Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
d7dd4e1d
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d7dd4e1d
编写于
4月 10, 2020
作者:
L
liym27
提交者:
GitHub
4月 10, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add unittest for se_resnet in dygraph_to_static. test=develop (#23566)
上级
7b648ad1
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
474 addition
and
0 deletion
+474
-0
python/paddle/fluid/tests/unittests/dygraph_to_static/test_se_resnet.py
...fluid/tests/unittests/dygraph_to_static/test_se_resnet.py
+474
-0
未找到文件。
python/paddle/fluid/tests/unittests/dygraph_to_static/test_se_resnet.py
0 → 100644
浏览文件 @
d7dd4e1d
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
logging
import
math
import
numpy
as
np
import
time
import
unittest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
from
paddle.fluid.dygraph.base
import
to_variable
from
paddle.fluid.dygraph.jit
import
dygraph_to_static_func
SEED
=
2020
np
.
random
.
seed
(
SEED
)
BATCH_SIZE
=
8
EPOCH_NUM
=
1
PRINT_STEP
=
2
STEP_NUM
=
10
place
=
fluid
.
CPUPlace
()
# TODO(liym27): Diff exists between dygraph and static graph on CUDA place.
# place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace()
train_parameters
=
{
"learning_strategy"
:
{
"name"
:
"cosine_decay"
,
"batch_size"
:
BATCH_SIZE
,
"epochs"
:
[
40
,
80
,
100
],
"steps"
:
[
0.1
,
0.01
,
0.001
,
0.0001
]
},
"lr"
:
0.0125
,
"total_images"
:
6149
,
"momentum_rate"
:
0.9
,
"l2_decay"
:
1.2e-4
,
"num_epochs"
:
1
,
}
def
optimizer_setting
(
params
,
parameter_list
):
ls
=
params
[
"learning_strategy"
]
if
"total_images"
not
in
params
:
total_images
=
6149
else
:
total_images
=
params
[
"total_images"
]
batch_size
=
ls
[
"batch_size"
]
l2_decay
=
params
[
"l2_decay"
]
momentum_rate
=
params
[
"momentum_rate"
]
step
=
int
(
math
.
ceil
(
float
(
total_images
)
/
batch_size
))
bd
=
[
step
*
e
for
e
in
ls
[
"epochs"
]]
lr
=
params
[
"lr"
]
num_epochs
=
params
[
"num_epochs"
]
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
fluid
.
layers
.
cosine_decay
(
learning_rate
=
lr
,
step_each_epoch
=
step
,
epochs
=
num_epochs
),
momentum
=
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
l2_decay
),
parameter_list
=
parameter_list
)
return
optimizer
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
)
@
dygraph_to_static_func
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
SqueezeExcitation
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
reduction_ratio
):
super
(
SqueezeExcitation
,
self
).
__init__
()
self
.
_num_channels
=
num_channels
self
.
_pool
=
Pool2D
(
pool_size
=
0
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
num_channels
*
1.0
)
self
.
_fc
=
Linear
(
num_channels
,
num_channels
//
reduction_ratio
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)),
act
=
'relu'
)
stdv
=
1.0
/
math
.
sqrt
(
num_channels
/
16.0
*
1.0
)
self
.
_excitation
=
Linear
(
num_channels
//
reduction_ratio
,
num_channels
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)),
act
=
'sigmoid'
)
@
dygraph_to_static_func
def
forward
(
self
,
input
):
y
=
self
.
_pool
(
input
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
_num_channels
])
y
=
self
.
_fc
(
y
)
y
=
self
.
_excitation
(
y
)
y
=
fluid
.
layers
.
elementwise_mul
(
x
=
input
,
y
=
y
,
axis
=
0
)
return
y
class
BottleneckBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
cardinality
,
reduction_ratio
,
shortcut
=
True
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
"relu"
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
groups
=
cardinality
,
act
=
"relu"
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
2
,
filter_size
=
1
,
act
=
None
)
self
.
scale
=
SqueezeExcitation
(
num_channels
=
num_filters
*
2
,
reduction_ratio
=
reduction_ratio
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
2
,
filter_size
=
1
,
stride
=
stride
)
self
.
shortcut
=
shortcut
self
.
_num_channels_out
=
num_filters
*
2
@
dygraph_to_static_func
def
forward
(
self
,
inputs
):
y
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
scale
=
self
.
scale
(
conv2
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
,
act
=
'relu'
)
return
y
class
SeResNeXt
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
layers
=
50
,
class_dim
=
102
):
super
(
SeResNeXt
,
self
).
__init__
()
self
.
layers
=
layers
supported_layers
=
[
50
,
101
,
152
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
50
:
cardinality
=
32
reduction_ratio
=
16
depth
=
[
3
,
4
,
6
,
3
]
num_filters
=
[
128
,
256
,
512
,
1024
]
self
.
conv0
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
pool
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
elif
layers
==
101
:
cardinality
=
32
reduction_ratio
=
16
depth
=
[
3
,
4
,
23
,
3
]
num_filters
=
[
128
,
256
,
512
,
1024
]
self
.
conv0
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
pool
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
elif
layers
==
152
:
cardinality
=
64
reduction_ratio
=
16
depth
=
[
3
,
8
,
36
,
3
]
num_filters
=
[
128
,
256
,
512
,
1024
]
self
.
conv0
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
64
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
64
,
num_filters
=
128
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
)
self
.
pool
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
self
.
bottleneck_block_list
=
[]
num_channels
=
64
if
layers
==
152
:
num_channels
=
128
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
cardinality
,
reduction_ratio
=
reduction_ratio
,
shortcut
=
shortcut
))
num_channels
=
bottleneck_block
.
_num_channels_out
self
.
bottleneck_block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
Pool2D
(
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
self
.
pool2d_avg_output
=
num_filters
[
len
(
num_filters
)
-
1
]
*
2
*
1
*
1
self
.
out
=
Linear
(
self
.
pool2d_avg_output
,
class_dim
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
@
dygraph_to_static_func
def
forward
(
self
,
inputs
,
label
):
if
self
.
layers
==
50
or
self
.
layers
==
101
:
y
=
self
.
conv0
(
inputs
)
y
=
self
.
pool
(
y
)
elif
self
.
layers
==
152
:
y
=
self
.
conv0
(
inputs
)
y
=
self
.
conv1
(
y
)
y
=
self
.
conv2
(
y
)
y
=
self
.
pool
(
y
)
for
bottleneck_block
in
self
.
bottleneck_block_list
:
y
=
bottleneck_block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
fluid
.
layers
.
dropout
(
y
,
dropout_prob
=
0.5
,
seed
=
100
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_output
])
out
=
self
.
out
(
y
)
softmax_out
=
fluid
.
layers
.
softmax
(
out
,
use_cudnn
=
False
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
softmax_out
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
x
=
loss
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
softmax_out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
softmax_out
,
label
=
label
,
k
=
5
)
return
out
,
avg_loss
,
acc_top1
,
acc_top5
def
train_dygraph
(
train_reader
):
np
.
random
.
seed
(
SEED
)
with
fluid
.
dygraph
.
guard
(
place
):
fluid
.
default_startup_program
().
random_seed
=
SEED
fluid
.
default_main_program
().
random_seed
=
SEED
se_resnext
=
SeResNeXt
()
optimizer
=
optimizer_setting
(
train_parameters
,
se_resnext
.
parameters
())
for
epoch_id
in
range
(
EPOCH_NUM
):
total_loss
=
0.0
total_acc1
=
0.0
total_acc5
=
0.0
total_sample
=
0
step_idx
=
0
speed_list
=
[]
for
step_id
,
data
in
enumerate
(
train_reader
()):
dy_x_data
=
np
.
array
([
x
[
0
].
reshape
(
3
,
224
,
224
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
BATCH_SIZE
,
1
)
img
=
to_variable
(
dy_x_data
)
label
=
to_variable
(
y_data
)
label
.
stop_gradient
=
True
pred
,
avg_loss
,
acc_top1
,
acc_top5
=
se_resnext
(
img
,
label
)
dy_out
=
avg_loss
.
numpy
()
avg_loss
.
backward
()
optimizer
.
minimize
(
avg_loss
)
se_resnext
.
clear_gradients
()
lr
=
optimizer
.
_global_learning_rate
().
numpy
()
total_loss
+=
dy_out
total_acc1
+=
acc_top1
.
numpy
()
total_acc5
+=
acc_top5
.
numpy
()
total_sample
+=
1
if
step_id
%
PRINT_STEP
==
0
:
if
step_id
==
0
:
logging
.
info
(
"epoch %d | step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f"
%
\
(
epoch_id
,
step_id
,
total_loss
/
total_sample
,
\
total_acc1
/
total_sample
,
total_acc5
/
total_sample
))
avg_batch_time
=
time
.
time
()
else
:
speed
=
PRINT_STEP
/
(
time
.
time
()
-
avg_batch_time
)
speed_list
.
append
(
speed
)
logging
.
info
(
"epoch %d | step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f, speed %.3f steps/s"
%
\
(
epoch_id
,
step_id
,
total_loss
/
total_sample
,
\
total_acc1
/
total_sample
,
total_acc5
/
total_sample
,
speed
))
avg_batch_time
=
time
.
time
()
step_idx
+=
1
if
step_idx
==
STEP_NUM
:
break
return
pred
.
numpy
(),
avg_loss
.
numpy
(),
acc_top1
.
numpy
(),
acc_top5
.
numpy
(
)
def
train_static
(
train_reader
):
np
.
random
.
seed
(
SEED
)
exe
=
fluid
.
Executor
(
place
)
main_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
img
=
fluid
.
data
(
name
=
"img"
,
shape
=
[
None
,
3
,
224
,
224
],
dtype
=
"float32"
)
label
=
fluid
.
data
(
name
=
"label"
,
shape
=
[
None
,
1
],
dtype
=
"int64"
)
label
.
stop_gradient
=
True
se_resnext
=
SeResNeXt
()
pred
,
avg_loss_
,
acc_top1_
,
acc_top5_
=
se_resnext
(
img
,
label
)
optimizer
=
optimizer_setting
(
train_parameters
,
se_resnext
.
parameters
())
optimizer
.
minimize
(
avg_loss_
)
exe
.
run
(
startup_prog
)
for
epoch_id
in
range
(
EPOCH_NUM
):
total_loss
=
0.0
total_acc1
=
0.0
total_acc5
=
0.0
total_sample
=
0
step_idx
=
0
speed_list
=
[]
for
step_id
,
data
in
enumerate
(
train_reader
()):
dy_x_data
=
np
.
array
([
x
[
0
].
reshape
(
3
,
224
,
224
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
BATCH_SIZE
,
1
)
pred_
,
avg_loss
,
acc_top1
,
acc_top5
=
exe
.
run
(
main_prog
,
feed
=
{
"img"
:
dy_x_data
,
"label"
:
y_data
},
fetch_list
=
[
pred
,
avg_loss_
,
acc_top1_
,
acc_top5_
])
total_loss
+=
avg_loss
total_acc1
+=
acc_top1
total_acc5
+=
acc_top5
total_sample
+=
1
if
step_id
%
PRINT_STEP
==
0
:
if
step_id
==
0
:
logging
.
info
(
"epoch %d | step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f"
%
\
(
epoch_id
,
step_id
,
total_loss
/
total_sample
,
\
total_acc1
/
total_sample
,
total_acc5
/
total_sample
))
avg_batch_time
=
time
.
time
()
else
:
speed
=
PRINT_STEP
/
(
time
.
time
()
-
avg_batch_time
)
speed_list
.
append
(
speed
)
logging
.
info
(
"epoch %d | step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f, speed %.3f steps/s"
%
\
(
epoch_id
,
step_id
,
total_loss
/
total_sample
,
\
total_acc1
/
total_sample
,
total_acc5
/
total_sample
,
speed
))
avg_batch_time
=
time
.
time
()
step_idx
+=
1
if
step_idx
==
STEP_NUM
:
break
return
pred_
,
avg_loss
,
acc_top1
,
acc_top5
class
TestSeResnet
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
train
(
use_xmap
=
False
,
cycle
=
True
),
batch_size
=
BATCH_SIZE
,
drop_last
=
True
)
def
test_check_result
(
self
):
pred_1
,
loss_1
,
acc1_1
,
acc5_1
=
train_static
(
self
.
train_reader
)
pred_2
,
loss_2
,
acc1_2
,
acc5_2
=
train_dygraph
(
self
.
train_reader
)
self
.
assertTrue
(
np
.
allclose
(
pred_1
,
pred_2
),
msg
=
"static pred: {}
\n
dygraph pred: {}"
.
format
(
pred_1
,
pred_2
))
self
.
assertTrue
(
np
.
allclose
(
loss_1
,
loss_2
),
msg
=
"static loss: {}
\n
dygraph loss: {}"
.
format
(
loss_1
,
loss_2
))
self
.
assertTrue
(
np
.
allclose
(
acc1_1
,
acc1_2
),
msg
=
"static acc1: {}
\n
dygraph acc1: {}"
.
format
(
acc1_1
,
acc1_2
))
self
.
assertTrue
(
np
.
allclose
(
acc5_1
,
acc5_2
),
msg
=
"static acc5: {}
\n
dygraph acc5: {}"
.
format
(
acc5_1
,
acc5_2
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录