diff --git a/demo/image_classification/train_v2_resnet.py b/demo/image_classification/train_v2_resnet.py new file mode 100644 index 0000000000000000000000000000000000000000..fdfa87cd8755e37b293e97b46575347ffbf08bc4 --- /dev/null +++ b/demo/image_classification/train_v2_resnet.py @@ -0,0 +1,158 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle.v2 as paddle + + +def event_handler(event): + if isinstance(event, paddle.event.EndIteration): + if event.batch_id % 100 == 0: + print "Pass %d, Batch %d, Cost %f" % (event.pass_id, event.batch_id, + event.cost) + + +def conv_bn_layer(input, + ch_out, + filter_size, + stride, + padding, + active_type=paddle.activation.Relu(), + ch_in=None): + tmp = paddle.layer.img_conv( + input=input, + filter_size=filter_size, + num_channels=ch_in, + num_filters=ch_out, + stride=stride, + padding=padding, + act=paddle.activation.Linear(), + bias_attr=False) + return paddle.layer.batch_norm(input=tmp, act=active_type) + + +def shortcut(ipt, n_in, n_out, stride): + if n_in != n_out: + print("n_in != n_out") + return conv_bn_layer(ipt, n_out, 1, stride, 0, + paddle.activation.Linear()) + else: + return ipt + + +def basicblock(ipt, ch_out, stride): + ch_in = ipt.num_filters + tmp = conv_bn_layer(ipt, ch_out, 3, stride, 1) + tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, paddle.activation.Linear()) + short = shortcut(ipt, ch_in, ch_out, stride) + return paddle.layer.addto(input=[tmp, short], act=paddle.activation.Relu()) + + +def bottleneck(ipt, ch_out, stride): + ch_in = ipt.num_filter + tmp = conv_bn_layer(ipt, ch_out, 1, stride, 0) + tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1) + tmp = conv_bn_layer(tmp, ch_out * 4, 1, 1, 0, paddle.activation.Linear()) + short = shortcut(ipt, ch_in, ch_out * 4, stride) + return paddle.layer.addto(input=[tmp, short], act=paddle.activation.Relu()) + + +def layer_warp(block_func, ipt, features, count, stride): + tmp = block_func(ipt, features, stride) + for i in range(1, count): + tmp = block_func(tmp, features, 1) + return tmp + + +def resnet_imagenet(ipt, depth=50): + cfg = { + 18: ([2, 2, 2, 1], basicblock), + 34: ([3, 4, 6, 3], basicblock), + 50: ([3, 4, 6, 3], bottleneck), + 101: ([3, 4, 23, 3], bottleneck), + 152: ([3, 8, 36, 3], bottleneck) + } + stages, block_func = cfg[depth] + tmp = conv_bn_layer( + ipt, ch_in=3, ch_out=64, filter_size=7, stride=2, padding=3) + tmp = paddle.layer.img_pool(input=tmp, pool_size=3, stride=2) + tmp = layer_warp(block_func, tmp, 64, stages[0], 1) + tmp = layer_warp(block_func, tmp, 128, stages[1], 2) + tmp = layer_warp(block_func, tmp, 256, stages[2], 2) + tmp = layer_warp(block_func, tmp, 512, stages[3], 2) + tmp = paddle.layer.img_pool( + input=tmp, pool_size=7, stride=1, pool_type=paddle.pooling.Avg()) + + tmp = paddle.layer.fc(input=tmp, size=1000, act=paddle.activation.Softmax()) + return tmp + + +def resnet_cifar10(ipt, depth=32): + # depth should be one of 20, 32, 44, 56, 110, 1202 + assert (depth - 2) % 6 == 0 + n = (depth - 2) / 6 + nStages = {16, 64, 128} + conv1 = conv_bn_layer( + ipt, ch_in=3, ch_out=16, filter_size=3, stride=1, padding=1) + res1 = layer_warp(basicblock, conv1, 16, n, 1) + res2 = layer_warp(basicblock, res1, 32, n, 2) + res3 = layer_warp(basicblock, res2, 64, n, 2) + pool = paddle.layer.img_pool( + input=res3, pool_size=8, stride=1, pool_type=paddle.pooling.Avg()) + return pool + + +def main(): + datadim = 3 * 32 * 32 + classdim = 10 + + paddle.init(use_gpu=False, trainer_count=1) + + image = paddle.layer.data( + name="image", type=paddle.data_type.dense_vector(datadim)) + net = resnet_cifar10(image, depth=32) + out = paddle.layer.fc(input=net, + size=classdim, + act=paddle.activation.Softmax()) + + lbl = paddle.layer.data( + name="label", type=paddle.data_type.integer_value(classdim)) + cost = paddle.layer.classification_cost(input=out, label=lbl) + + parameters = paddle.parameters.create(cost) + + momentum_optimizer = paddle.optimizer.Momentum( + momentum=0.9, + regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128), + learning_rate=0.1 / 128.0, + learning_rate_decay_a=0.1, + learning_rate_decay_b=50000 * 100, + learning_rate_schedule='discexp', + batch_size=128) + + trainer = paddle.trainer.SGD(update_equation=momentum_optimizer) + trainer.train( + reader=paddle.reader.batched( + paddle.reader.shuffle( + paddle.dataset.cifar.train10(), buf_size=3072), + batch_size=128), + cost=cost, + num_passes=1, + parameters=parameters, + event_handler=event_handler, + reader_dict={'image': 0, + 'label': 1}, ) + + +if __name__ == '__main__': + main() diff --git a/demo/image_classification/train_v2_vgg.py b/demo/image_classification/train_v2_vgg.py index 25bfd798ebf828caad543c4e23cc48e74d82b5d0..5656ac85c6125c37fcaef50aef4145a891f8bf1b 100644 --- a/demo/image_classification/train_v2_vgg.py +++ b/demo/image_classification/train_v2_vgg.py @@ -1,3 +1,17 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + import paddle.v2 as paddle @@ -20,7 +34,7 @@ def vgg_bn_drop(input): conv_act=paddle.activation.Relu(), conv_with_batchnorm=True, conv_batchnorm_drop_rate=dropouts, - pool_type=pooling.Max()) + pool_type=paddle.pooling.Max()) conv1 = conv_block(input, 64, 2, [0.3, 0], 3) conv2 = conv_block(conv1, 128, 2, [0.4, 0])