未验证 提交 d79fdc3d 编写于 作者: G Gradie 提交者: GitHub

lamb_op_xpu;test=kunlun (#31012)

* lamb_op_xpu;test=kunlun

* modify lamb_op_xpu.cc;test=kunlun

* delete atol lamb_op_xpu; test=kunlun

* update xpu.cmake;test=kunlun

* test_error 1e-5,lamb_op_xpu;test=kunlun

* error1e-5,lamb_op_xpu,test=kunlun

* delete atol lamb_xpu;test=kunlun

* modify atol,lamb_op_xpy;test=kunlun

* lamb_op_xpu;test=kunlun

* lamb_op_xpu;test=kunlun

* lamb_op_xpu, XPUOptest;test=kunlun

* lamb_op_xpu;test=kunlun

* lamb_op_xpu;test=kunlun

* lamb_op_xpu;test=kunlun

* lamb_op_xpu;test=kunlun

* lamb_op_xpu;test=kunlun

* lamb_op_xpu;test=kunlun

* lamb_op_xpu;test=kunlun

* lamb_op_xpu;test=kunlun

* lamb_op_xpu;test=kunlun

* lamb_op_xpu;test=kunlun

* lamb_op_xpu;test=kunlun

* lamb_op_xpu,modify xpu_cmake; test=kunlun

* lamb_op_xpu;test=kunlun

* lamb_op_xpu,modify xpucmake;test=kunlun
上级 d1075df2
...@@ -13,7 +13,7 @@ if(NOT XPU_SDK_ROOT) ...@@ -13,7 +13,7 @@ if(NOT XPU_SDK_ROOT)
elseif(WITH_SUNWAY) elseif(WITH_SUNWAY)
SET(XPU_URL "https://baidu-kunlun-public.su.bcebos.com/paddle_depence/sunway/xpu_2021_01_13.tar.gz" CACHE STRING "" FORCE) SET(XPU_URL "https://baidu-kunlun-public.su.bcebos.com/paddle_depence/sunway/xpu_2021_01_13.tar.gz" CACHE STRING "" FORCE)
else() else()
SET(XPU_URL "https://baidu-kunlun-public.su.bcebos.com/paddle_depence/xpu_2021_02_19.tar.gz" CACHE STRING "" FORCE) SET(XPU_URL "https://baidu-kunlun-public.su.bcebos.com/paddle_depence/xpu_2021_02_27.tar.gz" CACHE STRING "" FORCE)
endif() endif()
SET(XPU_SOURCE_DIR "${THIRD_PARTY_PATH}/xpu") SET(XPU_SOURCE_DIR "${THIRD_PARTY_PATH}/xpu")
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/optimizers/lamb_op.h"
#include "gflags/gflags.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
#ifdef PADDLE_WITH_XPU
template <typename DeviceContext, typename T>
class LambOpXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using paddle::framework::LoDTensor;
const auto* param_var = ctx.InputVar("Param");
PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
platform::errors::InvalidArgument(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s",
ctx.InputNames("Param").front(),
framework::ToTypeName(param_var->Type())));
using paddle::framework::LoDTensor;
// inputs
T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
T weight_decay = static_cast<T>(ctx.Attr<float>("weight_decay"));
T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
auto& param = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Param"), "Input",
"Param", "Lamb");
auto* grad_var = ctx.InputVar("Grad");
auto& mom1 = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Moment1"), "Input",
"Moment1", "Lamb");
auto& mom2 = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Moment2"), "Input",
"Moment2", "Lamb");
auto& lr = GET_DATA_SAFELY(ctx.Input<LoDTensor>("LearningRate"), "Input",
"LearningRate", "Lamb");
auto& beta1_pow = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Beta1Pow"), "Input",
"Beta1Pow", "Lamb");
auto& beta2_pow = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Beta2Pow"), "Input",
"Beta2Pow", "Lamb");
auto& param_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("ParamOut"),
"Output", "ParamOut", "Lamb");
auto& mom1_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("Moment1Out"),
"Output", "Moment1Out", "Lamb");
auto& mom2_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("Moment2Out"),
"Output", "Moment2Out", "Lamb");
auto& beta1_pow_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("Beta1PowOut"),
"Output", "Beta1PowOut", "Lamb");
auto& beta2_pow_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("Beta2PowOut"),
"Output", "Beta2PowOut", "Lamb");
auto& dev_ctx = ctx.template device_context<DeviceContext>();
if (grad_var->IsType<framework::LoDTensor>()) {
auto& grad = *ctx.Input<LoDTensor>("Grad");
int r = xpu::lamb(dev_ctx.x_context(), grad.template data<T>(),
mom1.template data<T>(), mom2.template data<T>(),
param.template data<T>(), beta1_pow.template data<T>(),
beta2_pow.template data<T>(), beta1, beta2, epsilon,
weight_decay, lr.template data<T>(),
mom1_out.template mutable_data<T>(ctx.GetPlace()),
mom2_out.template mutable_data<T>(ctx.GetPlace()),
param_out.template mutable_data<T>(ctx.GetPlace()),
beta1_pow_out.template mutable_data<T>(ctx.GetPlace()),
beta2_pow_out.template mutable_data<T>(ctx.GetPlace()),
param.numel());
if (r == xpu::Error_t::INVALID_PARAM) {
PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS,
platform::errors::InvalidArgument(
"XPU kernel error of LambOp, error message: INVALID_PARAM, "
"please check your input & output."));
} else if (r == xpu::Error_t::RUNTIME_ERROR) {
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::Unavailable(
"XPU kernel error of LambOp, error message: "
"RUNTIME_ERROR, please check whether Baidu "
"Kunlun Card is properly installed."));
} else if (r == xpu::Error_t::NO_ENOUGH_WORKSPACE) {
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::ResourceExhausted(
"XPU kernel error of LambOp, error "
"message: NO_ENOUGH_WORKSPACE, XPU "
"has no enough memory."));
} else {
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::ResourceExhausted(
"XPU kernel error of LambOp, error "
"message: OTHER "
"XPU API returns error code: %d.",
r));
}
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"Variable type not supported by lamb_op. Expect LoDTensor, "
"but got %s",
framework::ToTypeName(param_var->Type())));
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
lamb, ops::LambOpXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import sys
sys.path.append("..")
import unittest
import numpy as np
from op_test_xpu import XPUOpTest
from paddle.fluid import core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
import paddle
class TestLambOp1(XPUOpTest):
def set_attrs(self):
self.attrs = {
'epsilon': 1e-6,
'beta1': 0.9,
'beta2': 0.999,
'weight_decay': 0.01
}
def setUp(self):
'''Test Lamb Op with supplied attributes
'''
self.op_type = "lamb"
param = np.random.uniform(-1, 1, 5000).astype("float32")
grad = np.random.uniform(-1, 1, 5000).astype("float32")
moment1 = np.random.uniform(-1, 1, 5000).astype("float32")
moment2 = np.random.random(5000).astype("float32")
self.set_attrs()
learning_rate = 0.001
beta1_pow = self.attrs['beta1']
beta2_pow = self.attrs['beta2']
self.inputs = {
'Param': param,
'Grad': grad,
'Moment1': moment1,
'Moment2': moment2,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
'Beta2Pow': np.array([beta2_pow]).astype("float32")
}
param_out, moment1_out, moment2_out, \
beta1_pow_out, beta2_pow_out = lamb_step(self.inputs, self.attrs)
self.outputs = {
'Moment1Out': moment1_out,
'Moment2Out': moment2_out,
'ParamOut': param_out,
'Beta1PowOut': beta1_pow_out,
'Beta2PowOut': beta2_pow_out
}
def test_check_output(self):
self.check_output_with_place(paddle.XPUPlace(0))
def lamb_step(inputs, attributes):
'''
Simulate one step of the lamb optimizer
:param inputs: dict of inputs
:param attributes: dict of attributes
:return tuple: tuple of output param, moment1, moment2,
beta1 power accumulator and beta2 power accumulator
'''
param = inputs['Param']
grad = inputs['Grad']
moment1 = inputs['Moment1']
moment2 = inputs['Moment2']
lr = inputs['LearningRate']
beta1_pow = inputs['Beta1Pow']
beta2_pow = inputs['Beta2Pow']
beta1 = attributes['beta1']
beta2 = attributes['beta2']
epsilon = attributes['epsilon']
weight_decay = attributes['weight_decay']
moment1_out = beta1 * moment1 + (1 - beta1) * grad
moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
moment1_unbiased = moment1_out / (1 - beta1_pow)
moment2_unbiased = moment2_out / (1 - beta2_pow)
r_1 = np.linalg.norm(param)
r_2 = np.linalg.norm(moment1_unbiased / (np.sqrt(moment2_unbiased) + epsilon
) + weight_decay * param)
if r_1 > 0.0 and r_2 > 0.0:
lr_t = lr * r_1 / r_2
else:
lr_t = 1.0
param_out = param - lr_t * (moment1_unbiased / (
np.sqrt(moment2_unbiased) + epsilon) + weight_decay * param)
beta1_pow_out = beta1_pow * beta1
beta2_pow_out = beta2_pow * beta2
return param_out, moment1_out, moment2_out, beta1_pow_out, beta2_pow_out
if __name__ == "__main__":
paddle.enable_static()
unittest.main()
...@@ -695,4 +695,5 @@ STATIC_MODE_TESTING_LIST = [ ...@@ -695,4 +695,5 @@ STATIC_MODE_TESTING_LIST = [
'test_shape_op_xpu', 'test_shape_op_xpu',
'test_slice_op_xpu', 'test_slice_op_xpu',
'test_generate_proposals_v2_op', 'test_generate_proposals_v2_op',
'test_lamb_op_xpu',
] ]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册