diff --git a/cmake/external/anakin.cmake b/cmake/external/anakin.cmake index 5d11d238cd73653b60623bf7e32b94f5f1ac9ecc..78be0749091fb0a617f9fb172cc92b33560a3552 100644 --- a/cmake/external/anakin.cmake +++ b/cmake/external/anakin.cmake @@ -2,6 +2,11 @@ if (NOT WITH_ANAKIN) return() endif() +option(ANAKIN_ENABLE_OP_TIMER "Get more detailed information with Anakin op time" OFF) +if(ANAKIN_ENABLE_OP_TIMER) + add_definitions(-DPADDLE_ANAKIN_ENABLE_OP_TIMER) +endif() + INCLUDE(ExternalProject) set(ANAKIN_SOURCE_DIR ${THIRD_PARTY_PATH}/anakin) # the anakin install dir is only default one now @@ -11,23 +16,34 @@ set(ANAKIN_LIBRARY ${ANAKIN_INSTALL_DIR}) set(ANAKIN_SHARED_LIB ${ANAKIN_LIBRARY}/libanakin.so) set(ANAKIN_SABER_LIB ${ANAKIN_LIBRARY}/libanakin_saber_common.so) -# TODO(luotao): ANAKIN_MODLE_URL will move to demo ci later. -set(ANAKIN_MODLE_URL "http://paddle-inference-dist.bj.bcebos.com/mobilenet_v2.anakin.bin") +# TODO(luotao): ANAKIN_MODLE_URL etc will move to demo ci later. +set(INFERENCE_URL "http://paddle-inference-dist.bj.bcebos.com") +set(ANAKIN_MODLE_URL "${INFERENCE_URL}/mobilenet_v2.anakin.bin") +set(ANAKIN_RNN_MODLE_URL "${INFERENCE_URL}/anakin_test%2Fditu_rnn.anakin2.model.bin") +set(ANAKIN_RNN_DATA_URL "${INFERENCE_URL}/anakin_test%2Fditu_rnn_data.txt") execute_process(COMMAND bash -c "mkdir -p ${ANAKIN_SOURCE_DIR}") -execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_MODLE_URL}") +execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_MODLE_URL} -N") +execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_RNN_MODLE_URL} -N") +execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_RNN_DATA_URL} -N") include_directories(${ANAKIN_INCLUDE}) include_directories(${ANAKIN_INCLUDE}/saber/) +include_directories(${ANAKIN_INCLUDE}/saber/core/) +include_directories(${ANAKIN_INCLUDE}/saber/funcs/impl/x86/) +include_directories(${ANAKIN_INCLUDE}/saber/funcs/impl/cuda/base/cuda_c/) set(ANAKIN_COMPILE_EXTRA_FLAGS -Wno-error=unused-but-set-variable -Wno-unused-but-set-variable -Wno-error=unused-variable -Wno-unused-variable -Wno-error=format-extra-args -Wno-format-extra-args - -Wno-error=comment -Wno-comment - -Wno-error=format -Wno-format + -Wno-error=comment -Wno-comment + -Wno-error=format -Wno-format + -Wno-error=maybe-uninitialized -Wno-maybe-uninitialized -Wno-error=switch -Wno-switch -Wno-error=return-type -Wno-return-type -Wno-error=non-virtual-dtor -Wno-non-virtual-dtor + -Wno-error=ignored-qualifiers + -Wno-ignored-qualifiers -Wno-sign-compare -Wno-reorder -Wno-error=cpp) @@ -38,7 +54,7 @@ ExternalProject_Add( DEPENDS ${MKLML_PROJECT} # Anakin codes error on Intel(R) Xeon(R) Gold 5117 CPU, temporary do not compile avx512 related code. GIT_REPOSITORY "https://github.com/luotao1/Anakin" - GIT_TAG "bcf17aabe7921ceb7bce591244b4f9dce7dba5c8" + GIT_TAG "211d1fc5d813d70c0c14072f9083cf25f40940ea" PREFIX ${ANAKIN_SOURCE_DIR} UPDATE_COMMAND "" CMAKE_ARGS -DUSE_GPU_PLACE=YES @@ -48,6 +64,7 @@ ExternalProject_Add( -DMKLML_ROOT=${THIRD_PARTY_PATH}/install/mklml -DCUDNN_ROOT=${CUDNN_ROOT} -DCUDNN_INCLUDE_DIR=${CUDNN_INCLUDE_DIR} + -DENABLE_OP_TIMER=${ANAKIN_ENABLE_OP_TIMER} ${EXTERNAL_OPTIONAL_ARGS} CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${ANAKIN_INSTALL_DIR} ) diff --git a/doc/fluid/dev/new_op_cn.md b/doc/fluid/dev/new_op_cn.md index 63d471ff522ce92e69efa2a81aa3c9492919a377..c00f73be955e0fb54bb01ffa9a61b3f27c112f75 100644 --- a/doc/fluid/dev/new_op_cn.md +++ b/doc/fluid/dev/new_op_cn.md @@ -119,10 +119,29 @@ $$Out = scale*X$$ 这个例子有`AddAttr("scale", "...").SetDefault(1.0);` : 增加`scale`系数,作为参数属性,并且设置默认值为1.0。 +### 定义GradProtoMaker类 +每个Op的必须有一个对应的GraProtoMaker,若未定制对应前向Op的GradProtoMaker,fluid提供了DefaultGradProtoMaker,默认注册会使用全部输入输出,包括Input, Output, Output@Grad等,使用不需要的变量的会造成显存浪费。 +下面示例定义了ScaleOp的GradProtoMaker。 + +```cpp +class ScaleGradMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); + grad_op->SetType("scale"); + grad_op->SetInput("X", OutputGrad("Out")); + grad_op->SetOutput("Out", InputGrad("X")); + grad_op->SetAttr("scale", GetAttr("scale")); + return std::unique_ptr(grad_op); + } +}; +``` ### 定义Operator类 -下面的点实现了MulOp的定义: +下面实现了MulOp的定义: ```cpp class MulOp : public framework::OperatorWithKernel { @@ -383,6 +402,19 @@ PADDLE_ENFORCE(forward_pd != nullptr, "Fail to find eltwise_fwd_pd in device context"); //eltwise_fwd_pd用户可能看不懂 ``` +3. OP内部调用非法接口:Op内部如果出现Output = ShareDataWith(Input) +问题示例: +```cpp +auto *out = ctx.Output("Out"); +auto *in = ctx.Input("X"); +out->ShareDataWith(*in); +``` +Op内部如果出现Output = ShareDataWith(Input),相当于operator图的中有一条隐藏边,连接了Input和Output,这条边无法在图分析中表达,引发基于图优化的错误。 + +4. OP实现的性能实践 +调用了eigen的broadcast, chop等操作,性能会比手写cuda kernel差几倍以上。此时cpu的实现可以复用eigen,gpu实现可以实现cuda kernel. + + #### OP InferShape检查提示信息特别说明 - 检查输入输出变量,请统一遵循以下格式 diff --git a/paddle/fluid/framework/ir/graph_helper.cc b/paddle/fluid/framework/ir/graph_helper.cc index b1c19e6535150130822e9f48685241e62de5b064..dc81a2cac585b50b81f79f8f204ce1145d93eab0 100644 --- a/paddle/fluid/framework/ir/graph_helper.cc +++ b/paddle/fluid/framework/ir/graph_helper.cc @@ -104,7 +104,7 @@ std::map> BuildOperationAdjList( for (auto &adj_n : var->inputs) { PADDLE_ENFORCE(adj_n->NodeType() == ir::Node::Type::kOperation); adj_list[n].insert(adj_n); - VLOG(3) << "adj " << adj_n->Name() << reinterpret_cast(adj_n) + VLOG(4) << "adj " << adj_n->Name() << reinterpret_cast(adj_n) << " -> " << n->Name() << reinterpret_cast(n) << " via " << var->Name() << reinterpret_cast(var); } diff --git a/paddle/fluid/inference/analysis/CMakeLists.txt b/paddle/fluid/inference/analysis/CMakeLists.txt index f1271ddb75f3170756941c72f975a3030dd2368c..4feaed2b0d9cdec735bd3fadc98aa2bad715c209 100644 --- a/paddle/fluid/inference/analysis/CMakeLists.txt +++ b/paddle/fluid/inference/analysis/CMakeLists.txt @@ -22,7 +22,7 @@ function (inference_analysis_test TARGET) if(WITH_TESTING) set(options "") set(oneValueArgs "") - set(multiValueArgs SRCS) + set(multiValueArgs SRCS EXTRA_DEPS) cmake_parse_arguments(analysis_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) set(mem_opt "") @@ -31,22 +31,43 @@ function (inference_analysis_test TARGET) endif() cc_test(${TARGET} SRCS "${analysis_test_SRCS}" - DEPS analysis graph fc_fuse_pass graph_viz_pass infer_clean_graph_pass graph_pattern_detecter pass + DEPS analysis graph fc_fuse_pass graph_viz_pass infer_clean_graph_pass graph_pattern_detecter pass ${analysis_test_EXTRA_DEPS} ARGS --inference_model_dir=${PYTHON_TESTS_DIR}/book/word2vec.inference.model ${mem_opt}) set_tests_properties(${TARGET} PROPERTIES DEPENDS test_word2vec) endif(WITH_TESTING) endfunction(inference_analysis_test) -cc_test(test_analyzer SRCS analyzer_tester.cc DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis - # ir - fc_fuse_pass - graph_viz_pass - infer_clean_graph_pass - graph_pattern_detecter - pass - ARGS --inference_model_dir=${PYTHON_TESTS_DIR}/book/word2vec.inference.model) -#set_tests_properties(test_analyzer PROPERTIES DEPENDS test_word2vec) -#inference_api_test(test_analyzer SRC analyzer_tester.cc ARGS test_word2vec) +set(DITU_RNN_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid%2Fmodel.tar.gz") +set(DITU_RNN_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid%2Fdata.txt.tar.gz") +set(DITU_INSTALL_DIR "${THIRD_PARTY_PATH}/install/ditu_rnn" CACHE PATH "Ditu RNN model and data root." FORCE) +set(DITU_RNN_MODEL ${DITU_INSTALL_DIR}/model) +set(DITU_RNN_DATA ${DITU_INSTALL_DIR}/data.txt) + +function (inference_download_and_uncompress target url gz_filename) + message(STATUS "Download inference test stuff ${gz_filename} from ${url}") + execute_process(COMMAND bash -c "mkdir -p ${DITU_INSTALL_DIR}") + execute_process(COMMAND bash -c "cd ${DITU_INSTALL_DIR} && wget -q ${url}") + execute_process(COMMAND bash -c "cd ${DITU_INSTALL_DIR} && tar xzf ${gz_filename}") + message(STATUS "finish downloading ${gz_filename}") +endfunction(inference_download_and_uncompress) + +if (NOT EXISTS ${DITU_INSTALL_DIR}) + inference_download_and_uncompress(ditu_rnn_model ${DITU_RNN_MODEL_URL} "ditu_rnn_fluid%2Fmodel.tar.gz") + inference_download_and_uncompress(ditu_rnn_data ${DITU_RNN_DATA_URL} "ditu_rnn_fluid%2Fdata.txt.tar.gz") +endif() + +inference_analysis_test(test_analyzer SRCS analyzer_tester.cc + EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis + # ir + fc_fuse_pass + graph_viz_pass + infer_clean_graph_pass + graph_pattern_detecter + infer_clean_graph_pass + pass + ARGS --inference_model_dir=${PYTHON_TESTS_DIR}/book/word2vec.inference.model + --infer_ditu_rnn_model=${DITU_INSTALL_DIR}/model + --infer_ditu_rnn_data=${DITU_INSTALL_DIR}/data.txt) inference_analysis_test(test_data_flow_graph SRCS data_flow_graph_tester.cc) inference_analysis_test(test_data_flow_graph_to_fluid_pass SRCS data_flow_graph_to_fluid_pass_tester.cc) diff --git a/paddle/fluid/inference/analysis/analyzer.cc b/paddle/fluid/inference/analysis/analyzer.cc index fc8b1f68647cb998b391df6e07aee66135d3309b..7d16364609463e9c48720e772cebee7731dfd452 100644 --- a/paddle/fluid/inference/analysis/analyzer.cc +++ b/paddle/fluid/inference/analysis/analyzer.cc @@ -23,8 +23,6 @@ #include "paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.h" #include "paddle/fluid/inference/analysis/tensorrt_subgraph_pass.h" -namespace paddle { - DEFINE_bool(IA_enable_tensorrt_subgraph_engine, false, "Enable subgraph to TensorRT engine for acceleration"); @@ -35,6 +33,7 @@ DEFINE_string(IA_graphviz_log_root, "./", DEFINE_string(IA_output_storage_path, "", "optimized model output path"); +namespace paddle { namespace inference { namespace analysis { diff --git a/paddle/fluid/inference/analysis/analyzer.h b/paddle/fluid/inference/analysis/analyzer.h index a72875d36f45e3bf663a637f735d4d6b93b044d0..2e107c82dd50d5cf22797f4c82e69d302514f955 100644 --- a/paddle/fluid/inference/analysis/analyzer.h +++ b/paddle/fluid/inference/analysis/analyzer.h @@ -39,8 +39,6 @@ limitations under the License. */ #include "paddle/fluid/inference/analysis/pass.h" #include "paddle/fluid/inference/analysis/pass_manager.h" -namespace paddle { - // TODO(Superjomn) add a definition flag like PADDLE_WITH_TENSORRT and hide this // flag if not available. DECLARE_bool(IA_enable_tensorrt_subgraph_engine); @@ -48,6 +46,7 @@ DECLARE_string(IA_graphviz_log_root); DECLARE_string(IA_output_storage_path); DECLARE_bool(IA_enable_ir); +namespace paddle { namespace inference { namespace analysis { diff --git a/paddle/fluid/inference/analysis/analyzer_tester.cc b/paddle/fluid/inference/analysis/analyzer_tester.cc index 3be336dd5c33a867a9d5e86ffa99c5b80fd153af..52f5c4f5aea387c947ee909b79dae8a1bfb89d82 100644 --- a/paddle/fluid/inference/analysis/analyzer_tester.cc +++ b/paddle/fluid/inference/analysis/analyzer_tester.cc @@ -13,11 +13,17 @@ // limitations under the License. #include "paddle/fluid/inference/analysis/analyzer.h" + #include +#include #include "paddle/fluid/framework/ir/pass.h" #include "paddle/fluid/inference/analysis/ut_helper.h" +#include "paddle/fluid/inference/api/helper.h" #include "paddle/fluid/inference/api/paddle_inference_api.h" +DEFINE_string(infer_ditu_rnn_model, "", "model path for ditu RNN"); +DEFINE_string(infer_ditu_rnn_data, "", "data path for ditu RNN"); + namespace paddle { namespace inference { namespace analysis { @@ -38,7 +44,7 @@ TEST(Analyzer, analysis_with_tensorrt) { analyser.Run(&argument); } -void TestWord2vecPrediction(const std::string& model_path) { +void TestWord2vecPrediction(const std::string &model_path) { NativeConfig config; config.model_dir = model_path; config.use_gpu = false; @@ -69,12 +75,245 @@ void TestWord2vecPrediction(const std::string& model_path) { // The outputs' buffers are in CPU memory. for (size_t i = 0; i < std::min(5UL, num_elements); i++) { LOG(INFO) << "data: " - << static_cast(outputs.front().data.data())[i]; - PADDLE_ENFORCE(static_cast(outputs.front().data.data())[i], + << static_cast(outputs.front().data.data())[i]; + PADDLE_ENFORCE(static_cast(outputs.front().data.data())[i], result[i]); } } +namespace { + +struct DataRecord { + std::vector>> link_step_data_all; + std::vector> week_data_all, minute_data_all; + std::vector lod1, lod2, lod3; + std::vector> rnn_link_data, rnn_week_datas, + rnn_minute_datas; + size_t batch_iter{0}; + size_t batch_size{1}; + DataRecord() = default; + DataRecord(const std::string &path, int batch_size = 1) + : batch_size(batch_size) { + Load(path); + } + DataRecord NextBatch() { + DataRecord data; + size_t batch_end = batch_iter + batch_size; + // NOTE skip the final batch, if no enough data is provided. + if (batch_end <= link_step_data_all.size()) { + data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter, + link_step_data_all.begin() + batch_end); + data.week_data_all.assign(week_data_all.begin() + batch_iter, + week_data_all.begin() + batch_end); + data.minute_data_all.assign(minute_data_all.begin() + batch_iter, + minute_data_all.begin() + batch_end); + // Prepare LoDs + data.lod1.push_back(0); + data.lod2.push_back(0); + data.lod3.push_back(0); + CHECK(!data.link_step_data_all.empty()) << "empty"; + CHECK(!data.week_data_all.empty()); + CHECK(!data.minute_data_all.empty()); + CHECK_EQ(data.link_step_data_all.size(), data.week_data_all.size()); + CHECK_EQ(data.minute_data_all.size(), data.link_step_data_all.size()); + for (size_t j = 0; j < data.link_step_data_all.size(); j++) { + for (const auto &d : data.link_step_data_all[j]) { + data.rnn_link_data.push_back(d); + } + data.rnn_week_datas.push_back(data.week_data_all[j]); + data.rnn_minute_datas.push_back(data.minute_data_all[j]); + // calculate lod + data.lod1.push_back(data.lod1.back() + + data.link_step_data_all[j].size()); + data.lod3.push_back(data.lod3.back() + 1); + for (size_t i = 1; i < data.link_step_data_all[j].size() + 1; i++) { + data.lod2.push_back(data.lod2.back() + + data.link_step_data_all[j].size()); + } + } + } + batch_iter += batch_size; + return data; + } + void Load(const std::string &path) { + std::ifstream file(path); + std::string line; + int num_lines = 0; + while (std::getline(file, line)) { + num_lines++; + std::vector data; + split(line, ':', &data); + std::vector> link_step_data; + std::vector link_datas; + split(data[0], '|', &link_datas); + for (auto &step_data : link_datas) { + std::vector tmp; + split_to_float(step_data, ',', &tmp); + link_step_data.push_back(tmp); + } + // load week data + std::vector week_data; + split_to_float(data[2], ',', &week_data); + // load minute data + std::vector minute_data; + split_to_float(data[1], ',', &minute_data); + link_step_data_all.push_back(std::move(link_step_data)); + week_data_all.push_back(std::move(week_data)); + minute_data_all.push_back(std::move(minute_data)); + } + } +}; +void PrepareInputs(std::vector *input_slots, DataRecord *data, + int batch_size) { + // DataRecord data(FLAGS_datapath, batch_size); + PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor, + week_tensor, minute_tensor; + lod_attention_tensor.name = "data_lod_attention"; + init_zero_tensor.name = "cell_init"; + lod_tensor_tensor.name = "data"; + week_tensor.name = "week"; + minute_tensor.name = "minute"; + auto one_batch = data->NextBatch(); + // clang-format off + std::vector rnn_link_data_shape + ({static_cast(one_batch.rnn_link_data.size()), static_cast(one_batch.rnn_link_data.front().size())}); + lod_attention_tensor.shape.assign({1, 2}); + lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2}); + init_zero_tensor.shape.assign({batch_size, 15}); + init_zero_tensor.lod.assign({one_batch.lod3}); + lod_tensor_tensor.shape = rnn_link_data_shape; + lod_tensor_tensor.lod.assign({one_batch.lod1}); + week_tensor.shape.assign({(int) one_batch.rnn_week_datas.size(), (int) one_batch.rnn_week_datas.front().size()}); + week_tensor.lod.assign({one_batch.lod3}); + minute_tensor.shape.assign({(int) one_batch.rnn_minute_datas.size(), + (int) one_batch.rnn_minute_datas.front().size()}); + minute_tensor.lod.assign({one_batch.lod3}); + // assign data + TensorAssignData(&lod_attention_tensor, std::vector>({{0, 0}})); + std::vector tmp_zeros(batch_size * 15, 0.); + TensorAssignData(&init_zero_tensor, {tmp_zeros}); + TensorAssignData(&lod_tensor_tensor, one_batch.rnn_link_data); + TensorAssignData(&week_tensor, one_batch.rnn_week_datas); + TensorAssignData(&minute_tensor, one_batch.rnn_minute_datas); + // clang-format on + // Set inputs. + auto init_zero_tensor1 = init_zero_tensor; + init_zero_tensor1.name = "hidden_init"; + input_slots->assign({week_tensor, init_zero_tensor, minute_tensor, + init_zero_tensor1, lod_attention_tensor, + lod_tensor_tensor}); + for (auto &tensor : *input_slots) { + tensor.dtype = PaddleDType::FLOAT32; + } +} + +std::string DescribeTensor(const PaddleTensor &tensor) { + std::stringstream os; + os << "Tensor [" << tensor.name << "]\n"; + os << " - type: "; + switch (tensor.dtype) { + case PaddleDType::FLOAT32: + os << "float32"; + break; + case PaddleDType::INT64: + os << "int64"; + break; + default: + os << "unset"; + } + os << '\n'; + + os << " - shape: " << to_string(tensor.shape) << '\n'; + os << " - lod: "; + for (auto &l : tensor.lod) { + os << to_string(l) << "; "; + } + os << "\n"; + os << " - data: "; + + // clang-format off + int dim = std::accumulate(tensor.shape.begin(), + tensor.shape.end(), + 1, + [](int a, int b) { return a * b; }); // clang-format on + for (size_t i = 0; i < dim; i++) { + os << static_cast(tensor.data.data())[i] << " "; + } + os << '\n'; + return os.str(); +} + +} // namespace + +const float ditu_rnn_target_data[] = { + 104.711, 11.2431, 1.35422, 0, 0, 0, 0, 0, + 27.7039, 1.41486, 7.09526, 0, 0, 0, 0, 0, + 7.6481, 6.5324, 56.383, 2.88018, 8.92918, 132.007, 4.27429, 2.02934, + 14.1727, 10.7461, 25.0616, 16.0197, 14.4163, 16.9199, 6.75517, 0, + 80.0249, 4.77739, 0, 0, 0, 0, 0, 0, + 47.5643, 2.67029, 8.76252, 0, 0, 0, 0, 0, + 51.8822, 4.4411, 0, 0, 0, 0, 0, 0, + 10.7286, 12.0595, 10.6672, 0, 0, 0, 0, 0, + 93.5771, 3.84641, 0, 0, 0, 0, 0, 0, + 169.426, 0, 0, 0, 0, 0, 0, 0}; +// Test with a really complicate model. +void TestDituRNNPrediction(const std::string &model_path, + const std::string &data_path, int batch_size, + bool use_analysis, bool activate_ir, + int num_times = 1) { + FLAGS_IA_enable_ir = activate_ir; + FLAGS_IA_enable_tensorrt_subgraph_engine = false; + FLAGS_IA_output_storage_path = "./analysis.out"; + + std::string model_out; + if (use_analysis) { + Argument argument(model_path); + argument.model_output_store_path.reset(new std::string("./analysis.out")); + + Analyzer analyzer; + analyzer.Run(&argument); + + // Should get the transformed model stored to ./analysis.out + model_out = "./analysis.out"; + ASSERT_TRUE(PathExists(model_out)); + } else { + model_out = FLAGS_infer_ditu_rnn_model; + } + + NativeConfig config; + config.prog_file = model_out + "/__model__"; + config.param_file = model_out + "/param"; + config.use_gpu = false; + config.device = 0; + config.specify_input_name = true; + + auto predictor = + CreatePaddlePredictor(config); + std::vector input_slots; + DataRecord data(data_path, batch_size); + // Prepare inputs. + PrepareInputs(&input_slots, &data, batch_size); + std::vector outputs; + + Timer timer; + timer.tic(); + for (int i = 0; i < num_times; i++) { + predictor->Run(input_slots, &outputs); + } + LOG(INFO) << "time/batch: " << timer.toc() / num_times; + + for (auto &out : outputs) { + size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1, + [](int a, int b) { return a * b; }); + float *data = static_cast(out.data.data()); + for (int i = 0; + i < std::min(sizeof(ditu_rnn_target_data) / sizeof(float), size); + i++) { + EXPECT_NEAR(data[i], ditu_rnn_target_data[i], 1e-3); + } + } +} + // Turn on the IR pass supportion, run a real inference and check the result. TEST(Analyzer, SupportIRPass) { FLAGS_IA_enable_ir = true; @@ -94,6 +333,27 @@ TEST(Analyzer, SupportIRPass) { TestWord2vecPrediction("./analysis.out"); } +// Directly infer with the original model. +TEST(Analyzer, DituRNN_without_analysis) { + TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data, + 10, false, false); +} + +// Inference with the original model with the analysis turned on, the analysis +// module will transform the program to a data flow graph. +TEST(Analyzer, DituRNN_with_analysis) { + LOG(INFO) << "ditu rnn with analysis"; + TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data, + 10, true, false, 1); +} + +// Inference with analysis and IR. The IR module will fuse some large kernels. +TEST(Analyzer, DituRNN_with_analysis_with_IR) { + LOG(INFO) << "ditu rnn with analysis and IR fuse"; + TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data, + 10, true, true, 1); +} + } // namespace analysis } // namespace inference } // namespace paddle diff --git a/paddle/fluid/inference/api/CMakeLists.txt b/paddle/fluid/inference/api/CMakeLists.txt index ce6c8f0474d7bb5cd67be2e6ef919835cf1c2a11..0ca1af455ca10fa6995ad3a1c33825108a3fd7ad 100644 --- a/paddle/fluid/inference/api/CMakeLists.txt +++ b/paddle/fluid/inference/api/CMakeLists.txt @@ -18,7 +18,10 @@ if(APPLE) endif(APPLE) -set(inference_deps paddle_inference_api paddle_fluid_api) +set(inference_deps paddle_inference_api paddle_fluid_api analysis pass ir_pass_manager + graph_viz_pass fc_fuse_pass + infer_clean_graph_pass + ) if(WITH_GPU AND TENSORRT_FOUND) set(inference_deps ${inference_deps} paddle_inference_tensorrt_subgraph_engine) @@ -62,7 +65,7 @@ endif() if (WITH_ANAKIN AND WITH_GPU) # only needed in CI # compile the libinference_anakin_api.a and anakin.so. - cc_library(inference_anakin_api SRCS api.cc api_anakin_engine.cc DEPS anakin_shared anakin_saber) + cc_library(inference_anakin_api SRCS api.cc api_anakin_engine.cc DEPS anakin_shared anakin_saber mklml) cc_library(inference_anakin_api_shared SHARED SRCS api.cc api_anakin_engine.cc DEPS anakin_shared anakin_saber) function(anakin_target target_name) target_compile_options(${target_name} BEFORE PUBLIC ${ANAKIN_COMPILE_EXTRA_FLAGS}) @@ -70,9 +73,12 @@ if (WITH_ANAKIN AND WITH_GPU) # only needed in CI anakin_target(inference_anakin_api) anakin_target(inference_anakin_api_shared) if (WITH_TESTING) - cc_test(inference_anakin_test SRCS api_anakin_engine_tester.cc + cc_test(api_anakin_engine_tester SRCS api_anakin_engine_tester.cc ARGS --model=${ANAKIN_SOURCE_DIR}/mobilenet_v2.anakin.bin - DEPS inference_anakin_api dynload_cuda SERIAL) - target_compile_options(inference_anakin_test BEFORE PUBLIC ${ANAKIN_COMPILE_EXTRA_FLAGS}) + DEPS inference_anakin_api_shared dynload_cuda SERIAL) + cc_test(api_anakin_engine_rnn_tester SRCS api_anakin_engine_rnn_tester.cc + ARGS --model=${ANAKIN_SOURCE_DIR}/anakin_test%2Fditu_rnn.anakin2.model.bin + --datapath=${ANAKIN_SOURCE_DIR}/anakin_test%2Fditu_rnn_data.txt + DEPS inference_anakin_api_shared dynload_cuda SERIAL) endif(WITH_TESTING) endif() diff --git a/paddle/fluid/inference/api/api.cc b/paddle/fluid/inference/api/api.cc index 63c3f0d7b3f5c2b9246e2b041796caf5eb562826..5f1e1b548c7b7daa66932571d7053701bc0bd1f6 100644 --- a/paddle/fluid/inference/api/api.cc +++ b/paddle/fluid/inference/api/api.cc @@ -1,11 +1,8 @@ /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. - Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. diff --git a/paddle/fluid/inference/api/api_anakin_engine.cc b/paddle/fluid/inference/api/api_anakin_engine.cc index 6b374ceefbc180a5c22abe591f12e1c3d89bc64a..ea66aa89b87ba3c25cdcd5eb2c5155a481ef7987 100644 --- a/paddle/fluid/inference/api/api_anakin_engine.cc +++ b/paddle/fluid/inference/api/api_anakin_engine.cc @@ -13,9 +13,22 @@ // limitations under the License. #include "paddle/fluid/inference/api/api_anakin_engine.h" + +#ifdef PADDLE_WITH_CUDA #include +#endif + +#include +#include +#include +#include +#include #include +#include "framework/core/net/net.h" +#include "framework/operators/ops.h" +#include "saber/funcs/timer.h" + namespace paddle { template @@ -23,16 +36,24 @@ PaddleInferenceAnakinPredictor::PaddleInferenceAnakinPredictor( const AnakinConfig &config) { CHECK(Init(config)); } - +template <> +PaddleInferenceAnakinPredictor::PaddleInferenceAnakinPredictor( + const AnakinConfig &config) { + omp_set_dynamic(0); + omp_set_num_threads(1); + mkl_set_num_threads(1); + CHECK(Init(config)); +} template bool PaddleInferenceAnakinPredictor::Init(const AnakinConfig &config) { if (!(graph_.load(config.model_file))) { - LOG(FATAL) << "fail to load graph from " << config.model_file; + VLOG(3) << "fail to load graph from " << config.model_file; return false; } auto inputs = graph_.get_ins(); for (auto &input_str : inputs) { graph_.ResetBatchSize(input_str, config.max_batch_size); + max_batch_size_ = config.max_batch_size; } // optimization for graph if (!(graph_.Optimize())) { @@ -52,15 +73,15 @@ bool PaddleInferenceAnakinPredictor::Run( std::vector *output_data, int batch_size) { for (const auto &input : inputs) { if (input.dtype != PaddleDType::FLOAT32) { - LOG(ERROR) << "Only support float type inputs. " << input.name - << "'s type is not float"; + VLOG(3) << "Only support float type inputs. " << input.name + << "'s type is not float"; return false; } auto d_tensor_in_p = executor_p_->get_in(input.name); - auto net_shape = d_tensor_in_p->valid_shape(); + auto net_shape = d_tensor_in_p->shape(); if (net_shape.size() != input.shape.size()) { - LOG(ERROR) << " input " << input.name - << "'s shape size should be equal to that of net"; + VLOG(3) << " input " << input.name + << "'s shape size should be equal to that of net"; return false; } int sum = 1; @@ -79,21 +100,45 @@ bool PaddleInferenceAnakinPredictor::Run( } d_tensor_in_p->reshape(tmp_shape); + if (input.lod.size() > 0) { + if (input.lod.size() > 1) { + VLOG(3) << " input lod first dim should <=1, but you set " + << input.lod.size(); + return false; + } + std::vector offset(input.lod[0].begin(), input.lod[0].end()); + d_tensor_in_p->set_seq_offset(offset); + VLOG(3) << "offset.size(): " << offset.size(); + for (int i = 0; i < offset.size(); i++) { + VLOG(3) << offset[i]; + } + } + float *d_data_p = d_tensor_in_p->mutable_data(); - if (cudaMemcpy(d_data_p, static_cast(input.data.data()), - d_tensor_in_p->valid_size() * sizeof(float), - cudaMemcpyHostToDevice) != 0) { - LOG(ERROR) << "copy data from CPU to GPU error"; - return false; + +#ifdef PADDLE_WITH_CUDA + if (std::is_same::value) { + if (cudaMemcpy(d_data_p, static_cast(input.data.data()), + d_tensor_in_p->valid_size() * sizeof(float), + cudaMemcpyHostToDevice) != 0) { + VLOG(3) << "copy data from CPU to GPU error"; + return false; + } + } +#endif + if (std::is_same::value) { + memcpy(d_data_p, static_cast(input.data.data()), + d_tensor_in_p->valid_size() * sizeof(float)); } - cudaStreamSynchronize(NULL); } +#ifdef PADDLE_WITH_CUDA cudaDeviceSynchronize(); executor_p_->prediction(); cudaDeviceSynchronize(); +#endif if (output_data->empty()) { - LOG(ERROR) << "At least one output should be set with tensors' names."; + VLOG(3) << "At least one output should be set with tensors' names."; return false; } for (auto &output : *output_data) { @@ -102,14 +147,22 @@ bool PaddleInferenceAnakinPredictor::Run( if (output.data.length() < tensor->valid_size() * sizeof(float)) { output.data.Resize(tensor->valid_size() * sizeof(float)); } - // Copy data from GPU -> CPU - if (cudaMemcpy(output.data.data(), tensor->mutable_data(), - tensor->valid_size() * sizeof(float), - cudaMemcpyDeviceToHost) != 0) { - LOG(ERROR) << "copy data from GPU to CPU error"; - return false; + +#if PADDLE_WITH_CUDA + if (std::is_same::value) { + // Copy data from GPU -> CPU + if (cudaMemcpy(output.data.data(), tensor->mutable_data(), + tensor->valid_size() * sizeof(float), + cudaMemcpyDeviceToHost) != 0) { + VLOG(3) << "copy data from GPU to CPU error"; + return false; + } + } +#endif + if (std::is_same::value) { + memcpy(output.data.data(), tensor->mutable_data(), + tensor->valid_size() * sizeof(float)); } - cudaStreamSynchronize(NULL); } return true; } @@ -132,7 +185,7 @@ PaddleInferenceAnakinPredictor::Clone() { auto anakin_predictor_p = dynamic_cast *>(cls.get()); if (!anakin_predictor_p) { - LOG(ERROR) << "fail to call Init"; + VLOG(3) << "fail to call Init"; return nullptr; } anakin_predictor_p->get_executer().init(graph_); @@ -162,6 +215,44 @@ std::unique_ptr CreatePaddlePredictor< VLOG(3) << "Anakin Predictor create on unknown platform."; return nullptr; } -}; +} + +#ifdef PADDLE_ANAKIN_ENABLE_OP_TIMER +template +using executor_t = + anakin::Net; + +template +void DisplayOpTimer(executor_t *net_executor, int epoch) { + std::vector op_time = net_executor->get_op_time(); + auto exec_funcs = net_executor->get_exec_funcs(); + auto op_param = net_executor->get_op_param(); + for (int i = 0; i < op_time.size(); i++) { + LOG(INFO) << "name: " << exec_funcs[i].name + << " op_type: " << exec_funcs[i].op_name + << " op_param: " << op_param[i] << " time " << op_time[i] / epoch; + } + std::map op_map; + for (int i = 0; i < op_time.size(); i++) { + auto it = op_map.find(op_param[i]); + if (it != op_map.end()) + op_map[op_param[i]] += op_time[i]; + else + op_map.insert(std::pair(op_param[i], op_time[i])); + } + for (auto it = op_map.begin(); it != op_map.end(); ++it) { + LOG(INFO) << it->first << " " << (it->second) / epoch << " ms"; + } +} +#endif + +template +PaddleInferenceAnakinPredictor::~PaddleInferenceAnakinPredictor() { +#ifdef PADDLE_ANAKIN_ENABLE_OP_TIMER + DisplayOpTimer(executor_p_, max_batch_size_); +#endif + delete executor_p_; + executor_p_ = nullptr; +} } // namespace paddle diff --git a/paddle/fluid/inference/api/api_anakin_engine.h b/paddle/fluid/inference/api/api_anakin_engine.h index 836badd9799228c6c294dcad5df73d039d36a1ff..dd08661880d8cc3a9f4401e9af91a3d10e6579b6 100644 --- a/paddle/fluid/inference/api/api_anakin_engine.h +++ b/paddle/fluid/inference/api/api_anakin_engine.h @@ -47,10 +47,7 @@ class PaddleInferenceAnakinPredictor : public PaddlePredictor { anakin::Net& get_executer(); - ~PaddleInferenceAnakinPredictor() override { - delete executor_p_; - executor_p_ = nullptr; - }; + ~PaddleInferenceAnakinPredictor() override; private: bool Init(const AnakinConfig& config); @@ -60,6 +57,7 @@ class PaddleInferenceAnakinPredictor : public PaddlePredictor { anakin::Net* executor_p_{nullptr}; AnakinConfig config_; + int max_batch_size_{0}; }; } // namespace paddle diff --git a/paddle/fluid/inference/api/api_anakin_engine_rnn_tester.cc b/paddle/fluid/inference/api/api_anakin_engine_rnn_tester.cc new file mode 100644 index 0000000000000000000000000000000000000000..6183864234e85b89e94821890d9606b082c59233 --- /dev/null +++ b/paddle/fluid/inference/api/api_anakin_engine_rnn_tester.cc @@ -0,0 +1,315 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include +#include +#include +#include +#include +#include // NOLINT +#include +#include "framework/core/net/net.h" +#include "paddle/fluid/inference/api/paddle_inference_api.h" + +DEFINE_string(model, "", "Directory of the inference model."); +DEFINE_string(datapath, "", "Path of the dataset."); +DEFINE_int32(batch_size, 1, "batch size."); +DEFINE_int32(repeat, 1, "Running the inference program repeat times."); + +// Timer for timer +class Timer { + public: + double start; + double startu; + void tic() { + struct timeval tp; + gettimeofday(&tp, NULL); + start = tp.tv_sec; + startu = tp.tv_usec; + } + double toc() { + struct timeval tp; + gettimeofday(&tp, NULL); + double used_time_ms = + (tp.tv_sec - start) * 1000.0 + (tp.tv_usec - startu) / 1000.0; + return used_time_ms; + } +}; + +std::vector string_split(std::string in_str, + std::string delimiter) { + std::vector seq; + int found = in_str.find(delimiter); + int pre_found = -1; + while (found != std::string::npos) { + if (pre_found == -1) { + seq.push_back(in_str.substr(0, found)); + } else { + seq.push_back(in_str.substr(pre_found + delimiter.length(), + found - delimiter.length() - pre_found)); + } + pre_found = found; + found = in_str.find(delimiter, pre_found + delimiter.length()); + } + seq.push_back( + in_str.substr(pre_found + 1, in_str.length() - (pre_found + 1))); + return seq; +} +std::vector string_split( + std::string in_str, std::vector& delimiter) { // NOLINT + std::vector in; + std::vector out; + out.push_back(in_str); + for (auto del : delimiter) { + in = out; + out.clear(); + for (auto s : in) { + auto out_s = string_split(s, del); + for (auto o : out_s) { + out.push_back(o); + } + } + } + return out; +} + +class Data { + public: + Data(std::string file_name, int batch_size) + : _batch_size(batch_size), _total_length(0) { + _file.open(file_name); + _file.seekg(_file.end); + _total_length = _file.tellg(); + _file.seekg(_file.beg); + } + void get_batch_data(std::vector>& fea, // NOLINT + std::vector>& week_fea, // NOLINT + std::vector>& time_fea, // NOLINT + std::vector& seq_offset); // NOLINT + + private: + std::fstream _file; + int _total_length; + int _batch_size; +}; + +void Data::get_batch_data( + std::vector>& fea, // NOLINT + std::vector>& week_fea, // NOLINT + std::vector>& time_fea, // NOLINT + std::vector& seq_offset) { // NOLINT + int seq_num = 0; + long unsigned int cum = 0; // NOLINT + + char buf[10000]; + seq_offset.clear(); + seq_offset.push_back(0); + fea.clear(); + week_fea.clear(); + time_fea.clear(); + while (_file.getline(buf, 10000)) { + std::string s = buf; + std::vector deli_vec = {":"}; + std::vector data_vec = string_split(s, deli_vec); + + std::vector seq; + seq = string_split(data_vec[0], {"|"}); + + for (auto link : seq) { + std::vector data = string_split(link, ","); + std::vector vec; + for (int i = 0; i < data.size(); i++) { + vec.push_back(atof(data[i].c_str())); + } + fea.push_back(vec); + } + std::vector week_data; + std::vector time_data; + + week_data = string_split(data_vec[2], ","); + std::vector vec_w; + for (int i = 0; i < week_data.size(); i++) { + vec_w.push_back(atof(week_data[i].c_str())); + } + week_fea.push_back(vec_w); + + time_data = string_split(data_vec[1], ","); + std::vector vec_t; + for (int i = 0; i < time_data.size(); i++) { + vec_t.push_back(atof(time_data[i].c_str())); + } + time_fea.push_back(vec_t); + + cum += seq.size(); + seq_offset.push_back(cum); + + seq_num++; + if (seq_num >= _batch_size) { + break; + } + } +} + +namespace paddle { + +AnakinConfig GetConfig() { + AnakinConfig config; + // using AnakinConfig::X86 if you need to use cpu to do inference + config.target_type = AnakinConfig::X86; + config.model_file = FLAGS_model; + config.device = 0; + config.max_batch_size = 1000; // the max number of token + return config; +} + +void set_tensor(std::string name, std::vector shape, + std::vector& vec) { // NOLINT + int sum = 1; + std::for_each(shape.begin(), shape.end(), [&](int n) { sum *= n; }); + float* data = new float[sum]; + PaddleTensor tensor; + tensor.name = name; + tensor.shape = shape; + tensor.data = PaddleBuf(data, sum); + tensor.dtype = PaddleDType::FLOAT32; + vec.push_back(tensor); +} + +void single_test() { + AnakinConfig config = GetConfig(); + auto predictor = + CreatePaddlePredictor(config); + + int max_batch_size = 1000; + std::string feature_file = FLAGS_datapath; + Data map_data(feature_file, FLAGS_batch_size); + std::vector> fea; + std::vector> week_fea; + std::vector> time_fea; + std::vector seq_offset; // NOLINT + + paddle::PaddleTensor tensor_0, tensor_1, tensor_2; + tensor_0.name = "input_0"; + tensor_1.name = "input_4"; + tensor_2.name = "input_5"; + + PaddleTensor tensor_out; + tensor_out.name = "final_output.tmp_1_gout"; + tensor_out.shape = std::vector({}); + tensor_out.data = PaddleBuf(); + tensor_out.dtype = PaddleDType::FLOAT32; + + std::vector inputs; + std::vector outputs(1, tensor_out); + + int data_0_dim = 38; + int data_1_dim = 10; + int data_2_dim = 10; + float data_0[max_batch_size * data_0_dim]; // NOLINT + float data_1[max_batch_size * data_1_dim]; // NOLINT + float data_2[max_batch_size * data_2_dim]; // NOLINT + + int count = 0; + while (true) { + if (count++ > 0) break; // only run the first batch in ci. + seq_offset.clear(); + map_data.get_batch_data(fea, week_fea, time_fea, seq_offset); + if (seq_offset.size() <= 1) { + LOG(FATAL) << "seq_offset.size() <= 1, exit."; + break; + } + + std::vector> seq_offset_vec; // NOLINT + seq_offset_vec.push_back(seq_offset); + tensor_0.lod = seq_offset_vec; + + int p_shape_0[] = {(int)fea.size(), 1, 1, data_0_dim}; // NOLINT + int p_shape_1[] = {(int)week_fea.size(), data_1_dim, 1, 1}; // NOLINT + int p_shape_2[] = {(int)time_fea.size(), data_2_dim, 1, 1}; // NOLINT + + std::vector shape_0(p_shape_0, p_shape_0 + 4); + std::vector shape_1(p_shape_1, p_shape_1 + 4); + std::vector shape_2(p_shape_2, p_shape_2 + 4); + + tensor_0.shape = shape_0; + tensor_1.shape = shape_1; + tensor_2.shape = shape_2; + + for (int i = 0; i < fea.size(); i++) { + memcpy(data_0 + i * data_0_dim, &fea[i][0], sizeof(float) * data_0_dim); + } + for (int i = 0; i < week_fea.size(); i++) { + memcpy(data_1 + i * data_1_dim, &week_fea[i][0], + sizeof(float) * data_1_dim); + } + for (int i = 0; i < time_fea.size(); i++) { + memcpy(data_2 + i * data_2_dim, &time_fea[i][0], + sizeof(float) * data_2_dim); + } + + tensor_0.data = + paddle::PaddleBuf(data_0, fea.size() * sizeof(float) * data_0_dim); + tensor_1.data = + paddle::PaddleBuf(data_1, week_fea.size() * sizeof(float) * data_1_dim); + tensor_2.data = + paddle::PaddleBuf(data_2, time_fea.size() * sizeof(float) * data_2_dim); + + tensor_0.dtype = paddle::PaddleDType::FLOAT32; + tensor_1.dtype = paddle::PaddleDType::FLOAT32; + tensor_2.dtype = paddle::PaddleDType::FLOAT32; + + inputs.clear(); + inputs.push_back(tensor_1); + inputs.push_back(tensor_2); + inputs.push_back(tensor_0); + + Timer timer; + timer.tic(); + for (int i = 0; i < FLAGS_repeat; i++) predictor->Run(inputs, &outputs); + + LOG(INFO) << "batch_size = " << FLAGS_batch_size + << ", repeat = " << FLAGS_repeat + << ", sequence_length = " << seq_offset[seq_offset.size() - 1] + << ", latency: " << timer.toc() / FLAGS_repeat << "ms"; + + float* data_o = static_cast(outputs[0].data.data()); + VLOG(3) << "outputs[0].data.length() = " << outputs[0].data.length(); + for (size_t j = 0; j < outputs[0].data.length(); ++j) { + VLOG(3) << "output[" << j << "]: " << data_o[j]; + } + } +} +} // namespace paddle + +int main(int argc, char** argv) { + google::ParseCommandLineFlags(&argc, &argv, true); + logger::init(argv[0]); + + paddle::single_test(); + /* multi-threads + std::vector threads; + int num = 1; + for (int i = 0; i < num; i++) { + LOG(INFO) << " thread id : " << i; + threads.emplace_back(paddle::single_test); + } + for (int i = 0; i < num; i++) { + threads[i].join(); + } + threads.clear(); + */ + + return 0; +} diff --git a/paddle/fluid/inference/api/api_impl.cc b/paddle/fluid/inference/api/api_impl.cc index e31c637e969f7a86f4f185abb4f0f01d3303db75..32a691b81ffc0586a07f4f06d2114fa5da2e18e2 100644 --- a/paddle/fluid/inference/api/api_impl.cc +++ b/paddle/fluid/inference/api/api_impl.cc @@ -137,8 +137,11 @@ bool NativePaddlePredictor::Run(const std::vector &inputs, return false; } for (size_t i = 0; i < feed_target_names_.size(); ++i) { - VLOG(4) << "setting " << i << "-th target"; - feed_targets[feed_target_names_[i]] = &feeds[i]; + if (config_.specify_input_name) { + feed_targets[inputs[i].name] = &feeds[i]; + } else { + feed_targets[feed_target_names_[i]] = &feeds[i]; + } } // get fetch variable std::map fetch_targets; diff --git a/paddle/fluid/inference/api/helper.h b/paddle/fluid/inference/api/helper.h new file mode 100644 index 0000000000000000000000000000000000000000..2c166cc0622f68e6d527005795c21236ccf43c33 --- /dev/null +++ b/paddle/fluid/inference/api/helper.h @@ -0,0 +1,110 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include +#include +#include +#include "paddle/fluid/inference/api/paddle_inference_api.h" + +namespace paddle { +namespace inference { + +// Timer for timer +class Timer { + public: + double start; + double startu; + void tic() { + struct timeval tp; + gettimeofday(&tp, NULL); + start = tp.tv_sec; + startu = tp.tv_usec; + } + double toc() { + struct timeval tp; + gettimeofday(&tp, NULL); + double used_time_ms = + (tp.tv_sec - start) * 1000.0 + (tp.tv_usec - startu) / 1000.0; + return used_time_ms; + } +}; + +void split(const std::string &str, char sep, std::vector *pieces) { + pieces->clear(); + if (str.empty()) { + return; + } + size_t pos = 0; + size_t next = str.find(sep, pos); + while (next != std::string::npos) { + pieces->push_back(str.substr(pos, next - pos)); + pos = next + 1; + next = str.find(sep, pos); + } + if (!str.substr(pos).empty()) { + pieces->push_back(str.substr(pos)); + } +} +void split_to_float(const std::string &str, char sep, std::vector *fs) { + std::vector pieces; + split(str, sep, &pieces); + std::transform(pieces.begin(), pieces.end(), std::back_inserter(*fs), + [](const std::string &v) { return std::stof(v); }); +} +template +std::string to_string(const std::vector &vec) { + std::stringstream ss; + for (const auto &c : vec) { + ss << c << " "; + } + return ss.str(); +} +template <> +std::string to_string>( + const std::vector> &vec) { + std::stringstream ss; + for (const auto &piece : vec) { + ss << to_string(piece) << "\n"; + } + return ss.str(); +} +template <> +std::string to_string>>( + const std::vector>> &vec) { + std::stringstream ss; + for (const auto &line : vec) { + for (const auto &rcd : line) { + ss << to_string(rcd) << ";\t"; + } + ss << '\n'; + } + return ss.str(); +} +// clang-format off +void TensorAssignData(PaddleTensor *tensor, const std::vector> &data) { + // Assign buffer + int dim = std::accumulate(tensor->shape.begin(), tensor->shape.end(), 1, [](int a, int b) { return a * b; }); + tensor->data.Resize(sizeof(float) * dim); + int c = 0; + for (const auto &f : data) { + for (float v : f) { static_cast(tensor->data.data())[c++] = v; } + } +} + +} // namespace inference +} // namespace paddle diff --git a/paddle/fluid/inference/api/paddle_inference_api.h b/paddle/fluid/inference/api/paddle_inference_api.h index da6c2cfc21809aa08bba79880dc898bb056d16a0..36fd0727aa7beef4a06a5f2e63ec0c43583ddf84 100644 --- a/paddle/fluid/inference/api/paddle_inference_api.h +++ b/paddle/fluid/inference/api/paddle_inference_api.h @@ -45,7 +45,7 @@ class PaddleBuf { PaddleBuf(void* data, size_t length) : data_(data), length_(length), memory_owned_{false} {} // Own memory. - explicit PaddleBuf(size_t length) + PaddleBuf(size_t length) : data_(new char[length]), length_(length), memory_owned_(true) {} // Resize to `length` bytes. void Resize(size_t length); @@ -70,7 +70,7 @@ struct PaddleTensor { std::vector shape; PaddleBuf data; // blob of data. PaddleDType dtype; - std::vector> lod; // lod data + std::vector> lod; // Tensor+LoD equals LoDTensor }; enum class PaddleEngineKind { @@ -120,6 +120,8 @@ struct NativeConfig : public PaddlePredictor::Config { bool use_gpu{false}; int device{0}; float fraction_of_gpu_memory{-1.f}; // Negative to notify initialization. + // Specify the variable's name of each input. + bool specify_input_name{false}; std::string prog_file; std::string param_file; diff --git a/paddle/fluid/operators/mul_op.cc b/paddle/fluid/operators/mul_op.cc index 51993398bd3427e1f0da155918395bc50fa65e45..2a8e4af516ce9341772d4668dc993215b4aae24d 100644 --- a/paddle/fluid/operators/mul_op.cc +++ b/paddle/fluid/operators/mul_op.cc @@ -54,9 +54,9 @@ class MulOp : public framework::OperatorWithKernel { auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims); auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims); - PADDLE_ENFORCE_EQ( - x_mat_dims[1], y_mat_dims[0], - "First matrix's width must be equal with second matrix's height."); + PADDLE_ENFORCE_EQ(x_mat_dims[1], y_mat_dims[0], + "First matrix's width must be equal with second matrix's " + "height. %s, %s"); std::vector output_dims; output_dims.reserve( static_cast(x_num_col_dims + y_dims.size() - y_num_col_dims)); diff --git a/paddle/fluid/operators/stack_op.cc b/paddle/fluid/operators/stack_op.cc index 34e7351073e0f72a50ba8753f8d7c9c4ba59056a..3f4b48bc7391def082c82ed451fc5a752009a2f1 100644 --- a/paddle/fluid/operators/stack_op.cc +++ b/paddle/fluid/operators/stack_op.cc @@ -14,53 +14,15 @@ #include "paddle/fluid/operators/stack_op.h" -namespace paddle { -namespace operators { - -struct CPUStackFunctor { - template - void operator()(const DeviceContext& ctx, const std::vector& x, - T* y, int pre, int n, int post) const { - int total_num = pre * post * n; - for (int idx = 0; idx < total_num; ++idx) { - int i = idx / (n * post); - int which_x = idx / post - i * n; - int x_index = i * post + idx % post; - y[idx] = x[which_x][x_index]; - } - } -}; - -struct CPUStackGradFunctor { - template - void operator()(const DeviceContext& ctx, std::vector& dx, // NOLINT - const T* dy, int pre, int n, int post) const { - int total_num = pre * post * n; - for (int idx = 0; idx < total_num; ++idx) { - int i = idx / (n * post); - int which_x = idx / post - i * n; - int x_index = i * post + idx % post; - dx[which_x][x_index] = dy[idx]; - } - } -}; - -} // namespace operators -} // namespace paddle - namespace plat = paddle::platform; namespace ops = paddle::operators; REGISTER_OPERATOR(stack, ops::StackOp, ops::StackOpMaker, ops::StackGradOpDescMaker); REGISTER_OPERATOR(stack_grad, ops::StackOpGrad); -REGISTER_OP_CPU_KERNEL( - stack, - ops::StackKernel, - ops::StackKernel); +REGISTER_OP_CPU_KERNEL(stack, ops::StackKernel, + ops::StackKernel); REGISTER_OP_CPU_KERNEL(stack_grad, - ops::StackGradKernel, - ops::StackGradKernel); + ops::StackGradKernel, + ops::StackGradKernel); diff --git a/paddle/fluid/operators/stack_op.cu b/paddle/fluid/operators/stack_op.cu index 8f13018b3b5ad10e2639e9d93827f0bf1aa32cf9..92c1bde2bcf089e5c715e90e564408e6ad37ba17 100644 --- a/paddle/fluid/operators/stack_op.cu +++ b/paddle/fluid/operators/stack_op.cu @@ -12,98 +12,14 @@ // See the License for the specific language governing permissions and // limitations under the License. -#include -#include "paddle/fluid/framework/array.h" #include "paddle/fluid/operators/stack_op.h" -namespace paddle { -namespace operators { - -template -__global__ void StackCUDAKernel(VecXType x, T* y, int total_num, int n, - int post) { - int idx = threadIdx.x + blockIdx.x * blockDim.x; - if (idx < total_num) { - int i = idx / (n * post); - int which_x = idx / post - i * n; - int x_index = i * post + idx % post; - y[idx] = x[which_x][x_index]; - } -} - -template -__global__ void StackGradCUDAKernel(VecDxType dx, const T* dy, int total_num, - int n, int post) { - int idx = threadIdx.x + blockIdx.x * blockDim.x; - if (idx < total_num) { - int i = idx / (n * post); - int which_x = idx / post - i * n; - int x_index = i * post + idx % post; - dx[which_x][x_index] = dy[idx]; - } -} - -struct GPUStackFunctor { - template - void operator()(const DeviceContext& ctx, const std::vector& x, - T* y, int pre, int n, int post) const { - int total_num = pre * post * n; - int threads = 512; - int grid = (total_num + threads - 1) / threads; - - constexpr auto kMaxThreshold = 16; - if (n <= kMaxThreshold) { - framework::Array arr; - for (int i = 0; i < n; ++i) arr[i] = x[i]; - StackCUDAKernel<<>>(arr, y, total_num, n, - post); - } else { - VLOG(10) << "Stack more than " << kMaxThreshold - << " tensors may be slow on GPU."; - thrust::device_vector dev_x(x); - StackCUDAKernel<<>>(dev_x.data().get(), y, - total_num, n, post); - } - } -}; - -struct GPUStackGradFunctor { - template - void operator()(const DeviceContext& ctx, std::vector& dx, // NOLINT - const T* dy, int pre, int n, int post) const { - int total_num = pre * post * n; - int threads = 512; - int grid = (total_num + threads - 1) / threads; - - constexpr auto kMaxThreshold = 16; - if (n <= kMaxThreshold) { - framework::Array arr; - for (int i = 0; i < n; ++i) arr[i] = dx[i]; - StackGradCUDAKernel<<>>( - arr, dy, total_num, n, post); - } else { - VLOG(10) << "Stack more than " << kMaxThreshold - << " tensors may be slow on GPU."; - thrust::device_vector dev_dx(dx); - StackGradCUDAKernel<<>>( - dev_dx.data().get(), dy, total_num, n, post); - } - } -}; - -} // namespace operators -} // namespace paddle - namespace plat = paddle::platform; namespace ops = paddle::operators; -REGISTER_OP_CUDA_KERNEL( - stack, - ops::StackKernel, - ops::StackKernel); +REGISTER_OP_CUDA_KERNEL(stack, ops::StackKernel, + ops::StackKernel); REGISTER_OP_CUDA_KERNEL(stack_grad, - ops::StackGradKernel, - ops::StackGradKernel); + ops::StackGradKernel, + ops::StackGradKernel); diff --git a/paddle/fluid/operators/stack_op.h b/paddle/fluid/operators/stack_op.h index c438bdb63ae88eee0df61c5c34c989a2c52532cf..b139f48d87d3e236803c6682c623686bad6fbc9c 100644 --- a/paddle/fluid/operators/stack_op.h +++ b/paddle/fluid/operators/stack_op.h @@ -11,20 +11,20 @@ // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. + #pragma once + #include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/platform/for_range.h" + +#ifdef __NVCC__ +#include +#include "paddle/fluid/framework/array.h" +#endif namespace paddle { namespace operators { -inline void GetPrePostForStackOp(const framework::DDim &dim, int axis, int *pre, - int *post) { - *pre = 1; - for (auto i = 0; i < axis; ++i) (*pre) *= dim[i]; - *post = 1; - for (auto i = axis; i < dim.size(); ++i) (*post) *= dim[i]; -} - class StackOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; @@ -72,7 +72,61 @@ class StackOpMaker : public framework::OpProtoAndCheckerMaker { } }; -template +template +struct StackFunctor { + HOSTDEVICE StackFunctor(const VecXType &x, T *y, int n, int post) + : x_(x), y_(y), n_(n), post_(post) {} + + HOSTDEVICE void operator()(int idx) { + int i = idx / (n_ * post_); + int which_x = idx / post_ - i * n_; + int x_index = i * post_ + idx % post_; + y_[idx] = x_[which_x][x_index]; + } + + private: + VecXType x_; + T *y_; + int n_; + int post_; +}; + +template +struct StackGradFunctor { + HOSTDEVICE StackGradFunctor(const VecDxType &dx, const T *dy, int n, int post) + : dx_(dx), dy_(dy), n_(n), post_(post) {} + + HOSTDEVICE void operator()(int idx) { + int i = idx / (n_ * post_); + int which_x = idx / post_ - i * n_; + int x_index = i * post_ + idx % post_; + dx_[which_x][x_index] = dy_[idx]; + } + + private: + VecDxType dx_; + const T *dy_; + int n_; + int post_; +}; + +template +static inline void StackFunctorForRange(const DeviceContext &ctx, + const VecXType &x, T *y, int total_num, + int n, int post) { + platform::ForRange for_range(ctx, total_num); + for_range(StackFunctor(x, y, n, post)); +} + +template +static inline void StackGradFunctorForRange(const DeviceContext &ctx, + const VecDxType &dx, const T *dy, + int total_num, int n, int post) { + platform::ForRange for_range(ctx, total_num); + for_range(StackGradFunctor(dx, dy, n, post)); +} + +template class StackKernel : public framework::OpKernel { using Tensor = framework::LoDTensor; @@ -93,10 +147,29 @@ class StackKernel : public framework::OpKernel { auto &dim = x[0]->dims(); for (auto i = 0; i < axis; ++i) pre *= dim[i]; for (auto i = axis; i < dim.size(); ++i) post *= dim[i]; + int total_num = pre * n * post; - Functor functor; - functor(ctx.template device_context(), x_datas, y_data, pre, - n, post); + auto &dev_ctx = ctx.template device_context(); + constexpr auto kMaxThreshold = 16; + if (std::is_same::value || + n > kMaxThreshold) { +#ifdef __NVCC__ + thrust::device_vector device_x_vec(x_datas); + auto x_data_arr = device_x_vec.data().get(); +#else + auto x_data_arr = x_datas.data(); +#endif + StackFunctorForRange(dev_ctx, x_data_arr, y_data, total_num, n, post); + } +#ifdef __NVCC__ + else { // NOLINT + VLOG(10) << "Stack more than " << kMaxThreshold + << " tensors on GPU may be slow."; + framework::Array x_data_arr; + for (int i = 0; i < n; ++i) x_data_arr[i] = x_datas[i]; + StackFunctorForRange(dev_ctx, x_data_arr, y_data, total_num, n, post); + } +#endif } }; @@ -127,31 +200,11 @@ class StackOpGrad : public framework::OperatorWithKernel { } }; -class StackGradOpDescMaker - : public framework:: - SingleGradOpDescMaker /*framework::GradOpDescMakerBase*/ { +class StackGradOpDescMaker : public framework::SingleGradOpDescMaker { public: using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; - /* - using framework::GradOpDescMakerBase::GradOpDescMakerBase; - - std::vector> operator ()() const override { - auto x_grads = InputGrad("X", false); - std::vector> grad_ops; - grad_ops.reserve(x_grads.size()); - auto og = OutputGrad("Y"); - std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops), - [&og](const std::string& x_grad) { - auto* grad_op = new framework::OpDesc(); - grad_op->SetInput("X", og); - grad_op->SetOutput("Y", {x_grad}); - grad_op->SetAttrMap(Attrs()); - return std::unique_ptr(grad_op); - }); - return grad_ops; - } - */ + protected: std::unique_ptr Apply() const override { std::unique_ptr op(new framework::OpDesc()); op->SetType("stack_grad"); @@ -162,7 +215,7 @@ class StackGradOpDescMaker } }; -template +template class StackGradKernel : public framework::OpKernel { using Tensor = framework::LoDTensor; @@ -175,16 +228,39 @@ class StackGradKernel : public framework::OpKernel { int n = dy->dims()[axis]; std::vector dx_datas(n); // NOLINT - for (int i = 0; i < n; i++) + for (int i = 0; i < n; i++) { dx_datas[i] = dx[i]->mutable_data(ctx.GetPlace()); + } auto dy_data = dy->data(); int pre = 1; for (int i = 0; i < axis; ++i) pre *= dy->dims()[i]; - int post = dy->numel() / (n * pre); - GradFunctor functor; - functor(ctx.template device_context(), dx_datas, dy_data, - pre, n, post); + int total_num = dy->numel(); + int post = total_num / (n * pre); + + auto &dev_ctx = ctx.template device_context(); + constexpr auto kMaxThreshold = 16; + if (std::is_same::value || + n > kMaxThreshold) { +#ifdef __NVCC__ + thrust::device_vector device_dx_vec(dx_datas); + auto dx_data_arr = device_dx_vec.data().get(); +#else + auto dx_data_arr = dx_datas.data(); +#endif + StackGradFunctorForRange(dev_ctx, dx_data_arr, dy_data, total_num, n, + post); + } +#ifdef __NVCC__ + else { // NOLINT + VLOG(10) << "Stack more than " << kMaxThreshold + << " tensors on GPU may be slow."; + framework::Array dx_data_arr; + for (int i = 0; i < n; ++i) dx_data_arr[i] = dx_datas[i]; + StackGradFunctorForRange(dev_ctx, dx_data_arr, dy_data, total_num, n, + post); + } +#endif } }; diff --git a/python/paddle/fluid/io.py b/python/paddle/fluid/io.py index b3ed094c892c6fce7184d6d98f50ed7d6d1642a3..5c4ec99c533829240ac0bcc9647acb870f3412f8 100644 --- a/python/paddle/fluid/io.py +++ b/python/paddle/fluid/io.py @@ -406,6 +406,9 @@ def load_vars(executor, attrs={'file_path': os.path.join(dirname, filename)}) executor.run(load_prog) + if main_program is None: + main_program = default_main_program() + # load slice vars on pserver, if have it. _load_slice_up_vars(executor, dirname, main_program._slice_vars_and_attrs) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index b0fb09385a6f97cb6b0d3dcb10bcc26f91de2aaf..4bd260a00503c57b7f67b2706b4c25e43271c3f6 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -29,21 +29,81 @@ from .. import unique_name from functools import reduce __all__ = [ - 'fc', 'embedding', 'dynamic_lstm', 'dynamic_lstmp', 'dynamic_gru', - 'gru_unit', 'linear_chain_crf', 'crf_decoding', 'cos_sim', 'cross_entropy', - 'square_error_cost', 'chunk_eval', 'sequence_conv', 'conv2d', 'conv3d', - 'sequence_pool', 'sequence_softmax', 'softmax', 'pool2d', 'pool3d', - 'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'conv3d_transpose', - 'sequence_expand', 'lstm_unit', 'reduce_sum', 'reduce_mean', 'reduce_max', - 'reduce_min', 'reduce_prod', 'sequence_first_step', 'sequence_last_step', - 'dropout', 'split', 'ctc_greedy_decoder', 'edit_distance', 'l2_normalize', - 'matmul', 'topk', 'warpctc', 'sequence_reshape', 'transpose', 'im2sequence', - 'nce', 'hsigmoid', 'beam_search', 'row_conv', 'multiplex', 'layer_norm', - 'softmax_with_cross_entropy', 'smooth_l1', 'one_hot', - 'autoincreased_step_counter', 'reshape', 'lod_reset', 'lrn', 'pad', - 'label_smooth', 'roi_pool', 'dice_loss', 'image_resize', - 'image_resize_short', 'resize_bilinear', 'gather', 'scatter', 'random_crop', - 'mean_iou', 'relu', 'log', 'crop', 'rank_loss', 'prelu', 'flatten', 'stack' + 'fc', + 'embedding', + 'dynamic_lstm', + 'dynamic_lstmp', + 'dynamic_gru', + 'gru_unit', + 'linear_chain_crf', + 'crf_decoding', + 'cos_sim', + 'cross_entropy', + 'square_error_cost', + 'chunk_eval', + 'sequence_conv', + 'conv2d', + 'conv3d', + 'sequence_pool', + 'sequence_softmax', + 'softmax', + 'pool2d', + 'pool3d', + 'batch_norm', + 'beam_search_decode', + 'conv2d_transpose', + 'conv3d_transpose', + 'sequence_expand', + 'lstm_unit', + 'reduce_sum', + 'reduce_mean', + 'reduce_max', + 'reduce_min', + 'reduce_prod', + 'sequence_first_step', + 'sequence_last_step', + 'dropout', + 'split', + 'ctc_greedy_decoder', + 'edit_distance', + 'l2_normalize', + 'matmul', + 'topk', + 'warpctc', + 'sequence_reshape', + 'transpose', + 'im2sequence', + 'nce', + 'hsigmoid', + 'beam_search', + 'row_conv', + 'multiplex', + 'layer_norm', + 'softmax_with_cross_entropy', + 'smooth_l1', + 'one_hot', + 'autoincreased_step_counter', + 'reshape', + 'lod_reset', + 'lrn', + 'pad', + 'label_smooth', + 'roi_pool', + 'dice_loss', + 'image_resize', + 'image_resize_short', + 'resize_bilinear', + 'gather', + 'scatter', + 'random_crop', + 'mean_iou', + 'relu', + 'log', + 'crop', + 'rank_loss', + 'prelu', + 'flatten', + 'stack', ] @@ -5469,5 +5529,6 @@ def stack(x, axis=0): out = helper.create_tmp_variable(x[0].dtype) helper.append_op( - type='stack', inputs={'X': x}, outpus={'Y': out}, attrs={'axis': axis}) + type='stack', inputs={'X': x}, outputs={'Y': out}, + attrs={'axis': axis}) return out diff --git a/python/paddle/fluid/tests/unittests/test_profiler.py b/python/paddle/fluid/tests/unittests/test_profiler.py index 38a7c913bf07a32494089addf17068017d24d628..7934164b84931f886967982ce0cb65c406bbf800 100644 --- a/python/paddle/fluid/tests/unittests/test_profiler.py +++ b/python/paddle/fluid/tests/unittests/test_profiler.py @@ -25,9 +25,6 @@ import paddle.fluid.core as core class TestProfiler(unittest.TestCase): def net_profiler(self, state, profile_path='/tmp/profile'): - enable_if_gpu = state == 'GPU' or state == "All" - if enable_if_gpu and not core.is_compiled_with_cuda(): - return startup_program = fluid.Program() main_program = fluid.Program() @@ -81,8 +78,6 @@ class TestProfiler(unittest.TestCase): pass_acc_calculator.add(value=acc, weight=b_size) pass_acc = pass_acc_calculator.eval() - @unittest.skipIf(not core.is_compiled_with_cuda(), - "profiler is enabled only with GPU") def test_cpu_profiler(self): self.net_profiler('CPU')