Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
e02dec01
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e02dec01
编写于
1月 20, 2022
作者:
F
fwenguang
提交者:
GitHub
1月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU]add mlu kernel for top_k and top_k_v2 (#39065)
上级
e3e50ea8
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
520 addition
and
0 deletion
+520
-0
paddle/fluid/operators/top_k_op_mlu.cc
paddle/fluid/operators/top_k_op_mlu.cc
+77
-0
paddle/fluid/operators/top_k_v2_op_mlu.cc
paddle/fluid/operators/top_k_v2_op_mlu.cc
+85
-0
python/paddle/fluid/tests/unittests/mlu/test_top_k_op_mlu.py
python/paddle/fluid/tests/unittests/mlu/test_top_k_op_mlu.py
+73
-0
python/paddle/fluid/tests/unittests/mlu/test_top_k_v2_op_mlu.py
.../paddle/fluid/tests/unittests/mlu/test_top_k_v2_op_mlu.py
+285
-0
未找到文件。
paddle/fluid/operators/top_k_op_mlu.cc
0 → 100644
浏览文件 @
e02dec01
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/top_k_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
TopkMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
indices
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Indices"
);
const
auto
&
place
=
ctx
.
GetPlace
();
size_t
k
=
static_cast
<
int
>
(
ctx
.
Attr
<
int
>
(
"k"
));
auto
*
k_t
=
ctx
.
Input
<
Tensor
>
(
"K"
);
if
(
k_t
)
{
auto
k_t_ptr
=
static_cast
<
const
void
*>
(
k_t
->
data
<
int
>
());
auto
size
=
k_t
->
numel
()
*
sizeof
(
int
);
memory
::
Copy
(
platform
::
CPUPlace
(),
reinterpret_cast
<
void
*>
(
&
k
),
BOOST_GET_CONST
(
platform
::
MLUPlace
,
k_t
->
place
()),
k_t_ptr
,
size
,
nullptr
);
framework
::
DDim
output_dims
=
output
->
dims
();
output_dims
[
output_dims
.
size
()
-
1
]
=
k
;
output
->
Resize
(
output_dims
);
indices
->
Resize
(
output_dims
);
}
output
->
mutable_data
<
T
>
(
place
);
indices
->
mutable_data
<
int64_t
>
(
place
);
const
bool
largest
=
true
;
const
bool
sorted
=
true
;
const
int
axis
=
-
1
;
// cnnl only support int32/int16 type of indices
framework
::
Tensor
indices_int32
(
VT
::
INT32
);
indices_int32
.
Resize
(
indices
->
dims
());
indices_int32
.
mutable_data
<
int32_t
>
(
place
);
MLUCnnlTensorDesc
input_desc
(
*
input
);
MLUCnnlTensorDesc
values_output_desc
(
*
output
);
MLUCnnlTensorDesc
indices_int32_desc
(
indices_int32
);
MLUCnnl
::
TopK
(
ctx
,
k
,
axis
,
largest
,
sorted
,
input_desc
.
get
(),
GetBasePtr
(
input
),
values_output_desc
.
get
(),
GetBasePtr
(
output
),
indices_int32_desc
.
get
(),
GetBasePtr
(
&
indices_int32
));
// cast indices type to int64
MLUCnnlTensorDesc
cast_output_desc
(
*
indices
);
cnnlCastDataType_t
cast_type
=
GetCastDataType
(
VT
::
INT32
,
VT
::
INT64
);
MLUCnnl
::
Cast
(
ctx
,
cast_type
,
indices_int32_desc
.
get
(),
GetBasePtr
(
&
indices_int32
),
cast_output_desc
.
get
(),
GetBasePtr
(
indices
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_MLU_KERNEL
(
top_k
,
ops
::
TopkMLUKernel
<
float
>
,
ops
::
TopkMLUKernel
<
paddle
::
platform
::
float16
>
);
paddle/fluid/operators/top_k_v2_op_mlu.cc
0 → 100644
浏览文件 @
e02dec01
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/top_k_v2_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
TopkV2MLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
indices
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Indices"
);
const
auto
&
place
=
ctx
.
GetPlace
();
const
auto
&
sorted
=
static_cast
<
bool
>
(
ctx
.
Attr
<
bool
>
(
"sorted"
));
const
auto
&
largest
=
static_cast
<
bool
>
(
ctx
.
Attr
<
bool
>
(
"largest"
));
// axis < 0, cacluate the real axis
int
axis
=
static_cast
<
int
>
(
ctx
.
Attr
<
int
>
(
"axis"
));
if
(
axis
<
0
)
{
const
auto
&
in_dims
=
input
->
dims
();
axis
+=
in_dims
.
size
();
}
size_t
k
=
static_cast
<
int
>
(
ctx
.
Attr
<
int
>
(
"k"
));
auto
*
k_t
=
ctx
.
Input
<
Tensor
>
(
"K"
);
if
(
k_t
)
{
auto
k_t_ptr
=
static_cast
<
const
void
*>
(
k_t
->
data
<
int
>
());
auto
size
=
k_t
->
numel
()
*
sizeof
(
int
);
memory
::
Copy
(
platform
::
CPUPlace
(),
reinterpret_cast
<
void
*>
(
&
k
),
BOOST_GET_CONST
(
platform
::
MLUPlace
,
k_t
->
place
()),
k_t_ptr
,
size
,
nullptr
);
framework
::
DDim
output_dims
=
output
->
dims
();
// accroding to axis to set K value in the dim
output_dims
[
axis
]
=
k
;
output
->
Resize
(
output_dims
);
indices
->
Resize
(
output_dims
);
}
output
->
mutable_data
<
T
>
(
place
);
indices
->
mutable_data
<
int64_t
>
(
place
);
// cnnl only support int32/int16 type of indices
framework
::
Tensor
indices_int32
(
VT
::
INT32
);
indices_int32
.
Resize
(
indices
->
dims
());
indices_int32
.
mutable_data
<
int32_t
>
(
place
);
MLUCnnlTensorDesc
input_desc
(
*
input
);
MLUCnnlTensorDesc
values_output_desc
(
*
output
);
MLUCnnlTensorDesc
indices_int32_desc
(
indices_int32
);
MLUCnnl
::
TopK
(
ctx
,
k
,
axis
,
largest
,
sorted
,
input_desc
.
get
(),
GetBasePtr
(
input
),
values_output_desc
.
get
(),
GetBasePtr
(
output
),
indices_int32_desc
.
get
(),
GetBasePtr
(
&
indices_int32
));
// cast indices type to int64
MLUCnnlTensorDesc
cast_output_desc
(
*
indices
);
cnnlCastDataType_t
cast_type
=
GetCastDataType
(
VT
::
INT32
,
VT
::
INT64
);
MLUCnnl
::
Cast
(
ctx
,
cast_type
,
indices_int32_desc
.
get
(),
GetBasePtr
(
&
indices_int32
),
cast_output_desc
.
get
(),
GetBasePtr
(
indices
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_MLU_KERNEL
(
top_k_v2
,
ops
::
TopkV2MLUKernel
<
float
>
,
ops
::
TopkV2MLUKernel
<
paddle
::
platform
::
float16
>
);
python/paddle/fluid/tests/unittests/mlu/test_top_k_op_mlu.py
0 → 100644
浏览文件 @
e02dec01
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid.core
as
core
class
TestTopkOp
(
OpTest
):
def
setUp
(
self
):
self
.
variable_k
=
False
self
.
set_args
()
self
.
op_type
=
"top_k"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
__class__
.
no_need_check_grad
=
True
self
.
dtype
=
np
.
float32
self
.
init_dtype
()
k
=
self
.
top_k
input
=
np
.
random
.
random
((
self
.
row
,
k
)).
astype
(
self
.
dtype
)
output
=
np
.
ndarray
((
self
.
row
,
k
))
indices
=
np
.
ndarray
((
self
.
row
,
k
)).
astype
(
"int64"
)
self
.
inputs
=
{
'X'
:
input
}
if
self
.
variable_k
:
self
.
inputs
[
'K'
]
=
np
.
array
([
k
]).
astype
(
"int32"
)
else
:
self
.
attrs
=
{
'k'
:
k
}
for
rowid
in
range
(
self
.
row
):
row
=
input
[
rowid
]
output
[
rowid
]
=
np
.
sort
(
row
)[::
-
1
][:
k
]
indices
[
rowid
]
=
row
.
argsort
()[::
-
1
][:
k
]
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
def
init_dtype
(
self
):
pass
def
set_args
(
self
):
self
.
row
=
100
self
.
top_k
=
1
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
TestTopkFP16Op
(
TestTopkOp
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_top_k_v2_op_mlu.py
0 → 100644
浏览文件 @
e02dec01
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid.core
as
core
def
numpy_topk
(
x
,
k
=
1
,
axis
=-
1
,
largest
=
True
):
if
axis
<
0
:
axis
=
len
(
x
.
shape
)
+
axis
if
largest
:
indices
=
np
.
argsort
(
-
x
,
axis
=
axis
)
else
:
indices
=
np
.
argsort
(
x
,
axis
=
axis
)
if
largest
:
value
=
-
np
.
sort
(
-
x
,
axis
=
axis
)
else
:
value
=
np
.
sort
(
x
,
axis
=
axis
)
indices
=
indices
.
take
(
indices
=
range
(
0
,
k
),
axis
=
axis
)
value
=
value
.
take
(
indices
=
range
(
0
,
k
),
axis
=
axis
)
return
value
,
indices
class
TestTopkOp
(
OpTest
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
__class__
.
no_need_check_grad
=
True
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
10
,
20
).
astype
(
self
.
dtype
)
self
.
init_args
()
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
def
test_check_output
(
self
):
paddle
.
enable_static
()
self
.
check_output_with_place
(
self
.
place
)
class
TestTopkOp1
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
0
self
.
largest
=
False
class
TestTopkOp2
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
4
self
.
axis
=
0
self
.
largest
=
False
class
TestTopkOp3
(
OpTest
):
def
init_args
(
self
):
self
.
k
=
6
self
.
axis
=
1
self
.
largest
=
True
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
16
,
100
).
astype
(
self
.
dtype
)
self
.
init_args
()
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
class
TestTopkOp4
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
).
astype
(
self
.
dtype
)
self
.
init_args
()
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
class
TestTopkOp5
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
).
astype
(
self
.
dtype
)
self
.
init_args
()
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
class
TestTopkOp6
(
OpTest
):
def
init_args
(
self
):
self
.
k
=
100
self
.
axis
=
1
self
.
largest
=
True
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
80
,
16384
).
astype
(
self
.
dtype
)
self
.
init_args
()
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
class
TestTopKAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
np
.
random
.
seed
(
123
)
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
6
,
7
,
8
).
astype
(
self
.
dtype
)
self
.
large_input_data
=
np
.
random
.
rand
(
2
,
1030
).
astype
(
self
.
dtype
)
def
run_dygraph
(
self
,
place
):
paddle
.
disable_static
(
place
)
input_tensor
=
paddle
.
to_tensor
(
self
.
input_data
)
large_input_tensor
=
paddle
.
to_tensor
(
self
.
large_input_data
)
# test case for basic test case 1
paddle_result
=
paddle
.
topk
(
input_tensor
,
k
=
2
)
numpy_result
=
numpy_topk
(
self
.
input_data
,
k
=
2
)
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
0
].
numpy
(),
numpy_result
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
1
].
numpy
(),
numpy_result
[
1
]))
# test case for basic test case 2 with axis
paddle_result
=
paddle
.
topk
(
input_tensor
,
k
=
2
,
axis
=
1
)
numpy_result
=
numpy_topk
(
self
.
input_data
,
k
=
2
,
axis
=
1
)
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
0
].
numpy
(),
numpy_result
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
1
].
numpy
(),
numpy_result
[
1
]))
# test case for basic test case 3 with tensor K
k_tensor
=
paddle
.
to_tensor
(
np
.
array
([
2
]))
paddle_result
=
paddle
.
topk
(
input_tensor
,
k
=
k_tensor
,
axis
=
1
)
numpy_result
=
numpy_topk
(
self
.
input_data
,
k
=
2
,
axis
=
1
)
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
0
].
numpy
(),
numpy_result
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
1
].
numpy
(),
numpy_result
[
1
]))
# test case for basic test case 4 with tensor largest
k_tensor
=
paddle
.
to_tensor
(
np
.
array
([
2
]))
paddle_result
=
paddle
.
topk
(
input_tensor
,
k
=
2
,
axis
=
1
,
largest
=
False
)
numpy_result
=
numpy_topk
(
self
.
input_data
,
k
=
2
,
axis
=
1
,
largest
=
False
)
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
0
].
numpy
(),
numpy_result
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
1
].
numpy
(),
numpy_result
[
1
]))
# test case for basic test case 5 with axis -1
k_tensor
=
paddle
.
to_tensor
(
np
.
array
([
2
]))
paddle_result
=
paddle
.
topk
(
input_tensor
,
k
=
2
,
axis
=-
1
,
largest
=
False
)
numpy_result
=
numpy_topk
(
self
.
input_data
,
k
=
2
,
axis
=-
1
,
largest
=
False
)
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
0
].
numpy
(),
numpy_result
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
1
].
numpy
(),
numpy_result
[
1
]))
# test case for basic test case 6 for the partial sort
paddle_result
=
paddle
.
topk
(
large_input_tensor
,
k
=
1
,
axis
=-
1
)
numpy_result
=
numpy_topk
(
self
.
large_input_data
,
k
=
1
,
axis
=-
1
)
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
0
].
numpy
(),
numpy_result
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
1
].
numpy
(),
numpy_result
[
1
]))
# test case for basic test case 7 for the unsorted
paddle_result
=
paddle
.
topk
(
input_tensor
,
k
=
2
,
axis
=
1
,
sorted
=
False
)
sort_paddle
=
numpy_topk
(
np
.
array
(
paddle_result
[
0
].
numpy
()),
axis
=
1
,
k
=
2
)
numpy_result
=
numpy_topk
(
self
.
input_data
,
k
=
2
,
axis
=
1
)
self
.
assertTrue
(
np
.
allclose
(
sort_paddle
[
0
],
numpy_result
[
0
]))
def
run_static
(
self
,
place
):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()):
input_tensor
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
6
,
7
,
8
],
dtype
=
"float32"
)
large_input_tensor
=
paddle
.
static
.
data
(
name
=
"large_x"
,
shape
=
[
2
,
1030
],
dtype
=
"float32"
)
k_tensor
=
paddle
.
static
.
data
(
name
=
"k"
,
shape
=
[
1
],
dtype
=
"int32"
)
result1
=
paddle
.
topk
(
input_tensor
,
k
=
2
)
result2
=
paddle
.
topk
(
input_tensor
,
k
=
2
,
axis
=-
1
)
result3
=
paddle
.
topk
(
input_tensor
,
k
=
k_tensor
,
axis
=
1
)
self
.
assertEqual
(
result3
[
0
].
shape
,
(
6
,
-
1
,
8
))
self
.
assertEqual
(
result3
[
1
].
shape
,
(
6
,
-
1
,
8
))
result4
=
paddle
.
topk
(
input_tensor
,
k
=
2
,
axis
=
1
,
largest
=
False
)
result5
=
paddle
.
topk
(
input_tensor
,
k
=
2
,
axis
=-
1
,
largest
=
False
)
result6
=
paddle
.
topk
(
large_input_tensor
,
k
=
1
,
axis
=-
1
)
result7
=
paddle
.
topk
(
input_tensor
,
k
=
2
,
axis
=
1
,
sorted
=
False
)
exe
=
paddle
.
static
.
Executor
(
place
)
input_data
=
np
.
random
.
rand
(
10
,
20
).
astype
(
"float32"
)
large_input_data
=
np
.
random
.
rand
(
2
,
100
).
astype
(
"float32"
)
paddle_result
=
exe
.
run
(
feed
=
{
"x"
:
self
.
input_data
,
"large_x"
:
self
.
large_input_data
,
"k"
:
np
.
array
([
2
]).
astype
(
"int32"
)
},
fetch_list
=
[
result1
[
0
],
result1
[
1
],
result2
[
0
],
result2
[
1
],
result3
[
0
],
result3
[
1
],
result4
[
0
],
result4
[
1
],
result5
[
0
],
result5
[
1
],
result6
[
0
],
result6
[
1
],
result7
[
0
],
result7
[
1
]
])
numpy_result
=
numpy_topk
(
self
.
input_data
,
k
=
2
)
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
0
],
numpy_result
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
1
],
numpy_result
[
1
]))
numpy_result
=
numpy_topk
(
self
.
input_data
,
k
=
2
,
axis
=-
1
)
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
2
],
numpy_result
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
3
],
numpy_result
[
1
]))
numpy_result
=
numpy_topk
(
self
.
input_data
,
k
=
2
,
axis
=
1
)
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
4
],
numpy_result
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
5
],
numpy_result
[
1
]))
numpy_result
=
numpy_topk
(
self
.
input_data
,
k
=
2
,
axis
=
1
,
largest
=
False
)
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
6
],
numpy_result
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
7
],
numpy_result
[
1
]))
numpy_result
=
numpy_topk
(
self
.
input_data
,
k
=
2
,
axis
=-
1
,
largest
=
False
)
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
8
],
numpy_result
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
9
],
numpy_result
[
1
]))
numpy_result
=
numpy_topk
(
self
.
large_input_data
,
k
=
1
,
axis
=-
1
)
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
10
],
numpy_result
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
paddle_result
[
11
],
numpy_result
[
1
]))
sort_paddle
=
numpy_topk
(
paddle_result
[
12
],
axis
=
1
,
k
=
2
)
numpy_result
=
numpy_topk
(
self
.
input_data
,
k
=
2
,
axis
=
1
)
self
.
assertTrue
(
np
.
allclose
(
sort_paddle
[
0
],
numpy_result
[
0
]))
def
test_cases
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
core
.
MLUPlace
(
0
))
for
place
in
places
:
self
.
run_dygraph
(
place
)
self
.
run_static
(
place
)
def
test_errors
(
self
):
paddle
.
disable_static
()
x
=
paddle
.
to_tensor
([
1
,
2
,
3
],
dtype
=
"float32"
)
with
self
.
assertRaises
(
BaseException
):
paddle
.
topk
(
x
,
k
=-
1
)
with
self
.
assertRaises
(
BaseException
):
paddle
.
topk
(
x
,
k
=
0
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录