diff --git a/paddle/phi/kernels/sparse/cpu/sparse_utils_kernel.cc b/paddle/phi/kernels/sparse/cpu/sparse_utils_kernel.cc index 1cd3086d5f74ca66ce145faff4e1a31e310521cf..8bf0104ef0baf755794fa6962e3ca80385380098 100644 --- a/paddle/phi/kernels/sparse/cpu/sparse_utils_kernel.cc +++ b/paddle/phi/kernels/sparse/cpu/sparse_utils_kernel.cc @@ -198,7 +198,7 @@ void SparseCooToCsrCPUKernel(const CPUContext& dev_ctx, const auto& coo_values = x.non_zero_elements(); const IntT* batchs_ptr = coo_indices.data(); const IntT* coo_rows_data = - batchs == 1 ? batchs_ptr : batchs_ptr + non_zero_num; + x_dims.size() == 2 ? batchs_ptr : batchs_ptr + non_zero_num; const IntT* coo_cols_data = coo_rows_data + non_zero_num; const T* coo_values_data = coo_values.data(); diff --git a/paddle/phi/kernels/sparse/gpu/sparse_utils_kernel.cu b/paddle/phi/kernels/sparse/gpu/sparse_utils_kernel.cu index 52b905e1bdf5a8d2bd416374fa8f056fa5e58954..f569072e319d5b4603371d5d9c94f8fffe091a07 100644 --- a/paddle/phi/kernels/sparse/gpu/sparse_utils_kernel.cu +++ b/paddle/phi/kernels/sparse/gpu/sparse_utils_kernel.cu @@ -371,7 +371,7 @@ void SparseCooToCsrGPUKernel(const GPUContext& dev_ctx, const auto& coo_values = x.non_zero_elements(); const IntT* batchs_ptr = coo_indices.data(); const IntT* coo_rows_data = - batchs == 1 ? batchs_ptr : batchs_ptr + non_zero_num; + x_dims.size() == 2 ? batchs_ptr : batchs_ptr + non_zero_num; const IntT* coo_cols_data = coo_rows_data + non_zero_num; const T* coo_values_data = coo_values.data(); diff --git a/python/paddle/fluid/tests/unittests/test_sparse_utils_op.py b/python/paddle/fluid/tests/unittests/test_sparse_utils_op.py index 6cc1d9cf96cae9b0860c341efa7034ed987c0ab4..a12425b69299e8b400babd3b1254f418a9303a31 100644 --- a/python/paddle/fluid/tests/unittests/test_sparse_utils_op.py +++ b/python/paddle/fluid/tests/unittests/test_sparse_utils_op.py @@ -318,50 +318,40 @@ class TestSparseConvert(unittest.TestCase): def test_batch_csr(self): with _test_eager_guard(): - shape = [3, 3, 3] - - def verify(x, crows, cols, values): - x = paddle.to_tensor(x) - csr = x.to_sparse_csr() - assert np.allclose(crows, csr.crows().numpy()) - assert np.allclose(cols, csr.cols().numpy()) - assert np.allclose(values, csr.values().numpy()) - - dense = csr.to_dense() - assert np.allclose(x.numpy(), dense.numpy()) - - x = [ - [[1.0, 0, 0], [0, 2.0, 0], [0, 0, 3.0]], - [[0, 0, 0], [0, 0, 0], [0, 0, 0]], - [[1.0, 0, 0], [0, 2.0, 0], [0, 0, 3.0]], - ] - crows = [[0, 1, 2, 3, 0, 0, 0, 0, 0, 1, 2, 3]] - cols = [0, 1, 2, 0, 1, 2] - values = [1.0, 2.0, 3.0, 1.0, 2.0, 3.0] - - verify(x, crows, cols, values) - - x = [ - [[0, 0, 0], [0, 0, 0], [0, 0, 0]], - [[1.0, 0, 0], [0, 2.0, 0], [0, 0, 3.0]], - [[1.0, 0, 0], [0, 2.0, 0], [0, 0, 3.0]], - ] - crows = [[0, 0, 0, 0, 0, 1, 2, 3, 0, 1, 2, 3]] - cols = [0, 1, 2, 0, 1, 2] - values = [1.0, 2.0, 3.0, 1.0, 2.0, 3.0] - - verify(x, crows, cols, values) - - x = [ - [[1.0, 0, 0], [0, 2.0, 0], [0, 0, 3.0]], - [[1.0, 0, 0], [0, 2.0, 0], [0, 0, 3.0]], - [[0, 0, 0], [0, 0, 0], [0, 0, 0]], - ] - crows = [[0, 1, 2, 3, 0, 1, 2, 3, 0, 0, 0, 0]] - cols = [0, 1, 2, 0, 1, 2] - values = [1.0, 2.0, 3.0, 1.0, 2.0, 3.0] - - verify(x, crows, cols, values) + + def verify(dense_x): + sparse_x = dense_x.to_sparse_csr() + out = sparse_x.to_dense() + assert np.allclose(out.numpy(), dense_x.numpy()) + + shape = np.random.randint(low=1, high=10, size=3) + shape = list(shape) + dense_x = paddle.randn(shape) + dense_x = paddle.nn.functional.dropout(dense_x, p=0.5) + verify(dense_x) + + #test batchs=1 + shape[0] = 1 + dense_x = paddle.randn(shape) + dense_x = paddle.nn.functional.dropout(dense_x, p=0.5) + verify(dense_x) + + shape = np.random.randint(low=2, high=10, size=3) + shape = list(shape) + dense_x = paddle.randn(shape) + #set the 0th batch to zero + dense_x[0] = 0 + verify(dense_x) + + dense_x = paddle.randn(shape) + #set the 1th batch to zero + dense_x[1] = 0 + verify(dense_x) + + dense_x = paddle.randn(shape) + #set the 2th batch to zero + dense_x[2] = 0 + verify(dense_x) class TestCooError(unittest.TestCase):