提交 d9ec6058 编写于 作者: D dengkaipeng

use math:: instead of 29. test=develop

上级 19292ac6
...@@ -260,54 +260,27 @@ Example: ...@@ -260,54 +260,27 @@ Example:
$$ $$
For exclusive = false: For exclusive = false:
$$ .. math::
hstart = i * strides[0] - paddings[0] hstart &= i * strides[0] - paddings[0] \\
$$ hend &= hstart + ksize[0] \\
$$ wstart &= j * strides[1] - paddings[1] \\
hend = hstart + ksize[0] wend &= wstart + ksize[1] \\
$$ Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
$$
wstart = j * strides[1] - paddings[1]
$$
$$
wend = wstart + ksize[1]
$$
$$
Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
$$
For exclusive = true: For exclusive = true:
$$ .. math::
hstart = max(0, i * strides[0] - paddings[0]) hstart &= max(0, i * strides[0] - paddings[0]) \\
$$ hend &= min(H, hstart + ksize[0]) \\
$$ wstart &= max(0, j * strides[1] - paddings[1]) \\
hend = min(H, hstart + ksize[0]) wend &= min(W, wstart + ksize[1]) \\
$$ Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
$$
wstart = max(0, j * strides[1] - paddings[1])
$$
$$
wend = min(W, wstart + ksize[1])
$$
$$
Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
$$
For adaptive = true: For adaptive = true:
$$ .. math::
hstart = floor(i * H_{in} / H_{out}) hstart &= floor(i * H_{in} / H_{out}) \\
$$ hend &= ceil((i + 1) * H_{in} / H_{out}) \\
$$ wstart &= floor(j * W_{in} / W_{out}) \\
hend = ceil((i + 1) * H_{in} / H_{out}) wend &= ceil((j + 1) * W_{in} / W_{out}) \\
$$ Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
$$
wstart = floor(j * W_{in} / W_{out})
$$
$$
wend = ceil((j + 1) * W_{in} / W_{out})
$$
$$
Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
$$
)DOC"); )DOC");
} }
...@@ -417,84 +390,52 @@ Example: ...@@ -417,84 +390,52 @@ Example:
Out shape: $(N, C, D_{out}, H_{out}, W_{out})$ Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
For ceil_mode = false: For ceil_mode = false:
$$ $$
D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\ D_{out} = \\frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1
H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
$$
For ceil_mode = true:
$$
D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0] + strides[0] -1)}{strides[0]} + 1 \\
H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1 \\
W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
$$
For exclusive = false:
$$
dstart = i * strides[0] - paddings[0]
$$
$$ $$
dend = dstart + ksize[0]
$$ $$
H_{out} = \\frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[2]} + 1
$$ $$
hstart = j * strides[1] - paddings[1]
$$ $$
W_{out} = \\frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
$$ $$
hend = hstart + ksize[1] For ceil_mode = true:
$$
$$ $$
wstart = k * strides[2] - paddings[2] D_{out} = \\frac{(D_{in} - ksize[0] + 2 * paddings[0] + strides[0] -1)}{strides[0]} + 1
$$ $$
$$ $$
wend = wstart + ksize[2] H_{out} = \\frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1
$$ $$
$$ $$
Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]} W_{out} = \\frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
$$ $$
For exclusive = false:
.. math::
dstart &= i * strides[0] - paddings[0] \\
dend &= dstart + ksize[0] \\
hstart &= j * strides[1] - paddings[1] \\
hend &= hstart + ksize[1] \\
wstart &= k * strides[2] - paddings[2] \\
wend &= wstart + ksize[2] \\
Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
For exclusive = true: For exclusive = true:
$$ .. math::
dstart = max(0, i * strides[0] - paddings[0]) dstart &= max(0, i * strides[0] - paddings[0]) \\
$$ dend &= min(D, dstart + ksize[0]) \\
$$ hend &= min(H, hstart + ksize[1]) \\
dend = min(D, dstart + ksize[0]) wstart &= max(0, k * strides[2] - paddings[2]) \\
$$ wend &= min(W, wstart + ksize[2]) \\
$$ Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
hstart = max(0, j * strides[1] - paddings[1])
$$
$$
hend = min(H, hstart + ksize[1])
$$
$$
wstart = max(0, k * strides[2] - paddings[2])
$$
$$
wend = min(W, wstart + ksize[2])
$$
$$
Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
$$
For adaptive = true: For adaptive = true:
$$ .. math::
dstart = floor(i * D_{in} / D_{out}) dstart &= floor(i * D_{in} / D_{out}) \\
$$ dend &= ceil((i + 1) * D_{in} / D_{out}) \\
$$ hstart &= floor(j * H_{in} / H_{out}) \\
dend = ceil((i + 1) * D_{in} / D_{out}) hend &= ceil((j + 1) * H_{in} / H_{out}) \\
$$ wstart &= floor(k * W_{in} / W_{out}) \\
$$ wend &= ceil((k + 1) * W_{in} / W_{out}) \\
hstart = floor(j * H_{in} / H_{out}) Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
$$
$$
hend = ceil((j + 1) * H_{in} / H_{out})
$$
$$
wstart = floor(k * W_{in} / W_{out})
$$
$$
wend = ceil((k + 1) * W_{in} / W_{out})
$$
$$
Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
$$
)DOC"); )DOC");
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册