From d15cbe70b2dc5a09d7fe52f8b26d7b1a0820cf8f Mon Sep 17 00:00:00 2001 From: LiuChiachi <709153940@qq.com> Date: Wed, 30 Sep 2020 11:30:08 +0800 Subject: [PATCH] Remove Input requirement in dygraph for Model (#27557) * remove input requirment in dygraph Model * correct unittest * upadte save inference model in dygraph without input * fix unittets for test_model.py * solve conflicts * solve conflicts * delete http.log * fix test_model.py bug, correct initialization of MyModel * fix unittests bugs * set paddle manual seed for unittest * fix Model bugs, because inputs can be list or dict when it is provided. * add random seed for test_export_deploy_model * delete redundant codes, because calls * Code optimization, error information optimization --- python/paddle/hapi/model.py | 84 +++++++++++++++++++++++++----- python/paddle/tests/test_model.py | 86 +++++++++++++++++-------------- 2 files changed, 119 insertions(+), 51 deletions(-) diff --git a/python/paddle/hapi/model.py b/python/paddle/hapi/model.py index 1bfe8f07a2..8505544a71 100644 --- a/python/paddle/hapi/model.py +++ b/python/paddle/hapi/model.py @@ -200,6 +200,15 @@ def prepare_distributed_context(place=None): return strategy +def _update_input_shapes(inputs): + shapes = None + if isinstance(inputs, list): + shapes = [list(input.shape) for input in inputs] + elif isinstance(inputs, dict): + shapes = [list(inputs[name].shape) for name in inputs] + return shapes + + class StaticGraphAdapter(object): """ Model traning/inference with a static graph. @@ -598,6 +607,7 @@ class DynamicGraphAdapter(object): 'test_batch': 0 } + self._input_shapes = None if self._nranks > 1: stradegy = fluid.dygraph.parallel.ParallelStrategy() stradegy.nranks = ParallelEnv().nranks @@ -622,6 +632,7 @@ class DynamicGraphAdapter(object): self.model.network.train() self.mode = 'train' inputs = to_list(inputs) + self._input_shapes = _update_input_shapes(inputs) labels = labels or [] labels = [to_variable(l) for l in to_list(labels)] @@ -656,6 +667,7 @@ class DynamicGraphAdapter(object): self.model.network.eval() self.mode = 'eval' inputs = to_list(inputs) + self._input_shapes = _update_input_shapes(inputs) labels = labels or [] labels = [to_variable(l) for l in to_list(labels)] @@ -704,6 +716,7 @@ class DynamicGraphAdapter(object): self.model.network.eval() self.mode = 'test' inputs = [to_variable(x) for x in to_list(inputs)] + self._input_shapes = _update_input_shapes(inputs) outputs = self.model.network.forward(*inputs) if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace): outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)] @@ -778,7 +791,7 @@ class DynamicGraphAdapter(object): if not hasattr(self.model._optimizer, 'set_state_dict'): warnings.warn( - "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead" + "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead." ) self.model._optimizer.set_dict(converted_state) else: @@ -792,14 +805,15 @@ class Model(object): switched by `paddle.disable_static()`. The usage is as follows. But note, the switching between dynamic and static should be before instantiating a Model. The input description, i.e, paddle.static.InputSpec, - must be required. + must be required for static graph. Args: network (paddle.nn.Layer): The network is an instance of paddle.nn.Layer. inputs (InputSpec|list|dict|None): `inputs`, entry points of network, could be a InputSpec instance, or lits of InputSpec instances, - or dict ({name: InputSpec}), and it couldn't be None. + or dict ({name: InputSpec}), and it couldn't be None in static + graph. labels (InputSpec|list|None): `labels`, entry points of network, could be a InputSpec instnace or lits of InputSpec instances, or None. For static graph, if labels is required in loss, @@ -844,14 +858,18 @@ class Model(object): self._loss = None self._loss_weights = None self._optimizer = None - self._optimizer = None + self._input_shapes = None + self._is_shape_inferred = False self._test_dataloader = None - if not isinstance(inputs, (list, dict, Input)): - raise TypeError( - "'inputs' must be list or dict in static graph mode") + if not in_dygraph_mode(): + if not isinstance(inputs, (list, dict, Input)): + raise TypeError( + "'inputs' must be list or dict, and couldn't be None.") + elif inputs: + self._input_shapes = _update_input_shapes(inputs) - self._inputs = self._verify_spec(inputs, True) + self._inputs = self._verify_spec(inputs, is_input=True) self._labels = self._verify_spec(labels) # init backend @@ -902,7 +920,12 @@ class Model(object): loss = model.train_batch([data], [label]) print(loss) """ - return self._adapter.train_batch(inputs, labels) + loss = self._adapter.train_batch(inputs, labels) + if fluid.in_dygraph_mode() and self._input_shapes is None: + self._input_shapes = self._adapter._input_shapes + self._is_shape_inferred = True + self._inputs = self._verify_spec(None, self._input_shapes, True) + return loss def eval_batch(self, inputs, labels=None): """ @@ -947,7 +970,12 @@ class Model(object): loss = model.eval_batch([data], [label]) print(loss) """ - return self._adapter.eval_batch(inputs, labels) + loss = self._adapter.eval_batch(inputs, labels) + if fluid.in_dygraph_mode() and self._input_shapes is None: + self._input_shapes = self._adapter._input_shapes + self._is_shape_inferred = True + self._inputs = self._verify_spec(None, self._input_shapes, True) + return loss def test_batch(self, inputs): """ @@ -987,7 +1015,12 @@ class Model(object): out = model.test_batch([data]) print(out) """ - return self._adapter.test_batch(inputs) + loss = self._adapter.test_batch(inputs) + if fluid.in_dygraph_mode() and self._input_shapes is None: + self._input_shapes = self._adapter._input_shapes + self._is_shape_inferred = True + self._inputs = self._verify_spec(None, self._input_shapes, True) + return loss def save(self, path, training=True): """ @@ -1677,6 +1710,14 @@ class Model(object): if fluid.in_dygraph_mode(): with fluid.framework._dygraph_guard(None): layer = self.network + if self._input_shapes is None: # No provided or inferred + raise RuntimeError( + "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training zqqdata and perform a training for shape derivation." + ) + if self._is_shape_inferred: + warnings.warn( + "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization." + % self._input_shapes) layer.forward = paddle.jit.to_static( layer.forward, input_spec=self._inputs) @@ -1775,6 +1816,7 @@ class Model(object): data = flatten(data) # LoDTensor.shape is callable, where LoDTensor comes from # DataLoader in static graph + batch_size = data[0].shape()[0] if callable(data[ 0].shape) else data[0].shape[0] @@ -1864,10 +1906,26 @@ class Model(object): _input_size = self._inputs return summary(self.network, _input_size, dtype) - def _verify_spec(self, specs, is_input=False): + def _verify_spec(self, specs, shapes=None, is_input=False): out_specs = [] - if isinstance(specs, dict): + if specs is None: + # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function + # to generate `Input`. But how can we know the actual shape of each input tensor? + + if is_input: + arg_names = extract_args(self.network.forward)[1:] + if shapes is not None and fluid.in_dygraph_mode(): + out_specs = [ + Input( + name=n, shape=shapes[i]) + for i, n in enumerate(arg_names) + ] + else: + out_specs = [Input(name=n, shape=[None]) for n in arg_names] + else: + out_specs = to_list(specs) + elif isinstance(specs, dict): assert is_input == False out_specs = [specs[n] \ for n in extract_args(self.network.forward) if n != 'self'] diff --git a/python/paddle/tests/test_model.py b/python/paddle/tests/test_model.py index 5a3d837407..96c4483a35 100644 --- a/python/paddle/tests/test_model.py +++ b/python/paddle/tests/test_model.py @@ -66,34 +66,6 @@ class LeNetDygraph(paddle.nn.Layer): return x -class LeNetDeclarative(fluid.dygraph.Layer): - def __init__(self, num_classes=10): - super(LeNetDeclarative, self).__init__() - self.num_classes = num_classes - self.features = Sequential( - Conv2d( - 1, 6, 3, stride=1, padding=1), - ReLU(), - Pool2D(2, 'max', 2), - Conv2d( - 6, 16, 5, stride=1, padding=0), - ReLU(), - Pool2D(2, 'max', 2)) - - if num_classes > 0: - self.fc = Sequential( - Linear(400, 120), Linear(120, 84), Linear(84, 10)) - - @declarative - def forward(self, inputs): - x = self.features(inputs) - - if self.num_classes > 0: - x = fluid.layers.flatten(x, 1) - x = self.fc(x) - return x - - class MnistDataset(MNIST): def __init__(self, mode, return_label=True, sample_num=None): super(MnistDataset, self).__init__(mode=mode) @@ -440,9 +412,7 @@ class TestModelFunction(unittest.TestCase): # dynamic saving device = paddle.set_device('cpu') fluid.enable_dygraph(device) - inputs = [InputSpec([None, 20], 'float32', 'x')] - labels = [InputSpec([None, 1], 'int64', 'label')] - model = Model(MyModel(), inputs, labels) + model = Model(MyModel()) optim = fluid.optimizer.SGD(learning_rate=0.001, parameter_list=model.parameters()) model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum")) @@ -545,6 +515,8 @@ class TestModelFunction(unittest.TestCase): paddle.summary(nlp_net, (1, 1, 2)) def test_export_deploy_model(self): + self.set_seed() + np.random.seed(2020) for dynamic in [True, False]: paddle.disable_static() if dynamic else None prog_translator = ProgramTranslator() @@ -579,6 +551,35 @@ class TestModelFunction(unittest.TestCase): shutil.rmtree(save_dir) paddle.enable_static() + def test_dygraph_export_deploy_model_without_inputs(self): + mnist_data = MnistDataset(mode='train') + paddle.disable_static() + for initial in ["fit", "train_batch", "eval_batch", "test_batch"]: + save_dir = tempfile.mkdtemp() + if not os.path.exists(save_dir): + os.makedirs(save_dir) + net = LeNet() + model = Model(net) + optim = fluid.optimizer.Adam( + learning_rate=0.001, parameter_list=model.parameters()) + model.prepare( + optimizer=optim, loss=CrossEntropyLoss(reduction="sum")) + if initial == "fit": + model.fit(mnist_data, batch_size=64, verbose=0) + else: + img = np.array( + np.random.random((1, 1, 28, 28)), dtype=np.float32) + label = np.array(np.random.rand(1, 1), dtype=np.int64) + if initial == "train_batch": + model.train_batch([img], [label]) + elif initial == "eval_batch": + model.eval_batch([img], [label]) + else: + model.test_batch([img]) + + model.save(save_dir, training=False) + shutil.rmtree(save_dir) + class TestRaiseError(unittest.TestCase): def test_input_without_name(self): @@ -589,13 +590,22 @@ class TestRaiseError(unittest.TestCase): with self.assertRaises(ValueError): model = Model(net, inputs, labels) - def test_input_without_input_spec(self): - for dynamic in [True, False]: - paddle.disable_static() if dynamic else None - net = MyModel() - with self.assertRaises(TypeError): - model = Model(net) - paddle.enable_static() + def test_static_without_inputs(self): + paddle.enable_static() + net = MyModel() + with self.assertRaises(TypeError): + model = Model(net) + + def test_save_infer_model_without_inputs_and_run_in_dygraph(self): + paddle.disable_static() + net = MyModel() + save_dir = tempfile.mkdtemp() + if not os.path.exists(save_dir): + os.makedirs(save_dir) + with self.assertRaises(RuntimeError): + model = Model(net) + model.save(save_dir, training=False) + paddle.enable_static() if __name__ == '__main__': -- GitLab