未验证 提交 c9f7cff0 编写于 作者: Z zhangkaihuo 提交者: GitHub

Add a new op: paddle.linalg.multi_dot (#35224)

上级 72b07726
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/strided_memcpy.h"
#include "paddle/fluid/operators/utils.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
/**
* @brief compute the output shape and check the input shape valid or not
*/
inline framework::DDim ComputeAndCheckShape(
const bool is_runtime, const std::vector<framework::DDim>& inputs_dims) {
const size_t n = inputs_dims.size();
auto first_dim = inputs_dims[0];
bool is_vector = false;
framework::DDim out_dim;
PADDLE_ENFORCE_LT(
first_dim.size(), static_cast<size_t>(3),
platform::errors::InvalidArgument(
"multi_dot: the first input tensor must be 1D or 2D but got[%d]!",
static_cast<int>(first_dim.size())));
// If the first tensor is 1D of size n view it as a row vector (1, n)
if (first_dim.size() == 1) {
first_dim = framework::make_ddim({1, static_cast<int>(first_dim[0])});
is_vector = true;
}
auto last_dim = inputs_dims[n - 1];
PADDLE_ENFORCE_LT(
last_dim.size(), static_cast<size_t>(3),
platform::errors::InvalidArgument(
"the last input tensor of multi_dot must be 1D or 2D but got[%d]!",
static_cast<int>(first_dim.size())));
// If the last tensor is 1D of size n view it as a column vector (n, 1)
if (last_dim.size() == 1) {
last_dim = framework::make_ddim({static_cast<int>(last_dim[0]), 1});
out_dim = is_vector ? framework::make_ddim({1})
: framework::make_ddim({first_dim[0]});
} else {
out_dim = is_vector ? framework::make_ddim({last_dim[1]})
: framework::make_ddim({first_dim[0], last_dim[1]});
}
auto width = first_dim[1];
for (size_t i = 1; i < n - 1; i++) {
PADDLE_ENFORCE_EQ(inputs_dims[i].size(), static_cast<size_t>(2),
platform::errors::InvalidArgument(
"the input tensor of multi_dot op must be 2D."));
const auto& tmp_dim = inputs_dims[i];
PADDLE_ENFORCE_EQ(
tmp_dim[0], width,
platform::errors::InvalidArgument(
"the input matrix does not meet the multiplication requirements."));
width = tmp_dim[1];
}
PADDLE_ENFORCE_EQ(
last_dim[0], width,
platform::errors::InvalidArgument(
"the input matrix does not meet the multiplication requirements."));
return out_dim;
}
template <typename DeviceContext, typename T>
inline framework::Tensor MatMul(const framework::ExecutionContext& ctx,
const framework::Tensor& matrix_a,
const framework::Tensor& matrix_b,
const framework::DDim& a_dim,
const framework::DDim& b_dim) {
auto place = ctx.GetPlace();
auto blas = math::GetBlas<DeviceContext, T>(ctx);
framework::Tensor matrix_c;
framework::DDim c_dim = framework::make_ddim({a_dim[0], b_dim[1]});
matrix_c.Resize(c_dim);
matrix_c.mutable_data<T>(place);
auto mat_dim_a = math::CreateMatrixDescriptor(a_dim, 0, false);
auto mat_dim_b = math::CreateMatrixDescriptor(b_dim, 0, false);
const T alpha = static_cast<T>(1.0);
blas.MatMul(matrix_a, mat_dim_a, matrix_b, mat_dim_b, alpha, &matrix_c, T(0));
return matrix_c;
}
/**
* @brief Recursively calculate matrix multiplication according to the optimal
* order
* Let k = order[i,j], then ins[i...j] = ins[i...k] * ins[k+1 ...j]
*
* @param
* ins: the input tensors
* ins_dims: the shape of ins after reshape
* order: the optimal order
* i: the left of sub chain
* j: the righe of sub chain
* save_result: set true by backward
* results: save the intermediate result during backward
*/
template <typename DeviceContext, typename T>
inline framework::Tensor MatChainMul(
const framework::ExecutionContext& ctx,
const std::vector<const framework::Tensor*>& ins,
const std::vector<framework::DDim>& ins_dims,
const std::vector<uint64_t>& order, const uint64_t i, const uint64_t j,
const bool save_result, std::vector<framework::Tensor>* results) {
if (i == j) {
return *ins[i];
}
const auto A = MatChainMul<DeviceContext, T>(ctx, ins, ins_dims, order, i,
order[i * ins.size() + j],
save_result, results);
framework::DDim a_dim = A.dims();
if (i == order[i * ins.size() + j]) {
a_dim = ins_dims[i];
}
const auto B = MatChainMul<DeviceContext, T>(ctx, ins, ins_dims, order,
order[i * ins.size() + j] + 1, j,
save_result, results);
framework::DDim b_dim = B.dims();
if (j == order[i * ins.size() + j] + 1) {
b_dim = ins_dims[j];
}
auto result = MatMul<DeviceContext, T>(ctx, A, B, a_dim, b_dim);
if (save_result) {
(*results)[i * ins.size() + j] = result;
}
return result;
}
/**
* @brief get the optimal order
*/
std::vector<uint64_t> GetOrder(const std::vector<const framework::Tensor*>& ins,
const std::vector<framework::DDim>& ins_dims) {
auto n = ins.size();
// p: save the ins shape, the ins[i] shape is (p[i], p[i+1])
std::vector<uint64_t> p(n + 1);
for (uint64_t i = 0; i < n; i++) {
p[i] = ins_dims[i][0];
}
p[n] = ins_dims[n - 1][1];
// m[i, j]: save the lowest cost for multiplying ins[i...j]
std::vector<uint64_t> m(n * n, 0);
// define ins[i...j] means multiplying matrices from ins[i] to ins[j]
// order[i, j] = k, this means that ins[i...k] and ins[k...j] fist and then
// multiply the resulting matrices is the optimal order for ins[i...j]
std::vector<uint64_t> order(n * n);
for (uint64_t l = 1; l < n; l++) {
for (uint64_t i = 0; i < n - l; i++) {
auto j = i + l;
m[i * n + j] = 0xffffffff;
for (uint64_t k = i; k < j; k++) {
uint64_t q =
m[i * n + k] + m[(k + 1) * n + j] + p[i] * p[k + 1] * p[j + 1];
if (q < m[i * n + j]) {
m[i * n + j] = q;
order[i * n + j] = k;
}
}
}
}
return order;
}
template <typename DeviceContext, typename T>
static inline framework::Tensor MultiDotMatChainOrder(
const framework::ExecutionContext& ctx,
const std::vector<const framework::Tensor*>& ins,
const std::vector<framework::DDim>& ins_dims, const bool save_result,
std::vector<framework::Tensor>* results) {
auto order = GetOrder(ins, ins_dims);
return MatChainMul<DeviceContext, T>(ctx, ins, ins_dims, order, 0,
ins.size() - 1, save_result, results);
}
inline void GetDims(const std::vector<const framework::Tensor*>& ins,
std::vector<framework::DDim>* ins_dims) {
const auto n = ins.size();
for (size_t i = 0; i < n; i++) {
(*ins_dims)[i] = ins[i]->dims();
if (i == 0 && (*ins_dims)[i].size() == 1) {
(*ins_dims)[i] = framework::make_ddim({1, (*ins_dims)[i][0]});
} else if (i == n - 1 && (*ins_dims)[i].size() == 1) {
(*ins_dims)[i] = framework::make_ddim({(*ins_dims)[i][0], 1});
}
}
}
class MultiDotOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "The input tensors of multi_dot operator.").AsDuplicable();
AddOutput("Out", "The output tensor of multi_dot operator");
AddComment(R"DOC(
Compute the dot product of two or more arrays in a single function call, while automatically selecting the fastest evaluation order.
multi_dot chains MatMul and uses optimal parenthesization of the matrices [1] [2]. Depending on the shapes of the matrices, this can speed up the multiplication a lot.
If the first argument is 1-D it is treated as a row vector. If the last argument is 1-D it is treated as a column vector. The other arguments must be 2-D.
)DOC");
}
};
class MultiDotOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInputs("X"), "Input", "X", "multi_dot");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "multi_dot");
auto inputs_dims = ctx->GetInputsDim("X");
const size_t inputs_num = inputs_dims.size();
PADDLE_ENFORCE_GT(
inputs_num, static_cast<size_t>(1),
platform::errors::InvalidArgument(
"The number of input tensors in multi_dot op should > 1."));
auto out_dims = ComputeAndCheckShape(ctx->IsRuntime(), inputs_dims);
ctx->SetOutputDim("Out", out_dims);
ctx->ShareLoD("X", "Out");
}
};
/**
* 1. there are only 2 matrices: direct matrix multiplication A*B
* 2. there are only 3 matrices: calculate the cost of (A*B)*C and A*(B*C),
* choose the least cost order for calculation
* 3. more than 3 matrices: call MultiDotMatChainOrder
*/
template <typename DeviceContext, typename T>
class MultiDotKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto* out = ctx.Output<framework::Tensor>("Out");
auto place = ctx.GetPlace();
out->mutable_data<T>(place);
auto blas = math::GetBlas<DeviceContext, T>(ctx);
auto n = ins.size();
std::vector<framework::DDim> ins_dims(n);
GetDims(ins, &ins_dims);
const T scale = static_cast<T>(1.0);
if (n == 2) {
auto mat_dim_a = math::CreateMatrixDescriptor(ins_dims[0], 0, false);
auto mat_dim_b = math::CreateMatrixDescriptor(ins_dims[1], 0, false);
blas.MatMul(*ins[0], mat_dim_a, *ins[1], mat_dim_b, scale, out, T(0));
} else if (n == 3) {
const auto Ma = ins_dims[0][0];
const auto Ka = ins_dims[0][1];
const auto Nb = ins_dims[1][1];
const auto Nc = ins_dims[2][1];
const uint64_t cost1 = Ma * Nb * (Ka + Nc);
const uint64_t cost2 = Ka * Nc * (Nb + Ma);
auto mat_dim_a = math::CreateMatrixDescriptor(ins_dims[0], 0, false);
auto mat_dim_b = math::CreateMatrixDescriptor(ins_dims[1], 0, false);
auto mat_dim_c = math::CreateMatrixDescriptor(ins_dims[2], 0, false);
if (cost1 < cost2) {
framework::Tensor tmp_out;
tmp_out.mutable_data<T>(place, Ma * Nb * sizeof(T));
framework::DDim tmp_dim = framework::make_ddim({Ma, Nb});
blas.MatMul(*ins[0], mat_dim_a, *ins[1], mat_dim_b, scale, &tmp_out,
T(0));
auto mat_dim_tmp = math::CreateMatrixDescriptor(tmp_dim, 0, false);
blas.MatMul(tmp_out, mat_dim_tmp, *ins[2], mat_dim_c, scale, out, T(0));
} else {
framework::Tensor tmp_out;
tmp_out.mutable_data<T>(place, Ka * Nc * sizeof(T));
framework::DDim tmp_dim = framework::make_ddim({Ka, Nc});
blas.MatMul(*ins[1], mat_dim_b, *ins[2], mat_dim_c, scale, &tmp_out,
T(0));
auto mat_dim_tmp = math::CreateMatrixDescriptor(tmp_dim, 0, false);
blas.MatMul(*ins[0], mat_dim_a, tmp_out, mat_dim_tmp, scale, out, T(0));
}
} else {
std::vector<framework::Tensor> results;
const auto tmp = MultiDotMatChainOrder<DeviceContext, T>(
ctx, ins, ins_dims, false, &results);
auto out_dim = out->dims();
*out = tmp;
out->Resize(out_dim);
}
}
};
class MultiDotOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInputs("X"), "Input", "X", "multi_dot");
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
"Out@GRAD", "multi_dot");
auto in_x = "X";
auto out_x_g_n = framework::GradVarName(in_x);
auto ins_dims = ctx->GetInputsDim(in_x);
ctx->SetOutputsDim(out_x_g_n, ins_dims);
ctx->ShareAllLoD(in_x, out_x_g_n);
}
};
template <typename DeviceContext, typename T>
class MultiDotGradKernel : public framework::OpKernel<T> {
public:
/**
* @brief calculate dA and dB
* dA = dout * transpose(B)
* dB = transpose(A) * dout
*/
void CalcGrad(const framework::ExecutionContext& ctx,
const framework::Tensor& dout, const framework::Tensor& A,
const framework::Tensor& B, const framework::DDim& dout_dim,
const framework::DDim& a_dim, const framework::DDim& b_dim,
framework::Tensor* dA, framework::Tensor* dB) const {
auto mat_dim_dout = math::CreateMatrixDescriptor(dout_dim, 0, false);
auto mat_dim_a = math::CreateMatrixDescriptor(a_dim, 0, true);
auto mat_dim_b = math::CreateMatrixDescriptor(b_dim, 0, true);
T alpha = static_cast<T>(1.0);
auto blas = math::GetBlas<DeviceContext, T>(ctx);
blas.MatMul(A, mat_dim_a, dout, mat_dim_dout, alpha, dB, T(0));
blas.MatMul(dout, mat_dim_dout, B, mat_dim_b, alpha, dA, T(0));
}
/**
* @brief calculate multi matrix multiplication grad by a chain order
* @param
* dout: the grad of multi matrix multiplication out
* dx: the out grad of inputs
* ins: the input tensors
* ins_dims: the shape of ins after reshape
* order: the optimal order
* i: the left of sub chain
* j: the righe of sub chain
* results: the intermediate result of farward
*/
void MatChainMulGrad(const framework::ExecutionContext& ctx,
const framework::Tensor& dout,
std::vector<framework::Tensor*>* dx,
const std::vector<const framework::Tensor*>& ins,
const framework::DDim& dout_dim,
const std::vector<framework::DDim>& ins_dims,
const std::vector<uint64_t>& order, const uint64_t i,
const uint64_t j,
const std::vector<framework::Tensor>& results) const {
if (i == j) {
*((*dx)[i]) = dout;
return;
}
const auto n = ins.size();
const auto right = order[i * n + j];
const auto left = order[i * n + j] + 1;
// get the multi result of left sub chain
const auto* A = &results[i * n + right];
framework::DDim a_dim = A->dims();
if (i == right) {
A = ins[i];
a_dim = ins_dims[i];
}
// get the multi result of right sub chain
const auto* B = &results[left * n + j];
framework::DDim b_dim = B->dims();
if (left == j) {
B = ins[j];
b_dim = ins_dims[j];
}
framework::Tensor dA, dB;
dA.Resize({dout_dim[0], b_dim[0]});
dB.Resize({a_dim[1], dout_dim[1]});
dA.mutable_data<T>(ctx.GetPlace());
dB.mutable_data<T>(ctx.GetPlace());
CalcGrad(ctx, dout, *A, *B, dout_dim, a_dim, b_dim, &dA, &dB);
MatChainMulGrad(ctx, dA, dx, ins, dA.dims(), ins_dims, order, i, right,
results);
MatChainMulGrad(ctx, dB, dx, ins, dB.dims(), ins_dims, order, left, j,
results);
}
void MultiDotGradMatChainOrder(
const framework::ExecutionContext& ctx, const framework::Tensor& dout,
const std::vector<const framework::Tensor*>& ins,
const framework::DDim& dout_dim,
const std::vector<framework::DDim>& ins_dims,
std::vector<framework::Tensor*>* dx) const {
auto order = GetOrder(ins, ins_dims);
auto n = ins.size();
std::vector<framework::Tensor> results(n * n);
MatChainMul<DeviceContext, T>(ctx, ins, ins_dims, order, 0, n - 1, true,
&results);
MatChainMulGrad(ctx, dout, dx, ins, dout_dim, ins_dims, order, 0, n - 1,
results);
}
void Compute(const framework::ExecutionContext& ctx) const {
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto dout = *ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto dx = ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X"));
auto blas = math::GetBlas<DeviceContext, T>(ctx);
auto place = ctx.GetPlace();
const auto n = ins.size();
for (size_t i = 0; i < n; i++) {
dx[i]->mutable_data<T>(place);
}
std::vector<framework::DDim> ins_dims(n);
GetDims(ins, &ins_dims);
framework::DDim dout_dim = dout.dims();
if (ins[0]->dims().size() == 1 && ins[n - 1]->dims().size() == 1) {
dout_dim = framework::make_ddim({1, 1});
} else if (ins[0]->dims().size() == 1) {
if (dout_dim.size() == 1) {
dout_dim = framework::make_ddim({1, dout_dim[0]});
}
} else if (ins[n - 1]->dims().size() == 1) {
if (dout_dim.size() == 1) {
dout_dim = framework::make_ddim({dout_dim[0], 1});
}
}
T alpha = static_cast<T>(1);
auto mat_dim_dout = math::CreateMatrixDescriptor(dout_dim, 0, false);
if (n == 2) {
CalcGrad(ctx, dout, *ins[0], *ins[1], dout_dim, ins_dims[0], ins_dims[1],
dx[0], dx[1]);
} else if (n == 3) {
const auto Ma = ins_dims[0][0];
const auto Ka = ins_dims[0][1];
const auto Nb = ins_dims[1][1];
const auto Nc = ins_dims[2][1];
const uint64_t cost1 = Ma * Nb * (Ka + Nc);
const uint64_t cost2 = Ka * Nc * (Nb + Ma);
auto mat_dim_a = math::CreateMatrixDescriptor(ins_dims[0], 0, false);
auto mat_dim_b = math::CreateMatrixDescriptor(ins_dims[1], 0, false);
auto mat_dim_c = math::CreateMatrixDescriptor(ins_dims[2], 0, false);
if (cost1 < cost2) {
framework::Tensor tmp_out, tmp_dout;
tmp_out.Resize({Ma, Nb});
tmp_out.mutable_data<T>(place);
tmp_dout.Resize({mat_dim_dout.height_, Nb});
tmp_dout.mutable_data<T>(place);
blas.MatMul(*ins[0], mat_dim_a, *ins[1], mat_dim_b, alpha, &tmp_out,
T(0));
CalcGrad(ctx, dout, tmp_out, *ins[2], dout_dim, tmp_out.dims(),
ins_dims[2], &tmp_dout, dx[2]);
CalcGrad(ctx, tmp_dout, *ins[0], *ins[1], tmp_dout.dims(), ins_dims[0],
ins_dims[1], dx[0], dx[1]);
} else {
framework::Tensor tmp_out, tmp_dout;
tmp_out.Resize({Ka, Nc});
tmp_out.mutable_data<T>(place);
tmp_dout.Resize({Ka, mat_dim_dout.width_});
tmp_dout.mutable_data<T>(place);
blas.MatMul(*ins[1], mat_dim_b, *ins[2], mat_dim_c, alpha, &tmp_out,
T(0));
CalcGrad(ctx, dout, *ins[0], tmp_out, dout_dim, ins_dims[0],
tmp_dout.dims(), dx[0], &tmp_dout);
CalcGrad(ctx, tmp_dout, *ins[1], *ins[2], tmp_dout.dims(), ins_dims[1],
ins_dims[2], dx[1], dx[2]);
}
} else {
MultiDotGradMatChainOrder(ctx, dout, ins, dout_dim, ins_dims, &dx);
if (ins[n - 1]->dims().size() == 1) {
dx[n - 1]->Resize({dx[n - 1]->dims()[0]});
}
}
}
};
template <typename T>
class MultiDotOpGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("multi_dot_grad");
op->SetInput("X", this->Input("X"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X", false));
}
};
template <typename T>
class MultiDotOpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("multi_dot");
grad_op->SetInput("X", this->Input(("X")));
grad_op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
grad_op->SetOutput("DDx", this->OutputGrad(framework::GradVarName("X")));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(multi_dot, ops::MultiDotOp, ops::MultiDotOpMaker,
ops::MultiDotOpGradMaker<paddle::framework::OpDesc>,
ops::MultiDotOpGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(multi_dot_grad, ops::MultiDotOpGrad,
ops::MultiDotOpDoubleGradMaker<paddle::framework::OpDesc>,
ops::MultiDotOpDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(
multi_dot, ops::MultiDotKernel<paddle::platform::CPUDeviceContext, double>,
ops::MultiDotKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
multi_dot_grad,
ops::MultiDotGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::MultiDotGradKernel<paddle::platform::CPUDeviceContext, float>);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
REGISTER_OP_CUDA_KERNEL(
multi_dot, ops::MultiDotKernel<paddle::platform::CUDADeviceContext, float>,
ops::MultiDotKernel<paddle::platform::CUDADeviceContext, double>,
ops::MultiDotKernel<paddle::platform::CUDADeviceContext,
paddle::platform::float16>);
REGISTER_OP_CUDA_KERNEL(
multi_dot_grad,
ops::MultiDotGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::MultiDotGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::MultiDotGradKernel<paddle::platform::CUDADeviceContext,
paddle::platform::float16>);
#endif
...@@ -99,6 +99,7 @@ from .tensor.linalg import cholesky # noqa: F401 ...@@ -99,6 +99,7 @@ from .tensor.linalg import cholesky # noqa: F401
from .tensor.linalg import bmm # noqa: F401 from .tensor.linalg import bmm # noqa: F401
from .tensor.linalg import histogram # noqa: F401 from .tensor.linalg import histogram # noqa: F401
from .tensor.linalg import mv # noqa: F401 from .tensor.linalg import mv # noqa: F401
from .tensor.linalg import multi_dot # noqa: F401
from .tensor.linalg import matrix_power # noqa: F401 from .tensor.linalg import matrix_power # noqa: F401
from .tensor.logic import equal # noqa: F401 from .tensor.logic import equal # noqa: F401
from .tensor.logic import greater_equal # noqa: F401 from .tensor.logic import greater_equal # noqa: F401
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest, skip_check_grad_ci
from numpy.linalg import multi_dot
from op_test import OpTest
import paddle
paddle.enable_static()
#the unittest of multi_dot
#compare the result of paddle multi_dot and numpy multi_dot
class TestMultiDotOp(OpTest):
def setUp(self):
self.op_type = "multi_dot"
self.dtype = self.get_dtype()
self.get_inputs_and_outputs()
def get_dtype(self):
return "float64"
def get_inputs_and_outputs(self):
self.A = np.random.random((2, 8)).astype(self.dtype)
self.B = np.random.random((8, 4)).astype(self.dtype)
self.inputs = {'X': [('x0', self.A), ('x1', self.B)]}
self.outputs = {'Out': multi_dot([self.A, self.B])}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['x0'], 'Out')
self.check_grad(['x1'], 'Out')
#(A*B)*C
class TestMultiDotOp3Mat(TestMultiDotOp):
def get_inputs_and_outputs(self):
self.A = np.random.random((2, 10)).astype(self.dtype)
self.B = np.random.random((10, 4)).astype(self.dtype)
self.C = np.random.random((4, 3)).astype(self.dtype)
self.inputs = {'X': [('x0', self.A), ('x1', self.B), ('x2', self.C)]}
self.outputs = {'Out': multi_dot([self.A, self.B, self.C])}
def test_check_grad(self):
self.check_grad(['x0'], 'Out')
self.check_grad(['x1'], 'Out')
self.check_grad(['x2'], 'Out')
#A*(B*C)
class TestMultiDotOp3Mat2(TestMultiDotOp):
def get_inputs_and_outputs(self):
self.A = np.random.random((3, 4)).astype(self.dtype)
self.B = np.random.random((4, 8)).astype(self.dtype)
self.C = np.random.random((8, 2)).astype(self.dtype)
self.inputs = {'X': [('x0', self.A), ('x1', self.B), ('x2', self.C)]}
self.outputs = {'Out': multi_dot([self.A, self.B, self.C])}
def test_check_grad(self):
self.check_grad(['x0'], 'Out')
self.check_grad(['x1'], 'Out')
self.check_grad(['x2'], 'Out')
class TestMultiDotOp4Mat(TestMultiDotOp):
def get_inputs_and_outputs(self):
self.A = np.random.random((8, 6)).astype(self.dtype)
self.B = np.random.random((6, 3)).astype(self.dtype)
self.C = np.random.random((3, 4)).astype(self.dtype)
self.D = np.random.random((4, 5)).astype(self.dtype)
self.inputs = {
'X':
[('x0', self.A), ('x1', self.B), ('x2', self.C), ('x3', self.D)]
}
self.outputs = {'Out': multi_dot([self.A, self.B, self.C, self.D])}
def test_check_grad(self):
self.check_grad(['x0'], 'Out')
self.check_grad(['x1'], 'Out')
self.check_grad(['x2'], 'Out')
self.check_grad(['x3'], 'Out')
class TestMultiDotOpFirst1D(TestMultiDotOp):
def get_inputs_and_outputs(self):
self.A = np.random.random((4)).astype(self.dtype)
self.B = np.random.random((4, 3)).astype(self.dtype)
self.inputs = {'X': [('x0', self.A), ('x1', self.B)]}
self.outputs = {'Out': multi_dot([self.A, self.B])}
class TestMultiDotOp3MatFirst1D(TestMultiDotOp3Mat):
def get_inputs_and_outputs(self):
self.A = np.random.random((4)).astype(self.dtype)
self.B = np.random.random((4, 3)).astype(self.dtype)
self.C = np.random.random((3, 3)).astype(self.dtype)
self.inputs = {'X': [('x0', self.A), ('x1', self.B), ('x2', self.C)]}
self.outputs = {'Out': multi_dot([self.A, self.B, self.C])}
class TestMultiDotOp4MatFirst1D(TestMultiDotOp4Mat):
def get_inputs_and_outputs(self):
self.A = np.random.random((4)).astype(self.dtype)
self.B = np.random.random((4, 3)).astype(self.dtype)
self.C = np.random.random((3, 4)).astype(self.dtype)
self.D = np.random.random((4, 5)).astype(self.dtype)
self.inputs = {
'X':
[('x0', self.A), ('x1', self.B), ('x2', self.C), ('x3', self.D)]
}
self.outputs = {'Out': multi_dot([self.A, self.B, self.C, self.D])}
class TestMultiDotOpLast1D(TestMultiDotOp):
def get_inputs_and_outputs(self):
self.A = np.random.random((3, 6)).astype(self.dtype)
self.B = np.random.random((6)).astype(self.dtype)
self.inputs = {'X': [('x0', self.A), ('x1', self.B)]}
self.outputs = {'Out': multi_dot([self.A, self.B])}
class TestMultiDotOp3MatLast1D(TestMultiDotOp3Mat):
def get_inputs_and_outputs(self):
self.A = np.random.random((2, 4)).astype(self.dtype)
self.B = np.random.random((4, 3)).astype(self.dtype)
self.C = np.random.random((3)).astype(self.dtype)
self.inputs = {'X': [('x0', self.A), ('x1', self.B), ('x2', self.C)]}
self.outputs = {'Out': multi_dot([self.A, self.B, self.C])}
def test_check_grad(self):
self.check_grad(['x0'], 'Out')
self.check_grad(['x1'], 'Out')
self.check_grad(['x2'], 'Out')
class TestMultiDotOp4MatLast1D(TestMultiDotOp4Mat):
def get_inputs_and_outputs(self):
self.A = np.random.random((2, 3)).astype(self.dtype)
self.B = np.random.random((3, 2)).astype(self.dtype)
self.C = np.random.random((2, 3)).astype(self.dtype)
self.D = np.random.random((3)).astype(self.dtype)
self.inputs = {
'X':
[('x0', self.A), ('x1', self.B), ('x2', self.C), ('x3', self.D)]
}
self.outputs = {'Out': multi_dot([self.A, self.B, self.C, self.D])}
class TestMultiDotOpFirstAndLast1D(TestMultiDotOp):
def get_inputs_and_outputs(self):
self.A = np.random.random((4, )).astype(self.dtype)
self.B = np.random.random((4)).astype(self.dtype)
self.inputs = {'X': [('x0', self.A), ('x1', self.B)]}
self.outputs = {'Out': multi_dot([self.A, self.B])}
class TestMultiDotOp3MatFirstAndLast1D(TestMultiDotOp3Mat):
def get_inputs_and_outputs(self):
self.A = np.random.random((6, )).astype(self.dtype)
self.B = np.random.random((6, 4)).astype(self.dtype)
self.C = np.random.random((4)).astype(self.dtype)
self.inputs = {'X': [('x0', self.A), ('x1', self.B), ('x2', self.C)]}
self.outputs = {'Out': multi_dot([self.A, self.B, self.C])}
class TestMultiDotOp4MatFirstAndLast1D(TestMultiDotOp4Mat):
def get_inputs_and_outputs(self):
self.A = np.random.random((3, )).astype(self.dtype)
self.B = np.random.random((3, 4)).astype(self.dtype)
self.C = np.random.random((4, 2)).astype(self.dtype)
self.D = np.random.random((2)).astype(self.dtype)
self.inputs = {
'X':
[('x0', self.A), ('x1', self.B), ('x2', self.C), ('x3', self.D)]
}
self.outputs = {'Out': multi_dot([self.A, self.B, self.C, self.D])}
#####python API test#######
class TestMultiDotOpError(unittest.TestCase):
def test_errors(self):
with paddle.static.program_guard(paddle.static.Program(),
paddle.static.Program()):
# The inputs type of multi_dot must be list matrix.
input1 = 12
self.assertRaises(TypeError, paddle.multi_dot, [input1, input1])
# The inputs dtype of multi_dot must be float64, float64 or float16.
input2 = paddle.static.data(
name='input2', shape=[10, 10], dtype="int32")
self.assertRaises(TypeError, paddle.multi_dot, [input2, input2])
# the number of tensor must be larger than 1
x0 = paddle.static.data(name='x0', shape=[3, 2], dtype="float64")
self.assertRaises(ValueError, paddle.multi_dot, [x0])
#the first tensor must be 1D or 2D
x1 = paddle.static.data(name='x1', shape=[3, 2, 3], dtype="float64")
x2 = paddle.static.data(name='x2', shape=[3, 2], dtype="float64")
self.assertRaises(ValueError, paddle.multi_dot, [x1, x2])
#the last tensor must be 1D or 2D
x3 = paddle.static.data(name='x3', shape=[3, 2], dtype="float64")
x4 = paddle.static.data(name='x4', shape=[3, 2, 2], dtype="float64")
self.assertRaises(ValueError, paddle.multi_dot, [x3, x4])
#the tensor must be 2D, except first and last tensor
x5 = paddle.static.data(name='x5', shape=[3, 2], dtype="float64")
x6 = paddle.static.data(name='x6', shape=[2], dtype="float64")
x7 = paddle.static.data(name='x7', shape=[2, 2], dtype="float64")
self.assertRaises(ValueError, paddle.multi_dot, [x5, x6, x7])
class APITestMultiDot(unittest.TestCase):
def test_out(self):
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program()):
x0 = paddle.static.data(name='x0', shape=[3, 2], dtype="float64")
x1 = paddle.static.data(name='x1', shape=[2, 3], dtype='float64')
result = paddle.multi_dot([x0, x1])
exe = paddle.static.Executor(paddle.CPUPlace())
data1 = np.random.rand(3, 2).astype("float64")
data2 = np.random.rand(2, 3).astype("float64")
np_res = exe.run(feed={'x0': data1,
'x1': data2},
fetch_list=[result])
expected_result = np.linalg.multi_dot([data1, data2])
self.assertTrue(
np.allclose(
np_res, expected_result, atol=1e-5),
"two value is\
{}\n{}, check diff!".format(np_res, expected_result))
def test_dygraph_without_out(self):
paddle.disable_static()
device = paddle.CPUPlace()
input_array1 = np.random.rand(3, 4).astype("float64")
input_array2 = np.random.rand(4, 3).astype("float64")
data1 = paddle.to_tensor(input_array1)
data2 = paddle.to_tensor(input_array2)
out = paddle.multi_dot([data1, data2])
expected_result = np.linalg.multi_dot([input_array1, input_array2])
self.assertTrue(np.allclose(expected_result, out.numpy()))
if __name__ == "__main__":
unittest.main()
...@@ -28,4 +28,5 @@ NEED_TO_FIX_OP_LIST = [ ...@@ -28,4 +28,5 @@ NEED_TO_FIX_OP_LIST = [
'cvm', 'cvm',
'cudnn_lstm', 'cudnn_lstm',
'rnn', 'rnn',
'multi_dot',
] ]
...@@ -16,6 +16,7 @@ from .tensor.linalg import cholesky # noqa: F401 ...@@ -16,6 +16,7 @@ from .tensor.linalg import cholesky # noqa: F401
from .tensor.linalg import norm # noqa: F401 from .tensor.linalg import norm # noqa: F401
from .tensor.linalg import matrix_power # noqa: F401 from .tensor.linalg import matrix_power # noqa: F401
from .tensor import inverse as inv # noqa: F401 from .tensor import inverse as inv # noqa: F401
from .tensor.linalg import multi_dot # noqa: F401
from .tensor.linalg import matrix_rank from .tensor.linalg import matrix_rank
from .tensor.linalg import svd from .tensor.linalg import svd
...@@ -23,6 +24,7 @@ __all__ = [ ...@@ -23,6 +24,7 @@ __all__ = [
'cholesky', #noqa 'cholesky', #noqa
'norm', 'norm',
'inv', 'inv',
'multi_dot',
'matrix_rank', 'matrix_rank',
'svd', 'svd',
'matrix_power' 'matrix_power'
......
...@@ -45,6 +45,8 @@ from .linalg import bmm # noqa: F401 ...@@ -45,6 +45,8 @@ from .linalg import bmm # noqa: F401
from .linalg import histogram # noqa: F401 from .linalg import histogram # noqa: F401
from .linalg import mv # noqa: F401 from .linalg import mv # noqa: F401
from .linalg import matrix_power # noqa: F401 from .linalg import matrix_power # noqa: F401
from .linalg import multi_dot # noqa: F401
from .linalg import svd # noqa: F401
from .logic import equal # noqa: F401 from .logic import equal # noqa: F401
from .logic import greater_equal # noqa: F401 from .logic import greater_equal # noqa: F401
from .logic import greater_than # noqa: F401 from .logic import greater_than # noqa: F401
......
...@@ -789,25 +789,25 @@ def matrix_rank(x, tol=None, hermitian=False, name=None): ...@@ -789,25 +789,25 @@ def matrix_rank(x, tol=None, hermitian=False, name=None):
r""" r"""
Computes the rank of a matrix. Computes the rank of a matrix.
The rank of a matrix is the number of singular values that are greater than the specified tol threshold when hermitian=False, The rank of a matrix is the number of singular values that are greater than the specified tol threshold when hermitian=False,
or the number of eigenvalues in absolute value that are greater than the specified tol threshold when hermitian=True. or the number of eigenvalues in absolute value that are greater than the specified tol threshold when hermitian=True.
Args: Args:
x (Tensor): The input tensor. x (Tensor): The input tensor.
Its shape should be [..., m, n], where ... is zero or more batch dimensions. If x is a batch of matrices then the output Its shape should be [..., m, n], where ... is zero or more batch dimensions. If x is a batch of matrices then the output
has the same batch dimensions. The data type of x should be float32 or float64. has the same batch dimensions. The data type of x should be float32 or float64.
tol (float,Tensor,optional): the tolerance value. Default: None. tol (float,Tensor,optional): the tolerance value. Default: None.
If tol is not specified, and sigma is the largest singular value (or eigenvalue in absolute value), and eps is the If tol is not specified, and sigma is the largest singular value (or eigenvalue in absolute value), and eps is the
epsilon value for the dtype of x, then tol is computed with formula tol=sigma * max(m,n) * eps. Note that if x is epsilon value for the dtype of x, then tol is computed with formula tol=sigma * max(m,n) * eps. Note that if x is
a batch of matrices, tol is computed this way for every batch. a batch of matrices, tol is computed this way for every batch.
hermitian (bool,optional): indicates whether x is Hermitian. Default: False. hermitian (bool,optional): indicates whether x is Hermitian. Default: False.
When hermitian=True, x is assumed to be Hermitian, but x is not checked inside the function. Instead, We just use the When hermitian=True, x is assumed to be Hermitian, but x is not checked inside the function. Instead, We just use the
lower triangular of the matrix to compute. lower triangular of the matrix to compute.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns: Returns:
Tensor: Rank of tensor x. Tensor: Rank of tensor x.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -824,7 +824,7 @@ def matrix_rank(x, tol=None, hermitian=False, name=None): ...@@ -824,7 +824,7 @@ def matrix_rank(x, tol=None, hermitian=False, name=None):
# d = [[1, 1, 1, 1], # d = [[1, 1, 1, 1],
# [1, 1, 1, 1], # [1, 1, 1, 1],
# [1, 1, 1, 1]] # [1, 1, 1, 1]]
""" """
if in_dygraph_mode(): if in_dygraph_mode():
...@@ -1112,12 +1112,12 @@ def matrix_power(x, n, name=None): ...@@ -1112,12 +1112,12 @@ def matrix_power(x, n, name=None):
.. math:: .. math::
Out = X ^ {n} Out = X ^ {n}
Specifically, Specifically,
- If `n > 0`, it returns the matrix or a batch of matrices raised to the power - If `n > 0`, it returns the matrix or a batch of matrices raised to the power
of `n`. of `n`.
- If `n = 0`, it returns the identity matrix or a batch of identity matrices. - If `n = 0`, it returns the identity matrix or a batch of identity matrices.
- If `n < 0`, it returns the inverse of each matrix (if invertible) raised to - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to
...@@ -1128,7 +1128,7 @@ def matrix_power(x, n, name=None): ...@@ -1128,7 +1128,7 @@ def matrix_power(x, n, name=None):
to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
more batch dimensions. Its data type should be float32 or float64. more batch dimensions. Its data type should be float32 or float64.
n (int): The exponent. It can be any positive, negative integer or zero. n (int): The exponent. It can be any positive, negative integer or zero.
name (str, optional): Name for the operation (optional, default is None). name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`. For more information, please refer to :ref:`api_guide_Name`.
Returns: Returns:
...@@ -1171,3 +1171,83 @@ def matrix_power(x, n, name=None): ...@@ -1171,3 +1171,83 @@ def matrix_power(x, n, name=None):
outputs={'Out': out}, outputs={'Out': out},
attrs={'n': n}) attrs={'n': n})
return out return out
def multi_dot(x, name=None):
"""
Multi_dot is an operator that calculates multiple matrix multiplications.
Supports inputs of float, double and float16 dtypes. This function does not
support batched inputs.
The input tensor in [x] must be 2-D except for the first and last can be 1-D.
If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
is treated as a column vector of shape(n, 1).
If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
otherwise the output is a 1-D vector.
Multi_dot will select the lowest cost multiplication order for calculation. The
cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
we can calculate the cost of different multiplication orders as follows:
- Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
- Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000
In this case, multiplying B and C first, then multiply A, which is 5 times faster
than sequential calculation.
Args:
x ([Tensor]): The input tensors which is a list Tensor.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Tensor: The output Tensor.
Examples:
.. code-block:: python
import paddle
import numpy as np
# A * B
A_data = np.random.random([3, 4]).astype(np.float32)
B_data = np.random.random([4, 5]).astype(np.float32)
A = paddle.to_tensor(A_data)
B = paddle.to_tensor(B_data)
out = paddle.multi_dot([A, B])
print(out.numpy().shape)
# [3, 5]
# A * B * C
A_data = np.random.random([10, 5]).astype(np.float32)
B_data = np.random.random([5, 8]).astype(np.float32)
C_data = np.random.random([8, 7]).astype(np.float32)
A = paddle.to_tensor(A_data)
B = paddle.to_tensor(B_data)
C = paddle.to_tensor(C_data)
out = paddle.multi_dot([A, B, C])
print(out.numpy().shape)
# [10, 7]
"""
if in_dygraph_mode():
return _C_ops.multi_dot(x)
check_type(x, 'x', (list, tuple), 'multi_dot')
for id, item in enumerate(x):
check_variable_and_dtype(item, 'x[' + str(id) + ']',
['float16', 'float32', 'float64'], 'multi_dot')
if item.dtype != x[0].dtype:
raise TypeError(
"All the Tensors in the input must have the same data type.")
helper = LayerHelper('multi_dot', **locals())
dtype = helper.input_dtype(input_param_name='x')
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(type='multi_dot', inputs={"X": x}, outputs={"Out": out})
return out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册