未验证 提交 c701588b 编写于 作者: Z Zhou Wei 提交者: GitHub

add base class of LearningRateEpochDecay, and API: MultiStepDecay, and API: StepDecay (#24821)

* add new API: MultiStepDecay, a new learing rate strategy, test=develop

* add new API: MultiStepDecay, a new learing rate strategy,test=develop

* add new API: MultiStepDecay, a new learing rate strategy,test=develop

* add base class of LearningRateEpochDecay, and MultiStepDecay, and StepDecay, test=develop

* fix doc to add coverage,test=develop
上级 494cb36d
......@@ -23,7 +23,7 @@ from ..data_feeder import check_type
__all__ = [
'NoamDecay', 'PiecewiseDecay', 'NaturalExpDecay', 'ExponentialDecay',
'InverseTimeDecay', 'PolynomialDecay', 'CosineDecay', 'LinearLrWarmup',
'ReduceLROnPlateau'
'ReduceLROnPlateau', 'StepDecay', 'MultiStepDecay'
]
......@@ -595,6 +595,8 @@ class NoamDecay(LearningRateDecay):
class LinearLrWarmup(LearningRateDecay):
"""
:api_attr: imperative
This operator use the linear learning rate warm up strategy to adjust the learning rate preliminarily before the normal learning rate scheduling.
For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
......@@ -684,6 +686,8 @@ class LinearLrWarmup(LearningRateDecay):
class ReduceLROnPlateau(LearningRateDecay):
"""
:api_attr: imperative
Reduce learning rate when ``loss`` has stopped descending. Models often benefit from reducing the learning rate
by 2 to 10 times once model performance has no longer improvement.
......@@ -788,7 +792,6 @@ class ReduceLROnPlateau(LearningRateDecay):
raise ValueError('threshold mode ' + threshold_mode +
' is unknown!')
self.threshold_mode = threshold_mode
check_type(learning_rate, 'learning_rate', (float, int, Variable),
'ReduceLROnPlateau')
if isinstance(learning_rate, (float, int)):
......@@ -870,3 +873,217 @@ class ReduceLROnPlateau(LearningRateDecay):
else:
return current > best + self.threshold
class _LearningRateEpochDecay(LearningRateDecay):
"""
:api_attr: imperative
Base class of learning rate decay, which is updated each epoch.
Define the common interface of an _LearningRateEpochDecay.
User should not use this class directly,
but need to use one of it's implementation. And invoke method: `epoch()` each epoch.
"""
def __init__(self, learning_rate, dtype=None):
if not isinstance(learning_rate, (float, int)):
raise TypeError(
"The type of 'learning_rate' must be 'float, int', but received %s."
% type(learning_rate))
if learning_rate >= 1.0:
raise ValueError("The initial learning rate")
self.base_lr = float(learning_rate)
self.epoch_num = -1
if dtype is None:
self.dtype = "float32"
self.learning_rate = self.create_lr_var(self.base_lr)
self.epoch()
def __call__(self):
"""
Return last computed learning rate on current epoch.
"""
return self.learning_rate
def epoch(self, epoch=None):
"""
compueted learning_rate and update it when invoked.
"""
if epoch is None:
self.epoch_num += 1
else:
self.epoch_num = epoch
self.learning_rate = self.get_lr()
if isinstance(self.learning_rate, float):
self.learning_rate = self.create_lr_var(self.learning_rate)
def get_lr(self):
raise NotImplementedError
class StepDecay(_LearningRateEpochDecay):
"""
:api_attr: imperative
Decays the learning rate of ``optimizer`` by ``decay_rate`` every ``step_size`` number of epoch.
The algorithm can be described as the code below.
.. code-block:: text
learning_rate = 0.5
step_size = 30
decay_rate = 0.1
learning_rate = 0.5 if epoch < 30
learning_rate = 0.05 if 30 <= epoch < 60
learning_rate = 0.005 if 60 <= epoch < 90
...
Parameters:
learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
step_size (int): Period of learning rate decay..
decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
It should be less than 1.0. Default: 0.1.
Returns:
None.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
with fluid.dygraph.guard():
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = fluid.dygraph.Linear(10, 10)
input = fluid.dygraph.to_variable(x)
scheduler = fluid.dygraph.StepDecay(0.5, step_size=3)
adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())
for epoch in range(9):
for batch_id in range(5):
out = linear(input)
loss = fluid.layers.reduce_mean(out)
adam.minimize(loss)
scheduler.epoch()
print("epoch:{}, current lr is {}" .format(epoch, adam.current_step_lr()))
# epoch:0, current lr is 0.5
# epoch:1, current lr is 0.5
# epoch:2, current lr is 0.5
# epoch:3, current lr is 0.05
# epoch:4, current lr is 0.05
# epoch:5, current lr is 0.05
# epoch:6, current lr is 0.005
# epoch:7, current lr is 0.005
# epoch:8, current lr is 0.005
"""
def __init__(self, learning_rate, step_size, decay_rate=0.1):
if not isinstance(step_size, int):
raise TypeError(
"The type of 'step_size' must be 'int', but received %s." %
type(step_size))
if decay_rate >= 1.0:
raise ValueError('decay_rate should be < 1.0.')
self.step_size = step_size
self.decay_rate = decay_rate
super(StepDecay, self).__init__(learning_rate)
def get_lr(self):
decay_rate = self.create_lr_var(self.decay_rate)
i = self.epoch_num // self.step_size
return self.base_lr * (decay_rate**i)
class MultiStepDecay(_LearningRateEpochDecay):
"""
:api_attr: imperative
Decays the learning rate of ``optimizer`` by ``decay_rate`` once ``epoch`` reaches one of the milestones.
The algorithm can be described as the code below.
.. code-block:: text
learning_rate = 0.5
milestones = [30, 50]
decay_rate = 0.1
if epoch < 30:
learning_rate = 0.5
elif epoch < 50:
learning_rate = 0.05
else:
learning_rate = 0.005
Parameters:
learning_rate (float|int): The initial learning rate. It can be set to python float or int number. If it
milestones (tuple|list): List or tuple of each boundaries. Must be increasing.
decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
It should be less than 1.0. Default: 0.1.
Returns:
None.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
with fluid.dygraph.guard():
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = fluid.dygraph.Linear(10, 10)
input = fluid.dygraph.to_variable(x)
scheduler = fluid.dygraph.MultiStepDecay(0.5, milestones=[3, 5])
adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())
for epoch in range(6):
for batch_id in range(5):
out = linear(input)
loss = fluid.layers.reduce_mean(out)
adam.minimize(loss)
scheduler.epoch()
print("epoch:{}, current lr is {}" .format(epoch, adam.current_step_lr()))
# epoch:0, current lr is 0.5
# epoch:1, current lr is 0.5
# epoch:2, current lr is 0.5
# epoch:3, current lr is 0.05
# epoch:4, current lr is 0.05
# epoch:5, current lr is 0.005
"""
def __init__(self, learning_rate, milestones, decay_rate=0.1):
if not isinstance(milestones, (tuple, list)):
raise TypeError(
"The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s."
% type(milestones))
if not all([
milestones[i] < milestones[i + 1]
for i in range(len(milestones) - 1)
]):
raise ValueError('The elements of milestones must be incremented')
if decay_rate >= 1.0:
raise ValueError('decay_rate should be < 1.0.')
self.milestones = milestones
self.decay_rate = decay_rate
super(MultiStepDecay, self).__init__(learning_rate)
def get_lr(self):
decay_rate = self.create_lr_var(self.decay_rate)
for i in range(len(self.milestones)):
if self.epoch_num < self.milestones[i]:
return self.base_lr * (decay_rate**i)
return self.base_lr * (decay_rate**len(self.milestones))
......@@ -98,8 +98,26 @@ def noam_decay(global_step, d_model, warmup_steps, learning_rate=1.0):
return decayed_lr
class TestNoamLearningRateDecayDygraphMode(unittest.TestCase):
def test_dygraph_mode(self):
def linear_lr_warmup(global_step, warmup_steps, start_lr, end_lr):
linear_step = end_lr - start_lr
decayed_lr = start_lr + linear_step * (global_step / warmup_steps)
return decayed_lr
def multi_step_decay(global_step, learning_rate, milestones, decay_rate=0.1):
for i in range(len(milestones)):
if global_step < milestones[i]:
return learning_rate * math.pow(decay_rate, i)
return learning_rate * math.pow(decay_rate, len(milestones))
def step_decay(global_step, learning_rate, step_size, decay_rate=0.1):
return learning_rate * math.pow(decay_rate, global_step // step_size)
class TestLearningRateDecayDygraph(unittest.TestCase):
def test_NoamDecay(self):
with fluid.dygraph.guard():
d_model = 0.01
warmup_steps = 200
......@@ -117,6 +135,88 @@ class TestNoamLearningRateDecayDygraphMode(unittest.TestCase):
msg='Failed lr scheduler in step {0}, Python result is {1}, Fluid result is {2}'.
format(step, right_result, fluid_result[0]))
def test_LinearLrWarmup(self):
with fluid.dygraph.guard():
lr = fluid.layers.polynomial_decay(
learning_rate=1.0,
decay_steps=10,
end_learning_rate=0.0,
power=1.0)
lr = fluid.layers.linear_lr_warmup(
learning_rate=lr, warmup_steps=2, start_lr=0.0, end_lr=1.0)
right_result = [0.5, 0.9, 0.8, 0.7, 0.6]
for i in range(5):
t = lr()
self.assertTrue(
np.allclose((t.numpy())[0].item(), right_result[i]))
with self.assertRaises(TypeError):
lr = fluid.layers.linear_lr_warmup(
learning_rate="fake_lr",
warmup_steps=2,
start_lr=0.0,
end_lr=1.0)
def test_MultiStepDecay(self):
with fluid.dygraph.guard():
learning_rate = 0.5
milestones = [2, 4, 8]
decay_rate = 0.2
scheduler = fluid.dygraph.MultiStepDecay(learning_rate, milestones,
decay_rate)
for epoch in range(10):
right_result = multi_step_decay(epoch, learning_rate,
milestones, decay_rate)
fluid_result = scheduler().numpy()[0]
scheduler.epoch()
self.assertAlmostEqual(
right_result,
fluid_result,
msg='Failed lr scheduler in step {0}, Python result is {1}, Fluid result is {2}'.
format(epoch, right_result, fluid_result))
with self.assertRaises(ValueError):
lr = fluid.dygraph.MultiStepDecay(learning_rate, [30, 50, 20],
0.1)
with self.assertRaises(ValueError):
lr = fluid.dygraph.MultiStepDecay(learning_rate, [20, 30, 50],
1)
with self.assertRaises(TypeError):
lr = fluid.dygraph.MultiStepDecay("test", [20, 30, 50])
with self.assertRaises(ValueError):
lr = fluid.dygraph.MultiStepDecay(2.0, [20, 30, 50])
def test_StepDecay(self):
with fluid.dygraph.guard():
learning_rate = 0.5
step_size = 3
decay_rate = 0.2
scheduler = fluid.dygraph.StepDecay(learning_rate, step_size,
decay_rate)
for epoch in range(10):
right_result = step_decay(epoch, learning_rate, step_size,
decay_rate)
fluid_result = scheduler().numpy()[0]
scheduler.epoch()
self.assertAlmostEqual(
right_result,
fluid_result,
msg='Failed lr scheduler in step {0}, Python result is {1}, Fluid result is {2}'.
format(epoch, right_result, fluid_result))
with self.assertRaises(TypeError):
lr = fluid.dygraph.MultiStepDecay(learning_rate, "test", 0.1)
with self.assertRaises(ValueError):
lr = fluid.dygraph.MultiStepDecay(learning_rate, [20, 30, 50],
1)
class TestLearningRateDecay(unittest.TestCase):
def check_decay(self, python_decay_fn, fluid_decay_fn, kwargs):
......@@ -171,31 +271,26 @@ class TestLearningRateDecay(unittest.TestCase):
(natural_exp_decay, layers.natural_exp_decay, common_kwargs_false),
(inverse_time_decay, layers.inverse_time_decay, common_kwargs_true),
(inverse_time_decay, layers.inverse_time_decay,
common_kwargs_false),
(polynomial_decay, layers.polynomial_decay, {
common_kwargs_false), (polynomial_decay, layers.polynomial_decay, {
"learning_rate": 1.0,
"decay_steps": 5,
"cycle": True
}),
(polynomial_decay, layers.polynomial_decay, {
}), (polynomial_decay, layers.polynomial_decay, {
"learning_rate": 1.0,
"decay_steps": 5,
"cycle": False
}),
(piecewise_decay, layers.piecewise_decay, {
}), (piecewise_decay, layers.piecewise_decay, {
"boundaries": [3, 6, 9],
"values": [0.1, 0.2, 0.3, 0.4]
}),
(cosine_decay, layers.cosine_decay, {
}), (cosine_decay, layers.cosine_decay, {
"learning_rate": 0.1,
"step_each_epoch": 100,
"epochs": 120
}),
(noam_decay, layers.noam_decay, {
}), (noam_decay, layers.noam_decay, {
"d_model": 0.01,
"warmup_steps": 200,
"learning_rate": 2.0
}),
})
]
for py_decay_fn, fluid_decay_fn, kwargs in decay_fns:
......@@ -207,13 +302,7 @@ class TestLearningRateDecay(unittest.TestCase):
self.check_decay(py_decay_fn, fluid_decay_fn, kwargs)
def linear_lr_warmup(global_step, warmup_steps, start_lr, end_lr):
linear_step = end_lr - start_lr
decayed_lr = start_lr + linear_step * (global_step / warmup_steps)
return decayed_lr
class TestLinearWamrupLearningRateDecay(TestLearningRateDecay):
class TestLinearWamrupLearningRateDecay(unittest.TestCase):
def check_decay_with_place(self, place, python_decay_fn, fluid_decay_fn,
kwargs):
main_prog = fluid.Program()
......@@ -304,37 +393,6 @@ class TestLinearWamrupLearningRateDecayWithScalarInput(unittest.TestCase):
run_places(lr, start_lr, end_lr)
class TestLinearWamrupLearningRateDecayDygraphMode(unittest.TestCase):
def test_dygraph_mode(self):
with fluid.dygraph.guard():
lr = fluid.layers.polynomial_decay(
learning_rate=1.0,
decay_steps=10,
end_learning_rate=0.0,
power=1.0)
lr = fluid.layers.linear_lr_warmup(
learning_rate=lr, warmup_steps=2, start_lr=0.0, end_lr=1.0)
right_result = [0.5, 0.9, 0.8, 0.7, 0.6]
for i in range(5):
t = lr()
self.assertTrue(
np.allclose((t.numpy())[0].item(), right_result[i]))
class TestLinearWamrupLearningRateDecayDygraphModeTypeCheck(unittest.TestCase):
def test_dygraph_mode(self):
with fluid.dygraph.guard():
with self.assertRaises(TypeError):
lr = fluid.layers.linear_lr_warmup(
learning_rate="fake_lr",
warmup_steps=2,
start_lr=0.0,
end_lr=1.0)
def reduce_lr_on_plateau(decay_rate, threshold, cooldown, patience, m, n, loss,
var_list):
def is_better(current, best, m, n):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册