提交 d0b77d89 编写于 作者: X xushaoyong

update paddle homepage

上级 bd47cd75
......@@ -2340,7 +2340,7 @@ html {
min-width: 1080px;
position: relative;
z-index: 1;
font-family: 'NotoSansHans', 'Microsoft Yahei', Arial, serif;
font-family: tahoma,arial,Hiragino Sans GB,Microsoft YaHei;
margin: 0;
}
ul {
......@@ -2361,38 +2361,27 @@ a {
text-decoration: none;
cursor: pointer;
}
h2 {
font-size: 20px;
color: #2f323a;
text-align: center;
line-height: 20px;
padding: 50px 0;
margin: 0;
font-weight: 300;
position: relative;
}
header.site-header {
height: 760px;
margin: 0;
background: url(./../images/banner.jpg) no-repeat center;
background-size: cover;
text-align: center;
height: 60px;
background-color: #000000;
padding: 0 100px;
}
header.site-header > nav.row > * {
display: inline-block;
height: 70px;
height: 60px;
}
header.site-header .logo {
height: 70px;
height: 60px;
float: left;
}
header.site-header .logo > img {
height: 50px;
margin-top: 10px;
height: 40px;
margin: 10px 10px 10px 10px;
}
header.site-header .top-nav {
float: right;
font-size: 16px;
margin-left: 80px;
margin-right: auto;
font-size: 14px;
}
header.site-header .top-nav .site-links {
float: left;
......@@ -2401,12 +2390,12 @@ header.site-header .top-nav .site-links {
header.site-header .top-nav .site-links > li {
display: inline-block;
float: left;
height: 70px;
height: 60px;
}
header.site-header .top-nav .site-links > li > a {
display: inline-block;
height: 100%;
line-height: 70px;
line-height: 60px;
padding: 0 20px;
color: rgba(255, 255, 255, 0.7);
}
......@@ -2414,69 +2403,92 @@ header.site-header .top-nav .site-links > li > a.active,
header.site-header .top-nav .site-links > li > a:hover {
color: #fff;
}
header.site-header .top-nav .language-switcher {
header.site-header .top-nav .version-switcher {
position: relative;
display: inline-block;
height: 70px;
height: 60px;
float: left;
}
header.site-header .top-nav .language-switcher:hover > a {
header.site-header .top-nav .version-switcher:hover > a {
color: #fff;
}
header.site-header .top-nav .language-switcher:hover > a .fa::before {
header.site-header .top-nav .version-switcher:hover > a .fa::before {
content: "\F106";
}
header.site-header .top-nav .language-switcher::before {
content: "";
header.site-header .top-nav .version-switcher > a {
color: rgba(255, 255, 255, 0.7);
line-height: 60px;
display: inline-block;
width: 1px;
height: 16px;
top: 27px;
padding: 0 20px;
}
header.site-header .top-nav .version-switcher > a .fa::before {
margin-left: 5px;
content: "\F107";
}
header.site-header .top-nav .version-switcher ul {
display: none;
top: 50px;
width: 60px;
text-align: center;
line-height: 30px;
background: rgba(0, 0, 0, 0.85);
color: #0073eb;
position: absolute;
background-color: #64697b;
left: 0;
}
header.site-header .top-nav .language-switcher::after {
content: "";
header.site-header .top-nav .version-switcher ul > li > a {
color: #ababab;
}
header.site-header .top-nav .version-switcher ul > li > a:hover {
color: #0073eb;
}
header.site-header .top-nav .version-switcher:hover ul {
display: inline-block;
width: 1px;
height: 16px;
top: 27px;
position: absolute;
background-color: #64697b;
right: 0;
}
header.site-header .top-nav .language-switcher > a {
header.site-header .right-nav {
float: right;
font-size: 14px;
}
header.site-header .right-nav .language-switcher {
position: relative;
display: inline-block;
height: 60px;
float: left;
}
header.site-header .right-nav .language-switcher:hover > a {
color: #fff;
}
header.site-header .right-nav .language-switcher:hover > a .fa::before {
content: "\F106";
}
header.site-header .right-nav .language-switcher > a {
color: rgba(255, 255, 255, 0.7);
line-height: 70px;
line-height: 60px;
display: inline-block;
padding: 0 20px;
margin-right: 10px;
}
header.site-header .top-nav .language-switcher > a .fa::before {
header.site-header .right-nav .language-switcher > a .fa::before {
margin-left: 5px;
content: "\F107";
}
header.site-header .top-nav .language-switcher ul {
header.site-header .right-nav .language-switcher ul {
display: none;
top: 50px;
width: 100%;
width: 60px;
text-align: center;
line-height: 40px;
background: #fff;
color: #666;
line-height: 30px;
background: rgba(0, 0, 0, 0.85);
color: #0073eb;
position: absolute;
left: 0;
}
header.site-header .top-nav .language-switcher ul > li + li {
border-top: 1px solid #ccc;
header.site-header .right-nav .language-switcher ul > li > a {
color: #ababab;
}
header.site-header .top-nav .language-switcher ul > li > a {
color: #333;
}
header.site-header .top-nav .language-switcher ul > li > a:hover {
color: #000;
header.site-header .right-nav .language-switcher ul > li > a:hover {
color: #0073eb;
}
header.site-header .top-nav .language-switcher:hover ul {
header.site-header .right-nav .language-switcher:hover ul {
display: inline-block;
}
header.site-header .github-fork {
......@@ -2485,107 +2497,96 @@ header.site-header .github-fork {
}
header.site-header .github-fork > a {
display: inline-block;
line-height: 30px;
width: 186px;
color: #597cf1;
padding: 0 15px;
border: 1px solid #3c4f85;
margin: 20px 0;
border-radius: 15px;
line-height: 40px;
width: 100px;
color: rgba(255, 255, 255, 0.7);
padding: 0 10px;
margin: 10px 0;
font-size: 14px;
}
header.site-header .github-fork > a .fa {
font-size: 22px;
margin-right: 8px;
margin-top: 3px;
font-size: 20px;
margin-right: 10px;
margin-top: 8px;
float: left;
}
header.site-header .github-fork > a span {
margin-right: 10px;
float: left;
}
header.site-header .github-fork > a:hover {
color: #fff;
background-color: #597cf1;
}
header.site-header .banner {
.head-banner {
background: url(./../images/banner.jpg) no-repeat center bottom;
background-size: cover;
height: 399px;
color: #fff;
text-align: center;
padding-top: 126px;
padding-bottom: auto;
}
header.site-header .banner h1 {
margin: 168px 0 46px 0;
font-size: 40px;
line-height: 50px;
font-weight: normal;
.head-banner .banner {
color: #fff;
padding-top: 10px;
}
header.site-header .banner h1 span {
letter-spacing: 5px;
.head-banner .banner h1 {
margin: 0 0 0 0;
font-size: 48px;
line-height: 60px;
font-weight: normal;
}
header.site-header .banner p {
color: #b9bcc4;
font-size: 18px;
font-weight: 100;
line-height: 18px;
margin: 0 0 46px 0;
.head-banner .banner p {
font-size: 16px;
line-height: 20px;
font-weight: normal;
margin: 40px 0 50px 0;
}
header.site-header .banner .quick-start {
.head-banner .banner .quick-start {
display: inline-block;
line-height: 50px;
padding: 0 30px;
font-size: 20px;
line-height: 60px;
color: #ffffff;
background-color: #ff9711;
border-radius: 25px;
}
header.site-header .banner .quick-start:hover {
background-color: #cc7504;
font-size: 18px;
width: 212px;
border: 1px solid #fff;
}
header.site-header .banner .github-counter {
border-radius: 3px;
border: 1px solid #d5d5d5;
.head-banner .banner .github-counter {
display: inline-block;
margin: 40px 20px 0;
height: 26px;
line-height: 28px;
color: #333;
background-color: #fff;
margin: 50px 20px 0;
line-height: 35px;
color: #ffff;
}
header.site-header .banner .github-counter > span {
.head-banner .banner .github-counter > span {
display: inline-block;
font-size: 12px;
font-size: 18px;
line-height: 26px;
float: left;
padding: 0 12px;
}
header.site-header .banner .github-counter > span:nth-child(1) {
font-weight: 700;
border-right: 1px solid #d5d5d5;
background-color: #ddd;
background-image: linear-gradient(#eee, #ddd);
padding: 0 5px;
}
header.site-header .banner .github-counter > span:nth-child(1) .fa {
margin-right: 5px;
font-size: 16px;
.services {
background-color: #f4f5f7;
}
.services h2 {
padding-top: 80px;
position: relative;
text-align: center;
margin-top: 0px;
margin-bottom: 0px;
}
.services h2 span {
padding: 0 20px;
background-color: #fff;
color: #333;
font-size: 30px;
font-weight: normal;
position: relative;
z-index: 1;
}
.services h2::after {
content: "";
width: 100%;
height: 1px;
background-color: #e6e8eb;
display: inline-block;
position: absolute;
top: 50%;
left: 0;
}
.services > .row:nth-child(3) {
background-color: #fcfdff;
}
.services > .row:nth-child(n+2) {
border-bottom: 1px solid #f3f4f5;
.services .sub-title {
text-align: center;
font-size: 16px;
color: #999;
font-weight: normal;
margin-top: 30px;
margin-bottom: 30px;
}
.services > .row > div {
width: 50%;
......@@ -2618,10 +2619,9 @@ header.site-header .banner .github-counter > span:nth-child(1) .fa {
max-height: 100%;
}
.services .service-desc h3 {
color: #2f3443;
color: #333;
font-size: 24px;
line-height: 24px;
font-weight: 500;
font-weight: normal;
margin: 0;
}
.services .service-desc p {
......@@ -2629,43 +2629,30 @@ header.site-header .banner .github-counter > span:nth-child(1) .fa {
font-size: 16px;
font-weight: 100;
line-height: 24px;
color: #7f828b;
color: #999;
}
.services .service-desc a.view-more {
color: #597cf1;
border: 1px solid #597cf1;
font-size: 14px;
line-height: 14px;
padding: 8px 16px;
border-radius: 20px;
color: #666;
font-size: 16px;
display: inline-block;
}
.services .service-desc a.view-more:hover {
color: #fff;
background-color: #597cf1;
}
.features {
background-color: #f1f2f4;
padding-bottom: 90px;
background-color: #ffffff;
padding-top: 80px;
padding-bottom: 60px;
}
.features h2 {
text-align: center;
margin-bottom: 70px;
margin-top: 0px;
font-size: 30px;
color: #333;
}
.features h2 span {
padding: 0 20px;
background-color: #f1f2f4;
position: relative;
z-index: 1;
}
.features h2::after {
content: "";
width: 100%;
height: 1px;
background-color: #e6e8eb;
display: inline-block;
position: absolute;
top: 50%;
left: 0;
font-weight: normal;
color: #333;
}
.features .feature-desc {
width: 25%;
......@@ -2673,79 +2660,100 @@ header.site-header .banner .github-counter > span:nth-child(1) .fa {
text-align: center;
}
.features .feature-desc h3 {
color: #2f3443;
margin: 30px 0 28px;
font-size: 20px;
line-height: 20px;
font-weight: 300;
color: #333;
margin: 30px 0 20px;
font-size: 18px;
font-weight: normal;
}
.features .feature-desc p {
font-size: 14px;
font-weight: 100;
line-height: 30px;
color: #7f828b;
text-align: center;
line-height: 24px;
color: #999;
max-width: 75%;
margin: 0;
display: inline-block;
}
.get-started {
background: url(./../images/get-started-bg.jpg) no-repeat center bottom;
color: #fff;
background-color: #ffffff;
text-align: center;
padding: 60px 0;
padding-bottom: 80px;
}
.get-started h2 {
font-size: 24px;
color: #fff;
font-weight: 500;
margin: 0 0 30px 0;
padding: 0;
font-size: 30px;
color: #333;
margin-bottom: 30px;
font-weight: normal;
}
.get-started p {
font-size: 14px;
font-size: 16px;
font-weight: 100;
color: #b4c3f3;
margin: 0 0 30px 0;
color: #999;
margin-bottom: 30px;
}
.get-started .quick-start {
color: #ffffff;
background-color: #597cf1;
padding: 8px 30px;
color: #fff;
background-color: #0073eb;
font-size: 18px;
display: inline-block;
border-radius: 20px;
}
.get-started .quick-start:hover {
background-color: #3f5fcd;
line-height: 60px;
width: 212px;
}
.footer-nav {
background-color: #303646;
background-color: #333;
color: ccc;
}
.footer-nav .tr-code {
color: #fff;
text-align: center;
line-height: 100px;
font-size: 14px;
padding-top: 30px;
.footer-nav .intern-console {
margin-left: 50px;
margin-right: 19px;
color: #ccc;
font-size: 12px;
line-height: 30px;
width: 150px;
float: left;
display: inline;
}
.footer-nav .tr-code > * {
vertical-align: middle;
.footer-nav .chat-console {
padding-left: 50px;
color: #ccc;
font-size: 12px;
width: 600px;
float: left;
display: inline;
border-left: 1px solid rgba(241, 242, 244, 0.2);
border-right: 1px solid rgba(241, 242, 244, 0.2);
}
.footer-nav .tr-code > img {
margin-bottom: 0px;
margin-top: 0px;
.footer-nav .chat-console .sub-top-nava > li {
line-height: 30px;
width: 25%;
float: left;
display: inline;
margin-bottom: 20px;
}
.footer-nav .tr-code > p {
line-height: 40px;
margin-top: 0px;
margin-bottom: 0px;
.footer-nav .public-console {
margin-left: 49px;
margin-right: 50px;
width: 100px;
float: left;
display: inline;
}
.footer-nav .public-console > * {
vertical-align: left;
}
.footer-nav .public-console > img {
margin-right: 5px;
}
.footer-nav .public-console > p {
color: #ccc;
font-size: 14px;
}
.footer-nav .contact-us {
color: #fff;
text-align: center;
line-height: 70px;
line-height: 30px;
font-size: 14px;
border-bottom: 1px solid #484e5e;
margin-bottom: 30px;
margin-bottom: 20px;
padding-top: 40px;
}
.footer-nav .contact-us > * {
vertical-align: middle;
......@@ -2758,7 +2766,7 @@ header.site-header .banner .github-counter > span:nth-child(1) .fa {
}
.footer-nav .friendly-links {
text-align: center;
margin-bottom: 10px;
margin-bottom: 40px;
}
.footer-nav .friendly-links > li {
display: inline-block;
......@@ -2766,18 +2774,18 @@ header.site-header .banner .github-counter > span:nth-child(1) .fa {
line-height: 12px;
}
.footer-nav .friendly-links > li > a {
color: #a7adbd;
color: #ccc;
font-size: 12px;
}
.footer-nav .friendly-links > li + li {
border-left: 1px solid rgba(241, 242, 244, 0.2);
}
.footer-nav .copyright {
color: #64697b;
color: #666;
font-size: 12px;
text-align: center;
margin: 0;
padding: 0 0 40px;
padding: 20px 0 20px;
margin-bottom: -10px;
}
.footer-nav .copyright > a {
color: #fff;
}
/*# sourceMappingURL=home.css.map*/
\ No newline at end of file
文件模式从 100755 更改为 100644
images/banner.jpg

290.5 KB | W: | H:

images/banner.jpg

77.2 KB | W: | H:

images/banner.jpg
images/banner.jpg
images/banner.jpg
images/banner.jpg
  • 2-up
  • Swipe
  • Onion skin
<!DOCTYPE html> <html lang=en> <head> <meta charset=UTF-8> <title>PaddlePaddle</title> <link rel=stylesheet href=./css/home.css> <script>var _hmt=_hmt||[];!function(){var e=document.createElement("script");e.src="//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";var a=document.getElementsByTagName("script")[0];a.parentNode.insertBefore(e,a)}()</script> </head> <body> <header class=site-header> <nav class=row> <div class=logo> <img src=> </div> <nav class=top-nav> <ul class=site-links> <li><a class=active>主页</a></li> <li><a href=http://book.paddlepaddle.org/index.cn.html target=_blank>快速开始</a></li> <li><a href=http://www.paddlepaddle.org/doc_cn/howto/index_cn.html target=_blank>文档中心</a></li> </ul> <div class=language-switcher> <a>版本<i class=fa aria-hidden=true></i></a> <ul> <li><a href=http://www.paddlepaddle.org/release/0.10.0/doc_cn/ target=_blank>r0.10.0</a></li> <li><a href=http://www.paddlepaddle.org/release_doc/0.9.0/doc_cn/ target=_blank>r0.9.0</a></li> </ul> </div> <div class=language-switcher> <a>中文<i class=fa aria-hidden=true></i></a> <ul> <li><a href=./index.html>English</a></li> <li><a href=./index.cn.html>中文</a></li> </ul> </div> <div class=github-fork> <a href=https://github.com/PaddlePaddle/Paddle target=_blank> <i class="fa fa-github" aria-hidden=true></i> <span>Fork me on Github</span> </a> </div> </nav> </nav> <div class="row banner"> <h1><span class=ch-title>易学易用的分布式深度学习平台<span></span></span></h1> <p>正在为100+项产品提供深度学习算法支持</p> <div> <a class=quick-start href=http://book.paddlepaddle.org/index.cn.html target=_blank>快速入门</a> </div> <div> <div class=github-counter> <span><i class="fa fa-star" aria-hidden=true></i>Star</span> <span id=star-counter></span> </div> <div class=github-counter> <span><i class="fa fa-code-fork" aria-hidden=true></i>Fork</span> <span id=fork-counter></span> </div> </div> </div> </header> <section class=services> <div class=row> <h2><span>丰富的算法服务</span></h2> </div> <div class=row> <div> <img class=service-icon src=./images/service-1.png> </div> <div> <div class=service-desc> <h3>机器视觉</h3> <p>卷积神经网络可以识别图像中的主要对象,并输出分类结果</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/03.image_classification/index.cn.html target=_blank>查看更多</a> </div> </div> </div> </div> <div class=row> <div> <div class=service-desc> <h3>自然语言理解</h3> <p>利用LSTM网络从IMDB电影评论的中分析出评论者情绪的正面和负面</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/06.understand_sentiment/index.cn.html target=_blank>查看更多</a> </div> </div> </div> <div> <img class=service-icon src=./images/service-2.png> </div> </div> <div class=row> <div> <img class=service-icon src=./images/service-3.png> </div> <div> <div class=service-desc> <h3>搜索引擎排序</h3> <p>分析用户特征、电影特征、点评分数,预测新用户对不同电影的点评分数</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/05.recommender_system/index.cn.html target=_blank>查看更多</a> </div> </div> </div> </div> </section> <section class=features> <div class=row> <h2><span>技术和服务优势</span></h2> </div> <div class=row> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>易用性</h3> <p>为用户提供了直观、灵活的数据接口和模型配置接口</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>灵活性</h3> <p>支持CNN、RNN等多种神经网络结构和优化算法。简单书写配置文件即可实现复杂模型</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>高效性</h3> <p>在计算、存储、通信、架构等方面都做了高效优化,充分发挥各种资源的性能</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>扩展性</h3> <p>全面支持多核、多GPU、多机环境。轻松应对大规模数据训练需求</p> </div> </div> </section> <section class=get-started> <div class=row> <h2>现在开始使用PaddlePaddle</h2> <p>易学易用的分布式深度学习平台</p> <div> <a role=button class=quick-start href=http://book.paddlepaddle.org/index.cn.html target=_blank>快速入门</a> </div> </div> </section> <footer class=footer-nav> <div class=row> <div class=tr-code> <img src=./images/pr-code.png> <p>PaddlePaddle 微信公众号</p> </div> <div class=contact-us> <img src=> <span>联系我们:</span> <img src=./images/email-pic.png> </div> </div> <div class=row> <ul class=friendly-links> <li><a href=http://ai.baidu.com/ target=_blank>百度大脑</a></li> <li><a href=http://idl.baidu.com/ target=_blank>百度深度学习实验室</a></li> <li><a href=http://bdl.baidu.com/ target=_blank>百度大数据实验室</a></li> <li><a href=http://yuyin.baidu.com/ target=_blank>百度语音</a></li> <li><a href=http://api.fanyi.baidu.com/ target=_blank>百度翻译开放平台</a></li> <li><a href=http://nlp.baidu.com/ target=_blank>自然语言处理云(NLPC)</a></li> <li><a href=http://erised.baidu.com/ target=_blank>大数据用户画像</a></li> <li><a href=http://kg.baidu.com/ target=_blank>百度知识图谱</a></li> <li><a href=http://idmapping.baidu.com/ target=_blank>百度大数据ID-Mapping</a></li> </ul> <ul class=friendly-links> <li><a href=http://session.baidu.com/ target=_blank>Global Session(Odin)</a></li> <li><a href=http://recsys.baidu.com/ target=_blank>Recsys推荐云平台</a></li> <li><a href=http://offlinedata.baidu.com/ target=_blank>到店大数据(谛听)</a></li> <li><a href=http://gravity.baidu.com target=_blank>大数据知识图谱</a></li> <li><a href=http://pie.baidu.com/ target=_blank>PIE网页信息抽取平台</a></li> <li><a href=http://kg.baidu.com/ target=_blank>知识图谱开放平台</a></li> </ul> </div> <div class=row> <p class=copyright>©Copyright 2017, PaddlePaddle developers.</p> </div> </footer> <script src=./js/common.bundle.js></script> <script src=./js/home.bundle.js></script> </body> </html>
\ No newline at end of file
<!DOCTYPE html> <html lang=en> <head> <meta charset=UTF-8> <title>PaddlePaddle</title> <link rel=stylesheet href=./css/home.css> <script>var _hmt=_hmt||[];!function(){var e=document.createElement("script");e.src="//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";var a=document.getElementsByTagName("script")[0];a.parentNode.insertBefore(e,a)}()</script> </head> <body> <header class=site-header> <nav class=row> <div class=logo> <img src=> </div> <nav class=top-nav> <ul class=site-links> <li><a class=active>主页</a></li> <li><a href=http://book.paddlepaddle.org/index.cn.html target=_blank>快速开始</a></li> <li><a href=http://www.paddlepaddle.org/doc_cn/howto/index_cn.html target=_blank>文档中心</a></li> <li class=version-switcher> <a>版本<i class=fa aria-hidden=true></i></a> <ul> <li><a href=http://www.paddlepaddle.org/release/0.10.0/doc_cn/ target=_blank>0.10.0</a></li> <li><a href=http://www.paddlepaddle.org/release_doc/0.9.0/doc_cn/ target=_blank>0.9.0</a></li> </ul> </li> </ul> </nav> <nav class=right-nav> <div class=language-switcher> <a href=./index.html>English</a> </div> <div class=github-fork> <a href=https://github.com/PaddlePaddle/Paddle target=_blank> <i class="fa fa-github" aria-hidden=true></i> <span>Github</span> </a> </div> </nav> </nav> </header> <section class=head-banner> <div class="row banner"> <h1>易学易用的分布式深度学习平台</h1> <p>正在为100+项产品提供深度学习算法支持</p> <div> <a class=quick-start href=http://book.paddlepaddle.org/index.cn.html target=_blank>快速入门</a> </div> </div> </section> <section class=services> <div class=row> <h2><span>丰富的算法服务</span></h2> <p class=sub-title>易用、高效、灵活、扩展性好</p> </div> <div class=row> <div> <img class=service-icon src=./images/service-1.png> </div> <div> <div class=service-desc> <h3>机器视觉</h3> <p>卷积神经网络可以识别图像中的主要对象,并输出分类结果</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/03.image_classification/index.cn.html target=_blank>查看更多 ></a> </div> </div> </div> </div> <div class=row> <div> <div class=service-desc> <h3>自然语言理解</h3> <p>利用LSTM网络从IMDB电影评论的中分析出评论者情绪的正面和负面</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/06.understand_sentiment/index.cn.html target=_blank>查看更多 ></a> </div> </div> </div> <div> <img class=service-icon src=./images/service-2.png> </div> </div> <div class=row> <div> <img class=service-icon src=./images/service-3.png> </div> <div> <div class=service-desc> <h3>搜索引擎排序</h3> <p>分析用户特征、电影特征、点评分数,预测新用户对不同电影的点评分数</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/05.recommender_system/index.cn.html target=_blank>查看更多 ></a> </div> </div> </div> </div> </section> <section class=features> <div class=row> <h2><span>技术和服务优势</span></h2> </div> <div class=row> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>易用性</h3> <p>为用户提供了直观、灵活的数据接口和模型配置接口</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>灵活性</h3> <p>支持CNN、RNN等多种神经网络结构和优化算法。简单书写配置文件即可实现复杂模型</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>高效性</h3> <p>在计算、存储、通信、架构等方面都做了高效优化,充分发挥各种资源的性能</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>扩展性</h3> <p>全面支持多核、多GPU、多机环境。轻松应对大规模数据训练需求</p> </div> </div> </section> <section class=get-started> <div class=row> <h2>现在开始使用PaddlePaddle</h2> <p>易学易用的分布式深度学习平台</p> <div> <a role=button class=quick-start href=http://book.paddlepaddle.org/index.cn.html target=_blank>快速入门</a> </div> </div> </section> <footer class=footer-nav> <div class=row> <div class=row> <p class=copyright>&copy;Copyright&nbsp;2017,&nbsp;PaddlePaddle&nbsp;developers.</p> </div> </div></footer> <script src=./js/common.bundle.js></script> <script src=./js/home.bundle.js></script> </body> </html>
\ No newline at end of file
<!DOCTYPE html> <html lang=en> <head> <meta charset=UTF-8> <title>PaddlePaddle</title> <link rel=stylesheet href=./css/home.css> <script>var _hmt=_hmt||[];!function(){var e=document.createElement("script");e.src="//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";var a=document.getElementsByTagName("script")[0];a.parentNode.insertBefore(e,a)}()</script> </head> <body> <header class=site-header> <nav class=row> <div class=logo> <img src=> </div> <nav class=top-nav> <ul class=site-links> <li><a class=active>Home</a></li> <li><a href=http://book.paddlepaddle.org/index.html target=_blank>Quick Start</a></li> <li><a href=http://www.paddlepaddle.org/doc/howto/index_en.html target=_blank>Documents</a></li> </ul> <div class=language-switcher> <a>Version<i class=fa aria-hidden=true></i></a> <ul> <li><a href=http://www.paddlepaddle.org/release/0.10.0/doc/ target=_blank>r0.10.0</a></li> <li><a href=http://www.paddlepaddle.org/release_doc/0.9.0/doc/ target=_blank>r0.9.0</a></li> </ul> </div> <div class=language-switcher> <a>English<i class=fa aria-hidden=true></i></a> <ul> <li><a href=./index.html>English</a></li> <li><a href=./index.cn.html>中文</a></li> </ul> </div> <div class=github-fork> <a href=https://github.com/PaddlePaddle/Paddle target=_blank> <i class="fa fa-github" aria-hidden=true></i> <span>Fork me on Github</span> </a> </div> </nav> </nav> <div class="row banner"> <h1>Easy to Learn and Use Distributed Deep Learning Platform</h1> <p>Providing deep learning algorithms for 100+ products</p> <div> <a class=quick-start href=http://book.paddlepaddle.org/index.html target=_blank>Quick Start</a> </div> <div> <div class=github-counter> <span><i class="fa fa-star" aria-hidden=true></i>Star</span> <span id=star-counter></span> </div> <div class=github-counter> <span><i class="fa fa-code-fork" aria-hidden=true></i>Fork</span> <span id=fork-counter></span> </div> </div> </div> </header> <section class=services> <div class=row> <h2><span>Extensive Algorithmic Service</span></h2> </div> <div class=row> <div> <img class=service-icon src=./images/service-1.png> </div> <div> <div class=service-desc> <h3>Machine Vision</h3> <p>The convoluted neural network can identify the main object in the image and output the classification result</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/03.image_classification/index.html target=_blank>Read more</a> </div> </div> </div> </div> <div class=row> <div> <div class=service-desc> <h3>Natural Language Understanding</h3> <p>Using the LSTM network to analyze the positive and negative aspects of the commenter's emotions from IMDB film review</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/06.understand_sentiment/index.html target=_blank>Read more</a> </div> </div> </div> <div> <img class=service-icon src=./images/service-2.png> </div> </div> <div class=row> <div> <img class=service-icon src=./images/service-3.png> </div> <div> <div class=service-desc> <h3>Search Engine Ranking</h3> <p>Analyze user characteristics, movie features, rating scores, predict new users' ratings for different movies</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/05.recommender_system/index.html target=_blank>Read more</a> </div> </div> </div> </div> </section> <section class=features> <div class=row> <h2><span>Technology and Service Advantages</span></h2> </div> <div class=row> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Ease of use</h3> <p>Provids an intuitive and flexible interface for loading data and specifying model structure.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Flexibility</h3> <p>Supports CNN, RNN and other neural network. Easy to configure complex models.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Efficiency</h3> <p>Efficient optimization of computing, memory, communications and architecture.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Scalability</h3> <p>Easy to use many CPUs/GPUs and machines to speed up your training and handle large-scale data easily.</p> </div> </div> </section> <section class=get-started> <div class=row> <h2>Start Using PaddlePaddle</h2> <p>Easy to Learn and Use Distributed Deep Learning Platform</p> <div> <a role=button class=quick-start href=http://book.paddlepaddle.org/index.html target=_blank>Quick Start</a> </div> </div> </section> <footer class=footer-nav> <div class=row> <div class=contact-us> <img src=> <span>Contact:</span> <img src=./images/email-pic.png> </div> </div> <div class=row> <ul class=friendly-links> <li><a href=http://ai.baidu.com/ target=_blank>Baidu Brain</a></li> <li><a href=http://idl.baidu.com/ target=_blank>Baidu IDL</a></li> <li><a href=http://bdl.baidu.com/ target=_blank>Baidu BDL</a></li> <li><a href=http://yuyin.baidu.com/ target=_blank>Baidu Speech</a></li> <li><a href=http://api.fanyi.baidu.com/ target=_blank>Baidu translation open platform</a></li> <li><a href=http://nlp.baidu.com/ target=_blank>NLPC</a></li> <li><a href=http://erised.baidu.com/ target=_blank>User Profile</a></li> <li><a href=http://kg.baidu.com/ target=_blank>Baidu KG</a></li> <li><a href=http://idmapping.baidu.com/ target=_blank>ID-Mapping</a></li> </ul> <ul class=friendly-links> <li><a href=http://session.baidu.com/ target=_blank>Global Session(Odin)</a></li> <li><a href=http://recsys.baidu.com/ target=_blank>Recsys</a></li> <li><a href=http://offlinedata.baidu.com/ target=_blank>GOD</a></li> <li><a href=http://gravity.baidu.com target=_blank>Big Data KG</a></li> <li><a href=http://pie.baidu.com/ target=_blank>PIE</a></li> <li><a href=http://kg.baidu.com/ target=_blank>KG open</a></li> </ul> </div> <div class=row> <p class=copyright>©Copyright 2017, PaddlePaddle developers.</p> </div> </footer> <script src=./js/common.bundle.js></script> <script src=./js/home.bundle.js></script> </body> </html>
\ No newline at end of file
<!DOCTYPE html> <html lang=en> <head> <meta charset=UTF-8> <title>PaddlePaddle</title> <link rel=stylesheet href=./css/home.css> <script>var _hmt=_hmt||[];!function(){var e=document.createElement("script");e.src="//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";var a=document.getElementsByTagName("script")[0];a.parentNode.insertBefore(e,a)}()</script> </head> <body> <header class=site-header> <nav class=row> <div class=logo> <img src=> </div> <nav class=top-nav> <ul class=site-links> <li><a class=active>Home</a></li> <li><a href=http://book.paddlepaddle.org/index.html target=_blank>Quick Start</a></li> <li><a href=http://www.paddlepaddle.org/doc/howto/index_en.html target=_blank>Documents</a></li> <li class=version-switcher> <a>Version<i class=fa aria-hidden=true></i></a> <ul> <li><a href=http://www.paddlepaddle.org/release/0.10.0/doc/ target=_blank>0.10.0</a></li> <li><a href=http://www.paddlepaddle.org/release_doc/0.9.0/doc/ target=_blank>0.9.0</a></li> </ul> </li> </ul> </nav> <nav class=right-nav> <div class=language-switcher> <a href=./index.cn.html>中文</a> </div> <div class=github-fork> <a href=https://github.com/PaddlePaddle/Paddle target=_blank> <i class="fa fa-github" aria-hidden=true></i> <span>Github</span> </a> </div> </nav> </nav> </header> <section class=head-banner> <div class="row banner"> <h1>Easy to Learn and Use Distributed</h1> <h1>Deep Learning Platform</h1> <p>Providing deep learning algorithms for 100+ products</p> <div> <a class=quick-start href=http://book.paddlepaddle.org/index.html target=_blank>Quick Start</a> </div> </div> </section> <section class=services> <div class=row> <h2><span>Extensive Algorithmic Service</span></h2> <p class=sub-title>Easy to use, efficient, flexible, and scalable</p> </div> <div class=row> <div> <img class=service-icon src=./images/service-1.png> </div> <div> <div class=service-desc> <h3>Machine Vision</h3> <p>The convoluted neural network can identify the main object in the image and output the classification result</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/03.image_classification/index.html target=_blank>Read more ></a> </div> </div> </div> </div> <div class=row> <div> <div class=service-desc> <h3>Natural Language Understanding</h3> <p>Using the LSTM network to analyze the positive and negative aspects of the commenter's emotions from IMDB film review</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/06.understand_sentiment/index.html target=_blank>Read more ></a> </div> </div> </div> <div> <img class=service-icon src=./images/service-2.png> </div> </div> <div class=row> <div> <img class=service-icon src=./images/service-3.png> </div> <div> <div class=service-desc> <h3>Search Engine Ranking</h3> <p>Analyze user characteristics, movie features, rating scores, predict new users' ratings for different movies</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/05.recommender_system/index.html target=_blank>Read more ></a> </div> </div> </div> </div> </section> <section class=features> <div class=row> <h2><span>Technology and Service Advantages</span></h2> </div> <div class=row> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Ease of use</h3> <p>Provids an intuitive and flexible interface for loading data and specifying model structure.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Flexibility</h3> <p>Supports CNN, RNN and other neural network. Easy to configure complex models.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Efficiency</h3> <p>Efficient optimization of computing, memory, communications and architecture.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Scalability</h3> <p>Easy to use many CPUs/GPUs and machines to speed up your training and handle large-scale data easily.</p> </div> </div> </section> <section class=get-started> <div class=row> <h2>Start Using PaddlePaddle</h2> <p>Easy to Learn and Use Distributed Deep Learning Platform</p> <div> <a role=button class=quick-start href=http://book.paddlepaddle.org/index.html target=_blank>Quick Start</a> </div> </div> </section> <footer class=footer-nav> <div class=row> <p class=copyright>&copy;Copyright&nbsp;2017,&nbsp;PaddlePaddle&nbsp;developers.</p> </div> </footer> <script src=./js/common.bundle.js></script> <script src=./js/home.bundle.js></script> </body> </html>
\ No newline at end of file
......@@ -143,7 +143,7 @@
/******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
/******/
/******/ // __webpack_public_path__
/******/ __webpack_require__.p = "/Users/baidu/Desktop/xushaoyong/portal_diff/portal/dist/js";
/******/ __webpack_require__.p = "/Users/baidu/Desktop/portal/dist/js";
/******/
/******/ // on error function for async loading
/******/ __webpack_require__.oe = function(err) { console.error(err); throw err; };
......
{"version":3,"sources":["webpack:///webpack/bootstrap 15b83b23bd158ae8b48c"],"names":[],"mappings":";AAAA;AACA;AACA;AACA;AACA;AACA;AACA,gBAAQ,oBAAoB;AAC5B;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA,oBAAY,2BAA2B;AACvC;AACA;AACA;AACA;AACA;;AAEA;AACA;;AAEA;AACA;AACA;AACA;;AAEA;AACA;;AAEA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;AAEA;AACA;;AAEA;AACA;;AAEA;AACA;AACA;;AAEA;AACA;AACA;AACA;AACA;AACA;;AAEA;AACA;AACA;AACA;;AAEA;AACA;AACA;AACA,YAAI;AACJ;;AAEA;AACA;AACA;AACA;AACA;AACA;AACA;;AAEA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;AAEA;AACA;;AAEA;AACA;;AAEA;AACA;;AAEA;AACA,mDAA2C,cAAc;;AAEzD;AACA;AACA;AACA;AACA;AACA;AACA;AACA,aAAK;AACL;AACA;;AAEA;AACA;AACA;AACA,mCAA2B,0BAA0B,EAAE;AACvD,yCAAiC,eAAe;AAChD;AACA;AACA;;AAEA;AACA,8DAAsD,+DAA+D;;AAErH;AACA;;AAEA;AACA,kDAA0C,oBAAoB,WAAW","file":"common.bundle.js","sourcesContent":[" \t// install a JSONP callback for chunk loading\n \tvar parentJsonpFunction = window[\"webpackJsonp\"];\n \twindow[\"webpackJsonp\"] = function webpackJsonpCallback(chunkIds, moreModules, executeModules) {\n \t\t// add \"moreModules\" to the modules object,\n \t\t// then flag all \"chunkIds\" as loaded and fire callback\n \t\tvar moduleId, chunkId, i = 0, resolves = [], result;\n \t\tfor(;i < chunkIds.length; i++) {\n \t\t\tchunkId = chunkIds[i];\n \t\t\tif(installedChunks[chunkId]) {\n \t\t\t\tresolves.push(installedChunks[chunkId][0]);\n \t\t\t}\n \t\t\tinstalledChunks[chunkId] = 0;\n \t\t}\n \t\tfor(moduleId in moreModules) {\n \t\t\tif(Object.prototype.hasOwnProperty.call(moreModules, moduleId)) {\n \t\t\t\tmodules[moduleId] = moreModules[moduleId];\n \t\t\t}\n \t\t}\n \t\tif(parentJsonpFunction) parentJsonpFunction(chunkIds, moreModules, executeModules);\n \t\twhile(resolves.length) {\n \t\t\tresolves.shift()();\n \t\t}\n \t\tif(executeModules) {\n \t\t\tfor(i=0; i < executeModules.length; i++) {\n \t\t\t\tresult = __webpack_require__(__webpack_require__.s = executeModules[i]);\n \t\t\t}\n \t\t}\n \t\treturn result;\n \t};\n\n \t// The module cache\n \tvar installedModules = {};\n\n \t// objects to store loaded and loading chunks\n \tvar installedChunks = {\n \t\t1: 0\n \t};\n\n \t// The require function\n \tfunction __webpack_require__(moduleId) {\n\n \t\t// Check if module is in cache\n \t\tif(installedModules[moduleId]) {\n \t\t\treturn installedModules[moduleId].exports;\n \t\t}\n \t\t// Create a new module (and put it into the cache)\n \t\tvar module = installedModules[moduleId] = {\n \t\t\ti: moduleId,\n \t\t\tl: false,\n \t\t\texports: {}\n \t\t};\n\n \t\t// Execute the module function\n \t\tmodules[moduleId].call(module.exports, module, module.exports, __webpack_require__);\n\n \t\t// Flag the module as loaded\n \t\tmodule.l = true;\n\n \t\t// Return the exports of the module\n \t\treturn module.exports;\n \t}\n\n \t// This file contains only the entry chunk.\n \t// The chunk loading function for additional chunks\n \t__webpack_require__.e = function requireEnsure(chunkId) {\n \t\tif(installedChunks[chunkId] === 0) {\n \t\t\treturn Promise.resolve();\n \t\t}\n\n \t\t// a Promise means \"currently loading\".\n \t\tif(installedChunks[chunkId]) {\n \t\t\treturn installedChunks[chunkId][2];\n \t\t}\n\n \t\t// setup Promise in chunk cache\n \t\tvar promise = new Promise(function(resolve, reject) {\n \t\t\tinstalledChunks[chunkId] = [resolve, reject];\n \t\t});\n \t\tinstalledChunks[chunkId][2] = promise;\n\n \t\t// start chunk loading\n \t\tvar head = document.getElementsByTagName('head')[0];\n \t\tvar script = document.createElement('script');\n \t\tscript.type = 'text/javascript';\n \t\tscript.charset = 'utf-8';\n \t\tscript.async = true;\n \t\tscript.timeout = 120000;\n\n \t\tif (__webpack_require__.nc) {\n \t\t\tscript.setAttribute(\"nonce\", __webpack_require__.nc);\n \t\t}\n \t\tscript.src = __webpack_require__.p + \"\" + chunkId + \".bundle.js\";\n \t\tvar timeout = setTimeout(onScriptComplete, 120000);\n \t\tscript.onerror = script.onload = onScriptComplete;\n \t\tfunction onScriptComplete() {\n \t\t\t// avoid mem leaks in IE.\n \t\t\tscript.onerror = script.onload = null;\n \t\t\tclearTimeout(timeout);\n \t\t\tvar chunk = installedChunks[chunkId];\n \t\t\tif(chunk !== 0) {\n \t\t\t\tif(chunk) {\n \t\t\t\t\tchunk[1](new Error('Loading chunk ' + chunkId + ' failed.'));\n \t\t\t\t}\n \t\t\t\tinstalledChunks[chunkId] = undefined;\n \t\t\t}\n \t\t};\n \t\thead.appendChild(script);\n\n \t\treturn promise;\n \t};\n\n \t// expose the modules object (__webpack_modules__)\n \t__webpack_require__.m = modules;\n\n \t// expose the module cache\n \t__webpack_require__.c = installedModules;\n\n \t// identity function for calling harmony imports with the correct context\n \t__webpack_require__.i = function(value) { return value; };\n\n \t// define getter function for harmony exports\n \t__webpack_require__.d = function(exports, name, getter) {\n \t\tif(!__webpack_require__.o(exports, name)) {\n \t\t\tObject.defineProperty(exports, name, {\n \t\t\t\tconfigurable: false,\n \t\t\t\tenumerable: true,\n \t\t\t\tget: getter\n \t\t\t});\n \t\t}\n \t};\n\n \t// getDefaultExport function for compatibility with non-harmony modules\n \t__webpack_require__.n = function(module) {\n \t\tvar getter = module && module.__esModule ?\n \t\t\tfunction getDefault() { return module['default']; } :\n \t\t\tfunction getModuleExports() { return module; };\n \t\t__webpack_require__.d(getter, 'a', getter);\n \t\treturn getter;\n \t};\n\n \t// Object.prototype.hasOwnProperty.call\n \t__webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };\n\n \t// __webpack_public_path__\n \t__webpack_require__.p = \"/Users/baidu/Desktop/xushaoyong/portal_diff/portal/dist/js\";\n\n \t// on error function for async loading\n \t__webpack_require__.oe = function(err) { console.error(err); throw err; };\n\n\n\n// WEBPACK FOOTER //\n// webpack/bootstrap 15b83b23bd158ae8b48c"],"sourceRoot":""}
\ No newline at end of file
{"version":3,"sources":["webpack:///webpack/bootstrap cfa7bb9117fb36f867c0"],"names":[],"mappings":";AAAA;AACA;AACA;AACA;AACA;AACA;AACA,gBAAQ,oBAAoB;AAC5B;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA,oBAAY,2BAA2B;AACvC;AACA;AACA;AACA;AACA;;AAEA;AACA;;AAEA;AACA;AACA;AACA;;AAEA;AACA;;AAEA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;AAEA;AACA;;AAEA;AACA;;AAEA;AACA;AACA;;AAEA;AACA;AACA;AACA;AACA;AACA;;AAEA;AACA;AACA;AACA;;AAEA;AACA;AACA;AACA,YAAI;AACJ;;AAEA;AACA;AACA;AACA;AACA;AACA;AACA;;AAEA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;;AAEA;AACA;;AAEA;AACA;;AAEA;AACA;;AAEA;AACA,mDAA2C,cAAc;;AAEzD;AACA;AACA;AACA;AACA;AACA;AACA;AACA,aAAK;AACL;AACA;;AAEA;AACA;AACA;AACA,mCAA2B,0BAA0B,EAAE;AACvD,yCAAiC,eAAe;AAChD;AACA;AACA;;AAEA;AACA,8DAAsD,+DAA+D;;AAErH;AACA;;AAEA;AACA,kDAA0C,oBAAoB,WAAW","file":"common.bundle.js","sourcesContent":[" \t// install a JSONP callback for chunk loading\n \tvar parentJsonpFunction = window[\"webpackJsonp\"];\n \twindow[\"webpackJsonp\"] = function webpackJsonpCallback(chunkIds, moreModules, executeModules) {\n \t\t// add \"moreModules\" to the modules object,\n \t\t// then flag all \"chunkIds\" as loaded and fire callback\n \t\tvar moduleId, chunkId, i = 0, resolves = [], result;\n \t\tfor(;i < chunkIds.length; i++) {\n \t\t\tchunkId = chunkIds[i];\n \t\t\tif(installedChunks[chunkId]) {\n \t\t\t\tresolves.push(installedChunks[chunkId][0]);\n \t\t\t}\n \t\t\tinstalledChunks[chunkId] = 0;\n \t\t}\n \t\tfor(moduleId in moreModules) {\n \t\t\tif(Object.prototype.hasOwnProperty.call(moreModules, moduleId)) {\n \t\t\t\tmodules[moduleId] = moreModules[moduleId];\n \t\t\t}\n \t\t}\n \t\tif(parentJsonpFunction) parentJsonpFunction(chunkIds, moreModules, executeModules);\n \t\twhile(resolves.length) {\n \t\t\tresolves.shift()();\n \t\t}\n \t\tif(executeModules) {\n \t\t\tfor(i=0; i < executeModules.length; i++) {\n \t\t\t\tresult = __webpack_require__(__webpack_require__.s = executeModules[i]);\n \t\t\t}\n \t\t}\n \t\treturn result;\n \t};\n\n \t// The module cache\n \tvar installedModules = {};\n\n \t// objects to store loaded and loading chunks\n \tvar installedChunks = {\n \t\t1: 0\n \t};\n\n \t// The require function\n \tfunction __webpack_require__(moduleId) {\n\n \t\t// Check if module is in cache\n \t\tif(installedModules[moduleId]) {\n \t\t\treturn installedModules[moduleId].exports;\n \t\t}\n \t\t// Create a new module (and put it into the cache)\n \t\tvar module = installedModules[moduleId] = {\n \t\t\ti: moduleId,\n \t\t\tl: false,\n \t\t\texports: {}\n \t\t};\n\n \t\t// Execute the module function\n \t\tmodules[moduleId].call(module.exports, module, module.exports, __webpack_require__);\n\n \t\t// Flag the module as loaded\n \t\tmodule.l = true;\n\n \t\t// Return the exports of the module\n \t\treturn module.exports;\n \t}\n\n \t// This file contains only the entry chunk.\n \t// The chunk loading function for additional chunks\n \t__webpack_require__.e = function requireEnsure(chunkId) {\n \t\tif(installedChunks[chunkId] === 0) {\n \t\t\treturn Promise.resolve();\n \t\t}\n\n \t\t// a Promise means \"currently loading\".\n \t\tif(installedChunks[chunkId]) {\n \t\t\treturn installedChunks[chunkId][2];\n \t\t}\n\n \t\t// setup Promise in chunk cache\n \t\tvar promise = new Promise(function(resolve, reject) {\n \t\t\tinstalledChunks[chunkId] = [resolve, reject];\n \t\t});\n \t\tinstalledChunks[chunkId][2] = promise;\n\n \t\t// start chunk loading\n \t\tvar head = document.getElementsByTagName('head')[0];\n \t\tvar script = document.createElement('script');\n \t\tscript.type = 'text/javascript';\n \t\tscript.charset = 'utf-8';\n \t\tscript.async = true;\n \t\tscript.timeout = 120000;\n\n \t\tif (__webpack_require__.nc) {\n \t\t\tscript.setAttribute(\"nonce\", __webpack_require__.nc);\n \t\t}\n \t\tscript.src = __webpack_require__.p + \"\" + chunkId + \".bundle.js\";\n \t\tvar timeout = setTimeout(onScriptComplete, 120000);\n \t\tscript.onerror = script.onload = onScriptComplete;\n \t\tfunction onScriptComplete() {\n \t\t\t// avoid mem leaks in IE.\n \t\t\tscript.onerror = script.onload = null;\n \t\t\tclearTimeout(timeout);\n \t\t\tvar chunk = installedChunks[chunkId];\n \t\t\tif(chunk !== 0) {\n \t\t\t\tif(chunk) {\n \t\t\t\t\tchunk[1](new Error('Loading chunk ' + chunkId + ' failed.'));\n \t\t\t\t}\n \t\t\t\tinstalledChunks[chunkId] = undefined;\n \t\t\t}\n \t\t};\n \t\thead.appendChild(script);\n\n \t\treturn promise;\n \t};\n\n \t// expose the modules object (__webpack_modules__)\n \t__webpack_require__.m = modules;\n\n \t// expose the module cache\n \t__webpack_require__.c = installedModules;\n\n \t// identity function for calling harmony imports with the correct context\n \t__webpack_require__.i = function(value) { return value; };\n\n \t// define getter function for harmony exports\n \t__webpack_require__.d = function(exports, name, getter) {\n \t\tif(!__webpack_require__.o(exports, name)) {\n \t\t\tObject.defineProperty(exports, name, {\n \t\t\t\tconfigurable: false,\n \t\t\t\tenumerable: true,\n \t\t\t\tget: getter\n \t\t\t});\n \t\t}\n \t};\n\n \t// getDefaultExport function for compatibility with non-harmony modules\n \t__webpack_require__.n = function(module) {\n \t\tvar getter = module && module.__esModule ?\n \t\t\tfunction getDefault() { return module['default']; } :\n \t\t\tfunction getModuleExports() { return module; };\n \t\t__webpack_require__.d(getter, 'a', getter);\n \t\treturn getter;\n \t};\n\n \t// Object.prototype.hasOwnProperty.call\n \t__webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };\n\n \t// __webpack_public_path__\n \t__webpack_require__.p = \"/Users/baidu/Desktop/portal/dist/js\";\n\n \t// on error function for async loading\n \t__webpack_require__.oe = function(err) { console.error(err); throw err; };\n\n\n\n// WEBPACK FOOTER //\n// webpack/bootstrap cfa7bb9117fb36f867c0"],"sourceRoot":""}
\ No newline at end of file
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册