Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
d95d66cb
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d95d66cb
编写于
9月 06, 2017
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
d924a658
上级
97c432ee
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
532 addition
and
4 deletion
+532
-4
develop/doc_cn/_sources/howto/dev/new_op_cn.md.txt
develop/doc_cn/_sources/howto/dev/new_op_cn.md.txt
+6
-1
develop/doc_cn/_sources/howto/dev/use_eigen_cn.md.txt
develop/doc_cn/_sources/howto/dev/use_eigen_cn.md.txt
+146
-0
develop/doc_cn/howto/dev/new_op_cn.html
develop/doc_cn/howto/dev/new_op_cn.html
+6
-2
develop/doc_cn/howto/dev/use_eigen_cn.html
develop/doc_cn/howto/dev/use_eigen_cn.html
+373
-0
develop/doc_cn/objects.inv
develop/doc_cn/objects.inv
+0
-0
develop/doc_cn/searchindex.js
develop/doc_cn/searchindex.js
+1
-1
未找到文件。
develop/doc_cn/_sources/howto/dev/new_op_cn.md.txt
浏览文件 @
d95d66cb
...
...
@@ -169,6 +169,8 @@ class MulKernel : public framework::OpKernel {
`MulKernel`需要重写`Compute`接口,该接口参数为`const framework::ExecutionContext& context`, `ExecutionContext`相比`InferShapeContext`增加了设备类型,同样可获取到输入输出和属性参数,`Compute`函数里写具体实现时。
注意,不同设备(CPU、GPU)共享一个Op定义,是否则共享同一个`OpKernel`,取决于`Compute`调用的函数是否支持不同设备。`MulOp`的CPU、GPU实现共享同一个`Kernel`,`OpKernel`不共享的例子可以参考[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。
为了使得`OpKernel`的计算过程书写较为简单,CPU、GPU的代码可以复用,我们通常借助Eigen unsupported Tensor模块来实现。关于在paddle中如何使用Eigen库,请参考对应的使用[文档](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/use_eigen_cn.md)
到此前向Op实现完成,需要在`.cc`文件中注册该op和kernel。反向Op类的定义和Kernel定义与前向Op类似,这里不再重复。但注意,反向Op没有`ProtoMaker`。
...
...
@@ -188,9 +190,12 @@ REGISTER_OP_CPU_KERNEL(mul_grad,
- `REGISTER_OP_WITHOUT_GRADIENT` : 用于注册没有反向的Op。
- `REGISTER_OP_CPU_KERNEL` :注册`ops::MulKernel`类,并特化模板参数为`paddle::platform::CPUPlace`和`float`类型,同理,注册`ops::MulKernel`类。
在 `.cu`文件中注册GPU Kernel。
在 `.cu`文件中注册GPU Kernel。
请注意,如果GPU Kernel的实现是基于Eigen unsupported模块,那么在 `.cu`的最前面请加上宏定义 `#define EIGEN_USE_GPU`
```c++
// if use Eigen unsupported module before include head files
#define EIGEN_USE_GPU
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(mul_grad,
...
...
develop/doc_cn/_sources/howto/dev/use_eigen_cn.md.txt
0 → 100644
浏览文件 @
d95d66cb
## 在Paddle中如何使用Eigen
神经网络本质上是一个计算图,计算需要的数据存放在`Tensor`中,而计算过程是由`Operartor`来描述的。在执行时,`Operator`调用对应`OpKernel`中的`Compute`接口,实现对`Tensor`的操作。
### Eigen Tensor模块
Eigen Tensor模块对element-wise计算提供了强大的支持,并且书写一份代码,可以同时在CPU、GPU执行。但Eigen Tensor是一个正在开发中的模块,因此可能测试不够完备,文档较少。
关于Eigen Tensor模块的详细介绍请参考[文档1](https://github.com/RLovelett/eigen/blob/master/unsupported/Eigen/CXX11/src/Tensor/README.md) 和[文档2](https://bitbucket.org/eigen/eigen/src/default/unsupported/Eigen/CXX11/src/Tensor/README.md)
### paddle::framework::Tensor
Paddle Tensor定义在framework目录下,其主要接口如下:
```cpp
class Tensor {
public:
/*! Return a pointer to mutable memory block. */
template <typename T>
inline T* data();
/**
* @brief Return a pointer to mutable memory block.
* @note If not exist, then allocation.
*/
template <typename T>
inline T* mutable_data(platform::Place place);
/**
* @brief Return a pointer to mutable memory block.
*
* @param[in] dims The dimensions of the memory block.
* @param[in] place The place of the memory block.
*
* @note If not exist, then allocation.
*/
template <typename T>
inline T* mutable_data(DDim dims, platform::Place place);
/*! Resize the dimensions of the memory block. */
inline Tensor& Resize(const DDim& dims);
/*! Return the dimensions of the memory block. */
inline const DDim& dims() const;
private:
/*! holds the memory block if allocated. */
std::shared_ptr<Placeholder> holder_;
/*! points to dimensions of memory block. */
DDim dim_;
};
```
`Placeholder`的作用是延迟分配内存,即我们可以先定义一个Tensor,然后使用Resize接口设置Tensor的大小,最后再调用mutable_data接口分配实际的内存。
```cpp
paddle::framework::Tensor t;
paddle::platform::CPUPlace place;
// set size first
t.Resize({2, 3});
// allocate memory on CPU later
t.mutable_data(place);
```
### paddle::framework::Tensor使用样例
下面以AddOp为例说明Tensor的使用过程:
- InferShape
在运行神经网络计算图时,我们先调用每个`Operator`的`InferShape`接口,根据输入Tensor的大小来设置输出Tensor的大小,`Resize`接口会被调用。
```cpp
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("X")->dims(),
ctx.Input<Tensor>("Y")->dims(),
"Two input of Add Op's dimension must be same.");
ctx.Output<Tensor>("Out")->Resize(ctx.Input<Tensor>("X")->dims());
}
```
- Run
`Operator`的`Run`接口最终会调用对应`OpKernel`的`Compute`接口,在这时真正的分配内存,`mutable_data`接口会被调用。
```cpp
void Compute(const framework::ExecutionContext& context) const override {
auto* input0 = context.Input<Tensor>("X");
auto* input1 = context.Input<Tensor>("Y");
auto* output = context.Output<Tensor>("Out");
output->mutable_data<T>(context.GetPlace());
auto x = EigenVector<T>::Flatten(*input0);
auto y = EigenVector<T>::Flatten(*input1);
auto z = EigenVector<T>::Flatten(*output);
auto place = context.GetEigenDevice<Place>();
z.device(place) = x + y;
}
```
### paddle::framework::Tensor到EigenTensor的转换
如上一小节所示,在具体的计算中,我们需要先把输入Tensor和输出Tensor转换为Eigen支持的格式。我们在[eigen.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/eigen.h)中提供了一些全局函数用来实现paddle::framework::Tensor到EigenTensor/EigenMatrix/EigenVector/EigenScalar的转换。
以EigenTensor为例,做一个介绍
```cpp
Tensor t;
float* p = t.mutable_data<float>(make_ddim({1, 2, 3}), platform::CPUPlace());
for (int i = 0; i < 1 * 2 * 3; i++) {
p[i] = static_cast<float>(i);
}
EigenTensor<float, 3>::Type et = EigenTensor<float, 3>::From(t);
```
From是EigenTensor模板提供的一个接口,可以实现从paddle::framework::Tensor到对EigenTensor的转换。由于Tensor的rank是模板参数,因此在转换时需要显示的指定。
在Eigen中,不同rank的Tensor是不同类型,Vector是rank为1的Tensor。需要额外注意的是,EigenVector<T>::From方法是把paddle中的一维Tensor转为Eigen的一维Tensor,在这里用EigenVector来表示;而EigenVector<T>::Flatten方法是把paddle中的一个Tensor进行reshape操作,压扁成为Eigen的一维Tensor,类型仍然为EigenVector。
更多的转换方法请参考eigen_test.cc中的[单元测试](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/eigen_test.cc)。
### 实现计算
当需要完成计算时,我们需要等式左边的EigenTensor调用device接口。在这里需要注意的是,这里的EigenTensor之间的运算只是改变了原有Tensor中的数据,而不会改变原有Tensor的shape信息。
```cpp
auto x = EigenVector<T>::Flatten(*input0);
auto y = EigenVector<T>::Flatten(*input1);
auto z = EigenVector<T>::Flatten(*output);
auto place = context.GetEigenDevice<Place>();
z.device(place) = x + y;
```
在这段代码中,input0/input1/output可以是任意维度的Tensor。我们调用了EigenVector的Flatten接口,把任意维度的Tensor转为了一维的EigenVector。而在计算结束之后,input0/input1/output的原有shape信息不变。如果想改变原有Tensor的shape信息,可以调用Resize接口进行改变。
由于Eigen Tensor模块的文档较少,我们可以参考TensorFlow的[kernels](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/kernels)模块下的相关`OpKernel`的计算代码。
develop/doc_cn/howto/dev/new_op_cn.html
浏览文件 @
d95d66cb
...
...
@@ -335,6 +335,7 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa
</ul>
<p><code
class=
"docutils literal"
><span
class=
"pre"
>
MulKernel
</span></code>
需要重写
<code
class=
"docutils literal"
><span
class=
"pre"
>
Compute
</span></code>
接口,该接口参数为
<code
class=
"docutils literal"
><span
class=
"pre"
>
const
</span>
<span
class=
"pre"
>
framework::ExecutionContext
&
</span>
<span
class=
"pre"
>
context
</span></code>
,
<code
class=
"docutils literal"
><span
class=
"pre"
>
ExecutionContext
</span></code>
相比
<code
class=
"docutils literal"
><span
class=
"pre"
>
InferShapeContext
</span></code>
增加了设备类型,同样可获取到输入输出和属性参数,
<code
class=
"docutils literal"
><span
class=
"pre"
>
Compute
</span></code>
函数里写具体实现时。
</p>
<p>
注意,不同设备(CPU、GPU)共享一个Op定义,是否则共享同一个
<code
class=
"docutils literal"
><span
class=
"pre"
>
OpKernel
</span></code>
,取决于
<code
class=
"docutils literal"
><span
class=
"pre"
>
Compute
</span></code>
调用的函数是否支持不同设备。
<code
class=
"docutils literal"
><span
class=
"pre"
>
MulOp
</span></code>
的CPU、GPU实现共享同一个
<code
class=
"docutils literal"
><span
class=
"pre"
>
Kernel
</span></code>
,
<code
class=
"docutils literal"
><span
class=
"pre"
>
OpKernel
</span></code>
不共享的例子可以参考
<a
class=
"reference external"
href=
"https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43"
><code
class=
"docutils literal"
><span
class=
"pre"
>
OnehotCrossEntropyOpKernel
</span></code></a>
。
</p>
<p>
为了使得
<code
class=
"docutils literal"
><span
class=
"pre"
>
OpKernel
</span></code>
的计算过程书写较为简单,CPU、GPU的代码可以复用,我们通常借助Eigen unsupported Tensor模块来实现。关于在paddle中如何使用Eigen库,请参考对应的使用
<a
class=
"reference external"
href=
"https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/use_eigen_cn.md"
>
文档
</a></p>
<p>
到此前向Op实现完成,需要在
<code
class=
"docutils literal"
><span
class=
"pre"
>
.cc
</span></code>
文件中注册该op和kernel。反向Op类的定义和Kernel定义与前向Op类似,这里不再重复。但注意,反向Op没有
<code
class=
"docutils literal"
><span
class=
"pre"
>
ProtoMaker
</span></code>
。
</p>
</div>
<div
class=
"section"
id=
"operator"
>
...
...
@@ -352,8 +353,11 @@ Kernel实现 | CPU、GPU共享Kernel在<code class="docutils literal"><spa
<li><code
class=
"docutils literal"
><span
class=
"pre"
>
REGISTER_OP_WITHOUT_GRADIENT
</span></code>
: 用于注册没有反向的Op。
</li>
<li><code
class=
"docutils literal"
><span
class=
"pre"
>
REGISTER_OP_CPU_KERNEL
</span></code>
:注册
<code
class=
"docutils literal"
><span
class=
"pre"
>
ops::MulKernel
</span></code>
类,并特化模板参数为
<code
class=
"docutils literal"
><span
class=
"pre"
>
paddle::platform::CPUPlace
</span></code>
和
<code
class=
"docutils literal"
><span
class=
"pre"
>
float
</span></code>
类型,同理,注册
<code
class=
"docutils literal"
><span
class=
"pre"
>
ops::MulKernel
</span></code>
类。
</li>
</ul>
<p>
在
<code
class=
"docutils literal"
><span
class=
"pre"
>
.cu
</span></code>
文件中注册GPU Kernel。
</p>
<div
class=
"highlight-c++"
><div
class=
"highlight"
><pre><span></span><span
class=
"k"
>
namespace
</span>
<span
class=
"n"
>
ops
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
paddle
</span><span
class=
"o"
>
::
</span><span
class=
"n"
>
operators
</span><span
class=
"p"
>
;
</span>
<p>
在
<code
class=
"docutils literal"
><span
class=
"pre"
>
.cu
</span></code>
文件中注册GPU Kernel。请注意,如果GPU Kernel的实现是基于Eigen unsupported模块,那么在
<code
class=
"docutils literal"
><span
class=
"pre"
>
.cu
</span></code>
的最前面请加上宏定义
<code
class=
"docutils literal"
><span
class=
"pre"
>
#define
</span>
<span
class=
"pre"
>
EIGEN_USE_GPU
</span></code></p>
<div
class=
"highlight-c++"
><div
class=
"highlight"
><pre><span></span><span
class=
"c1"
>
// if use Eigen unsupported module before include head files
</span>
<span
class=
"cp"
>
#define EIGEN_USE_GPU
</span>
<span
class=
"k"
>
namespace
</span>
<span
class=
"n"
>
ops
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
paddle
</span><span
class=
"o"
>
::
</span><span
class=
"n"
>
operators
</span><span
class=
"p"
>
;
</span>
<span
class=
"n"
>
REGISTER_OP_GPU_KERNEL
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
mul
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
ops
</span><span
class=
"o"
>
::
</span><span
class=
"n"
>
MulKernel
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
paddle
</span><span
class=
"o"
>
::
</span><span
class=
"n"
>
platform
</span><span
class=
"o"
>
::
</span><span
class=
"n"
>
GPUPlace
</span><span
class=
"p"
>
,
</span>
<span
class=
"kt"
>
float
</span><span
class=
"o"
>
>
</span><span
class=
"p"
>
);
</span>
<span
class=
"n"
>
REGISTER_OP_GPU_KERNEL
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
mul_grad
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
ops
</span><span
class=
"o"
>
::
</span><span
class=
"n"
>
MulGradKernel
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
paddle
</span><span
class=
"o"
>
::
</span><span
class=
"n"
>
platform
</span><span
class=
"o"
>
::
</span><span
class=
"n"
>
GPUPlace
</span><span
class=
"p"
>
,
</span>
<span
class=
"kt"
>
float
</span><span
class=
"o"
>
>
</span><span
class=
"p"
>
);
</span>
...
...
develop/doc_cn/howto/dev/use_eigen_cn.html
0 → 100644
浏览文件 @
d95d66cb
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!-->
<html
class=
"no-js"
lang=
"en"
>
<!--<![endif]-->
<head>
<meta
charset=
"utf-8"
>
<meta
name=
"viewport"
content=
"width=device-width, initial-scale=1.0"
>
<title>
在Paddle中如何使用Eigen
—
PaddlePaddle 文档
</title>
<link
rel=
"stylesheet"
href=
"../../_static/css/theme.css"
type=
"text/css"
/>
<link
rel=
"index"
title=
"索引"
href=
"../../genindex.html"
/>
<link
rel=
"search"
title=
"搜索"
href=
"../../search.html"
/>
<link
rel=
"top"
title=
"PaddlePaddle 文档"
href=
"../../index.html"
/>
<link
rel=
"stylesheet"
href=
"https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css"
type=
"text/css"
/>
<link
rel=
"stylesheet"
href=
"../../_static/css/override.css"
type=
"text/css"
/>
<script>
var
_hmt
=
_hmt
||
[];
(
function
()
{
var
hm
=
document
.
createElement
(
"
script
"
);
hm
.
src
=
"
//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba
"
;
var
s
=
document
.
getElementsByTagName
(
"
script
"
)[
0
];
s
.
parentNode
.
insertBefore
(
hm
,
s
);
})();
</script>
<script
src=
"../../_static/js/modernizr.min.js"
></script>
</head>
<body
class=
"wy-body-for-nav"
role=
"document"
>
<header
class=
"site-header"
>
<div
class=
"site-logo"
>
<a
href=
"/"
><img
src=
"../../_static/images/PP_w.png"
></a>
</div>
<div
class=
"site-nav-links"
>
<div
class=
"site-menu"
>
<a
class=
"fork-on-github"
href=
"https://github.com/PaddlePaddle/Paddle"
target=
"_blank"
><i
class=
"fa fa-github"
></i>
Fork me on Github
</a>
<div
class=
"language-switcher dropdown"
>
<a
type=
"button"
data-toggle=
"dropdown"
>
<span>
English
</span>
<i
class=
"fa fa-angle-up"
></i>
<i
class=
"fa fa-angle-down"
></i>
</a>
<ul
class=
"dropdown-menu"
>
<li><a
href=
"/doc_cn"
>
中文
</a></li>
<li><a
href=
"/doc"
>
English
</a></li>
</ul>
</div>
<ul
class=
"site-page-links"
>
<li><a
href=
"/"
>
Home
</a></li>
</ul>
</div>
<div
class=
"doc-module"
>
<ul>
<li
class=
"toctree-l1"
><a
class=
"reference internal"
href=
"../../getstarted/index_cn.html"
>
新手入门
</a></li>
<li
class=
"toctree-l1"
><a
class=
"reference internal"
href=
"../index_cn.html"
>
进阶指南
</a></li>
<li
class=
"toctree-l1"
><a
class=
"reference internal"
href=
"../../api/index_cn.html"
>
API
</a></li>
<li
class=
"toctree-l1"
><a
class=
"reference internal"
href=
"../../faq/index_cn.html"
>
FAQ
</a></li>
</ul>
<div
role=
"search"
>
<form
id=
"rtd-search-form"
class=
"wy-form"
action=
"../../search.html"
method=
"get"
>
<input
type=
"text"
name=
"q"
placeholder=
"Search docs"
/>
<input
type=
"hidden"
name=
"check_keywords"
value=
"yes"
/>
<input
type=
"hidden"
name=
"area"
value=
"default"
/>
</form>
</div>
</div>
</div>
</header>
<div
class=
"main-content-wrap"
>
<nav
class=
"doc-menu-vertical"
role=
"navigation"
>
<ul>
<li
class=
"toctree-l1"
><a
class=
"reference internal"
href=
"../../getstarted/index_cn.html"
>
新手入门
</a><ul>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"../../getstarted/build_and_install/index_cn.html"
>
安装与编译
</a><ul>
<li
class=
"toctree-l3"
><a
class=
"reference internal"
href=
"../../getstarted/build_and_install/docker_install_cn.html"
>
PaddlePaddle的Docker容器使用方式
</a></li>
<li
class=
"toctree-l3"
><a
class=
"reference internal"
href=
"../../getstarted/build_and_install/cmake/build_from_source_cn.html"
>
PaddlePaddle的编译选项
</a></li>
</ul>
</li>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"../../getstarted/concepts/use_concepts_cn.html"
>
基本使用概念
</a></li>
</ul>
</li>
<li
class=
"toctree-l1"
><a
class=
"reference internal"
href=
"../index_cn.html"
>
进阶指南
</a><ul>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"../usage/cmd_parameter/index_cn.html"
>
设置命令行参数
</a><ul>
<li
class=
"toctree-l3"
><a
class=
"reference internal"
href=
"../usage/cmd_parameter/use_case_cn.html"
>
使用案例
</a></li>
<li
class=
"toctree-l3"
><a
class=
"reference internal"
href=
"../usage/cmd_parameter/arguments_cn.html"
>
参数概述
</a></li>
<li
class=
"toctree-l3"
><a
class=
"reference internal"
href=
"../usage/cmd_parameter/detail_introduction_cn.html"
>
细节描述
</a></li>
</ul>
</li>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"../usage/cluster/cluster_train_cn.html"
>
运行分布式训练
</a></li>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"../usage/k8s/k8s_basis_cn.html"
>
Kubernetes 简介
</a></li>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"../usage/k8s/k8s_cn.html"
>
Kubernetes单机训练
</a></li>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"../usage/k8s/k8s_distributed_cn.html"
>
Kubernetes分布式训练
</a></li>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"build_cn.html"
>
编译PaddlePaddle和运行单元测试
</a></li>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"write_docs_cn.html"
>
如何贡献/修改文档
</a></li>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"contribute_to_paddle_cn.html"
>
如何贡献代码
</a></li>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"../deep_model/rnn/index_cn.html"
>
RNN相关模型
</a><ul>
<li
class=
"toctree-l3"
><a
class=
"reference internal"
href=
"../deep_model/rnn/rnn_config_cn.html"
>
RNN配置
</a></li>
<li
class=
"toctree-l3"
><a
class=
"reference internal"
href=
"../deep_model/rnn/recurrent_group_cn.html"
>
Recurrent Group教程
</a></li>
<li
class=
"toctree-l3"
><a
class=
"reference internal"
href=
"../deep_model/rnn/hierarchical_layer_cn.html"
>
支持双层序列作为输入的Layer
</a></li>
<li
class=
"toctree-l3"
><a
class=
"reference internal"
href=
"../deep_model/rnn/hrnn_rnn_api_compare_cn.html"
>
单双层RNN API对比介绍
</a></li>
</ul>
</li>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"../optimization/gpu_profiling_cn.html"
>
GPU性能分析与调优
</a></li>
</ul>
</li>
<li
class=
"toctree-l1"
><a
class=
"reference internal"
href=
"../../api/index_cn.html"
>
API
</a><ul>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"../../api/v2/model_configs.html"
>
模型配置
</a><ul>
<li
class=
"toctree-l3"
><a
class=
"reference internal"
href=
"../../api/v2/config/activation.html"
>
Activation
</a></li>
<li
class=
"toctree-l3"
><a
class=
"reference internal"
href=
"../../api/v2/config/layer.html"
>
Layers
</a></li>
<li
class=
"toctree-l3"
><a
class=
"reference internal"
href=
"../../api/v2/config/evaluators.html"
>
Evaluators
</a></li>
<li
class=
"toctree-l3"
><a
class=
"reference internal"
href=
"../../api/v2/config/optimizer.html"
>
Optimizer
</a></li>
<li
class=
"toctree-l3"
><a
class=
"reference internal"
href=
"../../api/v2/config/pooling.html"
>
Pooling
</a></li>
<li
class=
"toctree-l3"
><a
class=
"reference internal"
href=
"../../api/v2/config/networks.html"
>
Networks
</a></li>
<li
class=
"toctree-l3"
><a
class=
"reference internal"
href=
"../../api/v2/config/attr.html"
>
Parameter Attribute
</a></li>
</ul>
</li>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"../../api/v2/data.html"
>
数据访问
</a></li>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"../../api/v2/run_logic.html"
>
训练与应用
</a></li>
</ul>
</li>
<li
class=
"toctree-l1"
><a
class=
"reference internal"
href=
"../../faq/index_cn.html"
>
FAQ
</a></li>
</ul>
</nav>
<section
class=
"doc-content-wrap"
>
<div
role=
"navigation"
aria-label=
"breadcrumbs navigation"
>
<ul
class=
"wy-breadcrumbs"
>
<li>
在Paddle中如何使用Eigen
</li>
</ul>
</div>
<div
class=
"wy-nav-content"
id=
"doc-content"
>
<div
class=
"rst-content"
>
<div
role=
"main"
class=
"document"
itemscope=
"itemscope"
itemtype=
"http://schema.org/Article"
>
<div
itemprop=
"articleBody"
>
<div
class=
"section"
id=
"paddleeigen"
>
<span
id=
"paddleeigen"
></span><h1>
在Paddle中如何使用Eigen
<a
class=
"headerlink"
href=
"#paddleeigen"
title=
"永久链接至标题"
>
¶
</a></h1>
<p>
神经网络本质上是一个计算图,计算需要的数据存放在
<code
class=
"docutils literal"
><span
class=
"pre"
>
Tensor
</span></code>
中,而计算过程是由
<code
class=
"docutils literal"
><span
class=
"pre"
>
Operartor
</span></code>
来描述的。在执行时,
<code
class=
"docutils literal"
><span
class=
"pre"
>
Operator
</span></code>
调用对应
<code
class=
"docutils literal"
><span
class=
"pre"
>
OpKernel
</span></code>
中的
<code
class=
"docutils literal"
><span
class=
"pre"
>
Compute
</span></code>
接口,实现对
<code
class=
"docutils literal"
><span
class=
"pre"
>
Tensor
</span></code>
的操作。
</p>
<div
class=
"section"
id=
"eigen-tensor"
>
<span
id=
"eigen-tensor"
></span><h2>
Eigen Tensor模块
<a
class=
"headerlink"
href=
"#eigen-tensor"
title=
"永久链接至标题"
>
¶
</a></h2>
<p>
Eigen Tensor模块对element-wise计算提供了强大的支持,并且书写一份代码,可以同时在CPU、GPU执行。但Eigen Tensor是一个正在开发中的模块,因此可能测试不够完备,文档较少。
</p>
<p>
关于Eigen Tensor模块的详细介绍请参考
<a
class=
"reference external"
href=
"https://github.com/RLovelett/eigen/blob/master/unsupported/Eigen/CXX11/src/Tensor/README.md"
>
文档1
</a>
和
<a
class=
"reference external"
href=
"https://bitbucket.org/eigen/eigen/src/default/unsupported/Eigen/CXX11/src/Tensor/README.md"
>
文档2
</a></p>
</div>
<div
class=
"section"
id=
"paddle-framework-tensor"
>
<span
id=
"paddle-framework-tensor"
></span><h2>
paddle::framework::Tensor
<a
class=
"headerlink"
href=
"#paddle-framework-tensor"
title=
"永久链接至标题"
>
¶
</a></h2>
<p>
Paddle Tensor定义在framework目录下,其主要接口如下:
</p>
<div
class=
"highlight-cpp"
><div
class=
"highlight"
><pre><span></span><span
class=
"k"
>
class
</span>
<span
class=
"nc"
>
Tensor
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"k"
>
public
</span><span
class=
"o"
>
:
</span>
<span
class=
"cm"
>
/*! Return a pointer to mutable memory block. */
</span>
<span
class=
"k"
>
template
</span>
<span
class=
"o"
>
<
</span><span
class=
"k"
>
typename
</span>
<span
class=
"n"
>
T
</span><span
class=
"o"
>
>
</span>
<span
class=
"kr"
>
inline
</span>
<span
class=
"n"
>
T
</span><span
class=
"o"
>
*
</span>
<span
class=
"n"
>
data
</span><span
class=
"p"
>
();
</span>
<span
class=
"cm"
>
/**
</span>
<span
class=
"cm"
>
* @brief Return a pointer to mutable memory block.
</span>
<span
class=
"cm"
>
* @note If not exist, then allocation.
</span>
<span
class=
"cm"
>
*/
</span>
<span
class=
"k"
>
template
</span>
<span
class=
"o"
>
<
</span><span
class=
"k"
>
typename
</span>
<span
class=
"n"
>
T
</span><span
class=
"o"
>
>
</span>
<span
class=
"kr"
>
inline
</span>
<span
class=
"n"
>
T
</span><span
class=
"o"
>
*
</span>
<span
class=
"n"
>
mutable_data
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
platform
</span><span
class=
"o"
>
::
</span><span
class=
"n"
>
Place
</span>
<span
class=
"n"
>
place
</span><span
class=
"p"
>
);
</span>
<span
class=
"cm"
>
/**
</span>
<span
class=
"cm"
>
* @brief Return a pointer to mutable memory block.
</span>
<span
class=
"cm"
>
*
</span>
<span
class=
"cm"
>
* @param[in] dims The dimensions of the memory block.
</span>
<span
class=
"cm"
>
* @param[in] place The place of the memory block.
</span>
<span
class=
"cm"
>
*
</span>
<span
class=
"cm"
>
* @note If not exist, then allocation.
</span>
<span
class=
"cm"
>
*/
</span>
<span
class=
"k"
>
template
</span>
<span
class=
"o"
>
<
</span><span
class=
"k"
>
typename
</span>
<span
class=
"n"
>
T
</span><span
class=
"o"
>
>
</span>
<span
class=
"kr"
>
inline
</span>
<span
class=
"n"
>
T
</span><span
class=
"o"
>
*
</span>
<span
class=
"n"
>
mutable_data
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
DDim
</span>
<span
class=
"n"
>
dims
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
platform
</span><span
class=
"o"
>
::
</span><span
class=
"n"
>
Place
</span>
<span
class=
"n"
>
place
</span><span
class=
"p"
>
);
</span>
<span
class=
"cm"
>
/*! Resize the dimensions of the memory block. */
</span>
<span
class=
"kr"
>
inline
</span>
<span
class=
"n"
>
Tensor
</span><span
class=
"o"
>
&
</span>
<span
class=
"n"
>
Resize
</span><span
class=
"p"
>
(
</span><span
class=
"k"
>
const
</span>
<span
class=
"n"
>
DDim
</span><span
class=
"o"
>
&
</span>
<span
class=
"n"
>
dims
</span><span
class=
"p"
>
);
</span>
<span
class=
"cm"
>
/*! Return the dimensions of the memory block. */
</span>
<span
class=
"kr"
>
inline
</span>
<span
class=
"k"
>
const
</span>
<span
class=
"n"
>
DDim
</span><span
class=
"o"
>
&
</span>
<span
class=
"n"
>
dims
</span><span
class=
"p"
>
()
</span>
<span
class=
"k"
>
const
</span><span
class=
"p"
>
;
</span>
<span
class=
"k"
>
private
</span><span
class=
"o"
>
:
</span>
<span
class=
"cm"
>
/*! holds the memory block if allocated. */
</span>
<span
class=
"n"
>
std
</span><span
class=
"o"
>
::
</span><span
class=
"n"
>
shared_ptr
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
Placeholder
</span><span
class=
"o"
>
>
</span>
<span
class=
"n"
>
holder_
</span><span
class=
"p"
>
;
</span>
<span
class=
"cm"
>
/*! points to dimensions of memory block. */
</span>
<span
class=
"n"
>
DDim
</span>
<span
class=
"n"
>
dim_
</span><span
class=
"p"
>
;
</span>
<span
class=
"p"
>
};
</span>
</pre></div>
</div>
<p><code
class=
"docutils literal"
><span
class=
"pre"
>
Placeholder
</span></code>
的作用是延迟分配内存,即我们可以先定义一个Tensor,然后使用Resize接口设置Tensor的大小,最后再调用mutable_data接口分配实际的内存。
</p>
<div
class=
"highlight-cpp"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
paddle
</span><span
class=
"o"
>
::
</span><span
class=
"n"
>
framework
</span><span
class=
"o"
>
::
</span><span
class=
"n"
>
Tensor
</span>
<span
class=
"n"
>
t
</span><span
class=
"p"
>
;
</span>
<span
class=
"n"
>
paddle
</span><span
class=
"o"
>
::
</span><span
class=
"n"
>
platform
</span><span
class=
"o"
>
::
</span><span
class=
"n"
>
CPUPlace
</span>
<span
class=
"n"
>
place
</span><span
class=
"p"
>
;
</span>
<span
class=
"c1"
>
// set size first
</span>
<span
class=
"n"
>
t
</span><span
class=
"p"
>
.
</span><span
class=
"n"
>
Resize
</span><span
class=
"p"
>
({
</span><span
class=
"mi"
>
2
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
3
</span><span
class=
"p"
>
});
</span>
<span
class=
"c1"
>
// allocate memory on CPU later
</span>
<span
class=
"n"
>
t
</span><span
class=
"p"
>
.
</span><span
class=
"n"
>
mutable_data
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
place
</span><span
class=
"p"
>
);
</span>
</pre></div>
</div>
</div>
<div
class=
"section"
id=
"paddle-framework-tensor"
>
<span
id=
"id1"
></span><h2>
paddle::framework::Tensor使用样例
<a
class=
"headerlink"
href=
"#paddle-framework-tensor"
title=
"永久链接至标题"
>
¶
</a></h2>
<p>
下面以AddOp为例说明Tensor的使用过程:
</p>
<ul
class=
"simple"
>
<li>
InferShape
</li>
</ul>
<p>
在运行神经网络计算图时,我们先调用每个
<code
class=
"docutils literal"
><span
class=
"pre"
>
Operator
</span></code>
的
<code
class=
"docutils literal"
><span
class=
"pre"
>
InferShape
</span></code>
接口,根据输入Tensor的大小来设置输出Tensor的大小,
<code
class=
"docutils literal"
><span
class=
"pre"
>
Resize
</span></code>
接口会被调用。
</p>
<div
class=
"highlight-cpp"
><div
class=
"highlight"
><pre><span></span><span
class=
"kt"
>
void
</span>
<span
class=
"nf"
>
InferShape
</span><span
class=
"p"
>
(
</span><span
class=
"k"
>
const
</span>
<span
class=
"n"
>
framework
</span><span
class=
"o"
>
::
</span><span
class=
"n"
>
InferShapeContext
</span>
<span
class=
"o"
>
&
</span><span
class=
"n"
>
ctx
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
const
</span>
<span
class=
"k"
>
override
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"n"
>
PADDLE_ENFORCE_EQ
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
ctx
</span><span
class=
"p"
>
.
</span><span
class=
"n"
>
Input
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
Tensor
</span><span
class=
"o"
>
>
</span><span
class=
"p"
>
(
</span><span
class=
"s"
>
"
X
"
</span><span
class=
"p"
>
)
</span><span
class=
"o"
>
-
>
</span><span
class=
"n"
>
dims
</span><span
class=
"p"
>
(),
</span>
<span
class=
"n"
>
ctx
</span><span
class=
"p"
>
.
</span><span
class=
"n"
>
Input
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
Tensor
</span><span
class=
"o"
>
>
</span><span
class=
"p"
>
(
</span><span
class=
"s"
>
"
Y
"
</span><span
class=
"p"
>
)
</span><span
class=
"o"
>
-
>
</span><span
class=
"n"
>
dims
</span><span
class=
"p"
>
(),
</span>
<span
class=
"s"
>
"
Two input of Add Op
'
s dimension must be same.
"
</span><span
class=
"p"
>
);
</span>
<span
class=
"n"
>
ctx
</span><span
class=
"p"
>
.
</span><span
class=
"n"
>
Output
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
Tensor
</span><span
class=
"o"
>
>
</span><span
class=
"p"
>
(
</span><span
class=
"s"
>
"
Out
"
</span><span
class=
"p"
>
)
</span><span
class=
"o"
>
-
>
</span><span
class=
"n"
>
Resize
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
ctx
</span><span
class=
"p"
>
.
</span><span
class=
"n"
>
Input
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
Tensor
</span><span
class=
"o"
>
>
</span><span
class=
"p"
>
(
</span><span
class=
"s"
>
"
X
"
</span><span
class=
"p"
>
)
</span><span
class=
"o"
>
-
>
</span><span
class=
"n"
>
dims
</span><span
class=
"p"
>
());
</span>
<span
class=
"p"
>
}
</span>
</pre></div>
</div>
<ul
class=
"simple"
>
<li>
Run
</li>
</ul>
<p><code
class=
"docutils literal"
><span
class=
"pre"
>
Operator
</span></code>
的
<code
class=
"docutils literal"
><span
class=
"pre"
>
Run
</span></code>
接口最终会调用对应
<code
class=
"docutils literal"
><span
class=
"pre"
>
OpKernel
</span></code>
的
<code
class=
"docutils literal"
><span
class=
"pre"
>
Compute
</span></code>
接口,在这时真正的分配内存,
<code
class=
"docutils literal"
><span
class=
"pre"
>
mutable_data
</span></code>
接口会被调用。
</p>
<div
class=
"highlight-cpp"
><div
class=
"highlight"
><pre><span></span><span
class=
"kt"
>
void
</span>
<span
class=
"nf"
>
Compute
</span><span
class=
"p"
>
(
</span><span
class=
"k"
>
const
</span>
<span
class=
"n"
>
framework
</span><span
class=
"o"
>
::
</span><span
class=
"n"
>
ExecutionContext
</span><span
class=
"o"
>
&
</span>
<span
class=
"n"
>
context
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
const
</span>
<span
class=
"k"
>
override
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"k"
>
auto
</span><span
class=
"o"
>
*
</span>
<span
class=
"n"
>
input0
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
context
</span><span
class=
"p"
>
.
</span><span
class=
"n"
>
Input
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
Tensor
</span><span
class=
"o"
>
>
</span><span
class=
"p"
>
(
</span><span
class=
"s"
>
"
X
"
</span><span
class=
"p"
>
);
</span>
<span
class=
"k"
>
auto
</span><span
class=
"o"
>
*
</span>
<span
class=
"n"
>
input1
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
context
</span><span
class=
"p"
>
.
</span><span
class=
"n"
>
Input
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
Tensor
</span><span
class=
"o"
>
>
</span><span
class=
"p"
>
(
</span><span
class=
"s"
>
"
Y
"
</span><span
class=
"p"
>
);
</span>
<span
class=
"k"
>
auto
</span><span
class=
"o"
>
*
</span>
<span
class=
"n"
>
output
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
context
</span><span
class=
"p"
>
.
</span><span
class=
"n"
>
Output
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
Tensor
</span><span
class=
"o"
>
>
</span><span
class=
"p"
>
(
</span><span
class=
"s"
>
"
Out
"
</span><span
class=
"p"
>
);
</span>
<span
class=
"n"
>
output
</span><span
class=
"o"
>
-
>
</span><span
class=
"n"
>
mutable_data
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
T
</span><span
class=
"o"
>
>
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
context
</span><span
class=
"p"
>
.
</span><span
class=
"n"
>
GetPlace
</span><span
class=
"p"
>
());
</span>
<span
class=
"k"
>
auto
</span>
<span
class=
"n"
>
x
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
EigenVector
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
T
</span><span
class=
"o"
>
>
::
</span><span
class=
"n"
>
Flatten
</span><span
class=
"p"
>
(
</span><span
class=
"o"
>
*
</span><span
class=
"n"
>
input0
</span><span
class=
"p"
>
);
</span>
<span
class=
"k"
>
auto
</span>
<span
class=
"n"
>
y
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
EigenVector
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
T
</span><span
class=
"o"
>
>
::
</span><span
class=
"n"
>
Flatten
</span><span
class=
"p"
>
(
</span><span
class=
"o"
>
*
</span><span
class=
"n"
>
input1
</span><span
class=
"p"
>
);
</span>
<span
class=
"k"
>
auto
</span>
<span
class=
"n"
>
z
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
EigenVector
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
T
</span><span
class=
"o"
>
>
::
</span><span
class=
"n"
>
Flatten
</span><span
class=
"p"
>
(
</span><span
class=
"o"
>
*
</span><span
class=
"n"
>
output
</span><span
class=
"p"
>
);
</span>
<span
class=
"k"
>
auto
</span>
<span
class=
"n"
>
place
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
context
</span><span
class=
"p"
>
.
</span><span
class=
"n"
>
GetEigenDevice
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
Place
</span><span
class=
"o"
>
>
</span><span
class=
"p"
>
();
</span>
<span
class=
"n"
>
z
</span><span
class=
"p"
>
.
</span><span
class=
"n"
>
device
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
place
</span><span
class=
"p"
>
)
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
x
</span>
<span
class=
"o"
>
+
</span>
<span
class=
"n"
>
y
</span><span
class=
"p"
>
;
</span>
<span
class=
"p"
>
}
</span>
</pre></div>
</div>
</div>
<div
class=
"section"
id=
"paddle-framework-tensoreigentensor"
>
<span
id=
"paddle-framework-tensoreigentensor"
></span><h2>
paddle::framework::Tensor到EigenTensor的转换
<a
class=
"headerlink"
href=
"#paddle-framework-tensoreigentensor"
title=
"永久链接至标题"
>
¶
</a></h2>
<p>
如上一小节所示,在具体的计算中,我们需要先把输入Tensor和输出Tensor转换为Eigen支持的格式。我们在
<a
class=
"reference external"
href=
"https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/eigen.h"
>
eigen.h
</a>
中提供了一些全局函数用来实现paddle::framework::Tensor到EigenTensor/EigenMatrix/EigenVector/EigenScalar的转换。
</p>
<p>
以EigenTensor为例,做一个介绍
</p>
<div
class=
"highlight-cpp"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
Tensor
</span>
<span
class=
"n"
>
t
</span><span
class=
"p"
>
;
</span>
<span
class=
"kt"
>
float
</span><span
class=
"o"
>
*
</span>
<span
class=
"n"
>
p
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
t
</span><span
class=
"p"
>
.
</span><span
class=
"n"
>
mutable_data
</span><span
class=
"o"
>
<
</span><span
class=
"kt"
>
float
</span><span
class=
"o"
>
>
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
make_ddim
</span><span
class=
"p"
>
({
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
2
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
3
</span><span
class=
"p"
>
}),
</span>
<span
class=
"n"
>
platform
</span><span
class=
"o"
>
::
</span><span
class=
"n"
>
CPUPlace
</span><span
class=
"p"
>
());
</span>
<span
class=
"k"
>
for
</span>
<span
class=
"p"
>
(
</span><span
class=
"kt"
>
int
</span>
<span
class=
"n"
>
i
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
;
</span>
<span
class=
"n"
>
i
</span>
<span
class=
"o"
>
<
</span>
<span
class=
"mi"
>
1
</span>
<span
class=
"o"
>
*
</span>
<span
class=
"mi"
>
2
</span>
<span
class=
"o"
>
*
</span>
<span
class=
"mi"
>
3
</span><span
class=
"p"
>
;
</span>
<span
class=
"n"
>
i
</span><span
class=
"o"
>
++
</span><span
class=
"p"
>
)
</span>
<span
class=
"p"
>
{
</span>
<span
class=
"n"
>
p
</span><span
class=
"p"
>
[
</span><span
class=
"n"
>
i
</span><span
class=
"p"
>
]
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"k"
>
static_cast
</span><span
class=
"o"
>
<
</span><span
class=
"kt"
>
float
</span><span
class=
"o"
>
>
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
i
</span><span
class=
"p"
>
);
</span>
<span
class=
"p"
>
}
</span>
<span
class=
"n"
>
EigenTensor
</span><span
class=
"o"
>
<
</span><span
class=
"kt"
>
float
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
3
</span><span
class=
"o"
>
>
::
</span><span
class=
"n"
>
Type
</span>
<span
class=
"n"
>
et
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
EigenTensor
</span><span
class=
"o"
>
<
</span><span
class=
"kt"
>
float
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
3
</span><span
class=
"o"
>
>
::
</span><span
class=
"n"
>
From
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
t
</span><span
class=
"p"
>
);
</span>
</pre></div>
</div>
<p>
From是EigenTensor模板提供的一个接口,可以实现从paddle::framework::Tensor到对EigenTensor的转换。由于Tensor的rank是模板参数,因此在转换时需要显示的指定。
</p>
<p>
在Eigen中,不同rank的Tensor是不同类型,Vector是rank为1的Tensor。需要额外注意的是,EigenVector
<T>
::From方法是把paddle中的一维Tensor转为Eigen的一维Tensor,在这里用EigenVector来表示;而EigenVector
<T>
::Flatten方法是把paddle中的一个Tensor进行reshape操作,压扁成为Eigen的一维Tensor,类型仍然为EigenVector。
</p>
<p>
更多的转换方法请参考eigen_test.cc中的
<a
class=
"reference external"
href=
"https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/eigen_test.cc"
>
单元测试
</a>
。
</p>
</div>
<div
class=
"section"
id=
""
>
<span
id=
"id2"
></span><h2>
实现计算
<a
class=
"headerlink"
href=
"#"
title=
"永久链接至标题"
>
¶
</a></h2>
<p>
当需要完成计算时,我们需要等式左边的EigenTensor调用device接口。在这里需要注意的是,这里的EigenTensor之间的运算只是改变了原有Tensor中的数据,而不会改变原有Tensor的shape信息。
</p>
<div
class=
"highlight-cpp"
><div
class=
"highlight"
><pre><span></span><span
class=
"k"
>
auto
</span>
<span
class=
"n"
>
x
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
EigenVector
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
T
</span><span
class=
"o"
>
>
::
</span><span
class=
"n"
>
Flatten
</span><span
class=
"p"
>
(
</span><span
class=
"o"
>
*
</span><span
class=
"n"
>
input0
</span><span
class=
"p"
>
);
</span>
<span
class=
"k"
>
auto
</span>
<span
class=
"n"
>
y
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
EigenVector
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
T
</span><span
class=
"o"
>
>
::
</span><span
class=
"n"
>
Flatten
</span><span
class=
"p"
>
(
</span><span
class=
"o"
>
*
</span><span
class=
"n"
>
input1
</span><span
class=
"p"
>
);
</span>
<span
class=
"k"
>
auto
</span>
<span
class=
"n"
>
z
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
EigenVector
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
T
</span><span
class=
"o"
>
>
::
</span><span
class=
"n"
>
Flatten
</span><span
class=
"p"
>
(
</span><span
class=
"o"
>
*
</span><span
class=
"n"
>
output
</span><span
class=
"p"
>
);
</span>
<span
class=
"k"
>
auto
</span>
<span
class=
"n"
>
place
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
context
</span><span
class=
"p"
>
.
</span><span
class=
"n"
>
GetEigenDevice
</span><span
class=
"o"
>
<
</span><span
class=
"n"
>
Place
</span><span
class=
"o"
>
>
</span><span
class=
"p"
>
();
</span>
<span
class=
"n"
>
z
</span><span
class=
"p"
>
.
</span><span
class=
"n"
>
device
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
place
</span><span
class=
"p"
>
)
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
x
</span>
<span
class=
"o"
>
+
</span>
<span
class=
"n"
>
y
</span><span
class=
"p"
>
;
</span>
</pre></div>
</div>
<p>
在这段代码中,input0/input1/output可以是任意维度的Tensor。我们调用了EigenVector的Flatten接口,把任意维度的Tensor转为了一维的EigenVector。而在计算结束之后,input0/input1/output的原有shape信息不变。如果想改变原有Tensor的shape信息,可以调用Resize接口进行改变。
</p>
<p>
由于Eigen Tensor模块的文档较少,我们可以参考TensorFlow的
<a
class=
"reference external"
href=
"https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/kernels"
>
kernels
</a>
模块下的相关
<code
class=
"docutils literal"
><span
class=
"pre"
>
OpKernel
</span></code>
的计算代码。
</p>
</div>
</div>
</div>
</div>
<footer>
<hr/>
<div
role=
"contentinfo"
>
<p>
©
Copyright 2016, PaddlePaddle developers.
</p>
</div>
Built with
<a
href=
"http://sphinx-doc.org/"
>
Sphinx
</a>
using a
<a
href=
"https://github.com/snide/sphinx_rtd_theme"
>
theme
</a>
provided by
<a
href=
"https://readthedocs.org"
>
Read the Docs
</a>
.
</footer>
</div>
</div>
</section>
</div>
<script
type=
"text/javascript"
>
var
DOCUMENTATION_OPTIONS
=
{
URL_ROOT
:
'
../../
'
,
VERSION
:
''
,
COLLAPSE_INDEX
:
false
,
FILE_SUFFIX
:
'
.html
'
,
HAS_SOURCE
:
true
,
SOURCELINK_SUFFIX
:
"
.txt
"
,
};
</script>
<script
type=
"text/javascript"
src=
"../../_static/jquery.js"
></script>
<script
type=
"text/javascript"
src=
"../../_static/underscore.js"
></script>
<script
type=
"text/javascript"
src=
"../../_static/doctools.js"
></script>
<script
type=
"text/javascript"
src=
"../../_static/translations.js"
></script>
<script
type=
"text/javascript"
src=
"https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"
></script>
<script
type=
"text/javascript"
src=
"../../_static/js/theme.js"
></script>
<script
src=
"https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"
integrity=
"sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa"
crossorigin=
"anonymous"
></script>
<script
src=
"https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"
></script>
<script
src=
"../../_static/js/paddle_doc_init.js"
></script>
</body>
</html>
\ No newline at end of file
develop/doc_cn/objects.inv
浏览文件 @
d95d66cb
无法预览此类型文件
develop/doc_cn/searchindex.js
浏览文件 @
d95d66cb
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录