未验证 提交 ddb3868e 编写于 作者: F fwenguang 提交者: GitHub

[MLU] add slice kernel (#42245)

上级 bf44034c
...@@ -688,8 +688,9 @@ MLUCnnlTrigonDesc::~MLUCnnlTrigonDesc() { ...@@ -688,8 +688,9 @@ MLUCnnlTrigonDesc::~MLUCnnlTrigonDesc() {
const cnnlTensorDescriptor_t diff_y_desc, void* back_out) { const cnnlTensorDescriptor_t diff_y_desc, void* back_out) {
cnnlHandle_t handle = GetHandleFromCTX(ctx); cnnlHandle_t handle = GetHandleFromCTX(ctx);
PADDLE_ENFORCE_MLU_SUCCESS(cnnlSparseSoftmaxCrossEntropyWithLogits( const cnnlComputationPreference_t prefer = CNNL_COMPUTATION_HIGH_PRECISION;
handle, mode, x_desc, input, label_desc, label, y_desc, output, PADDLE_ENFORCE_MLU_SUCCESS(cnnlSparseSoftmaxCrossEntropyWithLogits_v2(
handle, prefer, mode, x_desc, input, label_desc, label, y_desc, output,
diff_y_desc, back_out)); diff_y_desc, back_out));
} }
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/slice_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#include "paddle/phi/kernels/funcs/slice_utils.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class SliceMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("Input");
auto* out = ctx.Output<Tensor>("Out");
auto axes = ctx.Attr<std::vector<int>>("axes");
auto starts = ctx.Attr<std::vector<int>>("starts");
auto ends = ctx.Attr<std::vector<int>>("ends");
auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");
auto infer_flags = ctx.Attr<std::vector<int>>("infer_flags");
// Get the accurate attribute value of starts and ends
auto starts_tensor_list = ctx.MultiInput<Tensor>("StartsTensorList");
if (ctx.HasInput("StartsTensor")) {
starts = GetDataFromTensor<int>(ctx.Input<Tensor>("StartsTensor"));
} else if (starts_tensor_list.size() > 0) {
starts = GetDataFromTensorList<int>(starts_tensor_list);
}
auto ends_tensor_list = ctx.MultiInput<Tensor>("EndsTensorList");
if (ctx.HasInput("EndsTensor")) {
ends = GetDataFromTensor<int>(ctx.Input<Tensor>("EndsTensor"));
} else if (ends_tensor_list.size() > 0) {
ends = GetDataFromTensorList<int>(ends_tensor_list);
}
PADDLE_ENFORCE_EQ(
starts.size(), axes.size(),
platform::errors::InvalidArgument(
"The size of starts must be equal to the size of axes."));
PADDLE_ENFORCE_EQ(
ends.size(), axes.size(),
platform::errors::InvalidArgument(
"The size of ends must be equal to the size of axes."));
const auto& in_dims = input->dims();
auto slice_dims = out->dims();
bool reset_slice_dims = false;
if (ctx.HasInput("StartsTensor") || ctx.HasInput("EndsTensor") ||
starts_tensor_list.size() > 0 || ends_tensor_list.size() > 0) {
// Infer output dims
for (size_t i = 0; i < axes.size(); ++i) {
// when start == -1 && end == start+1
if (starts[i] == -1 && ends[i] == 0 && infer_flags[i] == -1) {
auto ret =
std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
if (ret != decrease_axis.end()) {
ends[i] = in_dims[axes[i]];
}
}
}
phi::funcs::CheckAndUpdateSliceAttrs(in_dims, axes, &starts, &ends);
slice_dims = phi::funcs::GetSliceDims<int>(in_dims, axes, starts, ends,
nullptr, nullptr);
reset_slice_dims = true;
auto out_dims = phi::funcs::GetDecreasedDims(slice_dims, decrease_axis);
out->Resize(out_dims);
}
if (slice_dims.size() != in_dims.size() && !reset_slice_dims) {
phi::funcs::CheckAndUpdateSliceAttrs(in_dims, axes, &starts, &ends);
slice_dims = phi::funcs::GetSliceDims<int>(in_dims, axes, starts, ends,
nullptr, nullptr);
}
int in_dim_size = input->dims().size();
if (static_cast<int>(axes.size()) != in_dim_size) {
std::vector<int> tmp_starts(in_dim_size, 0);
const auto& in_dims_vec = phi::vectorize(input->dims());
std::vector<int> tmp_ends(in_dims_vec.begin(), in_dims_vec.end());
for (size_t i = 0; i < axes.size(); ++i) {
tmp_starts[axes[i]] = starts[i];
tmp_ends[axes[i]] = ends[i];
}
starts.swap(tmp_starts);
ends.swap(tmp_ends);
}
std::vector<int> strides(in_dim_size, 1);
out->mutable_data<T>(ctx.GetPlace());
MLUCnnlTensorDesc input_desc(*input);
MLUCnnlTensorDesc out_desc(slice_dims.size(),
phi::vectorize(slice_dims).data(),
ToCnnlDataType<T>());
MLUCnnl::StridedSlice(ctx, starts.data(), ends.data(), strides.data(),
input_desc.get(), GetBasePtr(input), out_desc.get(),
GetBasePtr(out));
}
};
template <typename T>
class SliceGradMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("Input");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dinput = ctx.Output<Tensor>(framework::GradVarName("Input"));
auto axes = ctx.Attr<std::vector<int>>("axes");
auto starts = ctx.Attr<std::vector<int>>("starts");
auto ends = ctx.Attr<std::vector<int>>("ends");
// Get the accurate attribute value of starts and ends
auto starts_tensor_list = ctx.MultiInput<Tensor>("StartsTensorList");
if (ctx.HasInput("StartsTensor")) {
starts = GetDataFromTensor<int>(ctx.Input<Tensor>("StartsTensor"));
} else if (starts_tensor_list.size() > 0) {
starts = GetDataFromTensorList<int>(starts_tensor_list);
}
auto ends_tensor_list = ctx.MultiInput<Tensor>("EndsTensorList");
if (ctx.HasInput("EndsTensor")) {
ends = GetDataFromTensor<int>(ctx.Input<Tensor>("EndsTensor"));
} else if (ends_tensor_list.size() > 0) {
ends = GetDataFromTensorList<int>(ends_tensor_list);
}
const auto& in_dims = input->dims();
auto slice_dims = dout->dims();
if (slice_dims.size() != in_dims.size()) {
phi::funcs::CheckAndUpdateSliceAttrs(in_dims, axes, &starts, &ends);
slice_dims = phi::funcs::GetSliceDims<int>(in_dims, axes, starts, ends,
nullptr, nullptr);
}
int in_dim_size = input->dims().size();
if (static_cast<int>(axes.size()) != in_dim_size) {
std::vector<int> tmp_starts(in_dim_size, 0);
const auto& in_dims_vec = phi::vectorize(input->dims());
std::vector<int> tmp_ends(in_dims_vec.begin(), in_dims_vec.end());
for (size_t i = 0; i < axes.size(); ++i) {
tmp_starts[axes[i]] = starts[i];
tmp_ends[axes[i]] = ends[i];
}
starts.swap(tmp_starts);
ends.swap(tmp_ends);
}
std::vector<int> strides(in_dim_size, 1);
dinput->mutable_data<T>(ctx.GetPlace());
MLUCnnlTensorDesc dout_desc(slice_dims.size(),
phi::vectorize(slice_dims).data(),
ToCnnlDataType<T>());
MLUCnnlTensorDesc dinput_desc(*dinput);
MLUCnnl::StridedSliceGrad(ctx, starts.data(), ends.data(), strides.data(),
dout_desc.get(), GetBasePtr(dout),
dinput_desc.get(), GetBasePtr(dinput));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_MLU_KERNEL(slice, ops::SliceMLUKernel<float>,
ops::SliceMLUKernel<int>, ops::SliceMLUKernel<bool>,
ops::SliceMLUKernel<int64_t>,
ops::SliceMLUKernel<double>,
ops::SliceMLUKernel<paddle::platform::float16>);
REGISTER_OP_MLU_KERNEL(slice_grad, ops::SliceGradMLUKernel<float>,
ops::SliceGradMLUKernel<int>,
ops::SliceGradMLUKernel<bool>,
ops::SliceGradMLUKernel<int64_t>,
ops::SliceGradMLUKernel<paddle::platform::float16>);
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid.core as core
import sys
sys.path.append('..')
from op_test import OpTest
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle
paddle.enable_static()
# Situation 1: starts(list, no tensor), ends(list, no tensor)
# 1.1 without attr(decrease)
class TestSliceOp(OpTest):
def setUp(self):
self.op_type = "slice"
self.set_mlu()
self.config()
self.inputs = {'Input': self.input}
self.outputs = {'Out': self.out}
self.attrs = {
'axes': self.axes,
'starts': self.starts,
'ends': self.ends,
'infer_flags': self.infer_flags
}
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [1, 0, 2]
self.ends = [3, 3, 4]
self.axes = [0, 1, 2]
self.infer_flags = [1, 1, 1]
self.out = self.input[1:3, 0:3, 2:4, :]
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(
self.place, ['Input'], 'Out', max_relative_error=0.006)
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.MLUPlace(0)
class TestCase1(TestSliceOp):
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [-3, 0, 2]
self.ends = [3, 100, -1]
self.axes = [0, 1, 2]
self.infer_flags = [1, 1, 1]
self.out = self.input[-3:3, 0:100, 2:-1, :]
class TestCase2(TestSliceOp):
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [-3, 0, 2]
self.ends = [3, 100, -1]
self.axes = [0, 1, 3]
self.infer_flags = [1, 1, 1]
self.out = self.input[-3:3, 0:100, :, 2:-1]
# 1.2 with attr(decrease)
class TestSliceOp_decs_dim(OpTest):
def setUp(self):
self.op_type = "slice"
self.set_mlu()
self.config()
self.inputs = {'Input': self.input}
self.outputs = {'Out': self.out}
self.attrs = {
'axes': self.axes,
'starts': self.starts,
'ends': self.ends,
'infer_flags': self.infer_flags,
'decrease_axis': self.decrease_axis,
}
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [1, 0, 2]
self.ends = [2, 3, 4]
self.axes = [0, 1, 2]
self.decrease_axis = [0]
self.infer_flags = [1, 1, 1]
self.out = self.input[1, 0:3, 2:4, :]
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(
self.place, ['Input'], 'Out', max_relative_error=0.006)
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.MLUPlace(0)
class TestSliceOp_decs_dim_2(TestSliceOp_decs_dim):
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [1, 0, 2]
self.ends = [2, 1, 4]
self.axes = [0, 1, 2]
self.decrease_axis = [0, 1]
self.infer_flags = [1, 1, 1]
self.out = self.input[1, 0, 2:4, :]
class TestSliceOp_decs_dim_3(TestSliceOp_decs_dim):
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [-1, 0, 2]
self.ends = [1000000, 1, 4]
self.axes = [0, 1, 2]
self.decrease_axis = [0, 1]
self.infer_flags = [1, 1, 1]
self.out = self.input[-1, 0, 2:4, :]
class TestSliceOp_decs_dim_4(TestSliceOp_decs_dim):
def config(self):
self.input = np.random.random([3, 4, 5, 7]).astype("float32")
self.starts = [0, 1, 2, 3]
self.ends = [1, 2, 3, 4]
self.axes = [0, 1, 2, 3]
self.decrease_axis = [0, 1, 2, 3]
self.infer_flags = [1, 1, 1]
self.out = self.input[0, 1, 2, 3:4]
class TestSliceOp_decs_dim_5(TestSliceOp_decs_dim):
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [-1]
self.ends = [1000000]
self.axes = [3]
self.decrease_axis = [3]
self.infer_flags = [1, 1, 1]
self.out = self.input[:, :, :, -1]
class TestSliceOp_decs_dim_6(TestSliceOp_decs_dim):
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [0, 1, 2, 3]
self.ends = [1, 2, 3, 4]
self.axes = [0, 1, 2, 3]
self.decrease_axis = [0, 1, 2, 3]
self.infer_flags = [1, 1, 1]
self.out = self.input[0, 1, 2, 3:4]
# Situation 2: starts(list, have tensor), ends(list, no tensor)
# without attr(decrease)
class TestSliceOp_starts_ListTensor(OpTest):
def setUp(self):
self.op_type = "slice"
self.set_mlu()
self.config()
starts_tensor = []
for index, ele in enumerate(self.starts):
starts_tensor.append(("x" + str(index), np.ones(
(1)).astype('int64') * ele))
self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
self.outputs = {'Out': self.out}
self.attrs = {
'axes': self.axes,
'starts': self.starts_infer,
'ends': self.ends,
'infer_flags': self.infer_flags
}
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [1, 0, 2]
self.ends = [3, 3, 4]
self.axes = [0, 1, 2]
self.infer_flags = [-1, 1, -1]
self.out = self.input[1:3, 0:3, 2:4, :]
self.starts_infer = [-1, 0, -1]
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(
self.place, ['Input'], 'Out', max_relative_error=0.006)
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.MLUPlace(0)
# Situation 2: starts(list, have tensor), ends(list, no tensor)
# with attr(decrease)
class TestSliceOp_decs_dim_starts_ListTensor(OpTest):
def setUp(self):
self.op_type = "slice"
self.set_mlu()
self.config()
starts_tensor = []
for index, ele in enumerate(self.starts):
starts_tensor.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
self.outputs = {'Out': self.out}
self.attrs = {
'axes': self.axes,
'starts': self.starts_infer,
'ends': self.ends,
'infer_flags': self.infer_flags,
'decrease_axis': self.decrease_axis,
}
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [1, 0, 2]
self.ends = [2, 3, 4]
self.axes = [0, 1, 2]
self.decrease_axis = [0]
self.infer_flags = [1, -1, 1]
self.out = self.input[1, 0:3, 2:4, :]
self.starts_infer = [1, -1, 2]
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(
self.place, ['Input'], 'Out', max_relative_error=0.006)
def set_mlu(self):
self.__class__.use_mlu = True
self.place = paddle.MLUPlace(0)
class TestSliceOp_decs_dim_5_starts_ListTensor(
TestSliceOp_decs_dim_starts_ListTensor):
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [-1]
self.ends = [1000000]
self.axes = [3]
self.decrease_axis = [3]
self.infer_flags = [-1]
self.out = self.input[:, :, :, -1]
self.starts_infer = [-1]
# Situation 3: starts(tensor), ends(list, no tensor)
# with attr(decrease)
class TestSliceOp_decs_dim_starts_OneTensor(OpTest):
def setUp(self):
self.op_type = "slice"
self.__class__.use_mlu = True
self.place = paddle.MLUPlace(0)
self.config()
self.inputs = {
'Input': self.input,
"StartsTensor": np.array(
self.starts, dtype="int32")
}
self.outputs = {'Out': self.out}
self.attrs = {
'axes': self.axes,
#'starts': self.starts,
'ends': self.ends,
'infer_flags': self.infer_flags,
'decrease_axis': self.decrease_axis,
}
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [1, 0, 2]
self.ends = [2, 3, 4]
self.axes = [0, 1, 2]
self.decrease_axis = [0]
self.infer_flags = [-1, -1, -1]
self.out = self.input[1, 0:3, 2:4, :]
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(
self.place, ['Input'], 'Out', max_relative_error=0.006)
# Situation 4: starts(tensor), ends(tensor)
# without attr(decrease)
class TestSliceOp_starts_OneTensor_ends_OneTensor(OpTest):
def setUp(self):
self.op_type = "slice"
self.__class__.use_mlu = True
self.place = paddle.MLUPlace(0)
self.config()
self.inputs = {
'Input': self.input,
"StartsTensor": np.array(
self.starts, dtype="int64"),
"EndsTensor": np.array(
self.ends, dtype="int32")
}
self.outputs = {'Out': self.out}
self.attrs = {
'axes': self.axes,
#'starts': self.starts,
#'ends': self.ends_infer,
'infer_flags': self.infer_flags
}
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [1, 0, 2]
self.ends = [3, 3, 4]
self.axes = [0, 1, 2]
self.infer_flags = [-1, -1, -1]
self.out = self.input[1:3, 0:3, 2:4, :]
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(
self.place, ['Input'], 'Out', max_relative_error=0.006)
# Situation 5: starts(tensor), ends(tensor)
# with attr(decrease)
class TestSliceOp_decs_dim_starts_and_ends_OneTensor(OpTest):
def setUp(self):
self.op_type = "slice"
self.__class__.use_mlu = True
self.place = paddle.MLUPlace(0)
self.config()
self.inputs = {
'Input': self.input,
"StartsTensor": np.array(
self.starts, dtype="int32"),
"EndsTensor": np.array(
self.ends, dtype="int32")
}
self.outputs = {'Out': self.out}
self.attrs = {
'axes': self.axes,
#'starts': self.starts,
#'ends': self.ends,
'infer_flags': self.infer_flags,
'decrease_axis': self.decrease_axis,
}
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [1, 0, 2]
self.ends = [2, 1, 4]
self.axes = [0, 1, 2]
self.decrease_axis = [0, 1]
self.infer_flags = [-1, -1, -1]
self.out = self.input[1, 0, 2:4, :]
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(
self.place, ['Input'], 'Out', max_relative_error=0.006)
# Situation 6: starts(tensor), ends(list, have tensor)
# without attr(decrease)
class TestSliceOp_starts_OneTensor_ends_ListTensor(OpTest):
def setUp(self):
self.op_type = "slice"
self.__class__.use_mlu = True
self.place = paddle.MLUPlace(0)
self.config()
ends_tensor = []
for index, ele in enumerate(self.ends):
ends_tensor.append(("y" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs = {
'Input': self.input,
"StartsTensor": np.array(
self.starts, dtype="int32"),
'EndsTensorList': ends_tensor
}
self.outputs = {'Out': self.out}
self.attrs = {
'axes': self.axes,
#'starts': self.starts,
'ends': self.ends_infer,
'infer_flags': self.infer_flags
}
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [1, 0, 2]
self.ends = [3, 3, 4]
self.axes = [0, 1, 2]
self.infer_flags = [-1, -1, -1]
self.out = self.input[1:3, 0:3, 2:4, :]
self.ends_infer = [-1, 3, 4]
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(
self.place, ['Input'], 'Out', max_relative_error=0.006)
# Test float16
class TestFP16(OpTest):
def setUp(self):
self.op_type = "slice"
self.__class__.use_mlu = True
self.place = paddle.MLUPlace(0)
self.config()
self.inputs = {'Input': self.input}
self.outputs = {'Out': self.out}
self.attrs = {
'axes': self.axes,
'starts': self.starts,
'ends': self.ends,
'infer_flags': self.infer_flags
}
def config(self):
self.dtype = "float16"
self.input = np.random.random([3, 4, 5, 6]).astype(self.dtype)
self.starts = [-3, 0, 2]
self.ends = [3, 100, -1]
self.axes = [0, 1, 3]
self.out = self.input[-3:3, 0:100, :, 2:-1]
self.infer_flags = [1, 1, 1]
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-5)
def test_check_grad_normal(self):
self.check_grad_with_place(
self.place, ['Input'], 'Out', max_relative_error=0.006)
class TestFP16_2(OpTest):
def setUp(self):
self.op_type = "slice"
self.__class__.use_mlu = True
self.place = paddle.MLUPlace(0)
self.config()
self.inputs = {'Input': self.input}
self.outputs = {'Out': self.out}
self.attrs = {
'axes': self.axes,
'starts': self.starts,
'ends': self.ends,
'infer_flags': self.infer_flags
}
def config(self):
self.dtype = "float16"
self.input = np.random.random([3, 4, 10]).astype(self.dtype)
self.starts = [0]
self.ends = [1]
self.axes = [1]
self.out = self.input[:, 0:1, :]
self.infer_flags = [1]
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-5)
def test_check_grad_normal(self):
self.check_grad_with_place(
self.place, ['Input'],
'Out',
max_relative_error=0.006,
numeric_grad_delta=0.5)
class TestSliceApiWithTensor(unittest.TestCase):
def test_starts_ends_is_tensor(self):
with paddle.fluid.dygraph.guard():
a = paddle.rand(shape=[4, 5, 6], dtype='float32')
axes = [0, 1, 2]
starts = [-3, 0, 2]
ends = [3, 2, 4]
a_1 = paddle.slice(
a,
axes=axes,
starts=paddle.to_tensor(
starts, dtype='int32'),
ends=paddle.to_tensor(
ends, dtype='int32'))
a_2 = paddle.slice(a, axes=axes, starts=starts, ends=ends)
self.assertTrue(np.array_equal(a_1.numpy(), a_2.numpy()))
def test_bool_tensor(self):
with paddle.fluid.dygraph.guard():
array = (np.arange(60).reshape([3, 4, 5]) % 3).astype('bool')
tt = paddle.to_tensor(array)
tt.stop_gradient = False
starts = [0, 1, 2]
ends = [3, 5, 4]
axes = [0, 1, 2]
y_paddle = paddle.slice(tt, axes, starts, ends)
y_np = tt[0:3, 1:5, 2:4]
self.assertTrue(paddle.bool == y_paddle.dtype)
self.assertTrue(np.array_equal(y_paddle.numpy(), y_np))
class TestImperativeVarBaseGetItem(unittest.TestCase):
def test_getitem_with_long(self):
with fluid.dygraph.guard():
data = np.random.random((2, 80, 16128)).astype('float32')
var = fluid.dygraph.to_variable(data)
sliced = var[:, 10:, :var.shape[1]] # var.shape[1] is 80L here
self.assertEqual(sliced.shape, [2, 70, 80])
sliced = var[:, var.shape[0]:, var.shape[0]:var.shape[1]]
self.assertEqual(sliced.shape, [2, 78, 78])
def test_getitem_with_float(self):
def test_float_in_slice_item():
with fluid.dygraph.guard():
data = np.random.random((2, 80, 16128)).astype('float32')
var = fluid.dygraph.to_variable(data)
sliced = var[:, 1.1:, :var.shape[1]]
self.assertRaises(Exception, test_float_in_slice_item)
def test_float_in_index():
with fluid.dygraph.guard():
data = np.random.random((2, 80, 16128)).astype('float32')
var = fluid.dygraph.to_variable(data)
sliced = var[1.1]
self.assertRaises(Exception, test_float_in_index)
class TestInferShape(unittest.TestCase):
def test(self):
x = paddle.ones(shape=[3, 4, 5])
x.desc.set_shape([3, -1, 5])
self.assertEqual(x.shape, (3, -1, 5))
out0 = paddle.slice(x, axes=[1], starts=[0], ends=[3])
self.assertEqual(out0.shape, (3, 3, 5))
def test_axis_less_than_zero(self):
# Using paddle.disable_static will make other unittests fail.
with fluid.dygraph.guard():
x_arr = np.arange(0, 24, dtype=np.float32).reshape([2, 3, 4])
x = paddle.to_tensor(x_arr)
pp_slice = paddle.slice(x, [100, ], [0], [1])
np_slice = x_arr[:, :, 0:1]
self.assertTrue(np.array_equal(pp_slice, np_slice))
pp_slice = paddle.slice(x, (-100, ), [0], [1])
np_slice = x_arr[0:1]
self.assertTrue(np.array_equal(pp_slice, np_slice))
x_arr = np.array([], dtype=np.float32)
x = paddle.to_tensor(np.reshape(x_arr, (0, 0, 0)))
starts = paddle.to_tensor(
np.reshape(
np.array(
[], dtype=np.int32), (0, )))
ends = paddle.to_tensor(
np.reshape(
np.array(
[], dtype=np.int32), (0, )))
with self.assertRaises(ValueError):
paddle.slice(x, [-1000000], starts, ends)
with self.assertRaises(ValueError):
paddle.slice(x, [1000000], starts, ends)
with self.assertRaises(ValueError):
paddle.slice(x, [], starts, ends)
with self.assertRaises(ValueError):
paddle.slice(x, 0, starts, ends)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册