pass reader checks whether it has completed the training of given number of pass. If not, the underlying reader will be re-initialized and starts a new pass automatically. Before completing the whole training, the return of MultiPassReader's `HasNext()` will always be `true`.
+
+With `MultiPassReader`, the startup program would be like this:
+
+```
+multiple_reader = open_files_op(...)
+batch_reader = create_batch_reader_op(multiple_reader)
+multi_pass_reader = create_multi_pass_reader_op(batch_reader)
+double_buffer_reader = create_double_buffer_op(multi_pass_reader)
+... (other initializers)
+```
+
+The forwarding part of the corresponding `main_program` would be like this:
+
+```
+not_completed = true
+while_op(not_completed) {
+ batch_data = read_op(double_buffer_reader)
+ ... (subsequent training ops)
+ not_completed = has_next_op(double_buffer_reader)
+}
+```
diff --git a/doc/fluid/design/concepts/functions_operators_layers.md b/doc/fluid/design/concepts/functions_operators_layers.md
index 984b59f4c6971dfb6f46dfe342f2751f392c0e88..30bc488a18a28d349645d9d2502aae6691a69931 100644
--- a/doc/fluid/design/concepts/functions_operators_layers.md
+++ b/doc/fluid/design/concepts/functions_operators_layers.md
@@ -86,12 +86,40 @@ def layer.fc(X):
We'd like to have Python bindings to operators in package `paddle.operator`, and Python compositions of operators in package `paddle.layer`. So we have the following concepts in above illustrative example:
-
-| C++ functions/functors | mul | add | | |
-|------------------------|--------------|--------------|-------------|----------|
-| C++ operator class | mulOp | addOp | FCOp | |
-| Python binding | operator.mul | operator.add | operator.fc | |
-| Python function | | | | layer.fc |
+
+
+
+C++ functions/functors |
+mul |
+add |
+ |
+ |
+
+
+
+
+C++ operator class |
+mulOp |
+addOp |
+FCOp |
+ |
+
+
+Python binding |
+operator.mul |
+ operator.add |
+operator.fc |
+ |
+
+
+Python function |
+ |
+ |
+ |
+layer.fc |
+
+
+
This is how we differentiate layer and operators in PaddlePaddle:
diff --git a/doc/fluid/design/concepts/index_cn.rst b/doc/fluid/design/concepts/index_cn.rst
new file mode 100644
index 0000000000000000000000000000000000000000..eec8a2f14ca9e8b3bf0d0acbbb6004972790d795
--- /dev/null
+++ b/doc/fluid/design/concepts/index_cn.rst
@@ -0,0 +1,18 @@
+核心概念
+-------------
+
+.. toctree::
+ :maxdepth: 1
+
+ README.md
+ cpp_data_feeding.md
+ functions_operators_layers.md
+ program.md
+ variable.md
+ var_desc.md
+ tensor.md
+ tensor_array.md
+ lod_tensor.md
+ block.md
+ scope.md
+ executor.md
diff --git a/doc/fluid/design/concepts/index_en.rst b/doc/fluid/design/concepts/index_en.rst
new file mode 100644
index 0000000000000000000000000000000000000000..036e1da2550cf520f5c40ecd9657f71603755adc
--- /dev/null
+++ b/doc/fluid/design/concepts/index_en.rst
@@ -0,0 +1,18 @@
+Core Concepts
+--------------------------------------
+
+.. toctree::
+ :maxdepth: 1
+
+ README.md
+ cpp_data_feeding.md
+ functions_operators_layers.md
+ program.md
+ variable.md
+ var_desc.md
+ tensor.md
+ tensor_array.md
+ lod_tensor.md
+ block.md
+ scope.md
+ executor.md
diff --git a/doc/fluid/design/concepts/lod_tensor.md b/doc/fluid/design/concepts/lod_tensor.md
index 10a8a7867fbf072f585fe3bfb1243e4e6bef4ec8..a88292e7888d0ebc64ee89ca315dfea38a12c71d 100644
--- a/doc/fluid/design/concepts/lod_tensor.md
+++ b/doc/fluid/design/concepts/lod_tensor.md
@@ -2,12 +2,38 @@
Like other deep learning systems, PaddlePaddle supports training models from sequence data. Also, like other systems, PaddlePaddle represent a mini-batch of sequences as a Tensor. What is different is that PaddlePaddle doesn't require all sequences in a mini-batch to be of the same length. Thus no need for padding zeros.
-| | TensorFlow | PaddlePaddle |
-|-----------------------|------------|--------------|
-| RNN | Support | Support |
-| recursive RNN | Support | Support |
-| padding zeros | Must | No need |
-| blob data type | Tensor | LoDTensor |
+
+
+
+ |
+TensorFlow |
+PaddlePaddle |
+
+
+
+
+RNN |
+Support |
+Support |
+
+
+recursive RNN |
+Support |
+Support |
+
+
+padding zeros |
+ Must |
+No need |
+
+
+ blob data type |
+ Tensor |
+ LoDTensor |
+
+
+
+
PaddlePaddle achieves this flexibility by passing through a new data type, *LoD Tensor*, which is a Tensor attached with segmentation index known as *LoD*, between operators. The LoD index doesn't only segment a tensor, but also recursively segments sub-sequences. This document presents the design of LoD and LoDTensor.
diff --git a/doc/fluid/design/concepts/scope.md b/doc/fluid/design/concepts/scope.md
index 4da76eebb74abcd26ec2b8671399e6bc4fb58574..dcf76649357aaef80d6bc1a933ece8c4c1063547 100644
--- a/doc/fluid/design/concepts/scope.md
+++ b/doc/fluid/design/concepts/scope.md
@@ -30,7 +30,7 @@ Scope is an association of a name to variable. All variables belong to `Scope`.
Variable can not belong to many scopes. If you want to use variables from parent scope, you can use `parent scope`.
-1. Scope should destruct all Variables inside it when itself is destructed. User can never store `Variable` pointer somewhere else.
+1. Scope should destruct all Variables inside it when itself is destructed. User can never store `Variable` pointer somewhere else.
Because Variable can only be got from Scope. When destroying Scope, we also need to destroy all the Variables in it. If user store `Variable` pointer to private data member or some global variable, the pointer will be an invalid pointer when associated `Scope` is destroyed.
@@ -78,7 +78,7 @@ In `Scope` class, there is a private data member called `parent_`. `parent_` is
A local scope is very useful when we implement Recurrent Neural Network. Each timestep of an RNN should be a `Net`. Each `Net` of timestep (`StepNet` for short) should use an independent local scope. Just like variables in a while loop is inside a local scope in programming languages. By using a single `StepNet` and changing local scope, we can implement an RNN easily.
-# Interface Design
+## Interface Design
```cpp
class Variable {
diff --git a/doc/fluid/design/concepts/var_desc.md b/doc/fluid/design/concepts/var_desc.md
index 6a45af1995463402ba9c65ddb51c6c8bb107f99e..6750323c0167bf1efbde6ef4fd670e88a5aa502a 100644
--- a/doc/fluid/design/concepts/var_desc.md
+++ b/doc/fluid/design/concepts/var_desc.md
@@ -1,3 +1,5 @@
+# Design Doc: Var_desc
+
## Background
PaddlePaddle divides the description of neural network computation into two stages: compile time and runtime. At compile time, the neural network computation is described as a `ProgramDesc` whereas at runtime an `Executor` interprets the `ProgramDesc` to compute the operations.
@@ -8,10 +10,27 @@ PaddlePaddle uses proto message to describe compile time program because :
The computation `Program` consists of nested `Blocks`. Each `Block` will consist of data(i.e. `Variable`) and `Operations`. The concept to represent them is in the table below.
-| |compile time|runtime|
-|---|---|---|
-|Data|VarDesc(proto)|Variable(cpp)|
-|Operation|OpDesc(proto)|Operator(cpp)|
+
+
+
+ |
+compile time |
+runtime |
+
+
+
+
+Data |
+VarDesc(proto) |
+Variable(cpp) |
+
+
+Operation |
+OpDesc(proto) |
+Operator(cpp) |
+
+
+
## Definition of VarType
diff --git a/doc/fluid/design/concurrent/channel.md b/doc/fluid/design/concurrent/channel.md
new file mode 100644
index 0000000000000000000000000000000000000000..a00a3325e7b49381f0f82ebbf32b74683f02de5f
--- /dev/null
+++ b/doc/fluid/design/concurrent/channel.md
@@ -0,0 +1,139 @@
+# Channel Design
+
+## Introduction
+
+A Channel is a data structure that allows for synchronous interprocess
+communication via message passing. It is a fundemental component of CSP
+(communicating sequential processes), and allows for users to pass data
+between threads without having to worry about synchronization.
+
+## How to use it
+
+Paddle offers python APIs to open and close channels, along with sending
+and receiving data to/from a channel.
+
+### Create a channel
+
+Creates a new channel that takes in variables of a specific dtype.
+
+- **fluid.make_channel(dtype, capacity=0)**
+ - **dtype**: The data type of variables being sent/received through channel
+ - **capacity**: The capacity of the channel. A capacity of 0 represents
+ an unbuffered channel. Capacity > 0 represents a buffered channel
+
+```
+ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR, 10)
+```
+
+### Close a channel
+
+Closes a channel. Any pending senders and receivers will be awoken during
+this time. Receivers can still receive from a closed channel, but senders
+are not allowed to send any additional data to the channel (Paddle will
+raise an exception if users try to send to a closed channel.)
+
+- **fluid.channel_close(channel)**
+
+```
+fluid.channel_close(ch)
+```
+
+### Send data to a channel
+
+Sends a variable to a channel. Currently, variables of dtype `LoDTensor`,
+`LoDRankTable`, `LoDTensorArray`, `SelectedRows`, `ReaderHolder`, and
+`ChannelHolder` are supported.
+
+By default, the data of the Variable is moved from the sender to the receiver,
+however the user can optionally copy the data before performing the send.
+
+- **channel_send(channel, variable, is_copy=False)**
+ - **channel**: The channel to send the variable to
+ - **variable**: The variable to send to the channel
+ - **is_copy**: If set to True, channel_send will perform a variable assign
+ to copy the source variable to a new variable to be sent.
+
+```
+ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
+var = fill_constant(shape=[1],dtype=core.VarDesc.VarType.INT32, value=100)
+fluid.channel_send(ch, var, True)
+```
+
+### Receive data from a channel
+
+Receives a variable from a channel. The data of the variable is moved to the
+receiving variable.
+
+- **channel_recv(channel, return_variable)**
+ - **channel**: The channel to receive the variable from
+ - **return_variable**: The destination variable used to store the data of the
+ variable received from the channel
+
+```
+ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
+var = fill_constant(shape=[1],dtype=core.VarDesc.VarType.INT32, value=-1)
+fluid.channel_recv(ch, var)
+```
+
+## How it Works
+
+Channels provides a simple interface for different threads to share data.
+To support the synchronization requirements, channels utilizes a series of
+internal queues, locks, and conditional variables.
+
+### QueueMessage
+
+QueueMessage encapsulates the state of the channel send/receive operation to be
+put in the **sendq/recvq**. It contains a condition variable used to lock the
+thread (when there are no available sends/receives). In addition, it contains
+a callback function to notify a thread when the QueueMessage is being
+processed by the channel.
+
+### Queues
+
+- **buff_**: This queue holds the data buffer in a buffered channel. The
+capacity is set to the capacity of the channel. This data buffer is not
+used in an unbuffered channel.
+
+- **sendq**: This queue holds the QueueMessage of any pending senders of a
+channel. When a thread performs a channel_send operation on the channel, the
+channel_send operation will put a new QueueMessage on the sendq and block the
+current thread under two conditions:
+ 1. The channel is buffered and is full
+ 2. The channel is unbuffered and does not have a receiver
+
+- **recvq**: This queue holds the QueueMessage of any pending receivers of a
+channel. When a thread performs a channel_recv operation on the channel, the
+channel_recv operation will put a new QueueMessage on the recvq and block the
+current thread under two conditions:
+ 1. The channel is buffered and there is no data on the buff_
+ 2. The channel is unbuffered and does not have a sender
+
+### State diagram
+
+#### Channel Send
+
+
+![](./images/channel_send.png)
+
+
+#### Channel Receive
+
+
+![](./images/channel_recv.png)
+
+
+## Limitations and Considerations
+
+### Variable Copy
+
+In golang, variables in channels are copied from the sender to the receiver.
+In Paddle, the data from our variables are **moved** from sender to receiver.
+As a result, these variables should not be used after they are sent. We
+provide a flag in channel_send method to allow users to copy the variable to
+be sent before it is sent.
+
+Please note that this is acheived by adding an **assign** operator and creating
+a temporary variable that is sent in place of the original variable. Please
+note that **assign** operator has limited support for only certain variables
+datatypes.
diff --git a/doc/fluid/design/concurrent/concurrent_programming.md b/doc/fluid/design/concurrent/concurrent_programming.md
index f022e67fd3a048cd7e53c91d9a1fd0506487b665..64602166065af28309d7a01fdeb7076a9b0a081a 100644
--- a/doc/fluid/design/concurrent/concurrent_programming.md
+++ b/doc/fluid/design/concurrent/concurrent_programming.md
@@ -10,12 +10,38 @@ The answer relies on the fact that a `ProgramDesc` is similar to an abstract syn
The following table compares concepts in Fluid and Go
-| Go | Fluid |
-|----|-------|
-|user-defined functions | [layers](https://github.com/PaddlePaddle/Paddle/tree/develop/python/paddle/fluid) |
-| control-flow and built-in functions | [intrinsics/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators) |
-| goroutines, channels | [class ThreadPool](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/framework/thread_pool.h) |
-| runtime | [class Executor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h) |
+
+
## An Example Concurrent Program
@@ -77,11 +103,11 @@ message ProgramDesc {
read(output = X)
kube_get_workers_addrs(output = L)
Y = tensor_array(len(L))
- parallel_for(input = X, output = Y,
+ parallel_for(input = X, output = Y,
attrs = {L, block_id(1)}) # referring to block 1
]
}
-
+
block[1] = Block {
parent = 0,
vars = [x, y, index],
@@ -102,7 +128,7 @@ func main() { //// block 0
X = fluid.read(...)
L = fluid.k8s.get_worker_addrs()
Y = fluid.tensor_array(len(L))
- fluid.parallel_for(X, L,
+ fluid.parallel_for(X, L,
func(index int) { //// block 1
x = X[index]
fluid.send(L[index], x)
@@ -116,7 +142,7 @@ An explanation of the above program:
- `fluid.k8s` is a package that provides access to Kubernetes API.
- `fluid.k8s.get_worker_addrs` returns the list of IP and ports of all pods of the current job except for the current one (the master pod).
-- `fluid.tensor_array` creates a [tensor array](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor_array.h). `fluid.parallel_for` creates a `ParallelFor` intrinsic, which, when executed,
+- `fluid.tensor_array` creates a [tensor array](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor_array.h). `fluid.parallel_for` creates a `ParallelFor` intrinsic, which, when executed,
1. creates `len(L)` scopes, each for the concurrent running of the sub-block (block 1 in this case), and initializes a variable named "index" in the scope to an integer value in the range `[0, len(L)-1]`, and
2. creates `len(L)` threads by calling into the `ThreadPool` singleton, each thread
diff --git a/doc/fluid/design/concurrent/csp.md b/doc/fluid/design/concurrent/csp.md
index 10d936860fab7e09241e968a63526c7d86d3e568..66d19f44baf861c7847e81ca83f61024ec877faf 100644
--- a/doc/fluid/design/concurrent/csp.md
+++ b/doc/fluid/design/concurrent/csp.md
@@ -13,14 +13,41 @@ Most DL systems, including TensorFlow, Caffe2, and MxNet, can asynchronously exe
There were many concurrent programming models, implemented in various forms:
-| concurrent programming model | implementation |
-|-----|-----|
-| mutex | types and functions in standard libraries |
-| semaphore | types and functions in standard libraries |
-| communicating sequential processes (CSP) | Go programming language |
-| actor model | Erlang programming language |
-| message passing | MPI |
-| bulk synchronous parallel (BSP) | Pregel distributed programming framework |
+
+
+
+concurrent programming model |
+implementation |
+
+
+
+
+mutex |
+types and functions in standard libraries |
+
+
+semaphore |
+ types and functions in standard libraries |
+
+
+ communicating sequential processes (CSP) |
+ Go programming language |
+
+
+ actor model |
+ Erlang programming language |
+
+
+ message passing |
+ MPI |
+
+
+ bulk synchronous parallel (BSP) |
+ Pregel distributed programming framework |
+
+
+
+
Since Fluid was designed to be a programming language, we would like to implement CSP in Fluid.
@@ -118,9 +145,9 @@ There are four types of actions with a channel:
```go
close(ch)
```
-
+
Please be aware that a closed channel is not a nil channel, which is `var ch chan int`.
-
+
There are some [axioms with channels](https://dave.cheney.net/2014/03/19/channel-axioms):
1. A send to a nil channel blocks forever
diff --git a/doc/fluid/design/concurrent/go_op.md b/doc/fluid/design/concurrent/go_op.md
new file mode 100644
index 0000000000000000000000000000000000000000..c18b788e80f432ebb2f14b15229e7823c112001e
--- /dev/null
+++ b/doc/fluid/design/concurrent/go_op.md
@@ -0,0 +1,231 @@
+# go_op Design
+
+## Introduction
+
+The **go_op** allows user's of PaddlePaddle to run program blocks on a detached
+thread. It works in conjuction with CSP operators (channel_send,
+channel_receive, channel_open, channel_close, and select) to allow users to
+concurrently process data and communicate easily between different threads.
+
+## How to use it
+
+```
+channel = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
+
+with fluid.Go():
+ # Send a tensor of value 99 to "channel" on a detached thread
+ tensor = fill_constant(shape=[1], dtype='int', value=99)
+ tensor.stop_gradient = True
+ fluid.channel_send(channel, tensor)
+
+# Receive sent tensor from "channel" on the main thread
+result = fill_constant(shape=[1], dtype='int', value=-1)
+fluid.channel_recv(ch, result)
+```
+
+The go operator can be accessed by using the fluid.Go() control flow. This
+will create a new sub block, where the user can add additional operators
+to be ran on the thread.
+
+**Note:** Since back propegation is currently not support in the go_op, users
+should ensure that operators in the go block does not require gradient
+calculations.
+
+## How it Works
+
+Similar to other control blocks, go_op will create a sub block and add it
+as a child to the current block. Operators and variables defined in this
+block will be added to the go sub_block.
+
+In addition, the go operator will create a new child scope whose parent is
+the global scope. Please refer to [block captures](#block-captures) for more
+information.
+
+When Paddle executor runs go_op, go_op will take the sub_block and pass it to
+the executor.run method (along with a newly created local scope) on a detached
+thread.
+
+An example of the generated program description is shown below. Take note of
+the **go_op** in particular. It is added as an operator in the current
+block (in this example, block0). The **go_op** contains a `sub_block`
+attribute, which points to the id of the block that will be executed in a
+detached thread.
+
+```
+blocks {
+ idx: 0
+ parent_idx: -1
+ vars {
+ name: "return_value"
+ type {
+ type: LOD_TENSOR
+ lod_tensor {
+ tensor {
+ data_type: INT64
+ }
+ }
+ }
+ }
+ vars {
+ name: "status_recv"
+ type {
+ type: LOD_TENSOR
+ lod_tensor {
+ tensor {
+ data_type: BOOL
+ }
+ }
+ }
+ }
+ ...
+ ops {
+ outputs {
+ parameter: "Out"
+ arguments: "channel"
+ }
+ type: "channel_create"
+ attrs {
+ name: "data_type"
+ type: INT
+ i: 7
+ }
+ attrs {
+ name: "capacity"
+ type: INT
+ i: 0
+ }
+ }
+ ops {
+ inputs {
+ parameter: "X"
+ arguments: "channel"
+ }
+ type: "go"
+ attrs {
+ name: "sub_block"
+ type: BLOCK
+ block_idx: 1
+ }
+ }
+ ops {
+ inputs {
+ parameter: "Channel"
+ arguments: "channel"
+ }
+ outputs {
+ parameter: "Out"
+ arguments: "return_value"
+ }
+ outputs {
+ parameter: "Status"
+ arguments: "status_recv"
+ }
+ type: "channel_recv"
+ }
+ ...
+}
+
+blocks {
+ idx: 1
+ parent_idx: 0
+ vars {
+ name: "status"
+ type {
+ type: LOD_TENSOR
+ lod_tensor {
+ tensor {
+ data_type: BOOL
+ }
+ }
+ }
+ }
+ ...
+
+ ops {
+ outputs {
+ parameter: "Out"
+ arguments: "fill_constant_1.tmp_0"
+ }
+ type: "fill_constant"
+ attrs {
+ name: "force_cpu"
+ type: BOOLEAN
+ b: false
+ }
+ attrs {
+ name: "value"
+ type: FLOAT
+ f: 99.0
+ }
+ attrs {
+ name: "shape"
+ type: INTS
+ ints: 1
+ }
+ attrs {
+ name: "dtype"
+ type: INT
+ i: 3
+ }
+ }
+ ops {
+ inputs {
+ parameter: "Channel"
+ arguments: "channel"
+ }
+ inputs {
+ parameter: "X"
+ arguments: "fill_constant_1.tmp_0"
+ }
+ outputs {
+ parameter: "Status"
+ arguments: "status"
+ }
+ type: "channel_send"
+ attrs {
+ name: "copy"
+ type: BOOLEAN
+ b: false
+ }
+ }
+```
+
+## Current Limitations
+
+#### Scopes and block captures:
+
+Paddle utilizes [scopes](./../concepts/scope.md) to store variables used in a
+block. When a block is executed, a new local scope is created from the parent
+scope (ie: scope derived from the parent block) and associated with the new
+child block. After the block finishes executing, then the local scope and
+all associated variables in the scope is deleted.
+
+This works well in a single threaded scenario, however with introduction of
+go_op, a child block may continue to execute even after the parent block has
+exited. If the go_op tries to access variables located in the parent block's
+scope, it may receive a segmentation fault because the parent scope may have
+been deleted.
+
+We need to implement block closures in order to prevent access to parent
+scope variables from causing a segmentation fault. As a temporary workaround,
+please ensure that all variables accessed in the go block is not destructed
+before it is being accessed. Currently, the go_op will explicitly enforce
+this requirement and raise an exception if a variable could not be found in
+the scope.
+
+Please refer to [Closure issue](https://github.com/PaddlePaddle/Paddle/issues/8502)
+for more details.
+
+#### Green Threads
+
+Golang utilizes `green threads`, which is a mechnism for the runtime library to
+manage multiple threads (instead of natively by the OS). Green threads usually
+allows for faster thread creation and switching, as there is less overhead
+when spawning these threads. For the first version of CSP, we only support
+OS threads.
+
+
+#### Backward Propegation:
+
+go_op currently does not support backwards propagation. Please use go_op with
+non training operators.
diff --git a/doc/fluid/design/concurrent/images/channel_recv.png b/doc/fluid/design/concurrent/images/channel_recv.png
new file mode 100644
index 0000000000000000000000000000000000000000..c06cd15ae7b8a8c94d5742f6675e389081fcf789
Binary files /dev/null and b/doc/fluid/design/concurrent/images/channel_recv.png differ
diff --git a/doc/fluid/design/concurrent/images/channel_send.png b/doc/fluid/design/concurrent/images/channel_send.png
new file mode 100644
index 0000000000000000000000000000000000000000..006ebb4a5a4bcd32c97847e9fb7729a740255f7c
Binary files /dev/null and b/doc/fluid/design/concurrent/images/channel_send.png differ
diff --git a/doc/fluid/design/concurrent/index_cn.rst b/doc/fluid/design/concurrent/index_cn.rst
new file mode 100644
index 0000000000000000000000000000000000000000..e47135e9fc42760898083710e0a6767252a0225b
--- /dev/null
+++ b/doc/fluid/design/concurrent/index_cn.rst
@@ -0,0 +1,8 @@
+并发编程
+------------
+
+.. toctree::
+ :maxdepth: 1
+
+ concurrent_programming.md
+ parallel_do.md
diff --git a/doc/fluid/design/concurrent/index_en.rst b/doc/fluid/design/concurrent/index_en.rst
new file mode 100644
index 0000000000000000000000000000000000000000..0727e75798b2a869588f80d3cce7a886554e4ffb
--- /dev/null
+++ b/doc/fluid/design/concurrent/index_en.rst
@@ -0,0 +1,8 @@
+Concurrent Programming
+-------------------------
+
+.. toctree::
+ :maxdepth: 1
+
+ concurrent_programming.md
+ parallel_do.md
diff --git a/doc/fluid/design/data_type/index_cn.rst b/doc/fluid/design/data_type/index_cn.rst
new file mode 100644
index 0000000000000000000000000000000000000000..b60167b6b1599df69dfc5073ebf32bdbb0a316ec
--- /dev/null
+++ b/doc/fluid/design/data_type/index_cn.rst
@@ -0,0 +1,7 @@
+数据类型
+------------
+
+.. toctree::
+ :maxdepth: 1
+
+ float16.md
diff --git a/doc/fluid/design/data_type/index_en.rst b/doc/fluid/design/data_type/index_en.rst
new file mode 100644
index 0000000000000000000000000000000000000000..6a88d17943f49134a2d00363845e919537ff4545
--- /dev/null
+++ b/doc/fluid/design/data_type/index_en.rst
@@ -0,0 +1,7 @@
+Data Type
+------------
+
+.. toctree::
+ :maxdepth: 1
+
+ float16.md
diff --git a/doc/fluid/design/dist_train/distributed_lookup_table_design.md b/doc/fluid/design/dist_train/distributed_lookup_table_design.md
index e543adf0f97cc6b47415b807d7a1ed1effec9b22..988729138926f035750b59eb245dde82502a3ad2 100644
--- a/doc/fluid/design/dist_train/distributed_lookup_table_design.md
+++ b/doc/fluid/design/dist_train/distributed_lookup_table_design.md
@@ -1,4 +1,4 @@
-## Design Doc: Distributed Lookup Table Operator
+# Design Doc: Distributed Lookup Table Operator
A lookup table operator in PaddlePaddle where the table could be out
of the memory of a computer.
diff --git a/doc/fluid/design/dist_train/index_cn.rst b/doc/fluid/design/dist_train/index_cn.rst
new file mode 100644
index 0000000000000000000000000000000000000000..ed6f3dda271d2de58d92aa7ec804fa9e68dfc48a
--- /dev/null
+++ b/doc/fluid/design/dist_train/index_cn.rst
@@ -0,0 +1,9 @@
+分布式训练
+------------
+
+.. toctree::
+ :maxdepth: 1
+
+ distributed_architecture.md
+ distributed_lookup_table_design.md
+ parameter_server.md
diff --git a/doc/fluid/design/dist_train/index_en.rst b/doc/fluid/design/dist_train/index_en.rst
new file mode 100644
index 0000000000000000000000000000000000000000..f84688f168021113bd933802709bcd787b474bca
--- /dev/null
+++ b/doc/fluid/design/dist_train/index_en.rst
@@ -0,0 +1,9 @@
+Distributed Training
+---------------------
+
+.. toctree::
+ :maxdepth: 1
+
+ distributed_architecture.md
+ distributed_lookup_table_design.md
+ parameter_server.md
diff --git a/doc/fluid/design/dynamic_rnn/index_cn.rst b/doc/fluid/design/dynamic_rnn/index_cn.rst
new file mode 100644
index 0000000000000000000000000000000000000000..1d224d22cf7103616f44115db01f0ae55f1cb88a
--- /dev/null
+++ b/doc/fluid/design/dynamic_rnn/index_cn.rst
@@ -0,0 +1,8 @@
+动态RNN
+------------
+
+.. toctree::
+ :maxdepth: 1
+
+ rnn.md
+ rnn_design.md
diff --git a/doc/fluid/design/dynamic_rnn/index_en.rst b/doc/fluid/design/dynamic_rnn/index_en.rst
new file mode 100644
index 0000000000000000000000000000000000000000..568f496e4ffe21a5e730488aef905f7e2d98839e
--- /dev/null
+++ b/doc/fluid/design/dynamic_rnn/index_en.rst
@@ -0,0 +1,8 @@
+Dynamic RNN
+------------
+
+.. toctree::
+ :maxdepth: 1
+
+ rnn.md
+ rnn_design.md
diff --git a/doc/fluid/design/dynamic_rnn/rnn_design.md b/doc/fluid/design/dynamic_rnn/rnn_design.md
index 3d38b9a0ad225fd8e0c1bb037474b292b1887f5b..cecfcd3307ae4c4fa603220a360e9e124069fa58 100644
--- a/doc/fluid/design/dynamic_rnn/rnn_design.md
+++ b/doc/fluid/design/dynamic_rnn/rnn_design.md
@@ -99,7 +99,7 @@ private:
- 由于传递过程是以复制`shared_ptr`的方式实现,因此框架只需要传递一次 `lod_start_pos`
2. 对于不感知 `lod_start_pos` 的Op足够透明
-3. 需要修改 `lod_start_pos` 的producer Op可以在 `Run` 时更新自己的 `lod_start_pos` 数据
+3. 需要修改 `lod_start_pos` 的producer Op可以在 `Run` 时更新自己的 `lod_start_pos` 数据
具体的设计分为以下3小节
@@ -189,7 +189,7 @@ struct SortedSeqItem {
std::vector sorted_seqs;
```
-来追踪序列排序后的位置,并添加一个新的接口
+来追踪序列排序后的位置,并添加一个新的接口
```c++
std::vector SortBySeqLen(const LODTensor& tensor);
@@ -233,7 +233,10 @@ x x
- 将每个序列concat 为规则的mini-batch表示
## 参考文献
-1. [Tensorflow Bucketing](https://www.tensorflow.org/versions/r0.12/api_docs/python/contrib.training/bucketing)
-2. [mxnet Bucketing](http://mxnet.io/how_to/bucketing.html)
-3. [variable length input in RNN scenario](https://discuss.pytorch.org/t/about-the-variable-length-input-in-rnn-scenario/345/5)
-4. [Level of details](https://en.wikipedia.org/wiki/Level_of_detail)
+[Tensorflow Bucketing](https://www.tensorflow.org/versions/r0.12/api_docs/python/contrib.training/bucketing)
+
+[mxnet Bucketing](http://mxnet.io/how_to/bucketing.html)
+
+[variable length input in RNN scenario](https://discuss.pytorch.org/t/about-the-variable-length-input-in-rnn-scenario/345/5)
+
+[Level of details](https://en.wikipedia.org/wiki/Level_of_detail)
diff --git a/doc/fluid/design/execution/index_cn.rst b/doc/fluid/design/execution/index_cn.rst
new file mode 100644
index 0000000000000000000000000000000000000000..ed31b017429d168b2466d8f6b423f48bd5d78d1f
--- /dev/null
+++ b/doc/fluid/design/execution/index_cn.rst
@@ -0,0 +1,8 @@
+执行流程
+-------------
+
+.. toctree::
+ :maxdepth: 1
+
+ switch.md
+ if_else_op.md
diff --git a/doc/fluid/design/execution/index_en.rst b/doc/fluid/design/execution/index_en.rst
new file mode 100644
index 0000000000000000000000000000000000000000..fcf846da348ff0bed707c42718e08314998fbac0
--- /dev/null
+++ b/doc/fluid/design/execution/index_en.rst
@@ -0,0 +1,8 @@
+Execution Process
+--------------------------------------
+
+.. toctree::
+ :maxdepth: 1
+
+ switch.md
+ if_else_op.md
diff --git a/doc/fluid/design/execution/switch.md b/doc/fluid/design/execution/switch.md
index 827d0601c621e4a230de28e2baad8e196e69625e..1c337bd7159b25e594c2f91f9a143b3f4bc3c8e8 100644
--- a/doc/fluid/design/execution/switch.md
+++ b/doc/fluid/design/execution/switch.md
@@ -1,6 +1,6 @@
-### Design Doc: Switch
+# Design Doc: Switch
-### Background
+## Background
Many programming languages provide `switch` as a generalization of `if-elif-else`. We want to add it to Fluid.
@@ -19,7 +19,7 @@ with switch() as switch:
fluid.print("Case 3")
```
-### The Semantics
+## The Semantics
1. A `switch` control-flow checks cases one-by-one.
1. The condition of each case is a boolean value, which is a scalar, and differs from the `fluid.if_else` control-flow, which condition could be a vector of boolean values.
diff --git a/doc/fluid/design/index_cn.rst b/doc/fluid/design/index_cn.rst
index f1887be6901653d4263d711d78b626d2abfd45c9..e9f55214f411abb11bef180d7af4716ad85a0b09 100644
--- a/doc/fluid/design/index_cn.rst
+++ b/doc/fluid/design/index_cn.rst
@@ -1,2 +1,19 @@
设计思想
------------
+
+.. toctree::
+ :maxdepth: 1
+
+ motivation/index_cn.rst
+ execution/index_cn.rst
+ concepts/index_cn.rst
+ data_type/index_cn.rst
+ memory/index_cn.rst
+ muti_devices/index_cn.rst
+ dynamic_rnn/index_cn.rst
+ concurrent/index_cn.rst
+ algorithm/index_cn.rst
+ network/index_cn.rst
+ modules/index_cn.rst
+ interface/index_cn.rst
+ dist_train/index_cn.rst
diff --git a/doc/fluid/design/index_en.rst b/doc/fluid/design/index_en.rst
index 18a4b4122f6e3f0096676f34ffea8a80aa9b6696..2802dc3a31d540c5a19bf9042053496aad152f98 100644
--- a/doc/fluid/design/index_en.rst
+++ b/doc/fluid/design/index_en.rst
@@ -1,2 +1,19 @@
Design
------------
+
+.. toctree::
+ :maxdepth: 1
+
+ motivation/index_en.rst
+ execution/index_en.rst
+ concepts/index_en.rst
+ data_type/index_en.rst
+ memory/index_en.rst
+ muti_devices/index_en.rst
+ dynamic_rnn/index_en.rst
+ concurrent/index_en.rst
+ algorithm/index_en.rst
+ network/index_en.rst
+ modules/index_en.rst
+ interface/index_en.rst
+ dist_train/index_en.rst
diff --git a/doc/fluid/design/interface/index_cn.rst b/doc/fluid/design/interface/index_cn.rst
new file mode 100644
index 0000000000000000000000000000000000000000..69a8d9bad4fe88935b9fa87757abf0105ca8eb75
--- /dev/null
+++ b/doc/fluid/design/interface/index_cn.rst
@@ -0,0 +1,4 @@
+多语言接口
+------------
+
+TBD
diff --git a/doc/fluid/design/interface/index_en.rst b/doc/fluid/design/interface/index_en.rst
new file mode 100644
index 0000000000000000000000000000000000000000..22abc71f984aa5da7151d5ebf0c3bdbcc69a3624
--- /dev/null
+++ b/doc/fluid/design/interface/index_en.rst
@@ -0,0 +1,4 @@
+Multi-Language Interface
+-----------------------
+
+TBD
diff --git a/doc/fluid/design/memory/index_cn.rst b/doc/fluid/design/memory/index_cn.rst
new file mode 100644
index 0000000000000000000000000000000000000000..c507c638bd1a6eb428175ed2756a6ecfc6cca198
--- /dev/null
+++ b/doc/fluid/design/memory/index_cn.rst
@@ -0,0 +1,7 @@
+内存管理
+------------
+
+.. toctree::
+ :maxdepth: 1
+
+ memory_optimization.md
diff --git a/doc/fluid/design/memory/index_en.rst b/doc/fluid/design/memory/index_en.rst
new file mode 100644
index 0000000000000000000000000000000000000000..f7526437a73a09b300f05e138084755f5528b242
--- /dev/null
+++ b/doc/fluid/design/memory/index_en.rst
@@ -0,0 +1,7 @@
+Memory Management
+-------------------
+
+.. toctree::
+ :maxdepth: 1
+
+ memory_optimization.md
diff --git a/doc/fluid/design/modules/evaluator.md b/doc/fluid/design/modules/evaluator.md
index 11cc129d56905a9ee666da92fbe6f8559c6d325a..de9605b0e67a035ab1ef1e4cafbe838f83bc5807 100644
--- a/doc/fluid/design/modules/evaluator.md
+++ b/doc/fluid/design/modules/evaluator.md
@@ -1,10 +1,10 @@
-## Evaluator Design
+# Evaluator Design
-### Problem Statement
+## Problem Statement
During training or inference, we provide an evaluation function to measure the model performance, for example, accuracy, precision, etc. In the operator based framework design, the data passes through the network pipeline batch by batch. As a result, inside the operator, we only calculate the metrics for one minibatch. Thus, we need to provide a mechanism to calculate the metrics for each N pass/batch the user wants.
-### Evaluator Design
+## Evaluator Design
Currently, every operation is expressed in the graph. We divide the evaluator process into three steps.
1. Initialize the metric state and add it into the block.
@@ -14,11 +14,11 @@ Currently, every operation is expressed in the graph. We divide the evaluator pr
3. Merge the mini-batch statistics to form the evaluation result for multiple mini-batches. When it comes to distributed training/Multi-GPU training, aggregate the value from different devices.
-### Implementation
-This design is shown in the Python API.
-Each metric operator needs to caculate the metric statistic and return the batch-aware states. Python side is responsible for accumulating the states for each pass.
+## Implementation
+This design is shown in the Python API.
+Each metric operator needs to caculate the metric statistic and return the batch-aware states. Python side is responsible for accumulating the states for each pass.
+
-
```python
class Evaluator(object):
"""
@@ -32,7 +32,7 @@ class Evaluator(object):
The initialization of Evaluator should be responsible for:
create metric states and append to the main_program
- """
+ """
pass
def _update_ops(self, input, label, **kwargs)
@@ -40,14 +40,14 @@ class Evaluator(object):
Add mini-batch evaluator caculate operators to the main_program.
Add increment operator to accumulate the metric states.
"""
-
+
def reset(self, executor, reset_program=None):
"""
Reset metric states at the begin of each pass/user specified batch number.
Execute the reset_program to reset the states.
"""
-
+
def eval(self, executor, eval_program=None):
"""
diff --git a/doc/fluid/design/modules/index_cn.rst b/doc/fluid/design/modules/index_cn.rst
new file mode 100644
index 0000000000000000000000000000000000000000..b25783f0f5120991c29ba31b7b512bd4c183eecf
--- /dev/null
+++ b/doc/fluid/design/modules/index_cn.rst
@@ -0,0 +1,14 @@
+代码结构和重要模块
+-----------------
+
+.. toctree::
+ :maxdepth: 1
+
+ backward.md
+ python_api.md
+ regularization.md
+ infer_var_type.md
+ optimizer.md
+ prune.md
+ register_grad_op.md
+ net_op_design.md
diff --git a/doc/fluid/design/modules/index_en.rst b/doc/fluid/design/modules/index_en.rst
new file mode 100644
index 0000000000000000000000000000000000000000..2108156e080996916f2650448f0a56f998757204
--- /dev/null
+++ b/doc/fluid/design/modules/index_en.rst
@@ -0,0 +1,14 @@
+Code Structure and Important Modules
+-------------------------------------
+
+.. toctree::
+ :maxdepth: 1
+
+ backward.md
+ python_api.md
+ regularization.md
+ infer_var_type.md
+ optimizer.md
+ prune.md
+ register_grad_op.md
+ net_op_design.md
diff --git a/doc/fluid/design/modules/net_op_design.md b/doc/fluid/design/modules/net_op_design.md
index a5f0483081e8a03b2d001a551fcc02bbd392016d..e64ac2fb1c6898bfeb883250347da3d9a4757b97 100644
--- a/doc/fluid/design/modules/net_op_design.md
+++ b/doc/fluid/design/modules/net_op_design.md
@@ -1,16 +1,16 @@
# Network Design
`Network` is the container and controller of a set of operators,
-user can build a real network from a `NetDesc` which is a protobuf message
+user can build a real network from a `NetDesc` which is a protobuf message
and use `Network.Run()` to run all the operators in the network.
-A network object knows all Operators belonging to this network. Variables,
-which are inputs and outputs of these operators,
+A network object knows all Operators belonging to this network. Variables,
+which are inputs and outputs of these operators,
are created and managed by a hierarchy of Scope objects.
-# API
+## API
-## Net
+### Net
To make the `Network` extendable, a base class is defined like this
```c++
@@ -43,8 +43,8 @@ class Net {
};
```
-All network implementations should build networks from a protobuf message which
-describes the structure of a real network; `Run` method should be implemented by
+All network implementations should build networks from a protobuf message which
+describes the structure of a real network; `Run` method should be implemented by
all implementations to offer a universal method to forward or backward compute a network.
`Net::Create` is a method of factory pattern and can be implemented like
@@ -64,7 +64,7 @@ std::unique Net::Create(const NetDesc& def) {
```
Network is designed as the container of operators. to make it more extendable,
-we decouple it from the related variable resources.
+we decouple it from the related variable resources.
`Run(Scope* scope)` takes the scope as a argument so that it can run in different scopes.
@@ -80,7 +80,7 @@ if (net) {
}
```
-## `PlainNet` as a simple implementation of `BaseNet`
+### `PlainNet` as a simple implementation of `BaseNet`
A very basic implementation is as follows. All it does is simply to run every operators in sequence.
@@ -211,9 +211,9 @@ class NetBuilder final {
}
```
-## Compatibility with RNN
+### Compatibility with RNN
-Benefitting from the decoupling of `PlainNet.Run` and `Scope`, `PlainNet` is compatible with future RNN design,
+Benefitting from the decoupling of `PlainNet.Run` and `Scope`, `PlainNet` is compatible with future RNN design,
for example we can implement a simple recurrent neural network as follows
```c++
diff --git a/doc/fluid/design/modules/optimizer.md b/doc/fluid/design/modules/optimizer.md
index 691081c268b848811bf5ee6d6a41edfe0f47eec0..1c25fde9cafb322f789662077d3fc6cc1d64ce38 100644
--- a/doc/fluid/design/modules/optimizer.md
+++ b/doc/fluid/design/modules/optimizer.md
@@ -1,6 +1,6 @@
-## Optimizer Design
+# Optimizer Design
-### The Problem
+## The Problem
A PaddlePaddle program, or a block, is a sequence of operators operating variables. A training program needs to do three kinds of works:
@@ -19,7 +19,7 @@ It's true that users should be able to create all these operators manually by ca
In this design, we propose a high-level API that automatically derives the optimisation pass and operators from the forward pass.
-### High-level Python API to describe the training process
+## High-level Python API to describe the training process
1. User write code to describe the network:
@@ -54,7 +54,7 @@ In this design, we propose a high-level API that automatically derives the optim
sess.run(target= opt_op_list, ...)
```
-#### Optimizer Python interface:
+### Optimizer Python interface:
```python
class Optimizer(object):
diff --git a/doc/fluid/design/modules/python_api.md b/doc/fluid/design/modules/python_api.md
index 73f6d7b90c7dca0d48109cf3d28d5f7cd56b5c0b..f83ad3b6a4e8b4d82d8fe8d4154a2739a9b9628b 100644
--- a/doc/fluid/design/modules/python_api.md
+++ b/doc/fluid/design/modules/python_api.md
@@ -2,12 +2,33 @@
Due to the refactorization of the PaddlePaddle core, we need Python classes to construct corresponding protobuf messages that describe a DL program.
-| Python classes | Protobuf messages |
-| --- | --- |
-| Program | ProgramDesc |
-| Block | BlockDesc |
-| Operator | OpDesc |
-| Variable | VarDesc |
+
+
+
+Python classes |
+Protobuf messages |
+
+
+
+
+Program |
+ProgramDesc |
+
+
+Block |
+BlockDesc |
+
+
+Operator |
+OpDesc |
+
+
+Variable |
+VarDesc |
+
+
+
+
Please be aware that these Python classes need to maintain some construction-time information, which are not part of the protobuf messages.
diff --git a/doc/fluid/design/motivation/fluid.md b/doc/fluid/design/motivation/fluid.md
index 110b7d78bf12ac8328fb3a913e4386e75d63c995..5e147f8263e685a4665b5793f7127178cbc3cfdd 100644
--- a/doc/fluid/design/motivation/fluid.md
+++ b/doc/fluid/design/motivation/fluid.md
@@ -10,11 +10,37 @@ Fluid is the answer. Fluid is similar to PyTorch and TensorFlow Eager Execution
Deep learning infrastructure is one of the fastest evolving technologies. Within four years, there have already been three generations of technologies invented.
-| Existed since | model as sequence of layers | model as graph of operators | No model |
-|--|--|--|--|
-| 2013 | Caffe, Theano, Torch, PaddlePaddle | | |
-| 2015 | | TensorFlow, MxNet, Caffe2, ONNX, n-graph | |
-| 2016 | | | PyTorch, TensorFlow Eager Execution, PaddlePaddle Fluid |
+
+
+
+Existed since |
+model as sequence of layers |
+model as graph of operators |
+No model |
+
+
+
+
+2013 |
+Caffe, Theano, Torch, PaddlePaddle |
+ |
+ |
+
+
+2015 |
+ |
+TensorFlow, MxNet, Caffe2, ONNX, n-graph |
+ |
+
+
+2016 |
+ |
+ |
+ PyTorch, TensorFlow Eager Execution, PaddlePaddle Fluid |
+
+
+
+
From the above table, we see that the deep learning technology is evolving towards getting rid of the concept of a model. To understand the reasons behind this direction, a comparison of the *programming paradigms* or the ways to program deep learning applications using these systems, would be helpful. The following section goes over these.
diff --git a/doc/fluid/design/motivation/index_cn.rst b/doc/fluid/design/motivation/index_cn.rst
new file mode 100644
index 0000000000000000000000000000000000000000..7706e73eca644ed6db772fd77da947395313237f
--- /dev/null
+++ b/doc/fluid/design/motivation/index_cn.rst
@@ -0,0 +1,10 @@
+设计动机和目标
+-------------
+
+.. toctree::
+ :maxdepth: 1
+
+ api.md
+ refactorization.md
+ fluid.md
+ fluid_compiler.md
diff --git a/doc/fluid/design/motivation/index_en.rst b/doc/fluid/design/motivation/index_en.rst
new file mode 100644
index 0000000000000000000000000000000000000000..10b64b257c604ced6b957d6d6018e8a363f00fac
--- /dev/null
+++ b/doc/fluid/design/motivation/index_en.rst
@@ -0,0 +1,10 @@
+Design Motivations and Goals
+--------------------------------------
+
+.. toctree::
+ :maxdepth: 1
+
+ api.md
+ refactorization.md
+ fluid.md
+ fluid_compiler.md
diff --git a/doc/fluid/design/motivation/refactorization.md b/doc/fluid/design/motivation/refactorization.md
index f93d6155e1764386b01d2f0df3f141ab75cd55d4..f199cc892f5e84f0a12abe3b8e5cace9849e7fa8 100644
--- a/doc/fluid/design/motivation/refactorization.md
+++ b/doc/fluid/design/motivation/refactorization.md
@@ -36,11 +36,37 @@ At compile time, the Python program generates a protobuf message representation
At runtime, the C++ program realizes the graph and runs it.
-| | Representation (protobuf messages) | Realization (C++ class objects) |
-|---|---|---|
-|Data|[VarDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L107)|[Variable](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h#L24)|
-|Operation|[OpDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L35)|[Operator](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L64)|
-|Block|BlockDesc|Block|
+
+
+
+ |
+Representation (protobuf messages) |
+Realization (C++ class objects) |
+
+
+
+
+Data |
+
+VarDesc |
+
+Variable |
+
+
+Operation |
+
+OpDesc |
+
+Operator |
+
+
+Block |
+BlockDesc |
+Block |
+
+
+
+
The word *graph* is interchangeable with *block* in this document. A graph consists of computation steps and local variables similar to a C++/Java program block, or a pair of parentheses(`{` and `}`).
@@ -97,13 +123,13 @@ Compile Time -> IR -> Runtime
---
-# Operator/OpWithKernel/OpKernel
+## Operator/OpWithKernel/OpKernel
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/49caf1fb70820fb4a6c217634317c9306f361f36/op_op_with_kern_class_diagram.dot)
---
-# Operator
+## Operator
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/dd598e8f1976f5759f58af5e5ef94738a6b2e661/op.dot)
* `Operator` is the fundamental building block of the user interface.
@@ -113,7 +139,7 @@ Compile Time -> IR -> Runtime
---
-# OpWithKernel/Kernel
+## OpWithKernel/Kernel
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/9d7f4eba185cf41c8e2fbfb40ae21890dbddcd39/op_with_kernel.dot)
@@ -124,7 +150,7 @@ Compile Time -> IR -> Runtime
---
-# Why separate Kernel and Operator
+## Why separate Kernel and Operator
* Separate GPU and CPU code.
* Make Paddle capable of running without GPU.
@@ -132,7 +158,7 @@ Compile Time -> IR -> Runtime
* For example, same multiplication op can have different implementations kernels such as FP16 kernel, FP32 kernel, MKL, eigen kernel.
---
-# Libraries for Kernel development
+## Libraries for Kernel development
* `Eigen::Tensor` contains basic math and element-wise functions.
* Note that `Eigen::Tensor` has broadcast implementation.
@@ -143,16 +169,16 @@ Compile Time -> IR -> Runtime
* Hand-writing `GPUKernel` and `CPU` code
* Do not write in header (`.h`) files. CPU Kernel should be in cpp source (`.cc`) and GPU kernels should be in cuda (`.cu`) files. (GCC cannot compile GPU code.)
---
-# Operator Registration
+## Operator Registration
-## Why is registration necessary?
+### Why is registration necessary?
We need a method to build mappings between Op type names and Op classes.
-## How is registration implemented?
+### How is registration implemented?
Maintaining a map, whose key is the type name and the value is the corresponding Op constructor.
---
-# The Registry Map
+## The Registry Map
### `OpInfoMap`
@@ -166,7 +192,7 @@ Maintaining a map, whose key is the type name and the value is the corresponding
- **`checker`**: Used to check attributes.
---
-# Related Concepts
+## Related Concepts
### Op_Maker
It's constructor takes `proto` and `checker`. They are completed during Op_Maker's construction. ([ScaleOpMaker](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37))
@@ -178,7 +204,7 @@ REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class)
```
---
-# Registration Process
+## Registration Process
1. Write an Op class and its gradient Op class, if required.
2. Write an Op maker class. In the constructor of this class, describe the inputs, outputs and attributes of the operator.
3. Invoke the macro `REGISTER_OP`. This macro will
@@ -186,13 +212,13 @@ REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class)
2. Using the completed `proto` and `checker`, it will add a new key-value pair to the `OpInfoMap`
---
-# Backward Module (1/2)
+## Backward Module (1/2)
### Create Backward Operator
- Mapping from forward Op to backward Op
![backward](https://gist.githubusercontent.com/dzhwinter/a6fbd4623ee76c459f7f94591fd1abf0/raw/61026ab6e518e66bde66a889bc42557a1fccff33/backward.png)
---
-# Backward Module (2/2)
+## Backward Module (2/2)
### Build Backward Network
- **Input**: a graph of forward operators
- **Output**: a graph of backward operators
@@ -205,7 +231,7 @@ REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class)
---
-# Scope, Variable, Tensor
+## Scope, Variable, Tensor
* `Tensor` is an n-dimension array with type.
* Only dims and data pointers are stored in `Tensor`.
@@ -218,8 +244,8 @@ REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class)
* `Scope` has a hierarchical structure. The local scope can get variables from its parent scope.
---
-# Block (in design)
-## the difference between original RNNOp and Block
+## Block (in design)
+### the difference between original RNNOp and Block
- As an operator is more intuitive than `RNNOp`,
- Offers a new interface `Eval(targets)` to deduce the minimal block to `Run`,
- Fits the compile-time/ runtime separation design paradigm.
@@ -227,7 +253,7 @@ REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class)
- When graph executes, a Block with `BlockDesc` is passed. It then creates `Op` and `Var` instances and then invokes `Run`.
---
-# Milestone
+## Milestone
- Take Paddle/books as the main line, the requirement of the models motivates framework refactoring,
- Model migration
- Framework development gives **priority support** to model migration, for example,
@@ -240,7 +266,7 @@ REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class)
- Accept imperfection, concentrate on solving the specific problem at the right price.
---
-# Control the migration quality
+## Control the migration quality
- Compare the performance of migrated models with old ones.
- Follow the google C++ style guide.
- Build the automatic workflow of generating Python/C++ documentations.
diff --git a/doc/fluid/design/muti_devices/index_cn.rst b/doc/fluid/design/muti_devices/index_cn.rst
new file mode 100644
index 0000000000000000000000000000000000000000..1f8439e8623e1c1ae9a12c24d08079f0ec3d761f
--- /dev/null
+++ b/doc/fluid/design/muti_devices/index_cn.rst
@@ -0,0 +1,9 @@
+多设备支持
+------------
+
+.. toctree::
+ :maxdepth: 1
+
+ operator_kernel_type.md
+ kernel_selection.md
+ kernel_hint_design.md
diff --git a/doc/fluid/design/muti_devices/index_en.rst b/doc/fluid/design/muti_devices/index_en.rst
new file mode 100644
index 0000000000000000000000000000000000000000..819e9c5d77b2abf8da0e2ce6f494ea5174c1d0a2
--- /dev/null
+++ b/doc/fluid/design/muti_devices/index_en.rst
@@ -0,0 +1,9 @@
+Multi-Device Support
+----------------------
+
+.. toctree::
+ :maxdepth: 1
+
+ operator_kernel_type.md
+ kernel_selection.md
+ kernel_hint_design.md
diff --git a/doc/fluid/design/muti_devices/kernel_hint_design.md b/doc/fluid/design/muti_devices/kernel_hint_design.md
index a54b7da045e1a362626ef066f9ebb56af2c3181a..728c8f0b964c02c1efa019945f7427fa879d3aa1 100644
--- a/doc/fluid/design/muti_devices/kernel_hint_design.md
+++ b/doc/fluid/design/muti_devices/kernel_hint_design.md
@@ -1,4 +1,4 @@
-## Problem
+# Problem
In PaddlePaddle's [Design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/switch_kernel.md), one Operator may have multiple kernels. Users may have some personal preference to choose a certain type of kernel for an operator, such as `force_cpu` to choose a CPU kernel, `use_cudnn` to choose a CUDNN kernel, we need to provide a way for users to do this.
In the current design, we use KernelType to describe one kernel.
diff --git a/doc/fluid/design/muti_devices/kernel_selection.md b/doc/fluid/design/muti_devices/kernel_selection.md
index 9719e031c70979cd95400701efd30879662e19bc..39ea2b00090a864f95610d6d2846ca5e5c904e78 100644
--- a/doc/fluid/design/muti_devices/kernel_selection.md
+++ b/doc/fluid/design/muti_devices/kernel_selection.md
@@ -1,4 +1,4 @@
-## Background
+# Background
Every operator has many kernels because there are multiple data types, places, data layout, library type that Fluid supports. We use the `OpKernelType ` to describe kernel types that operators can hold.
The `OpKernelType ` is as follows:
diff --git a/doc/fluid/design/network/deep_speech_2.md b/doc/fluid/design/network/deep_speech_2.md
index af0c6ef36feba9e0239e7a5f81a8dc9108b2471a..7f5dcf55f9f2a0fd27ffde100510dd8fee305381 100644
--- a/doc/fluid/design/network/deep_speech_2.md
+++ b/doc/fluid/design/network/deep_speech_2.md
@@ -1,4 +1,4 @@
-# DeepSpeech2 on PaddlePaddle: Design Doc
+# DeepSpeech2 on PaddlePaddle: Design Doc
We are planning to build Deep Speech 2 (DS2) \[[1](#references)\], a powerful Automatic Speech Recognition (ASR) engine, on PaddlePaddle. For the first-stage plan, we have the following short-term goals:
@@ -68,11 +68,33 @@ We roughly break down the project into 14 tasks:
Tasks parallelizable within phases:
-Roadmap | Description | Parallelizable Tasks
------------ | :------------------------------------ | :--------------------
-Phase I | Simplified model & components | *Task 1* ~ *Task 8*
-Phase II | Standard model & benchmarking & profiling | *Task 9* ~ *Task 12*
-Phase III | Documentations | *Task13* ~ *Task14*
+
+
+
+Roadmap |
+Description |
+ Parallelizable Tasks |
+
+
+
+
+Phase I |
+Simplified model & components |
+Task 1 ~ Task 8 |
+
+
+Phase II |
+ Standard model & benchmarking & profiling |
+Task 9 ~ Task 12 |
+
+
+Phase III |
+ Documentations |
+ Task13 ~ Task14 |
+
+
+
+
Issue for each task will be created later. Contributions, discussions and comments are all highly appreciated and welcomed!
@@ -102,37 +124,82 @@ We don't have to persist on this 2-3-7-1-1-1 depth \[[2](#references)\]. Similar
Key ingredients about the layers:
-- **Data Layers**:
+- **Data Layers**:
- Frame sequences data of audio **spectrogram** (with FFT).
- - Token sequences data of **transcription** text (labels).
+ - Token sequences data of **transcription** text (labels).
- These two type of sequences do not have the same lengthes, thus a CTC-loss layer is required.
-- **2D Convolution Layers**:
+- **2D Convolution Layers**:
- Not only temporal convolution, but also **frequency convolution**. Like a 2D image convolution, but with a variable dimension (i.e. temporal dimension).
- With striding for only the first convlution layer.
- No pooling for all convolution layers.
-- **Uni-directional RNNs**
+- **Uni-directional RNNs**
- Uni-directional + row convolution: for low-latency inference.
- Bi-direcitional + without row convolution: if we don't care about the inference latency.
- **Row convolution**:
- For looking only a few steps ahead into the feature, instead of looking into a whole sequence in bi-directional RNNs.
- - Not nessesary if with bi-direcitional RNNs.
+ - Not nessesary if with bi-direcitional RNNs.
- "**Row**" means convolutions are done within each frequency dimension (row), and no convolution kernels shared across.
- **Batch Normalization Layers**:
- Added to all above layers (except for data and loss layer).
- Sequence-wise normalization for RNNs: BatchNorm only performed on input-state projection and not state-state projection, for efficiency consideration.
-
-
-Required Components | PaddlePaddle Support | Need to Develop
-:------------------------------------- | :-------------------------------------- | :-----------------------
-Data Layer I (Spectrogram) | Not supported yet. | TBD (Task 3)
-Data Layer II (Transcription) | `paddle.data_type.integer_value_sequence` | -
-2D Convolution Layer | `paddle.layer.image_conv_layer` | -
-DataType Converter (vec2seq) | `paddle.layer.block_expand` | -
-Bi-/Uni-directional RNNs | `paddle.layer.recurrent_group` | -
-Row Convolution Layer | Not supported yet. | TBD (Task 4)
-CTC-loss Layer | `paddle.layer.warp_ctc` | -
-Batch Normalization Layer | `paddle.layer.batch_norm` | -
-CTC-Beam search | Not supported yet. | TBD (Task 6)
+
+
+
+
+Required Components |
+ PaddlePaddle Support |
+ Need to Develop |
+
+
+
+
+Data Layer I (Spectrogram) |
+Not supported yet. |
+TBD (Task 3) |
+
+
+Data Layer II (Transcription) |
+ paddle.data_type.integer_value_sequence |
+ - |
+
+
+2D Convolution Layer |
+ paddle.layer.image_conv_layer |
+ - |
+
+
+DataType Converter (vec2seq) |
+ paddle.layer.block_expand |
+ - |
+
+
+Bi-/Uni-directional RNNs |
+paddle.layer.recurrent_group |
+ - |
+
+
+Row Convolution Layer |
+Not supported yet. |
+TBD (Task 4) |
+
+
+CTC-loss Layer |
+paddle.layer.warp_ctc |
+ - |
+
+
+Batch Normalization Layer |
+paddle.layer.batch_norm |
+ - |
+
+
+CTC-Beam search |
+Not supported yet. |
+ TBD (Task 6) |
+
+
+
+
### Row Convolution
@@ -145,14 +212,14 @@ TODO by Assignees
Figure 2. Algorithm for CTC Beam Search Decoder.
-- The **Beam Search Decoder** for DS2 CTC-trained network follows the similar approach in \[[3](#references)\] as shown in Figure 2, with two important modifications for the ambiguous parts:
- - 1) in the iterative computation of probabilities, the assignment operation is changed to accumulation for one prefix may comes from different paths;
+- The **Beam Search Decoder** for DS2 CTC-trained network follows the similar approach in \[[3](#references)\] as shown in Figure 2, with two important modifications for the ambiguous parts:
+ - 1) in the iterative computation of probabilities, the assignment operation is changed to accumulation for one prefix may comes from different paths;
- 2) the if condition ```if l^+ not in A_prev then``` after probabilities' computation is deprecated for it is hard to understand and seems unnecessary.
- An **external scorer** would be passed into the decoder to evaluate a candidate prefix during decoding whenever a white space appended in English decoding and any character appended in Mandarin decoding.
- Such external scorer consists of language model, word count or any other custom scorers.
- The **language model** is built from Task 5, with parameters should be carefully tuned to achieve minimum WER/CER (c.f. Task 7)
-- This decoder needs to perform with **high efficiency** for the convenience of parameters tuning and speech recognition in reality.
-
+- This decoder needs to perform with **high efficiency** for the convenience of parameters tuning and speech recognition in reality.
+
## Future Work
diff --git a/doc/fluid/design/network/index_cn.rst b/doc/fluid/design/network/index_cn.rst
new file mode 100644
index 0000000000000000000000000000000000000000..3557d55fe4dbae1f712e0760ca15111ec6f6792d
--- /dev/null
+++ b/doc/fluid/design/network/index_cn.rst
@@ -0,0 +1,7 @@
+复杂网络设计
+------------
+
+.. toctree::
+ :maxdepth: 1
+
+ sequence_decoder.md
diff --git a/doc/fluid/design/network/index_en.rst b/doc/fluid/design/network/index_en.rst
new file mode 100644
index 0000000000000000000000000000000000000000..73a7137236bdf0548d35721609351d6deca3013b
--- /dev/null
+++ b/doc/fluid/design/network/index_en.rst
@@ -0,0 +1,7 @@
+Complex Network Design
+------------------------
+
+.. toctree::
+ :maxdepth: 1
+
+ sequence_decoder.md
diff --git a/doc/fluid/dev/api_doc_std_cn.md b/doc/fluid/dev/api_doc_std_cn.md
index 5596b2653ae6ed9917f77dad08f926bcb1fb3419..b50f18f21df0787b9761bf0935ed7f4384ff0f98 100644
--- a/doc/fluid/dev/api_doc_std_cn.md
+++ b/doc/fluid/dev/api_doc_std_cn.md
@@ -45,11 +45,11 @@ API文档须使用reStructuredText格式撰写,该格式详情请参考[链接
- Python API Definition
- 格式:
-
+
[Python API Definition]
-
+
- 示例
-
+
```
fc(input,
size,
@@ -63,19 +63,19 @@ API文档须使用reStructuredText格式撰写,该格式详情请参考[链接
```
- Function Description
-
+
- 格式
本模块应包含以下内容(排列顺序为文档撰写顺序):
[Function Description]
-
+
[Formula]
-
+
[Symbols' Descriptions if necessary]
-
+
[References if necessary]
-
+
- 示例
[Function Description]
@@ -119,18 +119,18 @@ API文档须使用reStructuredText格式撰写,该格式详情请参考[链接
[References if necessary]
因fc没有必要列出的参考文献,故该内容省略。其他情况下需明确给出对应的参考文献和对应连接,以 layer_norm 为例:
-
+
```
Refer to `Layer Normalization `_ for more details.
```
-
+
- Args Description
-
+
- 格式
-
+
\[Arg's Name\][(Data Type, Default Value)][Description]
-
+
- 示例
fc的部分参数注释如下:
@@ -145,35 +145,35 @@ API文档须使用reStructuredText格式撰写,该格式详情请参考[链接
```
- Returns
-
+
- 格式
-
+
[Name][Shape]
-
+
- 示例
-
+
```
Returns:
A tensor variable storing the transformation result.
```
-
+
当返回值为包含多个参数的tuple时,应按顺序逐个介绍各参数,以dynamic_lstm为例:
-
+
```
Returns:
A tuple containing:
The hidden state of LSTM whose shape is (T X D).
The cell state of LSTM whose shape is (T X D).
```
-
+
- Raises
- 格式
-
+
[Exception Type][Condition]
- 示例
-
+
```
Raises:
ValueError: If the rank of the input is less than 2.
@@ -182,7 +182,7 @@ API文档须使用reStructuredText格式撰写,该格式详情请参考[链接
- Note
- 格式
-
+
[Note]
- 示例
@@ -198,15 +198,15 @@ API文档须使用reStructuredText格式撰写,该格式详情请参考[链接
2. When num_heads == 1, scaled_dot_product_attention has no learnable
parameters.
```
-
+
- Examples
- 格式
\[Python Code Snipper]
-
+
- 示例
-
+
```
Examples:
.. code-block:: python
diff --git a/doc/fluid/dev/api_doc_std_en.md b/doc/fluid/dev/api_doc_std_en.md
new file mode 100644
index 0000000000000000000000000000000000000000..e57072d52fd162e92a3482aef33f99ab9394c532
--- /dev/null
+++ b/doc/fluid/dev/api_doc_std_en.md
@@ -0,0 +1,226 @@
+# API Doc Standard
+
+- [API Doc Structure](#API Doc Structure)
+- [Format and Examples](#Format and Examples)
+- [Complete Example](#Complete Example)
+
+
+## API Doc Structure
+
+API Doc should contain the following parts(please write them in order):
+
+- Python API Definition
+
+ The definition of API
+
+- Function Description
+
+ Description of API's function.
+ The description includes: meaning, purpose and operation on input of API, reference and corresponding link(if any), formula(if necessary) and explanations of key variables in the formula.
+
+- Args Description
+
+ Description of API parameters.
+ Introduce parameters one by one according to the order in API definition.
+ The introduction includes: data type, default value(if any), meaning, etc.
+
+- Returns
+
+ Introduction of API returned value.
+ Introduce meaning of returned value, provide correspoding format if necessary.
+ If returned value is a tuple containing multiple parameters, then introduce parameters one by one in order.
+
+- Raises(if any)
+
+ Abnormality, error that may occur, and possible reasons. If there are more than one possible abnormity or error, they should be listed in order.
+
+- Note(if any)
+
+ Matters needing attention. If there are more than one matters, they should be listed in order.
+
+- Examples
+
+ Examples of how to use API.
+
+
+## Format and Examples
+
+API documentation must obey reStructuredText format, please refer to [here](http://sphinx-doc-zh.readthedocs.io/en/latest/rest.html).
+Format and examples of each part of API documantation are as follows: (take fc for example)
+
+- Python API Definition
+
+ - Format
+
+ [Python API Definition]
+
+ - Example
+
+ ```
+ fc(input,
+ size,
+ num_flatten_dims=1,
+ param_attr=None,
+ bias_attr=None,
+ act=None,
+ name=None,
+ main_program=None,
+ startup_program=None)
+ ```
+
+- Function Description
+
+ - Format
+
+ This part contains (please write them in order):
+
+ [Function Description]
+
+ [Formula]
+
+ [Symbols' Descriptions if necessary]
+
+ [References if necessary]
+
+ - Example
+
+ [Function Description]
+
+ ```
+ **Fully Connected Layer**
+
+ The fully connected layer can take multiple tensors as its inputs. It
+ creates a variable called weights for each input tensor, which represents
+ a fully connected weight matrix from each input unit to each output unit.
+ The fully connected layer multiplies each input tensor with its coresponding
+ weight to produce an output Tensor. If multiple input tensors are given,
+ the results of multiple multiplications will be sumed up. If bias_attr is
+ not None, a bias variable will be created and added to the output. Finally,
+ if activation is not None, it will be applied to the output as well.
+ ```
+
+ [Formula]
+
+ ```
+ This process can be formulated as follows:
+
+ .. math::
+
+ Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
+ ```
+
+ [Symbols' Descriptions if necessary]
+
+ ```
+ In the above equation:
+
+ * :math:`N`: Number of the input.
+ * :math:`X_i`: The input tensor.
+ * :math:`W`: The weights created by this layer.
+ * :math:`b`: The bias parameter created by this layer (if needed).
+ * :math:`Act`: The activation function.
+ * :math:`Out`: The output tensor.
+ ```
+
+ [References if necessary]
+
+ Since there is no need for reference of fc, we omit them here. Under other circumstances, please provide explicit reference and link, take layer_norm for example:
+
+ ```
+ Refer to `Layer Normalization `_ for more details.
+ ```
+
+
+- Args Description
+
+ - Format
+
+ \[Arg's Name\][(Data Type, Default Value)][Description]
+
+ - Example
+
+ part of fc parameters are as follows:
+
+ ```
+ Args:
+ input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
+ the input tensor(s) is at least 2.
+ param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
+ parameters/weights of this layer.
+ name (str, default None): The name of this layer.
+ ```
+
+- Returns
+
+ - Format
+
+ [Name][Shape]
+
+ - Example
+
+ ```
+ Returns:
+ A tensor variable storing the transformation result.
+ ```
+
+ when returned value contain more than one tuple, please introduce every parameter in order, take dynamic_lstm for example:
+
+ ```
+ Returns:
+ A tuple containing:
+ The hidden state of LSTM whose shape is (T X D).
+ The cell state of LSTM whose shape is (T X D).
+ ```
+
+- Raises
+
+ - Format
+
+ [Exception Type][Condition]
+
+ - Example
+
+ ```
+ Raises:
+ ValueError: If the rank of the input is less than 2.
+ ```
+
+- Note
+
+ - Format
+
+ [Note]
+
+ - Example
+
+ there is no Note in fc, so we omit this part. If there is any note, please write clearly. If there are more than one notes, please list them in order. Take scaled\_dot\_product\_attention for example:
+
+ ```
+ Note:
+ 1. When num_heads > 1, three linear projections are learned respectively
+ to map input queries, keys and values into queries', keys' and values'.
+ queries', keys' and values' have the same shapes with queries, keys
+ and values.
+ 2. When num_heads == 1, scaled_dot_product_attention has no learnable
+ parameters.
+ ```
+
+- Examples
+
+ - Format
+
+ \[Python Code Snipper]
+
+ - Example
+
+ ```
+ Examples:
+ .. code-block:: python
+
+ data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
+ fc = fluid.layers.fc(input=data, size=1000, act="tanh")
+ ```
+
+## Complete Example
+
+Complete Example of fc please see [here](src/fc.py)。
diff --git a/doc/fluid/dev/index_cn.rst b/doc/fluid/dev/index_cn.rst
index e1edf079fa0f85eb7f6709fd945fffae88625d01..f627437f354a12c79cad25c959409db29ecbd874 100644
--- a/doc/fluid/dev/index_cn.rst
+++ b/doc/fluid/dev/index_cn.rst
@@ -1,2 +1,13 @@
开发标准
------------
+
+.. toctree::
+ :maxdepth: 1
+
+ new_op_cn.md
+ new_op_kernel.md
+ use_eigen_cn.md
+ name_convention.md
+ support_new_device.md
+ releasing_process.md
+ op_markdown_format.md
diff --git a/doc/fluid/dev/index_en.rst b/doc/fluid/dev/index_en.rst
index faf9dfcd315fddc4774c3717b41086fa6c6bf85a..0b65fed67ad45eb399b624184485a99a082d79e9 100644
--- a/doc/fluid/dev/index_en.rst
+++ b/doc/fluid/dev/index_en.rst
@@ -1,4 +1,13 @@
Development
------------
-This is Development page
+.. toctree::
+ :maxdepth: 1
+
+ new_op_en.md
+ new_op_kernel.md
+ use_eigen_en.md
+ name_convention.md
+ support_new_device.md
+ releasing_process.md
+ op_markdown_format.md
diff --git a/doc/fluid/dev/name_convention.md b/doc/fluid/dev/name_convention.md
index a02b356f058da68442516c2705d0bac140f8ef18..75830ef28c67dc4694d899efe503084b7b5852e1 100644
--- a/doc/fluid/dev/name_convention.md
+++ b/doc/fluid/dev/name_convention.md
@@ -1,8 +1,8 @@
-## Operator's Parameter Name Convention
+# Operator's Parameter Name Convention
To make the operator document itself more clear, we recommend operator names obey the listing conventions.
-### OpProtoMaker names
+## OpProtoMaker names
When defining an operator in Paddle, a corresponding [OpProtoMaker](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L170) (TODO: OpProtoMaker Doc)need to be defined. All the Input/Output and Attributes will write into the [OpProto](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L61) , and will be used in client language to create operator.
@@ -20,7 +20,7 @@ When defining an operator in Paddle, a corresponding [OpProtoMaker](https://gith
- Order.
- Follow the order of Input/Output, then Attribute, then Comments. See the example in best practice.
-### Best Practice
+## Best Practice
Here we give some examples to show how these rules will be used.
diff --git a/doc/fluid/dev/new_op_cn.md b/doc/fluid/dev/new_op_cn.md
index 92996585674b46f45549b972b9f295503b1c7f8c..0c3f88d9c31e05bec399c64bf6ade56e62e01f68 100644
--- a/doc/fluid/dev/new_op_cn.md
+++ b/doc/fluid/dev/new_op_cn.md
@@ -26,13 +26,32 @@
依据是否包含kernel,可以将Op分为两种:包含Kernel的Op和不包含kernel的Op,前者Op的定义继承自`OperatorWithKernel`,后者继承自`OperatorBase`。本教程主要介绍带Kernel的Op如何写,简单总结Op需要包含的内容如下:
-
- 内容 | 定义位置
--------------- | :----------------------
-OpProtoMake定义 | `.cc`文件,Backward Op不需要定义OpProtoMake
-Op定义 | `.cc`文件
-Kernel实现 | CPU、CUDA共享Kernel实现在`.h`文件中,否则,CPU 实现在`.cc`文件中,CUDA 实现在`.cu`文件中。
-注册Op | Op注册实现在`.cc`文件;Kernel注册CPU实现在`.cc`文件中,CUDA实现在`.cu`文件中
+
+
+
+内容 |
+定义位置 |
+
+
+
+
+OpProtoMake定义 |
+`.cc`文件,Backward Op不需要定义OpProtoMake |
+
+
+Op定义 |
+ `.cc`文件 |
+
+
+Kernel实现 |
+ CPU、CUDA共享Kernel实现在`.h`文件中,否则,CPU 实现在`.cc`文件中,CUDA 实现在`.cu`文件中。 |
+
+
+注册Op |
+ Op注册实现在`.cc`文件;Kernel注册CPU实现在`.cc`文件中,CUDA实现在`.cu`文件中 |
+
+
+
实现新的op都添加至目录[paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)下,文件命名以`*_op.h`(如有) 、 `*_op.cc` 、`*_op.cu`(如有)结尾。**系统会根据文件名自动构建op和其对应的Python扩展。**
diff --git a/doc/fluid/dev/new_op_en.md b/doc/fluid/dev/new_op_en.md
index da8b1bdd1082e439456daf25e9b3a1e8eb534375..a566a09131f86251b70d5435d0a483aa2a705b35 100644
--- a/doc/fluid/dev/new_op_en.md
+++ b/doc/fluid/dev/new_op_en.md
@@ -33,6 +33,33 @@ Op definition | `.cc` files
Kernel implementation | The kernel methods shared between CPU and CUDA are defined in `.h` files. CPU-specific kernels live in `.cc` files, while CUDA-specific kernels are implemented in `.cu`files.
Registering the Op | Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the CUDA implementation.
+
+
+
+Information |
+ Where is it defined |
+
+
+
+
+OpProtoMake definition |
+ `.cc`files, Backward Op does not need an OpProtoMake interface. |
+
+
+Op definition |
+ `.cc` files |
+
+
+Kernel implementation |
+ The kernel methods shared between CPU and CUDA are defined in `.h` files. CPU-specific kernels live in `.cc` files, while CUDA-specific kernels are implemented in `.cu`files. |
+
+
+Registering the Op |
+ Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the CUDA implementation. |
+
+
+
+
New Operator implementations are added to the list [paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators), with file names in the format `*_op.h` (if applicable), `*_op.cc`, `*_op.cu` (if applicable).** The system will use the naming scheme to automatically build operators and their corresponding Python extensions.**
@@ -279,7 +306,7 @@ A forward operator unit test inherits `unittest.TestCase` and defines metaclass
def test_check_output(self):
self.check_output()
-
+
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5)
diff --git a/doc/fluid/dev/new_op_kernel_en.md b/doc/fluid/dev/new_op_kernel.md
similarity index 88%
rename from doc/fluid/dev/new_op_kernel_en.md
rename to doc/fluid/dev/new_op_kernel.md
index 123df0a7ee4943c0b789ef9cfa6e0804d0fdd564..55dea8d0a39232ede59d4663d6e1a47fbfc60853 100644
--- a/doc/fluid/dev/new_op_kernel_en.md
+++ b/doc/fluid/dev/new_op_kernel.md
@@ -1,14 +1,14 @@
-## Add Kernels for a New Device
+# Add Kernels for a New Device
-### Background
+## Background
PaddlePaddle Fluid have hundreds of operators. Each operator could have one or more kernels. A kernel is an implementation of the operator for a certain device, which could be a hardware device, e.g., the CUDA GPU, or a library that utilizes a device, e.g., Intel MKL that makes full use of the Xeon CPU.
[This document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/new_op_en.md) explains how to add an operator, and its kernels. The kernels of an operator are indexed by a C++ type [`OpKernelType`](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/operator_kernel_type.md). An operator chooses the right kernel at runtime. This choosing mechanism is described [here](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/switch_kernel.md).
-### Write Kernels for A New Device
+## Write Kernels for A New Device
-#### Add A New Device
+### Add A New Device
For some historical reaons, we misuse the word *library* for *device*. For example, we call the deivce type by *library type*. An example is the header file [`library_type.h`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/library_type.h#L24). We will correct this ASAP.
@@ -23,7 +23,7 @@ enum class LibraryType {
```
-#### Add A New [Place](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/place.h#L53)
+### Add A New [Place](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/place.h#L53)
If you have a new kind of Device, firstly you need to add a new kind of [`Place`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/place.h#L53). For example `CUDAPlace`:
@@ -45,7 +45,7 @@ struct CUDAPlace {
typedef boost::variant Place;
```
-#### Add [device context]((https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/device_context.h#L37))
+### Add [device context]((https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/device_context.h#L37))
After a new kind of Device is added, you should add a corresponding [DeviceContext](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/device_context.h#L37) for it.
```cpp
@@ -58,7 +58,7 @@ class DeviceContext {
};
```
-#### Implement new [OpKernel](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L351) for your Device.
+### Implement new [OpKernel](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L351) for your Device.
A detailed documentation can be found in [`new_op_and_kernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/new_op_en.md)
@@ -85,7 +85,7 @@ class OpKernel : public OpKernelBase {
```
-#### Register the OpKernel to framework
+### Register the OpKernel to framework
After writing the components described above, we should register the kernel to the framework.
@@ -107,7 +107,7 @@ take [`conv2d`]((https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/oper
REGISTER_OP_KERNEL(conv2d, CPU, paddle::platform::CPUPlace,
paddle::operators::GemmConvKernel,
paddle::operators::GemmConvKernel);
-
+
REGISTER_OP_KERNEL(conv2d, CUDNN, ::paddle::platform::CUDAPlace,
paddle::operators::CUDNNConvOpKernel,
paddle::operators::CUDNNConvOpKernel);
diff --git a/doc/fluid/dev/op_markdown_format.md b/doc/fluid/dev/op_markdown_format.md
index 0ee804d592252c727622cbe59b0644813db3c4fd..4e539d7992e5f67ee7b07193b59b6b425b73c9e5 100644
--- a/doc/fluid/dev/op_markdown_format.md
+++ b/doc/fluid/dev/op_markdown_format.md
@@ -15,26 +15,26 @@ The signature of the operator.
Each section mentioned above has been covered in further detail in the rest of the document.
-# PaddlePaddle Operator Name
+## PaddlePaddle Operator Name
This should be in all small letters, in case of multiple words, we separate them with an underscore. For example:
`array to lod tensor` should be written as `array_to_lod_tensor`.
This naming convention should be standard across all PaddlePaddle operators.
-# Standard Operator Name
+## Standard Operator Name
This is the standard name of the operator as used in the community. The general standard is usually:
- Standard abbreviations like `SGD` are written in all capital letters.
- Operator names that have multiple words inside a single word use `camelCase` (capitalize word boundaries inside of a word).
- Keep numbers inside a word as is, with no boundary delimiters.
- Follow the name of the operator with the keyword: `Activation Operator.`
-# Operator description
+## Operator description
This section should contain the description of what the operator does, including the operation performed, the literature from where it comes and was introduced first, and other important details. The relevant paper/article including the hyperlink should be cited in this section.
-# LaTeX equation
+## LaTeX equation
This section should contain an overall equation of the update or operation that the operator performs. The variables used in the equation should follow the naming convention of operators as described [here](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/name_convention.md). Two words in the same word should be separated by an underscore (`_`).
-# The signature
+## The signature
This section describes the signature of the operator. A list of Inputs and Outputs, each of which have a small description of what the variable represents and the type of variable. The variable names follow the `CamelCase` naming convention. The proposed format for this is:
`Section :
VariableName : (VariableType) VariableDescription
diff --git a/doc/fluid/dev/releasing_process.md b/doc/fluid/dev/releasing_process.md
index b9787261092f1f27377886152cb1596d9ff54188..0810765b85f73d9dba876e66fb43bb1ad476d6d2 100644
--- a/doc/fluid/dev/releasing_process.md
+++ b/doc/fluid/dev/releasing_process.md
@@ -66,7 +66,7 @@ PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-
* 建议,开发者fork的版本库使用`develop`分支同步主版本库的`develop`分支
* 建议,开发者fork的版本库中,再基于`develop`版本fork出自己的功能分支。
* 当功能分支开发完毕后,向PaddlePaddle的主版本库提交`Pull Reuqest`,进而进行代码评审。
- * 在评审过程中,开发者修改自己的代码,可以继续在自己的功能分支提交代码。
+ * 在评审过程中,开发者修改自己的代码,可以继续在自己的功能分支提交代码。
* BugFix分支也是在开发者自己的fork版本库维护,与功能分支不同的是,BugFix分支需要分别给主版本库的`master`、`develop`与可能有的`release/版本号`分支,同时提起`Pull Request`。
@@ -78,13 +78,116 @@ PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-
PaddlePaddle每次发版本首先要保证PaddlePaddle Book中所有章节功能的正确性。功能的正确性包括验证PaddlePaddle目前的`paddle_trainer`训练和纯使用`Python`训练模型正确性。
-| | 新手入门章节 | 识别数字 | 图像分类 | 词向量 | 情感分析 | 语意角色标注 | 机器翻译 | 个性化推荐 |
-| --- | --- | --- | --- | --- | --- | --- | --- | --- |
-| API.V2 + Docker + GPU | | | | | | | | |
-| API.V2 + Docker + CPU | | | | | | | | |
-| `paddle_trainer` + Docker + GPU | | | | | | | | |
-| `paddle_trainer` + Docker + CPU | | | | | | | | |
-| API.V2 + Ubuntu + GPU | | | | | | | | |
-| API.V2 + Ubuntu + CPU | | | | | | | | |
-| `paddle_trainer` + Ubuntu + GPU | | | | | | | | |
-| `paddle_trainer` + Ubuntu + CPU | | | | | | | | |
+
+
+
+ |
+新手入门章节 |
+ 识别数字 |
+ 图像分类 |
+词向量 |
+ 情感分析 |
+语意角色标注 |
+ 机器翻译 |
+个性化推荐 |
+
+
+
+
+
+API.V2 + Docker + GPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+ API.V2 + Docker + CPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+`paddle_trainer` + Docker + GPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+`paddle_trainer` + Docker + CPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+ API.V2 + Ubuntu + GPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+API.V2 + Ubuntu + CPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+ `paddle_trainer` + Ubuntu + GPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
+ `paddle_trainer` + Ubuntu + CPU |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+
+
+
diff --git a/doc/fluid/dev/use_eigen_cn.md b/doc/fluid/dev/use_eigen_cn.md
index f36843b4408c21bdca1fa83853e5b0a40116791c..75922e7d85a13e53ce94619a48d8da8b960e6c9a 100644
--- a/doc/fluid/dev/use_eigen_cn.md
+++ b/doc/fluid/dev/use_eigen_cn.md
@@ -1,16 +1,16 @@
-## 在Paddle中如何使用Eigen
+# 在Paddle中如何使用Eigen
神经网络本质上是一个计算图,计算需要的数据存放在`Tensor`中,而计算过程是由`Operartor`来描述的。在执行时,`Operator`调用对应`OpKernel`中的`Compute`接口,实现对`Tensor`的操作。
-### Eigen Tensor模块
+## Eigen Tensor模块
Eigen Tensor模块对element-wise计算提供了强大的支持,并且书写一份代码,可以同时在CPU、GPU执行。但Eigen Tensor是一个正在开发中的模块,因此可能测试不够完备,文档较少。
关于Eigen Tensor模块的详细介绍请参考[文档1](https://github.com/RLovelett/eigen/blob/master/unsupported/Eigen/CXX11/src/Tensor/README.md) 和[文档2](https://bitbucket.org/eigen/eigen/src/default/unsupported/Eigen/CXX11/src/Tensor/README.md)
-### paddle::framework::Tensor
+## paddle::framework::Tensor
Paddle Tensor定义在framework目录下,其主要接口如下:
@@ -20,14 +20,14 @@ class Tensor {
/*! Return a pointer to mutable memory block. */
template
inline T* data();
-
+
/**
* @brief Return a pointer to mutable memory block.
* @note If not exist, then allocation.
*/
template
inline T* mutable_data(platform::Place place);
-
+
/**
* @brief Return a pointer to mutable memory block.
*
@@ -38,17 +38,17 @@ class Tensor {
*/
template
inline T* mutable_data(DDim dims, platform::Place place);
-
+
/*! Resize the dimensions of the memory block. */
inline Tensor& Resize(const DDim& dims);
-
+
/*! Return the dimensions of the memory block. */
inline const DDim& dims() const;
private:
/*! holds the memory block if allocated. */
std::shared_ptr holder_;
-
+
/*! points to dimensions of memory block. */
DDim dim_;
};
@@ -129,7 +129,7 @@ From是EigenTensor模板提供的一个接口,可以实现从paddle::framework
-### 实现计算
+## 实现计算
当需要完成计算时,我们需要等式左边的EigenTensor调用device接口。在这里需要注意的是,这里的EigenTensor之间的运算只是改变了原有Tensor中的数据,而不会改变原有Tensor的shape信息。
diff --git a/doc/fluid/dev/use_eigen_en.md b/doc/fluid/dev/use_eigen_en.md
index 3a466f73d1f9b94a29b171015279c782ca50bd02..3313d097cb21e40c23aa13187b6a50562f12403a 100644
--- a/doc/fluid/dev/use_eigen_en.md
+++ b/doc/fluid/dev/use_eigen_en.md
@@ -1,9 +1,9 @@
-## How to use Eigen in Paddle
+# How to use Eigen in Paddle
Essentially, a neural network is a compute graph. T data needed for the computation is stored in `Tensor`s and its computation procedure is described by `Operator`s. An `Operator` calls the `Compute` interface in its corresponding `OpKernel` and operates on the `Tensor`.
-### Eigen Tensor Module
+## Eigen Tensor Module
The Eigen Tensor module supports powerful element-wise computation. In addition, a piece of code written using it can be run on both the CPU and the GPU.
@@ -12,7 +12,7 @@ Note that Eigen Tensor is still being actively developed, so its tests are not c
For details on Eigen Tensor module, please see [doc 1](https://github.com/RLovelett/eigen/blob/master/unsupported/Eigen/CXX11/src/Tensor/README.md) and [doc 2](https://bitbucket.org/eigen/eigen/src/default/unsupported/Eigen/CXX11/src/Tensor/README.md).
-### paddle::framework::Tensor
+## paddle::framework::Tensor
Paddle Tensor's is defined in the framework directory with the following interface:
@@ -105,7 +105,7 @@ void Compute(const framework::ExecutionContext& context) const override {
```
-### paddle::framework::Tensor到EigenTensor的转换
+## paddle::framework::Tensor到EigenTensor的转换
As shown above, in actual computation, we need to transform the input and output `Tensor`s into formats Eigen supports. We show some functions in [eigen.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/eigen.h) to implement the transformation from `paddle::framework::Tensor`to `EigenTensor/EigenMatrix/EigenVector/EigenScalar`.
@@ -129,7 +129,7 @@ For more transformations, see the [unit tests](https://github.com/PaddlePaddle/P
-### Implementing Computation
+## Implementing Computation
While computing, the device interface is needed from the EigenTensors on the left hand side of the assignments. Note that the computation between EigenTensors only changes the data originally inthe Tensor and does not change all the shape information associated with the Tensor.
diff --git a/doc/fluid/getstarted/concepts/index_cn.rst b/doc/fluid/getstarted/concepts/index_cn.rst
new file mode 100644
index 0000000000000000000000000000000000000000..2e7f70fc4cb871a80ffaffec6c06797973cd2f85
--- /dev/null
+++ b/doc/fluid/getstarted/concepts/index_cn.rst
@@ -0,0 +1,4 @@
+基本使用概念
+============
+
+TBD
diff --git a/doc/fluid/getstarted/concepts/index_en.rst b/doc/fluid/getstarted/concepts/index_en.rst
new file mode 100644
index 0000000000000000000000000000000000000000..78cca1e2a3443c2949ca0655190b0f05502f519a
--- /dev/null
+++ b/doc/fluid/getstarted/concepts/index_en.rst
@@ -0,0 +1,4 @@
+Concepts
+============
+
+TBD
diff --git a/doc/fluid/getstarted/concepts/save_model/model_format.md b/doc/fluid/getstarted/concepts/save_model/model_format.md
index e29129fddf775939c9f7a8b49d850d523e6e5a45..1f12ba0497369eacc6a2db7984781b5672f45ea1 100644
--- a/doc/fluid/getstarted/concepts/save_model/model_format.md
+++ b/doc/fluid/getstarted/concepts/save_model/model_format.md
@@ -4,30 +4,70 @@
A model is an output of the training process. One complete model consists of two parts, the **topology** and the **parameters**. In order to support industrial deployment, the model format must be self-complete and must not expose any training source code.
-As a result, In PaddlePaddle, the **topology** is represented as a [ProgramDesc](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/doc/design/program.md), which describes the model structure. The **parameters** contain all the trainable weights in the model. We must support large size parameters and efficient serialization/deserialization of parameters.
+As a result, In PaddlePaddle, the **topology** is represented as a [ProgramDesc](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/doc/design/program.md), which describes the model structure. The **parameters** contain all the trainable weights in the model. We must support large size parameters and efficient serialization/deserialization of parameters.
## Implementation
-The topology is saved as a plain text in a detailed self-contain protobuf file.
+The topology is saved as a plain text in a detailed self-contain protobuf file.
The parameters are saved as a binary file. As we all know, the protobuf message has a limit of [64M size](https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.io.coded_stream#CodedInputStream.SetTotalBytesLimit.details). We have done a [benchmark experiment](https://github.com/PaddlePaddle/Paddle/pull/4610), which shows that protobuf is not fit for the task.
-As a result, we design a particular format for tensor serialization. By default, an arbitrary tensor in Paddle is a [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md), and has a description information proto of [LoDTensorDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L99). We save the DescProto as the byte string header. It contains all the necessary information, such as the `dims`, and the `LoD` information in [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/paddle/framework/lod_tensor.md). A tensor stores values in a continuous memory buffer. For speed we dump the raw memory to disk and save it as the byte string content. So, the binary format of one tensor is,
+As a result, we design a particular format for tensor serialization. By default, an arbitrary tensor in Paddle is a [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md), and has a description information proto of [LoDTensorDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L99). We save the DescProto as the byte string header. It contains all the necessary information, such as the `dims`, and the `LoD` information in [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/paddle/framework/lod_tensor.md). A tensor stores values in a continuous memory buffer. For speed we dump the raw memory to disk and save it as the byte string content. So, the binary format of one tensor is,
The table below shows a tensor's byte view in detail. Note that all the signed values are written in the little-endian format.
-|field name | type | description |
-| --- | --- | --- |
-| version | uint32_t | Version of saved file. Always 0 now. |
-| tensor desc length | uint32_t | TensorDesc(Protobuf message) length in bytes. |
-| tensor desc | void* | TensorDesc protobuf binary message |
-| tensor data | void* | Tensor's data in binary format. The length of `tensor_data` is decided by `TensorDesc.dims()` and `TensorDesc.data_type()` |
-| lod_level | uint64_t | Level of LoD |
-| length of lod[0] | uint64_t | [Optional] length of lod[0] in bytes. |
-| data of lod[0] | uint64_t* | [Optional] lod[0].data() |
-| ... | ... | ... |
-
+
+
+
+field name |
+type |
+description |
+
+
+
+
+ version |
+ uint32_t |
+ Version of saved file. Always 0 now. |
+
+
+ tensor desc length |
+ uint32_t |
+ TensorDesc(Protobuf message) length in bytes. |
+
+
+tensor desc |
+ void* |
+ TensorDesc protobuf binary message |
+
+
+ tensor data |
+ void* |
+ Tensor's data in binary format. The length of `tensor_data` is decided by `TensorDesc.dims()` and `TensorDesc.data_type()` |
+
+
+ lod_level |
+ uint64_t |
+ Level of LoD |
+
+
+ length of lod[0] |
+ uint64_t |
+ [Optional] length of lod[0] in bytes. |
+
+
+ data of lod[0] |
+ uint64_t* |
+ [Optional] lod[0].data() |
+
+
+... |
+ ... |
+ ... |
+
+
+
## Summary
diff --git a/doc/fluid/getstarted/index_cn.rst b/doc/fluid/getstarted/index_cn.rst
index c4d8525f23ee18cb7f41ab2f0d148fc1dcc852b2..75af7354be93a6eeabfa9ccf86903505402a7ca6 100644
--- a/doc/fluid/getstarted/index_cn.rst
+++ b/doc/fluid/getstarted/index_cn.rst
@@ -1,4 +1,19 @@
新手入门
-------------
+============
-新手入门
+
+如果需要快速了解PaddlePaddle的使用,可以参考以下指南。
+
+.. toctree::
+ :maxdepth: 1
+
+ quickstart_cn.rst
+
+
+在使用PaddlePaddle构建应用时,需要了解一些基本概念。
+这里以一个线性回归为例子,详细介绍了PaddlePaddle的使用流程,包括数据格式,模型配置与训练等。
+
+.. toctree::
+ :maxdepth: 1
+
+ concepts/use_concepts_cn.rst
diff --git a/doc/fluid/getstarted/index_en.rst b/doc/fluid/getstarted/index_en.rst
index a4efd05e2fd94ac0e2cbbc8603e6b0261b7e787f..75a43f4af87c34830ec940068196e6ca72640501 100644
--- a/doc/fluid/getstarted/index_en.rst
+++ b/doc/fluid/getstarted/index_en.rst
@@ -1,4 +1,18 @@
GET STARTED
-------------
+============
-This is get started page
+If you want to quickly know how to use PaddlePaddle, please refer to the following guide:
+
+.. toctree::
+ :maxdepth: 1
+
+ quickstart_en.rst
+
+While using PaddlePaddle to build applications, please understand some basic concepts.
+
+Here is an example of linear regression. It introduces workflow of PaddlePaddle, including data format, model configuration and training, etc.
+
+.. toctree::
+ :maxdepth: 1
+
+ concepts/index_en.rst
diff --git a/doc/fluid/getstarted/quickstart_cn.rst b/doc/fluid/getstarted/quickstart_cn.rst
new file mode 120000
index 0000000000000000000000000000000000000000..93a9e4e37a8495c553cec257c27363ca8d062d39
--- /dev/null
+++ b/doc/fluid/getstarted/quickstart_cn.rst
@@ -0,0 +1 @@
+../../v2/getstarted/quickstart_cn.rst
\ No newline at end of file
diff --git a/doc/fluid/getstarted/quickstart_en.rst b/doc/fluid/getstarted/quickstart_en.rst
new file mode 120000
index 0000000000000000000000000000000000000000..6e1894faa1176bb9e77f616e07df36191e54b782
--- /dev/null
+++ b/doc/fluid/getstarted/quickstart_en.rst
@@ -0,0 +1 @@
+../../v2/getstarted/quickstart_en.rst
\ No newline at end of file
diff --git a/doc/fluid/howto/cluster/fluid_cluster_train_cn.md b/doc/fluid/howto/cluster/fluid_cluster_train_cn.md
index 1b6f767869aaa800c122c8e7a06a1413e48e10e0..b99b90056b0a2e51f2668a6d27d94857bdc09c37 100644
--- a/doc/fluid/howto/cluster/fluid_cluster_train_cn.md
+++ b/doc/fluid/howto/cluster/fluid_cluster_train_cn.md
@@ -65,10 +65,10 @@ exit(1)
**因此,在分布式的Fluid环境中,我们有两个角色需要创建,分别是Parameter Server和Trainer。**
-### 分布式训练
+### 分布式训练
Fliud专门提供了工具[Distributed Transpiler](https://github.com/PaddlePaddle/Paddle/blob/ba65d54d9d3b41cd3c5171b00f476d4e60133ddb/doc/fluid/design/dist_train/distributed_architecture.md#distributed-transpiler)用于将单机版的训练程序转换为分布式版本的训练程序。工具背后的理念是找出程序的优化算子和梯度参数,将他们分隔为两部分,通过send/recv 操作算子进行连接,优化算子和梯度参数可以在优化器的minimize函数的返回值中获取到。
```python
-optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
+optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
```
将Distributed Transpiler、优化算子和梯度函数放在一个代码中如下:
```python
@@ -99,15 +99,51 @@ for pass_id in range(100):
### 分布式训练脚本运行说明
分布式任务的运行需要将表格中说明的多个参数进行赋值:
-| 参数名 | 值类型 | 说明 | 示例 |
-|:-------------|:------|:---------------------------------------|:-------------|
-| trainer_id | int | 当前训练节点的ID,训练节点ID编号为0 - n-1, n为trainers的值 | 0/1/2/3 |
-| pservers | str | parameter server 列表 | 127.0.0.1:6710,127.0.0.1:6711 |
-| trainers | int | 训练节点的总个数,>0的数字 | 4 |
-| server_endpoint | str | 当前所起的服务节点的IP:PORT | 127.0.0.1:8789 |
-| training_role | str | 节点角色, TRAINER/PSERVER | PSERVER |
-
-**注意:** ```training_role```是用来区分当前所起服务的角色的,用于训练程序中,用户可根据需要自行定义,其他参数为fluid.DistributeTranspiler的transpile函数所需要,需要在调用函数前进行定义,样例如下:
+
+
+
+参数名 |
+ 值类型 |
+说明 |
+ 示例 |
+
+
+
+
+trainer_id |
+ int |
+ 当前训练节点的ID,训练节点ID编号为0 - n-1, n为trainers的值 |
+ 0/1/2/3 |
+
+
+pservers |
+ str |
+ parameter server 列表 |
+ 127.0.0.1:6710,127.0.0.1:6711 |
+
+
+trainers |
+int |
+ 训练节点的总个数,>0的数字 |
+ 4 |
+
+
+ server_endpoint |
+ str |
+ 当前所起的服务节点的IP:PORT |
+ 127.0.0.1:8789 |
+
+
+ training_role |
+str |
+ 节点角色, TRAINER/PSERVER |
+ PSERVER |
+
+
+
+
+
+**注意:** ```training_role```是用来区分当前所起服务的角色的,用于训练程序中,用户可根据需要自行定义,其他参数为fluid.DistributeTranspiler的transpile函数所需要,需要在调用函数前进行定义,样例如下:
```python
t = fluid.DistributeTranspiler()
diff --git a/doc/fluid/howto/index_cn.rst b/doc/fluid/howto/index_cn.rst
index a92abad0c56a4fd821f9a6b9f4f5909504c8aaf1..97aeaf167d329529f2b120b5a3d4085e0510fe16 100644
--- a/doc/fluid/howto/index_cn.rst
+++ b/doc/fluid/howto/index_cn.rst
@@ -1,2 +1,7 @@
进阶使用
------------
+
+.. toctree::
+ :maxdepth: 1
+
+ optimization/index_cn.rst
diff --git a/doc/fluid/howto/index_en.rst b/doc/fluid/howto/index_en.rst
index 06036bdce554a96443ea1fa47c15f7670ea6089d..fd21e167ce3a46da167db1e9d7013804f730e047 100644
--- a/doc/fluid/howto/index_en.rst
+++ b/doc/fluid/howto/index_en.rst
@@ -1,4 +1,7 @@
HOW TO
------------
-This is how to page
+.. toctree::
+ :maxdepth: 1
+
+ optimization/index_en.rst
diff --git a/doc/fluid/howto/optimization/benchmark/README.md b/doc/fluid/howto/optimization/benchmark/README.md
new file mode 120000
index 0000000000000000000000000000000000000000..db30af7f53231c687f9ad61ad961a685733cbad0
--- /dev/null
+++ b/doc/fluid/howto/optimization/benchmark/README.md
@@ -0,0 +1 @@
+../../../../../benchmark/cluster/README.md
\ No newline at end of file
diff --git a/doc/fluid/howto/optimization/benchmark/index_cn.rst b/doc/fluid/howto/optimization/benchmark/index_cn.rst
new file mode 100644
index 0000000000000000000000000000000000000000..9404800eb86ca6d27886258b67393028c76954dc
--- /dev/null
+++ b/doc/fluid/howto/optimization/benchmark/index_cn.rst
@@ -0,0 +1,8 @@
+基准
+------------
+
+.. toctree::
+ :maxdepth: 1
+
+ vgg16/README.md
+ README.md
diff --git a/doc/fluid/howto/optimization/benchmark/index_en.rst b/doc/fluid/howto/optimization/benchmark/index_en.rst
new file mode 100644
index 0000000000000000000000000000000000000000..1e200b660cc7f6aeaf8b3d94fd7a14999a52bccd
--- /dev/null
+++ b/doc/fluid/howto/optimization/benchmark/index_en.rst
@@ -0,0 +1,8 @@
+Benchmark
+------------
+
+.. toctree::
+ :maxdepth: 1
+
+ vgg16/README.md
+ README.md
diff --git a/doc/fluid/howto/optimization/benchmark/vgg16/README.md b/doc/fluid/howto/optimization/benchmark/vgg16/README.md
new file mode 120000
index 0000000000000000000000000000000000000000..ca963ef5f06aa0c2fe507ba7548dca8017358120
--- /dev/null
+++ b/doc/fluid/howto/optimization/benchmark/vgg16/README.md
@@ -0,0 +1 @@
+../../../../../../benchmark/cluster/vgg16/README.md
\ No newline at end of file
diff --git a/doc/fluid/howto/optimization/cpu_profiling_cn.md b/doc/fluid/howto/optimization/cpu_profiling_cn.md
index d59be670c2b33b64d9b6f96b53f50e5bf9f0613b..8266dec3c6125a09b90ac0ccd4aa5464f5c7db31 100644
--- a/doc/fluid/howto/optimization/cpu_profiling_cn.md
+++ b/doc/fluid/howto/optimization/cpu_profiling_cn.md
@@ -8,7 +8,7 @@ PaddlePaddle 用户一般通过调用 Python API 编写深度学习程序。大
* Python 与 C++ 混合代码的性能分析
-## Python代码的性能分析
+# Python代码的性能分析
### 生成性能分析文件
@@ -42,14 +42,40 @@ cprofilev -a 0.0.0.0 -p 3214 -f profile.out main.py
每一列的含义是:
-| 列名 | 含义 |
-| --- | --- |
-| ncalls | 函数的调用次数 |
-| tottime | 函数实际使用的总时间。该时间去除掉本函数调用其他函数的时间 |
-| percall | tottime的每次调用平均时间 |
-| cumtime | 函数总时间。包含这个函数调用其他函数的时间 |
-| percall | cumtime的每次调用平均时间 |
-| filename:lineno(function) | 文件名, 行号,函数名 |
+
+
+
+列名 |
+含义 |
+
+
+
+
+ ncalls |
+ 函数的调用次数 |
+
+
+tottime |
+ 函数实际使用的总时间。该时间去除掉本函数调用其他函数的时间 |
+
+
+ percall |
+ tottime的每次调用平均时间 |
+
+
+ cumtime |
+ 函数总时间。包含这个函数调用其他函数的时间 |
+
+
+ percall |
+ cumtime的每次调用平均时间 |
+
+
+ filename:lineno(function) |
+ 文件名, 行号,函数名 |
+
+
+
### 寻找性能瓶颈
diff --git a/doc/fluid/howto/optimization/cpu_profiling_en.md b/doc/fluid/howto/optimization/cpu_profiling_en.md
index 01e5fddf61547f9fc86ef18a6f2e2ac508d22dbb..e95556dd608b7ff0a3eb18873df0015a2da94e7c 100644
--- a/doc/fluid/howto/optimization/cpu_profiling_en.md
+++ b/doc/fluid/howto/optimization/cpu_profiling_en.md
@@ -14,7 +14,7 @@ the profiling and tuning of
1. the Python code and
1. the mixture of Python and C++ code.
-## Profiling the Python Code
+# Profiling the Python Code
### Generate the Performance Profiling File
@@ -57,14 +57,40 @@ port, we will see the output like the following:
where each line corresponds to Python function, and the meaning of
each column is as follows:
-| column | meaning |
-| --- | --- |
-| ncalls | the number of calls into a function |
-| tottime | the total execution time of the function, not including the execution time of other functions called by the function |
-| percall | tottime divided by ncalls |
-| cumtime | the total execution time of the function, including the execution time of other functions being called |
-| percall | cumtime divided by ncalls |
-| filename:lineno(function) | where the function is defined |
+
+
+
+column |
+meaning |
+
+
+
+
+ ncalls |
+ the number of calls into a function |
+
+
+tottime |
+ the total execution time of the function, not including the execution time of other functions called by the function |
+
+
+ percall |
+ tottime divided by ncalls |
+
+
+ cumtime |
+ the total execution time of the function, including the execution time of other functions being called |
+
+
+ percall |
+ cumtime divided by ncalls |
+
+
+ filename:lineno(function) |
+ where the function is define |
+
+
+
### Identify Performance Bottlenecks
@@ -81,7 +107,7 @@ focus on. We can sort above profiling file by tottime:
We can see that the most time-consuming function is the `built-in
method run`, which is a C++ function in `libpaddle.so`. We will
-explain how to profile C++ code in the next section. At this
+explain how to profile C++ code in the next section. At this
moment, let's look into the third function `sync_with_cpp`, which is a
Python function. We can click it to understand more about it:
diff --git a/doc/fluid/howto/optimization/index_cn.rst b/doc/fluid/howto/optimization/index_cn.rst
new file mode 100644
index 0000000000000000000000000000000000000000..27cc96702356703b339db845dc81913bdcc9f23b
--- /dev/null
+++ b/doc/fluid/howto/optimization/index_cn.rst
@@ -0,0 +1,9 @@
+性能优化
+------------
+
+.. toctree::
+ :maxdepth: 1
+
+ timeline.md
+ cpu_profiling_cn.md
+ benchmark/index_cn.rst
diff --git a/doc/fluid/howto/optimization/index_en.rst b/doc/fluid/howto/optimization/index_en.rst
new file mode 100644
index 0000000000000000000000000000000000000000..4ce624fe8f108a6afc7cd08a1542332755d22e04
--- /dev/null
+++ b/doc/fluid/howto/optimization/index_en.rst
@@ -0,0 +1,9 @@
+Performance Optimization
+---------------------------
+
+.. toctree::
+ :maxdepth: 1
+
+ timeline.md
+ cpu_profiling_en.md
+ benchmark/index_en.rst
diff --git a/doc/fluid/howto/optimization/timeline.md b/doc/fluid/howto/optimization/timeline.md
index 9d9565a3e698a83ca465c5da83ff892360c33b8f..96481ae2a6e4442d40803f8d5361e5f942502df3 100644
--- a/doc/fluid/howto/optimization/timeline.md
+++ b/doc/fluid/howto/optimization/timeline.md
@@ -1,4 +1,4 @@
-## how to use timeline tool to do profile
+# how to use timeline tool to do profile
1. Add `with profiler.profiler(...)` to the main training loop. After run, the code will generate a profile record file `/tmp/profile`. **Warning**: Please do not run too many batches when use profiler to record timeline information, for the profile record will grow with the batch number.
diff --git a/doc/fluid/index_cn.rst b/doc/fluid/index_cn.rst
index be3bed4393a7346d4f2a53e2c7409ee7165fb5b6..d878d192cae7ee9e8b8fdb4f615839c186fdf334 100644
--- a/doc/fluid/index_cn.rst
+++ b/doc/fluid/index_cn.rst
@@ -5,8 +5,8 @@
:maxdepth: 1
getstarted/index_cn.rst
- design/index_cn.rst
build_and_install/index_cn.rst
+ design/index_cn.rst
howto/index_cn.rst
dev/index_cn.rst
faq/index_cn.rst
diff --git a/doc/fluid/index_en.rst b/doc/fluid/index_en.rst
index 87c831420a57b4b9ce77ecf44f7f4d0feec833a6..2bc76b58982cf50e637d15cca0c5d78166aa73a9 100644
--- a/doc/fluid/index_en.rst
+++ b/doc/fluid/index_en.rst
@@ -5,8 +5,8 @@
:maxdepth: 1
getstarted/index_en.rst
- design/index_en.rst
build_and_install/index_en.rst
+ design/index_en.rst
howto/index_en.rst
dev/index_en.rst
faq/index_en.rst
diff --git a/doc/v2/CMakeLists.txt b/doc/v2/CMakeLists.txt
index 286fe8845cd7a909d4030540e72362864b536063..82de7a3a3e1ca7724e1eda877d53454a4fa4129a 100644
--- a/doc/v2/CMakeLists.txt
+++ b/doc/v2/CMakeLists.txt
@@ -20,13 +20,15 @@ configure_file(
"${BINARY_BUILD_DIR_EN}/conf.py"
@ONLY)
-sphinx_add_target(paddle_docs
+sphinx_add_target(paddle_v2_docs
html
${BINARY_BUILD_DIR_EN}
${SPHINX_CACHE_DIR_EN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
+add_dependencies(paddle_v2_docs gen_proto_py)
+
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_build")
@@ -41,11 +43,13 @@ configure_file(
"${BINARY_BUILD_DIR_CN}/conf.py"
@ONLY)
-sphinx_add_target(paddle_docs_cn
+sphinx_add_target(paddle_v2_docs_cn
html
${BINARY_BUILD_DIR_CN}
${SPHINX_CACHE_DIR_CN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_CN})
+add_dependencies(paddle_v2_docs_cn gen_proto_py)
+
add_subdirectory(api)
diff --git a/doc/v2/api/CMakeLists.txt b/doc/v2/api/CMakeLists.txt
index 2ad589e8a260e48d46cba2300d6e2bcd4bdd8019..da1eafc02ed8cd155d4f0f1fbadcb7b237b6fcc1 100644
--- a/doc/v2/api/CMakeLists.txt
+++ b/doc/v2/api/CMakeLists.txt
@@ -12,9 +12,11 @@ configure_file(
"${BINARY_BUILD_DIR_EN}/conf.py"
@ONLY)
-sphinx_add_target(paddle_api_docs
+sphinx_add_target(paddle_v2_apis
html
${BINARY_BUILD_DIR_EN}
${SPHINX_CACHE_DIR_EN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
+
+add_dependencies(paddle_v2_apis gen_proto_py framework_py_proto copy_paddle_pybind)
diff --git a/doc/fluid/design/interface/00.why_plain_c.md b/doc/v2/design/interface/00.why_plain_c.md
similarity index 100%
rename from doc/fluid/design/interface/00.why_plain_c.md
rename to doc/v2/design/interface/00.why_plain_c.md
diff --git a/doc/fluid/design/interface/01.inference_implementation.md b/doc/v2/design/interface/01.inference_implementation.md
similarity index 100%
rename from doc/fluid/design/interface/01.inference_implementation.md
rename to doc/v2/design/interface/01.inference_implementation.md
diff --git a/doc/v2/design/interface/index_cn.rst b/doc/v2/design/interface/index_cn.rst
new file mode 100644
index 0000000000000000000000000000000000000000..2509a5c5f4182d8ce3a16a3b7bd92c0d7bf5b056
--- /dev/null
+++ b/doc/v2/design/interface/index_cn.rst
@@ -0,0 +1,7 @@
+多语言接口
+------------
+
+.. toctree::
+ :maxdepth: 1
+
+ 00.why_plain_c.md
diff --git a/doc/v2/design/interface/index_en.rst b/doc/v2/design/interface/index_en.rst
new file mode 100644
index 0000000000000000000000000000000000000000..356e58c39c5ef6ee5ee50ab999b85f88628bfb85
--- /dev/null
+++ b/doc/v2/design/interface/index_en.rst
@@ -0,0 +1,7 @@
+Multilingual Interface
+-----------------------
+
+.. toctree::
+ :maxdepth: 1
+
+ 00.why_plain_c.md
diff --git a/doc/v2/design/mkl/mkldnn.md b/doc/v2/design/mkl/mkldnn.md
index e2fe1e6b26ffa73fda81863abfadf697c0acbfcf..1bd2e7bc34ee79eb753b3520d97e5e7beca89b0b 100644
--- a/doc/v2/design/mkl/mkldnn.md
+++ b/doc/v2/design/mkl/mkldnn.md
@@ -44,7 +44,7 @@ MKL,MKLML以及MKL-DNN三者关系如下表:
| Name | Open Source | License | Descriptions |
| :---------- | :--------------- | :---------- | :------------ |
-| MKL | No | Proprietary | Accelerate math processing routines |
+| MKL | No | Proprietary | Accelerate math processing routines |
| MKLML | No | Proprietary | Small package of MKL, especially for Machine Learning |
| MKL-DNN | Yes | Apache 2.0 | Accelerate primitives processing routines especially for Deep Neural Networks |
@@ -89,7 +89,7 @@ PaddlePaddle/Paddle
### CMake
在`CMakeLists.txt`中提供一个与MKL有关的总开关:`WITH_MKL`,它负责决定编译时是否使用MKLML和MKL-DNN
-- `WITH_MKLML` 控制是否使用MKLML库。
+- `WITH_MKLML` 控制是否使用MKLML库。
当打开`WITH_MKL`时,会自动使用MKLML库作为PaddlePaddle的CBLAS和LAPACK库,同时会开启Intel OpenMP用于提高MKLML的性能。
编译时会把对应的头文件和库放在`build/third_party/install/mklml/*`目录下对应的地方。
MKLML的库目前都是动态库,主要包括`libiomp5.so`和`libmklml_intel.so`。
@@ -172,7 +172,7 @@ if use_mkldnn
self.layer_type = mkldnn_*
```
-所有MKL-DNN的`layer_type`会以*mkldnn_*开头,这些会在`MKLDNN*Layer`注册layer的时候保证,以示区分。
+所有MKL-DNN的`layer_type`会以*mkldnn_*开头,这些会在`MKLDNN*Layer`注册layer的时候保证,以示区分。
同时,会在`paddle/utils.Flags`中添加一个`use_mkldnn`的flag,用于选择是否使用MKL-DNN的相关功能。
diff --git a/doc/v2/dev/index_en.rst b/doc/v2/dev/index_en.rst
index 549f5fa9aace7eb699d229e5f61fe10ae4ed4d66..36516b7953224e799e1065fd7930509eec0aa650 100644
--- a/doc/v2/dev/index_en.rst
+++ b/doc/v2/dev/index_en.rst
@@ -1,9 +1,27 @@
Development
------------
+
+PaddlePaddle adheres to the following three sections of code and document specifications.
+
+
+PaddlePaddle uses git for version control and Docker is used for building and testing environment. The code includes Cuda, C++, Python, Shell and other programming languages,which comply with Google C++ Style, Pep-8, and the code base includes style checking by an automatic inspection tool. Code comments need to follow the Doxygen specification. The code that does not meet the style requirements will fail to compile. We provide the following guidelines for the use of Git, build tests and code development.
.. toctree::
:maxdepth: 1
contribute_to_paddle_en.md
+
+
+PaddlePaddle is well documented in English and Chinese. We recommend using the English version of the documents and problem description. The design documents focus on problem descriptions, backgrounds, and are followed by solutions. As documents are generated by Sphinx, code comments should comply with the Sphinx documentation standard. We recommend to use the paddlepaddle.org tool to compile and generate and preview documents locally. Please refer to:
+
+.. toctree::
+ :maxdepth: 1
+
write_docs_en.rst
+
+PaddlePaddle V2 defines new operations by adding new Layers. You can implement various complex layers by combining basic APIs to satisfy most applications. If you want to customize layer, please refer to the following, and welcome to propose patch.
+
+.. toctree::
+ :maxdepth: 1
+
new_layer_en.rst
diff --git a/doc/v2/faq/build_and_install/index_cn.rst b/doc/v2/faq/build_and_install/index_cn.rst
index 7c7e896d187e4fe1544d7ec933fa4fa9f24df3cd..f292684fb5fe2df06db5239e7f43fdfa1dd2f2bd 100644
--- a/doc/v2/faq/build_and_install/index_cn.rst
+++ b/doc/v2/faq/build_and_install/index_cn.rst
@@ -139,3 +139,77 @@ PaddlePaddle使用avx SIMD指令提高cpu执行效率,因此错误的使用二
touch ../extern_mklml-stamp/extern_mklml-download
// 4. 接着编译即可
+
+9. 在Mac上无法安装numpy等Python包,权限错误
+------------------
+
+Mac上对自带的Python和包有严格的权限保护,最好不要在自带的Python上安装。建议用virtualenv建立一个新的Python环境来操作。
+
+virtualenv的基本原理是将机器上的Python运行所需的运行环境完整地拷贝一份。我们可以在一台机器上制造多份拷贝,并在这多个拷贝之间自由切换,这样就相当于在一台机器上拥有了多个相互隔离、互不干扰的Python环境。
+
+下面简单介绍下如何用virtualenv为Paddle生成一个专用的Python环境:
+
+安装virtualenv:
+::::::::::::::::
+
+virtualenv本身也是Python的一个包,可以用pip进行安装:
+
+.. code-block:: bash
+
+ sudo -H pip install virtualenv
+
+由于virtualenv需要安装给系统自带的Python,因此需要使用sudo权限。
+
+创建一个新的Python运行环境:
+:::::::::::::::::::
+
+.. code-block:: bash
+
+ virtualenv --no-site-packages paddle
+
+--no-site-packages 参数表示不拷贝已有的任何第三方包,创造一个完全干净的新Python环境。后面的paddle是我们为这个新创建的环境取的名字。
+
+执行完这一步后,当前目录下应该会出现一个名为paddle(或者你取的其他名字)的目录。这个目录里保存了运行一个Python环境所需要的各种文件。
+
+启动运行环境:
+::::::::::::::::
+
+.. code-block:: bash
+
+ source paddle/bin/activate
+
+执行后会发现命令提示符前面增加了(paddle)字样,说明已经成功启动了名为‘paddle’的Python环境。执行which python,可以发现使用的已经是刚刚创建的paddle目录下的Python。
+
+在这个环境中,我们可以自由地进行Paddle的安装、使用和开发工作,无需担心对系统自带Python的影响。
+
+退出运行环境:
+:::::::::::::::
+
+直接执行:
+
+.. code-block:: bash
+
+ deactivate
+
+可以看到命令提示符前面的(paddle)字样消失。
+
+自动启动某一Python环境:
+::::::::::::::::
+
+如果我们经常使用Paddle,我们每次打开终端后都需要执行一下source paddle/bin/activate来启动环境,比较繁琐。为了简便,可以修改终端的配置文件,来让终端每次启动后自动启动特定的Python环境。
+
+执行:
+
+.. code-block:: bash
+
+ vi ~/.bash_profile
+
+打开终端配置文件,并在文件的最后添加一行:
+
+.. code-block:: bash
+
+ source paddle/bin/activate
+
+保存并关闭文件。
+
+这样,每次打开终端时就会自动启动名为‘paddle’的Python环境了。
diff --git a/doc/v2/faq/build_and_install/index_en.rst b/doc/v2/faq/build_and_install/index_en.rst
index 614db457d715665073cec1a495d4d7df6887532f..7488ed8137d57785f36b9f1e1ed1269f864960bc 100644
--- a/doc/v2/faq/build_and_install/index_en.rst
+++ b/doc/v2/faq/build_and_install/index_en.rst
@@ -1,5 +1,143 @@
-############################
-Install, Build and Unit test
-############################
+.. _install_faq:
-TBD
+###############################
+Compile, Install, and Unit Test
+###############################
+
+.. contents::
+
+1. Insufficient CUDA driver version
+----------------------------------------------------------------
+
+Many users usually face issues like `Cuda Error: CUDA driver version is insufficient for CUDA runtime version` when running the PaddlePaddle GPU Docker image. The cause is that you may not map the local CUDA driver to a container directory.
+You can solve the issue by running the following commands:
+
+.. code-block:: bash
+
+ $ export CUDA_SO="$(\ls usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
+ $ export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
+ $ docker run ${CUDA_SO} ${DEVICES} -it paddlepaddle/paddle:latest-gpu
+
+For more infomation about Docker's installation and usage, please refer to `PaddlePaddle Docker documentation `_ .
+
+
+2. Version mismatch between PythonLibs and PythonInterpreter
+----------------------------------------------------------------
+
+It is a common bug when CMake looks up Python. If you install multiple versions of Python, Cmake may find the version mismatch between PythonLibs and PythonInterpreter . You are forced to specify a Python version, as follows.
+
+ .. code-block:: bash
+
+ cmake .. -DPYTHON_EXECUTABLE= -DPYTHON_LIBRARY= -DPYTHON_INCLUDE_DIR=
+
+You should specify ````, ````, ```` to your local paths.
+
+3. PaddlePaddle version is 0.0.0
+------------------------------------------------
+This issue would happen when you run the code `paddle version` or `cmake ..`
+
+.. code-block:: bash
+
+ CMake Warning at cmake/version.cmake:20 (message):
+ Cannot add paddle version from git tag
+
+You should pull all remote branches to your local machine with the command :code:`git fetch upstream` and then run :code:`cmake`
+
+4. paddlepaddle\*.whl is not a supported wheel on this platform.
+------------------------------------------------------------------------
+
+The primary cause for this issue is that it can not find the correct PaddlePaddle installation package that matches your current system.The latest PaddlePaddle Python installation package supports Linux x86_64 and MacOS 10.12 os including Python2.7 and Pip 9.0.1.
+
+You can upgrade Pip with the following command\:
+
+.. code-block:: bash
+
+ pip install --upgrade pip
+
+If it does not work for you, you can run the command :code:`python -c "import pip; print(pip.pep425tags.get_supported())"` to get the suffix of Python package which your system may support and then compare it with the suffix of your installation.
+
+If the system supports :code:`linux_x86_64` and the installation package is :code:`manylinux1_x86_64`, you should upgrade pip to the latest
+
+if the system supports :code:`manylinux_x86_64` and the local installation package is :code:`linux1_x86_64`, you can rename the whl package to :code:`manylinux1_x86_64` and then try again.
+
+
+5. ImportError: No module named v2
+----------------------------------
+Please uninstall Paddle V1 if you have installed it before.
+
+.. code-block:: bash
+
+ pip uninstall py_paddle paddle
+
+Then install Python for PaddlePaddle , enter the build directory and run the following commands
+
+pip install python/dist/paddle*.whl && pip install ../paddle/dist/py_paddle*.whl
+
+6. Illegal instruction
+-----------------------
+This issue may be caused by the wrong usage of PaddlePaddle binary version which uses avx SIMD instructions to increase the performance of cpu. Please choose the correct version.
+
+7. Python unittest fails
+--------------------------------
+
+If the following python unittest testcases fail:
+
+.. code-block:: bash
+
+ 24 - test_PyDataProvider (Failed)
+ 26 - test_RecurrentGradientMachine (Failed)
+ 27 - test_NetworkCompare (Failed)
+ 28 - test_PyDataProvider2 (Failed)
+ 32 - test_Prediction (Failed)
+ 33 - test_Compare (Failed)
+ 34 - test_Trainer (Failed)
+ 35 - test_TrainerOnePass (Failed)
+ 36 - test_CompareTwoNets (Failed)
+ 37 - test_CompareTwoOpts (Failed)
+ 38 - test_CompareSparse (Failed)
+ 39 - test_recurrent_machine_generation (Failed)
+ 40 - test_PyDataProviderWrapper (Failed)
+ 41 - test_config_parser (Failed)
+ 42 - test_swig_api (Failed)
+ 43 - layers_test (Failed)
+
+Please check the PaddlePaddle unittest logs which may suggest the following:
+
+.. code-block:: bash
+
+ paddle package is already in your PYTHONPATH. But unittest need a clean environment.
+ Please uninstall paddle package before start unittest. Try to 'pip uninstall paddle'.
+
+The solution is:
+
+* Remove old PaddlePaddle to make a clean environment for the unit tests. If PaddlePaddle package is already in Python's site-packages, unit tests would refer Python package in site-packages instead of Python package in the :code:`/python` directory of the source directory. Setting :code:`PYTHONPATH` to :code:`/python` is also useless because Python's search path would give the priority to the installed Python package.
+
+
+8. Failed to download the MKLML library
+----------------------------------------------
+
+.. code-block:: bash
+
+ make[2]: *** [third_party/mklml/src/extern_mklml-stamp/extern_mklml-download] error 4
+ make[1]: *** [CMakeFiles/extern_mklml.dir/all] error 2
+ make[1]: *** waiting for the unfinished jobs....
+
+Cause: The network speed or SSL link causes the MKLML library to download unsuccessfully.
+
+The solution is: manually download and install, the specific steps are as follows.
+
+.. code-block:: bash
+
+ // 1. enter the directory
+ cd build/third_party/mklml/src/extern_mklml
+
+ // 2. check the size of the package, normally 75M, if less than 75M, the download fails
+ du -sh mklml_lnx_2018.0.1.20171007.tgz
+
+ // 3. manually download and unzip and make the download success tag:
+ wget --no-check-certificate https://github.com/01org/mkl-dnn/releases/download/v0.11/mklml_lnx_2018.0.1.20171007.tgz -c -O mklml_lnx_2018.0.1.20171007.tgz
+ tar zxf mklml_lnx_2018.0.1.20171007.tgz
+ touch ../extern_mklml-stamp/extern_mklml-download
+
+ // 4. then compile
+
diff --git a/doc/v2/faq/cluster/index_en.rst b/doc/v2/faq/cluster/index_en.rst
index 855b7e8e53307b82a72c156be4ef509e27edf822..fa942a09625bef78b28456beeb735272b686e061 100644
--- a/doc/v2/faq/cluster/index_en.rst
+++ b/doc/v2/faq/cluster/index_en.rst
@@ -2,4 +2,15 @@
Cluster Training and Prediction
###############################
-TBD
+.. contents::
+
+1. Network connection errors in the log during multi-node cluster training
+------------------------------------------------
+There are maybe some errors in the log belonging to network connection problem during multi-node cluster training, for example, :code:`Connection reset by peer`.
+This kind of error is usually caused by the abnormal exit of a training process in some node, and the other nodes cannot connect with this node any longer. Steps to troubleshoot the problem are as follows:
+
+* Find the first error in the :code:`train.log`, :code:`server.log`, check whether other fault casued the problem, such as FPE, lacking of memory or disk.
+
+* If the first error in server.log says "Address already used", this may be caused by the port conflict of the non-exclusive execution. Connect the sys-admin to check if the current MPI cluster supports jobs submitted with parameter :code:`resource=full`. If the current MPI cluster does not support this parameter, change the server port and try agian.
+
+* If the current MPI cluster does not support exclusive pattern which allows a process to occupy the whole node, ask the administrator to replace or update the this cluster.
diff --git a/doc/v2/faq/model/index_en.rst b/doc/v2/faq/model/index_en.rst
index cb26f59655f97dc28a2047994643ae16b8857964..67a33e08e192e5627ac3b0abd76e979f21ed2079 100644
--- a/doc/v2/faq/model/index_en.rst
+++ b/doc/v2/faq/model/index_en.rst
@@ -2,4 +2,80 @@
Model Configuration
###################
-TBD
+.. contents::
+
+1. How to deal with error :code:`Duplicated layer name`
+----------------------------------------------------------
+
+The general reason for this error is that users may have set the same value for the attribute :code:`name` in different layers. Try to find out the :code:`name` attribute with the same value in diffrent layers and set them differently.
+
+2. How to use :code:`paddle.layer.memory`'s attribute :code:`name`
+----------------------------------------------------------------------
+
+* :code:`paddle.layer.memory` is used to get the output of a layer's last timestep and the layer is specified by the attribute :code:`name` . Thus, :code:`paddle.layer.memory` will associate with the layer that has the same value of attribute :code:`name` , and uses the output of the layer's last timestep as the input of its current timestep.
+
+* All the PaddlePaddle's layers have a unique name, which is set by the attribute :code:`name` . PaddlePaddle will automatically set it for the user when it is not explicitly set. :code:`paddle.layer.memory` is not a real layer, its name is set by the attribute :code:`memory_name` and PaddlePaddle will also automatically set it when the user does not explicitly set. The :code:`paddle.layer.memory` attribute :code:`name` is used to specify the layer it is associated with, and needs to be explicitly set by the user.
+
+
+3. What is the difference between the two ways of using dropout
+-----------------------------------------------------------------
+
+* There are two ways to use dropout in PaddlePaddle
+
+ * Set the :code:`drop_rate` parameter in the layer's :code:`layer_atter` attribute. Take :code:`paddle.layer.fc` as an example:
+
+ .. code-block:: python
+
+ fc = paddle.layer.fc(input=input, layer_attr=paddle.attr.ExtraLayerAttribute(drop_rate=0.5))
+
+ * Use :code:`paddle.layer.dropout` layer. Take :code:`paddle.layer.fc` as an example:
+
+ .. code-block:: python
+
+ fc = paddle.layer.fc(input=input)
+ drop_fc = paddle.layer.dropout(input=fc, dropout_rate=0.5)
+
+* :code:`paddle.layer.dropout` actually uses the :code:`paddle.layer.add_to` layer and sets :code:`drop_rate` as the previous method. This method is very memory intensive.
+
+* PaddlePaddle implements dropout in the activation function rather than in the layer.
+
+* :code:`paddle.layer.lstmemory`, :code:`paddle.layer.grumemory`, :code:`paddle.layer.recurrent` implement activation of output in an unusual way, so we cannot use dropout by setting :code:`drop_rate` . To use dropout for these layers, we could use the second method, which is to use :code:`paddle.layer.dropout`.
+
+4. The differences between different recurrent layers
+--------------------------------------------------------
+Take LSTM as an example. There are several kinds of recurrent layers in PaddlePaddle:
+
+* :code:`paddle.layer.lstmemory`
+* :code:`paddle.networks.simple_lstm`
+* :code:`paddle.networks.lstmemory_group`
+* :code:`paddle.networks.bidirectional_lstm`
+
+According to implementations, recurrent layer can be classified into 2 types:
+
+1. Recurrent layer implemented by recurrent_group:
+
+ * Using this type of recurrent layers, users can access the intermediate value calculated by the recurrent unit within a timestep (eg: hidden states, memory cells, etc.)
+ * :code:`paddle.networks.lstmemory_group` belongs to this type of recurrent layers.
+
+2. Recurrent layer implemented as a complete operation:
+
+ * Users can only access output values when using this type of recurrent layers.
+ * :code:`paddle.networks.lstmemory_group` , :code:`paddle.networks.simple_lstm` and :code:`paddle.networks.bidirectional_lstm` belong to this type of recurrent layer;
+
+By implementing recurrent layer as a complete operation, CPU and GPU calculations can be optimized. Therefore, the second type of recurrent layer is more efficient than the first one. In practical applications, we propose to use the second type of recurrent layers if there is no need to access the intermediate variable of LSTM.
+
+In addition, PaddlePaddle also contains a kind of LSTM calculation unit: :code:`paddle.networks.lstmemory_unit`:
+
+ * Unlike the recurrent layer described above, :code:`paddle.networks.lstmemory_unit` defines the computational process of an LSTM unit in a timestep. It is not a complete recurrent layer, nor can it receive sequence data as input.
+ * :code:`paddle.networks.lstmemory_unit` can only be used as a step function in recurrent_group.
+
+5. Can Softmax's calculation dimension be specified?
+--------------------------------------------------------------------
+
+We can't specify calculation dimension for PaddlePaddle's softmax. It can only be calculated by rows.
+In image tasks, for NCHW, if you need to calculate softmax in C dimension, you could use :code:`paddle.layer.switch_order` to change the dimension order, that is, convert NCHW to NHWC, then do the reshape operation and calculate softmax.
+
+6. Does PaddlePaddle support variable-dimensional data inputs
+----------------------------------------------------------------
+
+PaddlePaddle provides :code:`paddle.data_type.dense_array` to support variable-dimensional data input. Simply set the dimension of the data layer to a value larger than the dimension of the input data for occupancy.
diff --git a/doc/v2/howto/cmd_parameter/index_en.rst b/doc/v2/howto/cmd_parameter/index_en.rst
index 0e3c72d27aca063f1b6f1c23e55718dba373c40a..f49683948ef78f363e2439cc25332431830eeb24 100644
--- a/doc/v2/howto/cmd_parameter/index_en.rst
+++ b/doc/v2/howto/cmd_parameter/index_en.rst
@@ -2,10 +2,25 @@
Set Command-line Parameters
===========================
+The implementation of deep learning algorithms has a variety of characteristics, such as running environment, running stage, structure of the model and the traning strategy. PaddlePaddle supports the user to set various command-line parameters flexibly, which helps to achieve control of the model training or prediction process.
+
+In this part, we take several actual scenarios as an example, and the use of some command-line parameters is displayed:
.. toctree::
:maxdepth: 1
use_case_en.md
+
+Then, we summarize and classify the use of all command-line parameters:
+
+.. toctree::
+ :maxdepth: 1
+
arguments_en.md
+
+Finally, the detailed descriptions are given, and we try to explain the propeties and significance of these command-line parameters in detail:
+
+.. toctree::
+ :maxdepth: 1
+
detail_introduction_en.md
diff --git a/paddle/CMakeLists.txt b/paddle/CMakeLists.txt
index d2a4b1335464f553a361728e64ed5ca177ca53da..c44f8a8a8ecc1ba1f886fc41aec863b4ca3458a6 100644
--- a/paddle/CMakeLists.txt
+++ b/paddle/CMakeLists.txt
@@ -1,4 +1,4 @@
-if(NOT WITH_FLUID)
+if(NOT WITH_FLUID_ONLY)
add_subdirectory(cuda)
add_subdirectory(function)
add_subdirectory(utils)
diff --git a/paddle/fluid/framework/CMakeLists.txt b/paddle/fluid/framework/CMakeLists.txt
index a4ea74a6d2fbc29dc33a6b57ee453f49ed36c7fa..c425c71160a8fa3830a5fbdae1baaed850710877 100644
--- a/paddle/fluid/framework/CMakeLists.txt
+++ b/paddle/fluid/framework/CMakeLists.txt
@@ -1,3 +1,4 @@
+add_subdirectory(details)
# ddim lib
proto_library(framework_proto SRCS framework.proto)
@@ -87,6 +88,9 @@ cc_library(feed_fetch_method SRCS feed_fetch_method.cc DEPS lod_tensor scope glo
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope
framework_proto backward glog lod_rank_table feed_fetch_method)
+
+cc_library(parallel_executor SRCS parallel_executor.cc DEPS multi_devices_graph_builder threaded_ssa_graph_executor)
+
cc_library(prune SRCS prune.cc DEPS framework_proto)
cc_test(prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context)
cc_test(var_type_inference_test SRCS var_type_inference_test.cc DEPS op_registry
diff --git a/paddle/fluid/framework/block_desc.cc b/paddle/fluid/framework/block_desc.cc
index 3693bc25d81a8309df1a6ddf3d9b08d484596ea9..fbe08349c37c4fde115ceea954ba2b84880088d7 100644
--- a/paddle/fluid/framework/block_desc.cc
+++ b/paddle/fluid/framework/block_desc.cc
@@ -147,15 +147,52 @@ void BlockDesc::RemoveOp(size_t s, size_t e) {
if (ops_.begin() + s == ops_.end() || ops_.begin() + e == ops_.end()) {
return;
}
+ auto get_vars = [](std::deque>::iterator &op,
+ std::vector &v) {
+ auto in_names = (*op)->InputArgumentNames();
+ v.insert(v.end(), in_names.begin(), in_names.end());
+ auto out_names = (*op)->OutputArgumentNames();
+ v.insert(v.end(), out_names.begin(), out_names.end());
+ std::sort(v.begin(), v.end());
+ auto last = std::unique(v.begin(), v.end());
+ v.erase(last, v.end());
+ };
need_update_ = true;
- for (auto it = ops_.begin() + s; it != ops_.begin() + e; it++) {
- auto names = (*it)->InputArgumentNames();
- for (auto n : names) {
- // TODO(typhoonzero): delete vars if no other op use it.
- VLOG(3) << "deleting var " << n;
+
+ for (size_t i = s; i < e; i++) {
+ // since remove op one by one, every time remove the first op.
+ auto op = ops_.begin() + s;
+
+ // collect input and output variables from current delete op
+ std::vector cur_vars;
+ get_vars(op, cur_vars);
+
+ // remove current op
+ ops_.erase(ops_.begin() + s);
+
+ // collect input and output variables from other ops
+ std::vector other_vars;
+ for (auto it = ops_.begin(); it != ops_.end(); it++) {
+ get_vars(it, other_vars);
+ }
+
+ // variables should be deleted
+ std::vector delete_vars;
+ // delete_vars = cur_vars - cur_vars ^ other_input_vars
+ std::set_difference(cur_vars.begin(), cur_vars.end(), other_vars.begin(),
+ other_vars.end(),
+ std::inserter(delete_vars, delete_vars.end()));
+ // remove variables
+ for (size_t i = 0; i < delete_vars.size(); i++) {
+ auto name = delete_vars[i];
+ auto it = vars_.find(name);
+ PADDLE_ENFORCE(it != vars_.end(),
+ "%s is not in variable list, it should not be deleted",
+ name);
+ vars_.erase(it);
+ VLOG(3) << "deleting variable " << name;
}
}
- ops_.erase(ops_.begin() + s, ops_.begin() + e);
}
std::vector BlockDesc::AllOps() const {
diff --git a/paddle/fluid/framework/block_desc.h b/paddle/fluid/framework/block_desc.h
index 185f018ac1b5863e0ee86fdaa17df1ccbc6e030e..468423e0e8e7b8c9ebc14b7568c9c3bd21645ea7 100644
--- a/paddle/fluid/framework/block_desc.h
+++ b/paddle/fluid/framework/block_desc.h
@@ -89,6 +89,11 @@ class BlockDesc {
OpDesc *InsertOp(size_t index);
+ /*
+ * Remove Op and its input/output variables.
+ * Note that for either input or ouput variable, if it is also an input or
+ * output variable of other ops, we should remain it.
+ */
void RemoveOp(size_t s, size_t e);
std::vector AllOps() const;
diff --git a/paddle/fluid/framework/channel.h b/paddle/fluid/framework/channel.h
index adfaba26ace78f547161ad4029a741f3ca8a6764..019bea600f496a6b58579ad0aa8af836cd6134a9 100644
--- a/paddle/fluid/framework/channel.h
+++ b/paddle/fluid/framework/channel.h
@@ -34,7 +34,7 @@ class Channel {
public:
virtual bool CanSend() = 0;
virtual bool CanReceive() = 0;
- virtual bool Send(T*) = 0;
+ virtual void Send(T*) = 0;
virtual bool Receive(T*) = 0;
virtual size_t Cap() = 0;
virtual void Lock() = 0;
@@ -84,69 +84,81 @@ class ChannelHolder {
}
template
- bool Send(T* data) {
- if (!IsInitialized()) return false;
- PADDLE_ENFORCE_EQ(holder_->Type(), std::type_index(typeid(T)));
+ void Send(T* data) {
+ PADDLE_ENFORCE_EQ(IsInitialized(), true,
+ "The Channel hasn't been initialized");
+ PADDLE_ENFORCE_EQ(
+ holder_->Type(), std::type_index(typeid(T)),
+ "Channel type is not same as the type of the data being sent");
// Static cast should be safe because we have ensured that types are same
Channel* channel = static_cast*>(holder_->Ptr());
- return channel != nullptr ? channel->Send(data) : false;
+ PADDLE_ENFORCE_EQ(channel != nullptr, true, "Channel should not be null.");
+ channel->Send(data);
}
template
bool Receive(T* data) {
- if (!IsInitialized()) return false;
- PADDLE_ENFORCE_EQ(holder_->Type(), std::type_index(typeid(T)));
+ PADDLE_ENFORCE_EQ(IsInitialized(), true,
+ "The Channel hasn't been initialized");
+ PADDLE_ENFORCE_EQ(
+ holder_->Type(), std::type_index(typeid(T)),
+ "Channel type is not same as the type of the data being sent");
Channel* channel = static_cast*>(holder_->Ptr());
- return channel != nullptr ? channel->Receive(data) : false;
+ PADDLE_ENFORCE_EQ(channel != nullptr, true, "Channel should not be null.");
+ return channel->Receive(data);
}
bool IsClosed() {
- if (IsInitialized()) {
- return holder_->IsClosed();
- }
- return false;
+ PADDLE_ENFORCE_EQ(IsInitialized(), true,
+ "The Channel hasn't been initialized");
+ return holder_->IsClosed();
}
bool CanSend() {
- if (IsInitialized()) {
- return holder_->CanSend();
- }
- return false;
+ PADDLE_ENFORCE_EQ(IsInitialized(), true,
+ "The Channel hasn't been initialized");
+ return holder_->CanSend();
}
bool CanReceive() {
- if (IsInitialized()) {
- return holder_->CanReceive();
- }
- return false;
+ PADDLE_ENFORCE_EQ(IsInitialized(), true,
+ "The Channel hasn't been initialized");
+ return holder_->CanReceive();
}
void close() {
- if (IsInitialized()) holder_->Close();
+ PADDLE_ENFORCE_EQ(IsInitialized(), true,
+ "The Channel hasn't been initialized");
+ holder_->Close();
}
size_t Cap() {
- if (IsInitialized()) return holder_->Cap();
- return -1;
+ PADDLE_ENFORCE_EQ(IsInitialized(), true,
+ "The Channel hasn't been initialized");
+ return holder_->Cap();
}
void Lock() {
- if (IsInitialized()) holder_->Lock();
+ PADDLE_ENFORCE_EQ(IsInitialized(), true,
+ "The Channel hasn't been initialized");
+ holder_->Lock();
}
void Unlock() {
- if (IsInitialized()) holder_->Unlock();
+ PADDLE_ENFORCE_EQ(IsInitialized(), true,
+ "The Channel hasn't been initialized");
+ holder_->Unlock();
}
template
void AddToSendQ(const void* referrer, T* data,
std::shared_ptr cond,
std::function cb) {
- if (IsInitialized()) {
- Channel* channel = static_cast*>(holder_->Ptr());
- if (channel != nullptr) {
- channel->AddToSendQ(referrer, data, cond, cb);
- }
+ PADDLE_ENFORCE_EQ(IsInitialized(), true,
+ "The Channel hasn't been initialized");
+ Channel* channel = static_cast*>(holder_->Ptr());
+ if (channel != nullptr) {
+ channel->AddToSendQ(referrer, data, cond, cb);
}
}
@@ -154,26 +166,31 @@ class ChannelHolder {
void AddToReceiveQ(const void* referrer, T* data,
std::shared_ptr cond,
std::function cb) {
- if (IsInitialized()) {
- Channel* channel = static_cast*>(holder_->Ptr());
- if (channel != nullptr) {
- channel->AddToReceiveQ(referrer, data, cond, cb);
- }
+ PADDLE_ENFORCE_EQ(IsInitialized(), true,
+ "The Channel hasn't been initialized");
+ Channel* channel = static_cast*>(holder_->Ptr());
+ if (channel != nullptr) {
+ channel->AddToReceiveQ(referrer, data, cond, cb);
}
}
void RemoveFromSendQ(const void* referrer) {
- if (IsInitialized()) holder_->RemoveFromSendQ(referrer);
+ PADDLE_ENFORCE_EQ(IsInitialized(), true,
+ "The Channel hasn't been initialized");
+ holder_->RemoveFromSendQ(referrer);
}
void RemoveFromReceiveQ(const void* referrer) {
- if (IsInitialized()) holder_->RemoveFromReceiveQ(referrer);
+ PADDLE_ENFORCE_EQ(IsInitialized(), true,
+ "The Channel hasn't been initialized");
+ holder_->RemoveFromReceiveQ(referrer);
}
inline bool IsInitialized() const { return holder_ != nullptr; }
inline const std::type_index Type() {
- PADDLE_ENFORCE_EQ(IsInitialized(), true);
+ PADDLE_ENFORCE_EQ(IsInitialized(), true,
+ "The Channel hasn't been initialized");
return holder_->Type();
}
diff --git a/paddle/fluid/framework/channel_impl.h b/paddle/fluid/framework/channel_impl.h
index 457abbf373d4549229e8fd8bd6b2087cc6b8f5c8..e056779ea0dd0a31191b628f82724298efaf50ff 100644
--- a/paddle/fluid/framework/channel_impl.h
+++ b/paddle/fluid/framework/channel_impl.h
@@ -31,7 +31,7 @@ class ChannelImpl : public paddle::framework::Channel {
public:
virtual bool CanSend();
virtual bool CanReceive();
- virtual bool Send(T *);
+ virtual void Send(T *);
virtual bool Receive(T *);
virtual size_t Cap() { return cap_; }
virtual void Lock();
@@ -76,10 +76,9 @@ class ChannelImpl : public paddle::framework::Channel {
}
};
- bool send_return(bool value) {
+ void send_return() {
send_ctr--;
destructor_cond_.notify_all();
- return value;
}
bool recv_return(bool value) {
@@ -88,6 +87,21 @@ class ChannelImpl : public paddle::framework::Channel {
return value;
}
+ std::shared_ptr get_first_message(
+ std::deque> &queue, ChannelAction action) {
+ while (!queue.empty()) {
+ // Check whether this message was added by Select
+ // If this was added by Select then execute the callback
+ // to check if you can execute this message. The callback
+ // can return false if some other case was executed in Select.
+ // In that case just discard this QueueMessage and process next.
+ std::shared_ptr m = queue.front();
+ queue.pop_front();
+ if (m->callback == nullptr || m->callback(action)) return m;
+ }
+ return nullptr;
+ }
+
size_t cap_;
std::recursive_mutex mu_;
bool closed_;
@@ -118,45 +132,33 @@ bool ChannelImpl::CanReceive() {
}
template
-bool ChannelImpl::Send(T *item) {
+void ChannelImpl::Send(T *item) {
send_ctr++;
std::unique_lock lock{mu_};
- // If channel is closed, do nothing
+ // If channel is closed, throw exception
if (closed_) {
+ send_return();
lock.unlock();
- // TODO(abhinavarora) Should panic on closed channel
- return send_return(false);
+ PADDLE_THROW("Cannot send on closed channel");
}
// If there is a receiver, directly pass the value we want
// to send to the receiver, bypassing the channel buffer if any
if (!recvq.empty()) {
- std::shared_ptr m = recvq.front();
- recvq.pop_front();
- // Do the data transfer
- // We will do this data transfer if either of the following
- // cases are true
- // 1. callback == nullptr // This means it was a regular channel send
- // 2. callback returns true
- bool do_send = true;
- if (m->callback != nullptr) do_send = m->callback(ChannelAction::SEND);
- if (do_send)
+ std::shared_ptr m =
+ get_first_message(recvq, ChannelAction::SEND);
+
+ if (m != nullptr) {
*(m->data) = std::move(*item);
- else
- // We cannot do the data transfer because
- // this QueueMessage was added by Select
- // and some other case was executed.
- // So call the Send function again.
- // We do not care about notifying other
- // because they would have been notified
- // by the executed select case.
- return send_return(Send(item));
-
- // Wake up the blocked process and unlock
- m->Notify();
- lock.unlock();
- return send_return(true);
+ m->Notify();
+ send_return();
+ return;
+ } else {
+ Send(item);
+ send_return();
+ return;
+ }
}
// Unbuffered channel will always bypass this
@@ -165,9 +167,8 @@ bool ChannelImpl::Send(T *item) {
if (buf_.size() < cap_) {
// Copy to buffer
buf_.push_back(std::move(*item));
- // Release lock and return true
- lock.unlock();
- return send_return(true);
+ send_return();
+ return;
}
// Block on channel, because some receiver will complete
@@ -175,8 +176,12 @@ bool ChannelImpl::Send(T *item) {
auto m = std::make_shared(item);
sendq.push_back(m);
m->Wait(lock);
- // TODO(abhinavarora) Should panic on closed channel
- return send_return(!m->chan_closed);
+ if (m->chan_closed) {
+ send_return();
+ lock.unlock();
+ PADDLE_THROW("Cannot send on closed channel");
+ }
+ send_return();
}
template
@@ -186,39 +191,37 @@ bool ChannelImpl::Receive(T *item) {
// If channel is closed and buffer is empty or
// channel is unbuffered
- if (closed_ && buf_.empty()) {
- lock.unlock();
- return recv_return(false);
- }
+ if (closed_ && buf_.empty()) return recv_return(false);
// If there is a sender, directly receive the value we want
- // from the sender, bypassing the channel buffer if any
+ // from the sender. In case of a buffered channel, read from
+ // buffer and move front of send queue to the buffer
if (!sendq.empty()) {
- std::shared_ptr m = sendq.front();
- sendq.pop_front();
- // Do the data transfer
- // We will do this data transfer if either of the following
- // cases are true
- // 1. callback == nullptr // This means it was a regular channel send
- // 2. callback returns true
- bool do_receive = true;
- if (m->callback != nullptr)
- do_receive = m->callback(ChannelAction::RECEIVE);
- if (do_receive)
- *item = std::move(*(m->data));
- else
- // We cannot do the data transfer because
- // this QueueMessage was added by Select
- // and some other case was executed.
- // So call the Receive function again.
- // We do not care about notifying other
- // because they would have been notified
- // by the executed select case.
- return recv_return(Receive(item));
-
- // Wake up the blocked process and unlock
- m->Notify();
- lock.unlock();
+ std::shared_ptr m =
+ get_first_message(sendq, ChannelAction::RECEIVE);
+ if (buf_.size() > 0) {
+ // Case 1 : Channel is Buffered
+ // Do Data transfer from front of buffer
+ // and add a QueueMessage to the buffer
+ *item = std::move(buf_.front());
+ buf_.pop_front();
+ // If first message from sendq is not null
+ // add it to the buffer and notify it
+ if (m != nullptr) {
+ // Copy to buffer
+ buf_.push_back(std::move(*(m->data)));
+ m->Notify();
+ } // Ignore if there is no first message
+ } else {
+ // Case 2: Channel is Unbuffered
+ // Do data transfer from front of SendQ
+ // If front is nullptr, then recursively call itself
+ if (m != nullptr) {
+ *item = std::move(*(m->data));
+ m->Notify();
+ } else
+ return recv_return(Receive(item));
+ }
return recv_return(true);
}
@@ -227,8 +230,7 @@ bool ChannelImpl::Receive(T *item) {
// Directly read from buffer
*item = std::move(buf_.front());
buf_.pop_front();
- // Release lock and return true
- lock.unlock();
+ // return true
return recv_return(true);
}
diff --git a/paddle/fluid/framework/channel_test.cc b/paddle/fluid/framework/channel_test.cc
index 73be5cdbe2a1f5994ecee4c415e83962f50532fe..1184bfdae1940286fb72d9091ae4f23ff7f84a54 100644
--- a/paddle/fluid/framework/channel_test.cc
+++ b/paddle/fluid/framework/channel_test.cc
@@ -16,7 +16,6 @@ limitations under the License. */
#include
#include
-
#include "gtest/gtest.h"
using paddle::framework::Channel;
@@ -37,23 +36,25 @@ TEST(Channel, ChannelCapacityTest) {
delete ch;
}
-void RecevingOrderEqualToSendingOrder(Channel *ch) {
+void RecevingOrderEqualToSendingOrder(Channel *ch, int num_items) {
unsigned sum_send = 0;
std::thread t([&]() {
- for (int i = 0; i < 5; i++) {
- EXPECT_EQ(ch->Send(&i), true);
+ for (int i = 0; i < num_items; i++) {
+ ch->Send(&i);
sum_send += i;
}
});
- for (int i = 0; i < 5; i++) {
- int recv = 999;
+ std::this_thread::sleep_for(std::chrono::milliseconds(200));
+ for (int i = 0; i < num_items; i++) {
+ int recv = -1;
EXPECT_EQ(ch->Receive(&recv), true);
EXPECT_EQ(recv, i);
}
std::this_thread::sleep_for(std::chrono::milliseconds(200));
CloseChannel(ch);
t.join();
- EXPECT_EQ(sum_send, 10U);
+ unsigned expected_sum = (num_items * (num_items - 1)) / 2;
+ EXPECT_EQ(sum_send, expected_sum);
delete ch;
}
@@ -61,7 +62,7 @@ TEST(Channel, SufficientBufferSizeDoesntBlock) {
const size_t buffer_size = 10;
auto ch = MakeChannel(buffer_size);
for (size_t i = 0; i < buffer_size; ++i) {
- EXPECT_EQ(ch->Send(&i), true); // should not block
+ ch->Send(&i);
}
size_t out;
@@ -82,7 +83,7 @@ void SendReceiveWithACloseChannelShouldPanic(Channel *ch) {
const size_t data = 5;
std::thread send_thread{[&]() {
size_t i = data;
- EXPECT_EQ(ch->Send(&i), true); // should not block
+ ch->Send(&i); // should not block
}};
std::thread recv_thread{[&]() {
@@ -94,12 +95,18 @@ void SendReceiveWithACloseChannelShouldPanic(Channel *ch) {
send_thread.join();
recv_thread.join();
- // After closing send should return false. Receive should
- // also return false as there is no data in queue.
+ // After closing send should panic. Receive should
+ // also false as there is no data in queue.
CloseChannel(ch);
send_thread = std::thread{[&]() {
size_t i = data;
- EXPECT_EQ(ch->Send(&i), false); // should return false
+ bool is_exception = false;
+ try {
+ ch->Send(&i);
+ } catch (paddle::platform::EnforceNotMet e) {
+ is_exception = true;
+ }
+ EXPECT_EQ(is_exception, true);
}};
recv_thread = std::thread{[&]() {
size_t i;
@@ -129,7 +136,7 @@ TEST(Channel, ReceiveFromBufferedChannelReturnResidualValuesTest) {
auto ch = MakeChannel(buffer_size);
for (size_t i = 0; i < buffer_size; ++i) {
- EXPECT_EQ(ch->Send(&i), true); // sending should not block
+ ch->Send(&i); // sending should not block
}
size_t out;
@@ -160,9 +167,16 @@ TEST(Channel, ConcurrentSendNonConcurrentReceiveWithSufficientBufferSize) {
// Try to write more than buffer size.
for (size_t i = 0; i < 2 * buffer_size; ++i) {
if (i < buffer_size)
- EXPECT_EQ(ch->Send(&i), true); // should block after 10 iterations
- else
- EXPECT_EQ(ch->Send(&i), false);
+ ch->Send(&i); // should block after 10 iterations
+ else {
+ bool is_exception = false;
+ try {
+ ch->Send(&i);
+ } catch (paddle::platform::EnforceNotMet e) {
+ is_exception = true;
+ }
+ EXPECT_EQ(is_exception, true);
+ }
}
});
std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait 0.2 sec
@@ -173,12 +187,28 @@ TEST(Channel, ConcurrentSendNonConcurrentReceiveWithSufficientBufferSize) {
TEST(Channel, RecevingOrderEqualToSendingOrderWithUnBufferedChannel) {
auto ch = MakeChannel(0);
- RecevingOrderEqualToSendingOrder(ch);
+ RecevingOrderEqualToSendingOrder(ch, 20);
+}
+
+TEST(Channel, RecevingOrderEqualToSendingOrderWithBufferedChannel1) {
+ // Test that Receive Order is same as Send Order when number of items
+ // sent is less than size of buffer
+ auto ch = MakeChannel(10);
+ RecevingOrderEqualToSendingOrder(ch, 5);
}
-TEST(Channel, RecevingOrderEqualToSendingOrderWithBufferedChannel) {
+TEST(Channel, RecevingOrderEqualToSendingOrderWithBufferedChannel2) {
+ // Test that Receive Order is same as Send Order when number of items
+ // sent is equal to size of buffer
auto ch = MakeChannel(10);
- RecevingOrderEqualToSendingOrder(ch);
+ RecevingOrderEqualToSendingOrder(ch, 10);
+}
+
+TEST(Channel, RecevingOrderEqualToSendingOrderWithBufferedChannel3) {
+ // Test that Receive Order is same as Send Order when number of items
+ // sent is greater than the size of buffer
+ auto ch = MakeChannel(10);
+ RecevingOrderEqualToSendingOrder(ch, 20);
}
void ChannelCloseUnblocksReceiversTest(Channel *ch) {
@@ -231,7 +261,13 @@ void ChannelCloseUnblocksSendersTest(Channel *ch, bool isBuffered) {
t[i] = std::thread(
[&](bool *ended, bool *success) {
int data = 10;
- *success = ch->Send(&data);
+ bool is_exception = false;
+ try {
+ ch->Send(&data);
+ } catch (paddle::platform::EnforceNotMet e) {
+ is_exception = true;
+ }
+ *success = !is_exception;
*ended = true;
},
&thread_ended[i], &send_success[i]);
@@ -316,8 +352,11 @@ TEST(Channel, UnbufferedLessReceiveMoreSendTest) {
// Try to send more number of times
// than receivers
for (int i = 0; i < 4; i++) {
- ch->Send(&i);
- sum_send += i;
+ try {
+ ch->Send(&i);
+ sum_send += i;
+ } catch (paddle::platform::EnforceNotMet e) {
+ }
}
});
for (int i = 0; i < 3; i++) {
@@ -382,7 +421,13 @@ void ChannelDestroyUnblockSenders(Channel *ch, bool isBuffered) {
t[i] = std::thread(
[&](bool *ended, bool *success) {
int data = 10;
- *success = ch->Send(&data);
+ bool is_exception = false;
+ try {
+ ch->Send(&data);
+ } catch (paddle::platform::EnforceNotMet e) {
+ is_exception = true;
+ }
+ *success = !is_exception;
*ended = true;
},
&thread_ended[i], &send_success[i]);
@@ -508,7 +553,7 @@ void ChannelHolderSendReceive(ChannelHolder *ch) {
unsigned sum_send = 0;
std::thread t([&]() {
for (int i = 0; i < 5; i++) {
- EXPECT_EQ(ch->Send(&i), true);
+ ch->Send(&i);
sum_send += i;
}
});
@@ -541,8 +586,22 @@ TEST(ChannelHolder, ChannelUninitializedTest) {
ChannelHolder *ch = new ChannelHolder();
EXPECT_EQ(ch->IsInitialized(), false);
int i = 10;
- EXPECT_EQ(ch->Send(&i), false);
- EXPECT_EQ(ch->Receive(&i), false);
+ bool send_exception = false;
+ try {
+ ch->Send(&i);
+ } catch (paddle::platform::EnforceNotMet e) {
+ send_exception = true;
+ }
+ EXPECT_EQ(send_exception, true);
+
+ bool recv_exception = false;
+ try {
+ ch->Receive(&i);
+ } catch (paddle::platform::EnforceNotMet e) {
+ recv_exception = true;
+ }
+ EXPECT_EQ(recv_exception, true);
+
bool is_exception = false;
try {
ch->Type();
@@ -669,7 +728,13 @@ void ChannelHolderCloseUnblocksSendersTest(ChannelHolder *ch, bool isBuffered) {
t[i] = std::thread(
[&](bool *ended, bool *success) {
int data = 10;
- *success = ch->Send(&data);
+ bool is_exception = false;
+ try {
+ ch->Send(&data);
+ } catch (paddle::platform::EnforceNotMet e) {
+ is_exception = true;
+ }
+ *success = !is_exception;
*ended = true;
},
&thread_ended[i], &send_success[i]);
@@ -760,7 +825,13 @@ void ChannelHolderDestroyUnblockSenders(ChannelHolder *ch, bool isBuffered) {
t[i] = std::thread(
[&](bool *ended, bool *success) {
int data = 10;
- *success = ch->Send(&data);
+ bool is_exception = false;
+ try {
+ ch->Send(&data);
+ } catch (paddle::platform::EnforceNotMet e) {
+ is_exception = true;
+ }
+ *success = !is_exception;
*ended = true;
},
&thread_ended[i], &send_success[i]);
diff --git a/paddle/fluid/framework/details/CMakeLists.txt b/paddle/fluid/framework/details/CMakeLists.txt
new file mode 100644
index 0000000000000000000000000000000000000000..bf1a705ef50b663efa53393ead1f81fd6bcf8c48
--- /dev/null
+++ b/paddle/fluid/framework/details/CMakeLists.txt
@@ -0,0 +1,21 @@
+cc_library(var_handle SRCS var_handle.cc DEPS place)
+cc_library(op_handle_base SRCS op_handle_base.cc DEPS var_handle device_context)
+cc_library(scale_loss_grad_op_handle SRCS scale_loss_grad_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory)
+cc_library(fetch_op_handle SRCS fetch_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory)
+nv_library(nccl_all_reduce_op_handle SRCS nccl_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
+ dynload_cuda)
+cc_library(computation_op_handle SRCS computation_op_handle.cc DEPS framework_proto scope place operator op_registry)
+
+cc_library(ssa_graph SRCS ssa_graph.cc DEPS var_handle op_handle_base)
+cc_library(ssa_graph_builder SRCS ssa_graph_builder.cc DEPS ssa_graph)
+
+if(WITH_GPU)
+ set(multi_devices_graph_builder_deps nccl_all_reduce_op_handle)
+else()
+ set(multi_devices_graph_builder_deps)
+endif()
+cc_library(multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle
+ scale_loss_grad_op_handle ${multi_devices_graph_builder_deps})
+cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph)
+cc_library(threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
+ simple_threadpool device_context)
diff --git a/paddle/fluid/framework/details/computation_op_handle.cc b/paddle/fluid/framework/details/computation_op_handle.cc
new file mode 100644
index 0000000000000000000000000000000000000000..7a1b40c0b60a788b1f0a70e688f8fcbe427ad076
--- /dev/null
+++ b/paddle/fluid/framework/details/computation_op_handle.cc
@@ -0,0 +1,42 @@
+// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "paddle/fluid/framework/details/computation_op_handle.h"
+
+namespace paddle {
+namespace framework {
+namespace details {
+ComputationOpHandle::ComputationOpHandle(const OpDesc &op_desc, Scope *scope,
+ platform::Place place)
+ : op_(framework::OpRegistry::CreateOp(op_desc)),
+ scope_(scope),
+ place_(place) {}
+
+void ComputationOpHandle::RunImpl() {
+ auto *cur_ctx = dev_ctxes_[place_];
+ for (auto *in : inputs_) {
+ bool need_wait =
+ in->generated_op_ && in->generated_op_->dev_ctxes_[place_] != cur_ctx;
+ if (need_wait) {
+ in->generated_op_->Wait(cur_ctx);
+ }
+ }
+
+ op_->Run(*scope_->FindVar("@TMP_SCOPE@")->Get(), place_);
+}
+
+std::string ComputationOpHandle::Name() const { return op_->Type(); }
+} // namespace details
+} // namespace framework
+} // namespace paddle
diff --git a/paddle/fluid/framework/details/computation_op_handle.h b/paddle/fluid/framework/details/computation_op_handle.h
new file mode 100644
index 0000000000000000000000000000000000000000..d6d2d731ca80a0fbc0a2a34027b5b7c3c1977c07
--- /dev/null
+++ b/paddle/fluid/framework/details/computation_op_handle.h
@@ -0,0 +1,41 @@
+// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#pragma once
+
+#include "paddle/fluid/framework/details/op_handle_base.h"
+#include "paddle/fluid/framework/op_registry.h"
+#include "paddle/fluid/framework/operator.h"
+#include "paddle/fluid/framework/scope.h"
+#include "paddle/fluid/platform/device_context.h"
+
+namespace paddle {
+namespace framework {
+namespace details {
+struct ComputationOpHandle : public OpHandleBase {
+ std::unique_ptr op_;
+ Scope *scope_;
+ platform::Place place_;
+
+ ComputationOpHandle(const OpDesc &op_desc, Scope *scope,
+ platform::Place place);
+
+ std::string Name() const override;
+
+ protected:
+ void RunImpl() override;
+};
+} // namespace details
+} // namespace framework
+} // namespace paddle
diff --git a/paddle/fluid/framework/details/fetch_op_handle.cc b/paddle/fluid/framework/details/fetch_op_handle.cc
new file mode 100644
index 0000000000000000000000000000000000000000..9180903b864d03e59f55f41410b2240fa4199496
--- /dev/null
+++ b/paddle/fluid/framework/details/fetch_op_handle.cc
@@ -0,0 +1,79 @@
+// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "paddle/fluid/framework/details/fetch_op_handle.h"
+
+namespace paddle {
+namespace framework {
+namespace details {
+
+FetchOpHandle::FetchOpHandle(FeedFetchList *data, size_t offset,
+ std::vector *local_scopes)
+ : data_(data), offset_(offset), local_scopes_(local_scopes) {}
+
+FetchOpHandle::~FetchOpHandle() {
+ for (auto *input_var : inputs_) {
+ input_var->pending_ops_.erase(this);
+ }
+}
+
+void FetchOpHandle::Wait(platform::DeviceContext *waited_dev) {
+ PADDLE_THROW("Nobody should wait FetchOp. Unexpceted Error");
+}
+
+void FetchOpHandle::WaitAndMergeCPUTensors() const {
+ std::vector tensors_ptr;
+ tensors_ptr.reserve(tensors_.size());
+ for (auto &t : tensors_) {
+ tensors_ptr.emplace_back(&t);
+ }
+ data_->at(offset_).MergeLoDTensor(tensors_ptr, platform::CPUPlace());
+}
+
+void FetchOpHandle::RunImpl() {
+ auto cpu_ctx =
+ platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
+ for (auto *input : inputs_) {
+ auto *var = static_cast(input);
+ var->generated_op_->Wait(cpu_ctx);
+ }
+
+ tensors_.resize(inputs_.size());
+ auto *var = static_cast(inputs_[0]);
+ auto &var_name = var->name_;
+ platform::CPUPlace cpu;
+ auto &scopes = *local_scopes_;
+
+ for (size_t i = 0; i < scopes.size(); ++i) {
+ auto &scope = scopes[i];
+ auto &t = scope->FindVar(var_name)->Get();
+ if (platform::is_gpu_place(var->place_)) {
+#ifdef PADDLE_WITH_CUDA
+ TensorCopy(t, cpu, *dev_ctxes_[t.place()], &tensors_[i]);
+ dev_ctxes_[t.place()]->Wait();
+#endif
+ } else {
+ tensors_[i].ShareDataWith(t);
+ tensors_[i].set_lod(t.lod());
+ }
+ }
+
+ this->WaitAndMergeCPUTensors();
+}
+
+std::string FetchOpHandle::Name() const { return "Fetch"; }
+
+} // namespace details
+} // namespace framework
+} // namespace paddle
diff --git a/paddle/fluid/framework/details/fetch_op_handle.h b/paddle/fluid/framework/details/fetch_op_handle.h
new file mode 100644
index 0000000000000000000000000000000000000000..904b2d669f8b156b99197afb0155380d1170a68b
--- /dev/null
+++ b/paddle/fluid/framework/details/fetch_op_handle.h
@@ -0,0 +1,49 @@
+// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#pragma once
+
+#include "paddle/fluid/framework/details/op_handle_base.h"
+#include "paddle/fluid/framework/feed_fetch_type.h"
+#include "paddle/fluid/framework/scope.h"
+#include "paddle/fluid/platform/device_context.h"
+
+namespace paddle {
+namespace framework {
+namespace details {
+
+struct FetchOpHandle : public OpHandleBase {
+ FeedFetchList *data_;
+ size_t offset_;
+ std::vector *local_scopes_;
+ std::vector tensors_;
+
+ FetchOpHandle(FeedFetchList *data, size_t offset,
+ std::vector *local_scopes);
+
+ ~FetchOpHandle();
+
+ void Wait(platform::DeviceContext *waited_dev) override;
+
+ void WaitAndMergeCPUTensors() const;
+
+ std::string Name() const override;
+
+ protected:
+ void RunImpl() override;
+};
+
+} // namespace details
+} // namespace framework
+} // namespace paddle
diff --git a/paddle/fluid/framework/details/multi_devices_graph_builder.cc b/paddle/fluid/framework/details/multi_devices_graph_builder.cc
new file mode 100644
index 0000000000000000000000000000000000000000..c277bd7cb69bba899296efe64107ee538c4aa847
--- /dev/null
+++ b/paddle/fluid/framework/details/multi_devices_graph_builder.cc
@@ -0,0 +1,181 @@
+// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
+#include "paddle/fluid/framework/details/computation_op_handle.h"
+#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
+#include "paddle/fluid/framework/scope.h"
+
+#ifdef PADDLE_WITH_CUDA
+#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
+#endif
+
+namespace paddle {
+namespace framework {
+namespace details {
+
+#ifdef PADDLE_WITH_CUDA
+MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
+ const std::vector &places,
+ const std::string &loss_var_name,
+ const std::unordered_set ¶ms,
+ const std::vector &local_scopes,
+ platform::NCCLContextMap *nccl_ctxs)
+ : loss_var_name_(loss_var_name),
+ places_(places),
+ local_scopes_(local_scopes),
+ nccl_ctxs_(nccl_ctxs) {
+#else
+MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
+ const std::vector &places,
+ const std::string &loss_var_name,
+ const std::unordered_set ¶ms,
+ const std::vector &local_scopes)
+ : loss_var_name_(loss_var_name),
+ places_(places),
+ local_scopes_(local_scopes) {
+#endif
+ for (auto &p : params) {
+ grad_names_.insert(GradVarName(p));
+ }
+}
+
+std::unique_ptr MultiDevSSAGraphBuilder::Build(
+ const ProgramDesc &program) const {
+ auto graph = new SSAGraph();
+ SSAGraph &result = *graph;
+ std::unordered_set og_has_been_broadcast;
+ result.vars_.resize(places_.size());
+
+ bool is_forwarding = true;
+ for (auto *op : program.Block(0).AllOps()) {
+ bool change_forward = false;
+ if (!is_forwarding) {
+ // FIXME(yy): Do not hard code like this
+ if (op->OutputArgumentNames().size() == 1 &&
+ op->OutputArgumentNames()[0] == GradVarName(loss_var_name_)) {
+ continue; // Drop fill 1. for backward coeff;
+ }
+ }
+
+ for (size_t i = 0; i < places_.size(); ++i) {
+ auto &p = places_[i];
+ auto *s = local_scopes_[i];
+
+ result.ops_.emplace_back(new ComputationOpHandle(*op, s, p));
+ auto *op_handle = result.ops_.back().get();
+ op_handle->dev_ctxes_[p] = const_cast(
+ platform::DeviceContextPool::Instance().Get(p));
+
+ auto var_names = op->InputArgumentNames();
+
+ for (auto &each_var_name : var_names) {
+ VarHandle *var =
+ CreateOrGetLatestVarHandle(&result, each_var_name, p, i);
+ op_handle->AddInput(var);
+ }
+ var_names = op->OutputArgumentNames();
+
+ for (auto &each_var_name : var_names) {
+ CreateOpOutput(&result, op_handle, each_var_name, p, i);
+ }
+
+ if (is_forwarding) {
+ if (var_names.size() == 1 && var_names[0] == loss_var_name_) {
+// Insert ScaleCost OpHandle
+#ifdef PADDLE_WITH_CUDA
+ auto *communication_dev_ctx = nccl_ctxs_->DevCtx(p);
+#else
+ auto *communication_dev_ctx =
+ platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
+#endif
+
+ op_handle = new ScaleLossGradOpHandle(local_scopes_.size(), s, p,
+ communication_dev_ctx);
+ result.ops_.emplace_back(op_handle);
+
+ // FIXME: Currently ScaleLossGradOp only use device_count as scale
+ // factor. So it does not depend on any other operators.
+ // VarHandle *loss = GetVarHandle(loss_var_name, place);
+ // loss->pending_ops_.emplace_back(op_handle);
+ // op_handle->inputs_.emplace_back(loss);
+
+ CreateOpOutput(&result, op_handle, GradVarName(loss_var_name_), p, i);
+ change_forward = true;
+ }
+ }
+ }
+
+ if (change_forward) {
+ is_forwarding = false;
+ }
+
+ if (!is_forwarding) {
+ auto var_names = op->OutputArgumentNames();
+ // Currently, we assume that once gradient is generated, it can be
+ // broadcast, and each gradient is only broadcast once. But there are no
+ // other cases, for example, we need to adjust the gradient according to
+ // the input when we get the gradient, which is not considered at present.
+ for (auto &og : var_names) {
+ if (grad_names_.count(og) != 0 &&
+ og_has_been_broadcast.count(og) == 0) { // is param grad
+ // Insert NCCL AllReduce Op
+ og_has_been_broadcast.insert(og);
+#ifdef PADDLE_WITH_CUDA
+ result.ops_.emplace_back(
+ new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
+ auto *op_handle = result.ops_.back().get();
+
+ for (size_t i = 0; i < places_.size(); ++i) {
+ auto &p = places_[i];
+ auto &vars = result.vars_[i][og];
+
+ if (vars.empty()) { // This device has no data. continue.
+ continue;
+ }
+ auto *prev_grad = &vars[vars.size() - 1];
+ op_handle->AddInput(prev_grad);
+
+ auto &var = vars[vars.size()];
+ var.place_ = p;
+ var.name_ = og;
+ var.version_ = vars.size() - 1;
+
+ op_handle->AddOutput(&var);
+ }
+#else
+ PADDLE_ENFORCE("Not implemented");
+#endif
+ }
+ }
+ }
+ }
+
+ /*
+ Dependency graph has been constructed. However, there are still data
+ harzaeds need to be handled.
+ */
+ PolishGraphToSupportDataHazards(&result);
+
+ if (VLOG_IS_ON(10)) {
+ std::ostringstream sout;
+ PrintGraphviz(*graph, sout);
+ VLOG(10) << sout.str();
+ }
+
+ return std::unique_ptr(graph);
+} // namespace details
+} // namespace details
+} // namespace framework
+} // namespace paddle
diff --git a/paddle/fluid/framework/details/multi_devices_graph_builder.h b/paddle/fluid/framework/details/multi_devices_graph_builder.h
new file mode 100644
index 0000000000000000000000000000000000000000..d3c8e582cf2cdf26198822e4bd2602883622df21
--- /dev/null
+++ b/paddle/fluid/framework/details/multi_devices_graph_builder.h
@@ -0,0 +1,56 @@
+// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#pragma once
+
+#include "paddle/fluid/framework/details/ssa_graph_builder.h"
+
+namespace paddle {
+namespace platform {
+class NCCLContextMap;
+}
+
+namespace framework {
+class Scope;
+namespace details {
+class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
+ public:
+#ifdef PADDLE_WITH_CUDA
+ MultiDevSSAGraphBuilder(const std::vector &places,
+ const std::string &loss_var_name,
+ const std::unordered_set ¶ms,
+ const std::vector &local_scopes,
+ platform::NCCLContextMap *nccl_ctxs);
+#else
+ MultiDevSSAGraphBuilder(const std::vector &places,
+ const std::string &loss_var_name,
+ const std::unordered_set ¶ms,
+ const std::vector &local_scopes);
+#endif
+
+ std::unique_ptr Build(const ProgramDesc &program) const override;
+
+ private:
+ std::string loss_var_name_;
+ const std::vector &places_;
+ const std::vector &local_scopes_;
+ std::unordered_set grad_names_;
+
+#ifdef PADDLE_WITH_CUDA
+ platform::NCCLContextMap *nccl_ctxs_;
+#endif
+};
+} // namespace details
+} // namespace framework
+} // namespace paddle
diff --git a/paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc b/paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc
new file mode 100644
index 0000000000000000000000000000000000000000..55b5f113589e090386d287e228349f22fb94a7ab
--- /dev/null
+++ b/paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc
@@ -0,0 +1,82 @@
+// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
+
+namespace paddle {
+namespace framework {
+namespace details {
+NCCLAllReduceOpHandle::NCCLAllReduceOpHandle(
+ const std::vector &local_scopes,
+ const std::vector &places,
+ const platform::NCCLContextMap &ctxs)
+ : local_scopes_(local_scopes), places_(places), nccl_ctxs_(ctxs) {
+ for (auto &p : places_) {
+ this->dev_ctxes_[p] = nccl_ctxs_.DevCtx(p);
+ }
+}
+
+void NCCLAllReduceOpHandle::RunImpl() {
+ if (inputs_.size() == 1) {
+ return; // No need to all reduce when GPU count = 1;
+ } else {
+ // Wait input done
+ for (auto *in : inputs_) {
+ auto &p = static_cast(in)->place_;
+ in->generated_op_->Wait(dev_ctxes_[p]);
+ }
+
+ auto &var_name = static_cast(this->inputs_[0])->name_;
+ int dtype = -1;
+ size_t numel = 0;
+
+ std::vector> all_reduce_calls;
+
+ for (size_t i = 0; i < local_scopes_.size(); ++i) {
+ auto &p = places_[i];
+ auto *s = local_scopes_[i];
+ int dev_id = boost::get(p).device;
+
+ auto &lod_tensor = s->FindVar(var_name)->Get();
+ void *buffer = const_cast(lod_tensor.data());
+
+ if (dtype == -1) {
+ dtype = platform::ToNCCLDataType(lod_tensor.type());
+ }
+
+ if (numel == 0) {
+ numel = static_cast(lod_tensor.numel());
+ }
+
+ auto &nccl_ctx = nccl_ctxs_.at(dev_id);
+ auto stream = nccl_ctx.stream();
+ auto comm = nccl_ctx.comm_;
+ all_reduce_calls.emplace_back([=] {
+ PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
+ buffer, buffer, numel, static_cast(dtype), ncclSum,
+ comm, stream));
+ });
+ }
+
+ platform::NCCLGroupGuard guard;
+ for (auto &call : all_reduce_calls) {
+ call();
+ }
+ }
+}
+
+std::string NCCLAllReduceOpHandle::Name() const { return "nccl_all_reduce"; }
+} // namespace details
+} // namespace framework
+} // namespace paddle
diff --git a/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h b/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h
new file mode 100644
index 0000000000000000000000000000000000000000..ad14a3c5cb4625fa121cad2daed389c441e78771
--- /dev/null
+++ b/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h
@@ -0,0 +1,50 @@
+// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#pragma once
+
+#include
+#include
+
+#include "paddle/fluid/framework/details/op_handle_base.h"
+#include "paddle/fluid/framework/lod_tensor.h"
+#include "paddle/fluid/framework/scope.h"
+#include "paddle/fluid/platform/nccl_helper.h"
+
+namespace paddle {
+namespace framework {
+namespace details {
+
+struct NCCLAllReduceOpHandle : public OpHandleBase {
+ const std::vector &local_scopes_;
+ const std::vector &places_;
+ const platform::NCCLContextMap &nccl_ctxs_;
+
+ NCCLAllReduceOpHandle(const std::vector &local_scopes,
+ const std::vector &places,
+ const platform::NCCLContextMap &ctxs);
+
+ std::string Name() const override;
+
+ // Delay and buffer nccl_all_reduce together can significantly increase
+ // performance. Disable this feature by returning false.
+ bool IsMultiDeviceTransfer() override { return true; };
+
+ protected:
+ void RunImpl() override;
+};
+
+} // namespace details
+} // namespace framework
+} // namespace paddle
diff --git a/paddle/fluid/framework/details/op_handle_base.cc b/paddle/fluid/framework/details/op_handle_base.cc
new file mode 100644
index 0000000000000000000000000000000000000000..e4194a7442f677ec8970dbc387bb01ebbbf579f1
--- /dev/null
+++ b/paddle/fluid/framework/details/op_handle_base.cc
@@ -0,0 +1,102 @@
+// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "paddle/fluid/framework/details/op_handle_base.h"
+
+namespace paddle {
+namespace framework {
+namespace details {
+std::string OpHandleBase::DebugString() const {
+ std::stringstream ss;
+ ss << "(";
+ for (auto *var : inputs_) {
+ ss << var->DebugString() << ", ";
+ }
+ ss << ") --> (";
+ for (auto *var : outputs_) {
+ ss << var->DebugString() << ", ";
+ }
+ ss << ")\n";
+ return ss.str();
+}
+
+OpHandleBase::~OpHandleBase() {
+#ifdef PADDLE_WITH_CUDA
+ for (auto &ev : events_) {
+ PADDLE_ENFORCE(cudaEventDestroy(ev.second));
+ }
+#endif
+}
+
+void OpHandleBase::Run(bool use_event) {
+#ifdef PADDLE_WITH_CUDA
+ if (events_.empty() && use_event) {
+ for (auto &p : dev_ctxes_) {
+ int dev_id = boost::get(p.first).device;
+ PADDLE_ENFORCE(cudaSetDevice(dev_id));
+ PADDLE_ENFORCE(
+ cudaEventCreateWithFlags(&events_[dev_id], cudaEventDisableTiming));
+ }
+ }
+#else
+ PADDLE_ENFORCE(!use_event);
+#endif
+
+ RunImpl();
+
+#ifdef PADDLE_WITH_CUDA
+ if (use_event) {
+ for (auto &p : dev_ctxes_) {
+ int dev_id = boost::get(p.first).device;
+ auto stream =
+ static_cast(p.second)->stream();
+ PADDLE_ENFORCE(cudaEventRecord(events_.at(dev_id), stream));
+ }
+ }
+#endif
+}
+
+void OpHandleBase::Wait(platform::DeviceContext *waited_dev) {
+#ifdef PADDLE_WITH_CUDA
+ if (platform::is_cpu_place(waited_dev->GetPlace()) || events_.empty()) {
+ for (auto &dev_ctx : dev_ctxes_) {
+ dev_ctx.second->Wait();
+ }
+ } else {
+ auto stream =
+ static_cast(waited_dev)->stream();
+ for (auto &ev : events_) {
+ PADDLE_ENFORCE(cudaStreamWaitEvent(stream, ev.second, 0));
+ }
+ }
+#else
+ for (auto &dev_ctx : dev_ctxes_) {
+ dev_ctx.second->Wait();
+ }
+#endif
+}
+
+void OpHandleBase::AddInput(VarHandleBase *in) {
+ this->inputs_.emplace_back(in);
+ in->pending_ops_.insert(this);
+}
+
+void OpHandleBase::AddOutput(VarHandleBase *out) {
+ outputs_.emplace_back(out);
+ out->generated_op_ = this;
+}
+
+} // namespace details
+} // namespace framework
+} // namespace paddle
diff --git a/paddle/fluid/framework/details/op_handle_base.h b/paddle/fluid/framework/details/op_handle_base.h
new file mode 100644
index 0000000000000000000000000000000000000000..d7a541ac4bb83625060db337446d03a1afda3ed0
--- /dev/null
+++ b/paddle/fluid/framework/details/op_handle_base.h
@@ -0,0 +1,68 @@
+// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#pragma once
+#include
+#include
+
+#include "paddle/fluid/framework/details/var_handle.h"
+#include "paddle/fluid/platform/device_context.h"
+#include "paddle/fluid/platform/macros.h"
+
+namespace paddle {
+namespace framework {
+namespace details {
+
+class OpHandleBase {
+ private:
+ DISABLE_COPY_AND_ASSIGN(OpHandleBase);
+
+ public:
+ std::vector inputs_;
+ std::vector outputs_;
+ std::unordered_map
+ dev_ctxes_;
+
+#ifdef PADDLE_WITH_CUDA
+ std::unordered_map events_;
+#endif
+
+ OpHandleBase() {}
+
+ std::string DebugString() const;
+
+ virtual std::string Name() const = 0;
+
+ virtual ~OpHandleBase();
+
+ void Run(bool use_event);
+
+ virtual void Wait(platform::DeviceContext *waited_dev);
+
+ void AddInput(VarHandleBase *in);
+
+ void AddOutput(VarHandleBase *out);
+
+ // If the Op involves data transfer of multiple devices that
+ // will likely block other computations.
+ virtual bool IsMultiDeviceTransfer() { return false; }
+
+ protected:
+ virtual void RunImpl() = 0;
+};
+
+} // namespace details
+} // namespace framework
+} // namespace paddle
diff --git a/paddle/fluid/framework/details/scale_loss_grad_op_handle.cc b/paddle/fluid/framework/details/scale_loss_grad_op_handle.cc
new file mode 100644
index 0000000000000000000000000000000000000000..0a6f6129b812ca84db7573957b1ee0a32c1ef5c4
--- /dev/null
+++ b/paddle/fluid/framework/details/scale_loss_grad_op_handle.cc
@@ -0,0 +1,52 @@
+// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
+
+namespace paddle {
+namespace framework {
+namespace details {
+ScaleLossGradOpHandle::ScaleLossGradOpHandle(size_t num_dev, Scope *scope,
+ platform::Place place,
+ platform::DeviceContext *dev_ctx)
+ : coeff_(static_cast(1.0 / num_dev)), scope_(scope), place_(place) {
+ dev_ctxes_[place_] = dev_ctx;
+}
+
+ScaleLossGradOpHandle::~ScaleLossGradOpHandle() {}
+
+void ScaleLossGradOpHandle::RunImpl() {
+ std::string var_name = static_cast(this->outputs_[0])->name_;
+
+ float *tmp =
+ scope_->FindVar(var_name)->GetMutable()->mutable_data(
+ make_ddim({1}), place_);
+
+ if (platform::is_cpu_place(place_)) {
+ *tmp = coeff_;
+ } else {
+#ifdef PADDLE_WITH_CUDA
+ auto stream =
+ static_cast(this->dev_ctxes_[place_])
+ ->stream();
+ memory::Copy(boost::get(place_), tmp,
+ platform::CPUPlace(), &coeff_, sizeof(float), stream);
+#endif
+ }
+}
+
+std::string ScaleLossGradOpHandle::Name() const { return "Scale LossGrad"; }
+} // namespace details
+} // namespace framework
+} // namespace paddle
diff --git a/paddle/fluid/framework/details/scale_loss_grad_op_handle.h b/paddle/fluid/framework/details/scale_loss_grad_op_handle.h
new file mode 100644
index 0000000000000000000000000000000000000000..ab7353a4fc56bebfe04696efd838dc4559218058
--- /dev/null
+++ b/paddle/fluid/framework/details/scale_loss_grad_op_handle.h
@@ -0,0 +1,43 @@
+// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#pragma once
+
+#include "paddle/fluid/framework/details/op_handle_base.h"
+#include "paddle/fluid/framework/lod_tensor.h"
+#include "paddle/fluid/framework/scope.h"
+
+namespace paddle {
+namespace framework {
+namespace details {
+
+struct ScaleLossGradOpHandle : public OpHandleBase {
+ float coeff_;
+ Scope *scope_;
+ platform::Place place_;
+
+ ScaleLossGradOpHandle(size_t num_dev, Scope *scope, platform::Place place,
+ platform::DeviceContext *context);
+
+ ~ScaleLossGradOpHandle() final;
+
+ std::string Name() const override;
+
+ protected:
+ void RunImpl() override;
+};
+
+} // namespace details
+} // namespace framework
+} // namespace paddle
diff --git a/paddle/fluid/framework/details/ssa_graph.cc b/paddle/fluid/framework/details/ssa_graph.cc
new file mode 100644
index 0000000000000000000000000000000000000000..1b8c889449059c563ea39f86250075ac2537cdbe
--- /dev/null
+++ b/paddle/fluid/framework/details/ssa_graph.cc
@@ -0,0 +1,15 @@
+// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "paddle/fluid/framework/details/ssa_graph.h"
diff --git a/paddle/fluid/framework/details/ssa_graph.h b/paddle/fluid/framework/details/ssa_graph.h
new file mode 100644
index 0000000000000000000000000000000000000000..ac3e2d86993aee31b79f4481c4d5a47cd9cdf5b4
--- /dev/null
+++ b/paddle/fluid/framework/details/ssa_graph.h
@@ -0,0 +1,35 @@
+// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#pragma once
+
+#include