Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
cc9c6196
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cc9c6196
编写于
12月 01, 2020
作者:
1
123malin
提交者:
GitHub
12月 01, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop, fix doc (#29200)
* fix fleet api doc
上级
c0a991c8
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
131 addition
and
76 deletion
+131
-76
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+61
-17
python/paddle/distributed/fleet/base/fleet_base.py
python/paddle/distributed/fleet/base/fleet_base.py
+70
-59
未找到文件。
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
cc9c6196
...
...
@@ -128,6 +128,7 @@ class DistributedStrategy(object):
Serialize current DistributedStrategy to string and save to output file
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -145,6 +146,7 @@ class DistributedStrategy(object):
Load from prototxt file for DistributedStrategy initialization
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -161,10 +163,11 @@ class DistributedStrategy(object):
Configure ExecutionStrategy for DistributedStrategy
Examples:
.. code-block:: python
import paddle
exe_strategy = paddle.
fluid
.ExecutionStrategy()
exe_strategy = paddle.
static
.ExecutionStrategy()
exe_strategy.num_threads = 10
exe_strategy.num_iteration_per_drop_scope = 10
exe_strategy.num_iteration_per_run = 10
...
...
@@ -195,10 +198,11 @@ class DistributedStrategy(object):
only if the property is non-distributed strategy.
Examples:
.. code-block:: python
import paddle
build_strategy = paddle.
fluid
.BuildStrategy()
build_strategy = paddle.
static
.BuildStrategy()
build_strategy.enable_sequential_execution = True
build_strategy.fuse_elewise_add_act_ops = True
build_strategy.fuse_bn_act_ops = True
...
...
@@ -240,6 +244,7 @@ class DistributedStrategy(object):
Default value: True
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -288,6 +293,7 @@ class DistributedStrategy(object):
runtime_split_send_recv(bool): if we are using Tensor split for send and recv during runtime
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -319,6 +325,7 @@ class DistributedStrategy(object):
Default Value: False
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -360,6 +367,7 @@ class DistributedStrategy(object):
custom_black_list(list[str]): Users' custom black list which forbidden execution fp16.
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -384,6 +392,7 @@ class DistributedStrategy(object):
Default value: False
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -401,6 +410,7 @@ class DistributedStrategy(object):
We note that system overhead is usually lower when sync_nccl_allreduce = True
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -425,6 +435,7 @@ class DistributedStrategy(object):
allreduce among the leaders of each group
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -450,6 +461,7 @@ class DistributedStrategy(object):
Default value: number of GPU cards on each single GPU machine
Example:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -476,6 +488,7 @@ class DistributedStrategy(object):
Default value: False
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -500,6 +513,7 @@ class DistributedStrategy(object):
Default value: True
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -524,6 +538,7 @@ class DistributedStrategy(object):
Default value: 32
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -562,6 +577,7 @@ class DistributedStrategy(object):
Default value: 1
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -594,6 +610,7 @@ class DistributedStrategy(object):
implementation should have some manually assign checkpoints
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -622,6 +639,7 @@ class DistributedStrategy(object):
Default value: False
Examples:
.. code-block:: python
import paddle.fleet as fleet
...
...
@@ -649,6 +667,7 @@ class DistributedStrategy(object):
and should be an empirical value decided by your model size and network topology.
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -674,6 +693,7 @@ class DistributedStrategy(object):
device_guard information in user-defined program.
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -709,6 +729,7 @@ class DistributedStrategy(object):
**micro_batch**: the number of small batches in each user defined batch
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -736,6 +757,7 @@ class DistributedStrategy(object):
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -764,6 +786,7 @@ class DistributedStrategy(object):
begin_step(int) The step of begining training by localsgd. Default 1.
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -791,6 +814,7 @@ class DistributedStrategy(object):
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -821,6 +845,7 @@ class DistributedStrategy(object):
begin_step(int) The step of begining training by adaptive localsgd. Default 1.
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -848,6 +873,7 @@ class DistributedStrategy(object):
Default Value: False
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -884,6 +910,7 @@ class DistributedStrategy(object):
element will be transmitted.
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -906,6 +933,7 @@ class DistributedStrategy(object):
Default Value: False
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -935,6 +963,7 @@ class DistributedStrategy(object):
to model parameters.
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -963,6 +992,7 @@ class DistributedStrategy(object):
avg(bool): whether to average the gradients of each mini-batch, the default value is `True`
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -989,6 +1019,7 @@ class DistributedStrategy(object):
Default Value: False
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -1019,6 +1050,7 @@ class DistributedStrategy(object):
will be exclude from weight decay in lars formula.
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -1050,6 +1082,7 @@ class DistributedStrategy(object):
Default Value: False
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -1078,6 +1111,7 @@ class DistributedStrategy(object):
will be exclude from weight decay in lamb formula.
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -1123,11 +1157,12 @@ class DistributedStrategy(object):
Default Value: False
Examples:
.. code-block:: python
import paddle
import paddle.distributed.fleet as fleet
paddle.enable_static()
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.auto = True
...
...
@@ -1156,8 +1191,11 @@ class DistributedStrategy(object):
Default Value: True
Examples:
.. code-block:: python
import paddle
paddle.enable_static()
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.cudnn_exhaustive_search = False
...
...
@@ -1187,8 +1225,11 @@ class DistributedStrategy(object):
Default Value: 4000
Examples:
.. code-block:: python
import paddle
paddle.enable_static()
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.conv_workspace_size_limit = 1024
...
...
@@ -1217,8 +1258,11 @@ class DistributedStrategy(object):
Default Value: True
Examples:
.. code-block:: python
import paddle
paddle.enable_static()
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.cudnn_batchnorm_spatial_persistent = True
...
...
python/paddle/distributed/fleet/base/fleet_base.py
浏览文件 @
cc9c6196
...
...
@@ -69,8 +69,11 @@ class Fleet(object):
Fleet: A Fleet instance
Example for collective training:
.. code-block:: python
import paddle
paddle.enable_static()
import paddle.distributed.fleet as fleet
fleet.init(is_collective=True)
...
...
@@ -86,6 +89,8 @@ class Fleet(object):
.. code-block:: python
import paddle
paddle.enable_static()
import paddle.distributed.fleet as fleet
fleet.init()
...
...
@@ -159,7 +164,7 @@ class Fleet(object):
.. code-block:: python
import paddle.distributed.fleet as fleet
role = fleet.PaddleCloudRoleMaker
role = fleet.PaddleCloudRoleMaker
()
fleet.init(role)
"""
...
...
@@ -233,6 +238,7 @@ class Fleet(object):
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
fleet.init()
fleet.worker_index()
...
...
@@ -248,6 +254,7 @@ class Fleet(object):
int: worker numbers
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -266,6 +273,7 @@ class Fleet(object):
False if not.
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -283,6 +291,7 @@ class Fleet(object):
list/string: server endpoints
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -303,7 +312,9 @@ class Fleet(object):
int: server number
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
fleet.init()
fleet.server_num()
...
...
@@ -318,6 +329,7 @@ class Fleet(object):
int: node id
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -335,6 +347,7 @@ class Fleet(object):
list/string: server endpoints
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
...
...
@@ -359,6 +372,7 @@ class Fleet(object):
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
fleet.init()
fleet.is_server()
...
...
@@ -510,21 +524,21 @@ class Fleet(object):
def
save_persistables
(
self
,
executor
,
dirname
,
main_program
=
None
,
mode
=
1
):
"""
saves all persistable
variable
s from :code:`main_program` to
saves all persistable
tensor
s from :code:`main_program` to
the folder :code:`dirname`. You can refer to
The :code:`dirname` is used to specify the folder where persistable
variable
s
are going to be saved. If you would like to save
variable
s in separate
The :code:`dirname` is used to specify the folder where persistable
tensor
s
are going to be saved. If you would like to save
tensor
s in separate
files, set :code:`filename` None.
Args:
executor(Executor): The executor to run for saving persistable
variable
s.
executor(Executor): The executor to run for saving persistable
tensor
s.
You can refer to :ref:`api_guide_executor_en` for
more details.
dirname(str, optional): The saving directory path.
When you need to save the parameter to the memory, set it to None.
main_program(Program, optional): The program whose persistbale
variable
s will
main_program(Program, optional): The program whose persistbale
tensor
s will
be saved. Default: None.
...
...
@@ -535,16 +549,17 @@ class Fleet(object):
.. code-block:: text
import paddle
paddle.enable_static()
import paddle.distributed.fleet as fleet
import paddle.fluid as fluid
fleet.init()
# build net
# fleet.distributed_optimizer(...)
exe =
fluid.Executor(fluid
.CPUPlace())
fleet.save_persistables(exe, "dirname",
fluid
.default_main_program())
exe =
paddle.static.Executor(paddle
.CPUPlace())
fleet.save_persistables(exe, "dirname",
paddle.static
.default_main_program())
"""
...
...
@@ -569,9 +584,9 @@ class Fleet(object):
.. code-block:: python
import paddle
import paddle.distributed.fleet as fleet
role = fleet.role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
fleet.init(is_collective=True)
strategy = fleet.DistributedStrategy()
optimizer = paddle.optimizer.SGD(learning_rate=0.001)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
...
...
@@ -621,23 +636,20 @@ class Fleet(object):
def forward(self, x):
return self._linear2(self._linear1(x))
# 1. enable dynamic mode
paddle.disable_static()
# 2. initialize fleet environment
# 1. initialize fleet environment
fleet.init(is_collective=True)
#
3
. create layer & optimizer
#
2
. create layer & optimizer
layer = LinearNet()
loss_fn = nn.MSELoss()
adam = paddle.optimizer.Adam(
learning_rate=0.001, parameters=layer.parameters())
#
4
. get data_parallel model using fleet
#
3
. get data_parallel model using fleet
adam = fleet.distributed_optimizer(adam)
dp_layer = fleet.distributed_model(layer)
#
5
. run layer
#
4
. run layer
inputs = paddle.randn([10, 10], 'float32')
outputs = dp_layer(inputs)
labels = paddle.randn([10, 1], 'float32')
...
...
@@ -675,11 +687,10 @@ class Fleet(object):
import paddle
from paddle.distributed import fleet
paddle.disable_static()
fleet.init(is_collective=True)
value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.
fluid.dygraph.to_variable
(value)
a = paddle.
to_tensor
(value)
layer = paddle.nn.Linear(13, 5)
adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
...
...
@@ -710,11 +721,10 @@ class Fleet(object):
import paddle
from paddle.distributed import fleet
paddle.disable_static()
fleet.init(is_collective=True)
value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.
fluid.dygraph.to_variable
(value)
a = paddle.
to_tensor
(value)
layer = paddle.nn.Linear(13, 5)
adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
...
...
@@ -722,9 +732,9 @@ class Fleet(object):
adam = fleet.distributed_optimizer(adam)
dp_layer = fleet.distributed_model(layer)
state_dict = adam.state_dict()
paddle.
framework.
save(state_dict, "paddle_dy")
para_state_dict
, opti_state_dict = paddle.framework.load(
"paddle_dy")
adam.set_state_dict(
opti
_state_dict)
paddle.save(state_dict, "paddle_dy")
para_state_dict
= paddle.load(
"paddle_dy")
adam.set_state_dict(
para
_state_dict)
"""
# imitate target optimizer retrieval
return
self
.
user_defined_optimizer
.
set_state_dict
(
state_dict
)
...
...
@@ -748,11 +758,10 @@ class Fleet(object):
import paddle
from paddle.distributed import fleet
paddle.disable_static()
fleet.init(is_collective=True)
value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.
fluid.dygraph.to_variable
(value)
a = paddle.
to_tensor
(value)
layer = paddle.nn.Linear(13, 5)
adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
...
...
@@ -785,17 +794,17 @@ class Fleet(object):
float: The learning rate of the current step.
Examples:
.. code-block:: python
import numpy as np
import paddle
from paddle.distributed import fleet
paddle.disable_static()
fleet.init(is_collective=True)
value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.
fluid.dygraph.to_variable
(value)
a = paddle.
to_tensor
(value)
layer = paddle.nn.Linear(13, 5)
adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
...
...
@@ -819,6 +828,7 @@ class Fleet(object):
None
Examples:
.. code-block:: python
import paddle
...
...
@@ -834,23 +844,20 @@ class Fleet(object):
def forward(self, x):
return self._linear2(self._linear1(x))
# 1. enable dynamic mode
paddle.disable_static()
# 2. initialize fleet environment
# 1. initialize fleet environment
fleet.init(is_collective=True)
#
3
. create layer & optimizer
#
2
. create layer & optimizer
layer = LinearNet()
loss_fn = nn.MSELoss()
adam = paddle.optimizer.Adam(
learning_rate=0.001, parameters=layer.parameters())
#
4
. get data_parallel model using fleet
#
3
. get data_parallel model using fleet
adam = fleet.distributed_optimizer(adam)
dp_layer = fleet.distributed_model(layer)
#
5
. run layer
#
4
. run layer
inputs = paddle.randn([10, 10], 'float32')
outputs = dp_layer(inputs)
labels = paddle.randn([10, 1], 'float32')
...
...
@@ -878,6 +885,7 @@ class Fleet(object):
None
Examples:
.. code-block:: python
import paddle
...
...
@@ -893,23 +901,20 @@ class Fleet(object):
def forward(self, x):
return self._linear2(self._linear1(x))
# 1. enable dynamic mode
paddle.disable_static()
# 2. initialize fleet environment
# 1. initialize fleet environment
fleet.init(is_collective=True)
#
3
. create layer & optimizer
#
2
. create layer & optimizer
layer = LinearNet()
loss_fn = nn.MSELoss()
adam = paddle.optimizer.Adam(
learning_rate=0.001, parameters=layer.parameters())
#
4
. get data_parallel model using fleet
#
3
. get data_parallel model using fleet
adam = fleet.distributed_optimizer(adam)
dp_layer = fleet.distributed_model(layer)
#
5
. run layer
#
4
. run layer
inputs = paddle.randn([10, 10], 'float32')
outputs = dp_layer(inputs)
labels = paddle.randn([10, 1], 'float32')
...
...
@@ -962,38 +967,44 @@ class Fleet(object):
Add distributed operations to minimize ``loss`` by updating ``parameter_list``.
Args:
loss (
Variable): A ``Variable
`` containing the value to minimize.
loss (
Tensor): A ``Tensor
`` containing the value to minimize.
startup_program (Program, optional): :ref:`api_fluid_Program` for
initializing parameters in ``parameter_list``. The default value
is None, at this time :ref:`api_fluid_default_startup_program` will be used.
parameter_list (Iterable, optional): Iterable of ``
Variable`` or ``Variable
.name`` to update
parameter_list (Iterable, optional): Iterable of ``
Tensor`` or ``Tensor
.name`` to update
to minimize ``loss``. The default value is None, at this time all parameters
will be updated.
no_grad_set (set, optional): Set of ``
Variable`` or ``Variable
.name`` that don't need
no_grad_set (set, optional): Set of ``
Tensor`` or ``Tensor
.name`` that don't need
to be updated. The default value is None.
Returns:
tuple: tuple (optimize_ops, params_grads), A list of operators appended
by minimize and a list of (param, grad)
variable
pairs, param is
by minimize and a list of (param, grad)
tensor
pairs, param is
``Parameter``, grad is the gradient value corresponding to the parameter.
The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
indicate program pruning. If so, the program will be pruned by ``feed`` and
``fetch_list`` before run, see details in ``Executor``.
Examples:
.. code-block:: python
import paddle
paddle.enable_static()
import paddle.distributed.fleet as fleet
import paddle.nn.functional as F
hid_dim = 10
label_dim = 2
input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
cost = F.cross_entropy(input=prediction, label=input_y)
avg_cost = paddle.mean(x=cost)
fc_1 = paddle.fluid.layers.fc(input=input_x, size=hid_dim, act='tanh')
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=hid_dim, act='tanh')
prediction = paddle.fluid.layers.fc(input=[fc_2], size=label_dim, act='softmax')
cost = paddle.fluid.layers.cross_entropy(input=prediction, label=input_y)
avg_cost = paddle.fluid.layers.mean(x=cost)
role = fleet.role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
fleet.init(is_collective=True)
strategy = fleet.DistributedStrategy()
optimizer = paddle.optimizer.SGD(learning_rate=0.001)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录