diff --git a/python/paddle/fluid/backward.py b/python/paddle/fluid/backward.py index 317c495643517969a4c65e784391519344f5e12f..38b6dc345d9aca0be08b10e7a016a48790f7d932 100644 --- a/python/paddle/fluid/backward.py +++ b/python/paddle/fluid/backward.py @@ -1020,6 +1020,26 @@ def _get_son_parent_block_idx_dict(program, current_block_idx): return son_parent_block_idx_dict +def _get_no_grad_set_name(no_grad_set): + no_grad_set_name = set() + if no_grad_set is not None: + if isinstance(no_grad_set, (set, list, tuple)): + for i, no_grad_var in enumerate(no_grad_set): + if isinstance(no_grad_var, framework.Variable): + no_grad_set_name.add(no_grad_var.name) + elif isinstance(no_grad_var, six.string_types): + no_grad_set_name.add(no_grad_var) + else: + raise TypeError( + "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s." + % (type(no_grad_var))) + else: + raise TypeError( + "The type of no_grad_set should be set or list or tuple, but received {}". + format(type(no_grad_set))) + return no_grad_set_name + + def append_backward(loss, parameter_list=None, no_grad_set=None, @@ -1043,11 +1063,11 @@ def append_backward(loss, If it is None, all parameters will be updated. Default: None. - no_grad_set(set[str], optional): Variable names in the :ref:`api_guide_Block_en` 0 whose gradients + no_grad_set(set[Variable|str], optional): Set of Variables or Variable.names in the :ref:`api_guide_Block_en` 0 whose gradients should be ignored. All variables with `stop_gradient=True` from all blocks will be automatically added into this set. - If this parameter is not None, the names in this set will be added to the default set. + If this parameter is not None, the Variables or Variable.names in this set will be added to the default set. Default: None. callbacks(list[callable object], optional): List of callback functions. The callbacks are used for @@ -1084,18 +1104,40 @@ def append_backward(loss, .. code-block:: python import paddle.fluid as fluid - x = fluid.data(name='x', shape=[None, 13], dtype='float32') - y = fluid.data(name='y', shape=[None, 1], dtype='float32') - y_predict = fluid.layers.fc(input=x, size=1, act=None) + x = fluid.data(name='x', shape=[None, 13], dtype='int64') + y = fluid.data(name='y', shape=[None, 1], dtype='float32') + x_emb = fluid.embedding(x, size=[100, 256]) + y_predict = fluid.layers.fc(input=x_emb, size=1, act=None, name='my_fc') loss = fluid.layers.square_error_cost(input=y_predict, label=y) - avg_loss = fluid.layers.mean(loss) - param_grad_list = fluid.backward.append_backward(loss=avg_loss) - p_g_list1 = fluid.backward.append_backward(loss=avg_loss) # len(p_g_list1) == 2 - p_g_list2 = fluid.backward.append_backward(loss=avg_loss, parameter_list=[p_g_list1[0][0].name]) # len(p_g_list1) == 1 - p_g_list3 = fluid.backward.append_backward(loss=avg_loss, no_grad_set=set([p_g_list1[0][0].name])) # len(p_g_list1) == 1 - p_g_list4 = fluid.backward.append_backward(loss=avg_loss, parameter_list=[p_g_list1[0][0].name], no_grad_set=set([p_g_list1[0][0].name])) # len(p_g_list1) == 0 + + # Get all weights in main_program, not include bias. + all_weights = [param for param in fluid.default_main_program().block(0).all_parameters() if 'w_' in param.name] + all_weights_name = [w.name for w in all_weights] + + # return all param_grads needed to be updated if parameter_list set default None. + p_g_list1 = fluid.backward.append_backward(loss=avg_loss) + # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)] + + # return the param_grads corresponding to parameter_list that can be list of param (Variable). + p_g_list2 = fluid.backward.append_backward(loss=avg_loss, parameter_list=all_weights) + # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)] + + # parameter_list can be list of param.name (str). + p_g_list3 = fluid.backward.append_backward(loss=avg_loss, parameter_list=all_weights_name) + # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)] + + # no_grad_set can be set of Variables that means grad will be cut off from these Variables. + p_g_list4 = fluid.backward.append_backward(loss=avg_loss, no_grad_set=set([x_emb])) + # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)] + + # no_grad_set can be set of Variable.name when the Variable is created inside layers and can't be specified explicitly. + p_g_list5 = fluid.backward.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0'])) + # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)] + + # return [] because all param_grads are filtered by no_grad_set. + p_g_list6 = fluid.backward.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights)) """ assert isinstance(loss, framework.Variable) @@ -1125,7 +1167,8 @@ def append_backward(loss, if no_grad_set is None: no_grad_set = set() - no_grad_set = copy.copy(no_grad_set) + else: + no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set)) no_grad_dict = _get_stop_gradients_(program) # no_grad_set only contains vars in block 0 # Todo(liym27): support vars in sub block @@ -1411,12 +1454,15 @@ def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None): Args: targets(Variable|list[Variable]): The target variables inputs(Variable|list[Variable]): The input variables - target_gradients (Variable|list[Variable]|None): The gradient variables + target_gradients (Variable|list[Variable], optional): The gradient variables of targets which has the same shape with targets, If None, ones will be created for them. - no_grad_set(set[string]): The names of variables that have no gradients - in Block 0. All variables with `stop_gradient=True` from all blocks - will be automatically added. + no_grad_set(set[Variable|str], optional): Set of Variables or Variable.names in the :ref:`api_guide_Block_en` 0 whose gradients + should be ignored. All variables with + `stop_gradient=True` from all blocks will + be automatically added into this set. + If this parameter is not None, the Variables or Variable.names in this set will be added to the default set. + Default: None. Return: (list[Variable]): A list of gradients for inputs @@ -1442,7 +1488,8 @@ def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None): if no_grad_set is None: no_grad_set = set() - no_grad_set = copy.copy(no_grad_set) + else: + no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set)) no_grad_dict = _get_stop_gradients_(prog) no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set))) @@ -1533,12 +1580,13 @@ def gradients(targets, inputs, target_gradients=None, no_grad_set=None): Args: targets (Variable|list[Variable]): The target variables. inputs (Variable|list[Variable]): The input variables. - target_gradients (Variable|list[Variable]|None): The gradient variables + target_gradients (Variable|list[Variable], optional): The gradient variables of targets which has the same shape with targets, If None, ones will be created for them. - no_grad_set (set[string]): The names of variables that have no gradients - in Block 0. All variables with `stop_gradient=True` from all blocks - will be automatically added. + no_grad_set (set[Variable|str], optional): Set of Variables or Variable.names in the :ref:`api_guide_Block_en` 0 whose gradients + should be ignored. All variables with `stop_gradient=True` from all blocks will + be automatically added into this set. If this parameter is not None, the Variables or Variable.names + in this set will be added to the default set. Default: None. Return: (list[Variable]): A list of gradients for inputs @@ -1550,7 +1598,7 @@ def gradients(targets, inputs, target_gradients=None, no_grad_set=None): import paddle.fluid as fluid - x = fluid.layers.data(name='x', shape=[2,8,8], dtype='float32') + x = fluid.data(name='x', shape=[None,2,8,8], dtype='float32') x.stop_gradient=False y = fluid.layers.conv2d(x, 4, 1, bias_attr=False) y = fluid.layers.relu(y) diff --git a/python/paddle/fluid/optimizer.py b/python/paddle/fluid/optimizer.py index 0fbf31b8ab124c7aaa292676eb689bf33a7c7c8e..ed44acaa9390c8060cafd2303fd1cbc21e004ed3 100644 --- a/python/paddle/fluid/optimizer.py +++ b/python/paddle/fluid/optimizer.py @@ -23,7 +23,7 @@ from paddle.fluid.framework import Program, Variable, name_scope, default_main_p from . import framework from . import layers from . import unique_name -from .backward import append_backward, _some_in_set_, _append_grad_suffix_ +from .backward import append_backward, _some_in_set_, _append_grad_suffix_, _get_no_grad_set_name from .clip import append_gradient_clip_ops, error_clip_callback from .framework import program_guard from .initializer import Constant @@ -599,7 +599,7 @@ class Optimizer(object): parameter_list (list, optional): List of ``Variable`` or ``Variable.name`` to update to minimize ``loss``. The default value is None, at this time all parameters will be updated. - no_grad_set (set, optional): Set of ``Variable`` objects that don't need + no_grad_set (set, optional): Set of ``Variable`` or ``Variable.name`` that don't need to be updated. The default value is None. callbacks (list, optional): list of callable objects to run when appending backward operator for one parameter. The default value is None. @@ -712,14 +712,7 @@ class Optimizer(object): return optimize_ops def _get_no_grad_set(self, loss, no_grad_set=None): - if no_grad_set is None: - no_grad_set = set() - elif isinstance(no_grad_set, set) or isinstance( - no_grad_set, list) or isinstance(no_grad_set, tuple): - no_grad_set = set(no_grad_set) - else: - assert "no_grad_set should be a set, but the passed type is {}".format( - type(no_grad_set)) + no_grad_set = _get_no_grad_set_name(no_grad_set) parameters = loss.block.program.global_block().all_parameters() param_no_trainable = set( [param.name for param in parameters if param.trainable is False]) @@ -777,7 +770,7 @@ class Optimizer(object): parameter_list (list, optional): List of ``Variable`` or ``Variable.name`` to update to minimize ``loss``. The default value is None, at this time all parameters will be updated. - no_grad_set (set, optional): Set of ``Variable`` objects that don't need + no_grad_set (set, optional): Set of ``Variable`` or ``Variable.name`` that don't need to be updated. The default value is None. grad_clip (GradClipBase, optional) : Gradient clipping strategy, static graph mode does not need to use this argument. Currently, this argument @@ -3850,8 +3843,8 @@ class RecomputeOptimizer(Optimizer): loss (Variable): loss variable to run optimizations. startup_program (Program): startup_program for initializing parameters in `parameter_list`. - parameter_list (list): list of Variables to update. - no_grad_set (set|None): set of Variables should be ignored. + parameter_list (list): list of Variables or Variable.names to update. + no_grad_set (set|None): set of Variables or Variables.names should be ignored. callbacks (list|None): list of callables to run when appending backward operator for one parameter. checkpoints (list): list of Variables as checkpoints diff --git a/python/paddle/fluid/tests/unittests/test_backward.py b/python/paddle/fluid/tests/unittests/test_backward.py index ecf3c043f6b72055981fc10460b01efc4c6f8063..090ac1547f3b3a247587aac38243c83de4e2ee95 100644 --- a/python/paddle/fluid/tests/unittests/test_backward.py +++ b/python/paddle/fluid/tests/unittests/test_backward.py @@ -142,6 +142,21 @@ class TestBackward(unittest.TestCase): exe.run(startup) exe.run(feed=net.init_data()) + def _check_error_no_grad_set(self, net, no_grad_set): + place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda( + ) else fluid.CPUPlace() + exe = fluid.Executor(place) + + main = fluid.Program() + startup = fluid.Program() + + with fluid.program_guard(main, startup): + loss = net.build_model() + optimizer = fluid.optimizer.SGD(learning_rate=0.1) + optimizer.minimize(loss, no_grad_set=no_grad_set) + exe.run(startup) + exe.run(feed=net.init_data()) + class SimpleNet(BackwardNet): def __init__(self): @@ -233,12 +248,25 @@ class TestSimpleNetWithErrorParamList(TestBackward): # The type of parameter_list argument must be list or tuple with self.assertRaises(TypeError): self._check_error_param_list(self.net, "test") - # The type of parameter_list's member must be varable or str + # The type of parameter_list's member must be Variable or str test = fluid.data(name='test', shape=[None, 90], dtype='float32') with self.assertRaises(TypeError): self._check_error_param_list(self.net, [test, "test", 3]) +class TestSimpleNetWithErrorNoGradSet(TestBackward): + def test_no_grad_set_type_error(self): + self.global_block_idx = 0 + self.net = SimpleNet() + # The type of no_grad_set argument must be set or list or tuple + with self.assertRaises(TypeError): + self._check_error_no_grad_set(self.net, "test") + # The type of no_grad_set's member must be Variable or str + test = fluid.data(name='test', shape=[None, 90], dtype='float32') + with self.assertRaises(TypeError): + self._check_error_no_grad_set(self.net, [test, "test", 3]) + + # TODO(Aurelius84): add conditional network test class ConditionalNet(BackwardNet): def __init__(self): diff --git a/python/paddle/fluid/tests/unittests/test_fused_emb_seq_pool_op.py b/python/paddle/fluid/tests/unittests/test_fused_emb_seq_pool_op.py index b7ebfc6b9ff7b3b68d2dc64cd1371b0d6d05f4b6..d756394535a9e5ef154b437c5f2764c6af06ff26 100644 --- a/python/paddle/fluid/tests/unittests/test_fused_emb_seq_pool_op.py +++ b/python/paddle/fluid/tests/unittests/test_fused_emb_seq_pool_op.py @@ -55,7 +55,7 @@ class TestFusedEmbeddingSeqPoolOp(OpTest): if ver.mkl() == "ON" and 'Linux' in platform.platform(): self.attrs = {'is_sparse': False} self.check_grad( - ['W'], 'Out', no_grad_set=('Ids'), check_dygraph=False) + ['W'], 'Out', no_grad_set=['Ids'], check_dygraph=False) class TestLookupTableOpWithPadding(TestFusedEmbeddingSeqPoolOp): @@ -89,7 +89,7 @@ class TestLookupTableOpWithPadding(TestFusedEmbeddingSeqPoolOp): self.attrs = {'padding_idx': int(padding_idx), 'is_sparse': False} # TODO(wangzhongpu): support lod in dygraph mode self.check_grad( - ['W'], 'Out', no_grad_set=('Ids'), check_dygraph=False) + ['W'], 'Out', no_grad_set=['Ids'], check_dygraph=False) class TestFusedEmbeddingSeqPoolApi(unittest.TestCase):