未验证 提交 cf799a6a 编写于 作者: S sneaxiy 提交者: GitHub

Merge pull request #12553 from sneaxiy/refine_softmax_with_cross_entropy

Refine softmax_with_cross_entropy op
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
...@@ -14,6 +14,8 @@ limitations under the License. */ ...@@ -14,6 +14,8 @@ limitations under the License. */
#define EIGEN_USE_GPU #define EIGEN_USE_GPU
#include <cub/cub.cuh>
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/softmax_with_cross_entropy_op.h" #include "paddle/fluid/operators/softmax_with_cross_entropy_op.h"
namespace paddle { namespace paddle {
...@@ -53,8 +55,196 @@ __global__ void SoftCrossEntropyGradientKernel(T* logit_grad, ...@@ -53,8 +55,196 @@ __global__ void SoftCrossEntropyGradientKernel(T* logit_grad,
logit_grad[ids] = loss_grad[row_ids] * (logit_grad[ids] - labels[ids]); logit_grad[ids] = loss_grad[row_ids] * (logit_grad[ids] - labels[ids]);
} }
} }
} // namespace } // namespace
static __device__ __forceinline__ float real_exp(float x) { return expf(x); }
static __device__ __forceinline__ double real_exp(double x) { return exp(x); }
static __device__ __forceinline__ float real_log(float x) {
return math::TolerableValue<float>()(logf(x));
}
static __device__ __forceinline__ double real_log(double x) {
return math::TolerableValue<double>()(log(x));
}
/** In the following codes, 3 CUDA kernels are implemented to calculate softmax
* and loss **/
/*
Supposing the x is `logits` and y is `labels`, the equations are as
followings:
cross\_entropy_i = \sum_{j}[- y_i_j * log({e^{x_i_j}/\sum_{j}e^{x_i_j}})]
= \sum_{j}[- y_i_j * log({e^{x_i_j - max_i}/\sum_{j}e^{x_i_j-max_i}})]
= \sum_{j}[-y_i_j * (x_i_j - max_i - log\sum_{j}e^{x_i_j - max_i})]
= \sum_{j}[-y_i_j * (x_i_j - max_i - logDiffMaxSum_i)]
= \sum_{j}(-y_i_j * tmp_i_j)
softmax_i_j = e^{tmp_i_j}
where:
max_i = \max_{j}{x_i_j}
logDiffMaxSum_i = log\sum_{j}e^{x_i_j - max_i}
tmp_i_j = x_i_j - max_i - logDiffMaxSum_i
Therefore, the calculation can be separated into 3 steps:
Step 1: row-wise operation to calculate max_i
Step 2: row-wise operation to calculate logDiffMaxSum_i
Step 3: caculate tmp_i_j, and finally get softmax_i_j and cross\_entropy_i
To save memory, we can share memory among max_i, logDiffMaxSum_i and
cross\_entropy_i.
In this way, the 3 steps should be changed to:
Step 1 (RowReductionForMax): row-wise operation to calculate max_i
Step 2 (RowReductionForDiffMaxSum): calculate immediate result of softmax'_i_j =
x_i_j - max_i, and row-wise operation to calculate logDiffMaxSum_i
Step 3 (RowReductionForSoftmaxAndCrossEntropy): calculate tmp_i_j = softmax'_i_j
- logDiffMaxSum_i, and finally get softmax_i_j and cross\_entropy_i
*/
// There are 3 kinds of reduce algorithms in cub:
// BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY
// BLOCK_REDUCE_RAKING
// BLOCK_REDUCE_WARP_REDUCTIONS (default)
template <typename T, int BlockDim>
using BlockReduce =
cub::BlockReduce<T, BlockDim /*, cub::BLOCK_REDUCE_WARP_REDUCTIONS*/>;
template <typename T, int BlockDim>
using BlockReduceTempStorage = typename BlockReduce<T, BlockDim>::TempStorage;
// Make sure that BlockDim <= feature_size
// This kernel is used to calculate the max element of each row
template <typename T, int BlockDim>
__global__ void RowReductionForMax(const T* logits_data, T* max_data,
int feature_size) {
__shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;
auto beg_idx = feature_size * blockIdx.x + threadIdx.x;
auto end_idx = feature_size * (blockIdx.x + 1);
T cur_max = logits_data[beg_idx];
beg_idx += BlockDim;
while (beg_idx < end_idx) {
if (cur_max < logits_data[beg_idx]) {
cur_max = logits_data[beg_idx];
}
beg_idx += BlockDim;
}
cur_max = BlockReduce<T, BlockDim>(temp_storage).Reduce(cur_max, cub::Max());
if (threadIdx.x == 0) {
max_data[blockIdx.x] = cur_max < -64 ? -64 : cur_max;
}
}
// Make sure that BlockDim <= feature_size
template <typename T, int BlockDim>
__global__ void RowReductionForDiffMaxSum(const T* logits_data, T* max_data,
T* softmax, int feature_size) {
__shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;
auto beg_idx = feature_size * blockIdx.x + threadIdx.x;
auto end_idx = feature_size * (blockIdx.x + 1);
auto block_max = max_data[blockIdx.x];
softmax[beg_idx] = logits_data[beg_idx] - block_max;
T diff_max_sum = real_exp(softmax[beg_idx]);
beg_idx += BlockDim;
while (beg_idx < end_idx) {
softmax[beg_idx] = logits_data[beg_idx] - block_max;
diff_max_sum += real_exp(softmax[beg_idx]);
beg_idx += BlockDim;
}
diff_max_sum =
BlockReduce<T, BlockDim>(temp_storage).Reduce(diff_max_sum, cub::Sum());
if (threadIdx.x == 0) max_data[blockIdx.x] = real_log(diff_max_sum);
}
// Make sure that BlockDim <= feature_size
template <typename T, int BlockDim>
__global__ void RowReductionForSoftmaxAndCrossEntropy(const T* logits_data,
const T* labels_data,
T* loss_data, T* softmax,
int feature_size) {
__shared__ BlockReduceTempStorage<T, BlockDim> temp_storage;
auto beg_idx = feature_size * blockIdx.x + threadIdx.x;
auto end_idx = feature_size * (blockIdx.x + 1);
// log_diff_max_sum shares memory with loss
auto block_log_diff_max_sum = loss_data[blockIdx.x];
auto tmp = softmax[beg_idx] - block_log_diff_max_sum;
softmax[beg_idx] = real_exp(tmp);
auto loss = -labels_data[beg_idx] * tmp;
beg_idx += BlockDim;
while (beg_idx < end_idx) {
tmp = softmax[beg_idx] - block_log_diff_max_sum;
softmax[beg_idx] = real_exp(tmp);
loss -= (labels_data[beg_idx] * tmp);
beg_idx += BlockDim;
}
loss = BlockReduce<T, BlockDim>(temp_storage).Reduce(loss, cub::Sum());
if (threadIdx.x == 0) loss_data[blockIdx.x] = loss;
}
template <typename T>
__global__ void SetSoftmaxToOneWhenFeatureSizeIsOne(T* out, int batch_size) {
auto idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < batch_size) out[idx] = static_cast<T>(1);
}
template <typename T>
static void SoftmaxWithCrossEntropyFusedKernel(const T* logits_data,
const T* labels_data,
T* softmax_data, T* loss_data,
int batch_size, int feature_size,
cudaStream_t stream) {
constexpr int kMaxBlockDim = 512;
int block_dim = feature_size >= kMaxBlockDim
? kMaxBlockDim
: (1 << static_cast<int>(std::log2(feature_size)));
#define CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(BlockDim) \
case BlockDim: \
RowReductionForMax<T, BlockDim><<<batch_size, BlockDim, 0, stream>>>( \
logits_data, loss_data, feature_size); \
RowReductionForDiffMaxSum<T, \
BlockDim><<<batch_size, BlockDim, 0, stream>>>( \
logits_data, loss_data, softmax_data, feature_size); \
RowReductionForSoftmaxAndCrossEntropy< \
T, BlockDim><<<batch_size, BlockDim, 0, stream>>>( \
logits_data, labels_data, loss_data, softmax_data, feature_size); \
break
switch (block_dim) {
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(512);
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(256);
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(128);
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(64);
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(32);
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(16);
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(8);
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(4);
CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL(2);
case 1:
SetSoftmaxToOneWhenFeatureSizeIsOne<<<(batch_size + kMaxBlockDim - 1) /
kMaxBlockDim,
kMaxBlockDim, 0, stream>>>(
softmax_data, batch_size);
cudaMemsetAsync(loss_data, 0, batch_size, stream);
break;
default:
PADDLE_THROW("BlockDim must be 2^n in softmax_with_cross_entropy_op");
break;
}
#undef CALL_SOFTMAX_WITH_CROSS_ENTROPY_FUSED_KERNEL
}
template <typename T> template <typename T>
class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel<T> { class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel<T> {
public: public:
...@@ -66,14 +256,24 @@ class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel<T> { ...@@ -66,14 +256,24 @@ class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel<T> {
Tensor* softmax = context.Output<Tensor>("Softmax"); Tensor* softmax = context.Output<Tensor>("Softmax");
Tensor* loss = context.Output<Tensor>("Loss"); Tensor* loss = context.Output<Tensor>("Loss");
softmax->mutable_data<T>(context.GetPlace()); auto* softmax_data = softmax->mutable_data<T>(context.GetPlace());
loss->mutable_data<T>(context.GetPlace()); auto* loss_data = loss->mutable_data<T>(context.GetPlace());
math::SoftmaxFunctor<platform::CUDADeviceContext, T>()( auto soft_label = context.Attr<bool>("soft_label");
context.cuda_device_context(), logits, softmax); if (soft_label) {
int batch_size = logits->dims()[0];
int feature_size = logits->dims()[1];
auto* logits_data = logits->data<T>();
auto* labels_data = labels->data<T>();
SoftmaxWithCrossEntropyFusedKernel(
logits_data, labels_data, softmax_data, loss_data, batch_size,
feature_size, context.cuda_device_context().stream());
} else {
math::SoftmaxCUDNNFunctor<T>()(context.cuda_device_context(), logits,
softmax);
math::CrossEntropyFunctor<platform::CUDADeviceContext, T>()( math::CrossEntropyFunctor<platform::CUDADeviceContext, T>()(
context.cuda_device_context(), loss, softmax, labels, context.cuda_device_context(), loss, softmax, labels, false);
context.Attr<bool>("soft_label")); }
} }
}; };
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册