From d587219267b62dc2b67416b622376c8de4a609df Mon Sep 17 00:00:00 2001 From: furnace <34057289+windstamp@users.noreply.github.com> Date: Mon, 26 Jul 2021 21:33:39 +0800 Subject: [PATCH] [NPU] add tril_triu (#34097) * [NPU] add tril_triu * [NPU] delete debug codes * [NPU] add more test cases, and api test * [NPU] optimize codes style --- paddle/fluid/operators/tril_triu_op_npu.cc | 52 +++++ .../unittests/npu/test_tril_triu_op_npu.py | 191 ++++++++++++++++++ 2 files changed, 243 insertions(+) create mode 100644 paddle/fluid/operators/tril_triu_op_npu.cc create mode 100644 python/paddle/fluid/tests/unittests/npu/test_tril_triu_op_npu.py diff --git a/paddle/fluid/operators/tril_triu_op_npu.cc b/paddle/fluid/operators/tril_triu_op_npu.cc new file mode 100644 index 0000000000..cdabc28255 --- /dev/null +++ b/paddle/fluid/operators/tril_triu_op_npu.cc @@ -0,0 +1,52 @@ +/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the Licnse. */ + +#include "paddle/fluid/operators/tril_triu_op.h" +#include "paddle/fluid/operators/npu_op_runner.h" + +namespace paddle { +namespace operators { + +template +class TrilTriuNPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* x = ctx.Input("X"); + auto* out = ctx.Output("Out"); + int diagonal = ctx.Attr("diagonal"); + bool lower = ctx.Attr("lower"); + + out->mutable_data(ctx.GetPlace()); + + std::string op_type = lower ? "Tril" : "Triu"; + + framework::NPUAttributeMap attr_input = {{"diagonal", diagonal}}; + + auto stream = + ctx.template device_context() + .stream(); + + const auto& runner = NpuOpRunner(op_type, {*x}, {*out}, attr_input); + runner.Run(stream); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +namespace plat = paddle::platform; +REGISTER_OP_NPU_KERNEL( + tril_triu, ops::TrilTriuNPUKernel, + ops::TrilTriuNPUKernel); diff --git a/python/paddle/fluid/tests/unittests/npu/test_tril_triu_op_npu.py b/python/paddle/fluid/tests/unittests/npu/test_tril_triu_op_npu.py new file mode 100644 index 0000000000..13adc25a38 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/npu/test_tril_triu_op_npu.py @@ -0,0 +1,191 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at # +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +import numpy as np +from paddle.fluid.tests.unittests.op_test import OpTest +import paddle +import paddle.fluid as fluid +import paddle.tensor as tensor +from paddle.fluid.framework import Program, program_guard + +paddle.enable_static() + + +class TestNPUTrilTriu(OpTest): + """ the base class of other op testcases + """ + + def setUp(self): + self.op_type = "tril_triu" + self.set_npu() + self.init_dtype() + self.initTestCase() + + self.real_np_op = getattr(np, self.real_op_type) + + self.inputs = {'X': self.X} + self.attrs = { + 'diagonal': self.diagonal, + 'lower': True if self.real_op_type == 'tril' else False, + } + self.outputs = { + 'Out': self.real_np_op(self.X, self.diagonal) + if self.diagonal else self.real_np_op(self.X) + } + + def test_check_output(self): + self.check_output_with_place(self.place) + + def set_npu(self): + self.__class__.use_npu = True + self.place = paddle.NPUPlace(0) + + def init_dtype(self): + self.dtype = np.float32 + + def initTestCase(self): + self.real_op_type = np.random.choice(['triu', 'tril']) + self.diagonal = None + self.X = np.arange(1, 101, dtype=self.dtype).reshape([10, -1]) + + +def case_generator(op_type, Xshape, diagonal, expected): + """ + Generate testcases with the params shape of X, diagonal and op_type. + If arg `expercted` is 'success', it will register an Optest case and expect to pass. + Otherwise, it will register an API case and check the expect failure. + """ + cls_name = "{0}_{1}_shape_{2}_diag_{3}".format(expected, op_type, Xshape, + diagonal) + errmsg = { + "diagonal: TypeError": + "diagonal in {} must be a python Int".format(op_type), + "input: ValueError": + "x shape in {} must be at least 2-D".format(op_type), + } + + class FailureCase(unittest.TestCase): + def test_failure(self): + paddle.enable_static() + + data = fluid.data(shape=Xshape, dtype='float32', name=cls_name) + with self.assertRaisesRegexp( + eval(expected.split(':')[-1]), errmsg[expected]): + getattr(tensor, op_type)(x=data, diagonal=diagonal) + + class SuccessCase(TestNPUTrilTriu): + def initTestCase(self): + paddle.enable_static() + + self.real_op_type = op_type + self.diagonal = diagonal + self.X = np.random.random(Xshape).astype("float32") + + CLASS = locals()['SuccessCase' if expected == "success" else 'FailureCase'] + CLASS.__name__ = cls_name + globals()[cls_name] = CLASS + + +### NOTE: meaningful diagonal is [1 - min(H, W), max(H, W) -1] +### test the diagonal just at the border, upper/lower the border, +### negative/positive integer within range and a zero +cases = { + 'success': { + (2, 2, 3, 4, 5): [-100, -3, -1, 0, 2, 4, 100], # normal shape + (10, 10, 1, 1): [-100, -1, 0, 1, 100], # small size of matrix + }, + 'diagonal: TypeError': { + (20, 20): [ + '2020', + [20], + { + 20: 20 + }, + (20, 20), + 20.20, + ], # str, list, dict, tuple, float + }, + 'input: ValueError': { + (2020, ): [None], + }, +} +for _op_type in ['tril', 'triu']: + for _expected, _params in cases.items(): + for _Xshape, _diaglist in _params.items(): + list( + map(lambda _diagonal: case_generator(_op_type, _Xshape, _diagonal, _expected), + _diaglist)) + + +class TestTrilTriuOpAPI(unittest.TestCase): + """ test case by using API and has -1 dimension + """ + + def test_api(self): + paddle.enable_static() + + dtypes = ['float16', 'float32'] + for dtype in dtypes: + prog = Program() + startup_prog = Program() + with program_guard(prog, startup_prog): + data = np.random.random([1, 9, 9, 4]).astype(dtype) + x = fluid.data(shape=[1, 9, -1, 4], dtype=dtype, name='x') + tril_out, triu_out = tensor.tril(x), tensor.triu(x) + + place = fluid.NPUPlace(0) + exe = fluid.Executor(place) + tril_out, triu_out = exe.run( + fluid.default_main_program(), + feed={"x": data}, + fetch_list=[tril_out, triu_out], ) + self.assertTrue(np.allclose(tril_out, np.tril(data))) + self.assertTrue(np.allclose(triu_out, np.triu(data))) + + def test_api_with_dygraph(self): + paddle.disable_static(fluid.NPUPlace(0)) + + dtypes = ['float16', 'float32'] + for dtype in dtypes: + with fluid.dygraph.guard(): + data = np.random.random([1, 9, 9, 4]).astype(dtype) + x = fluid.dygraph.to_variable(data) + tril_out, triu_out = tensor.tril(x).numpy(), tensor.triu( + x).numpy() + self.assertTrue(np.allclose(tril_out, np.tril(data))) + self.assertTrue(np.allclose(triu_out, np.triu(data))) + + def test_fluid_api(self): + paddle.enable_static() + + dtypes = ['float16', 'float32'] + for dtype in dtypes: + prog = Program() + startup_prog = Program() + with program_guard(prog, startup_prog): + data = np.random.random([1, 9, 9, 4]).astype(dtype) + x = fluid.data(shape=[1, 9, -1, 4], dtype=dtype, name='x') + triu_out = fluid.layers.triu(x) + + place = fluid.NPUPlace(0) + exe = fluid.Executor(place) + triu_out = exe.run(fluid.default_main_program(), + feed={"x": data}, + fetch_list=[triu_out]) + + +if __name__ == '__main__': + unittest.main() -- GitLab