Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
ca017719
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ca017719
编写于
1月 22, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add layer_norm
上级
cb17dd20
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
399 addition
and
0 deletion
+399
-0
paddle/operators/layer_norm_op.cc
paddle/operators/layer_norm_op.cc
+283
-0
paddle/operators/layer_norm_op.h
paddle/operators/layer_norm_op.h
+35
-0
python/paddle/v2/fluid/tests/test_layer_norm_op.py
python/paddle/v2/fluid/tests/test_layer_norm_op.py
+81
-0
未找到文件。
paddle/operators/layer_norm_op.cc
0 → 100644
浏览文件 @
ca017719
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/layer_norm_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
DataLayout
=
framework
::
DataLayout
;
template
<
typename
T
>
using
EigenMatrixMapRowMajor
=
Eigen
::
Map
<
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
;
template
<
typename
T
>
using
ConstEigenMatrixMapRowMajor
=
Eigen
::
Map
<
const
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
;
class
LayerNormOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Scale"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Bias"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Y"
),
""
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
)[
0
],
1
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Bias"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Bias"
)[
0
],
1
);
ctx
->
SetOutputDim
(
"Y"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
SetOutputDim
(
"Mean"
,
{
ctx
->
GetInputDim
(
"X"
)[
0
]});
ctx
->
SetOutputDim
(
"Variance"
,
{
ctx
->
GetInputDim
(
"X"
)[
0
]});
ctx
->
ShareLoD
(
"X"
,
"Y"
);
}
};
class
LayerNormOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
LayerNormOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input tensor"
);
AddInput
(
"Scale"
,
"Scale is a 1-dimensional tensor of size 1 "
"that is applied to the output"
);
AddInput
(
"Bias"
,
"Bias is a 1-dimensional tensor of size 1 "
"that is applied to the output"
);
AddOutput
(
"Y"
,
"result after normalization"
);
AddOutput
(
"Mean"
,
"Mean of the current mini batch."
);
AddOutput
(
"Variance"
,
"Variance of the current mini batch."
);
AddAttr
<
float
>
(
"epsilon"
,
""
)
.
SetDefault
(
1e-5
)
.
AddCustomChecker
([](
const
float
&
epsilon
)
{
PADDLE_ENFORCE
(
epsilon
>=
0.0
f
&&
epsilon
<=
0.001
f
,
"'epsilon' should be between 0.0 and 0.001."
);
});
AddAttr
<
std
::
vector
<
int
>>
(
"axis"
,
"(vector<int> default:{1, 1, 1}), the "
"axis to normalize."
)
.
SetDefault
({
1
,
2
,
3
});
// todo(zcd) : who to set axis
AddComment
(
R"DOC(
Layer Normalization.
Layer Norm has been implemented as discussed in the paper:
https://arxiv.org/abs/1607.06450
...
)DOC"
);
}
};
template
<
typename
T
>
class
LayerNormKernel
<
platform
::
CPUDeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
&
x_dims
=
x
->
dims
();
const
int
N
=
x_dims
[
0
];
const
int
sample_size
=
x
->
numel
()
/
N
;
auto
scale_data
=
scale
->
data
<
T
>
()[
0
];
auto
bias_data
=
bias
->
data
<
T
>
()[
0
];
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
mean
=
ctx
.
Output
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Output
<
Tensor
>
(
"Variance"
);
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
var
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
left
=
N
,
right
=
sample_size
;
auto
input_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
x
->
data
<
T
>
(),
left
,
right
);
auto
mean_map
=
EigenMatrixMapRowMajor
<
T
>
(
mean
->
data
<
T
>
(),
left
,
1
);
auto
var_map
=
EigenMatrixMapRowMajor
<
T
>
(
var
->
data
<
T
>
(),
left
,
1
);
auto
output_map
=
EigenMatrixMapRowMajor
<
T
>
(
output
->
data
<
T
>
(),
left
,
right
);
auto
squre
=
[](
T
ele
)
{
return
ele
*
ele
;
};
auto
add_epslion
=
[
epsilon
](
T
ele
)
{
return
ele
+
epsilon
;
};
mean_map
=
input_map
.
rowwise
().
mean
();
var_map
=
(
input_map
-
mean_map
.
replicate
(
1
,
right
))
.
unaryExpr
(
squre
)
.
rowwise
()
.
mean
()
.
unaryExpr
(
add_epslion
);
auto
scale_inv_std
=
[
scale_data
](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
)
*
scale_data
;
};
auto
sub_bias
=
[
bias_data
](
T
ele
)
{
return
bias_data
-
ele
;
};
output_map
=
(
var_map
.
unaryExpr
(
scale_inv_std
).
replicate
(
1
,
right
))
.
cwiseProduct
(
input_map
)
+
var_map
.
unaryExpr
(
scale_inv_std
)
.
cwiseProduct
(
mean_map
)
.
unaryExpr
(
sub_bias
)
.
replicate
(
1
,
right
);
}
};
class
LayerNormGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
// check input
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Scale"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Mean"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Variance"
),
""
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Y"
)),
""
);
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
// check output
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Scale"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Scale"
),
{
1
});
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Bias"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
{
1
});
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
var
=
ctx
.
InputVar
(
framework
::
GradVarName
(
"Y"
));
if
(
var
==
nullptr
)
{
PADDLE_THROW
(
"can't find Y@GRAD"
);
}
const
Tensor
*
t
=
nullptr
;
if
(
var
->
IsType
<
Tensor
>
())
{
t
=
&
var
->
Get
<
Tensor
>
();
}
else
if
(
var
->
IsType
<
LoDTensor
>
())
{
t
=
&
var
->
Get
<
LoDTensor
>
();
}
if
(
t
==
nullptr
)
{
PADDLE_THROW
(
"can't find Y@GRAD"
);
}
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
t
->
type
()),
ctx
.
GetPlace
());
}
};
template
<
typename
T
>
class
LayerNormGradKernel
<
platform
::
CPUDeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
*
mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
d_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
&
x_dims
=
x
->
dims
();
const
int
N
=
x_dims
[
0
];
const
int
sample_size
=
x
->
numel
()
/
N
;
int
left
=
N
,
right
=
sample_size
;
auto
scale_data
=
scale
->
data
<
T
>
()[
0
];
// init output
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
x_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
x
->
data
<
T
>
(),
left
,
right
);
auto
d_y_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
d_y
->
data
<
T
>
(),
left
,
right
);
auto
mean_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
mean
->
data
<
T
>
(),
left
,
1
);
auto
var_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
var
->
data
<
T
>
(),
left
,
1
);
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_bias
->
data
<
T
>
()[
0
]
=
d_y_map
.
sum
();
}
if
(
d_scale
)
{
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
inv_std
=
[](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
);
};
d_scale
->
data
<
T
>
()[
0
]
=
((
x_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
var_map
.
unaryExpr
(
inv_std
).
replicate
(
1
,
right
))
.
cwiseProduct
(
d_y_map
))
.
sum
();
// also can use `y` to get d_scale_map
}
if
(
d_x
)
{
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_x_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_x
->
data
<
T
>
(),
left
,
right
);
auto
triple_product
=
[](
T
ele
)
{
return
ele
*
ele
*
ele
;
};
auto
neg_inv_std
=
[](
T
ele
)
{
return
T
(
-
1.0
)
*
std
::
sqrt
(
1
/
ele
);
};
auto
inv_std_scale_func
=
[
scale_data
](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
)
*
scale_data
;
};
auto
neg_inv_std_scale_func
=
[
scale_data
](
T
ele
)
{
return
T
(
-
1.0
)
*
std
::
sqrt
(
1
/
ele
)
*
scale_data
;
};
// dy_dx
auto
dx_end
=
var_map
.
unaryExpr
(
inv_std_scale_func
)
.
replicate
(
1
,
right
)
.
cwiseProduct
(
d_y_map
);
// dy_dmean_dx
auto
dmean_end
=
var_map
.
unaryExpr
(
neg_inv_std_scale_func
)
.
replicate
(
1
,
right
)
.
cwiseProduct
(
d_y_map
)
.
rowwise
()
.
sum
();
auto
dx_mean
=
(
T
(
1.0
)
/
right
)
*
dmean_end
.
replicate
(
1
,
right
);
// dy_var_dx
auto
dvar_end_0
=
(
x_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
d_y_map
)
.
rowwise
()
.
sum
();
auto
dvar_end
=
var_map
.
unaryExpr
(
neg_inv_std
)
.
unaryExpr
(
triple_product
)
.
cwiseProduct
(
dvar_end_0
);
auto
dx_var
=
(
1.0
f
/
right
)
*
(
x_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
dvar_end
.
replicate
(
1
,
right
));
d_x_map
=
dx_end
+
dx_mean
+
dx_var
;
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
layer_norm
,
ops
::
LayerNormOp
,
ops
::
LayerNormOpMaker
,
layer_norm_grad
,
ops
::
LayerNormGradOp
);
REGISTER_OP_CPU_KERNEL
(
layer_norm
,
ops
::
LayerNormKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
layer_norm_grad
,
ops
::
LayerNormGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
paddle/operators/layer_norm_op.h
0 → 100644
浏览文件 @
ca017719
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
LayerNormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
LayerNormGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
}
// namespace operators
}
// namespace paddle
python/paddle/v2/fluid/tests/test_layer_norm_op.py
0 → 100644
浏览文件 @
ca017719
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
def
layer_norm_naive
(
x
,
scale
,
beta
,
epsilon
):
n
,
c
,
h
,
w
=
x
.
shape
mean
=
np
.
mean
(
x
,
axis
=
(
1
,
2
,
3
))
var
=
np
.
var
(
x
,
axis
=
(
1
,
2
,
3
))
+
epsilon
output
=
scale
*
np
.
divide
((
x
-
mean
.
reshape
([
n
,
1
,
1
,
1
])),
(
np
.
sqrt
(
var
)).
reshape
([
n
,
1
,
1
,
1
]))
+
beta
return
output
,
mean
,
var
class
TestLayerNormdOp
(
OpTest
):
def
setUp
(
self
):
self
.
init_test_case
()
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
input
,
'Scale'
:
np
.
array
([
self
.
scale
]).
astype
(
"float32"
),
'Bias'
:
np
.
array
([
self
.
bias
]).
astype
(
"float32"
)
}
output
,
mean
,
var
=
layer_norm_naive
(
input
,
self
.
scale
,
self
.
bias
,
self
.
epsilon
)
self
.
outputs
=
{
'Y'
:
output
,
'Mean'
:
mean
,
'Variance'
:
var
}
def
test_check_output
(
self
):
self
.
check_output
()
# def test_check_grad(self):
# self.check_grad(
# ['Scale', 'Bias', 'X'], ['Y', 'Mean', 'Variance'],
# max_relative_error=0.02)
def
test_check_grad_no_x
(
self
):
self
.
check_grad
(
[
'Scale'
,
'Bias'
],
[
'Y'
,
'Mean'
,
'Variance'
],
max_relative_error
=
0.02
,
no_grad_set
=
set
([
'X'
]))
# def test_check_grad_no_scale(self):
# self.check_grad(
# ['Bias','X'],
# 'Y',
# max_relative_error=0.02,
# no_grad_set=set(['Scale']))
#
# def test_check_grad_no_bias(self):
# self.check_grad(
# ['Scale','X'],
# 'Y',
# max_relative_error=0.02,
# no_grad_set=set(['Bias']))
def
init_test_case
(
self
):
self
.
op_type
=
"layer_norm"
self
.
input_size
=
[
2
,
3
,
4
,
5
]
self
.
scale
=
0.21
self
.
bias
=
0.1
self
.
epsilon
=
0.00001
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录