提交 d980ba19 编写于 作者: L lujun

add some dygraph op, test=develop

上级 ed61d67c
...@@ -15,19 +15,20 @@ ...@@ -15,19 +15,20 @@
from __future__ import print_function from __future__ import print_function
from six.moves import reduce from six.moves import reduce
import numpy as np
from .. import core from .. import core
from ..layers import utils from ..layers import utils
from . import layers from . import layers
from ..framework import Variable, OpProtoHolder from ..framework import Variable
from ..layers import layer_function_generator
from ..param_attr import ParamAttr from ..param_attr import ParamAttr
from ..initializer import Normal, Constant, NumpyArrayInitializer from ..initializer import Normal, Constant, NumpyArrayInitializer
import numpy as np
__all__ = [ __all__ = [
'Conv2D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding', 'GRUUnit', 'LayerNorm', 'Conv2D', 'Conv3D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding', 'GRUUnit',
'NCE', 'PRelu', 'BilinearTensorProduct', 'Conv2DTranspose', 'SequenceConv' 'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct', 'Conv2DTranspose',
'Conv3DTranspose', 'SequenceConv', 'RowConv', 'GroupNorm', 'SpectralNorm',
'TreeConv'
] ]
...@@ -137,6 +138,200 @@ class Conv2D(layers.Layer): ...@@ -137,6 +138,200 @@ class Conv2D(layers.Layer):
return self._helper.append_activation(pre_act, act=self._act) return self._helper.append_activation(pre_act, act=self._act)
class Conv3D(layers.Layer):
def __init__(self,
name_scope,
num_channels,
num_filters,
filter_size,
stride=1,
padding=0,
dilation=1,
groups=None,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
dtype=core.VarDesc.VarType.FP32):
assert param_attr is not False, "param_attr should not be False here."
super(Conv3D, self).__init__(name_scope)
self._groups = groups
self._stride = utils.convert_to_list(stride, 3, 'stride')
self._padding = utils.convert_to_list(padding, 3, 'padding')
self._dilation = utils.convert_to_list(dilation, 4, 'dilation')
self._act = act
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
self._use_cudnn = use_cudnn
self._l_type = 'conv3d'
self._dtype = dtype
if groups is None:
num_filter_channels = num_channels
else:
if num_channels % groups != 0:
raise ValueError("num_channels must be divisible by groups.")
num_filter_channels = num_channels // groups
filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
filter_shape = [num_filters, num_filter_channels] + filter_size
def _get_default_param_initializer():
filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
2] * num_channels
std = (2.0 / filter_elem_num)**0.5
return Normal(0.0, std, 0)
self._filter_param = self.create_parameter(
attr=param_attr,
shape=filter_shape,
dtype=self._dtype,
default_initializer=_get_default_param_initializer())
self._bias_param = self.create_parameter(
attr=bias_attr,
shape=[num_filters],
dtype=self._dtype,
is_bias=True)
def forward(self, input):
pre_bias = self._helper.create_variable_for_type_inference(
dtype=self._dtype)
self._helper.append_op(
type=self._l_type,
inputs={
'Input': input,
'Filter': self._filter_param,
},
outputs={"Output": pre_bias},
attrs={
'strides': self._stride,
'paddings': self._padding,
'dilations': self._dilation,
'groups': self._groups if self._groups else 1,
'use_cudnn': self._use_cudnn,
'use_mkldnn': False
})
pre_act = self._helper.create_variable_for_type_inference(
dtype=self._dtype)
self._helper.append_op(
type='elementwise_add',
inputs={'X': [pre_bias],
'Y': [self._bias_param]},
outputs={'Out': [pre_act]},
attrs={'axis': 1})
return self._helper.append_activation(pre_act, act=self._act)
class Conv3DTranspose(layers.Layer):
def __init__(self,
name_scope,
num_filters,
output_size=None,
filter_size=None,
padding=0,
stride=1,
dilation=1,
groups=None,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
name=None):
super(Conv3DTranspose, self).__init__(name_scope)
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
self._padding = utils.convert_to_list(padding, 3, 'padding')
self._stride = utils.convert_to_list(stride, 3, 'stride')
self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
self._param_attr = param_attr
self._filter_size = filter_size
self._output_size = output_size
self._groups = 1 if groups is None else groups
self._num_filters = num_filters
self._use_cudnn = use_cudnn
self._bias_attr = bias_attr
self._act = act
def _build_once(self, input):
self._dtype = self._helper.input_dtype(input)
self._input_channel = input.shape[1]
if self._filter_size is None:
if self._output_size is None:
raise ValueError(
"output_size must be set when filter_size is None")
if isinstance(self._output_size, int):
self._output_size = [self._output_size, self._output_size]
d_in = input.shape[2]
h_in = input.shape[3]
w_in = input.shape[4]
filter_size_d = (self._output_size[0] -
(d_in - 1) * self._stride[0] + 2 * self._padding[0]
- 1) // self._dilation[0] + 1
filter_size_h = (self._output_size[1] -
(h_in - 1) * self._stride[1] + 2 * self._padding[1]
- 1) // self._dilation[1] + 1
filter_size_w = (self._output_size[2] -
(w_in - 1) * self._stride[2] + 2 * self._padding[2]
- 1) // self._dilation[2] + 1
self._filter_size = [filter_size_d, filter_size_h, filter_size_w]
else:
self._filter_size = utils.convert_to_list(
self._filter_size, 3, 'conv3d_transpose.filter_size')
filter_shape = [
self._input_channel, self._num_filters // self._groups
] + self._filter_size
self._img_filter = self.create_parameter(
dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
if self._bias_attr:
self._bias_param = self.create_parameter(
attr=self._bias_attr,
shape=[self._num_filters],
dtype=self._dtype,
is_bias=True)
def forward(self, input):
pre_bias = self._helper.create_variable_for_type_inference(
dtype=self._dtype)
self._helper.append_op(
type="conv3d_transpose",
inputs={'Input': [input],
'Filter': [self._img_filter]},
outputs={'Output': pre_bias},
attrs={
'strides': self._stride,
'paddings': self._padding,
'dilations': self._dilation,
'groups': self._groups if self._groups else 1,
'use_cudnn': self._use_cudnn
})
if self._bias_attr:
pre_act = self._helper.create_variable_for_type_inference(
dtype=self._dtype)
self._helper.append_op(
type='elementwise_add',
inputs={'X': [pre_bias],
'Y': [self._bias_param]},
outputs={'Out': [pre_act]},
attrs={'axis': 1})
else:
pre_act = pre_bias
# Currently, we don't support inplace in imperative mode
return self._helper.append_activation(pre_act, act=self._act)
class Pool2D(layers.Layer): class Pool2D(layers.Layer):
def __init__(self, def __init__(self,
name_scope, name_scope,
...@@ -1397,3 +1592,234 @@ class SequenceConv(layers.Layer): ...@@ -1397,3 +1592,234 @@ class SequenceConv(layers.Layer):
}) })
pre_act = self._helper.append_bias_op(pre_bias) pre_act = self._helper.append_bias_op(pre_bias)
return self._helper.append_activation(pre_act) return self._helper.append_activation(pre_act)
class RowConv(layers.Layer):
def __init__(self,
name_scope,
future_context_size,
param_attr=None,
act=None):
super(RowConv, self).__init__(name_scope)
self._act = act
self._param_attr = param_attr
self._future_context_size = future_context_size
def _buils_once(self, input):
self._dtype = self._helper.input_dtype(input)
filter_shape = [self._future_context_size + 1, input.shape[1]]
self._f = self.create_parameter(
attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
def forward(self, input):
out = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type='row_conv',
inputs={'X': [input],
'Filter': [self._f]},
outputs={'Out': [out]})
return self._helper.append_activation(out, act=self._act)
class GroupNorm(layers.Layer):
"""
**Group Normalization Layer**
Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
Args:
name_scope (str): See base class.
groups(int): The number of groups that divided from channels.
epsilon(float): The small value added to the variance to prevent
division by zero.
param_attr(ParamAttr|None): The parameter attribute for the learnable
scale :math:`g`. If it is set to False, no scale will be added to the output units.
If it is set to None, the bias is initialized one. Default: None.
bias_attr(ParamAttr|None): The parameter attribute for the learnable
bias :math:`b`. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. Default: None.
act(str): Activation to be applied to the output of group normalizaiton.
data_layout(string|NCHW): Only NCHW is supported.
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Returns:
Variable: A tensor variable which is the result after applying group normalization on the input.
"""
def __init__(self,
name_scope,
groups,
epsilon=1e-05,
param_attr=None,
bias_attr=None,
act=None,
data_layout='NCHW'):
super(GroupNorm, self).__init__(name_scope)
self._param_attr = param_attr
self._bias_attr = bias_attr
self._epsilon = epsilon
self._groups = groups
self._act = act
if data_layout != 'NCHW':
raise ValueError("unsupported data layout:" + data_layout)
def _buils_once(self, input):
self._dtype = self._helper.input_dtype(input)
param_shape = [input.shape[1]]
if self._bias_attr:
self._bias = self.create_parameter(
attr=self._bias_attr,
shape=param_shape,
dtype=self._dtype,
is_bias=True)
if self._param_attr:
self._scale = self.create_parameter(
attr=self._param_attr,
shape=param_shape,
dtype=self._dtype,
default_initializer=Constant(1.0))
def forward(self, input):
inputs = {'X': input}
if self._bias:
inputs['Bias'] = self._bias
if self._scale:
inputs['Scale'] = self._scale
# create output
mean_out = self._helper.create_variable(
dtype=self._dtype, stop_gradient=True)
self.create_variable(
name="mean_out", persistable=True, type=self._dtype)
variance_out = self._helper.create_variable_for_type_inference(
dtype=self._dtype, stop_gradient=True)
group_norm_out = self._helper.create_variable_for_type_inference(
dtype=self._dtype)
self._helper.append_op(
type="group_norm",
inputs=inputs,
outputs={
"Y": group_norm_out,
"Mean": mean_out,
"Variance": variance_out,
},
attrs={"epsilon": self._epsilon,
"groups": self._groups})
return self._helper.append_activation(group_norm_out, self._act)
class SpectralNorm(layers.Layer):
def __init__(self, name_scope, dim=0, power_iters=1, eps=1e-12, name=None):
super(SpectralNorm, self).__init__(name_scope)
self._power_iters = power_iters
self._eps = eps
self._dim = dim
def _build_once(self, weight):
self._dtype = self._helper.input_dtype(weight)
input_shape = weight.shape
h = input_shape[self._dim]
w = np.prod(input_shape) // h
self.u = self.create_parameter(
attr=ParamAttr(),
shape=[h],
dtype=self._dtype,
default_initializer=Normal(0., 1.))
self.u.stop_gradient = True
self.v = self.create_parameter(
attr=ParamAttr(),
shape=[w],
dtype=self._dtype,
default_initializer=Normal(0., 1.))
self.v.stop_gradient = True
def forward(self, weight):
inputs = {'Weight': weight, 'U': self.u, 'V': self.v}
out = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type="spectral_norm",
inputs=inputs,
outputs={"Out": out, },
attrs={
"dim": self._dim,
"power_iters": self._power_iters,
"eps": self._eps,
})
return out
class TreeConv(layers.Layer):
def __init__(self,
name_scope,
output_size,
num_filters=1,
max_depth=2,
act='tanh',
param_attr=None,
bias_attr=None,
name=None):
super(TreeConv, self).__init__(name_scope)
self._name = name
self._output_size = output_size
self._act = act
self._max_depth = max_depth
self._num_filters = num_filters
self._bias_attr = bias_attr
self._param_attr = param_attr
def _build_once(self, nodes_vector, edge_set):
assert isinstance(nodes_vector, Variable)
assert isinstance(edge_set, Variable)
self._dtype = self._helper.input_dtype(nodes_vector)
feature_size = nodes_vector.shape[2]
w_shape = [feature_size, 3, self._output_size, self._num_filters]
if self._bias_attr:
self._bias_param = self.create_parameter(
attr=self._bias_attr,
shape=[self._num_filters],
dtype=self._dtype,
is_bias=True)
self.W = self.create_parameter(
attr=self._param_attr,
shape=w_shape,
dtype=self._dtype,
is_bias=False)
def forward(self, nodes_vector, edge_set):
if self._name:
out = self.create_variable(
name=self._name, dtype=self._dtype, persistable=False)
else:
out = self._helper.create_variable_for_type_inference(
dtype=self._dtype)
self._helper.append_op(
type='tree_conv',
inputs={
'NodesVector': nodes_vector,
'EdgeSet': edge_set,
'Filter': self.W
},
outputs={'Out': out, },
attrs={'max_depth': self._max_depth})
if self._bias_attr:
pre_activation = self._helper.create_variable_for_type_inference(
dtype=self._dtype)
self._helper.append_op(
type='elementwise_add',
inputs={'X': [out],
'Y': [self._bias_param]},
outputs={'Out': [pre_activation]},
attrs={'axis': 1})
else:
pre_activation = out
return self._helper.append_activation(pre_activation, act=self._act)
...@@ -560,6 +560,282 @@ class TestLayer(LayerTest): ...@@ -560,6 +560,282 @@ class TestLayer(LayerTest):
self.assertTrue(np.allclose(static_rlt2, static_rlt)) self.assertTrue(np.allclose(static_rlt2, static_rlt))
self.assertTrue(np.allclose(nce_loss3._numpy(), static_rlt)) self.assertTrue(np.allclose(nce_loss3._numpy(), static_rlt))
def test_conv3d(self):
with self.static_graph():
images = layers.data(
name='pixel', shape=[3, 6, 6, 6], dtype='float32')
ret = layers.conv3d(
input=images, num_filters=3, filter_size=[2, 2, 2])
static_ret = self.get_static_graph_result(
feed={'pixel': np.ones(
[2, 3, 6, 6, 6], dtype='float32')},
fetch_list=[ret])[0]
with self.static_graph():
images = layers.data(
name='pixel', shape=[3, 6, 6, 6], dtype='float32')
conv3d = nn.Conv3D(
'conv3d', num_channels=3, num_filters=3, filter_size=[2, 2, 2])
ret = conv3d(images)
static_ret2 = self.get_static_graph_result(
feed={'pixel': np.ones(
[2, 3, 6, 6, 6], dtype='float32')},
fetch_list=[ret])[0]
with self.dynamic_graph():
images = np.ones([2, 3, 6, 6, 6], dtype='float32')
conv3d = nn.Conv3D(
'conv3d', num_channels=3, num_filters=3, filter_size=[2, 2, 2])
dy_ret = conv3d(base.to_variable(images))
self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))
self.assertTrue(np.allclose(static_ret, static_ret2))
def test_row_conv(self):
input = np.arange(15).reshape([3, 5]).astype('float32')
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
with self.static_graph():
x = layers.data(
name='X',
shape=[3, 5],
dtype='float32',
lod_level=1,
append_batch_size=False)
ret = layers.row_conv(input=x, future_context_size=2)
static_ret = self.get_static_graph_result(
feed={
'X': fluid.create_lod_tensor(
data=input, recursive_seq_lens=[[1, 1, 1]], place=place)
},
fetch_list=[ret],
with_lod=True)[0]
with self.static_graph():
x = layers.data(
name='X',
shape=[3, 5],
dtype='float32',
lod_level=1,
append_batch_size=False)
rowConv = nn.RowConv('RowConv', future_context_size=2)
ret = rowConv(x)
static_ret2 = self.get_static_graph_result(
feed={
'X': fluid.create_lod_tensor(
data=input,
recursive_seq_lens=[[1, 1, 1]],
place=place,
with_lod=True)
},
fetch_list=[ret])[0]
with self.dynamic_graph():
rowConv = nn.RowConv('RowConv', future_context_size=2)
dy_ret = rowConv(base.to_variable(input))
self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))
self.assertTrue(np.allclose(static_ret, static_ret2))
def test_group_norm(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
shape = (2, 4, 3, 3)
input = np.random.random(shape).astype('float32')
with self.static_graph():
X = fluid.layers.data(
name='X',
shape=shape,
dtype='float32',
lod_level=1,
append_batch_size=False)
ret = layers.group_norm(input=X, groups=2)
static_ret = self.get_static_graph_result(
feed={
'X': fluid.create_lod_tensor(
data=input, recursive_seq_lens=[[1, 1]], place=place)
},
fetch_list=[ret],
with_lod=True)[0]
with self.static_graph():
X = fluid.layers.data(
name='X',
shape=shape,
dtype='float32',
lod_level=1,
append_batch_size=False)
groupNorm = nn.GroupNorm('GroupNorm', groups=2)
ret = groupNorm(X)
static_ret2 = self.get_static_graph_result(
feed={
'X': fluid.create_lod_tensor(
data=input, recursive_seq_lens=[[1, 1]], place=place)
},
fetch_list=[ret],
with_lod=True)[0]
with self.dynamic_graph():
groupNorm = nn.GroupNorm('GroupNorm', groups=2)
dy_ret = groupNorm(base.to_variable(input))
self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))
self.assertTrue(np.allclose(static_ret, static_ret2))
def test_spectral_norm(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
shape = (2, 4, 3, 3)
input = np.random.random(shape).astype('float32')
with self.static_graph():
Weight = fluid.layers.data(
name='Weight',
shape=shape,
dtype='float32',
lod_level=1,
append_batch_size=False)
ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
static_ret = self.get_static_graph_result(
feed={
'Weight': fluid.create_lod_tensor(
data=input, recursive_seq_lens=[[1, 1]], place=place),
},
fetch_list=[ret],
with_lod=True)[0]
with self.static_graph():
Weight = fluid.layers.data(
name='Weight',
shape=shape,
dtype='float32',
lod_level=1,
append_batch_size=False)
spectralNorm = nn.SpectralNorm('SpectralNorm', dim=1, power_iters=2)
ret = spectralNorm(Weight)
static_ret2 = self.get_static_graph_result(
feed={
'Weight': fluid.create_lod_tensor(
data=input, recursive_seq_lens=[[1, 1]], place=place)
},
fetch_list=[ret],
with_lod=True)[0]
with self.dynamic_graph():
spectralNorm = nn.SpectralNorm('SpectralNorm', dim=1, power_iters=2)
dy_ret = spectralNorm(base.to_variable(input))
self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))
self.assertTrue(np.allclose(static_ret, static_ret2))
def test_tree_conv(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
adj = np.tile(adj, (1, 1, 1))
vectors = np.random.random((1, 10, 5)).astype('float32')
with self.static_graph():
NodesVector = fluid.layers.data(
name='NodesVector',
shape=(1, 10, 5),
dtype='float32',
lod_level=1,
append_batch_size=False)
EdgeSet = fluid.layers.data(
name='EdgeSet',
shape=(1, 9, 2),
dtype='int32',
lod_level=1,
append_batch_size=False)
ret = layers.tree_conv(
nodes_vector=NodesVector,
edge_set=EdgeSet,
output_size=6,
num_filters=1,
max_depth=2)
static_ret = self.get_static_graph_result(
feed={
'NodesVector': fluid.create_lod_tensor(
data=vectors, recursive_seq_lens=[[1]], place=place),
'EdgeSet': fluid.create_lod_tensor(
data=adj, recursive_seq_lens=[[1]], place=place)
},
fetch_list=[ret],
with_lod=False)[0]
with self.static_graph():
NodesVector = fluid.layers.data(
name='NodesVector',
shape=(1, 10, 5),
dtype='float32',
lod_level=1,
append_batch_size=False)
EdgeSet = fluid.layers.data(
name='EdgeSet',
shape=(1, 9, 2),
dtype='int32',
lod_level=1,
append_batch_size=False)
treeConv = nn.TreeConv(
'TreeConv', output_size=6, num_filters=1, max_depth=2)
ret = treeConv(NodesVector, EdgeSet)
static_ret2 = self.get_static_graph_result(
feed={
'NodesVector': fluid.create_lod_tensor(
data=vectors, recursive_seq_lens=[[1]], place=place),
'EdgeSet': fluid.create_lod_tensor(
data=adj, recursive_seq_lens=[[1]], place=place)
},
fetch_list=[ret],
with_lod=False)[0]
with self.dynamic_graph():
treeConv = nn.TreeConv(
'SpectralNorm', output_size=6, num_filters=1, max_depth=2)
dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
self.assertTrue(np.allclose(static_ret, static_ret2))
self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))
def test_conv3d_transpose(self):
input_array = np.arange(0, 48).reshape(
[2, 3, 2, 2, 2]).astype('float32')
with self.static_graph():
img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
out = layers.conv3d_transpose(
input=img, num_filters=12, output_size=[14, 14, 14])
static_rlt = self.get_static_graph_result(
feed={'pixel': input_array}, fetch_list=[out])[0]
with self.static_graph():
img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
conv3d_transpose = nn.Conv3DTranspose(
'Conv3DTranspose', num_filters=12, output_size=[14, 14, 14])
out = conv3d_transpose(img)
static_rlt2 = self.get_static_graph_result(
feed={'pixel': input_array}, fetch_list=[out])[0]
with self.dynamic_graph():
conv3d_transpose = nn.Conv3DTranspose(
'Conv3DTranspose', num_filters=12, output_size=[14, 14, 14])
dy_rlt = conv3d_transpose(base.to_variable(input_array))
self.assertTrue(np.allclose(static_rlt2, static_rlt))
self.assertTrue(np.allclose(dy_rlt._numpy(), static_rlt))
class TestBook(unittest.TestCase): class TestBook(unittest.TestCase):
def test_fit_a_line(self): def test_fit_a_line(self):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册