diff --git a/paddle/fluid/operators/reshape_op.cc b/paddle/fluid/operators/reshape_op.cc index 832509641cc3d5178ff090e05437484d395bfe51..b87b8e6b26cdeb017e700870998a53c1b295988c 100644 --- a/paddle/fluid/operators/reshape_op.cc +++ b/paddle/fluid/operators/reshape_op.cc @@ -17,90 +17,66 @@ limitations under the License. */ namespace paddle { namespace operators { -class ReshapeOp : public framework::OperatorWithKernel { - public: - ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs, - const framework::VariableNameMap &outputs, - const framework::AttributeMap &attrs) - : OperatorWithKernel(type, inputs, outputs, attrs) {} - - void InferShape(framework::InferShapeContext *ctx) const override { - // input check - PADDLE_ENFORCE(ctx->HasInput("X"), - "Input(X) of ReshapeOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Out"), - "Output(Out) of ReshapeOp should not be null."); - - auto shape = ctx->Attrs().Get>("shape"); - PADDLE_ENFORCE(shape.size() > 0, "Attr(shape) shouldn't be empty."); - auto x_dims = ctx->GetInputDim("X"); - - std::vector neg_dims_idx; - // set some dimension to -1 if it is unknown - const int unknown_size = -1; - for (size_t i = 0; i < shape.size(); ++i) { - PADDLE_ENFORCE(shape[i] > 0 || shape[i] == unknown_size, - "Each dimension of Attr(shape) must be positive or %d.", - unknown_size); - if (shape[i] == unknown_size) { - neg_dims_idx.push_back(i); - PADDLE_ENFORCE(neg_dims_idx.size() <= 1, - "Only one dimension of Attr(shape) can be unknown."); - } - } - - int64_t capacity = - std::accumulate(shape.begin(), shape.end(), 1, std::multiplies()); - int64_t in_size = framework::product(x_dims); - if (neg_dims_idx.size() == 1) { - // dim infer - shape[neg_dims_idx[0]] = in_size / (-capacity); - // recalculate capacity - capacity = shape[neg_dims_idx[0]] * (-capacity); - } - // capacity check - PADDLE_ENFORCE(capacity == in_size, - "The size of Input(X) mismatches with Attr(shape)."); - // resize output - std::vector shape_int64(shape.size(), 0); - std::transform(shape.begin(), shape.end(), shape_int64.begin(), - [](int a) { return static_cast(a); }); - auto out_dims = framework::make_ddim(shape_int64); - ctx->SetOutputDim("Out", out_dims); - if (shape[0] == x_dims[0]) { - // Only pass LoD when the first dimension is equal between - // output and input. - ctx->ShareLoD("X", /*->*/ "Out"); - } - } -}; - class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker { public: ReshapeOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The input tensor of reshape operator."); - AddOutput("Out", "The output tensor of reshape operator."); - AddAttr>("shape", - "(vector) " - "Target shape of reshape operator."); + AddInput("X", "(Tensor). The input tensor of reshape operator."); + AddInput("Shape", + "(Tensor, optional). If provided, reshape according to " + "this given shape. That is to say it has a higher priority than " + "the shape attribute, while the shape attribute still should be " + "set correctly to gurantee shape inference in compile time.") + .AsDispensable(); + AddOutput("Out", "(Tensor). The output tensor of reshape operator."); + AddAttr>( + "shape", "(std::vector) Target shape of reshape operator."); AddAttr("inplace", - "Change the source tensor's shape without copy memory.") - .SetDefault(true); + "(default: false) Change the source tensor's shape without " + "memory copy. When Attr(inplace) is set true, the output " + "tensor shares memory with Input(X), otherwise, a new output " + "tensor is created, and its data are copied from Input(x).") + .SetDefault(false); AddComment(R"DOC( Reshape Operator. -Reshape Input(X) into the shape specified by Attr(shape). +Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The +data in Input(X) are unchanged. + +Examples: -An example: -Given a 2-D tensor X with 2 rows and 2 columns : [[1, 2], [3, 4]] +1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape +specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X) +into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged. -and target shape = [1, 4], the reshape operator will transform -the tensor X into a 2-D tensor: [[1, 2, 3, 4]] +2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape +specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform +Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data +unchanged. In this case, one and only dimension of Attr(shape) can be set to -1, +the value of this dimension is inferred from the total element number of +Input(X) and remaining dimensions. + +3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape +specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform +Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data +unchanged. In this case, besides -1, 0 means the actual dimension value is going +to be copied from the corresponding dimension of Input(X). + +Note: + +1. One and only one dimension in Attr(shape) can be set -1. In this case, +the actual dimension value will be infered from the total element number of +Input(X) and remaining dimensions. + +2. More than one dimensions in Attr(shape) can be set to 0, which means the real +dimension value will be copied from Input(X) at runtime. Note that the index of +0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape +[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input. + +3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while +Attr(shape) still should be set correctly to gurantee shape inference in +compile-time. -One dimension in the target shape can be set -1, representing that its -size is unknown. In this case, the real dimension will be infered from -the original shape of Input(X) and other dimensions in the target shape. )DOC"); } }; @@ -119,6 +95,14 @@ class ReshapeGradOp : public framework::OperatorWithKernel { "Input(Out@GRAD) shouldn't be null."); ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext &ctx) const override { + return framework::OpKernelType( + framework::ToDataType(ctx.Input("X")->type()), + ctx.device_context()); + } }; } // namespace operators diff --git a/paddle/fluid/operators/reshape_op.h b/paddle/fluid/operators/reshape_op.h index eacb0a0cf21a60ffbdef5787434859ac549388bc..871b4d38d56f10f3c0c178caa566508ab75f316c 100644 --- a/paddle/fluid/operators/reshape_op.h +++ b/paddle/fluid/operators/reshape_op.h @@ -20,17 +20,129 @@ limitations under the License. */ namespace paddle { namespace operators { +class ReshapeOp : public framework::OperatorWithKernel { + public: + ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorWithKernel(type, inputs, outputs, attrs) {} + + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of ReshapeOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of ReshapeOp should not be null."); + + const std::vector &shape = ctx->Attrs().Get>("shape"); + PADDLE_ENFORCE(!shape.empty(), + "The shape information must be set by Attr(shape)."); + + if (ctx->HasInput("Shape") && ctx->IsRuntime()) { + // If true, set the shape of Output(Out) according to Input(Shape) in + // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel. + ctx->ShareLoD("X", /*->*/ "Out"); + return; + } + + auto x_dims = ctx->GetInputDim("X"); + auto out_dims = ValidateShape(shape, x_dims); + ctx->SetOutputDim("Out", out_dims); + if (x_dims[0] == out_dims[0]) { + // Only pass LoD when the first dimension of output and Input(X) + // are the same. + ctx->ShareLoD("X", /*->*/ "Out"); + } + } + + static framework::DDim ValidateShape(const std::vector shape, + const framework::DDim &in_dims) { + const int64_t in_size = framework::product(in_dims); + // only one dimension canbe set to -1, whose size will be automatically + // infered. + const int64_t unk_dim_val = -1; + const int64_t copy_dim_val = 0; + + std::vector output_shape(shape.size(), 0); + int64_t capacity = 1; + int unk_dim_idx = -1; + for (size_t i = 0; i < shape.size(); ++i) { + if (shape[i] == unk_dim_val) { + PADDLE_ENFORCE( + unk_dim_idx == -1, + "Only one input dimension of Attr(shape) can be unknown."); + unk_dim_idx = i; + } else if (shape[i] == copy_dim_val) { + PADDLE_ENFORCE( + static_cast(i) < in_dims.size(), + "The index of dimension to copy from input shape must be less " + "than the size of input shape."); + } else { + PADDLE_ENFORCE( + shape[i] > 0, + "Each input dimension of Attr(shape) must not be negtive except " + "one unknown dimension."); + } + + capacity *= (shape[i] ? shape[i] : in_dims[i]); + output_shape[i] = + (shape[i] ? static_cast(shape[i]) : in_dims[i]); + } + + if (unk_dim_idx != -1) { + output_shape[unk_dim_idx] = -in_size / capacity; + PADDLE_ENFORCE_EQ(output_shape[unk_dim_idx] * capacity, -in_size, + "Invalid shape is given."); + } else { + PADDLE_ENFORCE_EQ(capacity, in_size, "Invalid shape is given."); + } + return framework::make_ddim(output_shape); + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext &ctx) const override { + return framework::OpKernelType( + framework::ToDataType(ctx.Input("X")->type()), + ctx.device_context()); + } +}; + template class ReshapeKernel : public framework::OpKernel { public: - void Compute(const framework::ExecutionContext& ctx) const { - auto* out = ctx.Output("Out"); - auto* in = ctx.Input("X"); + void Compute(const framework::ExecutionContext &ctx) const { + auto *out = ctx.Output("Out"); + auto *in = ctx.Input("X"); + auto *shape_tensor = ctx.Input("Shape"); + + framework::DDim out_dims = out->dims(); + if (shape_tensor) { + auto *shape_data = shape_tensor->data(); + if (platform::is_gpu_place(ctx.GetPlace())) { + framework::Tensor cpu_shape_tensor; + TensorCopy(*shape_tensor, platform::CPUPlace(), ctx.device_context(), + &cpu_shape_tensor); + shape_data = cpu_shape_tensor.data(); + } + auto shape = + std::vector(shape_data, shape_data + shape_tensor->numel()); + out_dims = ReshapeOp::ValidateShape(shape, in->dims()); + } + if (!in->lod().empty()) { + PADDLE_ENFORCE_EQ( + out_dims[0], in->dims()[0], + "Reshape operator cannot reshape an input sequence batch " + "into an output sequence batch that has a different " + "number of time steps. Please consider using " + "sequence_reshape op."); + } + bool inplace = ctx.Attr("inplace"); - auto out_dims = out->dims(); + out->Resize(out_dims); if (!inplace) { out->mutable_data(ctx.GetPlace()); framework::TensorCopy(*in, ctx.GetPlace(), ctx.device_context(), out); + // TensorCopy will resize to in_dims. out->Resize(out_dims); } else { out->ShareDataWith(*in); @@ -42,9 +154,10 @@ class ReshapeKernel : public framework::OpKernel { template class ReshapeGradKernel : public framework::OpKernel { public: - void Compute(const framework::ExecutionContext& ctx) const { - auto* d_out = ctx.Input(framework::GradVarName("Out")); - auto* d_x = ctx.Output(framework::GradVarName("X")); + void Compute(const framework::ExecutionContext &ctx) const { + auto *d_out = ctx.Input(framework::GradVarName("Out")); + auto *d_x = ctx.Output(framework::GradVarName("X")); + d_x->mutable_data(ctx.GetPlace()); bool inplace = ctx.Attr("inplace"); diff --git a/python/paddle/fluid/layers/detection.py b/python/paddle/fluid/layers/detection.py index 3e649dc5fd32c4ed8fa6ad273b7be04d552b51ae..a5938fe494265778ef7032c56a8d6d35acd729c5 100644 --- a/python/paddle/fluid/layers/detection.py +++ b/python/paddle/fluid/layers/detection.py @@ -19,7 +19,6 @@ from layer_function_generator import generate_layer_fn from layer_function_generator import autodoc from ..layer_helper import LayerHelper import tensor -import ops import nn import math @@ -58,7 +57,7 @@ def detection_output(loc, This operation is to get the detection results by performing following two steps: - + 1. Decode input bounding box predictions according to the prior boxes. 2. Get the final detection results by applying multi-class non maximum suppression (NMS). @@ -130,9 +129,9 @@ def detection_output(loc, target_box=loc, code_type='decode_center_size') old_shape = scores.shape - scores = ops.reshape(x=scores, shape=(-1, old_shape[-1])) + scores = nn.reshape(x=scores, shape=(-1, old_shape[-1])) scores = nn.softmax(input=scores) - scores = ops.reshape(x=scores, shape=old_shape) + scores = nn.reshape(x=scores, shape=old_shape) scores = nn.transpose(scores, perm=[0, 2, 1]) scores.stop_gradient = True nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype) @@ -463,7 +462,7 @@ def ssd_loss(location, num, num_prior, num_class = confidence.shape def __reshape_to_2d(var): - return ops.reshape(x=var, shape=[-1, var.shape[-1]]) + return nn.reshape(x=var, shape=[-1, var.shape[-1]]) # 1. Find matched boundding box by prior box. # 1.1 Compute IOU similarity between ground-truth boxes and prior boxes. @@ -474,7 +473,7 @@ def ssd_loss(location, # 2. Compute confidence for mining hard examples # 2.1. Get the target label based on matched indices - gt_label = ops.reshape(x=gt_label, shape=gt_label.shape + (1, )) + gt_label = nn.reshape(x=gt_label, shape=gt_label.shape + (1, )) gt_label.stop_gradient = True target_label, _ = target_assign( gt_label, matched_indices, mismatch_value=background_label) @@ -487,7 +486,7 @@ def ssd_loss(location, conf_loss = nn.softmax_with_cross_entropy(confidence, target_label) # 3. Mining hard examples - conf_loss = ops.reshape(x=conf_loss, shape=(num, num_prior)) + conf_loss = nn.reshape(x=conf_loss, shape=(num, num_prior)) conf_loss.stop_gradient = True neg_indices = helper.create_tmp_variable(dtype='int32') dtype = matched_indices.dtype @@ -556,7 +555,7 @@ def ssd_loss(location, # 5.3 Compute overall weighted loss. loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss # reshape to [N, Np], N is the batch size and Np is the prior box number. - loss = ops.reshape(x=loss, shape=[-1, num_prior]) + loss = nn.reshape(x=loss, shape=[-1, num_prior]) loss = nn.reduce_sum(loss, dim=1, keep_dim=True) if normalize: normalizer = nn.reduce_sum(target_loc_weight) @@ -709,7 +708,7 @@ def multi_box_head(inputs, new_shape = [ -1, reduce(lambda x, y: x * y, input.shape[axis:len(input.shape)]) ] - out = ops.reshape(x=input, shape=new_shape) + out = nn.reshape(x=input, shape=new_shape) return out def _is_list_or_tuple_(data): @@ -803,7 +802,7 @@ def multi_box_head(inputs, mbox_loc.shape[0], mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3] / 4, 4 ] - mbox_loc_flatten = ops.reshape(mbox_loc, shape=new_shape) + mbox_loc_flatten = nn.reshape(mbox_loc, shape=new_shape) mbox_locs.append(mbox_loc_flatten) # get conf @@ -819,7 +818,7 @@ def multi_box_head(inputs, conf_loc.shape[0], conf_loc.shape[1] * conf_loc.shape[2] * conf_loc.shape[3] / num_classes, num_classes ] - conf_loc_flatten = ops.reshape(conf_loc, shape=new_shape) + conf_loc_flatten = nn.reshape(conf_loc, shape=new_shape) mbox_confs.append(conf_loc_flatten) if len(box_results) == 1: diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 0332556f62c46b187bd79841e4969d9da08b57a5..e59ee251202d4985f0aa9ce46408fc7f0d197e1d 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -73,6 +73,7 @@ __all__ = [ 'smooth_l1', 'one_hot', 'autoincreased_step_counter', + 'reshape', 'lod_reset', 'lrn', ] @@ -3265,6 +3266,8 @@ def one_hot(input, depth): The one-hot tensor or LodTensor, same as input. Examples: + .. code-block:: python + X is a LoDTensor: X.lod = [[0, 1, 4]] X.shape = [4, 1] @@ -3319,6 +3322,101 @@ def autoincreased_step_counter(counter_name=None, begin=1, step=1): return counter +def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None): + """ + Gives a new shape to the input Tensor without changing its data. + + The target shape can be given by :attr:`shape` or :attr:`actual_shape`. + :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor + variable. :attr:`actual_shape` has a higher priority than :attr:`shape` + if it is provided, while :attr:`shape` still should be set correctly to + gurantee shape inference in compile-time. + + Some tricks exist when specifying the target shape. + + 1. -1 means the value of this dimension is inferred from the total element + number of x and remaining dimensions. Thus one and only one dimension can + be set -1. + + 2. 0 means the actual dimension value is going to be copied from the + corresponding dimension of x. The indice of 0s in shape can not exceed + Rank(X). + + Here are some examples to explain it. + + 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape + is [6, 8], the reshape operator will transform x into a 2-D tensor with + shape [6, 8] and leaving x's data unchanged. + + 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape + specified is [2, 3, -1, 2], the reshape operator will transform x into a + 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this + case, one dimension of the target shape is set to -1, the value of this + dimension is inferred from the total element number of x and remaining + dimensions. + + 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape + is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor + with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, + besides -1, 0 means the actual dimension value is going to be copied from + the corresponding dimension of x. + + Args: + input(variable): The input tensor. + shape(list): The new shape. At most one dimension of the new shape can + be -1. + actual_shape(variable): An optional input. If provided, reshape + according to this given shape rather than + :attr:`shape` specifying shape. That is to + say :attr:`actual_shape` has a higher priority + than :attr:`shape`. + act (str): The non-linear activation to be applied to output variable. + inplace(bool): If this flag is set true, a new output tensor is created + whose data is copied from input x, otherwise the output + shares data with input without copying. + + Returns(variable): The output tensor. + + Examples: + .. code-block:: python + data = fluid.layers.data( + name='data', shape=[2, 4, 6], dtype='float32') + reshaped = fluid.layers.reshape( + x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True) + """ + + if not (isinstance(shape, list) or isinstance(shape, tuple)): + raise ValueError("Input shape must be a python lsit or tuple.") + + # Validate the shape + unk_dim_idx = -1 + for dim_idx, dim_size in enumerate(shape): + if dim_size == -1: + assert unk_dim_idx == -1, ( + "Only one dimension in shape can be unknown.") + unk_dim_idx = dim_idx + elif dim_size == 0: + assert dim_idx < len(x.shape), ( + "The indice of 0s in shape can not exceed Rank(X).") + else: + assert dim_size > 0, ( + "Each dimension size given in shape must not be negtive " + "except one unknown dimension.") + + helper = LayerHelper("reshape", **locals()) + reshaped = helper.create_tmp_variable(dtype=x.dtype) + helper.append_op( + type="reshape", + inputs={"X": x, + "Shape": actual_shape} + if isinstance(actual_shape, Variable) else {"X": x}, + attrs={"shape": shape, + "inplace": inplace}, + outputs={"Out": reshaped}) + + return helper.append_activation(reshaped) + + def lod_reset(x, y=None, target_lod=None): """ LoD Reset Operator. Set LoD of **x** to a new one specified by **y** or diff --git a/python/paddle/fluid/layers/ops.py b/python/paddle/fluid/layers/ops.py index 0e5987ee598158d189db8bc956b7e7fea2517554..a9fe25744cc0b385479c9366af1b731ec221dd5a 100644 --- a/python/paddle/fluid/layers/ops.py +++ b/python/paddle/fluid/layers/ops.py @@ -49,7 +49,6 @@ __activations__ = [ __all__ = [ 'mean', 'mul', - 'reshape', 'scale', 'sigmoid_cross_entropy_with_logits', 'elementwise_add', diff --git a/python/paddle/fluid/tests/unittests/op_test.py b/python/paddle/fluid/tests/unittests/op_test.py index 8393f7827b1c7d361ebea72f2cfc6033268772f0..299ab8e51f017e1980a8b40e3830fc42b1ff7ccc 100644 --- a/python/paddle/fluid/tests/unittests/op_test.py +++ b/python/paddle/fluid/tests/unittests/op_test.py @@ -334,7 +334,7 @@ class OpTest(unittest.TestCase): np.allclose( actual_t, expect_t, atol=atol), "Output (" + out_name + ") has diff at " + str(place) + - str(actual_t) + str(expect_t)) + str(actual_t) + "\n" + str(expect_t)) if isinstance(expect, tuple): self.assertListEqual(actual.lod(), expect[1], "Output (" + out_name + @@ -568,6 +568,6 @@ class OpTest(unittest.TestCase): fetch_list = [g for p, g in param_grad_list] executor = Executor(place) - return map( - np.array, - executor.run(prog, feed_dict, fetch_list, return_numpy=False)) + return map(np.array, + executor.run(prog, feed_dict, fetch_list, + return_numpy=False)) diff --git a/python/paddle/fluid/tests/unittests/test_mine_hard_examples_op.py b/python/paddle/fluid/tests/unittests/test_mine_hard_examples_op.py old mode 100755 new mode 100644 diff --git a/python/paddle/fluid/tests/unittests/test_reshape_op.py b/python/paddle/fluid/tests/unittests/test_reshape_op.py index 11f35c74d41146118525a5efa6c211d528e255fe..f51b5a7e9907294a5b91c920a363830d8b9a7137 100644 --- a/python/paddle/fluid/tests/unittests/test_reshape_op.py +++ b/python/paddle/fluid/tests/unittests/test_reshape_op.py @@ -14,15 +14,19 @@ import unittest import numpy as np + from op_test import OpTest class TestReshapeOp(OpTest): def setUp(self): + ori_shape = (2, 25) + new_shape = (5, 10) + self.op_type = "reshape" - self.inputs = {'X': np.random.random((10, 20)).astype("float32")} - self.attrs = {'shape': [10 * 20]} - self.outputs = {'Out': self.inputs['X'].reshape(self.attrs['shape'])} + self.inputs = {"X": np.random.random(ori_shape).astype("float32")} + self.attrs = {"shape": new_shape, "inplace": False} + self.outputs = {"Out": self.inputs["X"].reshape(new_shape)} def test_check_output(self): self.check_output() @@ -31,12 +35,33 @@ class TestReshapeOp(OpTest): self.check_grad(["X"], "Out") -class TestReshapeOpDimInfer(OpTest): +class TestReshapeOpDimInfer1(OpTest): def setUp(self): + ori_shape = (5, 10) + new_shape = (5, -1, 5) + self.op_type = "reshape" - self.inputs = {'X': np.random.random((10, 20)).astype("float32")} - self.attrs = {'shape': [4, -1, 5]} - self.outputs = {'Out': self.inputs['X'].reshape(self.attrs['shape'])} + self.inputs = {"X": np.random.random(ori_shape).astype("float32")} + self.attrs = {"shape": new_shape, "inplace": False} + self.outputs = {"Out": self.inputs["X"].reshape(self.attrs["shape"])} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(["X"], "Out") + + +class TestReshapeOpDimInfer2(OpTest): + def setUp(self): + ori_shape = (2, 2, 6) + new_shape = (2, 0, 3, -1) + infered_shape = (2, 2, 3, -1) + + self.op_type = "reshape" + self.inputs = {"X": np.random.random(ori_shape).astype("float32")} + self.attrs = {"shape": new_shape, "inplace": False} + self.outputs = {"Out": self.inputs["X"].reshape(infered_shape)} def test_check_output(self): self.check_output() @@ -47,10 +72,30 @@ class TestReshapeOpDimInfer(OpTest): class TestReshapeOpInplace(OpTest): def setUp(self): + ori_shape = (2, 25) + new_shape = (5, 10) + + self.op_type = "reshape" + self.inputs = {"X": np.random.random(ori_shape).astype("float32")} + self.attrs = {"shape": new_shape} + self.outputs = {"Out": self.inputs["X"].reshape(new_shape)} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(["X"], "Out") + + +class TestReshapeOpDimInferInplace1(OpTest): + def setUp(self): + ori_shape = (5, 10) + new_shape = (5, -1, 5) + self.op_type = "reshape" - self.inputs = {'X': np.random.random((10, 20)).astype("float32")} - self.attrs = {'shape': [10 * 20], 'inplace': True} - self.outputs = {'Out': self.inputs['X'].reshape(self.attrs['shape'])} + self.inputs = {"X": np.random.random(ori_shape).astype("float32")} + self.attrs = {"shape": new_shape} + self.outputs = {"Out": self.inputs["X"].reshape(new_shape)} def test_check_output(self): self.check_output() @@ -59,12 +104,38 @@ class TestReshapeOpInplace(OpTest): self.check_grad(["X"], "Out") -class TestReshapeOpDimInferInplace(OpTest): +class TestReshapeOpDimInferInplace2(OpTest): def setUp(self): + ori_shape = (2, 2, 6) + new_shape = (2, 0, 3, -1) + infered_shape = (2, 2, 3, -1) + + self.op_type = "reshape" + self.inputs = {"X": np.random.random(ori_shape).astype("float32")} + self.attrs = {"shape": new_shape} + self.outputs = {"Out": self.inputs["X"].reshape(infered_shape)} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(["X"], "Out") + + +class TestReshapeOpWithInputShape(OpTest): + def setUp(self): + ori_shape = (6, 5) + new_shape = (0, -1, 5) + actual_shape = (2, 3, 5) + self.op_type = "reshape" - self.inputs = {'X': np.random.random((10, 20)).astype("float32")} - self.attrs = {'shape': [4, -1, 5], 'inplace': True} - self.outputs = {'Out': self.inputs['X'].reshape(self.attrs['shape'])} + self.inputs = { + "X": np.random.random(ori_shape).astype("float32"), + "Shape": np.array( + actual_shape, dtype="int32") + } + self.attrs = {"shape": new_shape} + self.outputs = {"Out": self.inputs["X"].reshape(actual_shape)} def test_check_output(self): self.check_output() @@ -73,5 +144,5 @@ class TestReshapeOpDimInferInplace(OpTest): self.check_grad(["X"], "Out") -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_target_assign_op.py b/python/paddle/fluid/tests/unittests/test_target_assign_op.py old mode 100755 new mode 100644