From cfb0c12ef9ebafb50c1dfa24d78b67a2eaca2966 Mon Sep 17 00:00:00 2001 From: Double_V Date: Wed, 8 Jan 2020 18:26:45 +0800 Subject: [PATCH] fix grad diff over limit when the data type of input is double,test=develop (#22161) --- .../tests/unittests/test_prroi_pool_op.py | 28 +++++++++---------- 1 file changed, 14 insertions(+), 14 deletions(-) diff --git a/python/paddle/fluid/tests/unittests/test_prroi_pool_op.py b/python/paddle/fluid/tests/unittests/test_prroi_pool_op.py index cf9d69247f..f414267a9a 100644 --- a/python/paddle/fluid/tests/unittests/test_prroi_pool_op.py +++ b/python/paddle/fluid/tests/unittests/test_prroi_pool_op.py @@ -30,7 +30,7 @@ class TestPRROIPoolOp(OpTest): self.prRoIPool = PyPrRoIPool() self.outs = self.prRoIPool.compute( self.x, self.rois, self.output_channels, self.spatial_scale, - self.pooled_height, self.pooled_width).astype('float64') + self.pooled_height, self.pooled_width).astype('float32') self.inputs = {'X': self.x, 'ROIs': (self.rois[:, 1:5], self.rois_lod)} self.attrs = { 'output_channels': self.output_channels, @@ -53,7 +53,7 @@ class TestPRROIPoolOp(OpTest): self.pooled_height = 4 self.pooled_width = 4 - self.x = np.random.random(self.x_dim).astype('float64') + self.x = np.random.random(self.x_dim).astype('float32') def make_rois(self): rois = [] @@ -73,7 +73,7 @@ class TestPRROIPoolOp(OpTest): roi = [bno, x1, y1, x2, y2] rois.append(roi) self.rois_num = len(rois) - self.rois = np.array(rois).astype('float64') + self.rois = np.array(rois).astype('float32') def setUp(self): self.op_type = 'prroi_pool' @@ -94,9 +94,9 @@ class TestPRROIPoolOp(OpTest): x = fluid.layers.data( name="X", shape=[self.channels, self.height, self.width], - dtype="float64") + dtype="float32") rois = fluid.layers.data( - name="ROIs", shape=[4], dtype="float64", lod_level=1) + name="ROIs", shape=[4], dtype="float32", lod_level=1) output = fluid.layers.prroi_pool(x, rois, 0.25, 2, 2) loss = fluid.layers.mean(output) optimizer = fluid.optimizer.SGD(learning_rate=1e-3) @@ -120,9 +120,9 @@ class TestPRROIPoolOp(OpTest): def test_errors(self): with program_guard(Program(), Program()): x = fluid.layers.data( - name="x", shape=[245, 30, 30], dtype="float64") + name="x", shape=[245, 30, 30], dtype="float32") rois = fluid.layers.data( - name="rois", shape=[4], dtype="float64", lod_level=1) + name="rois", shape=[4], dtype="float32", lod_level=1) # spatial_scale must be float type self.assertRaises(TypeError, fluid.layers.prroi_pool, x, rois, 2, 7, 7) @@ -141,7 +141,7 @@ class TestPRROIPoolOpTensorRoIs(OpTest): self.prRoIPool = PyPrRoIPool() self.outs = self.prRoIPool.compute( self.x, self.rois, self.output_channels, self.spatial_scale, - self.pooled_height, self.pooled_width).astype('float64') + self.pooled_height, self.pooled_width).astype('float32') self.rois_index = np.array(self.rois_lod).reshape([-1]).astype(np.int64) self.inputs = { @@ -170,7 +170,7 @@ class TestPRROIPoolOpTensorRoIs(OpTest): self.pooled_height = 4 self.pooled_width = 4 - self.x = np.random.random(self.x_dim).astype('float64') + self.x = np.random.random(self.x_dim).astype('float32') def make_rois(self): rois = [] @@ -190,7 +190,7 @@ class TestPRROIPoolOpTensorRoIs(OpTest): roi = [bno, x1, y1, x2, y2] rois.append(roi) self.rois_num = len(rois) - self.rois = np.array(rois).astype('float64') + self.rois = np.array(rois).astype('float32') def setUp(self): self.op_type = 'prroi_pool' @@ -211,8 +211,8 @@ class TestPRROIPoolOpTensorRoIs(OpTest): x = fluid.layers.data( name="X", shape=[self.channels, self.height, self.width], - dtype="float64") - rois = fluid.layers.data(name="ROIs", shape=[4], dtype="float64") + dtype="float32") + rois = fluid.layers.data(name="ROIs", shape=[4], dtype="float32") rois_index = fluid.layers.data( name='rois_idx', shape=[], dtype="int64") output = fluid.layers.prroi_pool( @@ -238,9 +238,9 @@ class TestPRROIPoolOpTensorRoIs(OpTest): def test_errors(self): with program_guard(Program(), Program()): x = fluid.layers.data( - name="x", shape=[245, 30, 30], dtype="float64") + name="x", shape=[245, 30, 30], dtype="float32") rois = fluid.layers.data( - name="rois", shape=[4], dtype="float64", lod_level=1) + name="rois", shape=[4], dtype="float32", lod_level=1) # spatial_scale must be float type self.assertRaises(TypeError, fluid.layers.prroi_pool, x, rois, 2, 7, 7) -- GitLab