From c93596d35b621959d28f16ffba7689a79bd9b068 Mon Sep 17 00:00:00 2001 From: fengjiayi Date: Wed, 18 Oct 2017 17:21:32 -0700 Subject: [PATCH] unify layer names (#4913) --- python/paddle/v2/framework/layers.py | 50 +++++++++---------- .../paddle/v2/framework/tests/test_layers.py | 38 +++++++------- 2 files changed, 45 insertions(+), 43 deletions(-) diff --git a/python/paddle/v2/framework/layers.py b/python/paddle/v2/framework/layers.py index 1821da197e..c7397716c4 100644 --- a/python/paddle/v2/framework/layers.py +++ b/python/paddle/v2/framework/layers.py @@ -3,17 +3,17 @@ import paddle.v2.framework.core as core from paddle.v2.framework.framework import OpProtoHolder, Variable import re -__all__ = ['fc_layer', 'data_layer', 'cross_entropy', 'conv2d_layer'] +__all__ = ['fc', 'data', 'cross_entropy', 'conv2d'] -def fc_layer(input, - size, - param_attr=None, - bias_attr=True, - name=None, - act=None, - num_flatten_dims=1, - program=None): +def fc(input, + size, + param_attr=None, + bias_attr=True, + name=None, + act=None, + num_flatten_dims=1, + program=None): # create helper helper = LayerHelper('fc', **locals()) @@ -51,11 +51,11 @@ def fc_layer(input, return helper.append_activation(pre_activation) -def data_layer(name, - shape, - data_type='float32', - type=core.VarDesc.VarType.LOD_TENSOR, - program=None): +def data(name, + shape, + data_type='float32', + type=core.VarDesc.VarType.LOD_TENSOR, + program=None): helper = LayerHelper('data', **locals()) shape = [-1] + shape # append batch size as -1 return helper.create_global_variable( @@ -145,17 +145,17 @@ def square_error_cost(input, label, **kwargs): return square_out -def conv2d_layer(input, - num_filters, - name=None, - filter_size=[1, 1], - act=None, - groups=None, - stride=[1, 1], - padding=None, - bias_attr=None, - param_attr=None, - program=None): +def conv2d(input, + num_filters, + name=None, + filter_size=[1, 1], + act=None, + groups=None, + stride=[1, 1], + padding=None, + bias_attr=None, + param_attr=None, + program=None): helper = LayerHelper('conv2d', **locals()) dtype = helper.input_dtype() diff --git a/python/paddle/v2/framework/tests/test_layers.py b/python/paddle/v2/framework/tests/test_layers.py index 2d8c2e5518..dbbb653538 100644 --- a/python/paddle/v2/framework/tests/test_layers.py +++ b/python/paddle/v2/framework/tests/test_layers.py @@ -1,4 +1,4 @@ -from paddle.v2.framework.layers import fc_layer, data_layer, cross_entropy, mean, square_error_cost, conv2d_layer +import paddle.v2.framework.layers as layers from paddle.v2.framework.framework import Program, g_program import paddle.v2.framework.core as core import unittest @@ -7,15 +7,16 @@ import unittest class TestBook(unittest.TestCase): def test_fit_a_line(self): program = Program() - x = data_layer( + x = layers.data( name='x', shape=[13], data_type='float32', program=program) - y_predict = fc_layer(input=x, size=1, act=None, program=program) + y_predict = layers.fc(input=x, size=1, act=None, program=program) - y = data_layer( + y = layers.data( name='y', shape=[1], data_type='float32', program=program) - cost = square_error_cost(input=y_predict, label=y, program=program) + cost = layers.square_error_cost( + input=y_predict, label=y, program=program) - avg_cost = mean(x=cost, program=program) + avg_cost = layers.mean(x=cost, program=program) self.assertIsNotNone(avg_cost) program.append_backward(avg_cost, set()) print str(program) @@ -24,16 +25,18 @@ class TestBook(unittest.TestCase): program = Program() # Change g_program, so the rest layers use `g_program` - images = data_layer( + images = layers.data( name='pixel', shape=[784], data_type='float32', program=program) - label = data_layer( + label = layers.data( name='label', shape=[1], data_type='int32', program=program) - hidden1 = fc_layer(input=images, size=128, act='relu', program=program) - hidden2 = fc_layer(input=hidden1, size=64, act='relu', program=program) - predict = fc_layer( - input=hidden2, size=10, act='softmax', program=program) - cost = cross_entropy(input=predict, label=label, program=program) - avg_cost = mean(x=cost, program=program) + hidden1 = layers.fc(input=images, size=128, act='relu', program=program) + hidden2 = layers.fc(input=hidden1, size=64, act='relu', program=program) + predict = layers.fc(input=hidden2, + size=10, + act='softmax', + program=program) + cost = layers.cross_entropy(input=predict, label=label, program=program) + avg_cost = layers.mean(x=cost, program=program) self.assertIsNotNone(avg_cost) # print str(program) @@ -48,11 +51,10 @@ class TestBook(unittest.TestCase): # print str(program) def test_simple_conv2d(self): - pd = core.ProgramDesc.__create_program_desc__() - program = Program(desc=pd) - images = data_layer( + program = Program() + images = layers.data( name='pixel', shape=[3, 48, 48], data_type='int32', program=program) - conv2d_layer( + layers.conv2d( input=images, num_filters=3, filter_size=[4, 4], program=program) print str(program) -- GitLab