Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
dbd4d058
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
dbd4d058
编写于
1月 16, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add static implementation and fix fc layer
上级
315b133e
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
112 addition
and
69 deletion
+112
-69
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+7
-0
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+1
-0
python/paddle/fluid/imperative/base.py
python/paddle/fluid/imperative/base.py
+2
-2
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+22
-2
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+3
-0
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
...on/paddle/fluid/tests/unittests/test_imperative_resnet.py
+77
-65
未找到文件。
paddle/fluid/pybind/pybind.cc
浏览文件 @
dbd4d058
...
@@ -138,6 +138,13 @@ PYBIND11_MODULE(core, m) {
...
@@ -138,6 +138,13 @@ PYBIND11_MODULE(core, m) {
py
::
return_value_policy
::
reference
)
py
::
return_value_policy
::
reference
)
.
def
(
"value"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_
;
},
.
def
(
"value"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_
;
},
py
::
return_value_policy
::
reference
)
py
::
return_value_policy
::
reference
)
.
def
(
"wait_device"
,
[](
const
imperative
::
VarBase
&
self
)
{
platform
::
DeviceContext
*
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
self
.
var_
->
Get
<
framework
::
LoDTensor
>
().
place
());
dev_ctx
->
Wait
();
})
.
def_property
(
.
def_property
(
"desc"
,
"desc"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_desc_
;
},
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_desc_
;
},
...
...
python/paddle/fluid/framework.py
浏览文件 @
dbd4d058
...
@@ -384,6 +384,7 @@ class Variable(object):
...
@@ -384,6 +384,7 @@ class Variable(object):
self
.
_ivar
.
stop_gradient
=
stop_gradient
self
.
_ivar
.
stop_gradient
=
stop_gradient
def
_numpy
(
self
):
def
_numpy
(
self
):
self
.
_ivar
.
wait_device
()
tensor
=
self
.
_ivar
.
value
().
get_tensor
()
tensor
=
self
.
_ivar
.
value
().
get_tensor
()
return
np
.
array
(
tensor
)
return
np
.
array
(
tensor
)
...
...
python/paddle/fluid/imperative/base.py
浏览文件 @
dbd4d058
...
@@ -45,9 +45,9 @@ def guard(device=0):
...
@@ -45,9 +45,9 @@ def guard(device=0):
def
to_variable
(
value
,
block
=
None
):
def
to_variable
(
value
,
block
=
None
):
if
isinstance
(
value
,
np
.
ndarray
):
assert
enabled
(),
"to_variable could only be called in imperative mode"
assert
enabled
(),
"to_variable could only be called in imperative mode"
if
isinstance
(
value
,
np
.
ndarray
):
if
not
block
:
if
not
block
:
block
=
framework
.
default_main_program
().
current_block
()
block
=
framework
.
default_main_program
().
current_block
()
py_var
=
framework
.
Variable
(
py_var
=
framework
.
Variable
(
...
...
python/paddle/fluid/imperative/nn.py
浏览文件 @
dbd4d058
...
@@ -239,6 +239,17 @@ class FC(layers.Layer):
...
@@ -239,6 +239,17 @@ class FC(layers.Layer):
shape
=
param_shape
,
shape
=
param_shape
,
dtype
=
self
.
_dtype
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
is_bias
=
False
)
print
(
"create param: "
,
self
.
_w
.
name
,
self
.
_w
.
stop_gradient
)
if
self
.
_helper
.
bias_attr
:
size
=
list
([
self
.
_size
])
self
.
_b
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_helper
.
bias_attr
,
shape
=
size
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
else
:
self
.
_b
=
None
def
forward
(
self
,
input
):
def
forward
(
self
,
input
):
tmp
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
tmp
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
...
@@ -259,8 +270,17 @@ class FC(layers.Layer):
...
@@ -259,8 +270,17 @@ class FC(layers.Layer):
outputs
=
{
"Out"
:
pre_bias
},
outputs
=
{
"Out"
:
pre_bias
},
attrs
=
{
"use_mkldnn"
:
False
})
attrs
=
{
"use_mkldnn"
:
False
})
pre_activation
=
self
.
_helper
.
append_bias_op
(
if
self
.
_b
:
pre_bias
,
dim_start
=
self
.
_num_flatten_dims
)
pre_activation
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
'X'
:
[
pre_bias
],
'Y'
:
[
self
.
_b
]},
outputs
=
{
'Out'
:
[
pre_activation
]},
attrs
=
{
'axis'
:
self
.
_num_flatten_dims
})
else
:
pre_activation
=
pre_bias
return
self
.
_helper
.
append_activation
(
pre_activation
)
return
self
.
_helper
.
append_activation
(
pre_activation
)
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
dbd4d058
...
@@ -387,6 +387,9 @@ class Optimizer(object):
...
@@ -387,6 +387,9 @@ class Optimizer(object):
params_grads
=
[]
params_grads
=
[]
for
param
in
parameters
:
for
param
in
parameters
:
if
param
.
stop_gradient
:
print
(
"parameter:"
,
param
.
name
,
"stop gradient, skip it"
)
continue
# create gradient variable
# create gradient variable
grad_var
=
Variable
(
grad_var
=
Variable
(
block
=
loss
.
block
,
block
=
loss
.
block
,
...
...
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
浏览文件 @
dbd4d058
...
@@ -31,11 +31,11 @@ train_parameters = {
...
@@ -31,11 +31,11 @@ train_parameters = {
"input_std"
:
[
0.229
,
0.224
,
0.225
],
"input_std"
:
[
0.229
,
0.224
,
0.225
],
"learning_strategy"
:
{
"learning_strategy"
:
{
"name"
:
"piecewise_decay"
,
"name"
:
"piecewise_decay"
,
"batch_size"
:
256
,
"batch_size"
:
1
,
"epochs"
:
[
30
,
60
,
90
],
"epochs"
:
[
30
,
60
,
90
],
"steps"
:
[
0.1
,
0.01
,
0.001
,
0.0001
]
"steps"
:
[
0.1
,
0.01
,
0.001
,
0.0001
]
},
},
"batch_size"
:
256
,
"batch_size"
:
1
,
"lr"
:
0.1
,
"lr"
:
0.1
,
"total_images"
:
1281164
,
"total_images"
:
1281164
,
}
}
...
@@ -201,6 +201,7 @@ class TestImperativeResnet(unittest.TestCase):
...
@@ -201,6 +201,7 @@ class TestImperativeResnet(unittest.TestCase):
def
test_resnet_gpu_float32
(
self
):
def
test_resnet_gpu_float32
(
self
):
seed
=
90
seed
=
90
batch_size
=
train_parameters
[
"batch_size"
]
with
fluid
.
imperative
.
guard
():
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
@@ -208,17 +209,21 @@ class TestImperativeResnet(unittest.TestCase):
...
@@ -208,17 +209,21 @@ class TestImperativeResnet(unittest.TestCase):
resnet
=
ResNet
()
resnet
=
ResNet
()
optimizer
=
optimizer_setting
(
train_parameters
)
optimizer
=
optimizer_setting
(
train_parameters
)
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
train
(),
batch_size
=
256
)
paddle
.
dataset
.
flowers
.
train
(),
batch_size
=
batch_size
)
dy_param_init_value
=
{}
dy_param_init_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
for
batch_id
,
data
in
enumerate
(
train_reader
()):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
2
:
if
batch_id
>=
1
:
break
break
x_data
=
np
.
array
(
x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
3
,
224
,
224
)
for
x
in
data
]).
astype
(
'float32'
)
[
x
[
0
].
reshape
(
3
,
224
,
224
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
256
,
1
)
batch_size
,
1
)
img
=
to_variable
(
x_data
)
img
=
to_variable
(
x_data
)
label
=
to_variable
(
y_data
)
label
=
to_variable
(
y_data
)
...
@@ -232,74 +237,81 @@ class TestImperativeResnet(unittest.TestCase):
...
@@ -232,74 +237,81 @@ class TestImperativeResnet(unittest.TestCase):
if
batch_id
==
0
:
if
batch_id
==
0
:
for
param
in
fluid
.
default_main_program
().
global_block
(
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
).
all_parameters
():
if
param
.
name
not
in
dy_param_init_value
:
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
avg_loss
.
_backward
()
avg_loss
.
_backward
()
optimizer
.
minimize
(
avg_loss
)
optimizer
.
minimize
(
avg_loss
)
dy_param_value
=
{}
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
).
all_parameters
():
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
# with new_program_scope():
with
new_program_scope
():
# fluid.default_startup_program().random_seed = seed
fluid
.
default_startup_program
().
random_seed
=
seed
# fluid.default_main_program().random_seed = seed
fluid
.
default_main_program
().
random_seed
=
seed
# exe = fluid.Executor(fluid.CPUPlace())
exe
=
fluid
.
Executor
(
fluid
.
CUDAPlace
(
0
))
# # mnist = Conv2D(1, 20, 5)
resnet
=
ResNet
()
# mnist = MNIST()
optimizer
=
optimizer_setting
(
train_parameters
)
# sgd = SGDOptimizer(learning_rate=1e-3)
train_reader
=
paddle
.
batch
(
# train_reader = paddle.batch(
paddle
.
dataset
.
flowers
.
train
(),
batch_size
=
batch_size
)
# paddle.dataset.mnist.train(), batch_size=128)
img
=
fluid
.
layers
.
data
(
# img = fluid.layers.data(
name
=
'pixel'
,
shape
=
[
3
,
224
,
224
],
dtype
=
'float32'
)
# name='pixel', shape=[1, 28, 28], dtype='float32')
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# label = fluid.layers.data(name='label', shape=[1], dtype='int64')
out
=
resnet
(
img
)
# cost = mnist(img)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
# loss = fluid.layers.reduce_mean(cost)
avg_loss
=
fluid
.
layers
.
mean
(
x
=
loss
)
# sgd.minimize(loss)
optimizer
.
minimize
(
avg_loss
)
# # initialize params and fetch them
# initialize params and fetch them
# static_param_init_value = {}
static_param_init_value
=
{}
# static_param_name_list = []
static_param_name_list
=
[]
# for param in fluid.default_startup_program().global_block(
for
param
in
fluid
.
default_startup_program
().
global_block
(
# ).all_parameters():
).
all_parameters
():
# static_param_name_list.append(param.name)
static_param_name_list
.
append
(
param
.
name
)
# out = exe.run(fluid.default_startup_program(),
out
=
exe
.
run
(
fluid
.
default_startup_program
(),
# fetch_list=static_param_name_list)
fetch_list
=
static_param_name_list
)
# for i in range(len(static_param_name_list)):
for
i
in
range
(
len
(
static_param_name_list
)):
# static_param_init_value[static_param_name_list[i]] = out[i]
static_param_init_value
[
static_param_name_list
[
i
]]
=
out
[
i
]
# for batch_id, data in enumerate(train_reader()):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
# if batch_id >= 2:
if
batch_id
>=
1
:
# break
break
# x_data = np.array(
x_data
=
np
.
array
(
# [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
[
x
[
0
].
reshape
(
3
,
224
,
224
)
for
x
in
data
]).
astype
(
'float32'
)
# y_data = np.array([x[1] for x in data]).astype('int64').reshape(
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
# [128, 1])
[
batch_size
,
1
])
# fetch_list = [loss.name]
fetch_list
=
[
loss
.
name
]
# fetch_list.extend(static_param_name_list)
fetch_list
.
extend
(
static_param_name_list
)
# out = exe.run(fluid.default_main_program(),
out
=
exe
.
run
(
fluid
.
default_main_program
(),
# feed={"pixel": x_data,
feed
=
{
"pixel"
:
x_data
,
# "label": y_data},
"label"
:
y_data
},
# fetch_list=fetch_list)
fetch_list
=
fetch_list
)
# static_param_value = {}
static_param_value
=
{}
# static_out = out[0]
static_out
=
out
[
0
]
# for i in range(1, len(out)):
for
i
in
range
(
1
,
len
(
out
)):
# static_param_value[static_param_name_list[i - 1]] = out[i]
static_param_value
[
static_param_name_list
[
i
-
1
]]
=
out
[
i
]
# for key, value in six.iteritems(static_param_init_value):
self
.
assertTrue
(
np
.
allclose
(
static_out
.
all
(),
dy_out
.
all
()))
# self.assertTrue(
# np.allclose(value.all(), dy_param_init_value[key].all()))
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
# self.assertTrue(np.allclose(static_out.all(), dy_out.all()))
self
.
assertTrue
(
# for key, value in six.iteritems(static_param_value):
np
.
allclose
(
value
.
all
(),
dy_param_init_value
[
key
].
all
()))
# self.assertTrue(np.allclose(value.all(), dy_param_value[key].all()))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
if
not
np
.
allclose
(
value
.
all
(),
dy_param_value
[
key
].
all
()):
print
(
key
)
print
(
value
,
dy_param_value
[
key
])
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_value
[
key
].
all
()))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录