diff --git a/benchmark/cluster/vgg16/fluid/Dockerfile b/benchmark/cluster/vgg16/fluid/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..77cd17f2b912b22eb7371c93e0e46e033a8b78f8 --- /dev/null +++ b/benchmark/cluster/vgg16/fluid/Dockerfile @@ -0,0 +1,12 @@ +#FROM paddlepaddle/paddlecloud-job +#RUN mkdir -p /workspace +#ADD reader.py /workspace/ +#RUN python /workspace/reader.py +FROM python:2.7.14 +ADD *.whl / +RUN pip install /*.whl && rm -f /*.whl +ADD paddle_k8s /usr/bin +ADD k8s_tools.py /root +RUN pip install -U kubernetes opencv-python && apt-get update -y && apt-get install -y iputils-ping libgtk2.0-dev + +ADD vgg16.py /workspace/ diff --git a/benchmark/cluster/vgg16/fluid/k8s_tools.py b/benchmark/cluster/vgg16/fluid/k8s_tools.py new file mode 100644 index 0000000000000000000000000000000000000000..8a64dbd361ac9f9e6a80a1262cf123382f92fc16 --- /dev/null +++ b/benchmark/cluster/vgg16/fluid/k8s_tools.py @@ -0,0 +1,78 @@ +#!/bin/env python +import os +import sys +import time +import socket +from kubernetes import client, config +PADDLE_JOB_NAME = os.getenv("PADDLE_JOB_NAME") +NAMESPACE = os.getenv("NAMESPACE") +PORT = os.getenv("PSERVER_PORT") +if os.getenv("KUBERNETES_SERVICE_HOST", None): + config.load_incluster_config() +else: + config.load_kube_config() +v1 = client.CoreV1Api() + + +def fetch_pods_info(label_selector): + api_response = v1.list_namespaced_pod( + namespace=NAMESPACE, pretty=True, label_selector=label_selector) + pod_list = [] + for item in api_response.items: + pod_list.append((item.status.phase, item.status.pod_ip)) + return pod_list + + +def wait_pods_running(label_selector, desired): + print "label selector: %s, desired: %s" % (label_selector, desired) + while True: + count = count_pods_by_phase(label_selector, 'Running') + # NOTE: pods may be scaled. + if count >= int(desired): + break + print 'current cnt: %d sleep for 5 seconds...' % count + time.sleep(5) + +def count_pods_by_phase(label_selector, phase): + pod_list = fetch_pods_info(label_selector) + filtered_pod_list = filter(lambda x: x[0] == phase, pod_list) + return len(filtered_pod_list) + + +def fetch_pserver_ips(): + label_selector = "paddle-job-pserver=%s" % PADDLE_JOB_NAME + pod_list = fetch_pods_info(label_selector) + pserver_ips = [item[1] for item in pod_list] + return ",".join(pserver_ips) + +def fetch_master_ip(): + label_selector = "paddle-job-master=%s" % PADDLE_JOB_NAME + pod_list = fetch_pods_info(label_selector) + master_ips = [item[1] for item in pod_list] + return master_ips[0] + +def fetch_trainer_id(): + label_selector = "paddle-job=%s" % PADDLE_JOB_NAME + pod_list = fetch_pods_info(label_selector) + trainer_ips = [item[1] for item in pod_list] + trainer_ips.sort() + local_ip = socket.gethostbyname(socket.gethostname()) + for i in xrange(len(trainer_ips)): + if trainer_ips[i] == local_ip: + return i + return None + + +if __name__ == "__main__": + command = sys.argv[1] + if command == "fetch_pserver_ips": + print fetch_pserver_ips() + elif command == "fetch_trainer_id": + print fetch_trainer_id() + elif command == "fetch_master_ip": + print fetch_master_ip() + elif command == "count_pods_by_phase": + print count_pods_by_phase(sys.argv[2], sys.argv[3]) + elif command == "wait_pods_running": + wait_pods_running(sys.argv[2], sys.argv[3]) + diff --git a/benchmark/cluster/vgg16/fluid/paddle_k8s b/benchmark/cluster/vgg16/fluid/paddle_k8s new file mode 100755 index 0000000000000000000000000000000000000000..8f1c5db717e6fdf4869c2f9f20cf98d11b19052c --- /dev/null +++ b/benchmark/cluster/vgg16/fluid/paddle_k8s @@ -0,0 +1,200 @@ +#!/bin/bash +start_pserver() { + stdbuf -oL paddle pserver \ + --use_gpu=0 \ + --port=$PADDLE_INIT_PORT \ + --ports_num=$PADDLE_INIT_PORTS_NUM \ + --ports_num_for_sparse=$PADDLE_INIT_PORTS_NUM_FOR_SPARSE \ + --nics=$PADDLE_INIT_NICS \ + --comment=paddle_process_k8s \ + --num_gradient_servers=$PADDLE_INIT_NUM_GRADIENT_SERVERS +} + +start_new_pserver() { + stdbuf -oL python /root/k8s_tools.py wait_pods_running paddle-job-master=${PADDLE_JOB_NAME} 1 + export MASTER_IP=$(python /root/k8s_tools.py fetch_master_ip) + stdbuf -oL /usr/bin/pserver \ + -port=$PADDLE_INIT_PORT \ + -num-pservers=$PSERVERS \ + -log-level=debug \ + -etcd-endpoint=http://$MASTER_IP:2379 +} + +start_master() { + stdbuf -oL /usr/bin/master \ + -port=8080 \ + -chunk-per-task=1\ + -task-timout-dur=16s\ + -endpoints=http://127.0.0.1:2379 +} + +check_failed_cnt() { + max_failed=$1 + failed_count=$(python /root/k8s_tools.py count_pods_by_phase paddle-job=${PADDLE_JOB_NAME} Failed) + if [ $failed_count -gt $max_failed ]; then + stdbuf -oL echo "Failed trainer count beyond the threadhold: "$max_failed + echo "Failed trainer count beyond the threshold: " $max_failed > /dev/termination-log + exit 0 + fi +} + +check_trainer_ret() { + ret=$1 + stdbuf -oL echo "job returned $ret...setting pod return message..." + stdbuf -oL echo "===============================" + + if [ $ret -eq 136 ] ; then + echo "Error Arithmetic Operation(Floating Point Exception)" > /dev/termination-log + elif [ $ret -eq 139 ] ; then + echo "Segmentation Fault" > /dev/termination-log + elif [ $ret -eq 1 ] ; then + echo "General Error" > /dev/termination-log + elif [ $ret -eq 134 ] ; then + echo "Program Abort" > /dev/termination-log + fi + stdbuf -oL echo "termination log wroted..." + exit $ret +} + +start_fluid_process() { + stdbuf -oL python /root/k8s_tools.py wait_pods_running paddle-job-pserver=${PADDLE_JOB_NAME} ${PSERVERS} + if [ "${TRAINING_ROLE}" == "TRAINER" ]; then + check_failed_cnt ${TRAINERS} + sleep 5 + stdbuf -oL python /root/k8s_tools.py wait_pods_running paddle-job-master=${PADDLE_JOB_NAME} 1 + export PADDLE_INIT_TRAINER_ID=$(python /root/k8s_tools.py fetch_trainer_id) + fi + export PADDLE_INIT_PSERVERS=$(python /root/k8s_tools.py fetch_pserver_ips) + stdbuf -oL sh -c "${ENTRY}" + check_trainer_ret $? +} + +start_new_trainer() { + # FIXME(Yancey1989): use command-line interface to configure the max failed count + check_failed_cnt ${TRAINERS} + stdbuf -oL python /root/k8s_tools.py wait_pods_running paddle-job-pserver=${PADDLE_JOB_NAME} ${PSERVERS} + sleep 5 + stdbuf -oL python /root/k8s_tools.py wait_pods_running paddle-job-master=${PADDLE_JOB_NAME} 1 + export MASTER_IP=$(python /root/k8s_tools.py fetch_master_ip) + export ETCD_IP="$MASTER_IP" + + # NOTE: $TRAINER_PACKAGE may be large, do not copy + export PYTHONPATH=$TRAINER_PACKAGE:$PYTHONPATH + cd $TRAINER_PACKAGE + + stdbuf -oL echo "Starting training job: " $TRAINER_PACKAGE, "num_gradient_servers:" \ + $PADDLE_INIT_NUM_GRADIENT_SERVERS, "version: " $1 + + stdbuf -oL sh -c "${ENTRY}" + check_trainer_ret $? +} + +start_trainer() { + # paddle v1 and V2 distributed training does not allow any trainer failed. + check_failed_cnt 0 + stdbuf -oL python /root/k8s_tools.py wait_pods_running paddle-job-pserver=${PADDLE_JOB_NAME} ${PSERVERS} + stdbuf -oL python /root/k8s_tools.py wait_pods_running paddle-job=${PADDLE_JOB_NAME} ${TRAINERS} + + export PADDLE_INIT_PSERVERS=$(python /root/k8s_tools.py fetch_pserver_ips) + export PADDLE_INIT_TRAINER_ID=$(python /root/k8s_tools.py fetch_trainer_id) + stdbuf -oL echo $PADDLE_INIT_TRAINER_ID > /trainer_id + # FIXME: /trainer_count = PADDLE_INIT_NUM_GRADIENT_SERVERS + stdbuf -oL echo $PADDLE_INIT_NUM_GRADIENT_SERVERS > /trainer_count + + # NOTE: $TRAINER_PACKAGE may be large, do not copy + export PYTHONPATH=$TRAINER_PACKAGE:$PYTHONPATH + cd $TRAINER_PACKAGE + + stdbuf -oL echo "Starting training job: " $TRAINER_PACKAGE, "num_gradient_servers:" \ + $PADDLE_INIT_NUM_GRADIENT_SERVERS, "trainer_id: " $PADDLE_INIT_TRAINER_ID, \ + "version: " $1 + + # FIXME: If we use the new PServer by Golang, add Kubernetes healthz + # to wait PServer process get ready.Now only sleep 20 seconds. + sleep 20 + + case "$1" in + "v1") + FILE_COUNT=$(wc -l $TRAIN_LIST | awk '{print $1}') + if [ $FILE_COUNT -le $PADDLE_INIT_NUM_GRADIENT_SERVERS ]; then + echo "file count less than trainers" + check_trainer_ret 0 + fi + let lines_per_node="$FILE_COUNT / ($PADDLE_INIT_NUM_GRADIENT_SERVERS + 1)" + echo "spliting file to" $lines_per_node + cp $TRAIN_LIST / + cd / + split -l $lines_per_node -d -a 3 $TRAIN_LIST train.list + CURRENT_LIST=$(printf "train.list%03d" $PADDLE_INIT_TRAINER_ID) + # always use /train.list for paddle v1 for each node. + echo "File for current node ${CURRENT_LIST}" + sleep 10 + cp $CURRENT_LIST train.list + + cd $TRAINER_PACKAGE + + stdbuf -oL paddle train \ + --port=$PADDLE_INIT_PORT \ + --nics=$PADDLE_INIT_NICS \ + --ports_num=$PADDLE_INIT_PORTS_NUM \ + --ports_num_for_sparse=$PADDLE_INIT_PORTS_NUM_FOR_SPARSE \ + --num_passes=$PADDLE_INIT_NUM_PASSES \ + --trainer_count=$PADDLE_INIT_TRAINER_COUNT \ + --saving_period=1 \ + --log_period=20 \ + --local=0 \ + --rdma_tcp=tcp \ + --config=$TOPOLOGY \ + --use_gpu=$PADDLE_INIT_USE_GPU \ + --trainer_id=$PADDLE_INIT_TRAINER_ID \ + --save_dir=$OUTPUT \ + --pservers=$PADDLE_INIT_PSERVERS \ + --num_gradient_servers=$PADDLE_INIT_NUM_GRADIENT_SERVERS + # paddle v1 API does not allow any trainer failed. + check_trainer_ret $? + ;; + "v2") + stdbuf -oL sh -c "${ENTRY}" + # paddle v2 API does not allow any trainer failed. + check_trainer_ret $? + ;; + *) + ;; + esac +} + +usage() { + echo "usage: paddle_k8s []:" + echo " start_trainer [v1|v2] Start a trainer process with v1 or v2 API" + echo " start_pserver Start a pserver process" + echo " start_new_pserver Start a new pserver process" + echo " start_new_trainer Start a new triner process" +} + +case "$1" in + start_pserver) + start_pserver + ;; + start_trainer) + start_trainer $2 + ;; + start_new_trainer) + start_new_trainer + ;; + start_new_pserver) + start_new_pserver + ;; + start_master) + start_master + ;; + start_fluid) + start_fluid_process + ;; + --help) + usage + ;; + *) + usage + ;; +esac + diff --git a/benchmark/cluster/vgg16/fluid/pserver.yaml b/benchmark/cluster/vgg16/fluid/pserver.yaml new file mode 100644 index 0000000000000000000000000000000000000000..47d2380d2eaa0008d2edbcc85f1d76b126c356fd --- /dev/null +++ b/benchmark/cluster/vgg16/fluid/pserver.yaml @@ -0,0 +1,72 @@ +apiVersion: extensions/v1beta1 +kind: ReplicaSet +metadata: + name: vgg16job-pserver +spec: + replicas: 10 + template: + metadata: + labels: + paddle-job-pserver: vgg16job + spec: + hostNetwork: true + imagePullSecrets: + - name: job-registry-secret + containers: + - name: pserver + image: "registry.baidu.com/paddlepaddle/rawjob:vgg16_fluid" + imagePullPolicy: Always + ports: + - name: jobport-30236 + containerPort: 30236 + env: + - name: PADDLE_JOB_NAME + value: vgg16job + - name: MKL_NUM_THREADS + value: "1" + - name: TRAINING_ROLE + value: "PSERVER" + - name: TRAINERS + value: "20" + - name: PSERVERS + value: "10" + - name: TOPOLOGY + value: "" + - name: ENTRY + value: "MKL_NUM_THREADS=1 python /workspace/vgg16.py --local 0" + - name: TRAINER_PACKAGE + value: "/workspace" + - name: PADDLE_INIT_PORT + value: "30236" + - name: PADDLE_INIT_NICS + value: "xgbe0" + - name: PADDLE_INIT_TRAINER_COUNT + value: "1" + - name: PADDLE_INIT_PORTS_NUM + value: "1" + - name: PADDLE_INIT_PORTS_NUM_FOR_SPARSE + value: "1" + - name: PADDLE_INIT_NUM_GRADIENT_SERVERS + value: "20" + - name: PADDLE_INIT_NUM_PASSES + value: "1" + - name: PADDLE_INIT_USE_GPU + value: "0" + - name: LD_LIBRARY_PATH + value: "/usr/local/nvidia/lib64" + - name: NAMESPACE + valueFrom: + fieldRef: + fieldPath: "metadata.namespace" + - name: POD_IP + valueFrom: + fieldRef: + fieldPath: "status.podIP" + command: ["paddle_k8s", "start_fluid"] + resources: + requests: + memory: 10Gi + cpu: 4 + limits: + memory: 10Gi + cpu: 4 diff --git a/benchmark/cluster/vgg16/fluid/reader.py b/benchmark/cluster/vgg16/fluid/reader.py new file mode 100644 index 0000000000000000000000000000000000000000..c5161ddea267e6c18738b02c34235ec88244be44 --- /dev/null +++ b/benchmark/cluster/vgg16/fluid/reader.py @@ -0,0 +1,2 @@ +import paddle.v2 as paddle +paddle.dataset.cifar.train10() diff --git a/benchmark/cluster/vgg16/fluid/trainer.yaml b/benchmark/cluster/vgg16/fluid/trainer.yaml new file mode 100644 index 0000000000000000000000000000000000000000..bada190764aa238549fb85e8b27031d4a4f98c61 --- /dev/null +++ b/benchmark/cluster/vgg16/fluid/trainer.yaml @@ -0,0 +1,69 @@ +apiVersion: batch/v1 +kind: Job +metadata: + name: vgg16job-trainer +spec: + parallelism: 20 + completions: 20 + template: + metadata: + labels: + paddle-job: vgg16job + spec: + imagePullSecrets: + - name: job-registry-secret + hostNetwork: true + containers: + - name: trainer + image: "registry.baidu.com/paddlepaddle/rawjob:vgg16_fluid" + imagePullPolicy: Always + command: ["paddle_k8s", "start_trainer", "v2"] + env: + - name: PADDLE_JOB_NAME + value: vgg16job + - name: TRAINING_ROLE + value: "TRAINER" + - name: TRAINERS + value: "20" + - name: PSERVERS + value: "10" + - name: TOPOLOGY + value: "" + - name: ENTRY + value: "cd /workspace && MKL_NUM_THREADS=1 python /workspace/vgg16.py" + - name: TRAINER_PACKAGE + value: "/workspace" + - name: PADDLE_INIT_PORT + value: "30236" + - name: PADDLE_INIT_NICS + value: "xgbe0" + - name: PADDLE_INIT_TRAINER_COUNT + value: "1" + - name: PADDLE_INIT_PORTS_NUM + value: "1" + - name: PADDLE_INIT_PORTS_NUM_FOR_SPARSE + value: "1" + - name: PADDLE_INIT_NUM_GRADIENT_SERVERS + value: "20" + - name: PADDLE_INIT_NUM_PASSES + value: "1" + - name: PADDLE_INIT_USE_GPU + value: "0" + - name: LD_LIBRARY_PATH + value: "/usr/local/nvidia/lib64" + - name: NAMESPACE + valueFrom: + fieldRef: + fieldPath: "metadata.namespace" + - name: POD_IP + valueFrom: + fieldRef: + fieldPath: "status.podIP" + resources: + requests: + memory: 40Gi + cpu: 2 + limits: + memory: 40Gi + cpu: 2 + restartPolicy: Never diff --git a/benchmark/cluster/vgg16/fluid/vgg16.py b/benchmark/cluster/vgg16/fluid/vgg16.py new file mode 100644 index 0000000000000000000000000000000000000000..0595a28784b9c6fbcd81a2362ab1cfc05408d192 --- /dev/null +++ b/benchmark/cluster/vgg16/fluid/vgg16.py @@ -0,0 +1,248 @@ +"""VGG16 benchmark in Fluid""" +from __future__ import print_function + +import sys +import time +import numpy as np +import paddle.v2 as paddle +import paddle.v2.fluid as fluid +import paddle.v2.fluid.core as core +import argparse +import functools +import os + +def str2bool(v): + if v.lower() in ('yes', 'true', 't', 'y', '1'): + return True + elif v.lower() in ('no', 'false', 'f', 'n', '0'): + return False + else: + raise argparse.ArgumentTypeError('Boolean value expected.') + +parser = argparse.ArgumentParser(description=__doc__) +parser.add_argument( + '--batch_size', type=int, default=128, help="Batch size for training.") +parser.add_argument( + '--learning_rate', + type=float, + default=1e-3, + help="Learning rate for training.") +parser.add_argument('--num_passes', type=int, default=50, help="No. of passes.") +parser.add_argument( + '--device', + type=str, + default='CPU', + choices=['CPU', 'GPU'], + help="The device type.") +parser.add_argument( + '--data_format', + type=str, + default='NCHW', + choices=['NCHW', 'NHWC'], + help='The data order, now only support NCHW.') +parser.add_argument( + '--data_set', + type=str, + default='cifar10', + choices=['cifar10', 'flowers'], + help='Optional dataset for benchmark.') +parser.add_argument( + '--local', + type=str2bool, + default=True, + help='Whether to run as local mode.') +args = parser.parse_args() + + +def vgg16_bn_drop(input): + def conv_block(input, num_filter, groups, dropouts): + return fluid.nets.img_conv_group( + input=input, + pool_size=2, + pool_stride=2, + conv_num_filter=[num_filter] * groups, + conv_filter_size=3, + conv_act='relu', + conv_with_batchnorm=True, + conv_batchnorm_drop_rate=dropouts, + pool_type='max') + + conv1 = conv_block(input, 64, 2, [0.3, 0]) + conv2 = conv_block(conv1, 128, 2, [0.4, 0]) + conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0]) + conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0]) + conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0]) + + drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5) + fc1 = fluid.layers.fc(input=drop, size=512, act=None) + bn = fluid.layers.batch_norm(input=fc1, act='relu') + drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5) + fc2 = fluid.layers.fc(input=drop2, size=512, act=None) + return fc2 + + +def main(): + if args.data_set == "cifar10": + classdim = 10 + if args.data_format == 'NCHW': + data_shape = [3, 32, 32] + else: + data_shape = [32, 32, 3] + else: + classdim = 102 + if args.data_format == 'NCHW': + data_shape = [3, 224, 224] + else: + data_shape = [224, 224, 3] + + # Input data + images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32') + label = fluid.layers.data(name='label', shape=[1], dtype='int64') + + # Train program + net = vgg16_bn_drop(images) + predict = fluid.layers.fc(input=net, size=classdim, act='softmax') + cost = fluid.layers.cross_entropy(input=predict, label=label) + avg_cost = fluid.layers.mean(x=cost) + + # Evaluator + accuracy = fluid.evaluator.Accuracy(input=predict, label=label) + + # inference program + inference_program = fluid.default_main_program().clone() + with fluid.program_guard(inference_program): + test_target = accuracy.metrics + accuracy.states + inference_program = fluid.io.get_inference_program(test_target) + + # Optimization + optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate) + optimize_ops, params_grads = optimizer.minimize(avg_cost) + + # Initialize executor + place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0) + exe = fluid.Executor(place) + + + # test + def test(exe): + accuracy.reset(exe) + for batch_id, data in enumerate(test_reader()): + img_data = np.array(map(lambda x: x[0].reshape(data_shape), + data)).astype("float32") + y_data = np.array(map(lambda x: x[1], data)).astype("int64") + y_data = y_data.reshape([-1, 1]) + + exe.run(inference_program, + feed={"pixel": img_data, + "label": y_data}) + + return accuracy.eval(exe) + + def train_loop(exe, trainer_prog): + iters = 0 + for pass_id in range(args.num_passes): + # train + start_time = time.time() + num_samples = 0 + accuracy.reset(exe) + for batch_id, data in enumerate(train_reader()): + img_data = np.array(map(lambda x: x[0].reshape(data_shape), + data)).astype("float32") + y_data = np.array(map(lambda x: x[1], data)).astype("int64") + y_data = y_data.reshape([-1, 1]) + + loss, acc = exe.run(trainer_prog, + feed={"pixel": img_data, + "label": y_data}, + fetch_list=[avg_cost] + accuracy.metrics) + iters += 1 + num_samples += len(data) + print( + "Pass = %d, Iters = %d, Loss = %f, Accuracy = %f" % + (pass_id, iters, loss, acc) + ) # The accuracy is the accumulation of batches, but not the current batch. + + pass_elapsed = time.time() - start_time + pass_train_acc = accuracy.eval(exe) + pass_test_acc = test(exe) + print( + "Pass = %d, Training performance = %f imgs/s, Train accuracy = %f, Test accuracy = %f\n" + % (pass_id, num_samples / pass_elapsed, pass_train_acc, + pass_test_acc)) + + if args.local: + # Parameter initialization + exe.run(fluid.default_startup_program()) + + # data reader + train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.cifar.train10() + if args.data_set == 'cifar10' else paddle.dataset.flowers.train(), + buf_size=5120), + batch_size=args.batch_size) + test_reader = paddle.batch( + paddle.dataset.cifar.test10() + if args.data_set == 'cifar10' else paddle.dataset.flowers.test(), + batch_size=args.batch_size) + train_loop(exe, fluid.default_main_program()) + else: + pserver_ips = os.getenv("PADDLE_INIT_PSERVERS") # all pserver endpoints + eplist = [] + for ip in pserver_ips.split(","): + eplist.append(':'.join([ip, "6174"])) + pserver_endpoints = ",".join(eplist) + print("pserver endpoints: ", pserver_endpoints) + trainers = int(os.getenv("TRAINERS")) # total trainer count + current_endpoint = os.getenv("POD_IP") + ":6174" # current pserver endpoint + training_role = os.getenv("TRAINING_ROLE", + "TRAINER") # get the training role: trainer/pserver + t = fluid.DistributeTranspiler() + t.transpile( + optimize_ops, params_grads, pservers=pserver_endpoints, trainers=trainers) + + if training_role == "PSERVER": + if not current_endpoint: + print("need env SERVER_ENDPOINT") + exit(1) + pserver_prog = t.get_pserver_program(current_endpoint) + pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) + print("starting server side startup") + exe.run(pserver_startup) + print("starting parameter server...") + exe.run(pserver_prog) + elif training_role == "TRAINER": + # Parameter initialization + exe.run(fluid.default_startup_program()) + + # data reader + train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.cifar.train10() + if args.data_set == 'cifar10' else paddle.dataset.flowers.train(), + buf_size=5120), + batch_size=args.batch_size) + test_reader = paddle.batch( + paddle.dataset.cifar.test10() + if args.data_set == 'cifar10' else paddle.dataset.flowers.test(), + batch_size=args.batch_size) + + trainer_prog = t.get_trainer_program() + feeder = fluid.DataFeeder(feed_list=[images, label], place=place) + # TODO(typhoonzero): change trainer startup program to fetch parameters from pserver + exe.run(fluid.default_startup_program()) + train_loop(exe, trainer_prog) + else: + print("environment var TRAINER_ROLE should be TRAINER os PSERVER") + + +def print_arguments(): + print('----------- Configuration Arguments -----------') + for arg, value in sorted(vars(args).iteritems()): + print('%s: %s' % (arg, value)) + print('------------------------------------------------') + + +if __name__ == "__main__": + print_arguments() + main() diff --git a/benchmark/cluster/v2/Dockerfile b/benchmark/cluster/vgg16/v2/Dockerfile similarity index 81% rename from benchmark/cluster/v2/Dockerfile rename to benchmark/cluster/vgg16/v2/Dockerfile index ac85b1a7d06cd30f054e76745a93523ad5efcc30..5f129a8e323a72bd1f9e1ca9a2046ee2149f3a2c 100644 --- a/benchmark/cluster/v2/Dockerfile +++ b/benchmark/cluster/vgg16/v2/Dockerfile @@ -3,3 +3,5 @@ RUN mkdir -p /workspace ADD reader.py /workspace/ RUN python /workspace/reader.py ADD vgg16.py /workspace/ + +ADD vgg16_fluid.py /workspace diff --git a/benchmark/cluster/v2/pserver.yaml b/benchmark/cluster/vgg16/v2/pserver.yaml similarity index 100% rename from benchmark/cluster/v2/pserver.yaml rename to benchmark/cluster/vgg16/v2/pserver.yaml diff --git a/benchmark/cluster/v2/reader.py b/benchmark/cluster/vgg16/v2/reader.py similarity index 100% rename from benchmark/cluster/v2/reader.py rename to benchmark/cluster/vgg16/v2/reader.py diff --git a/benchmark/cluster/v2/trainer.yaml b/benchmark/cluster/vgg16/v2/trainer.yaml similarity index 100% rename from benchmark/cluster/v2/trainer.yaml rename to benchmark/cluster/vgg16/v2/trainer.yaml diff --git a/benchmark/cluster/v2/vgg16.py b/benchmark/cluster/vgg16/v2/vgg16.py similarity index 100% rename from benchmark/cluster/v2/vgg16.py rename to benchmark/cluster/vgg16/v2/vgg16.py