From d8a2aa5d2e13d317ac768fb3536143d5308772a6 Mon Sep 17 00:00:00 2001 From: guofei <52460041+gfwm2013@users.noreply.github.com> Date: Wed, 12 Feb 2020 11:58:31 +0800 Subject: [PATCH] Make assign op support LoDTensorArray and modify while_loop API (#22309) (#22525) This PR makes assign op support LoDTensorArray and enable the loop_vars in while_loop to support tuple or list. --- paddle/fluid/framework/operator.cc | 11 +- python/paddle/fluid/layers/control_flow.py | 5 +- .../tests/unittests/test_while_loop_op.py | 143 +++++++++--------- 3 files changed, 85 insertions(+), 74 deletions(-) diff --git a/paddle/fluid/framework/operator.cc b/paddle/fluid/framework/operator.cc index 7073984c64..8d8ed2056b 100644 --- a/paddle/fluid/framework/operator.cc +++ b/paddle/fluid/framework/operator.cc @@ -1234,7 +1234,7 @@ Scope* OperatorWithKernel::PrepareData( void OperatorWithKernel::ParseInputDataType( const ExecutionContext& ctx, const std::string& name, proto::VarType::Type* data_type) const { - proto::VarType::Type dafault_data_type = + proto::VarType::Type default_data_type = static_cast(-1); const std::vector vars = ctx.MultiInputVar(name); for (size_t i = 0; i < vars.size(); ++i) { @@ -1247,6 +1247,13 @@ void OperatorWithKernel::ParseInputDataType( t = &var->Get(); } else if (var->IsType()) { t = &(var->Get().value()); + } else if (var->IsType()) { + auto t_arr = var->Get(); + for (size_t j = 0; j < t_arr.size(); j++) { + if (t_arr[j].IsInitialized()) { + t = &(t_arr[j]); + } + } } if (t != nullptr) { PADDLE_ENFORCE_EQ( @@ -1257,7 +1264,7 @@ void OperatorWithKernel::ParseInputDataType( Type(), name, ctx.InputNames(name).at(i))); proto::VarType::Type tmp = t->type(); PADDLE_ENFORCE( - tmp == *data_type || *data_type == dafault_data_type, + tmp == *data_type || *data_type == default_data_type, platform::errors::InvalidArgument( "The DataType of %s Op's duplicable Variable %s must be " "consistent. The current variable type is (%s), but the " diff --git a/python/paddle/fluid/layers/control_flow.py b/python/paddle/fluid/layers/control_flow.py index 8afd161101..8e6cc963a2 100755 --- a/python/paddle/fluid/layers/control_flow.py +++ b/python/paddle/fluid/layers/control_flow.py @@ -1000,15 +1000,12 @@ def while_loop(cond, body, loop_vars, is_test=False, name=None): while_loop_block = While(pre_cond, is_test, name) with while_loop_block.block(): output_vars = body(*loop_vars) + map_structure(assign, output_vars, loop_vars) if len(loop_vars) == 1: - assign(output_vars, loop_vars[0]) now_cond = cond(output_vars) else: - for i in range(len(output_vars)): - assign(output_vars[i], loop_vars[i]) now_cond = cond(*output_vars) assign(now_cond, pre_cond) - return loop_vars diff --git a/python/paddle/fluid/tests/unittests/test_while_loop_op.py b/python/paddle/fluid/tests/unittests/test_while_loop_op.py index dc74f650c5..ab2e2bd3a9 100644 --- a/python/paddle/fluid/tests/unittests/test_while_loop_op.py +++ b/python/paddle/fluid/tests/unittests/test_while_loop_op.py @@ -62,11 +62,7 @@ class TestApiWhileLoop(unittest.TestCase): with program_guard(main_program, startup_program): i = layers.zeros(shape=[1], dtype='int64') ten = layers.fill_constant(shape=[1], dtype='int64', value=10) - mem = layers.data( - name='mem', - shape=[10], - dtype='float32', - append_batch_size=False) + mem = fluid.data(name='mem', shape=[10], dtype='float32') one = layers.fill_constant(shape=[10], dtype='float32', value=1) out = layers.while_loop(cond, body, [i, mem]) @@ -111,16 +107,8 @@ class TestApiWhileLoop_Nested(unittest.TestCase): with program_guard(main_program, startup_program): i = layers.zeros(shape=[1], dtype='int64') j = layers.zeros(shape=[1], dtype='int64') - init = layers.data( - name='init', - shape=[3, 3], - dtype='float32', - append_batch_size=False) - sums = layers.data( - name='sums', - shape=[3, 3], - dtype='float32', - append_batch_size=False) + init = fluid.data(name='init', shape=[3, 3], dtype='float32') + sums = fluid.data(name='sums', shape=[3, 3], dtype='float32') loop_len1 = layers.fill_constant(shape=[1], dtype='int64', value=2) loop_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3) ones = layers.fill_constant(shape=[3, 3], dtype='float32', value=1) @@ -159,13 +147,11 @@ class TestApiWhileLoop_Backward(unittest.TestCase): main_program = Program() startup_program = Program() with fluid.program_guard(main_program, startup_program): - i = layers.data( - name='i', shape=[1], dtype='float32', append_batch_size=False) + i = fluid.data(name='i', shape=[1], dtype='float32') i.stop_gradient = False eleven = layers.fill_constant(shape=[1], dtype='float32', value=11) one = layers.fill_constant(shape=[1], dtype='float32', value=1) - x = layers.data( - name='x', shape=[1], dtype='float32', append_batch_size=False) + x = fluid.data(name='x', shape=[1], dtype='float32') x.stop_gradient = False out = layers.while_loop(cond, body, [i, x]) @@ -189,63 +175,84 @@ class TestApiWhileLoop_Backward(unittest.TestCase): self.assertTrue(np.allclose(np.asarray(res[1]), i_grad)) -class TestApiWhileLoop_NestedWithBackward(unittest.TestCase): - def test_nested_net_with_backward(self): - def external_cond(i, x, y): - return layers.less_than(i, ten) - - def external_body(i, x, y): - def internal_cond(i, x, y): - return layers.less_than(i, five) - - def internal_body(i, x, y): - x = layers.elementwise_add(x=i, y=i) - i = layers.increment(i) - return [i, x, y] - - temp = layers.while_loop(internal_cond, internal_body, [i, x, y]) - y = layers.elementwise_add(x=temp[1], y=i) - i = layers.increment(i) - return [i, x, y] +class TestApiWhileLoop_NestedWithBackwardAndLoDTensorArray(unittest.TestCase): + def test_nested_net_with_backward_and_lodtensor(self): + def external_cond(i, j, x, mem_array): + return layers.less_than(i, array_len) + + def external_body(i, j, x, mem_array): + def internal_cond(j, x, mem_array): + return layers.less_than(j, array_len2) + + def internal_body(j, x, mem_array): + inner_data = layers.array_read(array=data_array, i=j) + inner_prev = layers.array_read(array=mem_array, i=j) + inner_sum_0 = layers.elementwise_add(x=inner_data, y=inner_prev) + inner_sum_1 = layers.elementwise_add(x=x, y=inner_sum_0) + j = layers.increment(x=j, in_place=True) + layers.array_write(inner_sum_1, i=j, array=mem_array) + return [j, x, mem_array] + + outer_data = layers.array_read(array=data_array, i=i) + outer_prev = layers.array_read(array=mem_array, i=i) + outer_sum_0 = layers.elementwise_add(x=outer_data, y=outer_prev) + outer_sum_1 = layers.elementwise_add(x=x, y=outer_sum_0) + i = layers.increment(x=i, in_place=True) + layers.array_write(outer_sum_1, i=i, array=mem_array) + j, x, mem_array = layers.while_loop(internal_cond, internal_body, + [j, x, mem_array]) + return [i, j, x, mem_array] main_program = Program() startup_program = Program() - with fluid.program_guard(main_program, startup_program): - i = layers.data( - name='i', shape=[1], dtype='float32', append_batch_size=False) - i.stop_gradient = False - ten = layers.fill_constant(shape=[1], dtype='float32', value=10) - five = layers.fill_constant(shape=[1], dtype='float32', value=5) - x = layers.data( - name='x', shape=[1], dtype='float32', append_batch_size=False) + d0 = fluid.data(name='d0', shape=[10], dtype='float32') + d1 = fluid.data(name='d1', shape=[10], dtype='float32') + d2 = fluid.data(name='d2', shape=[10], dtype='float32') + x = fluid.data(name='x', shape=[10], dtype='float32') x.stop_gradient = False - y = layers.data( - name='y', shape=[1], dtype='float32', append_batch_size=False) - y.stop_gradient = False - out = layers.while_loop(external_cond, external_body, [i, x, y]) - - mean = layers.mean(out[2]) - append_backward(mean) - - place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda( - ) else fluid.CPUPlace() - exe = fluid.Executor(place) + i = layers.zeros(shape=[1], dtype='int64') + i.stop_gradient = True + init = layers.zeros(shape=[10], dtype='float32') + mem_array = layers.array_write(x=init, i=i) + data_array = layers.array_write(x=d0, i=i) + i = layers.increment(i) + layers.array_write(d1, i, array=data_array) + i = layers.increment(i) + layers.array_write(d2, i, array=data_array) + i = layers.zeros(shape=[1], dtype='int64') + i.stop_gradient = True + array_len = layers.fill_constant(shape=[1], dtype='int64', value=1) + j = layers.fill_constant(shape=[1], dtype='int64', value=1) + j.stop_gradient = True + array_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3) - data = np.asarray([17]).astype('float32') - feed_x = np.zeros(1).astype('float32') - feed_i = np.ones(1).astype('float32') - feed_y = np.zeros(1).astype('float32') - i_grad = np.asarray(13).astype('int32') + out = layers.while_loop(external_cond, external_body, + [i, j, x, mem_array]) - res = exe.run(main_program, - feed={'i': feed_i, - 'x': feed_x, - 'y': feed_y}, - fetch_list=[mean.name, i.grad_name]) + sum_result = layers.array_read(array=mem_array, i=j) + mean = layers.mean(sum_result) + append_backward(mean) - self.assertTrue(np.allclose(np.asarray(res[0]), data)) - self.assertTrue(np.allclose(np.asarray(res[1]), i_grad)) + place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda( + ) else fluid.CPUPlace() + exe = fluid.Executor(place) + + d = [] + for i in range(3): + d.append(np.random.random(size=[10]).astype('float32')) + feed_x = np.ones(10).astype('float32') + data_sum = d[0] + d[1] + d[2] + 3 * feed_x + x_grad = [0.3] * 10 + res = exe.run( + main_program, + feed={'d0': d[0], + 'd1': d[1], + 'd2': d[2], + 'x': feed_x}, + fetch_list=[sum_result.name, x.grad_name]) + self.assertTrue(np.allclose(res[0], data_sum)) + self.assertTrue(np.allclose(res[1], x_grad)) class TestApiWhileLoopWithSwitchCase(unittest.TestCase): -- GitLab