Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
d77c4955
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d77c4955
编写于
6月 24, 2022
作者:
Z
zhoutianzi666
提交者:
GitHub
6月 24, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Inference] rewrite elementwise trt layer (#43615)
* rewrite elementwise
上级
2bef8a48
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
116 addition
and
232 deletion
+116
-232
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
+94
-232
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+22
-0
未找到文件。
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
浏览文件 @
d77c4955
...
...
@@ -19,228 +19,115 @@ namespace paddle {
namespace
inference
{
namespace
tensorrt
{
static
bool
CheckDims
(
const
nvinfer1
::
Dims
&
dims_x
,
const
nvinfer1
::
Dims
&
dims_y
)
{
if
(
dims_x
.
nbDims
!=
dims_y
.
nbDims
)
{
return
false
;
}
for
(
int
i
=
0
;
i
<
dims_x
.
nbDims
;
i
++
)
{
if
(
dims_x
.
d
[
i
]
!=
dims_y
.
d
[
i
])
{
return
false
;
}
}
return
true
;
}
class
ElementwiseWeightOpConverter
:
public
OpConverter
{
class
ElementwiseTensorOpConverter
:
public
OpConverter
{
public:
Elementwise
Weight
OpConverter
()
{}
Elementwise
Tensor
OpConverter
()
{}
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
// Here the two nullptr looks strange, that's because the
// framework::OpDesc's constructor is strange.
nvinfer1
::
ILayer
*
layer
=
nullptr
;
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
3
)
<<
"Convert a fluid elementwise op to TensorRT IElementWiseLayer"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
VLOG
(
3
)
<<
"Convert a fluid elementwise op to TensorRT IScaleLayer"
;
auto
*
X
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
).
front
());
nvinfer1
::
ITensor
*
Y
=
nullptr
;
auto
*
Y_v
=
scope
.
FindVar
(
op_desc
.
Input
(
"Y"
).
front
());
PADDLE_ENFORCE_NOT_NULL
(
Y_v
,
platform
::
errors
::
NotFound
(
"Variable %s not found in scope."
,
op_desc
.
Input
(
"Y"
).
front
().
c_str
()));
if
(
Y_v
)
{
// Y is weight
auto
*
Y_t
=
Y_v
->
GetMutable
<
framework
::
LoDTensor
>
();
float
*
weight_data
=
nullptr
;
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
weight_data
=
engine_
->
GetWeightCPUData
(
op_desc
.
Input
(
"Y"
).
front
(),
Y_t
);
nvinfer1
::
Dims
dims_x
=
X
->
getDimensions
();
float
*
weight_data
=
engine_
->
GetWeightCPUData
(
op_desc
.
Input
(
"Y"
).
front
(),
Y_t
);
std
::
vector
<
int
>
dims_y
=
phi
::
vectorize
<
int
>
(
Y_t
->
dims
());
auto
regist_eltwise_weight
=
[
&
](
nvinfer1
::
ScaleMode
scale_mode
)
{
nvinfer1
::
IShuffleLayer
*
expand_layer
=
nullptr
;
nvinfer1
::
IShuffleLayer
*
squeeze_layer
=
nullptr
;
int
dynamic_shape_offset
=
engine_
->
with_dynamic_shape
()
?
1
:
0
;
auto
input_dim
=
X
->
getDimensions
();
// reshape
if
(
input_dim
.
nbDims
<
3
+
dynamic_shape_offset
)
{
nvinfer1
::
Dims
expand_shape
;
expand_shape
.
nbDims
=
3
+
dynamic_shape_offset
;
for
(
int
i
=
0
;
i
<
expand_shape
.
nbDims
;
i
++
)
{
if
(
i
<
input_dim
.
nbDims
)
{
expand_shape
.
d
[
i
]
=
input_dim
.
d
[
i
]
<
0
?
0
:
input_dim
.
d
[
i
];
TensorRTEngine
::
Weight
y_weight
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
weight_data
),
static_cast
<
size_t
>
(
Y_t
->
numel
())};
nvinfer1
::
Dims
trt_dims_y
;
trt_dims_y
.
nbDims
=
dims_y
.
size
();
for
(
int
i
=
0
;
i
<
trt_dims_y
.
nbDims
;
i
++
)
{
trt_dims_y
.
d
[
i
]
=
dims_y
[
i
];
}
Y
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Constant
,
trt_dims_y
,
y_weight
.
get
())
->
getOutput
(
0
);
}
else
{
expand_shape
.
d
[
i
]
=
1
;
}
}
expand_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
X
);
expand_layer
->
setReshapeDimensions
(
expand_shape
);
X
=
expand_layer
->
getOutput
(
0
);
expand_layer
->
getOutput
(
0
)
->
setName
(
(
"elementwise_reshape_out: "
+
output_name
).
c_str
());
expand_layer
->
setName
(
(
"Elewise: Shuffle: (Output: "
+
output_name
+
")"
).
c_str
());
}
// eltwise_ops
TensorRTEngine
::
Weight
shift_weights
{
nvinfer1
::
DataType
::
kFLOAT
,
nullptr
,
0
};
TensorRTEngine
::
Weight
scale_weights
{
nvinfer1
::
DataType
::
kFLOAT
,
nullptr
,
0
};
TensorRTEngine
::
Weight
power_weights
{
nvinfer1
::
DataType
::
kFLOAT
,
nullptr
,
0
};
if
(
op_type_
==
"add"
)
{
shift_weights
=
TensorRTEngine
::
Weight
(
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
weight_data
),
static_cast
<
size_t
>
(
Y_t
->
numel
()));
}
else
if
(
op_type_
==
"sub"
)
{
for
(
int
i
=
0
;
i
<
Y_t
->
numel
();
i
++
)
{
weight_data
[
i
]
=
-
weight_data
[
i
];
}
shift_weights
=
TensorRTEngine
::
Weight
(
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
weight_data
),
static_cast
<
size_t
>
(
Y_t
->
numel
()));
}
else
if
(
op_type_
==
"mul"
)
{
scale_weights
=
TensorRTEngine
::
Weight
(
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
weight_data
),
static_cast
<
size_t
>
(
Y_t
->
numel
()));
}
else
if
(
op_type_
==
"div"
)
{
for
(
int
i
=
0
;
i
<
Y_t
->
numel
();
i
++
)
{
weight_data
[
i
]
=
1.
f
/
weight_data
[
i
];
Y
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Y"
).
front
());
}
scale_weights
=
TensorRTEngine
::
Weight
(
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
weight_data
),
static_cast
<
size_t
>
(
Y_t
->
numel
()));
}
else
if
(
op_type_
==
"pow"
)
{
power_weights
=
TensorRTEngine
::
Weight
(
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
weight_data
),
static_cast
<
size_t
>
(
Y_t
->
numel
()));
}
nvinfer1
::
IScaleLayer
*
scale_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ScaleNd
,
*
X
,
scale_mode
,
shift_weights
.
get
(),
scale_weights
.
get
(),
power_weights
.
get
(),
dynamic_shape_offset
);
layer
=
scale_layer
;
// reshape
if
(
input_dim
.
nbDims
<
3
+
dynamic_shape_offset
)
{
nvinfer1
::
Dims
squeeze_shape
;
squeeze_shape
.
nbDims
=
input_dim
.
nbDims
;
for
(
int
i
=
0
;
i
<
squeeze_shape
.
nbDims
;
i
++
)
{
squeeze_shape
.
d
[
i
]
=
input_dim
.
d
[
i
]
<
0
?
0
:
input_dim
.
d
[
i
];
}
squeeze_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
(
layer
->
getOutput
(
0
)));
squeeze_layer
->
setReshapeDimensions
(
squeeze_shape
);
RreplenishLayerAndOutput
(
squeeze_layer
,
"elementwise_"
+
op_type_
,
{
output_name
},
test_mode
);
}
else
{
RreplenishLayerAndOutput
(
layer
,
"elementwise_"
+
op_type_
,
{
output_name
},
test_mode
);
if
(
X
->
getDimensions
().
nbDims
<
Y
->
getDimensions
().
nbDims
)
{
auto
*
tmp
=
X
;
X
=
Y
;
Y
=
tmp
;
}
};
nvinfer1
::
Dims
dims_x
=
X
->
getDimensions
();
nvinfer1
::
Dims
dims_y
=
Y
->
getDimensions
();
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
// dynamic shape
// axis here is relative to explicit batch
int
axis
=
BOOST_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"axis"
));
int
real_x_rank
=
dims_x
.
nbDims
;
int
real_y_rank
=
dims_y
.
nbDims
;
if
(
!
engine_
->
with_dynamic_shape
())
{
real_x_rank
++
;
real_y_rank
++
;
if
(
Y_v
)
real_y_rank
--
;
}
if
(
axis
==
-
1
)
{
axis
=
real_x_rank
-
real_y_rank
;
}
if
(
!
engine_
->
with_dynamic_shape
()
&&
axis
>
0
)
{
axis
--
;
}
// X: - - - - - - -
// axis
// Y: - - -
// we need expand Y's rank = X's rank
int
left_one_num
=
axis
;
int
right_one_num
=
dims_x
.
nbDims
-
axis
-
dims_y
.
nbDims
;
nvinfer1
::
IShuffleLayer
*
reshape_layer
;
nvinfer1
::
ITensor
*
reshape_y_tensor
;
if
(
left_one_num
>
0
||
right_one_num
>
0
)
{
if
(
engine_
->
with_dynamic_shape
())
{
if
(
dims_y
.
size
()
==
1
&&
dims_y
[
0
]
==
dims_x
.
d
[
1
])
{
regist_eltwise_weight
(
nvinfer1
::
ScaleMode
::
kCHANNEL
);
}
else
if
(
dims_y
.
size
()
==
1
&&
dims_y
[
0
]
==
1
)
{
regist_eltwise_weight
(
nvinfer1
::
ScaleMode
::
kUNIFORM
);
}
else
if
(
dims_y
.
size
()
==
static_cast
<
size_t
>
(
dims_x
.
nbDims
))
{
regist_eltwise_weight
(
nvinfer1
::
ScaleMode
::
kELEMENTWISE
);
auto
*
y_shape_tensor
=
Shape
(
Y
);
auto
*
new_y_shape_tensor
=
y_shape_tensor
;
if
(
axis
>
0
)
{
std
::
vector
<
int32_t
>
left_one
(
left_one_num
,
1
);
auto
*
left_one_tensor
=
Add1DConstantLayer
(
left_one
);
new_y_shape_tensor
=
Concat
(
std
::
vector
<
nvinfer1
::
ITensor
*>
{
left_one_tensor
,
new_y_shape_tensor
});
}
if
(
right_one_num
>
0
)
{
std
::
vector
<
int32_t
>
right_one
(
right_one_num
,
1
);
auto
*
right_one_tensor
=
Add1DConstantLayer
(
right_one
);
new_y_shape_tensor
=
Concat
(
std
::
vector
<
nvinfer1
::
ITensor
*>
{
new_y_shape_tensor
,
right_one_tensor
});
}
reshape_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
Y
);
reshape_layer
->
setInput
(
1
,
*
new_y_shape_tensor
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The size of input_y's dims is %d, but TensorRT dynamic shape "
"only support size = 1 or size = input_x.size() for Elementwise "
"op!"
,
dims_y
.
size
()));
}
return
;
}
// static shape with dynamic batch
std
::
vector
<
int
>
no_batch_dims
;
int
start_index
=
0
;
for
(;
start_index
<
dims_x
.
nbDims
;
start_index
++
)
{
no_batch_dims
.
push_back
(
dims_x
.
d
[
start_index
]);
}
if
(
dims_y
.
size
()
==
1
&&
dims_y
[
0
]
==
no_batch_dims
[
0
])
{
regist_eltwise_weight
(
nvinfer1
::
ScaleMode
::
kCHANNEL
);
}
else
if
(
dims_y
.
size
()
==
1
&&
dims_y
[
0
]
==
1
)
{
regist_eltwise_weight
(
nvinfer1
::
ScaleMode
::
kUNIFORM
);
}
else
if
(
dims_y
.
size
()
==
no_batch_dims
.
size
()
+
1
)
{
regist_eltwise_weight
(
nvinfer1
::
ScaleMode
::
kELEMENTWISE
);
nvinfer1
::
Dims
new_y_dims
;
new_y_dims
.
nbDims
=
left_one_num
+
dims_y
.
nbDims
+
right_one_num
;
for
(
int
i
=
0
;
i
<
new_y_dims
.
nbDims
;
i
++
)
new_y_dims
.
d
[
i
]
=
1
;
for
(
int
i
=
0
;
i
<
dims_y
.
nbDims
;
i
++
)
new_y_dims
.
d
[
left_one_num
+
i
]
=
dims_y
.
d
[
i
];
reshape_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
Y
);
reshape_layer
->
setReshapeDimensions
(
new_y_dims
);
}
reshape_y_tensor
=
reshape_layer
->
getOutput
(
0
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The size of input_y's dims is %d, but TensorRT dynamic shape "
"only support size = 1 or size = input_x.size() for Elementwise "
"op!"
,
dims_y
.
size
()));
}
// In fact , we can remove this `else`, but -> rt_resnet50_test CI in trt
// 6015 faling, how ridiculous!
reshape_y_tensor
=
Y
;
}
protected:
std
::
string
op_type_
;
};
class
ElementwiseTensorOpConverter
:
public
OpConverter
{
public:
ElementwiseTensorOpConverter
()
{}
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
auto
op_pair
=
ops
.
find
(
op_type_
);
PADDLE_ENFORCE_NE
(
op_pair
,
ops
.
end
(),
PADDLE_ENFORCE_NE
(
op_pair
,
ops
.
end
(),
platform
::
errors
::
InvalidArgument
(
"Elementwise op's type(%s) is not supported. Please "
"check if the op_type is correct."
,
op_type_
));
// Here the two nullptr looks strange, that's because the
// framework::OpDesc's constructor is strange.
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
nvinfer1
::
ILayer
*
layer
=
nullptr
;
auto
*
X
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
).
front
());
auto
*
Y
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Y"
).
front
());
std
::
vector
<
nvinfer1
::
ITensor
*>
itensors
;
itensors
.
push_back
(
X
);
itensors
.
push_back
(
Y
);
nvinfer1
::
Dims
dims_x
=
X
->
getDimensions
();
nvinfer1
::
Dims
dims_y
=
Y
->
getDimensions
();
int
axis
=
BOOST_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"axis"
));
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
auto
common_func
=
[
&
](
nvinfer1
::
ILayer
*
layer
)
{
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
X
,
*
reshape_y_tensor
,
op_pair
->
second
);
RreplenishLayerAndOutput
(
layer
,
"elementwise"
,
{
output_name
},
test_mode
);
};
if
(
dims_x
.
nbDims
==
dims_y
.
nbDims
)
{
// The two input tensor should have the same dims
VLOG
(
3
)
<<
"Convert a fluid elementwise op to TensorRT IElementWiseLayer"
;
nvinfer1
::
IElementWiseLayer
*
elet_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
X
,
*
Y
,
op_pair
->
second
);
layer
=
elet_layer
;
}
else
{
VLOG
(
3
)
<<
"Convert a fluid elementwise op to TensorRT "
"ElementWisePluginLayer"
;
if
(
engine_
->
with_dynamic_shape
())
{
#if IS_TRT_VERSION_GE(6000)
plugin
::
ElementwisePluginDynamic
*
plugin
=
new
plugin
::
ElementwisePluginDynamic
(
op_type_
,
axis
);
layer
=
engine_
->
AddDynamicPlugin
(
itensors
.
data
(),
2
,
plugin
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"You are running the TRT Dynamic Shape mode, need to confirm that "
"your TRT version is no less than 6.0"
));
#endif
}
else
{
plugin
::
ElementWisePlugin
*
plugin
=
new
plugin
::
ElementWisePlugin
(
op_type_
,
dims_x
,
dims_y
,
axis
);
std
::
vector
<
nvinfer1
::
ITensor
*>
inputs
{
X
,
Y
};
auto
*
plugin_layer
=
engine_
->
AddPlugin
(
inputs
.
data
(),
inputs
.
size
(),
reinterpret_cast
<
plugin
::
PluginTensorRT
*>
(
plugin
));
layer
=
plugin_layer
;
}
}
common_func
(
layer
);
}
protected:
...
...
@@ -260,31 +147,6 @@ const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
{
"max"
,
nvinfer1
::
ElementWiseOperation
::
kMAX
},
};
class
ElementwiseWeightAddOpConverter
:
public
ElementwiseWeightOpConverter
{
public:
ElementwiseWeightAddOpConverter
()
{
op_type_
=
"add"
;
}
};
class
ElementwiseWeightMulOpConverter
:
public
ElementwiseWeightOpConverter
{
public:
ElementwiseWeightMulOpConverter
()
{
op_type_
=
"mul"
;
}
};
class
ElementwiseWeightSubOpConverter
:
public
ElementwiseWeightOpConverter
{
public:
ElementwiseWeightSubOpConverter
()
{
op_type_
=
"sub"
;
}
};
class
ElementwiseWeightDivOpConverter
:
public
ElementwiseWeightOpConverter
{
public:
ElementwiseWeightDivOpConverter
()
{
op_type_
=
"div"
;
}
};
class
ElementwiseWeightPowOpConverter
:
public
ElementwiseWeightOpConverter
{
public:
ElementwiseWeightPowOpConverter
()
{
op_type_
=
"pow"
;
}
};
class
ElementwiseTensorAddOpConverter
:
public
ElementwiseTensorOpConverter
{
public:
ElementwiseTensorAddOpConverter
()
{
op_type_
=
"add"
;
}
...
...
@@ -325,15 +187,15 @@ class ElementwiseTensorPowOpConverter : public ElementwiseTensorOpConverter {
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
elementwise_add_weight
,
Elementwise
Weight
AddOpConverter
);
Elementwise
Tensor
AddOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
elementwise_mul_weight
,
Elementwise
Weight
MulOpConverter
);
Elementwise
Tensor
MulOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
elementwise_sub_weight
,
Elementwise
Weight
SubOpConverter
);
Elementwise
Tensor
SubOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
elementwise_div_weight
,
Elementwise
Weight
DivOpConverter
);
Elementwise
Tensor
DivOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
elementwise_pow_weight
,
Elementwise
Weight
PowOpConverter
);
Elementwise
Tensor
PowOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
elementwise_add_tensor
,
ElementwiseTensorAddOpConverter
);
...
...
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
d77c4955
...
...
@@ -1256,6 +1256,28 @@ bool OpTeller::Tell(const framework::ir::Node* node,
}
}
}
// not support following four inputs for slice in paddle-trt
auto
slice_inputs
=
desc
.
Inputs
();
// its size == 5
if
(
slice_inputs
.
find
(
"StartsTensor"
)
!=
slice_inputs
.
end
())
{
if
(
desc
.
Input
(
"StartsTensor"
).
size
())
{
return
false
;
}
}
if
(
slice_inputs
.
find
(
"EndsTensor"
)
!=
slice_inputs
.
end
())
{
if
(
desc
.
Input
(
"EndsTensor"
).
size
())
{
return
false
;
}
}
if
(
slice_inputs
.
find
(
"StartsTensorList"
)
!=
slice_inputs
.
end
())
{
if
(
desc
.
Input
(
"StartsTensorList"
).
size
())
{
return
false
;
}
}
if
(
slice_inputs
.
find
(
"EndsTensorList"
)
!=
slice_inputs
.
end
())
{
if
(
desc
.
Input
(
"EndsTensorList"
).
size
())
{
return
false
;
}
}
}
if
(
op_type
==
"elementwise_add"
||
op_type
==
"elementwise_mul"
||
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录