From ce939b30ba3f6dc50ca49fab56b907990d7c1de2 Mon Sep 17 00:00:00 2001 From: caoying03 <caoying03@baidu.com> Date: Wed, 28 Dec 2016 15:21:43 +0800 Subject: [PATCH] enable dropout rate in several computation layers. --- python/paddle/trainer/config_parser.py | 74 +++++++++++++++----------- 1 file changed, 42 insertions(+), 32 deletions(-) diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py index bdd0e001fe..18cbd44f49 100644 --- a/python/paddle/trainer/config_parser.py +++ b/python/paddle/trainer/config_parser.py @@ -1803,9 +1803,9 @@ class ConvTransLayer(ConvTransLayerBase): @config_layer('norm') class NormLayer(LayerBase): - def __init__(self, name, inputs, device=None): + def __init__(self, name, inputs, device=None, **xargs): super(NormLayer, self).__init__( - name, 'norm', 0, inputs=inputs, device=device) + name, 'norm', 0, inputs=inputs, device=device, **xargs) for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) norm_conf = self.config.inputs[input_index].norm_conf @@ -1817,9 +1817,9 @@ class NormLayer(LayerBase): @config_layer('pool') class PoolLayer(LayerBase): - def __init__(self, name, inputs, device=None): + def __init__(self, name, inputs, device=None, **xargs): super(PoolLayer, self).__init__( - name, 'pool', 0, inputs=inputs, device=device) + name, 'pool', 0, inputs=inputs, device=device, **xargs) for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) pool_conf = self.config.inputs[input_index].pool_conf @@ -1927,9 +1927,9 @@ class BatchNormLayer(LayerBase): @config_layer('trans') class TransLayer(LayerBase): - def __init__(self, name, inputs, device=None): + def __init__(self, name, inputs, device=None, **xargs): super(TransLayer, self).__init__( - name, 'trans', 0, inputs=inputs, device=device) + name, 'trans', 0, inputs=inputs, device=device, **xargs) config_assert( len(self.inputs) == 1, 'TransLayer must have one and only one input') @@ -1938,9 +1938,9 @@ class TransLayer(LayerBase): @config_layer('resize') class ResizeLayer(LayerBase): - def __init__(self, name, size, inputs, device=None): + def __init__(self, name, size, inputs, device=None, **xargs): super(ResizeLayer, self).__init__( - name, 'resize', size=size, inputs=inputs, device=device) + name, 'resize', size=size, inputs=inputs, device=device, **xargs) config_assert( len(self.inputs) == 1, 'ResizeLayer must have one and only one input') @@ -2270,9 +2270,10 @@ class ExpandLayer(LayerBase): inputs, trans_type='non-seq', device=None, - bias=False): + bias=False, + **xargs): super(ExpandLayer, self).__init__( - name, 'expand', 0, inputs=inputs, device=device) + name, 'expand', 0, inputs=inputs, device=device, **xargs) config_assert( len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs') self.config.trans_type = trans_type @@ -2356,14 +2357,16 @@ class SequenceLastInstanceLayer(LayerBase): active_type='linear', trans_type='non-seq', device=None, - bias=False): + bias=False, + **xargs): super(SequenceLastInstanceLayer, self).__init__( name, 'seqlastins', 0, inputs=inputs, device=device, - active_type=active_type) + active_type=active_type, + **xargs) config_assert( len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input') self.config.trans_type = trans_type @@ -2400,14 +2403,16 @@ class SequenceConcatLayer(LayerBase): inputs, active_type='linear', device=None, - bias=False): + bias=False, + **xargs): super(SequenceConcatLayer, self).__init__( name, 'seqconcat', 0, inputs=inputs, device=device, - active_type=active_type) + active_type=active_type, + **xargs) config_assert( len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs') for input_index in xrange(len(self.inputs)): @@ -2424,14 +2429,16 @@ class SequenceReshapeLayer(LayerBase): inputs, active_type='linear', device=None, - bias=False): + bias=False, + **xargs): super(SequenceReshapeLayer, self).__init__( name, 'seqreshape', size, inputs=inputs, device=device, - active_type=active_type) + active_type=active_type, + **xargs) config_assert( len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs') self.set_layer_size(size) @@ -2445,14 +2452,16 @@ class SubSequenceLayer(LayerBase): inputs, active_type='linear', device=None, - bias=False): + bias=False, + **xargs): super(SubSequenceLayer, self).__init__( name, 'subseq', 0, inputs=inputs, device=device, - active_type=active_type) + active_type=active_type, + **xargs) config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs') input_layer0 = self.get_input_layer(0) size = input_layer0.size @@ -2462,9 +2471,9 @@ class SubSequenceLayer(LayerBase): @config_layer('out_prod') class OuterProdLayer(LayerBase): - def __init__(self, name, inputs, device=None): + def __init__(self, name, inputs, device=None, **xargs): super(OuterProdLayer, self).__init__( - name, 'out_prod', 0, inputs=inputs, device=device) + name, 'out_prod', 0, inputs=inputs, device=device, **xargs) config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs') input_layer0 = self.get_input_layer(0) input_layer1 = self.get_input_layer(1) @@ -2473,9 +2482,9 @@ class OuterProdLayer(LayerBase): @config_layer('power') class PowerLayer(LayerBase): - def __init__(self, name, inputs, device=None): + def __init__(self, name, inputs, device=None, **xargs): super(PowerLayer, self).__init__( - name, 'power', 0, inputs=inputs, device=device) + name, 'power', 0, inputs=inputs, device=device, **xargs) config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs') input_layer1 = self.get_input_layer(1) self.set_layer_size(input_layer1.size) @@ -2486,9 +2495,10 @@ class PowerLayer(LayerBase): @config_layer('slope_intercept') class SlopeInterceptLayer(LayerBase): - def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None): + def __init__(self, name, inputs, slope=1.0, intercept=0.0, + device=None, **xargs): super(SlopeInterceptLayer, self).__init__( - name, 'slope_intercept', 0, inputs=inputs, device=device) + name, 'slope_intercept', 0, inputs=inputs, device=device, **xargs) self.config.slope = slope self.config.intercept = intercept config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input') @@ -2498,9 +2508,9 @@ class SlopeInterceptLayer(LayerBase): @config_layer('scaling') class ScalingLayer(LayerBase): - def __init__(self, name, inputs, device=None): + def __init__(self, name, inputs, device=None, **xargs): super(ScalingLayer, self).__init__( - name, 'scaling', 0, inputs=inputs, device=device) + name, 'scaling', 0, inputs=inputs, device=device, **xargs) config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs') input_layer1 = self.get_input_layer(1) self.set_layer_size(input_layer1.size) @@ -2511,9 +2521,9 @@ class ScalingLayer(LayerBase): @config_layer('conv_shift') class ConvShiftLayer(LayerBase): - def __init__(self, name, inputs, device=None): + def __init__(self, name, inputs, device=None, **xargs): super(ConvShiftLayer, self).__init__( - name, 'conv_shift', 0, inputs=inputs, device=device) + name, 'conv_shift', 0, inputs=inputs, device=device, **xargs) config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs') input_layer0 = self.get_input_layer(0) self.set_layer_size(input_layer0.size) @@ -2521,9 +2531,9 @@ class ConvShiftLayer(LayerBase): @config_layer('convex_comb') class ConvexCombinationLayer(LayerBase): - def __init__(self, name, size, inputs, device=None): + def __init__(self, name, size, inputs, device=None, **xargs): super(ConvexCombinationLayer, self).__init__( - name, 'convex_comb', size, inputs=inputs, device=device) + name, 'convex_comb', size, inputs=inputs, device=device, **xargs) config_assert( len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs') config_assert( @@ -2562,9 +2572,9 @@ class BilinearInterpLayer(LayerBase): @config_layer('sum_to_one_norm') class SumToOneNormLayer(LayerBase): - def __init__(self, name, inputs, device=None): + def __init__(self, name, inputs, device=None, **xargs): super(SumToOneNormLayer, self).__init__( - name, 'sum_to_one_norm', 0, inputs=inputs, device=device) + name, 'sum_to_one_norm', 0, inputs=inputs, device=device, **xargs) config_assert( len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input') input_layer0 = self.get_input_layer(0) -- GitLab